ML20078R116

From kanterella
Revision as of 11:55, 24 April 2020 by StriderTol (talk | contribs) (StriderTol Bot insert)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search
Non-proprieatry NFSR-0090, Response to Nuclear Regulatory Staff Request for Addl Info on VIPRE/WRB-2 DNBR Thermal Limit for Westinghouse 17x17 Ofa & Vantage 5 Fuel
ML20078R116
Person / Time
Site: Byron, Braidwood  Constellation icon.png
Issue date: 11/15/1994
From: Kim H, Klasmier L
COMMONWEALTH EDISON CO.
To:
Shared Package
ML19311B582 List:
References
NFSR-0090, NFSR-90, NUDOCS 9412230207
Download: ML20078R116 (60)


Text

. . _. ._

l l

Westinghouse Proprietary Class 3 j RESPONSE TO NUCLEAR REGULATORY STAFF REQUEST FOR ADDITIONAL INFORMATION ON VIPRE/WRB-2 DNBR THERMAL LIMIT FOR

, WESTINGHOUSE 17X17 OFA AND VANTAGE 5 FUEL Document Number NFSR-0090 RAI Response #1 l

Lawrence K. Klasmier l Hak-Soo Kim j l

"c O *7m"o En cuc.go, une l

Prepared by: Date: //,!((

Reviewed by: CA L . Mh Date: I///r/9'/-  !

  1. "N5lW Approved by: MM[w '

Date: ////r/W j (bate lssu'ed)  !

1 4

sA22gggg;gg;gggs, P PDR ,

NFSR-0090 RAI Respons0 M Statement of Disclaimer This document was prepared by the Nuclear Fuel Services Department and is being made available to others upon the express understanding that neither Commonwealth Edison Company nor any of its officers, directors, agents, or employees makes any warranty or representation or assumes any obligation, responsibility or liability with respect to the contents of this document or its accuracy or completeness pertaining to any usage other than the originally stated purpose.

l l

l ii

. NFSR-0090 RAI Response #1 I

Proprietary Stateamt l This document contains proprietary information of ' Westinghouse Electric Corporatian and is fumished in confidence solely for the purpose or purposes stated. No other use, j direct or indirect, of the document or the information it contains is authorized. The j recipient shall not publish or otherwise disclose this document or information therein to j others without prior written consent of the Commonwealth Edison Company, and shall i retum the document at the request of the Commonwealth Edison Company.

l l

I i

1 l

l iii

. NFSR-0090 RAI Response #1 Table of Contents Question on VAN TAG E 5 H DN BR Penalty .................................................................... 1 Questicn1.......................................................................................................................2 Question 2......................................................................................................................3 Question 3......................................................................................................................6 Question 4.....................................................................................................................8 Question 5......................................................................................................................9 Question 6....................................................................................................................11 Question 7....................................................................................................................13 Question 8....................................................................................................................14 Question 9....................................................................................................................15 Question 10.................................................................................................................16 References...................................................................................................................17 Appendix A - Owen's Method Referenc8...................................................................... 18 Appendix B - Tong F-Factor Values for Non Uniform Test Cases................................ 27 Te s t S e c t i o n A-2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Te s t S ect i o n A-3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Te st S e :ti o n A-4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Te s t S ect i o n A- 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Te s t S ectio n A-8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Te s t S ecti on A-9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Appendix C - CHF Sumrnary Output File Listings......................................................... 34 Te s t S ectio n A-2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Te st S ecti o n A-3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Te st S ectio n A -4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Te s t S ecti o n A-5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Te s t S ecti o n A-6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Te s t S ect i o n A-7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .!

Te s t S ect i o n A- 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Te s t S ect i o n A-9 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Te st S ect ion A- 1 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Te st S ect ion A- 1 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Te st S ection A- 1 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

l l

l 1

. NFSR 0090 RAI Response #1 '-

List of Tables  :

Tablo 1: Test Bundle Geometrical Data References ...................................................12 l

3 f

t L

i i

I i

l J

V

. NFSR 0090 RAl Response 01 List of Figures Figure 1: Measured-to Predicted Critical Heat Flux vs. Local Macs Flux ...................... 9 Figure 2: Measttred-to-Predicted Critical Heat Flux vs. Local Quality..........................10 Figure 3: Measured-to-Predicted Critical Heat Flux vs. Pressura................................10 Figure 4: VI P R E Radial N odalization . . .... . ... .. ...... .. .. ... ..... .. . ... .. ... .. .......... .......... ..... ...... . 15 Figure 5: Measured-to-Predicted Critical Heat Flux Data ............................................16 1

l l

l 1

~

vi

l-

. NFSR-0090 RAI RCsponse #1 Question on VANTAGE 5H DNBR Penalty On June 27,1994, Westinghouse informed the NRC that design corrective measures to resolve flow induced vibration problems for 17x17 VANTAGE SH fuel with intermediate flow mixing grids resulted in reduced DNBR margin. Do you intend that your methodology be applicable for this design? If so, please address how the appropriate penalty is to be determined and the magnitude of the penalty to be imposed.

Response

The Byron and Braidwood plants do not use 17x17 VANTAGE 5H fuel, nor does Comed plan to use this fuel type. Therefore, the penalty associated with these design corrective measures does not apply to Comed.

1

.' NFSR4090 RAI Response #1 l

l Question 1 (Page 4) A range of validity for the DNB correlation is given on this page. Please explain how your methodology assures that the correlation will not be used outside of the acceptable range.

Resoonee Comed's procedures that govem generation and review of controlled work require verification that any assumptions, applicable correlation limits, etc. are applied correctly.

This includes verification that the parameters used by correlations are within the ranges of applicability for the correlations.

i i

5 i

i i

2  !

i

~_

. NFSR 0090 RAI Response #1 Question 2 (Page 19) Please provide copies of the sections of Reference 1 (" Factors for One-Sided Tolerance Limits and for Variables Sampling Plans," SCR 607, D. B. Owen) which describe the basis for your statistical approach. -

Resoonse Provided as Appendix A is Section 1.1 "One-sided tolerance limits for a normal distri- '

bution" and Table 2.4, Values of k for f=n-1 and y=.95 from Reference 1. Section 1.1 provides a brief description of Owen's method used to calculate the VIPRE/WRB-2 ,

thermal limit. Table 2.4 was used to detennine Kp based on a 95/95 confidence level and the calculated degrees of freedom. Pages 9 and 10 of Reference 2, provide equations for calculating the mean, standard deviation, degrees of freedom, and tharmal limit. The following provides more details on the VIPRE/WRB-2 thermallimit calculation:

T1. = , M '

( P s .,

- K'S where, fM' 1

'M' 1

(Ps , =3 ,3 ,sys,w, fM'

_ = ._

1

'y"' f M' '

< P > ,, N, ,, r P > u _

J = The total number of Test Series (11)

Nj = The number of tests in Test Series j From Table 2 on Page 11 of Reference 2 Y = 111[0.9791 + ....... + 0.9974] = 10040

( P s ,,

S = JSW' + SA" 2

where S'Af = Variance within a group SA = Variance between groups 3

_~

1

. NFSR 0090 RAI Response G1 The NRC recommended formulas for SA* and SW* are (Reference 3 and Westinghouse's Follow up Response to additional information Request #1 of Reference 4);

SA8=

^

FA SW = FW  !

where

-ry3 ry3 )

SSA = [ . g P > ,,,, l e,

,,_ J s n. <w rys I SSW = (( = [(N j-1)S;r ri i . AP Ju ( P s ,,,, Sj = Standard Deviation of Test j FA = J - 1 i FW = N - J 3 N = Totalnumberof tests (684) l From Table 2 on Page 11 of our Topical Report (Reference 4) SSA = (0.9791-10040)'+............+(0.9974 -10040)* = 0.00425 and, 8 SSW = (51 - 1) 0.0713* +..............+(73 - 1) 0.0812 = 4.39 i Therefore  : 8 = 0.000425 and, SA = ('11- 1) = < SW" = (684-11) 0.00653 S = 40.000425 + 0.00653 = 0.0834 4 4

  • NFSR 0090 RAI Response #1 The Degrees of Freedom (F) is defined as:

F = (' SW*SW8 SA' ' = 594 + SA')' ' (FW + FA , From Table 2.41 of Reference 1 , K, = 1.753 Therefore the WRB-2 Thermal Limit is 1 11658 .. Thermal Limit of 1.17 is used 10040 - 1753(0.0834) i 4 I f l l I 1 Note this table is also included in Appendix A of this document. 5 l j NFSR-0090 RAI Response #1 Question 3 (Page 3) It is stated that the standard Tong F-factor is applied to account for non-uniform axial power profiles. Please give the exact form of this equation used defining each of the terms. Also, explain how each input parameter is obtained for both analysis of test data and in the application of your methodology for licensing analysis. Resoonse The exact form of the Tong F-factor equation is (Reference 5); a F=. e gent.Nu(1-e-cy)lo q'(z)e*a-')dz where Fe is used in the relation: . AcmEU

  • 9emNO
  • p and C is empirically determined as ,

l C = 0.15 %* ,, (in) 0, Variable Definitions x,, = Quality at critical heat flux location im q"(z) ==Heat Axiallocation flux at axial of critical location heat/hr-ft z (BTU flux )(in) z q', = Equivalent uniform critical heat flux (BTU /hr-ft*) q'cmuu = Non uniform critical heat flux (BTU /hr-ft") z G = Mass Velocity (Ib/hr-ft ) I l 6 NFSR-0090 RAI Response 01 Comed's implementation of the standard Tong F-factor equation for the WRB-2 correlation is identical to its implementation in the W-3 critical heat flux correlation function already written into VIPRE (Reference 6). Below is the standard Tong F-factor equations as used in VIPRE. F, = ,y ,_ x, , 'q'(z)e#'ar"dz where Fu is used in the relation: q'c  % = SCHR F u and (1- x )* i Ci = 0.15 (G j /10')"78 " Xi = axial distance from the inlet (inches) at node j Xt, = axial distance from inlet to first boiling node (determined using the Jen-Lottes correlation q"(z) = heat flux at axiallocation z ql = local heat flux at node j xi = local quality at node j Gi = local mass flux at node J The only difference between the VIPRE implementation of the Tong F-factor and the original Tong paper is the integration limits. In a subsequent publication (Reference 7) , Tong clarified the definition of the lemor la term as "the location of DNB measured from I the inception of local boiling." It is our understanding that the Technical Reviewer is planning to use a spread sheet to check the accuracy of Comed's calculations. In order to help expedite the reviewer's check of our calculations, we have provided the VIPRE calculated Tong F-factors for all the Test Cases with non-uniform axial heat flux distributions in Appendix B. Please note that Test Bundles A-6, A-7, A-10, A-11, and A-12 have unifonn axial heat flux distributions, therefore, the Tong F-factor is 1.0 for these cases.  ! ] l 7 n -. . - . - - . . -. . _ - y . .~ i ' NFSR-0090 RAI Response #1 ' t t 1 Question 4- l - (Page 15) The figure on this page appears to show a consistent trend of the predicted l CHF being conservative at low values of the local mass flux and non-conservative at # l high values of the mass flux. Please describe any analysis you have performed to quantify biases in the correlation. If no'such analyses have been performed, justify that , the apparent bias is acceptable by providing an upper bound on the bias. Resoonse l As addressed in the response to Question 5, Comed also recognizes that there is a residual trend in the scatter plots. However, by comparing to Westinghouse's original submittal to the NRC (Reference 4), it is concluded that this residual trend is not a result of the implementation of the WRB-2 correlation in VIPRE. Any bias in the correlation will be bounded statistically by the 1.17 thermal limit; where the intent is that a calculated value of DNBR or 1.17 corresponds to 95% probability at a 95% confidence level of not experiencing DNB. Since DNBR is actually defined as the Predicted CHF/ Measured CHF, the DNBR limit can be represented in terms of the - , Measured CHF/ Predicted CHF value as 1/1.17 or 0.855. The expected percentage of data points with a Measured CHF/ Predicted CHF below 0.855 would therefore be  ! approximately 5%. The 11 test series for the WRB-2 correlation contain a total of 684 data point. We would therefore expect fewer than 35 data points would have Measured CHF/ Predicted CHF values less than 0.855. The actual data indicated 27 data points were below 0.855, which is less than the correlation infers, and is therefore conservative. , i l 8 . \ - NFSR-0090 RAI Response #1 Question 5 Please provide the best linear fit of the data shown on page 15 as a linear function of mass flux. To determine whether there are other potential biases, piease fit the data as a linear function of pressure and as a linear function of quality. Resoonse Figure 1: Measured-to-Predicted Critical Heat Flux vs. Local Mass Flux, Figure 2: l Measured to-Predicted Critical Heat Flux vs. Local Quality, and Figure 3: Measured-to- l Predicted Critical Heat Flux vs. Pressure, which follow, include the equation of the best l linear fit as requested. Also note the Measured CHF/ Predicted CHF value of 0.855 corresponding to the thermal limit of 1.17 is indicated with a dotted line on these figures. im s

  • $ I u0- .. ,

. 4. < se 1.10- , .s g . \a WP

  • j

...............e............. .t .............g 4............g'............g.. , .e........ On s

  • 0.70 -

y = -0.0319x + 1.0776 0.60 0.50 1.00 1.50 2.00 2.50 3.00 3.50 4.00 Local Mase Flux (MfA/hr.ft") Figure 1: Measured-to-Predicted Critical Heat Flux vs. Local Mass Flux 9 I l

  • NFSR.0090 RAI Response #1 l l

I 1.3 e, * *$ P * . ,,..p. . .. .s

    • . v J ' y* A .'. -

IE??bh$h.:irg$, t.itai:- $* * . l e 3,:.s p p g g g .a . < : . t. .;., ..x . :;. g.......:,...,.... . . ..s

  • 0,- . . ..

y = 0.0708x + 0.9953 06 4 10 4 06 0.00 0.05 0.10 0.15 020 0.25 0.30 0.35 ) Figure 2: Measured-to-Predicted Critical Heat Flux vs. Local Quality 1,3 <>~ > If &, - e,s

g. ,

. ;g .k , K. ,0 . .m ' y'd- ,k. ' N,.=

0. , ~

,5[ . 8 . . . . . . . . . .. . . . . . . . . . . . . . . . . . , ,g . . . . . . . . . . . . . ,. g . . . . . . . . . . . 4). . . O. . . 1 l 0.7 y = -3E-05x + 1.0559 1 0. 1400 1000 1800 2000 2200 2400 2000 l ~ l Figure 3: Measured-to-Predicted Critical Heat Flux vs. Pressure 10 NFSR-0090 RAI Response #1 l Question 6 Many of the parameters in the WRB-2 CHF correlation involve geometrical features of the Westinghouse test apparatus (e.g. hydraulic diameter, heated diameter, distance from the most recent upstream mixing vane). No mention is given in the report as to the values used for these parameters. Please provide the values used for each test section and channel type. Resoonse The following information is required as input to the WRB-2 correlation

1. Pressure, P
2. Local Mass Flux, G%
3. Local Quality, X%
4. Hydraulic Diameter, Dn
5. Heated Diameter, D.
6. Heated Length, Inlet to CHF Location, Ln
7. Grid Spacing, g.,
8. Distance from the Last Vaned Grid to CHF Location, dg The first three items, pressure, local mass flux, and local quality can be found in  !

Appendix C in the CHF Summary output listings from VIPRE. Table 1, Test Bundle Geometrical Data References, is a list of figures containing geometrical data for each test bundle. The figures referenced in this table contain the grid locations, grid spacing , and the geometrical data required to calculate hydraulic and heated diameters. It  ! should be noted that the test section numbering used in Reference 8 refers to the test l numbering for the WRB-1 calculations. Cross references are included for clarity. Nine i of the eleven WRB-2 test bundles were also used in calculating the WRB-1 thermal I limit. Comed used the Westinghouse logic to maximize the value of do, the distance , from the last vaned grid to CHF location. An excellent description of Westinghouse's l logic for determining da can be found in the response to question 12 of Westinghouse's Response to additional information Request #1 in Reference 4. 1 I l i 11 NFSR-0000 RAI Response #1 t WRB-2 WRB-1 . Test Test Test Bundle Test Bundle Number Number Cross Section Axial Grid Location , A-2 N/A Figure A-6, Reference 4 Figure A-8, Reference 4 Figure A-6, Reference 4 A-3 N/A Figure A-8, Reference 4 A4 A-20 Figure 7, Reference 8 Figure 17, Reference 8 -  ! A-5 A-21 Figure 8, Reference 8 Figure 17, Reference 8  : A4 A-3 Figure 1, Reference 8 Figure 10, Reference 8  ; i A-7 A-1 Figure 1 Reference 8 Figure 10, Reference 8 A-8 A-5 Figure 1, Reference 8 Figure 13, Reference 8 , A-9 A-18 Figure 6 Reference 8 Figure 13 Reference 8  : A-10 A-4 Figure 2 Reference 8 Figure 12 Reference 8 A-11 A-19 Figure 2, Reference 8 Figure 12, Reference 8 A-12 A-2 Figure 2 Reference 8 Figure 11, Reference 8 , i Table 1: Test Bundle Geometrical Data References ) I 12 NFSR 0090 RAI E::;-:-w #1 ! Question 7 1 The report does not address the nodalization utilized in the VIPRE simulation. Please provide information regarding the mesh spacing. The nodalization is important for determination of geometrical parameters for input to the WRB-2 correlation, in ' particular, the resolution that can be achieved for such parameters as heated length, LH, and distance from the most recent mixing vane grid, dg.? Resoonse The axial noding used was 50 uniform nodes (3.36 in.) for the 14 foot tests (A-2 to A-5, l A-7 to A-9, A-12) and 48 uniform nodes (2 in.) for the 8 foot tests (A-6, A-10, A-11). All  ; of the models noding began at the bottom of the heated length. Westinghouse (Reference 4) used these same axial noding schemes in their THINC/WRB-2 calculations.  ! l I l l l i 1 13 . --.- .n , -- . - = - - . . , , . . + a. - . . - - + . . - . ~, - . -- 4 - NFSR 0000 RAl Response #1 Question 8 l Tables A-1 through A-12 of the report provide only the predicted local heat flux and j quality. Other parameters from the code simulations, such as local mass flux and heated length to the CHF position are necessary to make a prediction using the WRB-2 correlation. Please provide all applicable data that were used as input to the  ; correlation.  ; i Rosconse Please note that there is no Table A-1 in Reference 2. The data included as Appendix A in our topical is listed by Westinghouse Test Section Number (Reference 4). Appendix C contains the output listings of the VIPRE CHF summary files for tests A-2 through A-12. These output listings contain the following information:

1) Case ID Number
2) Operating Conditions

. System Pressure (psia) e inlet Enthalpy (BTU /lbm) . 8 Inlet Mass Flux (Mlbm/hr-ft ) . Average Heat Rate (BTU /sec-ft)

3) MDNBR
4) CriticalLocation -

. Hot Channel index (see Figure 4 on page 15) 4 . Hot Rod index (see Figure 4 on page 15) Axial Level (in)

5) Hot Channel Conditions a

Mass Flux (Mlb./hr-ft ) . Equilibrium Quality Heat Flux (MBTU/hr-ft ) 2

6) Predicted Critical Heat Flux (MBTU/hr-ft )
7) Correlation Flag (WRB-2 in all Cases)
8) Time (sec)(0.00 in all cases) 14

f NFSR4000 RAI Response #1 f Question 9 i Please provide the radiallayout of the VIPRE model of the test section tube bundle. i For the data of Tables A-1 to A-12 identify which bundle subchannelis predicted to  ; . have the CHF and confirm that the local quality and mass flux values are for that l channel? Do these " predicted" subchannels and rods match the experimental test i data?  ! Beneennt ' Figure 4 shows the radial nodalization of the VIPRE model used for the eleven (11) Westinghouse tests (A-2 through A-12). Again, please note that Reference 2 does not include a Table A-1.  : l Designations: -Rods- -Channels- eps-  ! 2 4 1 3 4 5 6 , 1 , 2 , 3, 4 ,, 5 , t 7 in 8 14 9 is 10 e 11 12 - , 6 ,, 7 ,, 8 ,, 9 ,, 1 0 13 s 14 s 15 7 16 e 17 118 i ,11 ,, 12 ,, 13 ,,14 ,, 15 i 19 20 21 22 23 24 l 16 , 17 ,,18 ,, 19 ,, 20 , 25 s 26 7 27 e 28 i 29 30 l 21 . 22 23 24 ,, 25 , 3 32 33 34 35 6 Figure 4: VIPRE Radial Nodalization Appendix C contains the VIPRE CHF Summary output file listings for each test series. These output listings include the location of CHF for each test along with fluid conditions at that location. Comed does not have access to the measured subchannel and rod locations where CHF was observed. This information was not included in Reference 4. However, the VIPRE/WRB-2 predicted location of the subchannels and rods where CHF occurred were consistent with expectations. For the thimble channel tests, A-5, A-9, and A-11, the hot rod was always one of the 8 high powered rods (7,8, 9,12,14,17,18, or 19) and the hot channel was one of the four channels associated with that rod. For the remaining cases, representative of a typical channel, the hot channel was always one of the four center channels (15,16,21, or 22) and the hot rod was one of the four rods associated with this channel. 15 NFSR-Oo90 RAI Response 01 Question 10 (Page 13) For the purposes of establishing the accuracy of the correlation, please show the least square linear fit to the measured versus predicted data. Resoonse The dashed line on Figure 5: Measured-to-Predicted Critical Heat Flux Data, indicates that Comed's VIPRE/WRB-2 95/95 thermallimit of 1.17. Also shown on the Figure is the equation for the linear fit as indicated on the plot. i 12 l ,

  • _/

.s . l 1 Mr . ..;

  • 0, .

. .. ,..v.. t ~

  • 8 * *

] 0.6 ,,,  ;, * - ~ J o,. 0.4 -

  • f, 02- *

-~~. y = 1.0226x - 0.0092 0 0 0.1 02 0.3 0.4 03 0.6 0.7 OA 0.9 1 1.1 12 Paeksand CHF Figure 5: Measured-to-Predicted Critical Heat Flux Data l l I  ! 1 1 16 l j NFSR 0090 RAI Response #1 l References

1) " Factors for One-Sided Tolerance Limits and for Variables Sampling Plans,"

SCR 607, Sandia National Laboratories, D. B. Owen, March 1963. ]

2) "VIPRE/WRB-2 DNBR Thermal Limit for Westinghouse 17x17 OFA and VANTAGE 5 Fuel," Commonwealth Edison Company, Document Number NFSR-0090, L. Klasmier and H. Kim, dated September 8,1992.
3) "New Westinghouse Correlation WRB-1 for Predicting Critical Heat Flux in Rod Bundles with Mixing Vane Grids," WCAP-8762-P-A, F. E. Motley, et al., July 1984.
4) " Reference Core Report Vantage 5 Fuel Assembly," WCAP-10444-P-A, edited by S. L. Davidson and W. R. Kramer, September 1985.
5) Tong, L. S., " Boiling Crisis and Critical Heat Flux," TID-25887,1972.
6) "VIPRE-01: A Thermal-Hydraulic Code for Reactor Cores," Volume 1:

Mathematical Modeling (Revision 3), EPRI NP-2511-CCM-A, August 1989.

7) " Boiling Heat Transfer and Two-Phase Flow," L. S. Tong, Westinghouse Electric i Corporation,1975. '
8) " Commonwealth Edison Project, Byron /Braidwood Nuclear Power Plant, Zion Nuclear Power Plant, Thermal-Hydraulic Technology Transfer," Letter from J. W. Swogger (West.) to M. F. Finn (CECO), 88CW*-G-0024, April 29,1988. i 17

NFSR-0090 RAI Response #1 Appendix A - Owen's Method Reference i l l l i I 18 d' s.. i f%1 4. Q4 92 AR FACTORS FOR ONE-SIDED TOLERANCE IlMITS AND FOR VARIABLES SAMPl.1NG Pl.ANS h 4 ),; INTitODUCTtON. [E,- 1. t 1.1 One. sided tolerance limits for a normal distritnaion. i.** ?.. For a normal randem variable X with known mean g and known standard deviation e, it is ~ possible to say that essetly a proportion P of the normal population la below p + PK o, where KP is read ;s from a table of the inverse normal probability distribution (e.g., see Reference [ 52l, p.12). For ex. 9 \ . ample, one can say that exactly 95% of the population is below a + 1.64485e. The quantity y e K,e is an , upper tolerance limit. P. F t .. In most cases, however, y and e are unknown and it is necessary to estimate both of them ,, from a sample. TLes a tolerance limit of the form Ie ks may be used where I is an estimate of y and } s is an estimate of e. Stace I and a will be randoms variables, however, the tolerance limit statement Q can only be made with a given probability attached. , The problem then redeces to finding k such that the probabi1*ty is 7 that at least a proportion .p. P of the population is below I+ ks. Tables of factors for one-sided tolerance Limits for a normal distri. hution han been stwain neferences ( 2:1, [ 371, [ sol, and ( s21 for the ca where a sample x 3.x 2' * * * * *. N La taken and the sample mesa, @ h- 'L' t.1 V. r and the sample standard deviatfN, d. W-mu, (r - El f, s=y,f 3 t.1 g e are computed. ([ A value of k is given in the tables of Section 2 such that "at least a feoportion P of the normal yf population is less than I+ km with probability equal to 7." The value Te ks is called an u:yer toleranca limit. For a lower tolermace limit E . km is used and the statement is "at least a proportion P of the h y population is greater thma Y . ks with confidence 7." If a two-sided limit is desired the reader is referred [f.. , to Ref rences ( 12l, (35),1521, and (761 {, . . , ?. If the normal distribution has mean y and standard devistico o and either of these are known, {,g there are entries in the tables of Sections 3 and 4 which will give the required tolerance limit. When the  %, mesa is known, k may be read from the tables of Section 4 with n

  • an,1.e., the tables of Sections 4. 3.15, 4.

Ft "v a _ ______ ICLm I 4.2.15, and 4. 3.15. Similarly, if the standard deviation ta known. k may be r tid from the tablen of Section 4 with f = m, i.e., as the last entry for each 'eble. The tables of Sectfuns 3. i, 3.2 are f 3.3 may be useful :( n = i or se or af I = 1 or m. It is convenient to define the term degrees of freedom for I as that value of n which occurs 12 the statement x has mean as ..ini standard deviation e/6. Similarly, the degrees of freedom for s is that value of f which occurs in the artatement is2 f,2 has a ent nqualv dia't ri'Jution with f degrees of frecdom. ,, In addition to giving more extensive tables of k than l291, (37), and (50), this report extends the tables ..f k to the cases where the degrees of freedom for s are not necessarily one less th:un the degrecs of freedom for I. The degrees of freedom for a stil be designated by f, and the degrets of freedorn for a will be designated by n. Values for n = 1, 2, 3 and 4 only are given in ($3l for this case neart.f

  • n.m. t. Ih,e present report can also be considered an extension of the work in References (351 and (741 wh*ch cover the tu a sided tolerance 11mit problem with x based on n degrees of freecom and a tw !

based on i degrees of freedom, where again f is not necessarily equal to n - 1. The extension given here, of course, is from the two-sided case to the one-sided case. The values of k given in Sections 2, 3.1, 3.2, 3.3, and 4 correspond to percentage points .vided by the square root of n) of the noncentral t* distribution. Specifically, Pr{ noncentral t f k(a l 4 =pK yi f = y. 0: where the noncentral t has f degrees of freedom and K, is such that Pr f a standardized normal vriable$)C,f=P. ) 1.2 Johnson and Welch type tables for computing k. A discussion of the tables of Section 5 follows. Among other things these tables may be used whenever there is a combination of vah,es of f, n, and P for which there is not an entry in the tables of Sections 2, 3 or 4 and for which is,terpolation in Sections 2. 3 or 4 would not be natisfactory. Ns,te also 9 that the values of T which are available in Section 5 include (1 - t) for each 7 listed since ' Pr { noncentral t 5 t,l4 f = 1 - Pr { noncentral t S -t,l-4f and both positive and negative values of t and 4 appear in the tables. , Section 5 follows a procedure used by Johnson and Welch (32)and contains values of T such that if a/ 4 2\=) -l n e gl + 7,-) .  ! Di

t. =

gq . .9 A h_ B

2. . .. ., , ,. , . . . m , . 8 5 g

m ,m., r...- .. . . g a .15C00 .90000 .95C00 .lF500 .99C00 99900 99990 .99999 2 3 11.7633.806 20.581 6.855 26.260 T.656 31.2 5 F 37.C94 69.276 59.30h 68.CIO 6 2.418 5.the 8.986 10.553 13.857 16.598 18.986 4.I62 6.015 T.Ct2 9.214 11.019 12.593 5 2.150 3.40 F h.203 4.909 5. in t T.5C2 8.946 10.2b3 6 1.895 3.004 3. T08 4.329 5.C62 6.682 T.901 9.C25 T 1.732 2.755 3.399 J.970 h.642 6.063 T.244 s.2T5 8 l.618 2.582 3.18 F 3.123 4 354 5.688 6.196 T.763 - 9 1.532 2.654 3.033 J.542 4.163 5.483 6.469 T.390 10 1.465 2.355 2.911 I 3.h02 3.981 5.203 6.219 T.lC5 l 11 1.48I 2.2 F5 2.815 3.292 3.852 5.036 6.020 6.8T8 12 1.366 2.210 2.736 J.201 3. T4 7 4.900 5.858 6.696 13 1.328 2.155 2.671 3.125 3.659 4.iaT 5.723 6.560 le 1.296 2.109 2.614 3 060 3.585 4.690 5.609 1.268 2.068 6.409 15 2.566 J.005 3.520 4.60T 5.510 6.29T 16 f.243 2.033 2.524 2.956 3.464 IT 18 1.220 1.201 2.002 1.9F4 2.48 6 2.453 2.913 3.bik 4 535 4.4F1 5 424 5 348 6.199 6.183 h m 2.875 3.JF0 4.435 5 281 6.03T 19 3.883 f.949 2.423 2.843 3.331 4.364 5 221 5.968 20 1.146 1.926 2.396 2.810 3.295 5.16T 4.JI8 5.9C6 21 1.152 f.905 2.371 2.T81 3.263 4.277 5 118 5.850 22 1.138 1.886 2.349 2.756 3.233 4.239 5.0T3 5.799 23 I. 12 5 1.849 2.328 2.T32 3.206 4.20h 5 031 5.T52 24 9.134 1.453 2.309 2.T10 3.181 4.172 L 1.103 1.838 4.994 5.709 25 2.292 2.690 3.158 4.I42 h.959 5.670 26 1.C93 1.824 2.2T5 2.6T2 3.136 6.926 2T 1.083 1.851 2.260 k.II5 5.633 2.654 3.116 4.C89 4.896 5.598 28 f.0T5 1.199 2.266 2.638 3.C98 4.C66 4.868 5.566 29 1.C66 1.788 2.232 2.623 3.C80 4.0k5 4.841 1.058 1.77T 5.536 30 2.220 2.608 3.044 4.022 4.8 16 5.508 ' 31 1.051 1.F6F 2.208 2.595 3.C68 h.002 k.T95 1.044 1.T58 2.19F !. bel r 32 2.582 3.C34 3.986 4.TTI 5.456 33 1.C3r 1.749 2. 18 6 2.5 F0 3.020 3.966 4.150 p. 1.031 1.Th0 2.176 5.633 34 2.559 3.00T 3.950 4.F30 5.bl0 p 35 1.025 1.732 2.167 2.548 2.995 3.934 b.112 5.389 36 f.Clf 1.F25 2.158 2.538 2.983 [ ST l.Cin 1.717 2.14 9 2.528 2. 9 T2 3.939 3.904 4.694 4.6FF 5.369 5.350 "" ( 38 1.C09 1.T30 2.148 2.518 F 2.941 3.891 4.661 5.332 39 1.004 1.T04 2.133 2.blo 2.951 3.8T8 4.646 y .999 f.69F 2.125 5.314 y to 2.501 2.941 3.865 4.631 5.29e 1: 1.691 + 61 . 99 6 2.118 2.493 2.932 3.854 4.61F 5.282 M 42 .990 1.685 2.181 2.455 2.923 3.842 4.603 43 .986 f.480 2.105 5.246 ,k 2.b f 8 2.914 3.838 4.591 5.252 64 .982 1.6Tb 2.098 2.470 2.906 3.821 4.5T8 { 45 .918 f.469 2.092 5.238 'g 2.b63 2.898 3.811 n.t66 5.226 __ ~ t "M.[ i l 0

2. 4 Values af k for f e n - 1 and 7 = .95 (haad)

PrlTg S M $,Wl

  • Y n I

.F5000 .90000 .95000 .9F500 .99000 .99900 .99990 .99999 ' 46 .GFt 1.66b 2. 08 6 tr 0F1

2. 4 5 F 2.890 3.801 b.555 5.211 1.659 2.081 2.b50 2.t83 ts . 96 F 1.656 3.F92 4.544 5.199 69 2.075 2.h44 2.tF6 3.783 4.533 964 1.650 2.0F0 5.luf 50 . 96 0 2.438 2.269 J.FFh 4.523 5.175 1.646 2.065 2.b32 2.E62 3.766 4.513 5.164 51 .95F 1.6bt 2.060 2.42F 1 52 .954 2.756 3.758 b.506 5.153 1 1.63F 2.055 2.421 2.850 53 .95I l.633 3.750 4.494 5.142 2.051 2.416 2.the 3.742 4.485 54 .948 1.650 2.044 2.411 5.132 55 .945 1.626 2.t38 3.735 4.4FF 5.123 2.042 2.406 2.833 3. 72 8 b.b68 5'.113 56 .563 1.622 2 038 2.408 i 5F . 94 0 1.689 2.82F J.721 4.460 5.104 2.03t 2.39F 2.822 3.714 4.452 5.C95 I 58 .938 1.615 2.030 2.392 2.81F 59 .935 1.682 3. 708 4.645 5.084 2.026 2.388 2.812 3 701 b.43F 5.018 68 .933 1.609 2. 02 2 2.344 2.80F 3.695 6.430 5.CFO ,

61 .930 1.606 2.019 2 380 62 .925 I.603 2.802 3.689 4.423 5.062  ! 2.015 2.3 T4 2.798 3.68h 4.ble 5.C54 63 .924 1.600 2.012 2.3F2 64 .926 1.59F 2.793 3.6FS 4.480 5.0tF 2.008 2.364 2.749 3.4F3 4.403 5.039 45 .921 1.5th 2.005 2.364 2. 78 5 3.66 F b.397 5.CJ2 ) 66 .919 1.591 2.002 2.361 er .91F 2.781 3.462 b.391 5.025 l.589 l.99 9 2.357 2.777 3.657 68 .985 f.586 1.994 6.385 5.018 69 .91J 2.356 2.773 3.652 b.JF9 5.032 I.584 1.993 2.351 2.769 3.647 F0 .981 1.581 1.990 4 373 5.005 2.34 T 2.T65 3.443 4 368 6.999  ; 71 .910 1.579 1.98F 2 3th F2 . 90 8 2.742 3.638 4.362 4.993 1.576 1.984 2 341 2.F58 F3 . 90 6 1.576 3.633 4.35F 4.98F 1.982 2 338 2.755 3.429 4.352 6.981  ! Ft .906 1.572 1.979 F5 .903 1.5F0 2.335 . 2.751 3.625 6.3tr b.9F5 1.9F6 2.3J2 2. T48 3.621 6 342 6.970 F6 .901 1.568 1.9F4 2.329 FF .899 2.745 3.41F n.337 4.964 1.565 1.971 2.32F 2.7h2 F8 .898 1.563 1.969 3.683 t.333 4.959 19 .496 2.324 2.739 3.609 4.328 6.956 1.561 1. 96 F 2.321 2.736 80 .895 1.559 f.964 3.605 4.323 b.949 2.319 2.F33 3.601 4.319 4.9th 81 .895 1.55F 1.962 2.316 2.F30 42 .8 l.556 3.597 4.315 4.939 1.960 2.314 2.FFF 3.594 b.310 83 .899 1.554 1.958 4.936 2.311 2.724 3.590 6.306 4.929 86 .289 1.552 1.956 2.309 .488 2.721 3.58F 6 302 4.925 SS 1.550 1.954 2.106 2.719 3.583 4.298 6.920 8 86 .886 1.548 1.952 2.30h er .885 2.716 3.580 4.294 6.916 l.ShF 1.950 2.302 2.714 3.5FT 88 .884 1 165 1.94 8 4.298 4.918 2.300 2.Fil 3.576 6.28F t.90F e9 .282 1.543 1.94 6 2.29 F 2.709 90 .881 1.562 3 571 b.283 4.903 1.944 2.295 2.706 3 567 i 4 2F9 4.ff9 _ _ . _ . _ _ _ _ _ _ _ _ _ _ _ _ . _ _ _ -_ _- m s ' M ~ g. v 9 n D.

2. 4 valms et k for r a n - 1 and v . 95 (continued) -

m s e,m ., l r.i. .- It Qp a .15000 90000 .95000 .9 T5 00 .99000 .99900 .99990 .99999  ?.* 91 .aso I.540 1.94 2 2.293 2.704 3.564 4.2T6 4.P95 92 .aT9 1.S38 1.940 2.291 2.703 3.561 W 4.2 72 4.P91 b 93 9e 95 .aTT .aT6 .sT5 1.537 1.535 1.534 f.938 1.93T 1.935 2.289

2. 23 T 2.285 2.699 2.69T 2.495 3.559 3.556 3.553 4.269 4.266 4.262 4.eur 4.783 4.PT9

( %j 96 .eT4 1.532 1.933 2.283 2.492 3.550 n.259 4.PT6 9F .aT3 f.531 1.93 I 2.281 2.690 3.5tr 4.256 m.PT2 98 .tT2 1.530 1.930 2.2T9 2.688 3.545 4.253 4.P69 {,. 9e .8FI 1.528 f.928 2.2T8 2.466 3.542 4.250 4.P65 ' 100 .tTO l.52T l.92T 2.2 T6 2.684 3 539 4 2tr 4.762 f. 101 .269 f.525 1.925 2.2T4 2.682 3.537 4.24h 4.P58 102 .ses 1.524 1.92 3 2.2T2 2.680 3.534 4.2tl 4.855 h; 103 .ser 1.523 1. 92 2 2 271 2.6T8 3.532 4.238 4.R52 4 104 .446 1.521 f.920 2.269 2.6T6 3.530 4.235 4.748 W 105 .265 1.b20 1.919 2.26T 2.6T4 3.52T 4.232 4.745 7 106 ICT . set .363 1.519 1.518 I.917 1.916 2.266 2.264 2.6T2 2.6TI 3.525 3.523 4 229 4.Pt2 f g *m 4.227 4.P39 T. 108 .362 1.51T 1.985 2.262 2.469 3.520 4.224 4.P36 109 .sel 1.515 1.913 2.261 2.66F  ;'c 3.518 4.271 4.P33 llo . 86 'J 1.514 1.912 2.259 2.465 3.516 4 219 4.PJO y.. .459 1.513 1.981 2.258 2.463 lll 112 .858 1.512 1.909 2.256 2.662 3.514 J.511 4.216 4.214 4.82T 4.P24 D 113 .557 1.511 1.908 2.255 2.660 3.509 4.211 4.P2l "1/ 114 .856 1.510 1.90T 2.253 2.658 3.507 4.209 4.PI9 $ g ff'. IIS .455 1.508 1.90 5 2.252 2.45T 3.505 4.206 4.816 r .- .855 f.50T 116 1. 90 ". 2.251 2.455 3.503 4.20h 4.813 IIT .354 1.506 f.905 2.249 2.454 .Y. 3.508 4.201 4.Pfl d* 118 .453 1.505 1.902 2.248 2.652 3.499 4.199 lit .352 1.504 1.900 2.246 2 651 3.49T 4.19T 4.P08 4.605 N 120 .451 1.503 1.899 2.245 2 449 3.495 4.195 4.PC3 M g 121 .851 1.502 1.t98 2.244 2.648 3.495 4.192 k.700 q. 122 .450 1.501 f.89T 2.242 1 446 3.492 4.190 4.798 fr. 123 .849 f.500 1.896 2.248 2 445 3.490 4.188 4.195 '.V 124 .g48 1.499 1.495 2.240 2 643 3.488 4.186 4.793 )f*;p 125 .848 1.t98 1.894 2.239 2 662 3.486 4.184 4.790 $54 126 l.49T l.893 2.23T 2.440 12T .stT .ete 1.496 1.899 2.2Je 2.639 3.484 3.483 4.182 4.180 4.788 h'w4 c 128 .345 f.494 1.490 1.235 2.438 3.nsl 4.1T8 4.786

4. Ten W

W," 129 .445 1.495 1. 85 9 2.2Jt 2.636 3.4T9 ISO .gth I.494 1.488 2.2J3 2 435 3.4T8 4.176 4.'Tb 4.Tal 4.TT9 W +t fit .ets 1.493 1.88T 2.232 2.634 3.4T6 4.lT2 4.TTT

  • 132 .ut3 1.492 1.t86 2.230 2.632 3.414 4.lTo 4.TT5

'4:- 842 1.691 I.285 2.229 te 133 2.631 J.tTJ 4.168 4.7T2 134 .341 1.490 1.884 2.228 2.630 3.4T1 4.166 6.TTO /$ .'- 1.489 ct 135 .341 1.883 2.22T 2.428 3.449 4.164 4.Too Q*ag -. . ._ m. ., . __ . _ _ . _. i l l l

2. 4 Values of k for f = n a 1 and y e.95 (Continuen)

PrlTg.5 kW lK, Wl = Y l .-  : .... . .. .. . p ................ ............. n .T5000 .90003 .95000 .97500 .99000 .99900 .99990 99999 l 136 .the 1. h 8 9 1.282 2.226 2.e:T 3.46A h.162 k.746 137 .b39 1. bas 1.t81 2.22h 2.e26 3.466 138 .e39 1.hAF 4.360 h.fah 1.250 2.226 2.625 J.h65 6.359 h.762 139 .338 1.h86 1.8F9 2.223 2.42h 3.463 160 .831 1.h85 h.15T 4.760 1.8T9 2.222 2 422 3.h62 h.155 6.The lbl .t37 1.h85 1.aff 2.221 2.621 3.460 Ib2 .k36 1.h86 1.WF7 h.153 k.756 i ths 2.220 2.620 3.459 h.152 k.156 .436 1.h83 1.876 2.219 2.419 thh .E35 1.482 J.45T 4.150 h.752 1.875 2.21e 2. Ale 3.456 6.the 145 .3J4 1.4s1 1.8Fh 4.150 2.2tr 2.617 3.455 6.1b7 h.ThH l th6 .834 1.481 1.8F1 2.2I6 t th? .633 2.416 3.455 h.th5 6.ThF 1.480 1. b e e- 2.215 2.415 3.452 the .433 1.bl9 1.472 4.143 6.145 j 2.214 2.613 3.451 4.142 4. Th i 149 .832 1.br9 1.8F1 2.213 2.612 3.449 lho .332 1.4F8 4.160 h.741 1.8T0 2.212 2.411 3.448 b.139 6.739 ($1 .231 1.b77 1.t69 2.211 2.610 152 .830 1.476 3.44 r k.13F 4.738 1.848 2.2 10 2.409 3.445 h.136 153 .830 1.476 1 86 F 4.736 2.209 2.408 3.h44 4.334 h.13b i 154 .229 I.bi5 l.86F 2 208 2.40T 155 .829 1.hin 3.thJ 6.133 4.733 1.864 2.20 T 2.406 3.443 h.131 6.138 ' 156 .828 1.47h 1.t65 2 207 2.435 3.460 i 15T .k28 1.kF3 1.266 h.330 k.T29 I 2.206 2.604 3.h39 4.128 h.12N 158 .82F l.h72 1.46h 2 205 2.603 159 3.h38 4.12T 4.126 .82t 1.472 l.863 2.204 2.402 3.h36 I60 .826 1.bF1 6.825 h.724

  • f.862 2.203 2.ect 3.435 k.124 4.123 ' '

161 .826 1.470 1.865 2.202 2.400 3.h3h I 162 .825 1.h 70 h.122 k.T21 j 1.841 2.201 2.400 3.633 4.121 163 . E2 5 1.469 1.860 h.120 i 2.201 2.599 3.432 h.120 h.FIS 164 .424 1.449 1.859 2.200 2.598 I .324 3.431 b.11e 6.716 16b 1.44A I.858 2.199 ,2.b9T 3.429 4.Ill 4. TIS 166 .823 1. 46 F 1.858 2 198 2.596 3.b28 16r .823 1.467 6.316 6.T13 1.b57 2.198 2.595 3.427 4.11b 6.112 168 .522 1.666 1. 85 6 2.19T 2.594 3.k26 g l I69 .822 1.466 6.113 b.T10 1.656 2.196 2.593 3.k25 6.112 k.lC9 L i 110 .822 1.465 1.655 2.195 2.592 3.k24 l 6.Ill h.708

  • i 171 .821 1.464 1.b54 2.194 2.592

\ IT2 .221 1.46h 3.423 4.109 4.106

  • 1.854 2.194 2.591 J.622 4.308 IT3 .820 1.463 1.853 h.705 8 2.193 2 590 3.421 k.10T h.FC3 114 .820 1.463 1.A52 2.192 3.b20 1 IIS .s19 1.462 2.ht9 h.106 h.7C2 i 1.b52 2.192 2.5k8 3.ble 6.194 4. 701 Tr IF6 .819 G

1.h62 1.851 2.191 2.58T 3.blA ' ITT .888 1. h 61 1.850 b.105 4.l99 S 2.190 2.S8T 3.blF h.802 k.69H IF8 .818 1.464 1.e50 2.189 2.556 W IT9 .238 f.660 1.6h9 3.bl6 h. sol b.e96 S 2.189 2.5H5 3.bl5 h.100 e.295 4 180 .21F 1.459 1.8h9 2.188 2.5eh 3.blu 6.09n h.696 .; a L d ll l

7. 4 Values oi k for t o n 1 and 7 * .95 (Coatinuet0

,, w - w, - , * , r s ...... - ... ......... p ........... ... .... ...... n .19000 .90000 95000 9T500 99000 .99900 .99990 99999 = p' l=1 . alt 1.459 f.the 2.lbf 2 5d3 3.433 4.09T 4.t92 I t.J .sl6 1.h58 1.shi 2.let 2.5n3 3.bl7 b.096 4.691 he In3 . set 1.h5s i.e4 T 2.le6 2.5#2 3.481 b.095 h.tVO I ,* t .el) 1.431 1.t46 2.185 2.591 3.410 h.09k h.est 195 .cis 1.h5T l.ste 2.185 2.!50 J.bo9 h.093 k.6tf 156 .hti. l.456 __la t45 2.lH4 2.580 3.h05 h.092 4.tH6 -- 181 .ti9 1.456 f.ett 2.183 2 5T9 J.6GT k.090 m.dP5 ten .elt 1.454 1.ett 2.183 2.518 3.hC6 h.QA9 4.est 149 . cit 1.k55 1.t43 2.182 2.5FT 3.b05 h.0ds 4.te2 190 .el3 1.454 1.htJ 2.181 2.5FT 3.404 4.00T k.6rt 93 .s13 1.454 1.442 2.let 2.5T4 3.h03 b.086 4.tHO )* .el: 1.45J 1.642 2.180 2.515 3.h02 4. CMS h. eft 193 .812 1.45J 1. 64 1 2.119 2.515 3.bol 4.054 4.tT8 194 .412 1.452 1.840 2. l T9 2 5T4 3.401 b.0P3 4.6T6 195 .sil I.452 I.640 2.lTB 2.513 J.400 h.CM2 4.415 196 . Ell 1.h51 1.839 2.lft  ?.5t2 3.399 h.081 4.eTh 17T .sil I.451 1.s39 2.lTT 2.b12 J.350 4.0s0 4.(T3 19s .al0 't.tSO I.838- 2.1,T6 2 511 5.J91 4.019 h.6T2 195 .410 1.450 1.838 2.176 2.5fC 3.396 h.018 4.4TI 2 30 .409 1.b50 1.s3T 2.lT5 2.5T0 3.395 4.0TT 4.eTO 205 .som l.bhi 1.s35 2.372 2.466 3.391 h.CF2 k.664 = 210 .r06 1.bb5 1.632 2.1 10 2.563 3. ls T h.Ces b.659 215 . dot 1.44J 1.810 2.16F 2.560 J. Jet 4.063 k.e54 220 . e0 3 1.448 1. 82 W 2.164 2.55I 3.3d0 4.059 4.646 225 .501 1.439 1.42 5 2.h62 2 555 3.3T4 4.055 4.444 2 50 .400 1.43T 3.42J 2.160 * .552 * .313 4.0!! h.e40 235 . ten 1.436 1.82 I 2.15T 2.149 3.J70 b.0tf 4.635 240 . it t 1.434 1.419 2.855 2.5tr J.36T 4.C43 4.438 265 .F96 1.432 1.817 2.153 2.!bt 3.363 t.0h0 4.62T 250 .195 1.431 1.sI5 2.lbl 2.562 J.361 b.036 4.623 255 . t* J 1.429 1.elt 2.149 2.540 J.35A k.033 4.(19 1 260 .192 1.h2d 1.812 2.14T 2.131 3.355 h.029 4.616 gag .19I 1.426 1.410 2.14b 2.135 3.352 4.026 4.612 710 .19c 1.h25 1.uc9 2.143 2.53J 3.349 h.023 4.609 215 . It 9 1.423 1.40T 2.14l 2.53I 3 34T 4. 0.* 0 h.6C5 JHO .Jse 1.h22 1. m05 2.the 2.!29 J.2h4 4.cfr b.602 =I , 2HS . tdt I.621 1.804 2.838 2.52T 3.J42 b.014 4.599  ! 190 .1M6 1.bl9 f.802 2.1J6 2.525 3.Jho 6.012 b.596  ! 295 .1s 5 1.ble 1.50 1 2.13% 2.526 J.337 n.000 h.593 l soo .tst 1.411 f . 800 2.lJJ 2.522 3.!J5 4.006 h.090 50 5 .183 1.416 1.198 2.lJ2 2.520 J.333 h.004 4.ief J10 .182 1.bl5 1. T9 7 2.lJO 2.51H J.331 h.001 h.iN4  ; 315 . ts i 1.483 1. T96 2.129 2.53F 3.329 3.999 4.isi 320 .Jh0 1.bl2 1.194 2.12I 2.515 J.32T 3.996 6.!I9 325 .fre 1.hti 1.793 2.126 2.514 3.325 3.994 6.516 i

2. 4 Values oi k for f
  • n .1 and T = .95 (Continuan)

Pr {T, ,5 kVT lKg = 1 . . . . . . . . - - . p . .. ... ......... . I n .F5000 90000 .95000 .9F500 .99000 .99900 .99990 .99999 l l 3 50 .FF8 I.blo 1.792 2.82h 2.512 J.323 3.992 4.*F3 335 . Flu 1.609 1.191 2.123 2.511 3.321 3.990 h.5Fl 340 .771 1.hou 1.190 2.122 2.5C9 J.319 J.90u h.56s 345 .FF6 f.401 1.18 9 2.121 7.508 s.Jis J.vse b.566 350 .FFS 1.406 1.78F 2.119 2.506 3.316 3.9M3 k.%64 355 .715 1.405 1.Id6 2.lld 2.005 3.314 3.981 4.562 360 .FF4 1.404 1. 18 5 2.llF 2.5Ch 3.3I2 3.9u0 .559 365 .FF3 1.404 1.F86 2.116 2.5C2 3.Jil J.VF8 b.551 JF0 .lF2 1.403 1.18 3 2.115 2.501 J.309 J.916 b.55b 175 .FF2 1.h02 1.182 2.114 2.5C0 3.308 3.9F4 h.5b3 380 .FFI 1.401 1. F8 3 2.183 2.h99 3.306 3.9F2 4.551 Jus .FF0 1.400 1. 15 0 2.112 2.4V8 3.305 3.9F0 4.569 J90 .7F0 1.399 1.18 0 2.181 2.496 3.3C3 J.969 4.94F 395 .169 f.399 1.179 2.IC9 2.hf5 3.302 3.96F 'b.St5 400 .769 1.398 1.FF8 2.809 2.494 3.J00 3.965 4.543 625 .F66 1.394 1.FFh 2.104 2.he9 3.294 3.95F b.536 h50 .763 1.391 1.FF0 2.100 2.kub 3.288 3.950 4.526 til .761 1.388 1. 16 6 2.096 2.683 J.282 J.944 e.519 500 . 755 1.385 1.F43 2.092 2.4F5 3.2FF 3.938 4.512 b25 .256 1.382 1.76 0 2.089 2.4F2 3.272 3.932 4.506 550 .75h 1.380 f.F5F 2.086 2.h68 3.268 3.927 6.500 575 .752 1.3Fe 1.F55 2.083 2.465 3.264 J.922 n.495 600 .151 1.376 1.F52 2.080 2.b62 3.260 3.918 beb89 625 . Ft 9 1.JF4 1.F50 2.0 F F 2.459 3.256 . Fn t 3.913 4.na$ 650 1.372 1. F4 3 2.0 F5 2.456 3.233 J.910 6.nso 4F5 . F4 6 1.3F0 1.The 2.0 FJ 2.454 3.250 3.906 4.416 F00 . F4 5 1.364 1. Th 4 2.0 F I 2.45l 3.24F 3.9C2 4.4F2 F25 . ft h 1.347 1.F4 2 2.069 2.469 3.244 3.899 b.468 F50 . F4 3 1.365 1.F41 2.06F 2.44F 3.241 3.896 4.465 FIS . Fb t 1.36h 1. F39 2.065 2.bb5 3.238 3.893 4.hel 800 . F4 0 1.363 f .F3 F 2.063 2.443 3.236 3.890 n.458 E25 .739 1.361 1.736 2 062 2.44l 3.23b 3.8sF b.455 850 .738 1.340 1.134 2.060 2.439 3.232 J.885 b.452 uTS .FJF l.359 1. 13 3 2.059 2.t38 3.229 3.us2 6.449 900 .736 1.353 1.F32 2.0 $ f 2.436 3.22F J.ano 4.h46 925 .736 1.357 f.731 2.054 2.h34 3.225 3. A FF 4.bbb 950 .F35 1.356 1. F2 9 2.056 2.h33 3.224 3.FF5 4.448 975 .734 1.355 1.128 2.053 2.hJ2 3.222 J.8F3 6.439 1000 .F33 1 354 1.72F 2.052 2.h30 3.220 3 8F1 4.43F 1500 .722 1.340 1.712 2.035 2.4ll 3.196 3 842 4.404 2000 .F16 f.332 1.703 2.024 2.399 3.181 3.825 6.385 3000 .F00 1.323 1.692 2.012 2.385 3.164 3.806 4.363 5000 .701 1.333 1.681 2.0C0 2.372 3.lb* 3.786 4.3h0 10000 .693 1.304 1.6F 1.988 2.358 3.l!0 3.76 b.318 . .67m 1.2s2 1. 6.5 0 f.,60 2 326 3.w,0 3 11,6 4.265

  • ~

NFSR 0000 RAI RCsponse #1 l Appendix B - Tong F-Factor Values for Non-Uniform Test Cases l 1 l l l l i I i 1 I l i l l l l l l I 27 NFSR 0090 RAI Response #1 Test Section A-2  ; i CHF CHF Case Axial Predicted Tong Case Axial Predicted Tong ID Location CHF F-Factor ID Location CHF F-Factor . ~ 902 + 1.2104 27 l- ~# 1.2009 +(h h i 2 1.1984 28 l 1.2119 3 1.2038 29 l 1.2147 4 1.1851 30 1.1967 5 1.1895 31 1.2112 6 1.1563 32 1.2194  : 7 1.1915 33 1.1794 8 1.2159 34 1.1915 9 1.2052 35 1.1988 10 1.2184 36 1.1853 11 1.2091 37 l 1.1939 12 1 1.1775 38 1 1.1990 13 1.1770 39 l 1.2185 14 1.2070 40 1.2024 15 1.2190 41 1.2017 16 1.2023 42 1.2061 17 1.2026 43 1.1825 18 1.1757 44 1.1765 19 1.1924 45 1.1604 20 1.1869 46 1.2108 21 1.1530 47 1.2160 22 1.1455 48 1.2140 23 1.1631 49 1.1971 24 1.1775 50 1.2089 25 1.2154 51 ., 1.2141 26 _ _ 1.2062 r --r ,r. - , t -e.. - - .-- ,. . . - . . . , . . - _ . - , - - . _ Wo k -- r --~. ---' a . NFSR-0090 RAI Response #1 Test Section A-3 i CHF Case Axial Predicted Tong ID Location CHF F-Factor 903 ~ ~* 1.2147 +( b, c,) 2 1.2101 3 1.2168 4 1.2188 5 1.2023 6 1.2066 7 1.1934 8 1.1772 9 1.2166 10 1.2119 11 1.1986 12 1.2039 13 1.1909 14 1.4004 15 1.1769 16 1.2037 17 1.2112 18 1.1849 19 1.2219 20 1.2117 21 1.2274 22 1.1771 23 1.1971 24 . _ 1.2130 25 1.2095 26 1.2133 27 1.2068 28 1.3369 29 1.3491 30 1.1415 31 _. _ 1.2139 l l 29 NFSR 0090 RAI Response #1 Test Section A-4 CHF CHF Case Axial Predicted Tong Case Axial Predicted Tong ID Location CHF F-Factor ID Location CHF F-Factor 502 ~ ~ 4- 1.0921 33 ~ ~+ 1.0616 Mb,6) 2 1.0878 34 1.3044 3 1.0935 35 1.3810 4 1.0861 36 1.3400 5 1.0947 37 1.0965 6 1.0836 38 1.0959 7 1.0955 39 1.4094 8 1.0881 40 1.3553 9 1.3447 41 1.0949 10 1.0976 42 1.3719  ! 11 1.0971 43 1.2866 12 1.0994 44 1.0767 13 1.0992 45 1.3265 14 1.0987 46 ' 1.3125 15 1.0994 47 1.0857 16 1.3453 48 1.0865 17 1.2815 49 1.3477 18 1.3063 50 1.3116 19 1.0737 51 1.0929 20 1.2920 52 1.0960 21 1.0747 53 1.1010 22 1.2794 54 1.1009 23 1.3934 55 1.0942 24 ,, , 1.3611 56 _ 1.3485 25 1.1005 57 L 1.3810 26 1.0860 58 1.3369 27 1.0893 59 1.3680 28 1.2606 60 1.0996 29 1.0609 61 1.0955 30 1.0686 62 1.0999 _31 1.0749 63 _ . 1.0952 ' 32 _ _ 1.0782 i , 30 , NFSR-0090 RAI R:sponse #1 i :. . Test Section A-6 < CHF Case Axial Predicted Tong . ID Location CHF F-Factor i " ~ 503 +' 1.3094 + (b,c.) 2 1.0839- 1 3 1.0910 . 4 1.3184 5 1.0954 6 1.0896 ' 7 1.3334 8 1.3183 9 1.0943 10 1.0832 i 11 1.3676 . 12 1.0868  ! 13 1.0931 - 14 1.0936 15 1.1001 16 1.0943 17 1.0941  ! 18 1.0884 19 1.0854 20 1.0980 . 21 1.0967 'I 22 1.3214 , 23 1.0918  ! 24 1.0923 , 25 1.3534 , 26 1.3464 i 27 1.3449 . 28 1.0992 29 1.0988 30 1.0992 31 1.3261 , 32 1.2795 33 1.0834 34 1.0758 35 1.0678 36 1.0796 37 1.3184 38 _ _ 1.0949 31 NFSR-0090 RAI Response #1 i Test Section A 8 CHF CHF Case Axial Predicted Tong Case Axial Predicted Tong ID Location CHF F-Factor ID Location CHF F-Factor 164 ~'~~ ~ & 1.2524 38 + 1.3359 +(b,c.) 2 1.2370 39 1.3074 3 1.2340 40 1.2922 4 1.2160 41 ' 1.2962 5 1.2262 42 1.2727 ) 6 1.2158 43 1.2472 7 1.2714 44 1.2569  : 8 1.2547 45 ' 1.3391 9 1.2441 46 1.3158 10 1.2602 47 1.2948 , ~ .11 1.3479 48 1.2859 l 12 1.2634 49 1.2907  ! 13 1.2583 50 1.2837 i 14 1.2674 51 1.2421 15 1.2737 52 1.2881 16 1.2741 53 1.2724  ; 17 1.2907 54 1.1859 18 1.3072 55 1.1981  ; 19 1.3001 56 1.2329 l 20 1.2962 57 1.2542  ! 21 1.3414 58 1.1787 22 1.3317 59 1.1821 , 23 1.3350 60 1.2769 , 24 1.3217 61 1.2576 25 1.3438 62 1.3686 26 1.3284 63 1.2596 _ 27 1.3272 64 1.3038  : 28 1.3287 65 1.2250 l 29 1.3395 66 1.2902  ; 30 1.3649 67 1.2829 31 1.3551 68 1.2595 32 1.3470 69 1.3446 33 1.3701 70 1.2022 34 1.3440 71 1.2706 35 1.3246 72 1.2350 36 1.3180 73 1.2819 37 _ . 1.3100 74 _ 1.2763 t k I ~ 32 - . - - - - = . .. - .-. .- NFSR 0000 RAI Response #1 Test Section A-9 CHF CHF Case Axial Predicted Tong Case Axial Predicted Tong ID Location CHF F-Factor ID Location CHF F-Factor ~ - 162 -+ 1.2434 36 4 1.2941 +(bs.) 2 1.2142 37 1.2658 3 1.2033 38 1.3167 l 4 1.2329 39 1.2923 5 1.2550 40 1.3033 6 1.2516 , 41 1.2892 7 1.2541 42 1.2881 8 1.2596 43 1.2802 9 1.2303 44 1.0834 . 10 1.2707 45 1.3131 11 1.2781 46 1.2406 l 12 1.3505 47 1.2388 i 13 1.3197 48 1.2953 14 1.2945 49 1.0805 15 1.3298 50 1.2480 , 16 1.3294 51 1.3484 i 17 1.3266 52 1.3010  ; 4 18 1.3246 53 1.3032 l 19 1.3254 54 1.2947  ! 20 1.3658 55 1.2180- I 21 1.3490 56 ~ 1.2906  ! 22 1.3265 57 1.2802  ! 23 1.3580 58 1.3272 l 24 1.3457 59 1.2805 25 1.3207 60 1.2232 26 1.3200 61 1.2043 27 1.3433 62 1.2005 28 1.3329 63 1.2064 29 1.2980 64 1.2012 30 1.2834 65 1.2832-1.3247 66 1.3604 31 32 1.3107 67 1.2991 33 1.2613 68 1.2584 34 1.2706 69 1.2268 35 _ 1.2685 7f; _ _. 1.2798 3 . . . _- --_. __ - - - l NFSR 0090 RAI Response #1 Appendix C - CHF Summary Output File Listings ._. _ _. _ -- . n_ _ _ _ _ _ _ _ _ _ _ NFSR-0090 RAI Responde aI Best Section A-2

                      • OPERATING CONDITIONS ***********
    • CRITICAL LOCATION *** HOT CHANNEL CONDITIONS **** PREDICTED **
  • SYSTEM IHLET INLET AVERAGE
  • AXIAL
  • MASS FLUX HEAT FLUX
  • CRITICAL *
  • PRESSURE ENTHALPY MASS FLUX HEAT RATE *
  • HOT HCfT LEVEL *(MLBM/HR- EQUIL. (MBTU/HR
  • HEAT FLUX
  • CORR
  • TIME
  • CASE * (PSIA) iBTU/LBM) (MLBM/HR-FT2 i Gsis/SEC-FT) *MDNBR* CHANNEL e.e........ ..........._..=_ ...s................ ._.. _...... ROD........._._......... (IN.)* FT2) QUAL FT2) *(MBTU/HR-FT2)* FLAG * (SEC) *

' . .ITY.. ..._......._....._... ._ ............_ 902 ~ Y 1.064 22 2 0.931 22 19 19 ~ Y WRB2 0.000 +(b,t 3 WRB2 - 0.000 1.018 22 19 WRB2 0.000 4 22 0.912 19 WRB2 0.000 5 0.962 22 19 6 WRB2 0.000 0.919 22 19 WRB2 0.000 7 22 0.963 19 WRB2 0.000 8 1.010 22 19 9 WRB2 0.000 0.970 22 19 WRB2 0.000 10 1.012 22 19 11 WRB2 0.000 1.017 22 19 WRB2 0.000 12 1.022 22 19 13 WRB2 0.000 0.995 22 19 WRB2 0.000 14 1.132 22 19 15 WRB2 0.000 1.176 22 19 WRB2 0.000 16 1.067 22 19 17 WRB2 0.000 1.150 22 19 WRB2 0.000 18 1.045 22 19 19 WRB2 0.000 1 084 22 19 WRB2 0.000 20 1.096 22 19 21 WHB2 0.000 0.980 22 19 WRB2 0.000 22 0.950 22 19 23 WRB2 0.000 0.981 22 19 WRB2 0.000 24 0.933 22 19 25 WRB2 0.000 1.137 22 19 WRB2 0.000 26 1.015 22 19 27 WRB2 0.000 1.006 22 19 WRB2 0.000 28 0.987 22 19 29 WRB2 0.000 1.049 22 19 WRB2 0.000 30 1.034 22 19 31 WRB2 0.003 0.944 22 19 WRB2 0.000 32 0.908 22 19 33 WRB2 0.000 1 0.995 22 19 WRB2 0.000 34 1.016 22 19 35 WRB2 0.000 1.091 22 19 WRB2 0.000 3G 0.968 22 19 37 WRB2 0.000 1.026 22 19 WRB2 0.000 38 1.080 22 19 39 WRB2 0.000 0.944 22 19 WRB2 0.000 40 0.931 22 19 41 WRB2 0.000 1.166 22 19 WRB2 0.000 42 1.139 22 19 43 WRB2 0.000 1.181 22 19 WRB2 0.000 44 1.131 22 19 WRB2 0.000 _ -_ _ _- . _ _ _ . . ., _ _. __.-_ _ _ ~ . . - - . - - ._- - _. . -_-__ _-_ . - - - _ _ . . ~. . ~ PFSR-0090 RAI Response s I 45 ~ ~ 4- 1.115 22 19 ~ ~+ 46 0.978 22 19 WRB2. -WRB2 0.000 0.000 4-(( c 47 1.188 22 19 WRB2 ' O.000 48 0.990 22 19 WRB2 0.000 49 0.966 22 19 WRB2 0.000 50 0.990 22 19 WRB2 0.000 51 . 1.004 22 19 WRB2- 0.000 l t k I 4 'I si 4 NFSR-0090 RAI Response aI Test Section A-3 .........** OPERATING CONDITIONS *********** ** CRITICAL LOCATION *** HOT CHANNEL CONDITIONS **** PREDICTED **

  • SYSTEM INLET INLET AVERAGE
  • AXIAL
  • MASS FLUX HEAT FLUX
  • CRITICAL _ *
  • PPESSURE ENTHALPY MASS FLUK HEAT RATE *
  • HOT HOT LEVEL *(MLBM/HR- EQUIL. (MBTU/HR
  • HEAT FLUX
  • CORR
  • TIME
  • CASE * (PSIA) (BTU /LBM)(MLBM/HR-FT2)(BTU /SEC-FT (IN.)* FT2) QUALITY FT2 * *

..................._._._. ....._._._. ....._. )*MDNBR* CHANNEL . RCD._._....._._. ..........._. . ._. . . ....._._._.)_...(MBTU/HR-FT2)* FLAG * (SEC) 901 - 1.090 16 14 , Y WRB2 2 3 1.076 0.898 16 16 14 14 0.000 WRB2~ ~0.000 4-(Q 4 WR32 3.000 0.962 16 14 WRB2 5 1.012 0.000 16 14 WRB2 6 0.000 0.993 16 14 WRB2 7 16 0.000 1.024 14 WRB2 0.000 8 0.955 16 14 9 16 WRB2. 0.000 0.950 14 WRB2 0.000 10 1.027 16 14 11 WRB2 0.000' 1.012 16 14 WRB2 0.000 12 0.997 16 14 13 WRB2 0.000 0.997 16 14 WRB2-14 0.967 16 0.000 14 WRB2 0.000 15 0.946 16 14 16 WRB2 0.000 0.941 16 14 WRB2 17 16 J.000 'O.973 14 WRB2 0.000 18 0.919 16 14 19 WRB2 0.000 0.918 16 14 WHB2 20 0.000 1.024 16 14 WRB2 0.000 21 0.942 16 14 22 WRB2 0.000 0.854 16 14 WRB2 0.000 23 0.890 16 14 24 WRB2 0.000 1.088 16 14 WRB2 0.000 25 0.984 16 14 26 WRB2 0.000 0.974 16 14 WRB2 27 0.000 1.060 16 14 WRB2 0.000 28 0.972 16 14 29 WRB2 0.000 1.013 16 14 - WRB2 0.000 30 0.881 16 14 31 WRB2 0.000 1.062 16 14 . WRB2 0.000 l 37 i _________ _ _ _ _ ___ _ . _ . ___. . _ , - .- . . . . ~ . . - - . . - . , _ , . - , ,- . . .,.-~ . NFSR-0090 RAI Response e1 7est Section A-4 ..********* OPERATING CONDITIONS *********** ** CRITICAL LOCATION *** HOT CHANNEL CONDITIONS **** PREDICTED ** SYSTEM INLET INLET AVERAGE

  • AXIAL
  • MASS FLUX HEAT FLUK* CRITICAL *
  • PRESSURE ENTHALPY MASS I LUX HEAT RATE *
  • HOT HOT LEVEL *(MLBM/HR- EQUIL. (MBTU/HR
  • HEAT FLUX
  • CORR
  • TIME
  • CASE * (PSIA) (BTU /LBM)(MLBM/HR-FT2)(BTU /SEC-FT)*MDNBR* CHANNEL ROD

......._. ..._..._....._(.IN.)*.. _......._..._._e_..._.... FT2) QUALITY FT2) *(MBTU/HR-FT2)* FLAG * * ....._..._..._..._..._e_..............._* ' _......... .............(SEC) .._.... 502 ""+ 1.185 22 19 'T - -t WRB2 0.000 +(b,t,' 2 1.085 22 19 3 WRB2 0.000 1.140 22 19 WRB2 - 0.000 4 1.050 22 19 3 WRB2 0.000 1.145 22 19 WRB2 0.000 6 1.067 22 19 7 WRB2 0.000 1.103 22 19 WRB2 0.000 8 1.039 22 19 9 WRB2 0.000 1.182 22 19 WRB2 0.000 10 1.201 22 19 11 WRB2 0.000 1.160 22 19 WRB2 0.000 12 1.102 22 19 13 WRB2 0.000. 1.202 22 19 WRB2 0.000 14 1.082 22 19 15 WRB2 0.000 1.155 22 19 WRB2 0.000 16 1.154 22 19 17 WRB2 0.000 0.962 22 19 WRB2 0.000 18 0.980 22 19 19 WRB2 0.000 0.997 22 19 WRB2 0.000 20 0.975 22 19 21 WRB2 0.000 0.981 22 19 WRB2 0.000 22 0.973 22 19 23 WRB2 0.000 0.869 22 19 WRB2 0.000 24 0.912 22 19 25 WRB2 0.000 0.989 22 19 WRB2 0.000 26 1.020 22 19 27 WRB2 - 0.000 0.991 22 19 WRB2 0.000 28 3.982 22 19 29 WRB2 0.000 1.014 22 19 WRB2 0.000 30 0.917 22 19 31 WRB2 0.000 1.019 22 19 WRB2 0.000 32 0.973 22 19 33 WRB2 0.000 , 1.055 22 19 WRB2 0.000 34 0.901 22 19 35 WRB2 0.000 0.807 22 19 WRB2 0.000 i 36 0.904 22 19 37 WRB2 0.000 0.977 22 19 WRB2 0.000 38 1.051 22 19 39 WRB2 0.000 0.878 22 19 WRB2 0.000 40 0.834 22 19 41 WRB2 0.000 0.889 22 19 WRB2 0.000 42 0.831' 22 19 43 WRB2 0.000 0.925 22 19 WRB2 0.000 44 0.962 22 19 WRB2 0.000 h " 45 7 ~ 0.878 22 19 '~ ~ Y WRB2 0.0004(b,C) 46 0.948 22 19 WRB2 0.000 47 1.040 22 19 tTB2 0.000 48 1.037 22 19 WRB2 0.000 49 0.960 22 19 WRB2- 0.000 50 1.033 22 19 WRB2' O.000 51 1.060 22 19 WRB2 0.000 53 1.036 22 19 WRB2 0.000 53 1.027 22 19 WRB2 0.000 54 1.050 22 19 WRB2 0.000 55 1.086 22 19 WRB2 0.000 56 0.998 22 19 WRB2 0.000 57 0.868 22 19 WRB2 0.000 58 1.062 22 19 WRB2 0.000 59 0.953 22 19 WRB2 0.000 60 1.132 22 19 WRB2 0.000 61 0.988 22 19 WRB2 0.000 62 1.122 22 19 WRB2 - 0.000 63 0.998 22 19 WRB2 0.000 ) - -- - - -o. e -,n - e- em,e - - - - - m-- wm- - -,v- ---- , w a + ~ = - n ---wm, - -~ vw v. .= - NFSR-0090 RAI Response a1 cct Section A-5

                      • OPERATING CONDITIONS *********** ** CRITICAL LOCATION *** HM CHA!JNEL CONDITIONS * * *
  • PREDICTED **
  • SYSTEM INLET IHLET AVERAGE
  • AXIAL
  • MASS FLUX HEAT FLUX
  • CRITICAL *
  • PRESSURE ENTHALPY MASS FLUX HEAT RATE *
  • HM HOT LEVEL *(MLBM/HR- EQUIL. (MBTU/HR
  • HEAT FLUX
  • CORR
  • TIME
  • CASE * (PSIA) (BTU /LBM)(MLBM/HR-FT2)(BTU /SEC-FT)*MDNBR* CHANNEL ROD (IN.)* FT2) FT2)
  • * * * * * * * * * * * * * * * * + * * * * * * * * * * * * * * * * * * * * * *
  • OUALITY *(MBTU/HR-FT2)* FLAG * (SEC1
  • 503 2

3 ~ E 1.074 1.059 0.937 28 28 22 19 '" 19

                                              • kbO) ~E WRB2 WRB2 0.000 0.000 s

19 WRB2 0.000 4 0.973 28 19 WRB2 0.000 5 1.025 22 19 WRB2 0.000 6 0.976 22 19 WRB2 7 0.000 0.896 28 19 WRB2 'O.000-8 0.986 28 19

  • WRB2 9

0.000 1.049 22 19 WRB2 0.000 10 1.136 22 19 WRB2 0.000 11 1.039 28 19 WRB2 'O.000 12 1.011 28 19 WRB2 0.000 13 1.094 28 19 WRB2 14 0.000 1.070 22 19 WRB2 0.000 15 1.055 28 19 WRB2 0.000 16 1.020 22 19 WRB2 0.000 17 1.070 22 19 WRB2 0.000 18 1.013 28 19 WRB2 0.000 19 0.998 22 19 WRB2 0.000 20 1.066 28 19 WRB2 0.000 21 1.051 22 19 WRB2 0.000 22 1.014 28 19 WRB2 0.000 23 0.952 28 19 WRB2 0.000 24 0.981 22 19 WRB2 0.000 25 0.911 28 19 WRB2 0.000 26 1.023 28 19 WRB2 0.000 27 1.087 28 19 WRB2 0.000 28 1.029 28 19 WRB2 0.000 29 0.987 22 19 WRB2 0.000 30 1.112 22 19 WRB2 0.000 31 . 0.861 23 19 WRB2 0.000 32 0.949 23 19 WRB2 0.000 33 1.031 28 19 WRB2 0.000 34 0.934 28 19 WRB2 0.000 35 0.96E 22 19 WRB2 0.000 36 1.025 22 19 WRB2 0.000 37 1.003 28 19 WRB2 0.000 38 4 1.085 22 19 WRB2 0.000 NFSR-0090 RAI Response a 1 rcct Section A-6

                      • OPERATING CONDITIONS *********** ** CRITICAL LOCATION *** HOT CHANNEL CONDITIONS **** PREDICTED **
  • SYSTEM INLET INLET AVERAGE
  • AXIAL
  • MASS FLUX HEAT FLUX *
  • PRESSURE ENTHALPY MASS FLUX
  • CRITICAL
  • HEAT RATE
  • HOT HOT LEVEL *(MLBM/HR- EQUIL. (MBTU/HR
  • HEAT FLUX
  • CORR
  • TIME
  • CASE * (PSIA) (BTU /LBM)(MLBM/HR-FT2)(BTU /SEC-FT)*MDNBR* CHANNEL ROD IN. *

._e_....._....._._._._._. ._._ _._e_a_ _ _._*_..._._ _._ _*_..._*_.(_*_e)_...FT2) OUALITY FT2) *(MBTU/HR-FT2)* FLAG * (SEC)

  • 160 _ _..._ _*_._......._ _._._..._._ _._........... _._

M 1.026 22 19 Y WRB2 0.000+(b.C 2 1.009 22 19 3 WRB2 0.000 0.998 22 19 WRB2 0.000 4 0.967 22 19 5 WRB2 0.000 1.008 22 19 WRB2 0.000 6 0.933 22 19 7 WRB2 0.000 0.923 22 19 WRB2 0.000 8 0.927 22 19 9 WHB2 0.000 1.074 22 19 WRB2 0.000 10 0.964 22 19 11 WRB2 0.000 0.959 22 19 WRB2 0.000 12 0.880 22 19 13 WRB2 0.000 1.046 22 19 WRB2 0.000 14 0.881 22 19 15 WRB2 0.000 0.882 22 19 WRB2 0.000 16 0.866 22 19 17 WRB2 0.000 0.860 22 19 WRB2 0.000 18 0.923 22 19 19 WRB2 0.000 0.902 22 19 WRB2 0.000 20 0.916 22 19 21 WRB2 0.000 0.919 22 19 WRB2 0.000 22 0.875 22 19 23 WRB2 0.000 0.868 22 19 WRB2 0.000 24 0.930 22 19 25 WRB2 0.000 i 0.855 22 19 WRB2 0.000 26 . 0.894 22 19 27

  • WRB2 0.000 0.870 22 19 WRB2 0.000 28 . 0.895 22 19 29 WRB2 0.000 0.932 22 19 WRB2 0.000 30
  • 0.976 22 19 31 WRB2 0.000 0.944 22 19 WRB2 0.000 32 0.948 22 19 33 WRB2 0.000 0.975 22 19 WRB2 0.000 34 1.024 22 19 35 WRB2 0.000 0.984 22 19 WRB2 0.000 36 0.993 22 19 37 WRB2 0.000 1.016 22 19 WHB2 0.000 38 1.173 22 19 39 WRB2 0.000 1.082 22 19 WRB2 0.000 40 1.136 22 19 41 WRB2 0.000 1.060 22 19 WRB2 0.000 42 1.077 22 19 WRB2 0.000 43 0.957 22 19 WRB2 44 0.000 0.985 22 19 WRB2 0.000 41

Q - 0 2 s b- 4 e I s i t Y~ o p 03330030000300000000000 00000000000000000000000 s 00000000000000000000000 e 00000000000000000000000 R I A R 22222222222222222222222 BBBBBBBBBBBBBBBBBBBBBBB 0 RRRRRRRRRRRRRRRRRRRRRRR 0 WWWWWWWWWWWWWWWWWWWWWWW 0 0 - R S b N . 99999999999999999999999 11111111111111111111111 22222222222222222222222 - 22222222222222222222222 _ 29348170943264114685913 01889551939544810023215 _ 90200001898099890990009 01111111000100001001110 ~ a _ ~ _ 56789012345678901234567 44444555555555566666666 l! , i1ll . ll NFSR-0090 RAI Respon e s1 [est Section A-7 OPERATING CONDITIONS ***********

  • CRITICAL LOCATION *** HOT CHANNEL CONDITIONS **** PREDICTED **
  • SYSTEM INLET INLET AVERAGE *
  • AXIAL
  • MASS FLUX HEAT FLUX
  • CRITICAL *
  • PRESSURE ENTHALPY MASS FLUX HEAT RATE *
  • HOT HOT LEVEL *(MLBM/HR- EQUIL. (MBTU/HR
  • HEAT FLUX
  • CORR
  • TIME
  • CASE'.

.... . .(.........._... PSI A ) L BTU /LBM) (HLBM/HR-FT2) (BTU /SEC-FT) *MDNBR*._._..........._..._._._. ._._._..._._..._..._..._._._..._. CHANNEL ROD (IN.)* FT2) QUALITY FT2) *(MBTU/HR-FT2)* FLAG * (SEC)

  • 161 i,1.083 22 19 Y WRB2 0.000 4 (bg 2 1.164 22 19 WRB2 0.000 3 1.032 22 19 WRB2 0.000 4 0.970 22 19 WRB2 0.000 5 1.020 22 19 WRB2 0.00C 6 0.945 22 19 WRB2 0.000 7 0.874 22 19 WRB2 0.000 8 1.051 22 19 WRB2 0.000 9 1.076 22 19 WRB2 0.000 10 1.144 22 19 WRB2 0.000 11 1.076 22 19 WRB2 0.000 12 1.121 22 19 WRB2 0.000 13 1.003 22 19 WRB2 0.000 14 1.049 22 19 WRB2 0.000 15 1.039 22 19 WRB2 0.000 16 1.059 22 19 WRB2 0.000 17 0.992 22 19 WRB2 0.000 18 0.995 22 19 WRB2 0.000 19 0.966 22 19 WRB2 0.000 20 0.911 22 19 WRB2 0.000 21 0.943 22 19 WRB2 0.000 22 0.981 22 19 WRB2 0.000 23 0.989 22 19 WRB2 0.000 24 0.983 22 19 WRB2 0.000 23 0.916 22 19 WRB2 0.000 26 0.984 22 19 WBB2 0.000 27 1.157 22 19 WRB2 0.000 28 1.048 22 19 WRB2 0.000 29 1.063 22 19 WRB2 0.000 30 1.050 22 19 WRB2 0.000 31 1.018 22 19 WRB2 0.000 32 1.003 22 19 WRB2 0.000 33 0.998 22 19 WRB2 0.000 34 1.015 22 19 WRB2 0.000 35 0.987 22 19 WBB2 0.000 36 0.934 22 19 WRB2 0.000 37 0.919 22 19 WRB2 0.000 38 0.969 22 19 WRB2 0.000 39 0.909 22- 19 WRB2 0.000 40 0.933 22 19 WRB2 0.000 41 0.922 22 19 WRB2 0.000 42 0.890 22 19 WRB2 0.000 43 1.000 22 19 WRB2 0.000 44 0.846 22 19 WRB2 0.000 43

NFSR-0090 RAI Respont.,e s1 ~ ~ ~ 45 0.957 22 19 ~ WRB2- 0.000 + b ,C 46 0.966 22 19 WRB2 0.000 47 1.039 22 19 WRB2 48 0.000 0.988 22 19 WRB2 0.000 40 1.061 22 19 WRB2 0.000 50 0.977 22 19 WRB2 0.000 51 1.011 22 19 WRB2 0.000 52 1.000 22 19 WRB2 0.000 53 1.018 22 19 WRB2 0.000 , 54 1.009 22 19 WRB2 0.000 55 1.054 22 19 WRB2 0.000 56 1.007 22 19 WRB2 0.000 57 0.972 22 19 .WRB2 58 0.000 0.975 22 19 WRB2 0.000 59 0.968 22 19 WRB2 60 0.000 0.999 22 19 WRB2 0.000 61 1.043 22 19 WRB2 0.000 62 0.970 22 19 WRB2 0.000 63 0.877 22 19 WRB2 0.000 64 1.008 22 19 WRB2 0.000 65 1.006 22 19 WRB2 0.000 66 0.975 22 19 WRB2 0.000 67 0.903 22 19 WRB2 0.000 68 0.944 22 19 WRB2 0.000 69 0.968 22 19 WRB2 '0.000-70 1.026 22 19 WRB2 0.000 71 0.949 22 19 WRB2 0.000 f ~ NFSR-0090 RAI Response s1 Test Section A-8 ........*** OPERATING CONDITIONS *********** ** CRITICAL LOCATION *** HOT CHANNEL CONDITIONS **** PREDICTED **

  • SYSTEM INLET INLET AVERAGE
  • AXIAL
  • MASS FLUX HEAT FLUX
  • CRITICAL *
  • PRESSURE ENTHALPY MASS FLUX HEAT RATE *
  • HOT HOT LEVEL *(MLBM/HR- EQUIL. (MBTU/HR
  • HEAT FLUX
  • CORR
  • TIME
  • CASE * (PSIA) (BTU /LBM)(MLBM/HR-FT2)(BTU /SEC-FT)*MDNBR* CHANNEL ROD (IN.)* FT2) QUALITY FT2 * *

.. .e... _. ._..._....... . ....._._e_=_... _...... _*_*_*_.. _.... _*_*_..... ._._. _._......).._(MBTU/HR-FT2)* . FLAG (SEC) _*_ 164 I I.040 22 19 - ~~- E WRB2 0.000 M,C. 2 i 1.072 22 19 WRB2 0.000 3 1.034 22 19 WRB2 0.000 4 1.078 22 19 WRB2 0.000 5 0.956 22 19 WRB2 0.000 6 0.974 22 19 WRB2 0.000 7 1.105 22 19 WRB2 0.000 8 1.073 22 19 WRB2 0.000 9 1.096 22 19 WRB2 0.000 10 0.989 22 19 WRB2 0.000 11 0.880 22 19 WRB2 0.000 12 1.207 22 19 WRB2 0.000 13 1.181 22 19 WRB2 0.000 14 1.083 22 19 WRB2 0.000 15 1.118 22 19 WRB2 0.000 16 1.085 22 19 WRB2 0.000 17 1.226 22 19 WRB2 0.000 18 1.136 22 19 WRB2 0.000 19 1.157 22 19 WRB2 0.000 20 1.200 22 19 WRB2 0.000 21 1.055 22 19 WRB2 0.000 22 1.001 22 19 WRB2 0.000 23 1.001 22 19 WRB2 0.000 24 1.108 22 19 WRB2 0.000 25 1.011 22 19 WRB2 0.000 26 1.070 22 19 WRB2 0.000 27 1.087 22 19 WRB2 0.000 28 1.054 22 19 WRB2 0.000 29 1.102 22 19 WRB2 0.000 30 0.912 22 19 WRB2 0.000 31 0.954 22 19 WRB2 0.000 32 1.003 22 19 WRB2 0.000 33 0.945 22 19 WRB2 0.000 34 0.953 22 19 WRB2 0.000 35 0.987 22 19 WRB2 0.000 36 1.020 22 19 WRB2 0.000 37 1.098 22 19 WRB? 0.000 38 0.985 22 19 WRB2 0.000 39 0.962 22 19 WRB2 0.000 40 1.012 22 19 WRB2 0.000 41 1.043 22 19 WRB2 0.000 42 1.186 22 19 NRB2 0.000 43 1.183 22 19 WRB2 0.000 44 1.160 22 19 WRB2 0.000 45 NFSR-0090 RAI Response # 1 ~ 45 0.968 22 19 ' ' 46 0.921 22 19 WRB2 0.000 4 (b,, 47 WRB2 0.000 0.974 22 19 WRB2 0.000 48 1.016 22 19 49 WRB2 0.000 0.995 22 19 WRB2 0.000 50 0.915 22 19 51 WRB2 0.000 1.093 22 19 WRB2 0.000 52 0.906 22 19 53 WRB2 0.000 0.861 22 19 WRB2 0.000 54 0.963 22 19 55 WRB2 0.000 0.904 22 19 WRB2 0.000 56 1.020 22 19 57 WRB2 0.000 0.945 22 19 WRB2 0.000 58 0.938 22 19 59 WRB2 0.000 1.030 22 19 WRB2 60 1.014 22 0.000 19 WRB2 0.000 61 1.090 22 19 62 WRB2 0.000 0.952 22 19 WRB2 0.000 63 0.963 22 19 64 WRB2 0.000 0.932 22 19 WRB2 0.000 65 1.037 22 19 66 WRB2 0.000 0.887 22 19 WRB2 0.000 67 0.957 22 19 68 WRB2 0.000 1.060 22 19 WRB2 0.000 69 0.930 22 19 70 WRB2 0.000 0.966 22 19 WRB2 0.000 71 0.936 22 19 72 WRB2 0.000 1.088 22 19 WRB2 0.000 73 0.936 22 19 71 WRB2 0.000 0.934 22 19 WRB2 0.000 46 ~ NFSR-OO90 RAI Response s t rest Section A-9 OPERATING CONDITIONS ***********

  • SYSTEM IHLET IHLET AVERAGE *
  • CRITICAL LOCATION *** HOT CHANNEL CONDITIONS **** PREDICTED **

AXIAL

  • MASS FLUX HEAT FLUX
  • CRITICAL *
  • PRESSURE ENTHALPY MASS FLUX HEAT RATE *
  • HCyr HOT LEVEL *(MLBM/HR- EQUIL. (MBTU/HR
  • HEAT FLUX
  • CORR
  • TIME
  • CASE * (PSIA) (BTU /LBM)(MLBM/HR-FT2)(B

._._. (IN.)* FT2) ........._..._. ._....._.......TU/SEC-FT)*MDNBR* CHANNEL ROD.._..._....._._._._._. QUALITY FT2) ......._....... *( 162

  • E O.996 ._....._....._...MBTU/HR-FT2)* FLAG * (SEC) 28 19 4 WRB2 0.000 2

3 0.959 22 19 WRB2 0.000 +kt 0.986 22 19 WRB2 0.000 4 1.008 22 19 WRB2 0.000 5 1.168 28 19 6 WRB2 0.000 1.034 22 19 WRB2 7 0.000 0.992 22 19 WRB2 0.000 8 1.091 22 19 WRB2 0.000 9 1.143 29 19 WRB2 10 0.000 1.154 28 19 WRB2 11 1.102 0.000 22 19 WRB2 12 0.000 0.900 28 19 WRB2 0.000 13 - 1.007 28 19 14 WRB2 0.000 1.178 28 19 WRB2 0.000 15 0.986 28 19 16 WRB2 0.000 1.022 28 19 WRB2 17 0.957 28 19 0.000 18 WRB2 0.000 0.958 22 19 WRB2 0.000 19 1.056 28 19 20 WRB2 0.000 0.881 28 19 WRB2 0.000 21 0.962 28 19 22 WRB2 0.000 1.073 28 19 WRB2 0.000 23 0.875 28 19 24 WRB2 0.000 0.996 28 19 WRB2 25 1.112 28 19 0.000 26 WRB2 0.000 1.115 28 19 WRB2 27 1.006 28 19 0.000 28 WRB2 0.000 1.001 28 19 WBB2 29 1.011 28 19 0.000 30 WRB2 0.000 1.073 28 19 WRB2 0.000 31 1.009 28 19 WRB2 0.000 32 1.082 28 19 33 WRB2 0.000 1.214 22 19 WRB2 0.000 34 0.970 22 19 WRB2 35 1.179 22 19 0.000 36 WRB2 0.000 1.109 28 19 WRB2 0.000 l 37 1.166 28 19 WRB2 0.000 38 0.973 28 19 39 WRB2 0.000 1.006 22 19 WRB2 0.000 t 40 1.131 28 19 41 WRB2 0.000 l 1.070 28 19 WRB2 0.000 42 1.164 22 19 ( 43 WRB2 0.000 1.029 22 19 WRB2 0.000 l 44 1.254 22 19 WRB2 0.000 J . _. l l 47 - NFSR4WO RM Response s1 45 ~ E 0.917 28 -19 ' ~k WRB2' O.000 +k , ' 46 1.148 28 19 47 WRB2 0.000 1.118 22 19 WRB2 0.000 48 0.947 28 19 49 WRB2~ 0.000 1.112 22 19 WRB2 0.000 50 1.145 22 19 51 WRB2 0.000 1.030 23 19 WRB2 0.000' 52 1.103 23 19 53 WRB2 0.000 0.986 23 19 WRB2 'O.000 54 0.938 23 19 55 WRB2 0.000 1.054 23 19 WRB2 0.000 56 0.863 23 19 57 WRB2 0.000 0.970 23 19 WRB2 0.000 58 0.961 23 19 59 WRB2 0.000 0.970 23 19 .WRB2 0.000 60 0.996 23 15 61 WRB2 0.000 1.053 23 19 WRB2 0.000 62 0.914 23 19 63 WRB2 0.000 0.995 22 19 WRB2 0.000 64 0.905 22 19 65 WRB2 0.000 1.008 23 19 'WRB2 0.000 66 0.930 23 19 67 WRB2 0.000 0.927 23 19 WRB2 0.000 68 0.920 23 19 69 WRB2 0.000 8 1.004 22 19 WRB2 0.000 70 , L 0.900 28 19 _ WRB2 0.000 48 - .-. =. NFSRm RAI Response s1

Tcst Section A-10 ~
                      • OPERATING CONDITIONS * * ' * * ' * * *
    • CRITICAL IOCATION'** HOT CHANNEL CONDITIONS * * *
  • PREDICTED **
  • SYSTEM INLET INLET AVERAGE
  • AXIAL
  • MASS FLUX HEAT FLUX
  • CRITICAL *
  • PRESSURE ENTHALPY MASS FLUX HEAT RATE *
  • HOT HOT LEVEL *(MLBM/HR- EQUIL. (MBTU/HR
  • HEAT FLUX
  • CORR
  • TIME
  • CASE * (PSIA) (BTU /LBM)(MLBM/HR-FT2)(B (IN.)* FT2) QUALITY FT2) *(MBTU/HR-FT2)* FLAG * (SEC
  • e_e_............._....._. ....... ...TU/SEC-FT)*MDNBR* CHANNEL ROD.... . ._*...... . .... _*_._ _*_*_ ............_. ..... ....... ......*_,_.......

157 ~~ ~~ ~ +0.928 22 19 ~ .....).._ i- WRB2 2 3 1.033 22 19 WRB2 0.000 0.000 4.% 1.075 22 19 WRB2- 0.000 4 1.053 22 19 WRB2 0.000 l 5 1.087 22 19 6 WRB2 0.000 1.055 22 19 WRB2 0.000 7 0.992 22 19 WRB2 0.000 8 1.038 22 19 WRB2 0.000 9 1.057 22 19 10 WRB2 0.000 0.958 22 19 WRB2 11 0.992 22 0.000 19 WRB2 0.000 12 0.922 22 19 13 WRB2 0.000 1.056 22 19 WHB2 0.000 14 1.016 22 19 15 WRB2 0.000 1.026 22 19 WRB2 0.000 16 0.947 22 19 17 WRB2 0.000 0.949 22 19 WRB2 0.000 18 0.980 22 19 19 WRB2 0.000 - 0.960 22 19 WRB2 0.000 20 0.901 22 19 21 WRB2 0.000 0.931 22 19 WRB2 0.000 22 0.973 22 19 23 WRB2 0.000 1.038 22 If WRB2 0.000 24 0.963 22 13 25 WRB2 0.000 1.075 22 49 WRB2 0.000 26 0.937 22 19 27 WRB2 0.000 0.970 22 19 WRB2 0.000 28 1.200 22 19 29 WRB2 0.000 1.145 22 19 WRB2 0.000 30 0.963 22 19. 31 WRB2 0.000 1.046 22 19 WRB2 0.000

32 0.870 22 19 33 WRB2 0.000 1.206 22- 19 WRB2 0.000 34 0.976 22 19 35 WRB2 0.000 0.987 22 19 WRB2 0.000 36 0.970 22 19 37 WRB2 0.000 0.958 22 19 WRB2 0.000 38 0.910 22 19 39 WRB2 0.000 0.996 22 19 WRB2 0.000 40 0.938 22 19 41 WRB2 0.000 0.924 22 19 WRB2 0.000 42 0.888 22 19 43 WRB2 0.000 0.958 22 19 WRB2 0.000 44 1.049 22 19 WRB2 0.000 49

.- _ -- - .~ - -. -- ., ._. _- _ ., ... _ _ _ _ _ _ _ _ _ _ _ - _ _ _ _ _ - _ - _ . NFSR-0090 RAI Re s1 45 ~ ~ + 1.051 22 19 * ~+ WRB2 0. 000 +(b,( , 46 0.839 22 19 WRB2 0.000 47 0.969 22 19 WRB2 48 0.000 0.978 22 19 WRB2 0.000 49 1.015 22 19 WRB2 0.000 50 0.947 22 19 WRB2 51 0.000 0.970 22 19 WRB2 0.000 j 52 0.971 22 19 53 WRB2 0.000 1.000 22 19 WRB2 0.000 54 1.021 22 19 55 WRB2 0.000 0.988 22 19 WRB2 0.000 56 0.930 22 19 57 WRB2 0.000 1.073 22 19 WRB2 0.000 58 0.970 22 19 59 WRB2 0.000 0.911 22 19 WRB2 0.000 60 0.921 22 19 61 WRB2 0.000 0.985 22 19 WRB2 0.000 62 1.153 22 19 63 WRB2 0.000 0.963 22 19 WRB2 0.000 64 0.933 22 19 65 WRB2 0.000-0.877 22 19 WRB2 -0.000 66 0.855 22 19 67 WRB2 0.000 0.841 22 19 WRB2 0.000 68 0.991 22 19 69 WRB2 0.000 0.913 22 19 WRB2 0.000 70 s 0.963 22 19 71 WRB2 0.000 . 0.882 22 19 WRB2 0.000 72 . 0.907 22 19 73 WRB2 0.000 e 1.033 22 19 WRB2 0.000 , 74 . 0.921 22 19 75 WRB2 0.000 O.871 22 19 WRB2 -0.000-76 0.874 22 19 77 WRB2 0.000 0.876 22 19 WRB2 0.000 i 78 0.877 22 19 kRB2 0.000 50 NFSR-0090 RAI Responsei i rest Section A-11

                      • OPERATING CONDITIONS ***********
  • CRITICAL LOCATION *** HOT CHANNEL- CONDITIONS **** PREDICTED **
  • SYSTEM INLET INLET AVERAGE *
  • AXIAL
  • MASS FLUX HEAT FLUX
  • CRITICAL *
  • PRESSURE ENTHALPY MASS FLUX HEAT RATE *
  • HOT HCyr LEVEL * {MLBM/HR - EQUIL. (MBTU/HR
  • HEAT FLUX
  • CORR
  • TIME
  • C. AS. E(PSIA) (BTU /LBM)(MLBM/HR-FT2)(BTU /SEC-FT)*MDNBR* CHANNEL ROD (IN.)*
  • FT2 FT2) *(MBTU/HR-FT2)* FLAG * (
  • 158

~ ...*_........)_._Q.UALITY .._._ _........... ....... ...........SEC) t 0.918 28 19 + WRB2 -0.000

2 0.998 22 19 +(,gc, 3 0.984 22 WRB2 0.000 19 WRB2 0.000 1 4 0.941 22 19 WRB2 5 0.928 28 0.000 6

19 WRB2 0.000 0.983 22 19 7 0.990 22 WRB2 0.000 8 19 WRB2 0.000 0.989 22 19 WRB2 9 1.248 28 0.000 10 19 WRB2 0.000 1.165 28 19 WRB2 11 1.057 22 0.000 19 WRB2 12 1.082 22 0.000 19 WRB2 0.000 13 1.123 28 19 14 WRB2 0.000 1.080 28 19 WRB2 15 0.946 28 0.000 16 19 WRB2 0.000 1.082 28 19 WRB2 17 0.940 22 0.000 19 WRB2 0.000 18 0.990 22 19 WRB2 0.000 15 0.854 22  ?,9 20 WRB2 0.000 0.927 22 19 WRB2 0.000 21 0.968 22 19 22 WRB2 0.000 0.977 22 19 WRB2 0.000 23 0.959 28 19 24 WRB2 0.000 0.993 28 19 WRB2 25 1.160 28 19 0.000 26 WRB2 0.000 1.071 28 19 WRB2 27 0.861 22 19 0.000 28 WRB2 0.000 0.897 22 19 WRB2 29 0.000 0.873 28 19 WRB2 i 30 0.953 23 19 0.000 < 31 WRB2 0.000 0.971 28 19

  • WRB2 0.000 32 1.173 28 19 33 WRB2 0.000 1.043 28 19 WRB2 0.000 34 1.077 28 19 35 WRB2 0.000 1.043 23 19 WRB2 0.000 l 36 0.954 22 13 37 WRB2 0.000 1.072 22 19 WRB2 0.000 i

38 1.057 28 19 39 WRB2 0.000 1.057 28 19 WRB2 0.000 l 40 1.077 28 19 l 41 WRB2 0.000-1.110 28 19 WRB2 0.000 42 1.126 28 19 43 WRB2 0.000 0.926 28 19 WRB2 0.000 44 a 0.901 23 19 - WRB2 0.000 l 51 l l PFSR-0000 RAI Response #1 - y ~ ~ 45 * + 0 .924 22 19 ~ ~+ 46 22

WRB2 'O.000+(bt; 0.955 19 WRB2 47 0.968 22 19

.I 0.000'- 48  : WRB2 0.000 0.961 28 19  ! WRB2 49 0.969 23 19 0.000 I WRB2 50 0.989 28 19

  • 0.000' 51 WRB2 0.000 0.990 22 19 WRB2 0.000 52 ,

1.097 22 19 53 WRB2. 0.000 0.901 28 19 WRB2 54 0.824 22 19 0.000 55 WRB2 0.000 0.887 22 19 WRB2 ~ 56 0.802 28 19 0.000 57 WRB2 0.000 0.842 28 19 WRB2 58 0.893 22 19 0.000 59 WRB2 0.000 ' 0.918 28 49 WRB2 60 0.909 22 19 0.000 61 WRB2 0.000 1.040 28 19 WRB2 62 1.121 28 0.000 19 WRB2 0.000 63 1.028 28 .19 64 WRB2 0.000 0.873 22 19 WRB2 0.000 65 0.939 28 19 66 WRB2 0.000 0.881 28 19 67 - 0.828 22 19 WRB2' O.000 68 . WRB2 0.000 1.027 22 19 8 WRB2 0.000 i 9 -52 . NFSR-0090 RAI Response,s1 Test Section A-12

                      • OPERATING CONDITIONS ***********
  • CRITICAL LOCATION *** HOT CHANNEL CONDITIONS **** PREDICTED **
  • SYSTEM INLET INLET AVERAGE *
  • AXIAL
  • MASS FLUX HEAT FLUX
  • CRITICAL *
  • PRESSURE ENTHALPY MASS FLUX HEAT RATE *
  • HOT HOT LEVEL *(MLBM/HR-CASE * (PSIA) (BTU /LBM)(MLBM/HR-FT2 EQUIL.-(MBTU/HR ** HEAT FLUX
  • CORR
  • TIME *'

e_e_a_e_............._* (IN.

  • F QUALITY FT2) (MBTU/HR-FT2
  • 156 - ._....*_a_)_(BTU /SEC-FT)*MDNBR* CHANNEL e

RODa_..._e_a_e_e_....._e_...... _e_*.*)_a_e_T2)a_e_e_e_e

  • _ .._..._e_e_e_a_..... e_e)* FLAG * ..

_a_*_e_ (SEC) e_a_ 1 + 0.876 22 19 2 0.898 22 19 i WRB2 0.000 +b,t ; 3 1.034 22 WRB2 0.000 4 19 WRB2 0.974 22 19 0.000 5 WRB2 0.000 6 1.072 22 19 WRB2 0.986 22 19 0.000 7 WRB2 0.000 0.912 22 19 8 WRB2 0.000 9 0.903 22 19 WRB2 0.959 22 19 0.000 10 WRB2 0.000 1.071 22 19 11 WRB2 0.000 1.063 22 19 12 WRB2 0.000 13 1.062 22 19 WRB2 1.001 22 19 0.000 14 WRB2 0.000 0.949 22 19 15 WRB2 0.000 1.046 22 19 16 WRB2 0.000 17 1.130 22 19 WRB2 0.973 22 19 0.000 18 0.997 22 WRB2 0.000-19 19 WRB2 1.083 22 19 0.000 20 1.184 22 19 WRB2 0.000 21 WRB2 0.000 0.942 22 19-22 0.915 22 19 WRB2 0.000 23 0.840 22 19 WRB2 0.000 24 0.980 22 WRB2 0.000 19 25 0.992 22 19 WRB2 0.000 26 0.928 22 WRB2 0.000 27 19 WRB2 0.911 22 19 0.000 28 0.930 22 WRB2 0.000 29 19 WRB2 1.016 22 19 0.000 30 1.022 22 WRB2 0.000 31 19 WRB2 1.036 22 19 0.000 ! 32 1.238 22 . . _ _ WRB2 0.000 33 19 WRB2 0.907 22 19 0.000 34 0.940 22 WRB2 0.000 35 19 WRB2 0.914 22 0.000 36 19 WRB2 0.000 37 0.961 22 19 WRB2 0.916 22 0.000 38 19 WRB2 0.000' 39 1.075 22 19 WRB2 0.969 22 0.000 40 19 WRB2 0.000 1.177 22 19 41 1.133 22 WRB2 0.000 42 19 WRB2 1.127 22 -0.000 43 19 WRB2 0.000 44 1.010 22 19 WRB2 1.028 22 19 0.000 ~ WRB2 0.000 m ( 53 i l _ . - _ _ - _ _ _ _ _ _ _ _ . _ _ _ _ . - _ _ _ _ _ _ _ _ . _ _ _ _ _ _ _ _ _ . _ _ _ - _ - _ _ _ _ ___ _ _ _ _ _ _ _ _ _ _ _ _ m _ - - - -s - e - - ^ ,, p NFSR-0000 RAII:-;-- e C1 - ? ~ ~ 45 f'1.080 22 19 b 'WRB2-0.000'9b(\3, ~ 46 0.984 22 19 WRB2-47 0.000: 1.019 22 19 WRB2 0.000 48 0.977 22 19 WRB2 49 0.000 1.095 22 19 WRB2 0.000 50 1.046 22 19 WRB2- 0.000 51 1.008 22 19 52 WRB2 0.000 0.960 22 19 WRB2- 0.000 53 1.009 ' 22 19 54 WRB2 0.000 1.012 22 19 WRB2 0.000 i 55 1.060 22 19 56 WRB2 0.000 1.067 22 19 - WRB2 0.000

57 1.070 22 19 58 WRB2 0.000 0.909 22 19 WRB2 0.000 59 0.907 22 19 60 WRB2- 0.000 i 1.240 22 19 WRB2 - 0.000-
61 1.093 22 19 62 WRB2 0.000 0.942 22 19 WRB2 0.000 63 0.910 22 19 64 WRB2 0.000 0.938 22 19 ' WRB2 0.000 65 0.969 22 19 66 WRB2 0.000

, 1.010- 22 19 WRB2 0.000 67 0.978 19 68 WRB2 0.000 1.081 22 19 WRBI 0.000 69 1.046 22 19 WRB2- 0.000 70 1.001 22 19 71 WRB2 0.000 1.111 22 - 19 WRB2 '0.000 - 72 0.931 22 19 ' 71 WRB2- 0.000 1.140 22 19 WRB2 0.000 m ' I l l 54 - - - _ _ - - - - - - - _ - - - - . - _ _ _ _ - - - - - - - - - m-- -- -, <ws- r e o * -- <,n - r -- - --- -_- ew------ -- - e- -v,w-- - e -,--v2- - - . _ . , ----- -- M