ML20073T158
| ML20073T158 | |
| Person / Time | |
|---|---|
| Site: | Brunswick |
| Issue date: | 01/31/1983 |
| From: | Charnley J, Hill R, Zanardi G GENERAL ELECTRIC CO. |
| To: | |
| Shared Package | |
| ML20073T149 | List: |
| References | |
| Y1003J01A53, Y1003J1A53, NUDOCS 8305100370 | |
| Download: ML20073T158 (28) | |
Text
- - -
" itn JANUARY 1983 SUPPLEMENTAL RELOAD LICENSING SUBMITTAL FOR BRUNSWICK STEAM ELECTRIC PLANT UNIT 1, RELOAD 3 (WITHOUT RECIRCULATION PUMP TRIP) 1 FA
)
GEN ER AL h ELECTRIC
=
l
Y1003J01A53 Class I January 1983 SUPPLEMENTAL RELOAD LICENSING SUBMITTAL FOR BRUNSWICK STEAM ELECTRIC PLANT UNIT 1, RELOAD 3 (WITHOUT RECIRCULATION PUMP TRIP)
Prepar b
Verifi
/
Approved:
J.
. Charnley 7 Manager Re oad Fuel Licensing NUCLEAR POWER SYSTEMS DIVISION
- GENERAL ELECTRIC COMPANY SAN JOSE. CALIFORNIA 95125 GENER AL h ELECTRIC i
\\
Y1003J01A53 Rev. O IMPORTANT NOTICE REGARDING CONTENTS OF THIS REPORT PLEASE READ CAREFULLY This report was prepared by General Electric solely for Carolina Power and Light Company (CP&L) for CP&L's use with the United States Nuclear Regulatory Commission (USNRC) for amending CP&L's operating license of the Brunswick Steam Electric Plant Unit 1.
The information contained in this report is believed by General Electric to be an accurate and true representation of the facts known, obtained or provided to General Electric at the time this report was prepared.
The only undertakings of the General Electric Company respecting information in this document are contained in the Fuel Contract Supplemental Agreement between Carolina Power and Light Company and General Electric Company for Brunswick Steam Electric Plant Units 1 and 2, dated January 28, 1974, and nothing contained in this document shall be construed as changing said contract.
The use of this information except as defined by said contract, or for any pur-pose other than that for which it is intended, is not authorized; and with respect to any such unauthorized use, neither General Electric nor any of the contributors to this document makes any representation or warranty (express or implied) as to the completeness, accuracy or usefulness of the information con-tained in this document or that such use of such information may not infringe privately owned rights; nor do they assume any responsibility for liability or damage of any kind which may result from such use of such information.
Ei
Y1003J01A53 Rev. 0 1.
PLANT UNIQUE ITEMS (1.0)*
Single Loop Confirmatory Analysis Appendix A Additional LOCA Results Appendix B 2.
RELOAD FUEL BUNDLES (1.0, 2.7, 3.3.1 and 4.0)
Fuel Type Cycle Loaded Number Number Drilled Irradiated Initial Core 1
48 48 8DRB265L 2
52 52 8
8DRB283 2
124 124 P8DRB265H 3
16 16 P8DRB285 3
140 140 New P8DRB265H 4
72 72 P8DRB284H 4
72 72 P8DRB299 4
36 36 Total 560 560 3.
REFERENCE CORE LOADING PATTERN (3.3.1)
Nominal previous cycle core average exposure at end of cycle:
15,786 mwd /ST Minimum previous cycle core average exposure at end of cycle from cold shutdown considerations:
15,387 mwd /ST Assumed reload cycle core average exposure at end of cycle:
16,350 mwd /ST Core loading pattern:
Figure 1
- ( ) ref ers to area of discussion in " Generic Reload Fuel Application,"
NEDE-24011-P-A-4,.lanuary 1982.
1
Y1003J01A53 Rev. O I
4.
CALCULATED CORE EFFECTIVE MULTIPLICATION AND CONTROL SYSTEM WORTH - NO VOIDS, 20*C (3.3.2.1.1 and 3.3.2.1.2)
BOC k f
eff Uncontrolled 1.114 Fully Controlled 0.958 Strongest Control Rod Out 0.989 R, Maximum Increase in Cold Core Reactivity 0.0 with Exposure into Cycle, Ak 5.
STANDBY LIQUID CONTROL SYSTEM SHUTDOWN CAPABILITY (3.3.2.1.3)
Shutdown Margin (6k) 20 C, Xenon Free)
Iggi 600 0.031 6.
RELOAD UNIQUE TRANSIENT ANALYSIS INPUT (3.3.2.1.5 and 5.2)
(REDY EVENTS ONLY)
EOC 4-2000 mwd /T EOC 4 Void Fraction (%)
41.3 41.3 Average Fuel Temperature (*F) 1302 1302 Void Coefficient N/A* (c/% Rg)
-8.12/-10.15
-8.33/-10.42 Doppler Coefficient N/A (c/*F)
-0.219/-0.208
-0.232/-0.220 Scram Worth N/A ($)
-46.31/-37.05
-46.31/~37.05 7.
RELOAD-UNIQUE GETAB TRANSIENT ANALYSIS INITIAL CONDITION PARAMETERS (5.2)
Fuel Peaking Factors Bundle Power Bundle Flow Initial Design (Local, Radial, Axial)
R-Factor (MWt)
(103 lb/hr)
MCPR BOC 4 to EOC 4-2000 mwd /T P8x8R 1.20 1.53 1.40 1.051 6.516 111.0 1.23 8x8R 1.20 1.55 1.40 1.051 6.614 110.3 1.21 8x8 1.22 1.42 1.40 1.098 6.045 109.6 1.21
- N = Nuclear Input Data A = Used in Transient Analysis 2
l
Y1003J01A53 Rev. O Fuel Peaking Factors Bundle Power Bundle Flow Initial Design (Local, Radial, Axial) R-Factor (MWt)
(103 lb/hr)
MCPR EOC 4-2000 mwd /T to EOC 4 P8x8R 1.20 1.41 1.40 1.051 6.004 114.8 1.35 8x8R 1.20 1.44 1.40 1.051 6.139 113.8 1.32 8x8 1.22 1.32 1.40 1.098 5.616 113.0 1.31 8.
SELECTED MARGIN IMPROVEMENT GPTIONS (5.2.2)
Transient Recategorization: No Recirculation Pump Trip: No Rod Withdrawal Limiter: No Thermal Power Monitor: Yes Measured Scram Time: No Number of Exposure Points: 2 9.
CORE-WIDE TRANSIENT ANALYSIS RESULTS (5.2.1)
O Flux Q/A Transient
(% NBR)
(% NBR)
P8x8R 8x8R 8x8 Figure Exposure:
BOC 4 to 478 119 0.16 0.15 0.14 2A EOC 4-2000 mwd /T Load Rejection Without Bypass Exposure:
E0C 4-2000 mwd /T 746 127 0.28 0.25 0.24 2B to EOC 4 Load Rejection without Bypass Exposute:
BOC to EOC 123 122 0.14 0.14 0.14 3
Loss of Feedwater Heater Exposure: BOC 4 to 286 116 0.11 0.10 0.09 4A EOC 4-2000 mwd /T Feedwater Controller Failure Exposure:
EOC 4-2000 mwd /T 454 125 0.23 0.21 0.20 4B to EOC 4 Feedwater Controller Failure 3
Y1003J01A53 Rev. 0 10.
LOCAL ROD WITHDRAWAL ERROR (WITH LIMITING INSTRUMENT FAILURE) TRANSIENT
SUMMARY
(5.2.1)
Limiting Rod Pattern: Figure 5 Includes 2.2% Power Spiking Penalty: Yes MLHGR (kW/ft)
Rod Block Rod Position 8x8R/
Reading (feet withdrawn)
F8x8R 8x8R 8x8*
8x8* P8x8R 104 3.0 0.12 0.12 17.0 105 3.5 0.15 0.15 17.6 106 4.0 0.18 0.18 18.0 107 4.0 0.18 0.18 18.0 108 4.5 0.20 0.20 18.0 109 5.0 0.22 0.22 18.0 110 5.5 0.23 0.23 18.0 Set Point Selected Is:
107 11.
CYCLE MCPR VALUES (5.2)
Nonpressurization Events:
Exposure Range: BOC to EOC P8x8R 8x8R 8x8 Loss of Feedwater Heater 1.21 1.21 1.21 Fuel Loading Error 1.22 Rod Withdrawal Error 1.25 1.25 l
Minimum for LOCA: 1.20 Pressurization Events:
Exposure Range: BOC 4 to EOC 4-2000 mwd /T Option A Option B P8x8R 8x8R 8x8 P8x8R 8x8R 8x8 l
Load Rejection Without Bypass 1.28 1.27 1.26 1.09 1.08 1.08 Feedwater Controller Failure 1.23 1.22 1.21 1.17 1.16 1.15
- 0n periphery of core (low power region) and not limiting 4
Y1003J01A53 Rev. O Pressurization Events:
Exposure Range: EOC 4-2000 mwd /1 to EOC 4 Option A Option B P8x8R 8x8R 8x8 P8x8R 8x8R 8x8 Load Rejection Without Bypass 1.41 1.38 1.37 1.29 1.26 1.25 Feedwater Controller Failure 1.36 1.34 1.33 1.29 1.27 1.26 12.
OVERPRESSURIZATION ANALYSIS
SUMMARY
(5.3) si v
Transient (psig)
(psig)
Plant Response MSIV Closure 1212 1241 Figure 6 13.
STABILITY ANALYSIS RESULTS (5.4)
Rod Line Analyzed: 105%
Decay Ratio:
Figure 7 Reactor Core Stability Decay Ratio, x /*0 0.72 2
Channel Type 8x8R/P8x8R 0.48 8x8 0.58 14.
LOADING ERROR RESULTS (5.5.4)
Variable Water Gap Misoriented Bundle Analysis: Yes Includes 2.2% Power Spiking Penalty: Yes Event Initial MCPR Resulting MCPR Misoriented 1.20 1.07 15.
CONTROL ROD DROP ANALYSIS REFULTS (5.5.1) l Bounding Analysis Results:
3 Doppler Reactivity Coefficient:
Figure 8 Accident Reactivity Shape Functions:
Figures 9 and 10 Scram Reactivity Functions:
Figures 11 and 12 5
Y1003J01A53 Rev. O Plant Specific Analysis Results:
Parameter (s) Not Bounded, Cold:
Accident Reactivity Scram Reactivity Resultant Peak Enthalpy, Cold:
220.4 Parameter (s) Not Bounded, HSB:
None Resultant Peak Enthalpy, HSB:
16.
LOSS-OF-COOLANT ACCIDENT RESULT (5.5.2)
" Loss-of-Coolant Accident Analysis Report for Brunswick Steam Electric Plant Unit 1," General Electric Company, November 1978 (NEDO-24165, as amended).
Fuel Type: P8DRB284H Exposure MAPLHGR PCT Local Oxidation (mwd /ST)
(kW/ft)
( F)
(Fraction) 200 11.2 2067 0.021 1,000 11.2 2062 0.021 5,000 11.7 2105 0.023 10,000 12.0 2140 0.026 15,000 12.0 2146 0.026 20,000 11.8 2133 0.025 25,000 11.1 2040 0.019 30,000 10.4 1937 0.013 35,000 9.8 1839 0.009 40,000 9.1 1756 0.006 0
i 6
Y1003J01A53 Rev. 0 Fuel Type: P8DRB299 Exposure MAPI HGR PCT Local Oxidation (mwd /st)
(kW/ft)
(*F)
(Fraction) 200 10.9 2029 0.019 1,000 11.0 2029 0.018 5,000 11.5 2071 0.021 10,000 12.2 2155 0.027 15,000 12.3 2178 0.029 i
20,000 12.1 2170 0.028 25,000 11.5 2104 O.023 30,000 11.0 2005 0.016 35,000 10,3 1900 0.011 40,000 9.7 1820 0.008 l
l I
r r
P f
t 0
7
Y1003J01A53 Rev. 0
. M M M M Bs.
.MMMMMMMMM.
MMBBBsMBsMBsBEMBE
.BsBBBEMMBsMBsBsMBs.
- M Bs BE E E E M M B M M M M
- BsMMBEEEBRMMMMMM
- M BE B8 E M M M M M M M B B
- M Bs M M BE M M M BE M M M M
':BsBEBEBEBEBEBIBBBBBBBsBBBs "MBsBsBEMBEMMMBsM" Bs M BsBE M M M BBBsBE M "HEMMMMMME" "MMMMM" iIIIIIIIII 1 3 5 7 9111315171921232527293133353739414345474951 FUEL TYPE A = INITIAL CORE E = P8DRB285 B = 8DRB265L F = P8DRB265H C = 8DRB283 G = P8DRB28411 D = P8DRB265H H = P8DRB299 e
Figure 1.
Reference Core Loading Pattern 8
L l
1 VESSEL filis BlSI IPCII 1 NEllTRON FLUX 2 AVE SURFf CE HEAT FLUX 2 Suf LT'i Vih VF fluu
.1 CORE INLt-T FLOW 3 U lIII V' E Vf ' l ' 'N 150.
"00.
11 bii1135 Vi tVi t i f i. i I1.,
u
($
U-9 5 100.
N*
200.
A
/
55
~
l50.
100.
g cc b
l D.iL.
I 1
.i.
2u 2u r u 0.
-0.
1.2 2.4 3.6 4.8
-0.
1.2 2.4 3.6 4.0 TIME (SEC1 TIME (SEC1 4
o 8
8 1 LEVEL (INCH-REF-SEP-SKIRT INMtf REAC TIVITY 2 VESSEL STEAMFLOW 2 00PPLLR fEACTIVITY uW 3 SCRAM REI CTIVITY 3 TURBINE S TEAMFL OW I'
00.
4 FEEDHATEF FLOW
'A TOTAL. T fCTlWTY-5 4
G m
2 M
O 200-
,i vgm'g' g-w
~ -
s
%x m
g 0
3 3
3 3
-1.
M
-2.
-100.
1-
-0.
- 1. 2 2.4 3.6 4.0
-0.
0.4 0.8 1.2 1.6
- x8 TIME (SEC1 TIME ISEC1 Q
o Figure 2A.
Plant Response to Generator Load Rejection Without Bypass (E0C-2000)
1 NEUTRON FLUX 1 VESSEL PfEG RISE (PSI) 2 AVE SURFfCE HEAT FLUX 2 SAFETY VfLVE FLOW 150' 1
3 CORE INLF T FLOW 3 BELIEF V6 LVE FLOW 300*
i 4
4 BYPASS VfLVE FLOW 5
5 6
4%
8 100.
^?
200.
5 U
NN s
q
~
E5 6 50.
100.
L
\\
E t
M O.
I-I 0.
.2
.i.
2u 24 2 4
-0.
1.2 2.4 3.6 4.8 4.
- 1. 2 2.4 3.6 4.8 TIME (SEC)
TIME ISEC)
N 8
5 5
5 1 LEVEL (INCH-REF-SEP-SKIRT 1 VOID TIVITT u
2 VESSEL STEAMFLOW
)
2 DOPPL FEACTIVITY 3 TURBINE ETEAMFLOW
/
B SCR EECTIVITY 200' 7*
4 FEEDWRTEF FLOW N L7.EfCTIVIIY 4
1 d
1^
a _ -
0*
t
\\A/ Q N
\\
~
h 1__
1 3
3 3
3 C
-1' 0'
' ()
E g
eW
-2.
-=
W
-100.
.1-
-=
0.
1.2 2.4 3.6 4.8
-0.
O.4 0.8
- 1. 2 1.6 TIME ISEC1 TIME (SEC) o Figure 2B, Plant Response to Generator Load Rejection Without Bypass (EOC 4) n.
gt<.
M o8tO$u" o
)
1 5P Y
(WW T
EOO ITY SLL YVTT IFF TIII R
ITVV EE VCII CVV IATT 0
CLL n
0 TECC 6
6 CFfF 1
FFf 1
A EE PVV ERRR LFS RE EES LML SIR DPAA SLP IPAT EEY O0CO VRB V0ST 1234S6 0
1234 0
2 2
11 1
C a
E l
S C
I 0
i l
E j
E S
g I
M n
I
.T
.E i
0 0M t
8 8I T
a Pm e
ll r
e t
0 a
0
- 4
- 4 w
t F
d e
e n
1 i -
O 0
r 0
.O 5*
5 1
g 0
1 2
N S
2 7
A f
1 o
b5 B g>Pgg s
s o
T L
R I
X K
o U
S t
L F
P 1
E W e
T SWO s
N OL n
AW FLFW J
EOD o
EfNO HLU RMAL p
X FS uE
- REF 0
s 0
HET
' 6 e
lLTT 6
dlfF Y
1 fftL 1
NS E
R FLL I
ET NRNN 3
(LNR OUII t
2 RS LElW n
T Fd ESBD UERR VSRE a
EVOO EEUE
^
LVTF l
NACC v
Y P
0 12345 0
1234S 2
2 b
1l 11 c
C S
i E
E S
3 L
I yM
~
tI g
I i
j e
E E
M r
M u
.I I
T
.T g
0 0
8 8
i F
3 1
0 0
- 4
- 4 I *!0' 0.
D 0*
0.
0 0
1-
~
0
.O 5
0 5
0 5
1 1
1 1
5ese EWE
- }i i!.
i:
1]
a
.j
.j
- l!
l.
13 1
.. - -.. ~. - -... -. -....
1 l
1NdlTR0tlhLUX 1 VfSSEL PTES RISE IPSI) 2GA' SunffCE HERT FLUX 2 LIII til ( VI LVE fLIN 3r llE INLI Fi OW L6 1311 I.s{. Vi 1 (11.1 Vf1.VE F1GW 150*
EsE INLL i 500 gpg*
Li (
t.VL FL(M 5
i y
5 6
is 3
5 100.
75.
l 'th f
bf j
/
a i
_u_
_q
-g w.
s.
l 5
1 6
,=
i 2
3
-im m
I i
D.
I
-25.
'=
0.
4.
8.
12.
16.
D.
4, 8.
12.
16.
TIME ISEC)
TIME (SEC)
+
i i
M oo i
u N
o i
I LEVFL(INCH-REF-SEP-SKIRT V
1 VOID REACTIVITY i
2 VESSEL 51EAMFLOW 2 DOPPLER FEACTIVITT U
3 TURBINE STEAMFLOW 3 SCRAM REFCTIVITT I*
~
f I
- 4 y
y 4 FEEDITATUTLOW ifT TAL IIGCflYC f
I'b
' C-l 100.
O.
l 3 7
\\s a
n f
C
\\
, _f h
N
.1.
\\
so.
h h
3 8
4 i
M 0.
I 3"
-2.
~
0.
4.
8.
12.
16.
O.
6.
12.
18.
24.
TIME (SEC)
TIME ISEC1
- x:
0 Figure 4A.
Plant Response to Feedwater Controller Failure, Maximum Demand (E0C-2000) o i
l 4,
i Itl TRON /.UX 1 VESSEL PTES RISE (PSI) 20
.lE INLET FLOW 3 BEL VfLVE FLOW--
SURFftE HEAT FLUX 2 SAFETT VfLVE FLOW 150*
3I f 125.
4 (~CiE INLEI 'UB 4 BTP 5 fLVE FLOH 5
5 tl J
6 8 100.
75.
i N
/'
\\'/
j 8
I g
{
hu !_
_y_
w 50.
25.
Id f
Y 1
17m 3
'n
?
2 3
0.
1
-25.
-=
0.
4.
8.
12.
16.
D.
4.
8.
12.
16.
TIME (SEC)
TIME ISEC) i M
o S
C 8
E 1 LEVEL (INCH-REF-SEP-SKIRT I
1 VOID REACTIVITY U
2 VESSEL SlEAMFLOW
(
2 DOPPLER FEACTIVITT 3 TURBINE 5 TEAMFLOW i,
3 SCRAM REFCTIVITY 150' g*
tl FLEDWRTEF FLOW g
4 TOTAL REFCTIVITY 1
4 u
I f
~
'?
7 100.
O.
- [/
/
!1*
f i
y i
f i.
g l
u9 *
-2.
O.
0.
4.
8.
12.
16.
O.
6.
12.
18.
24.
m TIME (SEC)
TIME ISECl 1
i o
l Figure 4B.
Plant Response to Feedwater Controller Failure, Maximum Demand (EOC 4) i r
r Y1003J01A53 Rev. O NOTES:1. ROD PATTERN IS 1/4 CORE MIRROR SYMMETRIC.
- 2. NO. INDICATES NUMBER OF NOTCHES WITHDRAWN OUT OF 48.
BLANK IS A WITHDRAWN ROD.
- 3. ERROR ROD IS (22, 39).
t 2
6 10 14 18 22 26 51 40 40 47 6
10 43 40 46 44 39 10 10 0
35 40 40 44 46 31 10 6
10 27 36 40 40 40 i
i l
l I
h 1
i l
l Figure 5.
Limiting Rod Withdrawal Error Rod Pattern 14
,,___.y__
,c.
_ l
- fI 1 NEUTRON FLUX 1 VESSEL PFES RTSE IPSI) 2 AVE SURFfCE HEAT FLUX
? SoftiT Vrt"r f l 0W 1_FLLif f VI ; VI t i tin 1
3 CORE INI FT FLOW 300.
il DTPH2 VILVL F LUrl 4
S 5
J 6
A IL 200.
c_ 100.
s h
%\\
y N
g 50.
100.
0 3
h
~
1 y
m e. d n}
pu 2 u
.=
I I^
0.
O.
-0.
1.6 3.2 4.8 6.4
-0.
1.6 3.2 4.8 6.4 TIME (SEC1 TIME ISEC)
.<'o S
0; 8y 1 LEVEL (INCH-REF-SEP-SKIRT 1 V010 REACTIVI u
2 VESSEL S1EAMFLOW 2 DOPPLER FEA VITY w
3 TURBINE ETEAMFLOW 3 SCPPM REFC iTY 200*
g*
4 FEEDWATEF FLOW 4 /.DTI W irTIVITY l
5 4
h"b^- -
0 0~
123u 12 m -
93 100'
~--N ifV VW
~
2_
1 A ft 6
j
~
M-_
l
~
\\,&
=
-1.
0.
C
~
-100.
r-
-2.
t
-=
-0.
1.6 3.2 4.8 6.4
-0.
0.6 1.2 1.8 2.4 Tiff ISECl TIME ISEC)
{*
o Figure 6.
Plant Response to MSIV Closure (Flux Scram)
Y1003J01A53 Rev. 0 Ab ATURAL C :RCULATIO N 81 05 PERCENT ROD LI 4E CL LTIMATE STABILITY LINE 1.00 C
C i
A l
I
.75 x
Nm
,x o
.50
.c <o tua l
.25 f
0.00
- 0. 0 20.0 40.0 60.0 80.0 100.0 120.0 d
PERCENT POWER Figure 7.
Reactor Core Decay Ratio 16 1
Y1003J01A53 Rev. 0
- 0. 0
-5. 0
-10.0 ud
- -15.0 51 f
w
/
w
- j -2 0. 0-u_
f LL w
8-25.0 m
/
4
__J CL o -30.O o-
-35.O i. c i, c,,,
i r c n v ii iil:_rni n Bd LUUEAI5b V EUi 5U5~
i C BOUND VAL-280 CAL /G COLD D BOUND VAL 280 C hL/G HSB
-40.0
- 0. 0 500.0 1000.0 1500.0 2000.0 2500.0 3000.0 FUEL TEMPERATURE DEG C.
Figure 8.
Fuel Doppler Coefficient in 1/A*C 17
Y1003J01A53 Rev. 0 14.O
/1 ACCIflENT FUNCTION
^
[
b BUUNUING VALU E 280 CAL /G 11.5 m
o Iwe r
t-J 9.0
.2; 4
f--
~
s O<
EE 6.5 e
4.0
- 0. 0 5.0 10.0 15.0 20.0 ROD POSITION, FEET OUT e
Figure 9.
Accident Reactivity Shape Function Cold Startup 18 I
Y1003J01A53 Rev. 0 13.n A AC CIDENT FUt CTION Q B(pNDING VAL UE 280 CAL /G n
u u
u 10.5 m
o I
LLJ L'
6
- 8. 0
/
F-J LL)
CJ F-e-.>
A A
A n
[
5.5
[
o<
LtJ Cd
/
- 3. 0
/
h 1.0 3.0
- 5. 0 7.0
- 9. 0 11.0 R0D POSITION, FEET OUT Figure 10.
Accident Reacttvity Shape Function Hot Startup 19
Y1003J01A53 Rev. 0 30.O A SCRAM FUNCTION E BOUNDI NG VALUE 280 CAL /G 25.O m
o Iw n
20.O i
r F-
__Jwa 15.O co wz v
),I b
10.0
//
t--o<w I
o:
- 5. 0
/
- 0. 0
_U u..
- 0. 0 1.0
- 2. 0 3.0 4.-0 5.0
- 6. 0 l
ELAPSED TIME, SECONDS l
l l
Figure 11.
Scram Reactivity Function Cold Startup l
20
Y1003J01A53 Rev. 0 70 r A SCRAM FUNCTION B BOUNDI NG VALUE 50 CAL /G 60.0 m
o i
50.0 to l
Z
/
l-40.0 a
tuo e
ai 5
30.0
(
l--
>p 20.0 o<
ld e
(
10.0 l
O. 0
,_ ~
- 0. 0 1.0
- 2. 0
- 3. 0 4.0 5.0 6.0 ELAPSED TIME, SECONDS i
Figure 12.
Scram Reactivity Function llot Sta rtup i
l 21/22
Y1003J01A33 Rev. O APPENDlX A CONFIRMATION OF SINGLE LOOP OPERATION The previous Single Loop Operation analysis performed for Brunswick 1 (Refer-ence A-1) has been verified to be applicable for Cycle 4.
REFERENCES A-1.
"B unswick Steam Electric Plant Units 1 and 2 Single-Loop Operation,"
General Electric Company, September 1981 (NEDO-24344).
l l
i f
1 23/24 l
Y1003J01A53 Rev. O APPENDIX B j
ADDITIONAL LOCA RESULTS Fuel Type:
IC Type 2 Exposure MAPLHCR PCT Local Oxidation
=
(mwd /ST)
(kW/ft)
('F)
(Fraction) 1 200 11.0 2017 0.018 1,000 11.1 2016 0.018 5,000 11.7 2078 0.020 10,000 12.2 2146 0.024 15,000 12.2 2163 0.026 20,000 12.0 2149 0.025 25,000 11.1 2026 0.017 30,000 10.1 1886 0.010 Fuel Type: 8DRB265L Exposure MAPLHGR PCT Local Oxidation
__ Fraction)
(
(mwd /ST)
(kW/ft)
(*F) 200 11.6 2128 0.026 1,000 11.6 2129 0.025 5,000 12.1 2178 0.029 10,000 12.1 2169 0.028 15,000 12.1 2183 0.029 20,000 11.9 2170 0.029 25,000 11.3 2101 0.023 30,000 10.7 2020 0.017 35,000 10.2 1946 0.013
(
40,000 9.6 1857 0.010 1
I l
25 l
i
[
Y1003J01A53 Rev. O Fuel Type: P8DRB265H Exposure MAPLHGR PCT Local Oxidation (mwd /ST)
(kW/ft)
(*F)
(Fraction) 200 11.5 2103 0.024 1,000 11.6 2111 0.024 5,000 11.9 2135 0.025 10,000 12.1 2147 0.026 15,000 12.1 2157 0.027 20,000 11.9 2138 0.025 25,000 11.3 2063 0.020 30,000 10.7 1977 0.015 Fuel Type:
8DRB283 Exposure MAPLHGR PCT Local Oxidation (mwd /ST)
(kW/ft)
(*F)
(Fraction) 200 11.2 2090 0.023 1,000 11.2 2083 0.022 1
5,000 11.8 2149 0.027 10,000 12.0 2161 0.028 15,000 12.1 2180 0.029 20,000 11.8 2164 0.028 25,000 11.3 2096 0.023 l
30,000 11.1 2072 0.021 35,000 10.4 1986 0.016 40,000 9.8 1903 0.012 l
l i
26 i
)
Y1003J01A53 Rev. O j
i Fuel Type: P80RB285 Exposure MAPLilGR PCT Local Oxidation (mwd /ST)
(kW/ f tl1,
(*F)
(Fraction) 200 10.9 2038 0.019 1,000 11.0 2048 0.020 0.026 5,000 11.8 2141
(
10,000 12.3 2177 0.029 15,000 12.2 2174 0.028 20,000 11.8 2131 0.025 25,000 11.0 2031 0.018 30,000 10.4 1928 0.012 4
i I
27l28 (FINAL)
-