ML081070325

From kanterella
Revision as of 07:36, 30 August 2018 by StriderTol (talk | contribs) (Created page by program invented by StriderTol)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search
Calculation FC05694, Calculation of Minimum Reactor Coolant Time Using Shutdown Cooling System.
ML081070325
Person / Time
Site: Fort Calhoun Omaha Public Power District icon.png
Issue date: 03/31/2008
From: Queenan P
Stone & Webster
To:
Office of Nuclear Reactor Regulation, Omaha Public Power District
References
LIC-08-0037 FC05694
Download: ML081070325 (102)


Text

U. S. Nuclear Regulatory Commission LIC-08-0037 Attachment 2 Calculation FC05694, Calculation of Minimum Reactor Coolant Time Using Shutdown Cooling System PRODUCTION ENGINEERING DIVISION QUALITY PROCEDURE FORM PED-QP-3.1 R8 PAGE 1 OF 2 CALCULATION COVER SHEET Calculation Number: FC05694 Page No.: 1 QA Category:

[X ] CQE [ ] Non-CQE [ ] LCQE Total Pages: Zls Calculation Title: Short Term Calc: [ ] Yes [ X] No Calculation of Minimum Reactor Coolant Time Vendor CaIc. No.: PM-44 Using Shutdown Cooling System Associated Project::

EC 35639 Software Tracking No.: Responsible NED Dept No.: 356 (from PED-MEI-23, if applicable)

Owner Assignment (by Dept Head): (Required only if there are affected documents to be changed)OPPD Engineer Assignment (by Dept Head): D. Molzer (Required only for verification of vendor/contractor calculations)

Verification of Vendor/Contractor CaIc. assumptions, inputs and conclusions complete: OPPD Engineer:

Doug Molzer Date: APPROVALSI-SIGNATURE AND DATE Confirmation (Multiple preparers shall identify section prepared prPED-QP-3, Section 4.3) Required?_____ _ perS upersedes.Rev. Preparer(s)

Reviewer(s)

Required for CQE CaIicNo. Yes No No. Independent

_____ ___ _____ ____Reviewer(s) 3 See Attached _ __ 2 X Cover Sheet PRODUCTION ENGINEERING DIVISION QUALITY PROCEDURE FORM PED-QP-3.1 R8 PAGE 2 OF 2 CALCULATION COVER SHEET Calculation Number: FC05694 Page No.: Applicable System(s)

/ Tag Number(s)SI, AC & RW AC-4A, AC-4B, AC-IAN!BI!CI1D EA's and/or Calculations Used as input in this Calculation FC05888 FC05669 External Organization Distribution (Groups affected by this calculation)

Name and Location Copy Sent (/) Name and Location Copy Sent (,)

PRODUCTION ENGINEERING DIVISION QUALITY PROCEDURE FORM PED-QP-3.2 R6 CALCULATION REVISION SHEET Calculation No.:FC05694 I Page No.: 13 Rev. # Description/Reason for Change 0 2 2 Initial Issue Updated RW flow data from Ref.6 Degraded CCW flow data based on Ref. 4 Replaced Ref 8 data with Ref. 4 data Updated entirely to check feasibly of having RC temperature of 350WF instead of 300 0 F.3.rzýý- IP Y, ýAtTW~w' I'JofLeAt A 4 0,F- (Z3/4 0 :, O ShaW" Stone & Webster, Inc CALCULATION TITLE PAGE CLIENT & PROJECT PAGE 1 OF 2522 OPPD -Ft. Calhoun Total Pages (including all Attachments) 4-1-4256 CALCULATION TITLE (Indicative of the Objective):

QA CATEGORY (X)Calculation of Minimum Reactor Coolant Cooldown Time Using f1J i-NUCLEAR SAFETY RELATED Shutdown Cooling System. Oil D1ll O OTHER CALCULATION IDENTIFICATION NUMBER OPTIONAL J.O. OR W.O. No. DIVISION & GROUP CURRENT OPTIONAL TASK CODE.CALCULATION NO. OPINLTSCDE 17321.01 46 PM -44 N/A CONFIRMATION

  • APPROVALS-SIGNATURE

& DATE REV. No. SE S QIREDIX OR NEW SUPERSEDES REQUIRIED (X)OR NEW CALC. NO.INDEPENDENT CALC. OR REV. No. YES NO PREPARER(S)/DATE(S)

REVIEWER(S)/DATE(S)

REVIEWER(S)/DATE(S)

No.JE Gormely M.A. lannucci M A. lannucci 0 NA X 02/06/91 03/11/91 03/11/91 CJ Baron JH Hall JH Hall 1 Rev 0 X 06/08/94 .06/27/94 06/27/94 Peter Queenan Dinesh Naik Dinesh Naik 2 Rev 1 X 9/13/07 9/13/07 9/13/07 Peter Queenan Dinesh Naik Dinesh Naik 3 Rev 2 X 3/31/08 3/31/08 3/31/08 DISTRIBUTION*

GROUP NAME & LOCATION GROUP NAME & LOCATION Project File OPPD ShwW Stone & Vv~xter, Ina CALCULATION SHEET CALCULATION IDENTIFICATION NUMBER REV No. PAGE 2 JO OR WO No. DIVISION & GROUP CURRENT No. 23 OF 25 17321.01 46 PM-44 TABLE OF CONTENTS Title Page 1 Table of Contents 2 Review Statement 3 Revision Status Sheet 4 1.0 OBJECTIVE..........................................................................................................

5 2.0 METHODOLOGY............................................................

?..............

!,....................

5 3.0 ASSUMPTIONS

..;......................................................................................

.............

6

4.0 REFERENCES

/DESIGN INPUTS...............................................................................

7 5.0 CALCULATION......................................................................................................9 5.1 CALCULATION BASIS.........................................................................................................9 5.1.1 Primary Coolant Cool Down ..................................................................................

9 5.1.2 Heat Exchanger Performance

.......................

.........................................................

9-5.1.3 Evaluation of CCW Heat Exchanger Capability

..........................................................

14 5.2 PROCESS CONDITIONS

.....................................................................................................

15 5.3 SPREADSHEET DESCRIPTION

............................................................................................

16 5.4 ANALYSIS AND RESULTS ..............................................................................

I...................

20 5.5 ADDITIONAL ANALYSIS WITH 2 SDC HEAT EXCHANGERS

........................................................

22

6.0 CONCLUSION

....................................................................................................

24 7.0 ATTACHMENTS

.................................................................................................

25 No. Description No o 1 Miscellaneous References 2023 2 Reactor Coolant Cool Down Rate Calculation Spreadsheet 62141s 3 Calculation PM-44 Revision 1 67 Total Pages 4m#1256 ShaW'- Stone & Webst, Ina CALCULATION SHEET CALCULATION IDENTIFICATION NUMBER REV No.23 JO OR WO No.17321.01 DIVISION & GROUP 46 CURRENT No.PM -44 PAGE 3 OF 25 REVIEW STATEMENT Review of this calculation was based on the methods below: 1) Review of Calculation:

a) Inputs to ensure that they have been properly selected and correctly used in the calculation.

i) Limited review (provide justification) ii) Line by line review b) Assumptions to assure their validity and need for later confirmation.

c) Methodology to assure the appropriateness of the overall approach, its implementation, and the correctness of the specific equations utilized.i) Limited review (provide justification below)ii) Line by line review d) Results to ensure reasonableness and accuracy e) If alternate calculation is performed to verify c) and d) check here and attach calculation as an appendix 2) Check of Calculation a) Complete numerical check b) Numerical check of critical items (state items and justification below)3 AdminiktrRtivp nf fnrmqt ind rnntpnt Check Initial Upon One Completion n Lii_lDftr 0 El[]-Of _4I 4)Comments/Justification Review Methods Selected as Indicated Above Reviewer Independent Reviewer Lead Concurrence 3 1,1) .Date Date Date Shaw- Stone & ~V~ster, Inc.CALCULATION SHEET CALCULATION IDENTIFICATION NUMBER JO OR WO No.17321.01 DIVISION & GROUP 46 CURRENT No.PM -44 REV No.23 PAGE 4 OF25 REVISION STATUS SHEET Revision Affected Number Sections Description of Revisions 0 All Original Issue 1 All Updated RW flow data from Ref.6, Degraded CCW flow data based on Ref.4 and Replaced Ref.8 data with Ref.4 data 2All Updated entirely to check the feasibility of having RC temp of 350°F instead of 300TF Update to remove the 120°F outfall temperature limitation and.3 All incorporate a limit of 120°F on the CCW temperature.

SawM- Stone & Webster, Irnc CALCULATION SHEET CALCULATION IDENTIFICATION NUMBER REV No. PAGE 5 JO OR WO No. DIVISION & GROUP CURRENT No. 23 OF 25 17321.01 46 PM-44 1.0 Objective To demonstrate that with shutdown cooling initiated at 350'F primary coolant temperature, cool down to 130OF primary coolant temperature cah be achieved in 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br />, and that the outfall temperature ed loop cooling heat exlhangeF river retumn temlperature) will not exceed 1200F.2.0 Methodology Reactor coolant cooling system consist of two cooling circuits namely primary and secondary cooling circuits.Primary circuits consist of the two shutdown cooling heat exchangers (SDC HXs) in which primary coolant is cooled by closed loop cooling water (CCW). The secondary circuit consist of three' CCW heat exchangers in which CCW water is cooled by the river water. Heat load into the primary coolant consists of core fission product decay heat load, primary coolant pump work and LPSI pump work. The CCW heat load consists of heat rejected from the primary coolant through the SDC heat exchanger(s) plus other miscellaneous loads. Normally one SDC HX and 3 CCW HXs are in service. When the cool down took longer than 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> 2 with one SDC HX. the 2 nd SDC HX was Placed in service.The CCW cold water temperature is uncontrolled and is a function of the river water temperature, heat load on the CCW system, aRd-number of CCW heat exchangers in service, and the CCW HX cleanliness.

The heat removed by the SDC HX depends, in turn on the CCW cold water temperature, CCW flow to the SDC HX and the SDC HX cleanliness.

The CCW cold water temperature is calculated iteratively as part of the calculation.

The overall process (cool down of the primary system) is judged slow enough the thermal dynamics of the CCW system is ignored; it assumed to operate continuously at the equilibrium (steady state) temperatures for the instantaneous heat loads and temperatures.

The heat exchangers were modeled in an Excel spread-sheet based on the temperature of the reactor coolant and river water (CCW HX inlet)temperature by using number of transfer units method (NTU). Capacity ratio and effectiveness are calculated using the calculated primary, CCW, and river water temperatures.

Original Equipment Manufacturer (OEM) data sheets were used to develop equations for the'variations in the shell side heat transfer coefficients for both the SDC and CCW heat exchangers.

CCW flow to SDC heat exchanger is calculated by accounting for degraded pump performance curve From Calc PM-44 (Ref. 1), page 18.The cool down rate of the primary coolant was calculated using the heat inputs into the primary loop, the heat removed by the SDC HX and the thermal mass of the primary coolant loop. The cool down rate was then applied to the primary loop initial temperature over a suitably short time span and a new primary loop temperature was obtained.

The cooling system performance (SDC and CCW HX performances, CCW temperature and CCW river water outlet temperature) was then recalculated Four CCW heat exchangers installed, three in service for this evaluation. (Three available is a Technical Specification limit.)2 This occurred in the cases with maximum fouling on the SDC. Intermediate cases were not evaluated, but, by interpolation of the cases evaluated, the slow cool down is expected to occur with slightly greater than design fouling on the SDC exchanger and is slightly exacerbated by CCW exchanger fouling.

SIw- Stone & Wester, Inc.CALCULATION SHEET CALCULATION IDENTIFICATION NUMBER REV NO. PAGE 6 JO OR WO No. DIVISION & GROUP CURRENT No. 23 OF 25 17321.01 46 PM -44 Total time required to cool reactor coolant system from 350OF to 130°F wefe-was estimated by considering the river water inlet temperature of 90°F and maintaining the .'ei-eutleCCW cold water temperature toef less than 120°F (Ref. 20). The CCW flow to the SDC HX may bewas initially throttled to hold the fiver-e4ulet-CCW temperature within the limit. The CCW flow rate was increase to the full rate as soon as could be done without exceeding the 4iv-eutlet-CCW temperature limit. In Revision 3, the worst case evaluated required a throttled flow of 1,850 gpm.This case was used in all cases. "Un-throttling" occurred at 275°F RCS temperature.

3.0 Assumptions

1. It is assumed that the reactor coolant is cooled from normal operating temperature to 350°F at the maximum permissible cool down rate of 1 00°F/hr. Decay heat load decreases with"time after trip" and initiation of SD cooling as early as possible is conservative for both cool down time and outfall temperature.
2. It is assumed that shutdown follows a reactor trip from full licensed power (1500 MWt). This maximizes decay heat and is thus conservative for both cool down time and outfall temperature.
3. All calculations requiring steam table lookups are done using the ASME Steam Tables, 5th edition, via Excel spreadsheet function using an S&W proprietary add-in ME-367 V01 LOO (Ref. 2). These are all implementations of the 1967 IFC Formation for Industrial Use.4. When shut down heat exchanger load on the CCW system decreases due to decreasing RC temperature, the CCW inlet temperature will drop. As RC temperature drop, CCW flow to the shut down coolers can also be increased by opening the throttle valve fully, From Calc PM-44-1 (Ref. 1), page 17, last paragraph.
5. The thermal dynamics of CCW system have been ignored. Steady state equilibrium temperatures are assumed throughout the system.6. The thermal inertia and heat transfer within the reactor coolant system have been ignored; it is assumed that the system instantaneously assumes the steady state temperature appropriate for the initial temperature, net heat input or output and thermal mass..7. CCW temperature will be based on the performance of the CCW heat exchanger receiving the minimum raw water flow. Raw water outlet temperature will be based on the total raw water flow and total CCW heat load.8. For the calculation of thermodynamic and transport Properties, pressures of 300 psia. 75 psia and 15 psicq were assumed for the reactor coolant, CCW and raw water respectively.
9. Maximum river water temperature is 90°F. (From Revision 1 of this calculation, but no source cited. Confirmed in Ref. 20.10. Minimum river water temperature is 33°F. Based on an ice bound river and limitations in the steam table software of 32.016°F.

Shraw Stone & Webster, In.CALCULATION SHEET CALCULATION IDENTIFICATION NUMBER 11 JO OR WO No.17321.01 DIVISION & GROUP 46 CURRENT No.PM-44 REV No.23 PAGE 7 OF 25 4.0 References/Design Inputs Ref. No. Source Identification Apolication/Referenced Information

1. Calculation 17321.01-PM-44, Rev 1, Used entirely in the new calculation"Calculation of minimum reactor coolant cool down time using shut down cooling system", 06/27/94 2. S&W Computer Program SWSteam Thermodynamic properties of steam.(ME-367 VO1 L00), 1967 IFC Steam Tables 3. S&W Computer Program FlowUtils Interpolates effectiveness value based on NTU (ME377 V00L01) and capacity ratio from the table 4. W.M. Kays and A.L. London, Compact Tables 2-7a & b. Capacity-NTU-Effectiveness

., Heat Exchangers, McGraw-Hill, 2 nd table for split-flow exchanger Edition (Excerpts in Attachment 1)5. Alan J. Chapman , Heat Transfer, Capacity-NTU-Effectiveness equation for Second Edition, Macmillan Company, counterflow exchanger, Page 505 ff 2 nd Edition, 1967 Heat transfer film coefficients (Nusselt Numbers)for flow parallel to and across tube banks, pages 339, 344 6. S.C. Stultz and J.B. Kitto, Steam lts Nusselt No. for flow inside of tubes, Page 4-12 Generation and Use, Babcock & through Page 4-14 Wilcox Company, 4 0 th Edition, 1992 7. OPPD Procedure PED-SEI-16 R9, Limiting fouling coefficients: "Evaluation of Heat Exchanger CCW Hx -0.004 hr-ft 2-OF/Btu (para 5.2.1 K)Performance", Issued 5-15-07 SDC Hx -0.00418 hr-ft 2-OF/Btu (para 5.2.4M)CCW Hx -Tube dimensions (Attachment A-1)8. Component Cooling Heat Exchanger Heat transfer rates for CCW HX. See Section Data Sheets, Fort Calhoun Station #1, 5.1.2 for specific values.Whitlock Manufacturing Co., identified by "Reference No. EL-6817, sheets 1 to 6", undated (Copies in Attachment 1)9. Drawing "CCW HX Internal Support Flow path and Flow Paths", Cramer and Lindell, File FC-ACIB1, 07-26-1999

10. Drawing "CCW HX Inlet Tube Sheet", Flow path Cramer and Lindell, File FC-AC1B, 07-26-1999 Shw"' Stone & VAkbsterr l CALCULATION SHEET CALCULATION IDENTIFICATION NUMBER JO OR WO No.17321.01 DIVISION & GROUP 46 CURRENT No.PM-44 REV No.23 PAGE 8 OF 25 Ref. No. Source Identification Application/Referenced Information
11. Shutdown Heat Exchanger Data Heat transfer rates for SDC HX. See Section Sheets, Fort Calhoun Station #1, 5.1.2 for specific values.Whitlock Manufacturing Co., identified by "Job No. 20-69-4333 sheets 1 to 4", all March 9, 1970 (Copies in Attachment 1)12. Shutdown Heat Exchanger Data Tube construction details. U-tubes, %" OD, 18 Sheet, Fort Calhoun Station #1, BWG, 304 stainless steel.Whitlock Manufacturing Co., identified by "Reference Number EI-6817", dated 12/27/68 13. Whitlock Drawing H-26133-D Rev. 2, Tube count per row. 514 total tubes per unit"SDC HX Tubesheet Item AC-4A, 4B", 8/26/82 14. Whitlock Drawing A-26133-E Rev. -, Total tubes per row (determined to be total count"Tube Surface for U Bend Units", for two exchangers) undated 15. Whitlock Drawing B-26133-L Rev. 1, Confirmation of shell side flow pattern"Baffles AC-4A & 4B", undated (OPPD File No. 18621)16. Whitlock Drawing L-26133 Rev. 6, General configuration of flow paths (shell center"Shutdown Heat Exchangers" (Setting entry with outlets at each end.Plan), undated, (OPPD File No. 18676 Tube data 514 tubes, %"OD 18 BWG, TP-304, Rev. 1) stainless steel SA-249.17. Calculation 17321.01-PM-41-1, "Raw. Raw water flow to min flow CCW Hx in mode 23, Water Flows to CCW Heat 2056 gpm. Total raw water flow = 7159 gpm Exchangers", 6/2/94 (OPPD (page 49).Identification FC-05888)18. Shutdown Cooling Design Basis Flow through two SDC exchangers, 5000 gpm Document SDBD-SI-1 30, R18 (Excerpt (p 94)in Attachment 1)19. Calculation FC05669, Rev. 3, "CCW CCW flow to two SDC Hx: 3254 gpm, page 64 System Flow Rates", 5/10/06 (Mode 4)(Excerpts in Attachment 1)20. Email 3-28-08, Doug Molzer (OPPD) Scope for Revision 3. Deletion of outfall to Peter Queenan (Shaw) temperature limit, imposition of 120°F CCW temperature limit.

ShW Stone &Webster, Inc CALCULATION SHEET CALCULATION IDENTIFICATION NUMBER REV No. PAGE 9 JO OR WO No. DIVISION & GROUP CURRENT No. 23 OF 25 17321.01 46 PM -44 5.0 Calculation 5.1 Calculation Basis 5.1.1 Primary Coolant Cool Down Reactor coolant system cool down rate is accurately modeled by the following equation From Calc PM-44 (Ref. 1), page 4 dTrc 1----- -- (Qd + Ppp + Pip -Qhx)dt RMCp Where Qhx Heat removed by the shut down cooling heat exchangers, Btu/hr dTrc-- The rate of temperature change of the reactor coolant system, OF /hr dt RMCp = The thermal capacitance of the primary system, the steam generators, and the shut down cooling system, including all water and steel = 1.1E06 Btu/°F Qd = Core fission product decay heat, Btu/hr From Calc PM-44-1 (Ref. 1), page 19.Assuming a trip from full power, PM-44-1 give the equation Qd = (68.762*10E6)(t-0 3 2 3 0 6), where t is the time in hours after trip 3.Ppp = Primary pump work in to system when Rc >= 200°F, Ppp = 9E06 Btu/hr per pump with a maximum of two RC pumps operating with 200°F <- Rc <= 300'F, no RC pumps when Rc < 200'F.Pip = LPSI pump work in to system = 1.5E06 Btu/hr for two pumps dTrc/dt from the equation above is used to approximate ATrc / AT for small increments of time AT.At the end of the time increment, Qd is recalculated, as is a new heat removal rate for the shut down heat exchangers.

Unknown temperatures and duties at the reduced reactor coolant temperature are recalculated using the effectiveness

-NTU method, From Calc PM-44 (Ref. 1), page 4, last paragraph.

5.1.2 Heat Exchanger Performance Since flow and temperatures of both the CCW and the reactor coolant differ greatly from the design specifications, shut down cooling heat exchanger performance at system initiation must be determined by calculating film coefficients at the each operating conditions.

PM-44-1 cites "Technical Data Book 111-27-1, Rev.2" as the source the underlying data. That source was not checked in the preparation of Revision 2 of this calculation.

Shaw -Stone & Webster hr, CALCULATION SHEET CALCULATION IDENTIFICATION NUMBER REV No. PAGE 1 JO OR WO No. DIVISION & GROUP CURRENT No. 23 OF 25 17321.01 46 PM-44 In general the heat transfer performance of a shell and tube heat exchanger is given by (Calc PM-44-1 (Ref. 1), page 7 or Chapman (Ref. 5, page 64): Uoverall = OD OD

  • ln(OD / ID) 1+ +ID * (hi + f.) 2k ho +fo (Equation 1)Where OD = tube OD, inches ID = tube ID, inches k = tube material thermal conductivity, Btu/hr-ft-°F hi = tube inside heat transfer film coefficient, Btu/hr-ft 2-OF ho= tube outside heat transfer film coefficient, Btu/hr-ft 2-OF f= tube inside fouling coefficient, Btu/hr-ft 2-OF f= tube outside fouling coefficient, Btu/hr-ft 2-OF (When only a total fouling is provided, by convention it is applied as an outside film coefficient.)

The tube material (TP-304 SS (Refs 10 & 16)) properties (conductivity) are available in any number of references.

Values used are from Chapman (Ref. 5) and are shown in Attachment 2, Sheet"SDCHx", Cells T84:U1 17.The tube inside heat transfer coefficient is a well established formula: Nu = 0.023

  • Re°'8 Pr°0 4 or (Ref. 6, page4-13 (Equation 49)) (Equation 2)hi = 0.023 *Re°" Pr°.4(k)Where Nu = Nusselt Number for the inside film coefficient Re = The Reynolds Number for the tube side flow Pr = Prandtl Number for the tube side fluid k = fluid thermal conductivity, Btu/hr-ft-*F I= tube id, feet Note that the Reynolds and Prandtl Numbers are defined as Re= p v d /I p Pr= Cpp./k p is density, Ib/ft3 v is velocity, ft/hr p is Dynamic viscosity is Ibm/ft-hr Cp is specific heat at constant pressure, Btu/Ibm-°F Sha9w' Stone & VWbster, Inc.CALCULATION SHEET CALCULATION IDENTIFICATION NUMBER REV No. PAGE 11 JO OR WO No. DIVISION & GROUP CURRENT No. 23 OF 25 17321.01 46 PM-44 The relevant dimension (d) for the Reynolds Number is the tube ID or OD.However the tube outside heat transfer coefficient is very application specific, varying with the flow pattern on the shell side of the exchanger.

In well baffled exchangers, the shell side flow pass over most of the tube surface nearly perpendicular to the tube centerline (cross flow), while in other configurations the flow is nearly parallel to the tubes. Heat transfer references provide equations of a form similar to that for the inside film coefficient:

Nu = C

  • Re' Pr m (Equation 3)It is assumed that the OEM's heat transfer coefficient has values which follow this form.Where C, m, and n are constants related to the particular flow pattern. See Chapman (Ref. 5)Sections 8.3 and 8.5 and Steam (Ref. 6) pages 4-13, and 4-14. Text book values for flow normal to tubes are C=0.33, n=0.6, and m=0.33 (Chapman, page 344); values for flow parallel to the tubes are C=0.023, n=0.8 and m=0.4 (heating) or 0.3 (cooling) (Chapman, page 339).Sufficient OEM data sheets (Refs 8 & 11) are available for both the SDC and CCW exchangers to develop values for C, n, and m.Each OEM case provided a shell velocity along with the gpm flow. These were used to develop an equivalent "flow area" for the shell. The average flow area (2.5904 ft2) was then used in the performance calculation. (This was an attempt to compensate for the minimal precision in the velocity values.)Velocity(fps)

= Flow(gpm)

/ (area(ft 2) ,* 7.480519(gal/ft

3)
  • 60(sec/min))

Tube side velocities were calculated from the number of tubes in the exchanger, tube size and wall.Properties of water (density, viscosity, specific heat, etc) were calculated at the average of the shell or tube inlet and outlet temperatures, in lieu of the average film temperature.

This is a slight approximation, but is judged acceptable for the application.

For each OEM performance case provided, the tube side film coefficient was calculated using Equation 2. Equation 1 was then solved for the outside film coefficient, h 0 , (Fouling coefficients were provided in each OEM case.) The result'outside film coefficient was then divided by k*Prm, and the result plotted on a log-lg grid to determine a value for n (the slope of the line on a log-log graph). The Prandtl Number exponent, m, was varied to see what value gave the "best" line on the log-log graph of h, / k*Prm. The value of C was then adjusted to match the design point (Mode B), dirty heat transfer coefficient.

SDC Heat Exchanger The SDC heat exchanger is a mixed flow configuration with primary coolant on the tube side in U-tubes and CCW water on the shell side. The shell flow enters at the mid-point of the shell and exits at each end (Refs 13, 15, & 16).Four OEM data sheet cases were available for the SDC HXs (Ref. 11), identified as Mode A, B, C, and D. Critical values were:

Slow- store & Vvmostei, Inc.CALCULATION SHEET CALCULATION IDENTIFICATION NUMBER JO OR WO No.17321.01 DIVISION & GROUP 46 CURRENT No.PM -44 REV No.23 PAGE 12 OF 25 Tube Side Shell Side Q, gpm Tin Tout Q' Tin Tout Fouling Udirty Uclean gpm Overall Udry Ucen Durty)gpm____(Dirty) gpm OF OF gpm OF OF Btu/hr-ft 2_OF Btu/hr_____ ____ ____ 106 Mode B (Design)3000 140 115.2 4500 93 109.5 0.0005 320 487 37.1 Mode A 1500 125 100.3 2250 78 94.5 0.00316 158.7 318.9 18.526 Mode C 2250 212 159.8 2937 95 135.2 0.00342 178.1 455.2 58.931 Mode D 3400 255 200 4728 95 135 0.00418 170.7 594.3 94.391 2 Shell and tube side, each (hr-ft 2-OF/Btu)The SDC HX evaluation is shown on sheet "SDCHx" of the spreadsheet in Attachment

2. The OEM case data and specific calculation are shown in Cells A18 to R50. The heat transfer coefficient analysis is in rows 50 to 67. The U calculations are in Column Q (Udirty) and Column R (Uclean).

Note that the calculation of 1/hO is in Cell Q25 (for the Mode B case, dirty) and h, / k*Prn is inCell Q26.The SDC Hx shell side film coefficient was fairly insensitive to the value of m, and the text book valve of 0.333 was used. The value of n, based on the trend line through all 4 cases was 0.61689.This is close to the text book value for pure cross flow, which is reasonable given the physical design of the exchanger (Refs 15 & 16). The Value of C which reproduced the OEM's design point coefficient was 0.09751.The final equation for the SDC HX shell side film coefficient is thus: h, = 0.09751 Re 0 6 1 7 0 9 Pr°'3 3 3 (12k/0.75)

This equation was then applied in all the OEM cases and the OEM's and calculated heat transfer rates are tabulated below. The difference between the OEM's and calculated heat transfer rates were expressed as fouling errors, (i.e. I/UcALC-'/UoEM).

Error as Cited Total Mode OEM Udirty Calc'd Udirty Fouling Fouling Mode B (Design) 320 320. 0.0 -0.001 Mode A 158.7 157.28 0.000 06 0.00316 Mode C 178.1 175.88 0.000 07 0.003 42 Mode D 170.7 169.13 0.00005 0.00418 The errors in reproducing the OEM's heat transfer rate are on the order of the last significant digit on the fouling factor and are believed to be at the level of the precision (number of digits).in the inputs.Data sheet contains typographic error in that the final zero of the duty value was omitted. Value is shown as "94,391,00" rather than "94,391,000".

Check of tube and shell mass flows and temperature changes confirm 94+ million Btu/hr duty.

ShWW- Stone & Vvbster, Inca CALCULATION SHEET CALCULATION IDENTIFICATION NUMBER JO OR WO NO.17321.01 DIVISION & GROUP 46 CURRENT No.PM-44 REV No.23 PAGE 13 OF 25 CCW Heat Exchanger The CCW heat exchangers are tube and shell exchangers with three tube side passes and three shell side passes. The baffling is arranged to give a virtually pure counterflow configuration (Refs 9& 10). The tubes are 3/4", 18 BWG 5 , TP 304 stainless steel (Refs 9).Six OEM data sheet cases were available for the CCW HXs (Ref. 11), identified as Mode A, B, C, D, E and F. Critical values were: Tube Side Shell Side Q Tin Tout Q Tin Tout Fouling, Duty Overall Udirty Uclean (Dirty)hr-ftz-OF f2Btu/hr gpm OF OF gpm OF OF /Btu Btu/hr-ft 2-F Btu/Btu _ _ _ _ _ __ .'106 Mode E (Design)2673 85. 185 2283 239.8 120 0.0015 244 408 134 Mode A 1575 85 100.3 1550 105.5 90 0.0015 190.1 266 12 Mode B 3270 70 100 2885 118.4 85 0.0015 233.6 359.6 48.18 Mode C 2518 70 85 I2200 I95.2 I78 ]0.0015 I203.7 293.3 1"18.92 Mode D 2518 I85 i100 I2200 1110.2[ 93 I0.0015 215.5 I318.4 18.92 Mode F 3333 I85 I108.71 2025 I134 I95 0.0015 I228.3 347.2- 39.49 The CCW HX evaluation is shown on sheet "CCWHx" of the spreadsheet in Attachment

2. The OEM case data and specific calculation are shown in Cells A12 to Y55. The heat transfer coefficient analysis is in rows 58 to 69. The U calculations are in columns Q (dirty) and R (clean).Note that the calculation of 1/h, is in Cell Q26 (for the Mode E case, dirty) and h. / k*Prm is in Cell Q27.Case A gave a shell side film coefficient which was clearly out-of-trend with the others. The case A coefficient was not used in the development of the shell side film equation.The CCW Hx shell side film coefficient was sensitive to the value of m, and the best fit was obtained with a valve of 0.333. The value of n, based on the trend line through all 5 cases was 0.75551. This is close to the text book value for flow parallel to the tube, which is reasonable given the physical design of the exchanger (Refs 15 & 16). The value of C which reproduced the OEM's design point coefficient was 0.023*1.021 36: The final equation for the CCW HX shell side film coefficient is thus: Ref. 9 clearly contains a typo, in stating "78 BWG", since the BWG (Birmingham Wire Gage) is only defined up to 36 gage (0.004").

Reference 7, page 21 gives an OD of 0.750" and an ID of 0.652", which corresponds to 18 BWG.The textbook form of the equation for parallel flow is 0.023 Ren Prr m.Since the final correction (1.0326) was fairly close to unity, both multipliers were carried. The final correction can also be conceptualized as a correction on the "average" velocity for local departures around the baffles.

SVwv Stone & vvbstei Inc CALCULATION SHEET CALCULATION IDENTIFICATION NUMBER REV No. PAGE 14 JO OR WO No. DIVISION & GROUP CURRENT No. 23 OF 25 17321.01 46 PM -44 ho = 0.023*1.0213 Reo 7 5 6 5 Pr°3 3 3 (12k/0.75)

This equation was then used in all the OEM cases and the difference between the calculated heat transfer rates and the OEM's values were expressed as fouling errors, (i.e. 1/Ucalc-1/UoEM).

The results (below) are in the range of the last significant figure in the fouling and are attributed to the limits of precision of the values on the OEM data sheets.Mode OEM Udirty Calc'd Udirty Error as Cited Total Fouling Foulin Mode E (Design) 244 244 0 0.001 65 Mode A 190.1 174.97 0.00046 0.001 50 Mode B 233.6 237.20 -0.000 06 0.001 50 Mode C 203.7 204.06 -0.000 01 0.001 50 Mode D 215.5 215.01 0.000 01 0.001 50 Mode F 228.3 231.63 -0.00006 0.001,50 -With the exception of Mode A, the errors in reproducing the OEM's heat transfer rate are on the order of the last significant digit on the fouling factor and are believed to be at the level of the precision (number of digits) in the inputs. Mode A was an outlier in the analysis and is not understood.

There may be errors on the data sheet, or it may be evaluating a condition, the details of which are not clearly/fully described on the data sheet.5.1.3 Evaluation of CCW Heat Exchanger Capability The overall thermal performance of the SDC and CCW heat exchangers were calculated using the NTU-Capacity Ratio-Effectiveness method (Chapman (Ref. 5), page 505).Number of transfer units (NTU) for and exchanger is defined as: NTU UA (CiCcP )MIN Where UA is the heat transfer rate (Btu/lb-ft 2-OF) -heat transfer area (ft 2) product, and (mcp)mn, is the mass flow (lb/hr) -specific heat (Btu/Ib-OF) product for the side with the lower value.Capacity ratio (CR) is defined as: CR = (FcP)MIN (tizCP)MAX Where (mcp)rax and (mcp)min are the mass flow (lb/hr) -specific heat (Btu/Ib-OF) products for the two sides of the exchanger.

The effectiveness (E) is given by Data sheet states "Total fouling = 0.0015", but the difference in the inverses of the clean and service heat transfer rate is 0.00165. (In all other data sheets, the clean and service rates properly reflect the stated fouling.)

Stone & Vwebster Inc.CALCULATION SHEET CALCULATION IDENTIFICATION NUMBER REV No. PAGE 15 JO OR WO No. DIVISION & GROUP CURRENT No. 23 OF 25 17321.01 46 PM -44 t c-- t.c CO -if mcCpc < mhcph t hi --tcj thi -tho S= -- ifmcCpc > mhCph t hi -- t ci Where the t's are the inlet and outlet temperatures of the hot and cold sides.Graphs and/or tables of effectiveness vs capacity ratio and NTU are available for various heat exchanger configurations.

For a pure counterflow exchanger, the relationship is given by: 1 -eNTU(ICR) (Ref. 5, page 509 (Eq. 12.32))1- CRe -NTU(l-CR)

This applies to the CCW Hx.For the mixed flow configuration the relationship is given by the graph and table in Compact Heat Exchangers (Ref. 4) and excerpted in Attachment

1. This applies to the SDC Hx.These equations (table) were used to regenerate the OEM performance in the OEM cases on sheets SDCHx and CCWHx in the spreadsheet in Attachment
2. The analysis appears in Columns S through Y. The final duty matches (Column Y, with OEM values in bold, blue text below the rows labeled "shell") are not exact, but are judged to be in sufficiently reasonable agreement to validate the calculation.

The Cr-NTU-effectiveness table for the mixed flow SDC exchanger is entered in B85:Q1 09 of sheet "SDCHx".5.2 Process Conditions The process scenario being evaluated consists of flow being established from the reactor coolant loop (primary coolant system) to one of the two installed shutdown cooling (SDC) heat exchangers.

The SDC HX is in turn cooled by the closed cooling water system (CCW). CCW rejects the heat from the SDC HX(s), along with other heat to the river through three operating (out of four installed)

CCW heat exchangers.

The maximum inlet river water to the CCW heat exchangers is defined for this evaluation as being 90°F (Assumption 9). This is presumed to be the design basis temperature.

A minimum river water temperature of 33°F was assumed (Assumption 10).River water flow is taken from Revision 1 of this calculation as 7159 gpm total (Ref. 1, page 13)with 2056 gpm (Ref. 1, page 15) going to the minimum flow CCW HX. Values come from Calculation FC-05888 (Ref. 17).8 CCW flow to the CCW Hx's is taken from Revision 1 of this calculation as 8100 gpm total (Ref. 1, page 14), 2664 gpm to the minimum CCW Hx (Ref. 1, page 14). The average flow (2700 qpm)was used in calculating the performance of the heat exchangers.

CCW flow to the SDC Hx!& is taken from Revision 1 of this calculation as 10Q2 gpm t,,om ttlc (Ref. 4, 9) and 4246 gpm un-throttled (Ref. 1, page 18)(one SDC Hx in service).8 Calculation FC05888 doee no-t oefine- the r-aw water operating moedoc; the 69eGocWA OR taken diroctly from Ref. I SIw- Stone & Webster, h-: CALCULATION SHEET CALCULATION IDENTIFICATION NUMBER REV No. PAGE 16 JO OR WO No. DIVISION & GROUP CURRENT No. 2-3 OF 25 17321.01 46 PM -44 Reactor coolant flow to the SDC Hx is taken from Revision 1 of this calculation as 3000 gpm (Ref. 1, page 10) with one SDC Hx in service.For the calculation of thermodynamic and transport properties, pressures of 300 psig, 75 psig and 15 psig were assumed for the reactor coolant, CCW and raw water respectively. (Assumption 8)The mass flow through all exchangers is calculated from the above volumetric flows at the specific volume corresponding to the average of the inlet and outlet temperatures.

From Revision 1 of this calculation (Ref. 1, page 10), it is assumed that the CCW flow to the SDC Hx is throttled at the start of the cool down to limit the .u..ll .p.,ur'- -nd the rate of temperature drop of the primary loop (limit of 100°F/hr).

Revision 3 of this calculation imposed an additional limit of 120°F CCW temperature.

Additionally it is assumed that only one SDC Hx is in service initially.

Discussion with station personnel indicated that the degree of throttling (i.e. the throttled flow) may be considered adjustable, as may the primary coolant temperature used as a indicator as to when the CCW flow may be "un-throttled". (Thus tmperAturo e 2250-0 1 in. Rovision 4-.)The CCW provides cooling to additional services during this the reactor cool down period. From Revision 1 of this calculation (Ref. 1, page 25), this additional heat load is 7.358*106 Btu/hr.Heat Exchanger Fouling The heat exchanger performances, and thus the cool down time and CCW eutfa-temperatures are functions of the fouling rates used. The cleaner the heat exchangers, the faster the cool down, but also the higher the CCW eutfaU-emperature.

The OEM data sheets provide "clean" and "service" heat transfer rates and the accompanying fouling film coefficients.

In addition Station document PED-SEI-16 (Ref. 7) provides limiting fouling coefficients.

The various fouling coefficients values are: SDC Hx CCW Hx h r-ft 2 -F/Btu h r-ft 2-OF/Btu Clean 0.000 0.000 Service 0.001 0.0015 Operability Limit 0.00418 0.004 The primary analysis will be done using the service fouling, but additional checks will be made at clean and maximum fouling.Within this calculation "Clean" is also referred to as minimum or no foulin;g: "Service" as design, normal or nominal fouling: and the "Operability Limit" as maximum fouling.5.3 Spreadsheet Description The entire heat exchanger and cool down analysis is performed in es-a set of Excel spreadsheets.

EachThe spreadsheet contains the following sheets: SDCHx, CCWHx, CCW, multiple copies of Cooldown$

and Chart$ (where $ is a number indicating the case within the spreadsheeffrem

! to-8)and a sheet Summary. (Separate spreadsheets were needed for different river water temperatures and for repeat analyses with different operating bases.)All sheets use thermodynamic and transport properties calculated using function calls into S&W computer Program SWSteam (Ref. 2). Viscosity calls use the liquid viscosity call (SWSVISL) in Sha1w' Stone & Webster, InC CALCULATION SHEET CALCULATION IDENTIFICATION NUMBER REV No. PAGE 17 JO OR WO No. DIVISION & GROUP CURRENT No. 23 OF 25 17321.01 46 PM-44 S&W Computer Program FlowUtils (Ref. 3). Curve interpolations are done using functions SPLINE and SPLINE3D in FlowUtils.

Sheet SDCHx contains the shutdown cooling heat exchanger analysis discussed in Section 5.1.2 above. It contains clean heat transfer coefficient, dirty heat transfer coefficient, heat transfer area, number of tubes, effectiveness

-capacity ratio -NTU values table, and thermal conductivity table for TP304 stainless steel.Similarly, Sheet CCWHx contains CCW heat exchanger analysis discussed in Section 5.1.2. The sheet is very similar to Sheet SDCHx, but uses the counterflow Cr-NTU-effectiveness equation instead of tabulated values. The TP304 steel conductivity table from sheet SDCHx is used.Sheet CCW contains a series of single performance calculations for the CCW heat exchangers.

These calculate the Hx performance at raw water and CCW flows given in Section 5.2, at fouling coefficients of 0, 0.0015, 0.0030, and 0.004 hr-ft 2-OF/Btu, 90OF raw water temperature, and various CCW inlet water temperatures.

Each calculation (spreadsheet row) give a heat exchanger duty.The temperature-duty values were then interpolated to give CCW outlet temperatures at duties of 1, 20, 40, 60 and 80 million Btu/hr. These were used in the SDC cooling time sheets.Heat exchanger duty calculation is contained in number of columns. In general the column labels are self explanatory.

Cells with blue text are user input values, either manual or ad hoc links; black text is either fixed or calculated values which are part of the base template.

The heat transfer tube and shell side film coefficients are calculated using the equations developed above, and the overall heat transfer rate (U) using Equation 1 in Section 5.1.2.Sheet "Cooldown$" consist of reactor coolant system cool down time calculation.

Multiple cases of the sheet, and it accompanying graph "Chart$" exist, each dealing with a different combination of fouling factors. The different cases run will be discussed in Section 5.4. -As indicated above, the analysis will be with clean, sewise, and maximum fo u ing It will ales be performned at the target 350 0 F primnary coolant initiation temperature, but also at the 2300 0 F iiito temperature ucedin rvicin I of thoc calculagtion(Ref.

1). This will be done to provide valuek with The analyses dons are: t-1-0 0"CITm c "010 ff.. -..........

On do a morlorce %; US V r1VVV RG nota S mnFe§ GGOAHxFe~in T~~e~aU8 *r= Cefflnie~t Coeffi~iW4 Geeldewn2 3W_____Qnnedowng 5 0. Q 0 4. .R 0494 Canednwn4 049 0 -00G 0004 CmnGdewA 3W0 Q404A48001 Geeldewn w0Q 04004 Q_0Q144 Geeldewn7-30 04044-8 Q-.004 (Seet: Section 5.5 for diccucio -FoAf Shut dwn I84 Column A and B consist of time in hours and the time step in hours. It was assumed that shut down cooling would be initiated 2 hours2.314815e-5 days <br />5.555556e-4 hours <br />3.306878e-6 weeks <br />7.61e-7 months <br /> after reactor trip, at the Trc = 350°F (Implying a cool down rate of 100-°F/hr up to that time). For an initial period, time steps of 0.1 hour1.157407e-5 days <br />2.777778e-4 hours <br />1.653439e-6 weeks <br />3.805e-7 months <br /> were used. There after the time steps were allowed to vary using a variety of expedient logics, to give temperature changes on the order of 5 0 F maximum, but small enough that the calculation converged.

The specific value of the time step is not critical, provided the increments are small enough to provide a smooth curve.

Shaw- Stone & VWeste, Irnc CALCULATION SHEET CALCULATION IDENTIFICATION NUMBER REV No. PAGE 18 JO OR WO No. DIVISION & GROUP CURRENT No. 23 OF 25 17321.01 46 PM -44 In the los1; fou led cases, F~reasoabl time steps resul1ted in the primnary coo an~t temperature droppuingbeln;ow 130 0*F ina reasonablo time p8erid. in the more highly fouled cases, the calculationR faile-d to conVerge.

it was deemndthat in thore cases, the decay heat and the other heat loads on tR CCte , hld the C ... t .mpe.atur.

and the p;rima.y oolant temperature at high. r than 1302F and- the coo09ling them tracked the decay heatvcure rather than R force cooling cu1'e. These ARSec all emxccd 60 hou-re and failed the 24 hour2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> limit.(As an estimat nof the final coo n the heat removed by the system across the fouled het oXchangcrs with 13 0 F pFrimary coolant Was calculated, and the time at which the decay heat (plu pumFp heat) mace htvlewsdtie.This was then provided as an; apprAoximat value.of the r.ool down time. Thiscacuatoni shown in a row of the "CooldoWn$'

shoot, a lfine Or tWo bel-Mow thelas rowA M-fof the tim~e step calculations.)

Column C contains core fission product decay heat, column D contains primary pump work in to system and column E contains LPSI pump work in to system. Column F contains heat removed by the shut down cooling heat exchangers for each time step, linked from Column AY. Column G contains summation of the above heat loads. Column H contains ratio of summation heat loads to the thermal capacitance of the primary system, which is the cooling rate for the primary system.Column I to L contains SDC heat exchanger tube side RC coolant flow, pressure, inlet temperature and estimated outlet temperature information.

The initial RC temperature is as assumed for the case. The RC temperature in each succeeding line is the previous temperature less the duration of the previous time step (Column B) times the cooling rate (Column H).Column M to P contains SDC heat exchanger shell side CCW water flow, pressure, inlet temperature and estimated outlet temperature information.

The initial CCW flow (Cell J6) is varied to hold the outfall temperature at just below 120 0 F. The flow then increases to the un-throttle flow when the temperature of the primary coolant entering the exchanger drops below the switch point (Cell J7). Column 0 contains the CCW temperature used to check the 120°F limits.Column Q to Y contains SDC heat exchanger tube side RC coolant thermal properties calculated at the time step average temperature

-density, specific heat at constant pressure, dynamic viscosity, thermal conductivity, velocity, Reynolds number, Prandtl number. and inside heat transfer coefficient.

Similarly Column Z to AH contains SDC heat exchanger shell side CCW water thermal properties

-density, specific heat at constant pressure, dynamic viscosity, thermal conductivity, velocity, Reynolds number, Prandtl number and outside heat transfer coefficient.

Column Al contains metal thermal conductivity at the average of tube and shell side temperatures.

Column AJ contains overall heat transfer calculation using the tube and shell side coefficients from Columns Y and AH, the metal conductivity (Col Al) and the total fouling coefficient for the Sheet.Column AK to AQ contains SDC heat exchanger tube side RC coolant mass flow, multiplication of mass flow and specific heat, capacity ratio, NTU, effectiveness, inside and outside temperature difference, estimated RC outlet temperature.

Column AR to AX contains SDC heat exchanger shell side CCW coolant mass flow, multiplication of mass flow and specific heat, capacity ratio, NTU, effectiveness, inside and outside temperature difference, estimated CCW outlet temperature.

Column AY contains heat transferred in the SDC heat exchanger.

Column AZ and BA contains SDC heat exchanger tube side outlet temperature and shell side outlet temperature that has been iterated with an estimated value until variation of both the temperature is less than 0.01.

Shw'- Stone & Webster, h CALCULATION SHEET CALCULATION IDENTIFICATION NUMBER REV NO. PAGE 19 JO OR WO No. DIVISION & GROUP CURRENT No. 23 OF 25 17321.01 46 PM-44 Column BD contains miscellaneous heat load, and column BE contains summation of miscellaneous heat load and heat transferred in the SDC heat exchanger.

Column BF contains total river water flow and Column BG contains number of CCW heat exchangers, both by reference to the values on Sheet"CCW'.

Column BH contains the duty on a single CCW heat exchanger.

Column BJ contains shell side CCW outlet temperature, though a lookup into the CCW Hx duty-fouling-outlet temperature table on Sheet "CCW'.Column.. BK the ri'-r water outlet temperature cGalculated from the total CCW duty an.d ri'er water flow: River Water density and sperific heat are calculated at avcrago rivor water inlet and outlct Each Cooldown$

sheet is accompanied by a graph of the primary coolant temperatures entering and leaving the SDC Hx and the outfall temperature.

These are printed in Attachment 2

ShaIM Stone & Webster, Inc CALCULATION SHEET CALCULATION IDENTIFICATION NUMBER' REV No. PAGE20 JO OR WO No. DIVISION & GROUP CURRENT No. 23 OF 25 17321.01 46 PM-44 5.4 Analysis and Results Summaiy As indicated above, the analysis will be performed with clean, service, and maximum fouling conditions, in various combinations from cleanest to most fouled.The analyses with hi-gh heat exchanger fouling took more than 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> to cool to 130°F when only one SDC exchanger was used. Additional cases were added with the second SDC heat exchanger added when the RCS cooled to 225 0 F. See Section 5.5 for discussion of the spreadsheet modification for the 2 SDC heat exchanger.

The analyses done are: RC Initial SDHX Foulinq CCWHx Foulinq Temperature, OF Coefficient Coefficient Cooldownl 350 0.001 0.0015 Cooldown2 350 0 0 Cooldown3 350 0.00418 0.0015 Cooldown9 350 0.00418 0.0015 2 SC Hx Cooldown6 350 .0 0.004..Cooldown4 350 0.001 0.004 Cooldown5 350 0.00418 0.004 Cooldown8 350 0.00418 0.004 2 SC Hx (The case order was rearranged in Revision 3 to clarify the successful and unsuccessful cases.)The analyses was initially run with full, unthrottled CCW flow (4,246 qpm) to the SDC heat exchanger in all 8 cases. The results are tabulated below. The high initial CCW flow resulted in too rapid a RCS cool down (> 1 00°F/hour) and, when the CCW exchanger was highly fouled, too hot an initial CCW temperature

(> 1200F).RC SDHX CCWHx Initial Initial Initial RCS Time from Initial CCW CCW cooldown SOC initiation Fouling F Flow Terp rate to 130F RCS TemF, Factor Factor F ____ deqF deqF/hr hours 350 0 0 4,246 109.64 -141 12.89 350 0.001 0.0015 4 114.93 -113 20.00 350 0.00418 0.0015 4,246 108.41 -58 71.21 350 0.00418 0.0015 4,24 108.41 -53 12.95 with 2 n SDC HX 350 0 0.004 4246 129.46 -123 16.55 350 0.001 0.004 4246 126.11 -104 24.42 350 0.00418 0.004 4,246 116.79 -54 > 60 350 0.00418 0.004 4,246 116.79 -49 16.19 with 2n SDCHX This analysis was done in spreadsheet "Calc-PM-44-3 Att2-1 SDC CooldownTime4246Q.xls" which is printed on pages 1 to 61 of Attachment 2.Bv trial and error, it was found that the throttlinq the initial CCW flow to 1,850 apm would reduce the CCW temperature to below 120'F. This extended the coolinq time too much and the flow was"un-throttled" at 275°F RCS temperature.

The unthrottling point was determined by trial and error ShawW Stone & Weabster, Inc CALCULATION SHEET CALCULATION IDENTIFICATION NUMBER JO OR WO No.17321.01 DIVISION & GROUP 46 CURRENT No.PM-44 REV No..23 PAGE 21 OF 25 as the RCS temperature at which full CCW flow would not raise the CCW temperature above the limit.7 These parameters were then used in all cases. This was done to provide a common basis of operation, and address the too high RCS cool down rate. With these parameters the analysis results were: R.aC SDHX CCWHx Initial Initial Initial RCS Time from initial CCW CCW cooldown SDC initiation Temp, Factor Factor Flow Temp rate to 130F RCS F gp deaF deqF/hr hours 350 0 0 1,850 104.24 -74 11.75 350 0.001 0.0015 1,850 108.95 -63 19.99 350 0.00418 0.0015 1,850 105.29 -33 64.02 350 0.00418 0.0015 1,85 105.29 -30 12.99 with 2na SDC HX 350 0 0.004 1-850 118.91 -65 16.55 350 0.001 0.004 1_850 117.54 -58 24.42 350 0.00418 0.004 1,850 112.29 -30 > 60 350 0.00418 0.004 1,5 112.29 -27 16.30 with na SDC HX This analysis was done in spreadsheet "Calc-PM-44-3 Att2-2 SDC CooldownTimel850Q.xls" which is printed on pages 62 to 122 of Attachment 2.CCW temperature and the RCS cool down rate are acceptable in all cases. When the heat exchanger fouling is high, the second SDC exchanger is needed to give a 24 hour2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> cooled when the river is at 90°F.An additional check was made to verify that the 1,850 qpm / 275 0 F parameters would work acceptably at the minimum river water temperature.

It was expected that the colder heat sink would increase the RCS cool down rate. The river was assumed to be at 33 0 F (AssumDtion 10).This approximated a river with ice. (The steam table programming used does not support 32.00°F.)To give the highest cool down rate, zero fouling was used. The results are: RC SDHX CCWHx Initial Initial Initial RCS Time from Initial CCW CCW cooldown SDC initiation Tem oulFactor Foulingr Flow Temp rate to 130F RCS F __p_ deqF deaF/hr hours 350 0 0 4,246 54.86 -169 2.68 350 0 0 1,850 49.60 -97 3.07 This analysis was done in spreadsheet "Calc-PM-44-3 Att2-3 SDC CooldownTime33F.xls" which is printed on pages 123 to 141 of Attachment

2. (The metal conductivity table on sheet SDCHx had to be extended from 70°F to 32 0 F for this analysis.

The 32 0 F conductivity value was an extrapolation of the Reference 5 values.)As expected the cool down is more rapid, but the 1.850 qpm flow is low enough to meet the 100 F/hr limit.T1- ptl+ f.. t- h ÷r,InI.-Ai.,'np nrr o, £mfl,'u',pfl ---By tim- -all Tempete A CCW temperature of 1190 rather than 1200 was used to provide slightly more margin. From review of the results, this was judged to have negligible consequence on the cool down time, Shaw- Stone & Veste, lnQ CALCULATION SHEET CALCULATION IDENTIFICATION NUMBER REV No. PAGE22 JO OR WO No. DIVISION & GROUP CURRENT No. 23 OF 25 17321.01 46 PM -44 G&aiGulte 4M h, F_360 0 0 240 22-4 4 24-3 19.5 44" W60 0 0,001-5 2,W 224 4-G7 233 196 44494 3W0 O~0 04" 2_.00 2&64 442-6 235 11197 44-9.4 360 O_.0G443 8 O4 24Q0 4-,4W 1n3 2 149.3 449.7 3W0 0-.00414-04004 2-GO 60 100 3W0 149.4 444-.N 30W 0(001 1.0015 260 244 1,00 232 1 44 1 Estimnated at67.1hours 2 Estimated at 78.4 heurs Note that the calculated CCW floWs are significantly lower than estimated in Revision 1 Of this calculation (1962 gp .thro,,led (Ref. 4, page 18)), even in"the rerun of the Riom,.n. 1 Tho calculated Goo! down time i6 ,hoter than cGalculated in Revision 1 (21 hr, (Ref. 1, page 24)), but this is noWt une..xpeted, given the .con..er.v."atiVe simAplificatin used in Revyision 1., The system (cool. dAo.n time, and temperature) is highly dependent on tho cleanlinesf the heat exchangers, particularly the 61)G HX. This is both from the heat removQal rate as the primnary loop nears the final' temperatur~e, but also Wu t the cons6trains, that the nouffall temaeratuelii oaeso the intAl1C flow ;and the timing for Un throtlia the flow. (Note that 4-k I A 'k k i i"14 t7claw 0 010 tict ty"Mol M MOP" MCI Do tpa IRq case. This is a cnseqquencep of dolzin the "A throttling.)

J 5.5 Additional Analysis with 2 SDC Heat Exchangers In response to Client comments after the base calculation was completed, a.;-additional analysis analyses was-were performed with the second SDC HX being brought into service in the mnaximu fOU~Ag ase.The analysis spreadsheet described above was modified by:* Adding an additional instance of the Cooldown$

and Chart$ pages ($=8 & 9)* Combining the pump heat loads in columns D and E into a single column and moving the F, G, and H into E, F and G.A new parameter "Number of SDC HX's Inservice" was added in Column H, with a value toggling from 1 for when the RC temperature (Col K) was above the value in Cell J8, and 2 when the value was less. Cell J8 thus services as the control temperature for starting the 2 nd SDC Hx.* The primary coolant flow (SDC tube flow) was modified to be 3000-gpm when 1 SDC HX was in service and 2000 gpm (per HX) when 2 SDC HXs were in service. The 2000 gpm ShwW- Stone & Webster, Inc CALCULATION SHEET CALCULATION IDENTIFICATION NUMBER REV No. PAGE23 JO OR WO No. DIVISION & GROUP CURRENT No. 23 OF 25 17321.01 46 PM-44 value is a conservative value based on language in the Shutdown Cooling Design Basis Document SDBD-SI-130 (Ref. 18, page 94).* The CCW flow (SDC shell flow) was modified to allow a maximum of 4246 gpm when 1 SDC HX was in service and 3254 gpm (per HX) when 2 SDC HXs were in service. The 3254 gpm value is from Calculation FC05669 (Ref. 19, page 64, lesser of the 2 HX flows).With these changes the heat load calculated in columns I to BA is for one SDC HX.* The SDC heat load used in columns F and BE was, then multiplied by the number of SDC HX in service (Col H) so as to reflect the total heat transferred from the primary to the CCW system and thus to the river water.The case fouling coefficients were set to the maximum values (0.00418 and 0.004 above) and the control temperature and throttled flow were adjusted to provide the fastest cooling consistent with a 12-OF-120OF qaxmu.m,.

CCWeutfaW temperature. (The time increments were adjusted as needed.)(The results are discussed in Section 5.4.) The W9Fe that with the limiting fouling coefficients, using two SDC hotecagradiiitoshutdoWn; cooling 2 hGUFS after a trip from ful load (1590 MOt) With the prim~ar colnta 50rF, the pFrimary sycteM Gan be cooled toII 13 0 ihn21hus Te aclto gvc1 or from initiation of SDC.) The CCIA fle.ow to the si~gle SDC HX operating intalReeds to be throttled to 167-5 gpm. The flow shou ld be -un throttlod at 295 0 F, primary coolant temporature and the seacnd SDCG HX placod in corvico at 225 0 Fm, priMary coolant temperature.

SM -Stone & VVbster Irr.CALCULATION SHEET CALCULATION IDENTIFICATION NUMBER REV No. PAGE24 JO OR WO No. DIVISION & GROUP CURRENT No. 23 OF 25 17321.01 46 PM-44 6.0 Conclusion With shut down cooling initiated 2 hours2.314815e-5 days <br />5.555556e-4 hours <br />3.306878e-6 weeks <br />7.61e-7 months <br /> after a trip from full power, with the a reactor coolant temperature of 350°F and river water at 90 0 F. the shut down coolingq system can reduce the reactor coolant system temperature to 130°F within 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br />, under all combination of heat exchange fouling permitted by station procedures.

CCW flow to a single SDC heat exchanger should be initially throttled to 1,850 gpm, and then unthrottled when the RCS temperature reaches 275 0 F. This is necessary to maintain the CCW system at less than 120°F when the river is at 90 0 F. This flow also limits the RCS cool down rate to less than 100°F/hour at all river temperatures.

When both the SDC and CCW heat exchangers are at their nominal service fouling levels or cleaner, only one SDC heat exchanger is needed to reach 130°F in less than 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br />.With higher levels of fouling in either set of heat exchangers, cooling times increase and the second SDC heat exchanger may be needed to achieve the 24 hour2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> cool down. The criteria for starting the second SDC exchanger was not established analytically, but a RCS temperature above 160 0 F, 6 hours6.944444e-5 days <br />0.00167 hours <br />9.920635e-6 weeks <br />2.283e-6 months <br /> after SDC initiation would work for the cases analyzed.With cooling initiated at a reactor coolant temperature of 360 0 F, the one shutdoWn cooling heat eXchanger can cOOl the pFrimary loop to 4 30OF in less than 24 hou rs from tho initiationI Of coGolig.Thig is based on a trip from full licensed power (1500 .. M ,. the SOd CCW heAt eXcha.geor at thoi, nomntal servit e fouling level.To hold the river water outfall temperature below 1:20 0 F, the CCWV flow to the SO0C heat exchangr Must bhe throttlod to 1,075 gpm until the pFrimary coolant temperaturo has been re-ducod to 230 0 F, at which point it can be increased to the full --n throttld flow of 4,246 gpmA.These calculations use raw water and closed loop cooling flows based on calculations with degraded pump flows. If the actual system flows are higher, the CCW flow to the SDC heat exchanger may need to be throttled further and the "un-throttling" temperature adjusted-FaiSed.

With a single SDC heat exchanger in service and that heat exchanger at its maximum fouling per PED-SEI-16 R9, cool down will take well in excess of 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br />, estimated at over 60 hours6.944444e-4 days <br />0.0167 hours <br />9.920635e-5 weeks <br />2.283e-5 months <br />, depending on the CCW heat exchanger fouling. If a second SDC heat exchanger is brought into service, the cool down to 130OF can be achieved in less than 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br />.

word: Review of the portions of Reference 19 provided near the end of this task's execution, suggest that the CCW flow estimates used herein were not correct. However the flow values used were lower than those in Reference 19, thus making the conclusion, above, valid.This calculation should be considered a validation of the capability of the shutdown cooling system to cool the primary coolant system from 350OF to 130OF in less than 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> from initiation, and not a definitive prediction of the actual time, throttled flow rate, un-throttling control point, or CCW and river water temperatures.)

Shw"- Store & Wvebses Inc, CALCULATION SHEET CALCULATION IDENTIFICATION NUMBER REV No. PAGE25 JO OR WO No. DIVISION & GROUP CURRENT No. _23 OF 25 17321.01 46 PM-44 7.0 Attachments

1. Miscellaneous References
  • CCW HX Data Sheets (Ref. 8)* SDC HX Data Sheets (Ref. 11)* Excerpt from Compact Heat Exchangers (Ref. 4)* Excerpt from Shutdown Cooling Design Basis Document SDBD-SI-1 30* Excerpt from CaIc. FC05669 2. Calculation Spreadsheets
3. Calculation PM-44 Revision 1 (Ref. 1)Revision 3 Note: Pages in Attachments 1 and 3 which were not changed from Revision 2 retain the,"Rev.2" marking.

Calc 17321.01-PM-44-2 Attachment 1, Page 1 (14 10 as'3 17 is as 20 31 sa THE WHITLOCK MANUFACTURING CO.Xo de B ' EXCHANGER SPE.CIFICATION SHEET Design & Mo 4JOB NtOO.69.143.33 AMU CUSTOMER Peter Ki]yrtt 5onst o. .REFERENCE No.ADDRESS INQUIRY No.PLANT LOCATION DATE Marxch 9a 1970 SERVICE OF UNIT _.EM No._-.&4B SIZE 3:5- B-300 _TYPE 1m,-2 CONNECTED IN SURFACE PER UNIT SHELLS PER UNIT SLRFACE PER SHELL 5020 eqeft PERFORMANCE OF ONE UN;T off.SHELL SIDE TUBE SIDE FLUID CiRCULATeD

!1" Fluid "A" Fluid TOTAL FLUID hINC 450GP009_PM VAPOR STEAM FLUID VAPORIZED)

Of ..... NSED STEAM CNDOENSEr" ,GRAVITY -LIQUID VISCOSITY -LIOUIO MOLECULAR WEIGHT-VAPORS SPECIFIC H'tCAT-LI'UIDS oB.T.U.jf I .TU.1v LATENT HEAT-VAPOrS

,.y.u.f S.T.U.I#TEMPERATURE 1N IN OF TEMPERATURE OUT -OPERATING PRESSURE 4. Q IN. #SQ, IN-NUMBER OF PASSES iiaeJ.w-...

VELOCITY -- ~VT ISIEC FISC PRESSURE DROP -"ISQ.,N ....A. I" .7311 7-5 _,00- -.__ -.-.--.. --. .400~ ________!FATI:ýHAN~tý S... -. 1LA r.TI cl wcyo TRASFE -('rL' -ERVCE SaoZLEP320R 33 3A 07 30 40 41 44 45 47 so 62 CONSTRUCTION DESIGN PRESSURE " *ISe IN *jSo. IN.TEST PRESSURE "a:ISQ lN. ISQ. IN.DESIGN 'EMPER*TURF 4 op.TUBES O.D. awG LENGTH PITCH SHELL I0D CD, 0IICKNES'SIpELL CO,'.F14 FLOATING HEAD COVER CHANNEL CHANNEL C*VER TUBE S"EETS -- TATION AY FLOATING BAFFLES -CROSS PE THICKNESS BAFFLE-LONG TypE THICKNESS

--TUBE SUPPORTS THICKNE.SS RE GASKETS CONNECTIONS-SNELL--IN OUT SERIES CHANNIEL-IN OUT SERIE0S CORROSION ALLOWANCE--SHILL SIOE TUBE SIDE &

-WEIGHTS-EACH SHELL BUNDLE .PLL. OF WATER NOTE: INDICATE &FTER EACH PART WHE"THIE STRESS RELIVEO (.1t.1 AND WNETHER RADIOGRAPNEO

.. ................ " " ," ",'(no TC.AA*. Calc 17321.01-PM-44-2 Attachment 1, Page 2 THE WHITLOCK MANUFACTURING CO.Mode A EXCHANGER SPECIFICATION SHEET l,--o 4 4 7 14 to CUSTOMER RWERENCE Ng." ADDRESS iNQUIRY N 3f~~PLANT LOCATION Fort CalhQun Unit #1 DATIE MarCh 9& 1970 SERVICE or UNIT Shutdowa RITEMkchinnzer

.sizE _3..B-00 TYPE 1-R-2 CON NEdTK) IN SURFACE PER UNIT SHELLS PER UNIT SURFACE PER SHELL 5020 PERFORMANCE OF ONE UNIT~LL SDE -~ TUBE SIDE FLUID CIRCULATED

-1 .. _ _ ___.. .. _4. Fluid T:OTAL FýLUID ENTERAP -2L VAPOR, _ ___._ ____STEAM NON-CONDENSABLI I!FLUID VAPORIZED OR CLK,. STEAM CONDENSED GRAVITY-IIOCUI.

VISCOSIfTY

--IOlUID MOLECULAR WEIGHT- VAP.IRS SPECIFIC HEAT-LIQUIDS ILT.U.1 wL :.LATENT I4EAY-VAPORS TEMPELRATURV IN -7 TEMPERATURE OUT -9"..5.. °03 .oPERATING PRESSURE #I1Q. IN. IN.NUMGER OW PASSES.------D~-nlow----

VXLOCITY v.~c PRESSURE DROP 9 *S.IN.- ~ N Tot , oln0 O0KL._ _117 is 23 24 as 20 31 M.T.D ..USa'CIESI F TRANSFER RATE -SERVICE .CLEAN ~ 8.*8 S.87 am 48'4 At as so CONSTRUCTION DESIGN TEMpSESAflURE TUIES NOý 0.0. sWo LENGTi PITCH" SHEL 1.* 0.0THCNS OMEL).. 'COVEN FLOATING HEAD COVER CHANNEL .CNA NNL" COVER TUBE SHEETS -STATION ARY -FLOATING wAFFEss-CROSS TYPE THICKNESS*AFFUE-LONG Type THICKNESS.

TUng SUPPORTS THICKNESS GASKETS ----CONENICTIOHN.-SHRLL-IN OUT SERIES CHANNEL-IN OUT SERIES CORROSION ALLOWANCE--SMELL S5IlDE TuSE SlOa COOK- REQUIREMENTS WSIGHTS-ýIACH

  • MELL .SJO j,- #AIPWTE...*

NOTE! INDICATE AFTER EACH PAAT WHETHIeR VTRE5S RELiEVEO; S. ) VM -.TNf ... 1.A~E 1 1 , I RU A ff --REMARKS:-Y2; ----,-A. A` " tl'llý6 I I Calc 17321.01-PM-44-2 Attachment 1, Page 3 1 Z 4 v7 21%22 as 27 Its 30 31 32 THE WHITLOCK MANUFACTURING CO.EXCRtANGER SPECIFICATION SHEET Mode C I J013NO..,MmL39-4 3 3 3 .244.3 CUSTO .E I .REFERENCE No ADDRESS INQUIRY No PLANT LOCATION DATEW M... 1, ta'r0 S!ERVICE OFUNIT~ ~ Eea No Ac..4AJB_____

_TYE ...CONNECTED Ih.SURFACE PER UNIT SHELLS PER UNIT PER SHELL 5020 *q.ft.PERFORMANCE OF ONE UN!T FLUID CIRCULATED TOTAL FLUIL ENTEE' ..VAPOR LI10LI ID FLUID VAPUI .LI#~ .E STEAM CONDENSED GRAVl1Y -Ll t* iD V15,CO5 !'Y -L fr. UU)MOLECULAR

,,.IGH- WI- ,HIýfiPEciFIC HCAT- iU1tA:dS$.ATE1T "EAT " VAPOSRb IN TEMPERA7LPE OUT OPERATING PRESSURE NUABDER OF PASSE5, VELOCITY PRESSURE DRO" E.-*.0-.2"LD" or "Sit Fluid-2937 -LEH-.- .. --off.TUBE SIDE"A" or .... F lt-..Z -0GPM-- -__B-T U.uLy-u.I 0_ I.35.2. ...........

E$ IN I 212 SF.... .9,8_ .... _ _ _°,#15s0. IN....... I-1"7 o ...........

PT.!SEC,-; .II... .... .. .Ic.HEA M.CN T. 0. HR ..9~~O ., _ ..so. 65.31L._____

TRANSPE51 PATE-51`4VICE j&. .LEAP. 15 33 3A 47 38 40 41 42 43 44 AS 4.52 e-nll V7IJ2 CONSTRUCTION DESIGN PREbiURf 1 0)50. IN. vis. IN.TEST PRESSOIRE 0/90. IN. flue. IN,........ ................-

0...-.. ...................

DESIGN "'E I,,,pERAI ,I ,R.E, ior op I TUNES NC, 0 0. .WG LENGTH Pt'CH SHELL ID- 0 ) THICKNESS SHIELL CO-ES FLOATING IIEAD COVER CHANNEL CHANNEL COVER TUBE S-IEETS- TATIONARY

__A___..__SAFFLIES-CO5S TyPE HCNS BAFFLE-LONG TYPE THICKNES " TUSE SUPPORTS THICKNESS GASKETS .......CONN!ECTIONS--SMELL IN OUT SERIES CHANNEL-IN OUT SRIESI CORROSION ALLOWANCE

-_SELL SIDE TUBE $10.COOE REQUIREMENTSI_

WIZIGTS--EACH SMELL SUNDLE... .r..". ^ ATER NOTE: INOICATE AFTER EACH PART WHt4THER STRESS RELt(Vf-D 1*.41.1 ANDV WHETHER RADIOGRAPHED IX.RI :_._... 2 I LI(

I

  • Calc 17321.01-PM-44-2 Attachment 1, Page 4 1 THI WHITLOCK MANUUFACTURING CO.Mod&- D EXCHANGER SPECIFICATION SHEET 7 I0 is to of 1S 80 as alt SO-UTOJOB NO p&+JoeN CUSTOMER sdta, i r .REIrERENCE No.ADDRESS INQUIRY No.PLANT LOCATION .DATE lwch 9. 1 47o SERVIcE Or UNIT Shutdogn:weat Ag:mLqr rrm No Afe-&A SIZE _____-____

TYPE _ _ CONNECTED IN SURFACE PER UNIT SHELLS PER UNIT SURFACE PER SHELL 5020 q.fl PERFORMANCE OF ONE UNIT off*SHELL SIDE TUBE SIDE FLUID C ,RCULATEO

-_* _". 73"., FJu td TOTAL FLUID ENTERING 47.. ? _ .............

0. GPM VAPOR LIQUID PA_ - H STEAM NOH-CONDOENSAL-"S FLUID VAPORL&iED

.3q STEAM .GRAVT'Y-LOI1)QUJ VISCOSITY

-1L.01l10 MOLECULAR WEiGHiT--VAPORS SPeCIIrC HEAT-LIQUIDS

  • .I.u&J ST.UJ'LATENT H[EAT--VAPORS .T..= T.TEMPERATURE IN O or. °" --TEMPERATURE OUT * ...p -. _ OO OPERATING PRESSURE ISQ. IN. lJSG IN"UMBER OF PAS-5ES 4,'V 27 28 SO me*I So VELOCITY PRESSURE DROP 442tml rWtit4,- if AfU'%. I ;T~jvFj~j___l SlaG N.-tiogd fie-=.- ----- I HCAT EXCHANGED-i T U.,iHRV I M.T*O TRANSFER RwATW-`SERVICE ff , CLEAN 84 BE, 47 As CONSTRUCTION DESIGN PRESSURE '___I_____

ISO..~TEST PRESSURE "iso. IN.DESIGN TEMPERATIJRE

'A TUBES N.. 0.0. SWG LENGTH PITCH SHELL. Ib 0.9D THICKNESS SHELL COVER FLOATING HEAD COVER CHANNEL CHAN1[EL CCVER, TUBE SI*EETS-STATIONARY FLOATING BAFFLES --CROSS BAFFL E -ONG I TYSreIE TUSB SUPPORTS GASKETS CONNECTION- -SHELL -IflN OUT SERIES OUT ERE OHANNEL--IN CORROSION SIDE CODE nacOUlRkEN1a WEtIGHTS-EACH SHELL. --I ý_77 NOTE' INDICATE AFTER EACH PART WKITHICR STRESS RELIEVED f11.*J ANT4 WHTia K --. .-,_ _-c--n~,~. r Calc 17321,01-PM-44-2 Attachment 1, Page 5.3.a 4 6 7 I i-V 7 r THE WHITLOCK MANUFACTURING CO.A p1'~' r 4 ..~ 4 MODE E (DESIGN)EXCHANGER SPECIFICATION SHEET JOB No..__CUSTOMER Gibbs H"Ul_ _Rhd__ REFERENCE No. F.-8i7 ADDRESS INQUIRY No.PLANT LOCATION Fort Calhouln Statinm ;6, DATE -n 4o.n SERVICE OF UNIT C*Co Tnt" o ITEM No. Aitj 1 !IC SIZE _Cnl I- n TYPE Rant* CONNECTED IN & ID SURFACE.PER UNIT 1 5 50 ftz SHELLS PER UNIT SURFACE PER SHELL 124.00 fit tot-PERFORMANCE OF ONE UNIT off.13 14 15 16'7 la 12 20 21 x2:23 84 go 26 27 ab me 30 31 32 FLVIO.C.3.

ULATEL;TOTAL FLUID STEAM N ON-C.ONII

.,.SABLr I FLUID VAPORIZEU OR .STEAM CONDENSED GRAVITY -.D VISCOSITY--

LiQUID MOLECL.LAR

%VCIýNT VAPORS SPECIFIC H-AT-LIOIJIDS LATENT HEAV -VAPORS SHELL SIDE... ..... .i " ...TUBE SIDE-2673 GPM B.T.U B.r. uI TEMPERATURE IN 239..&...

opt TEMPERATURE O UT .-.-- .. --..~.-.l ~o OPERATING PRESSURE -01SQ IN. IJso. IN.NUMBER OF PASSES .- ... ...... " VELOCITY _ ._ n1. -FT ISEC..-..

FTJ SEC. I PRESSURE DROP .-.--j _0._-....

..... .....Y7taaFt1ý&

0 __ ____HEAT EXC.AN ED--U.T.U.,H

.... .

c., _ 0 TRANSFER RATE SERVICE 2L I1 CLEAN InR a -36 37 38 SB 40 41 42 43 44 4!47 48 82 50 CONSTRUCTION F..............

....-BWG 0 LENGTH PITCH SHELL 10~I. OD.THCNS SHELL O"IERFLOATING HEAD C TUBE SHEETS -.STATIONARY

__LOT BAFFLES -- CROSSTYET NS BAFFLE -LONG TTTYPE TUBE SUPPORTS THICKN S CONNEZCTIONS -SHELL -IN0SRE CHANNEL- IN TE CORROSION ALLOWANCF-SE6LL SIDE TUBE C:ODE REQUREMENTS W TA HBUNDL$ E r- 0ELATERIEVE NOTE. INDICATE AT AC PART WHETHER S ITRESS RE LIEVED IS.15. ANO WHETHER RADIOGRAP SR REMARKS:-_____

FrORM E-710A I Calc 17321.01-PM-44-2 Attachment 1, Page 6.-- I 14 IS to$7 Is 10 21 22 20 21 26 27 za 29 30 321 32 THE WHITLOCK MANUFACTURING CO.EXCHANGER SPECIFICATION SHEET Mode A JOB No.CUSTOMER Gibbs. Hullt=Durham

& R chardson, Inca REFERENCE No. L-6817 SH_ADDRESS I .NQUIRY No.PLANT LOCATION Fort Calhoun Station #1 DATE SERVICE OF UNIT Component Cooling Heat Kxcklaner ITEM NoAlIIto-AColAl.I1C,lD SIZE 38-B-336 TYPE 3.-VI-3 CONNECTED IN SURFACE PER UNIT 12,5W. SoFt SHELLS PER UNIT SURFACE PER SHELL.2,400 S9Ft (Total) PERFORMANCE OF ONE UNIT (E........... -SHELL SIDE TUBE SIDE.o__T.L rER,,_.so .-.. .EN ...LIQUOGm 1550 ~ .. 1571.STEAM NON-CON DENSABLES FLUID VAPORIZED OR CONDENSED STEAM CONDENPSED GRAVITY-LIQUID VISCOSITY

-LIQUID MOLECULAR WEIGHT-VAPORS SPECIFIC HEAT-LIQUIDS ,TUd'LATENT HEAT-VAPORS B.T.U./ B.T.#.J TEMPERATURE IN " _105.S -. op 8 ._ _ 0p TEMPERATURE out 90 U oT OPERATING PRESSURE #ISO. IN. V pISQ. IN, NUMBER OF PASSES 3_ ............

__VELOCITY FT.JSEC. 2 F7T5E C PRESSURE DROP. *1SG. IN. 6JSU. IN.To loILn.-L........

............

..HEAT EXCHANGED-B.T.U.HR.

.M. T.O. 'co TRANSFER PATE-SERVICE 1q91 CLEAN 2 fs IS CIDr 37 TUBES No. __D_I.D. 0 SHELL COVER 40 CHANNEL Ai TUBE SHEETS-STATIONARY 42 BAFFLES-CROSS 43 BAFFLE-LONG 4 TUBE SUPPORTS 45 GASKETS 46 CONNECTIONS-SHELL-IN O 47 CHANN4EL -IN 48 CORROSION ALLOWANCE-SHELL SIDE Ag CODE REQUIREMENTS , " BO WEIfHTS-EACH SHE!.L ' ULL 51 NOTE: INDICATE AFTE CH PART WHETHER STRESS P 52 REMARKS:-

-FI)R Ar h 4.STRUCTION IF BWG LENGTH D. THICKNESS FLOATING HEAD aO CHANNEL C I SERIES-- TUBE FULL OF WATER ELIfVIE ,S.R., AND WHETHER RADIOGRAP IS -RI FORM E-11-7'TSB Calc 17321.01-PM-44-2 Attachment 1, Page 7 2 2 a 7 to 19 23 XA is so ID as 219 23 31 32 27 30 402 41 43 43 47 As 62 0 OME-430.THE WHITLOCK MANUFACTURING CO.EXCHANGER SPECIFICATION SHEET Mode B CUSTOMER Gibbs, Bill. Durham & Richardson, Inc. RJBRN.CE NoS.'L-687 H ADDRESS INQUIRY No.PLANT LOCATION F.rt Calhoun Station #1 DATE* SERVICE OF UNIT .Comopnent Cooling Heat Exchanger ITEM NoAlt.,1IAC.LAtlBC, 1 ID SIZE 58-B*336 TYPE 3-VI-3 CONNECTED IN SURFACE PER UNIT 12 500 Sipt SHELLS PER UNIT SURFACE PER SHELL 12,400 SoF (Total) PERFORMANCE OF ONE UNIT SHELL SIDE TUBE SIDE TOTAL FLUIDI EN'TERING_

32-- U , _ _ _ _o_.. -3270 ..STEAM N ON-CONDEN SABLES FLUID VAPORIZED OR CONDENSED STEAM CON'DENSED GRAVITY -LIQUID VISCOSITY -LIQUID MOLECULAR WEIGHT-VAPORS SPECIFIC HEAT-LIQUIDS B.T.U.I# B.T.U.1*LATENT HEAT-VAPORS I.T.U.l# B.T.U.I1 TEMPERATURE IN _____ -*P TEMPERATURE OUT or OF _ _op OPERATING PRESSURE #I/s. IN. IN.NUMBER Or PASSED 3 3 VELOCITY PT.ISEC. 4.16 FYT.I SEC.PRESSURE DROP #__)so__ *JS9. IN. 5IS-. IN.HEAT EXCHANOED--B.T.U.JR.

48e1800 __ ..T.D. ,CORRECTOI 162 .TRANSFER RATE"- SERVICE CLEAN 359.6 CONSTRUCTION I PonE*UR 0... IN.DESIGN .E ATURE j ,t TUBES N. 010. BWG. LENGTH PITCH SHELL ID.0. .D TH1CIKNESS SHELL COYER FLOATING HEAD CHANNEL CHANLC TUBE SHEETS-QTATIONA .Y .." " '" BAFFLES -CROSS -%%,-.TYPE T ESS BAFFLE--LONG--".T' I _TUBE SUPPORTS ,,ICNES GASKETS;CON NECTION S- SME~rLL--

IN , d S R E ALLOW ANCIE--BH L SlI, IDE ruse. """ """ .WCIGHTG-EACH SHELL ." BUNDLE___-

FULl. OF WATER NOTE: INNIICATiE AFTKE C1N tART WHETHER STRESS RELIEVED IO.R.I AND WHETHER RADIOGRAP IX-RI REMARKS:--

.-[17,?

5 13 17 as 22 27 go 20 30 23 32 25 24 27 30 39 4O SI 52 44.4 47 a0 S1 In S". -Caie 17321.01-PM-44-2 Attachment 1, Page 8 THE:WHITLOCK MANUFACTURING CO.EXCHANGER SPECIFICATION SHEET Mode C JOB NO.CUSTOMER .GibbB.. Hil. Durham & Richardson. ,IncOREPERENCE No. KL-6817 SH.ADDRESS .INQU14Y No.PLANT LOCATION Fortf CAlhnnn 5. DATE SERVICE OF UNIT Component Col fnog Roar 1rehAngar ITEM NOAlE 11-AC,-A.

1. r4 lp SIZE 58-B-336 ' TYPE VI-3 CONNECTED IN SURFACE PER UNIT 12.500 SaFt SHELLS PER UNIT SURFACE PER SqFt (Total) PERFORMANCE OF ONE UNIT 17(Exr. (ff.)LSHELL SIDE ' TUBE SIDE TOTAL FL.UID ENT*RING GPHI .2A -3 22M ..... " -_... ..STEAM NON-CONDENSABLES FLUID VAPORIZED OR CONDENSED STEAM CONDENSED GRAVITY-LIQUID VISCOSITY-LIQUID MOLECULAR WEIGHT-VAPORS SPECIFIC HEAT-LIQUIDS B.T.U.J *.T.UJ.I#LATENT HEAT-VAPORS .T.U.B.TUI TEMPERATURE IN 2.... -" 70 or TEMPERATURE OUT -t -r OPERATING PRESSURE .". IQ. IN. #fSQ. IN.NUMBER OF PASSES 3 -VELOCITY FT.ISEC. "F -_FT.iSEC.

PRESSURE DROP #SO. ON. .iN.TntsBl P2ntt,,o -.° ___ ..HEAT EXC"ANGED--.T.U.IH,.

._0 M. M+T. ., 9x0 " TRANSFER RATE-SERVICE

-201.7 CLEAN -'A CONSTRUCTION

--., -4.----- ~ -. -- --DESIGN VW~~ATI.SE I I TUBES NO O.. +8Wo. LENGTH PITCH SNELL .O O.0. THICKNESS S'ELL COVER FLOATING HEAD "0 CHANNEL __________

TUBE SHEETS -STATIONARY BAFFLES- CROSS____________

DAPPLE-LONG

_70_R_______S TUBEz SUPPORTS _______________

_____________

REMA OS -8"L.SE.IE F0nM E--70A I (ol q TS .

14 17 21'a IS 14 27 as 20 so 32 32 Gale 17321.O1-PM-44-2 Attachment 1, Page 9 THE WHI-TLOCK MANUFACTURING CO. ft EXCHANGER SPECIFICATION SHEET Mode D JOB No.CUSTOMER .. Gt.bs a_ Hi Lll, Dur_.am & k~c.hardsoin_..

Ing, REF'ERENCENo- -L2871_.'-

ADDRESS INQUIRY No.PLANT LOC'ATION F.ort C.alhoun ,Station #1l DATE SERVICE OF UNIT -omponent__

__ (;_LAjA_fft Exchang.,r ITEM NoAlt. 38=-8-..36 TYPE 3-VI-3 CONNECTED IN SURFACE PER UNIT 12,500 SoFt SHELLS PER UNIT SURFACE PER SHELL 12,400 SqFi (Total) PERFORMANCE OF ONE UNIT' "' SHELL SIDE TUBE S 1tE -TOTAL FLUID ENTERING .22. 2518 LIOQUD GP 2200. .............

...$TEAM, NON-CON0ENSASLES FLUID VAPORIZED OR CONDENSED STEAt4 CONDENBED GRAVITY VISCOSITY -LIQUIO D MOLECULAR WEIGHT-VAPORS SPECIFIC HEAT-LIQUIDS S.T.IJ~J#

..T.U.)IV LATENT HEAT-VAPORS -S.T.U.T#TCMPERATURE IN .. .. 1[02. .. ., .__.._TEMPERATURE OUT ..93.0 OPERATING PRESSURE ,(... IN,. *JS" IN.NUMBER OF PASSES 3 ____ 3 VELOCITY FT.iSEC. 1- 2 FT.ISEC.PRESSURE DROP *- -#ISO. IN. *IRI." IN.HEAT EXCHANGED-B.T.U., HR. L,9" M.T.D. icORRtgccoI

--TRANSPER RATE-SERVICE

,, l" 41R ,4 S1.34 42 AS 48 45 d0 47 48 4'Do 51 52 CONSTRUCTION

-~ .~. t f~ F ~ N~O'Ij -Q N 0, O.D. "WG. LENGTH PITCH SHELL 0. 0 D. T H ICKNESS SHELL COVER FLOATING i4EAD C RCtýCHANNEL CHANNEL COýW TUBE SHEETS -STATIONARY BAFFLýS -CROSS T -.99 SAFFLE -LONG ,-THICKNESS

-7 TUBE SUPPORTS THICKNESS GASKETS CON NECTIONS-9HELL- IN ... 2 SERIES CHANNEL-IN

__fU CORROSION ALLOWACE-SHELL SIDE ., j" TUBE-,. .CODE REOQIREMENTS lee-, WEIONTS-EACR SHL'EL or BUNOLE FULL OF WATER 'NOTE: INDICATE AFTE100CH PART WHETrHER STRESS RELIEVED 1S.0.i AND WHETHER RADIOGRAP-9 555 uJAaI~C.-..

~REMARK m ,7 0 z TSB ,

I -Calc 173,21..0J-PM-44-2 Attachment 1, Page 10.'~ ,r~.THE WHITLOCK MANUFACTURING CO.Mode F EXCHANGER SPECIFICATION SHEET In IS 17 is 19 zI 21 ax 23 as as 27 as 30 31 39*.as 97 3a 40 41 43 44 40 47 40*I JOB No l CUSTOMER Gibbs$ Hill. Durham & Richardson,.

Inc. REFERENCE No. gL."17 SH 1 a ADDRESS INQUIRY No.4 PLANT LOCATION Fort Calhoun Station #1 DATE 5 SERVICE OF UNIT Compgnent Cooling Heat xichAnxer ITEM NoA t II-AC-IA.IB,.IC, ID a SIZE 58-B-336 TYPE 3-Vl-3 CONNECTED IN 7 SURFACE PER UNIT .12.50 SQFt SHELLS PER UNIT SURFACE PER SHELL 12.400 §qLF (Total) PERFORMANCE OF ONE UNIT 15(4% Extra Surface 6 SHELL SIDE TUBE SIDE SP LUO em L '~ .....................

.~ ~~~ ~ .. .-.. .. ... ._ýLUID C1RCJL4TaOfo TOTAL PLUID ENTERING, Gpm 202.5 ....__________

3333 .VAPOR.L, O , -...._... .-. ...2025 ..-.. _ _STEAM NON-CONDENSABLES FLUID VAPORIZED OR CONDENSED STEAM CONDENSED GRAVITY--LIQUID VISCOSITY

-LIQUID MOLECULAR WEIGHT-VAPORS SPECIFIC HEAT-LIQUIDS B,T.U.,# S.T.UJO LATENT HEAT-VAPORS

,.t.u.I *.T.U.)TEMPERATURE IN _.-4 * .TEMPERATURE OUT ". .F .-.-___._____OPERATING PRESSURE #ISQ IN. SOg. IN.* NUMBER OF' PASSES .....D_ _.....* VELOCITY FT.ISEC. -, FTISEC.* PRESSURE DROP 9,,3- #15Q. IN. A #SQ. IN.S Total fouling -0Q15 HEAT EXCHANGED--B.T.UJ HR. 3948&Qj. M.T.D. ICORRECTOI

)TRANSFER RATE-SERVICE 228,3 CLEAN 347.2 CONSTRUCTION

.I -'.,.+-, .. ___IIB.= IN.. ....."'0=twoT j .B till,, OIA" 'iN TUBES No. O.00 BWG. LENGTH P'ITCH SHELL 1.0.o'o. THICKNESS SHELL COVER FLOATING*

HEAD CHANNEL CHANNEL____

TUBE SHEETS -STATIONARY

_ _ ____l_" SAFFLES-CROSS

..TYPE BAFFLE-LONG T ___,,,,_,C__",___

TUBE SUPPORTS ,4' THI CKN ESS GASKETS ________" CONNECTIONS-SHELL-IN 0 SERIES CHANNEL-IN TE CORROSION ALLOWANCE--SHELL SIDE og .,TUsE COOE REQUIREMENTS o", WEIGHTS-EACH SHELL -BUNDLE-." FULL OF WATER NO0TE: INDICATE A CH PART WHETHER STRESS RELIEVED ,S.R.' AND WHETHER ItADIOG.RAP X. """ REMARK-S:-

' -A q FORM E-716"303c~5 Calc 17321.01-PM-44-2 Attachment 1, Page 11 McGRAW-HILL SERIES IN MECHANICAL ENGINEERING ROBERT M. DRAKE, JR. / STEPHEN J. KLINE Consulting Editors Beggs Mechanism Cambel and Jennings Gas Dynamics Csanady Theory of Turbomachines Durelli, Phillps, and Tsao Introduction to the Theoretical and Experimental Analysis of Stress and Strain Eckert Introduction to Heat and Mass Transfer Eckert and Drake Heat and Mass Transfer Grdber, Erk, and Grigull Fundamentals of Heat Transfer Ham, Crane, and Rogers Mechanics of Machinery Hartenberg and Denavit Kinematic Synthesis of Linkages Hartman Dynamics of Machinery Hinze Turbulence Jacobsen and Ayre Engineering Vibrations Kays and London Compact Heat Exchangers Phelan Fundamentals of Mechanical Design Raven Automatic Control Engineering Sabersky Elements of Engineering Thermodynamics Schenck Theories of Engineering Experimentation Schlichting Boundary Layer Theory Shigley Dynamic Analysis of Machines Shigley Kinematic Analysis of Mechanisms Shigley Mechanical Engineering Design Shigley Theory of Machines Spalding and Cole Engineering Thermodynamics Stoecker Refrigeration and Air Conditioning Wilcock and Booser Bearing Design and Application COMPACT HEAT EXCHANGERS SECOND EDITION W. M. KAYS Professor of Mechanical Engineering Stanford University A. L. LONDON Professor of Mechanical Engineering Stanford University McGRAW-HILL BOOK COMPANY NEW YORK SAN FRANCISCO TORONTO LONDON 42 Compact Heat Exchangers Table 2-7a. Split-flow Exchanger, Ctube = Cn.u Split-flow exchanger with shell fluid mixed. Exchanger effectiveness (e) as a function of capacity-rate ratio (Cmj,/C._)

and number of transfer units (NtL) for Ctb. = Cmla Calc 17321.01-PM-44-2 Attachment 1, Page 12 Exchanger Heat Transfer and Flow-friction Design Theory 43 Table 2-7b. Split-flow Exchanger, Cshel = Cmtnh for indicated capacity-rate ratios Mt.0 0.2 0.4 0.6 0.8 1.0 0 0 0 0 0 0 0 0.5 0.393 0.378 0.364 0.350 0.337 0.324 1.0 0.632 0.595 0.557 0.523 0.491 0.462 1.5 0.777 0.718 0.663 0.613 0.566 0.524 2.0 0.865 0.791 0.722 0.660 0.603 0.552 2.5 0.918 0.833 0.755 0.683 0.619 0.562 3.0 0.950 0.857 0.771 0.693 0.624 0.564 3.5 0.970 0.870 0.778 0.695 0.623 0-561 4.0 0.982 0.876 0.779 0.693 0.619 0.556 4.5 0.989 0.878 0.777 0.689 0.614 0.551 5.0 0.993 0.877 0.773 0.683 0.607 0.545 5.5 0.996 0.875 0.768 0.676 0.601 0.538 6.0 0.998 0.872 0.762 0.670 0.594 0.532 6.5 0.999 0.868 0.756 0.663 0.588 0.526 7.0 0.999 0.864 0,750 0.656 0.581 0.520 7.5 0.999 0.860 0.744 0.650 0.575 0.515 8.0 1.000 0.856 0,738 0.644 0,569 0.510 8.5 1.000 0.852 0,732 0.638 0.564 0.505 9.0 1.000 0.849 0.727 0.632 0.559 0.500 9.5 1.000 0.846 0,722 0.627 0.554 0.496 10.0 1.000 0.843 0,718 0.622 0,549 0.492 Split-flow exchanger (shell fluid mixed) effectiveness (a) as a function of capacity rate (Cts/'Cm.)

and number of heat transfer units (Nm) for Cswn = Cag, e for indicated capacity-rate ratios 0 0.2 0.4 0.6 0.8 1.0 0 0 0 0 0 0 .0 0.5 0.393 0.378 0.364 0.350 0.337 0.324 1.0 0.632 0.593 0.557 0.523 0.492 0.462 1.5 0.777 0.718 0.664 0.613 0.567 0.524 2.0 0.865 0.792 0.723 0.661 0.603 0.552 2.5 0.918 0.835 0.757 0.685 0.620 0.562 3.0 0.950 0.861 0.775 0.697 0,626 0.564 3.5 0,970 0.876 0.785 0.701 0.627 0.561 4.0 0.982 0.884 0.789 0.702 0.624 0.556 4.5 0.989 0.889 0.791 0.700 0.620 0.551 5.0 0,993 0.892 0.790 0.697 0.615 0.544 5.5 0.996 0.893 0.789 0.693 0.609 0.538 6.0 0.998 0.893 0.787 0.689 0.604 0.532 6.5 0.999 0.893 0.785 0.685 0.599 0.526 7.0 0.999 0.892 0.782 0.680 0.593 0.520 7.5 0.999 0.892 0.780 0.676 0.588 0.515 8.0 1.000 0.891 0.777 0.672 0.583 0.510 8.5 1.000 0.890 0.774 0.668 0.578 0.505 9.0 1.000 0.889 0.771 0.664 0.573 0.500 9.5 1.000 0.888 0.769 0.660 0.569 0.496 10.0 1 .000 0.887 0.766 0.656 0.564 0.492 Calc 17321.01-PM-44-2 Attachment 1, Page 13 Fig. 2-24. Heat transfer effectiveness as a function of number of transfer units and capacity rate ratio; split-flow exchanger, shell fluid mixed.SHELL FLUID MIXED I J A.CS LU z'5 U.)ULj U-O 2 4 6 8 10 NO. OF TRANSFER UNITS, Ntu =AU/Cmin ii Fig. 2-25. Heat transfer effectiveness as a function of number of transfer units; effect of flow arrangement for

= 1.100 CROSS -FLOW ONE FLUID MIXED-- CROSS FLOW, FLUIDS.I I I UNMIXED--.ý, -080 FCOUNTER LOW-\ , i.Q 6 z> 4 I-U.w 0 PAR .ALLEL FLOW.T+ýý0 -PARALLEL -COUNTER-FLOW I SKELL PASS\0 06- 1 2 3 4 5 NO. OF TRANSFER UNITS, Ntu = AU/Cmin 56 Page 1 of 1 I Calc 17321.01-PM-44-2 Attachment 1, Page 14 Queenan, Peter From: Sent: To: Manning, John Friday, August 31, 2007 11:03 AM Queenan, Peter

Subject:

FW: CCW Flow Rates and SDC FI Attachments:

CCW Flows SDC Flow.pdf Pete FYI John Manning (617) 589-1168 From: MOLZER, DOUGLAS S [1]

Sent: Thursday, August 30, 2007 4:35 PM To: Manning, John

Subject:

CCW Flow Rates and SDC Fl John, Please forward this to Peter Quenin (sp?).The attachment contains: 1.2.Pages 64-67 of CaIc. FC05669 showing CCW flow rates through AC-4A/B for 1 and 2 pump cases Shutdown Cooling Design Basis Document SDBD-SI-130 indicating that RC flow through 2 SDC ht ex.Is approximately 5000 gpm. We could conservatively assume 2000 gpm flow through each heat exchanger for use with the maximum fouling factor.Thanks, Doug Molzer This e-mail contains Omaha Public Power District's confidential and proprietary information and is for u mail is not a contract offer, amendment, nor acceptance.

If you are not the intended recipient you are no 9/6/2007 Design Basis Document I Calc 17321.01-PM-44-2 Attachment 1, Page 15 Fort Calhoun Station Shutdown Cooling SDBD-SI-130 R18 Page 94 of 114 Attachment 10 -Requirements and Design of Low Pressure Safety Injection Pumps (SI-2A, SI-2B Design Requirements Functional Requirements Functional Design" Safety Related Functional Requirements The Low Pressure Safety Injection Pumps shall be capable of delivering 159 gpm through the shutdown cooling suction line to provide an alternate hot leg injectionflow path following a Large Break-LOCA coincident with loss of instrument air and a single failure that would prevent the use of the pressurizer spray line (Ref. 4.20, 8.9, 9.9)." Non-Safety Related Functional Requirements The Low Pressure Safety Injection pumps shall be capable of delivering 3000 GPM through the two shutdown cooling heat exchangers (Ref. 7.2, page 61; Ref. 7.3 Sec I-D-2).(Refer to SDBD-SI-LP-133 for additional information.)

$ Safety Related Performance The LPSI pumps are capable of delivering flows in excess of 200 gpm.A caution statement incorporated in EOP-3 warns the operator of-. .-possible-pump-damage-if-the-pump-is-operatedat flows-below-200 gpm- *and RCS pressure above 140 psig (Ref. 4.20) 6 .over therequirted flow rautesw (Attac ghment 6). ner Rf.B )The' LPIpm eieycre hwthtacnieal agneit over~ ~ ~ ~ ~ ~ L the reure'lo/ats(Atchet-)

There are no specific requirements imposed on the design of the Low Pressure Safety Injection pumps for the following design basis attributes:

Layout Chemistry Access Control Environmental Fire Protection Alternate Shutdown Safety Evaluation Radiological Seismic Thermal/Hydraulic Suitability of Materials, Processes, Parts and Equipment Testing Electrical Separation Protection Against Dynamic Effects of Pipe Rupture, Jet Impingement and Missiles Handling, Storage and Shipping Personnel Containment Isolation Redundancy and Diversity Material Calc 17321.01-PM-44-2 Attachment 1, Page 16 S ..... ._ .. a:CALCULATION COV9R *SHEET .:i r~J I --IJ Calculation Preparation.'Review LI anaTfeaa ... I-ind Approval .: ""w .,iorm PED-QP-3.1

,,Forrn-Paie No. 1 Calculation Cover Sheet I Short Term Cajcýo YM .NO of.2.,17ALCULATHON NUMBER.FC0566 egýW CQA Cabagory:

UCOE M~~ C~FILEBNO. JNCE PED DEPARTMENT 357 DEN-Mechanifdi1*,l

` 3 CALCUL.ATION TITLE I VENDOR cALO. NO, 17321oNgL-lr ffiiU -CCW SYSTEM FLOW RATES 0j ENRi______

  • ODD kO SDBD-AC- 1UU 1.u Ql ECN NO. __________
  • APPROVALS

-SIGNATUPF

& DATE C.*F N 1NDP~NENT t RE. ~ SUPERSEDES 4,QUWD()'PREPAREft(SYIDATE(S) 1VIEWER(S)/DATE(3)

REIEWERF(S)/DATE(S)

YAO N~ ES/J76 Oqe?, 151IEE'1056D F)' R C\1, I tu F T0 CR+ANc(E /i, CAL C,. (-rL- IiG I FOK R56()qk Kee '62-Ic.4 EMRNA~lf ~ 1 L P4sb9_6N bimur[N co *,___NAM_&_______

0 -NAME__ __ &____ ____ __ 5 SEE IIISTRUOT(QNS ON REVERSE SIDE 0.COMFL-E-TEP BY OCUMENi'CONTROL..-.

RE~f 2 Calc 17321.01-PM-44-2 Attachment 1, Page 17 CaIc. No. FC,0669,Rev Page *I MOD Jj 23I ][7717 17 8 BA MODE I (2I__ 3 I() 1 6 7 7A .i8.. '" I' ......" No. Pup 1 2 1 2 2 2 2 3 3 TMH (psi) 37.8 34.3 79.4 76.3 32.0 73.9 82.2 85.1 88.4 98.1 100.1 Total Flow 5807 9601 9035 9412 5606 9688 8399 8027 7697 9350 8849 AC-1A 1863 1681 3002 3128 1863 3219 2791 2667 2525 3107 2940 AC-1B 1849 1847 2979 3104 1849 3195 2770 2647 2505 3083 2918 AC-IC 1895 1893 3053 3181 1894 3274 2838 2713 2557 3150 2990 AC-ID 0 0 0 0 0 0 0 0 0 0 0 AC-4A 32 1937 61 2152 28 61 67 73 a8 74 AC-48 32 1996 51 K28Z/ 16 3734 61 67 73 68 74 VA-1A 1118 0 1802 0 704 1215 2283 2686 2882 2542 2851 VA-18 1148 0 1850 0 723 1247 2344 2655 0 2609 2927 VA-BA 620 0 999 0 390 673 1265 1437 1597 1408 1585 VA-8B 635 0 1023 0 400 688 1296 0 1835 1442 0 AC-8 760 650 1225 1092 459 791 0 0 0 0 0 CH-7 6890 590 1112 991 416 718 0 0 0 0, 0 SI-lAIB 12 11 20 18 8 13 29 32 35 32 35 SI-2A/IBIC 48 41 78 69 29 49 110 123 137 123 136 5l-3AIBIC 19 16 30 26 12 19 42 47 53 147 52 VA-46A so 57 96 96 38 65 155 176 196 173 194 VA-458 80 58 97 97 38 65 0 0 0 0 0 C14-1AIBiC 15 15 24 21 9 1i 33 39 42 39 42 RCP Lube. 46 39 73 65 27 47 95 106 117 105 117 RCP Seat 89 76 144 128 64 93 185 207 229 206 229 CEDMs 59 50 95 84 35 61 122 137 151 136 151 WD-28A/8 48 26 77 44 26 44 93 101 109 103 110 SL-3 24 17 39 29 14 25 47 51 56 52 57 SL-8AIB 22 16 36 26 12 22 42 46 50 46 60 DW-46, 71 50 114 84 42 72 136 149 162 152 164 SL-51 1,a~ud 'I juatuqzmgaV Z-tt7Hd- [0"IU DIUD[ lg I Calc 17321.01-PM-44-2 Attachment 1, Page 18) 73;1,/001'-

Caic. No. FC05669, Rev. ...page 4E MOD J TF"BA 9B 110 10A 10lO 10C 117 112 1 No.Pumps 3 3 3 3 2 2 2 2 1 1 1 TH fpsui 103.2 96.5 99.1 101.6 71.8 72.4 72.9 73.9 40.0 39.9 43.8 Total Flow 8328 9895 9318 8873 9608 9584 9497 9411 6598 5506 5602 AC-IA 2767 2527 2379 2215 3192 3175 3155 3127 1860 1863 1881 AC-1B 2746 2507 2361 2198 3168 3150 3132 3103 1846 1849 1847 ACI1C 2814 2422 2281 2123 3248 3229 3210 3180 1892 1894 1683 AC-ID 0 2438 2298 2137 0 0 0 0 0 0 0 AC-4A 80 72 78 83 2573 2723 2870 3094 36 35 41 AC-4B 80 72 78 83 2599 2750 2899 3124 36 35 41 VA-IA 3160 2689 3002 3290 1235 1351 1460 1614 1285 1270 1508 VA-16 0 2781 3092 0 1268 1388 0 0 1320 1304 1546 VA-8A 1751 1490 1688 1823 684 751 809 888 713 704 835 VA-8B 1793 1626 0 1867 700 0 828 0 730 721 856 AC-8 0 0 0 0 0 0 0 0 0 884 0 CH-7 0 0 0 0 0 0 0 0 813 0 0 SI-lA/B 39 33 37 41 15 16 17 19 16 15 19 5I-2AjBIC 149 130 144 155 58 82 67 73 61 55 73 SI-3A/BIC 56 50 56 59 22 24 25 28 24 22 28 VA-46A 215 183 204 224 84 92 99 110 69 68 80 VA-46B 0 0 0 0 0 0 0 0 69 69 81 CH-1AIBjC 45 39 45 48 18 18 21 23 18 18 23 RCP Luba 128 111 123 134 49 53 57 62 53 52 82 RCP Seal 251 218 241 262 as 104 111 122 104 103 122 CEDMS 165 144 159 172 63 68 73 a1 68 68 81 WD-28A/B 121 109 117 125 35 37 39 42 54 53 61 SL-3 61 65 s0 64 23 24 25 28 27 27 31 SL-8AJB 54 50 52 56 20 22 22 24 24 24 28 DW-46. 178 160 173 185 a6 70 74 80 79 78 90 SL-51 Calc 17321.01-PM-44-2 Attachment 1, Page 19 Caic. No. FC05669, Page M-1 Moog 114 I1 a 17 I1 1s is 20 1 21 22 23 24 26 No. Pumps 1 1 1 2 1 1 2 2 2 2 2 2 TOH (psl) 35.7 35.6 37.8 63.9 23.9 27.1 66.5 69.3 89.5 73.9 64.2 86.4 Total Flow 5598 5608 5605 10153 5304 5298 9989 9788 9787 9429 10110 9987 AC-IA 1860 1863 1863 2592 1354 1353 2551 2499 2499 2408 2582 2550 AC-IB 1848 1849 1849 2573 1344 1343 2531 2480 2480 2389 2562 2531 AC-1C 1892 1895 1894 2485 1298 1297 2446 2396 2396 2308 2475 2445 AC-1D 0 0 .0 2502 1307 1306 2461 2412 2412 2323 2491 2461 AC-4A 2175 2158 2480 2403 1254 1885 2901 3387 36 43 2533 31 AC-4B 2197 2177 2505 1427 1267 1904 '2830 3420 4784 5706 2558 4105 VA-1A 0 0 0 1106 577 0 0 0 0 0 1189 1374 VA-1B 0 0 0 1134 592 0 0 0 0 0 1221 1411 VA-SA 0 0 0 613 320, 0 839 0 984 0 659 761 VA-8B 0 0 0 627 328 0 859 0 1007 0 675 780 AC-8 0 747 0 894 364 636 931 1132 1128 1395 0 0 CH-7 685 0 0 632 331 577 847 1030 1021 1266 708 840 SI-1AIB 14 11 18 12 6 10 15 19 18 23 14 17 SI-2AIB/C 52 47 -61 44 23 40 59 72 71 88 54 64 SI-3A/BIC 19 18 22 18 9 16 22 26 28 34 21 25 VA-46A 64 84 73 59 31 56 82 100 86 120 63 73 VA.46B 65 84 73 s0 31 58 83 101 97 121 64 74 CH-1A/BIC 15 16 18 15 6 12 18 21 21 27 17 21 RCPLuba 45 44 51 42 22 0 56 68 67 84 46 65 RCP Sou 88 87 101 82 43 0 110 133 132 164 90 107 CEDM9 58 57 68 54 28 0 72 88 87 108 50 71 WD-28A/B 30 29 34 32 17 26 39 46 57 6a 34 49 SL-3 19 19 22 21 11 17 26 30 32 38 22 27 SL-8AIB 18 18 20 18 10 14 22 28 28 34 20 24 OW-46, 58 55 64 62 32 "49 75 87 93 111 65 80 SL-51..& I",

Calc 17321.01 -PM-44-2 Attachment I; Page 20 1 Calc. No. FC05669, R. -t Page-A 7 0 MOD 26 (27 128 29 [ j ___ I No. Pumps 3 2 2 2 TDH (ps') 92.4 75.8 80.6 68.3 Total Flow 10795 .9525 9855 10326 AC-IA 2756 2432 2261 2637 AC-IB 2735 2414 2244 2617 AC-IC 2643 2332 2161 2528 AC-ID 2660 2347 2182 2545 AC-4A 61 54 65 2766 AC-4B 61 54 65 2794 VA-IA 2153 1899 2407 1327 VA-1B 2211 1950 2471 1362 VA-SA 1193 1053 1334 735 VA-SB 1222 1078 1366 753 AC-S 1464 1291 0 0 C!1-7 1328 1172 0 0 31-I A/B 24 21 30 16 SI-2AJB/C 93 82 '116" 61$1-3A/BtC 35 31 44 23 VA-46A 115 101 164 90 VA-46B 116 102 0 0 CH-IA/B/C 29 25 36 19 RCPLube 8 77 100 522 RCP Seal 172 152 .195 103 CEDMs 113 100 :129 65 WD-28AIB 93 82 97 37 SL-3 47 42 49 25 SL-SA/B 42 37 .44 22 DW-46, 137 120 144 71 SL-51 aLSI__________

_____ ___

Page 1 of 2 Calc 17321.01-PM-44-3 Attachment 1, Page 21 Queenan, Peter From: MOLZER, DOUGLAS S [dmolzer@oppd.com]

Sent: Friday, March 28, 2008 2:04 PM To: Queenan, Peter Cc: LIPPY, DONNA L; MATTHEWS, THOMAS C; GASPER, JAMES R

Subject:

RE: OPPD SDC -4 CCW Hx Peter, This is a follow-up to our earlier conversation.

FlowServe has provided us verbal confirmation that the CCW limitation of 100 F based on LPSI pump seal temperatures may be overly conservative based on an inaccuracy in their assumed seal configuration.

They have a high confidence level the previous limit of 120 F on CCW temperature should not be a problem. They agreed to send out a letter on Monday to confirm our conversation.

In the interim, our Design Manager requests the calculation you are working on (FC05694) be completed based on verbal confirmation.

Please proceed with the completion of the Calculation based on a CCW limit of 120 F.I've provided an attached Excel spread sheet that lists the important input based on revision.

Proceed on Revision 3 based on the attached inputs I've listed under the "Rev. 3" column. Please call if you have any questions.

If the calculation cannot be completed by Monday please let us know, as we will need to inform the NRC We will not meet our commit date.Thanks, Doug Molzer Nuclear Design.Engineer Fort Calhoun Nuclear Station Ft. Calhoun, NE 68023 402-533-6678 dmolzer@oppd.com From: Queenan, Peter [2]

Sent: Thursday, March 27, 2008 4:18 PM To: MOLZER, DOUGLAS S Cc: Jacobs, Wesley

Subject:

OPPD SDC -4 CCW Hx Doug -Using all 4 CCW heat exchangers doesn't help enough to get us there. And a higher CCW flow through the shells, doesn't help, it hurts.Counter intuitive as all get out, but increasing the CCW flow though the bank of 4 exchangers at a given duty actually raises the CCW cold temperature

! The higher flow does improve the heat transfer coefficient, and the average tube to shell temperature different does drop a hair. But since the temperature change is less with the higher flow, the inlet (CCW hot) temp drops and the outlet (CCW cold) rises.Another path that might work would be if the 100°F temperature could be raised by IVF, to 101 0 F, the calculation works. Are the pump seals at issue somewhere where the ambient is low enough that un-insulated pipe or a passive fin cooler would buy I1F ?Peter Queenan, PE Senior Engineering Specialist Thermal Engineering Group Shaw Power Group 3 Executive Campus 3/28/2008 Page 2 of 2 Calc 17321.01-PM-44-3 Attachment 1, Page 22 Cherry Hill, NJ 08002 856.482.3095 direct 856.482.3155 fax ShawTM a world of SolutionnsTM www.shawcirp.com This e-mail contains Omaha Public Power District's confidential and proprietary information and is for u mail is not a contract offer, amendment, nor acceptance.

If you are not the intended recipient you are no****Intemet Email Confidentiality Footer****

Privileged/Confidential Information may be contained in this message. If you are not the addressee indicated in this message (or responsible for delivery of the message to such person), you may not copy or deliver this message to anyone. In such case, you should destroy this message and notify the sender by reply email. Please advise immediately if you or your employer do not consent to Internet email for messages of this kind. Opinions, conclusions and other information in this message that do not relate to the official business of The Shaw Group Inc. or its subsidiaries shall be understood as neither given nor endorsed by it.The Shaw Group Inc. http://www.shawgrp.com 3/28/2008 Calc 17321.01-PM-44-3 Attachment 1, Page 23 Inputs to Calculation FC 5694 -Calculation of Minimum Reactor Coolant Time Usaing Shutdown Cooling System REV 0 REV 1 2 3000 REV 2 REV 3 (IN PROGRESS)LPSI Pumps #LPSI Pumps Flow Total (RCS Flow) -gpm SDC HT EX #SDC HT EX -Fouling CCW HT EX #CCW HT EX -Fouling CCW Temp -Maximum (F)CCW Pump #CCW Pump Flow Total CCW Heat Load (BTU/HR)CCW Flow to SDC HT EX -throttled CCW Flow to SDC HT EX -Unthrottled.

2 3000 1.0.001072 3 120 2 8100 131.6 E6 1962 4246 2 3000 1* 0.001 3* 0.0015 120 2 8100 1962 4246 1* 0.001 3 0.0015 120 2 8100 As needed 4246 120 2 8100 Based on 2 hrs after shutdown As needed 4246 RW Pumps RW Pump Flow Total RW Inlet Temp RW Outlet Temp Limit RCS Inlet Temp -Initial Time to SDC -HRS 2 7159 90 None 300 2 7159 90 None 300 2 7159 90 None 7159 90 None 350 350 2.5 2.5 2 2 Calic 17321-01-PM-44-3, Shutdown Cooling Time Attachment 2, Page I Shutdown Cooling Heat Exchanger Heat transfer rate, clean 487 Btu/hr-F-sqft Heat transfer rate, dirty 320 Btuthr-F.sqft Heat Transfer Area (U2) 5020 Number of U-tubes 514 tube od, inch 0375 tube gage (OWG, Inch) 18 0.049 tube Id, inch 0.652 Tube flow area. ft^2 1.19175 (from tube number and id)Shell Flow Area, ft^2 2.5904 (adjusted to give bet fit to data sheet velocities)

Shell film correction factor 0.09751 Hx Design Point (Mode B)h (Btulhr- Fouling, hr-Q. gpm W Pt.i Tt.i flo Tt.ave rho Cp mu k Vel Re Pr 112-F) ftt2-F/Btu Udirty Uclean rACp Cr NTU effectiveness DT to Duty 1W^tt'3 BtuItb-F tb/ft-sec Btu/hr-ft-F 0 mmttufhr tube 3000 1,476.852 3.11918 140 114.93 127.47 61.38 0.9989 3.50E-04 0.372 5.609 53,484 3.3809 1554 0.0005 1.475,215 0.66 1.0809 0.53330358 25.07 114.93 metal 114.38 3.905E-04 8.775 2005 320.002 487.85 36.98 shell 4500 2,237,087 100 93 109.57 101.28 61.98 0.9977 4.52E-04 0.362 3.870 114,657 4.4774 1233 0.0005 2,231.873 1.5129 1.089 #N/A 16.57 109.57 320 487 37.1 0.000810743 0.000814 0.0010716-1.53E-08

-3.6E-06 2,066.65 2,057.6W Mode A tube metal shell Mode C tube metal shell Mode D tube metal shell 1500 741,518 2.9424 2250 1,121,755 95 2250 1,079,449 15.696 2937 1,455,601 95 3400 1,599.745 33.5275 4728 2.343.356 05 125 100.16 112.58 61.63 0.9983 4.02E-04 0.367 2.804 23,342 3.9442 839 0 99.40 4.61E-04 8.697 1988 78 94.43 86.21 62.16 0.9976 5.35E-04 0.356 1.935 48,566 5.3992 759 0.00316542 5.7E-05 5&7E-05 212 158.65 185.33 59.81 1.0033 2.24E-04 0.387 4.206 61,051 2.0890 1483 0 150.11 2.89E-04 9.001 2057 95 134.77 114.88 61.79 0.9980 3.93E-04 0.368 2.526 85,650 3.8445 904 0.00341756 157.280 313.22 158.7 31&9 0.001261508 0.001262 1,271.19 1,271.19 175.878 440.99 17.11 455.2 0.000935297 0.000935 1,807.22 1,858.06 169.130 575.70 170.7 594.3 0.000696222 0.000696 2,493.60 2,493.52 740,278 0.66 1.067 0.52842214 24.84 100.16 1.110.112 1.5117 1.087 #N/A 16.43 94.43 0.003165 1,083.007 0.75 0.815 0.45595946 53.35 158.65 1,452.745 1.3414 0.815 #N/A 39.77 134.77 0.003418 1,614,677 0.69 0.526 0.35611814 56.98 198.02 2,338,741 1.4484 0,526 #N/A 39.34 134.34 0.004176 18.39 194.26 57.78 U8.031 92.00 94.391 7,1E-05 7.1E-05 255 198.02 226.51 58.66 1.0093 1.75E.04 0.393 8.356 116,024 1.6139 2270 0 170.59 2.48E-04 9.124 2085 98 134.34 114.67 61.79 0.9980 3.94E-04 0.368 4.067 137,599 3.8534 1332 0.0041756 54E-05 5AE-05 Cato-PM-44-3 Art2-1_ DC_ColdowndTme4246Q.,ds; SDCHx 312912008,12:49 PM Calc 17321-01-PM-44-3, Shutdown Cooling Time Attachment

2. Page 2 tube od. inch tube gage (BWG, inch)tube id, inch 0.75 18 0.049 0.652 Re ditty dean 48.5W6 1.271 1.271 85,650 1,857 1.850 114,657 2,067 2,058 137,599 2,494 2.494 Ln(Re) Ln(dean)10.79068 7.14770788 11.35803 7.52729078 11.6497 7.62932323 11.8321 7.82145074 0.61709 0.49192 1.63545328 0.333 1/(ho1o k
  • Pr~m)11(ho *
  • Prrn)2M M0t00n 00.o00 W.000 1000000 120,000 140,000 1eo,000 R.7.6 710 7.1 7.4 7.1 7.;00.0 10.e t 112 11.4 11.6 1t.8 Ln(Re)Effectiveness-Capacity Ratio-NTU for mix flow Hx Capacity Ratio -WCp(tube)

< WCp(shell) 0 0.2 0.4 0.6 NTU 0 0 0 0 0 0.5 0.393 0.378 0.364 0.350 1 0.632 0.593 0.557 0.523 1.5 0.777 0.718 0.664 0.613 2 0.865 0.792 0.723 0.661 2.5 0.918 0.835 0.757 0.685 3 0.950 0.861 0.775 0.697 3.5 0.970 0.876 0.785 0.701 4 0.982 0.884 0.789 0.702 4.5 0.989 0.889 0.791 0.700 5 0.993 0.892 0.700 0.697 5.5 0.696 0.893 0.789 0.693 8 0.998 0.893 0.787 0.689 6.5 0.999 0.893 0.785 0.685 7 0.999 0.892 0.782 0.680 7.5 0,999 0.892 0.780 0.676 6 1.000 0,891 0.777 0.672 8.5 1.000 0.890 0.774 0.668 9 1.000 0.689 0.771 0.664 9.5 1.000 0.668 0.769 0.660 10 1.000 0.887 0.766 0.656 0.8 0 0.337 0.492 0.567 0.603 0.620 0.626 0.627 0.624 0.820 0.615 0.600 0.804 0.599 0.593 0.588 0.583 0.578 0.573 0.569 0.564 1 0 0.324 0.462 0.524 0.552 0.562 0.564 0.561 0.556 0.551 0.544 0.538 0.532 0.526 0.520 0.515 0.510 0.505 0.500 0.496 0.492 Capacity Ratio -WCp(shel)

< WCp(tube)0 0.2 0.4 0.6 0 0 0 0 0 0.5 0.393 0.378 0.364 0.350 1 0.632 0.593 0.557 0.523 1.5 0.777 0.718 0.664 0.613 2 0.865 0.791 0.723 0.661 2.5 0.918 0.833 0.757 0.685 3 0.950 0.857 0.775 0.697 3.5 0.970 0.870 0.785 0.701 4 0.982 0.876 0.789 0.702 4.5 0.989 0.878 0.791 0.700 0.8 0 0.337 0.492 0.567 0.803 0.620 0.625 0.627 0.624 0.620 0 0.324 0.462 0.524 0.552 0.562 0.564 0.561 0.556 0.551 9188 CriNi Steel (e.g. A249 TP304).F Thermal Conductinity, Btu/hrlsqnf/F 70 8.8 100 8.7 150 9 200 9.3 250 9.6 300 9.8 350 10.1 400 10.4 450 10.6 500 10.9 550 11.1 800 11.3 650 11.6 700 11.8 750 12 000 12.2 850 12.5 900 12.7 950 12.9 1000 13.2 1050 13.4 1100 13.6 1150 13.8 1200 14 1250 14.3 1300 14.5 1350 14.7 1400 14.9 1450 15.1 1500 15.3 Calc-PM-44-3 Art2-I_SDCCooldownTime4246Q.Ads; SDCHx 3/29/2008, 12:49 PM Calc 17321-01-PM-44-3, Shutdow, Cooing Time Component Cooling Water Heat Exchanger Atachment 2, Page 3 Heat Tranfter Amea (02)Numbew ofbtibes No. of Passe tube od tube gage (BWG)tube id Tube low aea, r2 Shel Flow Ares, f. 2 Sel fil -ocrecbon factor 12400 effecvve 228O 3 0.75 18 0.049 0.652 1.76212 1.74107 102130 Tube": 314", 1 BM w. mein wd, STISTL -SA-249-TP-304 (OPPD Drao~ng Fee No. 18674.VIAIock Mfg Co. N o. L-26132-1 Flow aangement, pre cowuteomw pe dreaiig Cromr and Lodal dravAng FC-ACI Bi, dated 7126199 tube 0.333333 she. 0.333333 Q. gpm W Pli Hx Design Poitt (Mods E)bobe 2673 1,332.918 100 2etal Sheal 2293 1,109,178 100 TU, TI.,, Ttave rho CP ow 15197 B1016-F Ibl-se,, 91.4, 85 185.12 135.06 62.17 157.46 239.1 119.91 179.85 60M57 0.9909 3.27E-04 1.0024 2.32E-04 h (Shift- Fouding. h.k Vel Re Pr 92-F) 0A2-F/Btu Udirty Ucdean WCp F 0.375 3.300 34,92 3.1407 1000 0 1.331.462 9.045 2067 244.003 400.45 0.386 2.920 110.479 2.1712 1228 0.00165 1,111,834 244 406-5.1E-08 -2.7E-06 0.0008146 0.0008172 2,454.50 2,446.64 Cr NTU !ffecenese DT to Dty mm-BtuA, 120 0.8350 0.00165 Mode A tube metal shel ModsB tube mewe.bat Mode C mebe mbeta shell Mod. D tube-wa ahel Moda F lobe metal shel 1575 785.390 100 85 99.06 92.48 62.17 0.9976 4.97E-04 0.359 95.18 0.678 1550 771,090 75 105.5 90.27 97.80 62.02 0.9977 4.69E-04 0.361 3270 1.634,163 100 70 99.75 84.87 62.31 0.9976 5.430-04 0.355 93.16 4.94E-04 8.670 2885 1,434,171 95 119.4 84.50 101.45 61.98 0.9977 4.51E-04 0.362 2518 1258,356 100 70 86.01 70.01 62.31 0.9970 5.91E-04 0.352 82.01 5.62E-04 8.629 2200 1,096.865 95 95.2 76.82 86.01 62.16 0.9976 5.36E-04 0.356 2518 1255.826 100 85 101.28 93.14 62.17 0.9976 4.94E-04 0.359 97.00 4.73E-04 8.686 2200 1.093,785 95 110.2 91.51 100.85 61.99 0.9977 4.54E-04 0.362 3333 1,662,034 100 85 109.93 97.47 62.17 0.9976 4.71E-04 0.361 105.42 4.33E-04 8.727 2025 1,003,970 95 134 92.74 113.37 61.81 0.9980 3.99E-04 0.367 Re dirty clean 38,103 1,569.46 1,570.93 47,375 1,284.79 1.284.48 55,M04 1,477.97 1.477.53 58.209 1,432.97 1,432.99 73,637 1,687.92 1,687.85 110,479 2,454.50 2,446.64 1.991 13,526 4.9820 523 1983 1.982 38,103 4.6634 661 4.6E-04 4.6E-04 4.135 25,765 5.4952 896 1981 3.690 73,637 4.4688 1078-6.5E-05 -6.5E-05 3.184 18239 6.0346 695 1972 2.814 47.375 5.4135 a00-8.6E-06 -$.8E-06 3.104 21,786 4.9410 764 1985 2,814 55,804 4.5003 875 1.1E-05 1.0E-05 4214 30250 4.6$57 982 1994 2.590 58,209 3.9076 874-6.3E-05 -6.3E-05 10.7658 7.158348 10.9296 7298424 10.9718 7.207505 112069 7.431255 11.6126 7.80568 0.75645 -0.099266 0.37059 0 174.966 237.22 0.0015 110.1 288 0.001057 0.001056 1,569,46 1,570.93 0 237.195 368.20 0,0015 2333 360A 0.0009926 0.0009027 1,687.93 1,687.85 0 204.055 294.06 0.0015 23.2 21 0.0012467 0.001247 1.284.79 1,284.48 0 215.009 317.36 0.0015 2168 318MA 0.0011318 0.0011321 1.477.97 1,477.53 0 231.626 354.95 0.0015 228.2 347.2 0.001207 0.001207 1,432.97 1.432.99 783,494 1.02 769,338 0.9819 0.00150 1,630,306 1.14 1,430,862 0.8777 0.00150 1,255,608 1,15 1,094,283 0.8715 0.00150 1.252,598 1.15 1,091.251 0.8712 0.00150 1.658,073 1.65 1.001,950 0.6043 0.00150 2.721 -100.12 195,12 2.721 0.775 -119.89 119.91 2.$20 -14.96 99.96 2.820 0.743 -15.23 90.27 2.056 -29.75 99.75 2.056 0.700 -33.90 84.50 2.312 -16.01 86.01 2.312 0.729 -18.38 76.82 2.443 -1628 10128 2.443 0.742 -18.69 91.51 2.667 -24.93 109.93 2.M07 0.942 -41.26 92.74-133.30 134A96-11.72-49.50 48.18-20.11 18.92-20.40 1682-41.34 39A1 2700: ww*'20 700 200 0 20X0 ,oo two,, 80000 IMM~ 1200D0 U40.I)CakPW44-3 At12-1_SDCCooldo"nTiie4246Q0,l; CC39Ix 3129r200, 12:49 PM Cak 17321-01-PM.44-3, Shutdown Cookng Ti"e Aftechment 2, Page 4 CCW Heat Exchanger Performance at Various Fouling Coefficients and CCW Inlet Temperatures with 9OF River Water Sheo FP4 Mull.er 10213 River Water Temp 90 RW Flow, Total, gpm 7159 Shed Film Re power 0.75645 No CCW Hx 3 CCW Flow. total, gp 8100 Shea Film Pr power 0.3333333 Fomft (total = tube Wle) 0.004 CCW -Based on Average Raw Water Flow IsI I(i- I (aF-. 'To° s CCI.IXS CT RT = Tube Side)side CcW HX td sidW I 1A IB IC ID 1E 2A 21 2C 2D 2E 3A 38 3C 3D 3E 4A 45 4C 4D 4E 0.se A TOj Ttvo 0. qe P1 TOi Tam bh (Btuo. h (Bbts/o-2.

T2-F) F) kmt11 2296.3 30 90 90.40 27 90 90.50 90.15 719 966 8.608 2386.3 30 90 114.64 2700 90 12025 98.39 772 1066 80729 2306.3 30 90 138.48 2700 90 150.00 105.91 626 1159 8.610 2386.3 30 90 160.71 2700 90 175.00 111.74 872 1233 8.897 2386.3 30 90 182.10 2700 90 200.00 117.17 017 1302 8.902 2386.3 30 90 90.72 2700 90 91.00 80.36 719 968 8.659 2306.3 30 90 112.25 2700 90 120.50 100.75 767 1073 8.729 2386.3 30 90 13424 2700 80 150.M0 110.55 M15 1170 8.815 2386.3 30 90 153.15 2700 90 175.00 118.46 856 1249 8.896 2386.3 30 g0 17224 2700 90 200.00 126.04 806 1322 8.981 2386.3 30 90 90.65 2700 90 91.00 90.42 719 968 .659 2386.3 30 90 110.15 2700 90 120.50 102.61 762 1077 8.729 2306.3 30 80 130.00 2700 90 150.M0 114.33 806 1180 0.814 2386.3 30 80 147.03 2700 90 175.00 123.91 843 1261 8.895 2386.3 30 90 164.20 2700 80 200.00 133.22 879 1337 5.979 2386.3 30 80 90.61 2700 90 91.00 90.46 719 968 8.659 2398.3 30 90 104.95 2700 90 120.50 103.68 780 1080 8.729 23863 30 90 127.59 2700 90 150.00 116.47 800 1105 8.914 2386.3 30 90 143.57 2700 90 175.00 127.00 835 1268 9.894 2306.3 30 80 162.90 2700 90 205.00 139.30 876 1361 8.995 0.0000 0.0000 0.0000 0.9000 0.0000 0.0015 0.0015 0.0015 0.0015 0.8015 0.0030 0..030 0.0030 0.0030 0,0030 0.0040 1.0040 0.0040 00.040 0.0040 Ueiny W WCp 318.35 1.188,935 1.106.437 341.38 1,188,935 1.186,529 363.46 1,18935 1,18901 381.30 1,187.386 398.50 1,188.935 1.1180.014 215.63 1.186,935 1.186,436 225.55 1.188.,35 1,186,507 234.61 1,188.935 1.186,804 241.70 1.180.835 1.187,190 249.30 1,188,935 1.187,707 162.93 1.18"8935 1.180,436 168.39 1'180.835 1M180,489 17325 1.188,935 1,106,732 176.98 1,188,935 1.187.058 100.40 1,189,235 1,187,479 140.10 1,18.,935 1,186.436 1"4.00 1,18",935 1,19".480 147.54 1,1889.35 1'180.694 150.19 1,188,935 1,186,964 153.00 1,180,935 1,187.444 Cr NTU .Ofelrenee DT Tt.o W 0.88 3.327 0.802 0,40 80.40 1.5,8134 0.89 3.568 0.814 24.64 114.64 1,330,812 0.89 3.797 0.825 49.48 139.48 9,33 0.89 3.982 0.832 70.71 160.71 IJ.32763 0.90 4.159 0.838 92.10 182.19 1,35,869 0.88 2254 0.720 0.72 80.72 13466 0.89 2.357 0.730 2225 112.25 1.i.490 0.89 2.451 0.737 44.24 134.24 1,=.,6,41 0.90 2.524 0.743 63.15 153.15 1.30480 0.90 2.592 0.748 0224 172.24 1.3119,65 0.86 1.703 0.853 0.65 90.65 1,3M4,006 0.9 1.760 0.661 20.15 110.15 1,.3,i911 0.88 1.810 0.667 40.00 130.00 1,.332148 0.90 1.849 0.671 57.03 147.03 1t26,318 0.90 1.884 0.675 7420 16420 1,37,848 0.88 1.464 0.615 0.61 90.61 1,345,030 0.80 1.508 0.621 18.8 100.05 1,336,033 0.89 1.542 0626 37.59 127.59 1,331,780 0.90 1.569 0.630 53.57 143.57 0.334.728 0.90 1.598 0.634 72.90 162.60 1,310.408 120.IDO-1004 E a4o0 WCp C, NTU Meofee DTs 10341,880 1.1311 3.W2 0.78 0.315 1,3l'W 1.1280 3S1SS 0.42 21.M 1.3311 1.1221 3.7M7 0.78U 44.68 1,32,87 1.1174 3MM U1761 6a.m 1=.14 1.1121 4.1t1 0.768 U 1,341.061 1.1310 2254 0A61 0.64 1A3317 1.120 3.37 02W 71 t9.75 1,33.10 1.1214 2.451 0*78 3*9A 1.22,80 1.1169 2M54 O.M UM3 1.326.67 1.1`119 2.89 0.68 73 1.341.683 1.1310 1.703 0.604 0ci6 1,336.48 1.1264 1.760 8,412 07.8 1,330,40 1.1212 1.810 0.6"9 3Me6 1M.3,131 L.1163 t148 A 0 1121 81.00 1,31t9465 1.1111 1.884 0.630 66.76 1,341.840 1.1310 1.464 0.57t 0.54 1,i'311 1.1253 1.is" 0.78 16Dn 2 1,3302"16 1.132 1.542 0.414 33.03 1 4,3802 1.1160 tm6 0.898 48*1,37,861 0.104 1.11 050 66.70 CCW HX Duty at 90F Raw Water 75 95 115 135 155 175 CCW Inlet TeOmpO., F Ca.lPM-44-3 A02-1 _SCCooldoweTime4246QJls; CCW 3/2912008,12.'49 PM Attachment 2, Page 5 Calc 17321-01-P4-44-3.

Shutdown Cooing rime RW Flow. Total, gpr 7159 CCW Flow. total, gpnm 9100 Case Z Duly, par T05dj. Tshellout Itu Too TO IA lB IC 1D iE 2A 28 2C 2D 2E 3A 38 3C 30 3E 4A 48 4C 40 4E 50.15 0.48 90.50 am 2923 12025 10lo1 58.72 150.00 111.74 83.95 175.00 117.17 109.52 200.00 6 0.85 91.00 I50.75 26.40 120.50 19015 52.51 150.00 114I0 74.97 175.00 12.04 07.67 200.00 10142 0.77 91.00 102.61 23,90 120.50 1"4.,3 47.47 150.00 12311 67.70 175.00 IA123 88.11 200.00 ge4 0.73 91.00 103m 22.48 120.5o 11017 44.61 150.00 127,00 63.58 175.00 139.30 96.56 205.00 90.15 0.15 98.39 8.39 105.91 15.91 111.74 21.74 117.17 27.17 90.36 0.36 100.75 10.75 110.55 20.50 116,46 20.46 126.04 36.04 90.42 0.42 102.61 12.61 114.33 24.33 123.91 31.01 13322 43.22 CCW MX Ts,o looting Duty. rnmof r 1 20 40 60 86 0.0000 91.05 110.79 131.19 15127 177.01 0.0015 81.17 113.17 195.93 158.37 187.18 0.0020 91.29 115.56 140.70 165.52 197.42 0.0040 91.37 117.16 943.89 170.30 204.27 CCW FX shag outlet temperature fouing Duty. mmotouhr 1 20 40 60 86 0.0000 90.30 95.85 101 23 106021 112.19 0.0015 90.42 98.22 105.95 11324 122.19 0.0030 90.05 100.61 110.69 120.31 132.27 0.0040 90.63 102.20 113.85 125.04 139.01 Average CCW 90.68 103.32 116.21 128.74 144.60 90.,0 105.70 120,94 135,81 154.69 90.92 108.09 125.69 142.92 164.85 91.00 10.968 128.87 147.67 171.64 90.46 103.68 116,47 127.00 139.30 0.46 13.68 26.47 37.00 49.30 CCW Temperature vs Duty at various CCW HX Fouling Level 145 195 215-04--Fouling hr-FoqOIl~u

-&-ooc0o i 01~85 0 10 20 30 40 1o 0o 7M W0 90 900 Duty Pr HME. r 3/29/2008,12:49 PM CaW.lo.41,4-2 Aft2-1_ýSOCCoodo-sTur"o246OXAn:

CCW Caob 17321 PM-44-3, Shutdoi Coofing Tim~eA0cmn2,Pg4 Attachmet 2, Page 6 Shutdown Cooling TempppPl)ture Transient with 9O1 Rtiver Water S H20 Fouli0ng.

0.001 -1.51/ -10.2CCW Hx Fouling 1 00.0016 hr.F4qf0/Btu InadRCT bertr,, F 360 SDC HX CCW H-I2.a0 .1m. 2 2754 0.03751-RCS Temperature A.te 8 hours9.259259e-5 days <br />0.00222 hours <br />1.322751e-5 weeks <br />3.044e-6 months <br /> 152.36 0 i~e iM R pwe 0.61709 2 T.2a0er .ip0to 13.0 Pri7o24nt Tem9p 922.00 -0al CCW to S3CK, 4246 Sh9l Film P6 p1- 0 133 6 4 me0 f0 SDC .62 .1O P ep 20.0 .cc.0 w 4 S0 pTe 275 Fo. g 4 u197 -4b6 W&) 61.01 0 001 De2a. 0 ho0t equi4l0.m3 1 at ..F river tem _30448 00.0218. 01001 Time step Q(D) P(pp) POIP) Pokc TOWa 0 dTrý shell hI- h. rmmBtu degFfhr Q. 9p. Pi Tt~i Tt,o 0. gp. Pj TO~ Ts;,o 2.00 0.10 54.250 10 1.5 -186.98 -112.51 -10229 3000 315 350.00 213.15 46 95 114813 204111 2.10 0.10 54.107 10 1.5 -179.65 -106,04 -96.41 3000 315 339.77 208.87 44 95 114,07 16 220 0,10 7.2230 16 1.5 -112.74 -99.94 -90.86 3000 315 330.13 204.79 4346 96 101 7 I2 1 2.30 0.10 42.740 15 1.5 111820 -94.16 -45.60 3000 315 321.04 200.91 446 i9s 1M6.2 1" 2.45 0.10. 51.37 19 1.5 -1140.03 -4870. -804.4 3000 315 312.48 197.2396 66 146.1 IN 2.50 0.10 51.1743 19 1.5 -154119 -45.75 5 41.95 3000 315 304.42 193.73 416 96 199.78 1111 2.60 0.101 50.500 1 1.5 -10.10 -78.69 -71.24 3000 315 296.4 2 190.41 4M46 96 11603 1917 23.7 0.12 44994 18 1.5 -143.87 -74.30 -37.37 3000 315 289.67 187.26 4S49 96 1047. 179.2 2.80 0 .13 44.52 18 1, -138.60 -69.806 -3.45 3000 315 232.23 184628 46 96 ISOM* 19.110.10 48.749 19 1.5 -133.99 35.74 -59.76 3000 315 276.59 181.46 4341 so 196.16 161.1 3.00 010 48.218 i8 1.5 529.63 -61.92 -5629 3000 315 270.61 178.78 4246 9 106 170.11 3.10 0.10 47.710 18 1.5. -125.53 -58.32 -53.02 3000 315 264.98 17525 46 96 107M 1437 3420 0.10 47223. 18 1.5 -121.66 -2.94 -49495 3000 315 259.68 173.24 4260 96 102117 14ol 3.30 0.109 46.706 18 1.5, -118.02 -21.76 .47.02 3000 315 254.69 171.59 4M46 9 10606 I51 3.40 0.10 46.307 18 1.5 .14358 -42.78 -44.34 3000 315 249.98 169.44 49 96 161,19 14o, 3.509 0.11 45.975 18s , .111.340. 41.79 3000 315 245.54 167.41 436 Of 10611 I 5.16 0.20 4 0.4 82 10 1.5 -107.10 -43.13 1 2.3 4 3000 315 241.20 10 .437 4 M4 96 1 6 1 11 .4 53 2 0.2 39.68 4 1 1.5 -104.87 -40.38 -36.71 3000 315 23 .67 163.32 4246 06 1694.3 156i 5 .64 0.13 3.427 18 1.5 -101.66 -37.63 -U421 3000 315 232.29 161.29 4246 95 104863 3 1!3.072 0.1' 1.059' is i.S -.47 .34.91 -31.74 3000 315 227.93 1592 4 4M Is 1046 1.31 4.10 0.15 43.5719 08 1.5 -95631 -32.23 -29.30 3000 315 223190 157.24 436 6 5 M111 117211 460 0.20 439.29 18 1.5 -5218. -29.59 .26.90 3000 315 219.32 155.23 0 4 9 10.4 ' 14737 4.412 0.17 37.537 is 1.5 -895.2 -27.00 -24.514 3000 315 215.48 153224 4346 9 11 0296F 1454 4.58 0.20 42.05 18 1.5 -86.03 -24.46 -2224 3000 315 210.89 151.26 426 9 14251 1431 64.7 020 41.5309 1 1.5 -.8321 -21.98 -19.93 3000 315 206.76 149.30 446 06 101 141, 4.96 0.20' 40.956 02 1.5' -50.09 -1921 -17.$3 3000 315 202.77 147.9 439 62 10181 96.5.16 0.20 40.47 05 1.5 -77.49 -351.3 -32630 3000 315 19920 145.69 4N4 096 97.78 121A 7.329 0.20. 39958 0 1.6 --7.9 -31.31 -28.46 3000 315 42.5.5 43967 15,54 5.56 0.15 39.498 0 1.56 .4904 427.63 -25.12 3000 315 187.05 139.94 43 96 17.4 133*2 5.72 0.18 35.1503 -45__0 .25.5.8 44 -2, -6 3000 315 183.15 137.95 4396 96 99* M21173 5.9 00 3. 0 1.5 -62.88 422.61 -20.5 3000 315 170914 136.00 436 911 91.04 1 6.091 0 3 ,55 0 15 -59.00 -20.05, -.1823 3000 315 175.05 134.00 42496 6 6 0.11 129,40 8.29 020! 37.957 0 1.5 -57.26 -177O0 -16.15 3000 315 174341 132.21 46 96 O1 12LO 10.498 1o1 3.5751 0 1.5 -354.91 -.V -1739 3000 315 14,.17 130162 4239 9 18,5 29 I 12.69 1.920 37208 04 -52.82 -14.1 -12.23 3000 315 16520 129.20 4246 95 1 025 123 7.037 020 36.517 0- 1.5

  • 49.301.5 -1.53 -10.9 3000 315 160.43 121.74 429 956 96.40 121.41 7129 020 36.190 0 1. .47M2 -10.13 -9.21 3000 315 158.38 125.77 436 96 96.3 120.39 7.49 3 0.49 30 575 0 1.5 -46.49 -9.11 .629 3000 315 152.54 124.85 4M go .0 J 16 7.983 0.54 25.1. -. -28. -.92 -629 3000 315 152.50 1211.93 4246 9 97*3 17.73*522 0.60' 34.413* 0 415 -41.11 -5.20' -4.753 3000 315 149.09 121.12 4244 96 WAS 197.2.9.13 0.79 33.61. 0- 1.$. -39.06 -3.900 -3.54 3000 316 146.23 119.6 4246 06 *A? 114,-7 92 1.06, 32,765" 0- 1.5 -37.03 .2.77' -2.52 3000 315 143.42 11820 42" 96 U.12$ t 1173 10.98 1.41. 31.710, 0ý 1.5 -35.12 T-19-1 -1.74 3M0 315 140.75 118.911 4M 96 " 112.56 12.39- 1.99, 30.40, 0 1.5' -33.36 -1.37 -1.24 3000 315 138.30 115.67 420 95 IS IIIA1 14.37 2.90 24.976 1. -21.59 -1.03 -0.14 3000 315 132.83 114.41 4N9 96 9540 0741 16.37 2.00 2.1 50 -30.26 -0.89 -9.81 3000 315 133.90 113.46 4M 96 1452 l1og.--18.37: .0 0 1.5: -29.10 -0.75 -0.68 3000 315 132.35 112.64 AI 915 "As loIts 2037 2.00 25' 5 0! 1.5; -28.12 -0.66ý -0.60 3000 315 130.98 111.94 424 95 94J 1104211 237 2.00' 25.194' 6 1.6, -27.27 -.-0.53 3000 315 129.79 111.32 42 94.1 1107l--: R 3 7 2 .0 0 , 2 4 .5 0 7 , 0 , 1 .5 , -2 6 .5 2 -0.5 2 , -0 .47 3 M0 3 1 5 1 2 5:7 3 1 1 0 .7 9 4 3 01 5 si 1 0 ff 26.37 2.00 23.090 0 15 -.8 -0.46 -0.42 3000 315 127,80 110.30 4WN MA N I2 E ,J Cakc-PM-44-3 P02-1ISCCooldo n'rne424680xla Cook1l 3f29r200, 12:49 PM Cak 17321.01-PM44-3, Shutdow Coob4oTiýme Alttadment 2, Page 7_ _ _ I. 4. I 4 4 4 1 + I- +/- 4 1- -I + + -I I-Time Tube am h. TI.-. 5 p m k Val1 Re Pr lh(621e c Cp Re P, VIi hRe.,ktW T-I I ý *f-F Iv' I °- I I I
  • v l e I -m I2 I : 2.00 291.58 55.59 1.0215 1.34E-04 0.396 5.609 126,69 12391 2211 166.8 61.60 1.06W 21E44 0.3 3=42 17O.432 2,6266 1416 9.430* 371.70 2.10 274.32 55.65 1.0194 1.3SE-044 0.396 5.669 123,654 1 2770 2192 1 6 60.66 1.0S04 2,731.44 0"31 &6 17660 2,5642 1407 9.399 370.26 220 267.46 5629 1.0175 1.42E.04 0.396 5.609 120.558 1.3155 2173 054.76 6.10 16,00162 L.6F54 0.am0 36 1222 2.63 130 9.370 368.84 2.30 260.98 56.60 1.0158 1.47E-04 0.396 5.606 117.589 1.3S44 2155 15.3 61.14 1.60 2.-44 400, 3,802 14.73 21614 1366 9.342 367.45 240 254.65 563.9 1.0143 1.51044 0.396 5609 114,749 1.3937 2136 I60.14 61.16 S.6666 2J68404 1 3.662 1466M 2.7433 1363 9.316 366.09 2.50 249.07 57.15 1.0129 1.55E-04 0.396 5.609 112.038 1.4331 2118 4116.02 61.23 0.A67 2.844544 0.379 36 164in 2.743 1376 9.291 364.77 2.60 243.62 57.40 1t0117 1.60E-04 0.365 5.609 109.456 1.4729 2100 t46.02 61.27 66 249E404 0.378 6 16,741W 2A431 I M36 9.269 363.49 2.70 236.47 57.62 1.0106 1.64E-04 0.395 5.609 107.81 1.5121 2092 144.13 61SM 0 6 303E04 0.377 322 159,371 2.1"9 161 9.248 36225 2.80 233.61 57.93 1.0096 1.8E-04 0.394 5.609 104.670 1.5514 2064 1.36 6133 GAO 3.66544 0.377 3M62 157,123 2.6374 1364 9.229 361.05 2.90 226.02 58.03 1.0087 1.73E04 0.394 5.609 102.45 1.5905 2048 140.67 1.36 0.6M 3.12E044 676 312 156.1 2M23 134 9.20 35 3.9M 224.70 5821 1.0079 1.77604 0.364 5.609 100,365 1.6292 2031 136.66 61.36 06 3.1814r4 0.376 3.S2 163,064 3.M 1342 9.191 358.77 3.10 220.62 58.37 1.0072 1.61E*04 0.393 5.609 98,382 1,1675 2016 137.66 6142 0.666 3-6E04 0.376 S3.62 161.6 3.76 153 9.175, 357.69 3.20 216.77 58.53 1.0066 I.95E-04 0.393 5.606 96.507 1.7052 2000 136.17 61.44 0.60D 324E44 0.375 SAW 149,480 3-1064 1331 9.159' 35.65 3.30 213.14 5987 1.0060 1.89E04 0.392 SA6 94.734 1,7424 1296 1346.4 617A .0,9 3.20E.4 OAS 3SAW 147*07 3.1474 11= 9.144 355 3.40 209.71 59.60 1.0054 1.93E04 0.392 5.609 93.059 1.7769 1972 133.5 61.46 3.631604 0.374 3.A2 14671 .1322 9.130 354.69 3.50 206.47 58.93 I.050 1.96E-04 0.391 5.609 91.475 1.8148 1958 0 32.6 1.t1 0.69M 3 44 0.374 3M2 144,696 32,H2 1)17 9.117 353.77 3.61 20323 59.05 1.0045 2,88E-04 0.391 5.609 89887 1.8521 1944 131.30 61.5 06 3.366E4 0.373 3.66 1436363 32661 1313 9.103* 352.93 3.72 200.00 59.17 1.0040 20404 0.390 5.609 98,302 1.960 1930 1303.2 61.5 0.6647 3.43144 0.7 562 141,961 3266 1366 9.090 351.87 3.94 196.79 5929 1.0036 2.06E-04 0.396 5.609 96,726 1.6307 1916 121.64 61.67 6166 3A -04 0.373 3.62 140,05 3.3336 1303 9.077 350.91 3.97 193.56 59.40 1.0032 2.13E-04 0.399 5.609 B5.160 1.9720 1902 127. 61 .60 6.966 3A6-64 0.372 SA6 132667 3.3726 1266 9.064 349.94 4.10 190.42 59.52 1.0028 2.17E-04 0.399 5.609 83,605 2.0146 1887 126.51 61.61 0.6166 343&N 06.372 3162 137.863 34106 1264 9.051 346.66 425 18728 5913 1.0024 221E-04 0.38 5.609 82.064 2.0585 1873 125.36 61,63 AS 666 3,65E.44 0.371 SAW2 136.37 34603 1200 9.038 347.97 4.41 164.16 69.74 1.0021 2.26E-4 0.388 5.609 65538 2.1038 158 12622 61.6 A .SC 4 3.Af546 0.371 3*652 13,04 3AU6 12 9.025 346.99 4.58 181.06 59.84 1.0018 2.31E-04 0.387 5.609 79,030 2.1504 1843 123,06 :1.*6 041004 3641.44 0.371 3A12 133,553 3.6m 1281 9.013 345.99 4.76 176.03 59.94 1.0014 2 36E-04 0.386 5.609 77,542 2.1982 1829 121.66 1 0 .63 3M1E64 0.376 3162 132,223 3.566 1276 9.000 344.97 4.96 175.08 60.04 10.011 2.40E-04 0.386 5609 76,104 2.2464 1814 136.80 61.76 0.863 3.71644 0370 3J2 130.6 3 W 1272 8.987 343*9 5.16 172.45 60.13 1.0009 2.45E44 0.395 5.609 74,622 22910 1801 115.64 61.7 O66 3,75E44 0.370 3A52 129.767 3.645 126 8.975' 343.06 5.36 167.67 6.28 1.004 2536E-04 0.384 509 72,51 2.3760 1777 91620 61.74 0.9M6 3A0544 0.36 3162 127,734 3.7119 1251 8.953 341.41 5.56 163.44 60.41 1.0001 2.61E-04 0.383 5.609 70,458 24558 17S5 116.*7 61.76 0J.16 3.67E504 0.38S 32 125,2 37722 1256 8.934! 339.60 5.72 160.56 60.50 0.999S 2.67E-04 0.382 5.609 69,066 2.5131 1740 115.62 61,78 0,666l 3.61E 0.366 3Sim 124,6 3.$144 1031 8.921 338.85 5.-89 157.57 60.56 0.6996 2.73E-04 0.392 5609 67.630 2.5747 1724 114 .4 60.60 0.16 3.8694 0.266 3A62 123.421 3.6587 1246 6.909 337.75 6.09 154.53 601 0.9694 2.79E-04 0.381 5.609 66,170 2,6404 1704 113.4 61.61 6.96 3.9K.04 0.367 3A62 122.132 3.9048 1242 S95 336.61 629 151.61 60.76 0.9992 2.5-04 0.380 5,609 649072 2.7013 1593 12 6 1.63 is.0 4.61544 6w 3=6 126,6 3.9045 1236 093' 335.57 6.49 149.39 60.82 0.9990 2.91E044 0,379 5.609 63,721 2.7576 1660 119.66 S O6.67 4.6E664 60.36 3462 106,3 3M6462 1234 8.872 334.64 6.69 147.24 66.S 0.9999 2.99-04 0.379 5.609 62,700 2.9804 1966 11 I 6IAS 6.66 4A44 0.66 3162 4174 4.6162 1231 8.663 333.80 6.89 145.33 60.14 0.9987 3.01E-04 0.37 5609 61,792 2.65619 1658 106.12 61.4 0.UM76 4.19E244 606 3162 118.2?4 4446 12268 8.655 333.05 7.09 143.61 60*8 0.9906 3.05E-04 0.378 506 60,981 2.9066 1648 000.50 61.67 0.76 4.10 E404 1" SAM 4.07 1226 8.94 332.36 729 142.66 61.03 0.9945 3.09E-04 0.377 5.609 60,257 2.9409 1639 1069.6 SIM 0D1M 4.16E404 0.36 3162 Ile06= 4.1017 1223 8.641 331.74 7.49 140.70 61.06 0.9604 3.12E-04 0.377 5.600 59,669 2.9776 1632 0WO 614.0 6J.76 4.19E04 6.9 3= 116,364 4.1244 1221 8.835 331.18 7.99 137.67 61.14 0.9903 3.20044 0.376 5.09 59,899 3.0611 1614 S44 60.666 4.644 66 3,662 106,107 4.1746 1216 5.823 329.94 8.52 135.10 6121 0.9661 327E044 0.375 5*09 56,92 3.1351 1599 10&45 61.61 6.86 4.25 0.364 3SAW 1104A, 42064 1212 8.912 328.87 9.13 132.96 912 0.600 3.33E-04 0.374 5.609 55.996 3.1991 157 16L6* 6144 0.1676 4.1146 6.364 3.162 113.161 20 0; 8.604 327.97 9.92 130984 61.31 0.9979 3.40E-04 0.374 5.609 55,015 3.2646 1574 104.9 601.3 0.W76 4.3E-44 0.364 3S6 112,319 4.221 8.795 327.07 10.98 128.83 61.36 0.9976 3.46E-04 0.373 5.609 54,090 3.3286 1563 104.22 61.94 0.0677 4.58E04 ,363 3.62 111,507 4.3274 1203 8.757 32620 12.39 126.99 6141 0.9977 3.514E-4 0.372 5.609 53,241 3.3895 ISS2 165.86 61.86 0*60 4A41904 0.36 .662 t10761 4.366 1200 8.780 325.39 14.37 125.12 61.45 0.9976 3.57E-04 0.372 5.609 52.388 3S42 1540 16290 61.44 0,677 4A45.06 0.363 3.652 110,613 4.3934 116 8.773 324.57 16.37 123.71 61.AS 0.9975 3.62E-04 0.371 5.609 51,743 35020 1532 10A5O 61,87 .67 4AE44 0= 3 S62 106447 4.41A6 1166 8760 323*4 18.37 122.49 61.51 0.9975 3.66E-04 0.371 5.009 51,188 3.5455 1524 101.97 61.97 0.9977 4.4E546 0.3W 3, 10*96 4A414 11103 8.763 323.39 20.37 121.46 61.53 0.6674 3.70E-04 0.371 5606 50,719 3.5831 1518 100440 614 OM" 4.-8E04 0.362 362 16,647 4.6 11t 1 3 8.759i 322.93 22.37 120.56 41.55 0.9974 3.73E-04 0.370 5.609 50,310 3A164 1513 1010 804I 0.6677 4,63.94 0.362 3.652 106,168 4.477 1110 8.756 3MM.52 24.37 119.76 61.57 0.9974 3.76644 0.376 5609 49950 36461 1599 10.09 60 6 4Z 0,3 Z 8.1653 322.16 26.37 119*0 61.59 0.9973 3.7604 0.370 5609 49O630 3730 1003 160.76 6144 0J967 4.654 0 3.62 074J1 4.5066 :116 8.75 , 329.93 Calc-PM-44-3 Att2-1_SDC_CoodomeTime4246Q0.;

Cooldomel 312912006.12:49 PIA Cale 17321-01-PM-44-3, Shutdown Coolig Tim2 Afttchment 2, Page 8 CCW HX Fo,,9n f Time 2,00 2.10 2.20 2.30 2.40 2.50 2.60 2.70]2,60 2.90 3.00 3.10 3.20 3,30 3.40 3.50 3.61 3.732 3.84 3 97 4.10 4.4.41 4.59 4.76 4.00 5.16 5.36 5.54 5.72 5.89 6.0s 6.20 6.46 6.66 6.811 7.05 7.26 7.46 7.968 6.53 9.13 10.68 12.36 t4.37 16.37 18.37 29.37 22.3?24.37 36 37 SDC HX tbeb "d.W WCp Cr 1,337,50 1366308 0.657 1,346,390 1,372.463 0,660 1,3S4,515 1,378,173 0.662 1.361698 1,383,476 0.664 1,368.197 1,388,406 0.666 1,375.264 1.392.998 0.666 1.381.145 1,397.274 0.670 1.366.582 1,401,260 0.672 1,391,612 1,404,978 0.673 1.396,270 1.408.448 0.674 1,400,566 1,411.69 076AT 1.404.589 1,414,716 0.677 1.408,304 1,417.545 0.678 1.411.755 1,420,190 0.679 1.414.962 1,422.664 0.680 1,417,946 1,424,961 0.681 1,420,897 1.427.282 0.682 1,423.797 1,429,556 0163 1,426,636 1.431.801 0164 1.429,421 1.434.009 0.685 1,432,143 1,436,182 0.666 1.434.03 1.436.316 0.686 1,437.36 1,440,410 0167 1.439,929 1.442.461 0166 1.442,390 1,444.466 0`669 1,444.736 1.446,366 0.680 1.446.601 1,448063 OM.9 1,450,473 1,451,118 0,691 1.453.634 1.453.748 0162 1,456.753 1,455,519 0693 1 457.905 1.407.325 OJ14 1,460,060 1,459.141 0,695 1,461.947 1.460.736 0195 144635%6 1.4623136 0.696 1.465.042 1,463.366 6.696 1,466,315 1.464.451 0167 1.467.437 1,465,410 01697 1.46,.431 1.4614261 0.697 1.469,315 1,467,019 0.9 1,471,221 1.468.065 01696 1,472,801 1,470.021 0.699 1.474,097 1.471,141 01"9 1,475,355 1,472.232 0.700 1,478,524 1.473,249 0.700 1.477.565 1,474,173 0.700 1.478,635 1.475.091 0.701 1.479.419 1.475.777 0.701 1,480,068 1.476,364 0.701 1,480,649 1,476,867 0.701 1.461,134 1.477,263 0.701 1.481.557 1,477.657 0.763 1 Alf 932 1 477 67 0(702 NTU ftffe.den 1.366 0.562 1.354 0.560 1.344 0.578 1.333 0.576 1.324 0.574 1.315 0.572 1.306 0.571 1.299 0.569 1,290 0566 1283 0.5w6 1.276 0.565 1.269 0.564 1263 0.562 1.257 0.561 1.252 0.560 1.246 0.559 1.241 0.558 1.236 0.557 1 230 0.556 1225 0155 1.220 0.554 1.214 0.553 1.209 0.552 1.204 0.551 1.199 0.550 1.194 0.549 1.189 0.548 1.181 0.546 1.174 0.544 1.169 0.543 1.163 0.042 1.158 0.541 1.153 0.540 1.149 0.53M 1.145 0.538 1.142 0.563 1.139 0.537 1.136 0.536 1.133 0.536 1.128 0.535 1.123 0.534 1.119 0.533 1.115 01.32 1.112 0.531 1.106 0.530 1.105 0.530 1.102 0.529 1.100 0.529 1.098 0.528 1.096 0.528 1.094 0.5628 1.293 0527 DT Tt.o 13615 213.15 130.91 20617 125.34 204.79 120.14 200.91 115.26 19723 110.69 193.73 106,41 190.41 102AI 18726 96.65 184.28 95.13 181.46 91.83 178.78 66.73 17625 85.83 173.6 63.10 171.59 80.54 I19A4 78.14 167.41 75.74 165.37 73.35 163.32 71.00 16129 68.67 151.26 66.36 157.24 64.09 15523 61.65 153.24 59.64 15126 57.47 149.30 55.37 147.39 53.51 145.69 50.15 142.59 47.21 139.64 45.21 137.95 43.15 136.00 41.05 134.00 39.20 13221 37.55 1301A2 36.10 12920 34.80 127.63 33.65 126.79 32,61 125.77 31.69 124.65 29.67 122.13 27.97 121.12 26.55 m19.66 26.16 116.26 23.84 116.91 22.63 115.67 21.42 114.41 20.50 113.46 19.71 112.64 19.04 111.94 18.46 111.32 17.69 110.79 17.49 110.30 w CP I C, NTU 1es-t55s OTS 2.6774 2,97.46 PMA *M am 6a.9 2,62,66 2,629,9)147 OW MA PM 96.M 2,9.96,6 2,66143 PMW PMA Pm 951 2w,96,4 2,962,6 PMk PM PM 76.112 20,611167 2,6,99 MA RUA P1M 29.1 2.06,190 2,064,529 PM PM PM 7237 2,696.472 2,866* PM PMA PM 7126 2*W7*6 26,65,S1 PMA PMA Pm .7 2*6.29 2.017.417 PMA PMA PM MAO 2*6*6 2.662416 PMA PMA PMI 4.16 2*6*7W U46*6 PM PM PM 621S 2,01,711 2,966756 PM PMA PM 6OOF 2*2,661 2,616,44 PMA PM PM 58.20 2*.366 2*0*68 PMA PM PM 56.44 2*04,66 2*5*6 PMA PMA PM 4.76 2*6t,7#3 2*,002A PMA PM PM 53.22 2*6,463 2.062.853 PM PMA PM Sim?2*.(W65 2,866,372 PMA PM PMA 5*2M966,38 2.,9264 PM PM" PM 466 2*7*6 2*646 PMA PM PM 47.61 2,966161 2MA9 PMA PMO PM 45.10 111111.711 2*,00.37 PM PM PMA 43"6 2*6,420 2*616 PMA PMA PM 4216 210.035* 2O,6662 PM PM PM 411A3 ZI166*7 2.*7,75 PMA PM Pm 369M Z2O561256 2,07,59D PM PM PM 311.18 2,51,1726 20700 PMA 0" PM 36.63 2,165,942 2*6,766 PM PM PM% 3416 2,869,436 2,666,11441 PMA PM PMA 322 2,163,97 2*,0.901 PMA PMA PM 31.33 2,566*6M 2,166,.372 PM PM PM 29.64 2,10SAB 2566*6 PMA PM PM 26,61 2,1066,3 2,1612"3 PM PM PMA 27,25 2,1086*1 2,560* PM PM PMA ~ 13 2,666 ,26 2, 106, 977 PM PM PMA 25.1 2,1066.787 Z12,5* PMA PM PM X6.2 2,567015 2,102= PM f" PM 23A46 2.107*1l 2,102110W PM PM PM 22.74 2,167,916 2,5l,74 PM PM PM 22.11 2,1066*) 2,565.42 PMA ~ PM 20.7 2,5046,464 Z1,11113 PM PM PM 5124 2,966*6 2,1664,131 PMA PM PM 116 2:146,180 2,184A464 PMA PM 1716 2,109,*7 2,15D6,738 PMA PM PM am 2.100.766 2,166,6 M PM PMA a" 616 2,116*4 2.105.7N PMA PM PM ISM6 2,116,316 2,106,44 PM PM PM 14.37 2,116,962 Z1060116 PM pm PM 13A2 V,1564 2AW166* PM PM PM 53M 2,116,916 2,106* PMV PM Pm 12-6 2156*63 2,166,962 PMA PM PMA 121 2.111.066 2.01546.9 PM111 PM P 12.2S Ts,o 2M.M INA I"IL 11.0 266*tsllJ tdUA 165.26 16226 157.66 14026 41,47-145,41 138.41 135J7 t3121 129.51 127.18 In" 167.62 t" 1222 196)7 116.23 114.7,5'1041.7 S076111 836rm f"3)179.66 172.74 166.20 160.03 Tto Ts~o Iterate Iterate , C tTotal.W1 CCW Duty o Ce CWbo CCW H per HX CCW Te14p 114.9 7.358 194.33 213.151 204.696 9P.8,100 8,100 F,100 I6.1 00 8,100 3 64.78 3 62.34 114.07 3 60.03 113.25 3 57.85 112.48 3 55.79 111.74 197.23 188.55 7.358 7 350 167.38190.41 181176 7.358 156.05 6,100 3 52.02 110.35 143.56 187.26 178.52 7.358 150.66 810029 10975 138,60 184.28 175.55: 7.358 145.96 81 0 3 48.65 15015 133.99 181.46 172.75 7.3568 141.34 8,100 3 47.11 108.59 129.63 176.76 170.11 7.358 136.99 8,100 3 45.66 106.05 125.53 176.25 167.62 7.358 132.19 8,100 3 44.30 107.55 121.66 173.6 16527 7.358 129.02 8,100 3 43.01 107.07 118.02 171.59 163.05 7.358 125.38 8,100 3 41.79 106.62 114.58 169.44 160.97 7.358 121.94 8,100 3 40.65 106,19 111.34 167,41 159.00 7.358 116.70 8,100 3 39.57 105.78 108.10 165,37 157603' 7.358 115.46 8,100 3 38.49 105.38 104.17 163.32 155.06 7.358 112,22 8,100 3 37,41 104.97 101M6 161.29 153.11 7.35N 109.01 8,100 3 36.34 104.57 98.47 159-26 151W1A 7.358 105.63 8.100 3 35,28 104.16 95.31 15724 149.26 7.351 102.67 8,100 3 34.22 103.76 92.18 15S.23 147.35 7.35H 99.54 8,100 3 33.18 103.36 89.09 153.24 145.47 7.3568 96.44 8,100 3 32.15 102.97 96303 151-26 143.61 7.358 93.38 8,100 3 31A13 102.58 83.01 149.30, 141.77 7.358 90.37 8,100 3 30.12 102.19 60,9 147.39 140.00 7.358 87.45 9,100 3 29.15 101.81 77.49 145.69 138.41 7.358 84.85 8,100 3 28.26 101.48 72.78 142.59 135.54ý 7.3568 80.14 8.100 3 26,71 100.67 68.63 139.94 133.2 7.358 75.90 8,100 3 25.33 100.33 65.6 137.95 131,39 7.358 73,16 0,100 3 24.39 99.96 62.88 136.00 129.511 7.358 70,23 8.100 3 23A41 99.57 59.90 134.00 127,70 7.358 67.26 8,100 3 22.42 , 9,18 57,26 132.21 126.08 7.358 64.61 8,100 3 21.54 95.63 54.1 130.62 124.65 7.358 62.27 8,100 3 20.76 98.52 52.82 12202 123.38 7.358 6 6o.18 8.100 3 20.06 98.25 50.96 127.93 122,24 7.358 58.32 8,100 3 19.44 98.00 49.30 126.70 121.23 7.358 56.66 8.100 3 18.9 97.78 47182 125.77 120.3i 7.358 55.18 1 3 18.3997.58 46.49 124.65 119.51 7.358 53.85 0,106 3 17.95 97.40 43.58 122.83 117,73 7.358 50693 8.10 3 16.98 97.01 41.11 121,12 116,233 7.358 4B.47 6,100 3 16.16 .6.60 39.06 119.68 114.97' 7.358 46.42 8,100 3 15.47 96.41 37.03 118.26 113.73 7.358 44.39 8,100 3 14.80 96.13116.91 112.56 7.358 42.48 8,100 3 14.16 -956.8 33.36 115.67 111.49 7.368 40.72 8,100 3 13.57 95.64 31.59 114.41 110.41 7.358 38.95 8,100 3 12.98 95.40 3026 113.46 109.59 7.358 37M61 8,100 3 12.54 95.22 29.10 112.64 108.68 7,358 36.46 8,100 3 12.15 95.06 26.12 111.94 108,28 7.358 35.46 8,100 3 11.83 94193 2.27 111,.32 107.76 7.358 34.63 6,106 3 11.54 94.81 25,85 110.30 106.99 7.358 7.358 33.21 8,100 3 I 11.29 3 11.07 94.71 94.62 n37 Cak44.PM44-3 Att2-1_SOCCooldom~rlrr424613,4.

CookldomI32160,29P 3129/00, 12:49 PM Calc 17321-01-PM-44-3, Shutdo~m Coodng Time Afttahment

2. Page 9 SOCHx Time Step O(D) P(pP) P(P) P.& Totld 0 dTrc i Tube hrs hrs mmI.Bbr I degFr 0.gm Pi TO Tto 0,gm PA Ts.i Ts,o 28.37 2.00 23.333, 0 1 --25.25 -042 -0.3a 3000 315 12.90 109.87 4348 8 84.98 116."2 30.37 1.00 22.825 :* -24.71 -0.38 .0.35 3000 315 128,19 109.48 4248 90 84A8 108.1 31.37 0.50 22.587 a 1.5 -24.46 -0.37 -0.34 3000 315 125.94 109.30 4248 OS %443 I0 31.87 0.50 22.472 0 1.5 -24.34 -0.37 -0.33 3000 315 125.6? 109.21 4248 9 94A41 32.37 0.50 22.359 00 1.5 -24.22 .0.36 -0.33 3000 315 125.-0 109.13 4248 6 4 109.in 32.87 0.50 22.249' 0 1.5 -24.10 -0.35' -0.32 3000 315 125.34 109.04 424 95 9 4.2 189.82 3337 0.50 22.141: 0 1.5 -23.99 -0.30 -0.32 3000 315 125.18 108.96 4 86 8428 100.33.87 0.50 22.035 0 105 -23.09 -0.34 .0.31 3000 315 125.02 108.88 42146 05 84A0 I 34.37! 0.500 21.931 0, 1.5 -23.77 -0.341 -0.30 3000 315 124.86 108.80 424 95 4424 18 I 1 34.87 *AD. 21.029 0 1.5 -23.66 -0.33 -0.30 3000 315 124.71 108.72 4246 98 64.02 1 34.97 0 21."29 5 -23.86 -0.33 -0.20 3000 315 124.71 108.72 4246 95 2 10MNA 34.87, 80 21.029 0 1.5 -23.89 -0.33 .0.30 3000 315 124.71 108.72 4246 Is M189.34.87 809 21.829 1.5 -23.88 -0.33 -0.30 3000 315 124.71 108.72 44 Is 6M. WA 34.87 O00 21.829 0 1.5 -23.66 -0.33 -0.30 3000 315 124.71 108.72 042 926 4* o 1 34.87 0,.89 21.829, 0 1.. -23.88 -0.33 -0.30 3000 315 124.71 108.72 4246 95 84.22 1INrA 34.87 0.0 21.829 0 1.5 -23.96 -0.33 -0.30 3000 310 124.71 108.72 4246 96 84,22 10.5 34.87 C.80 21.829 0 T5 -23.66 -0.33 -0.30 3000 315 124.71 151.72 4 89 84.22 I 34.87 80" 21.82' -22.96 -0.33 -0.30 2000 31: 124.71 10a.72 4M 6 5 ",2 105,5 34.87 0.8* 21.829 0 1.5 -23.66 -0.33 .0.30 3000 310 124.71 108.72 4M 956 6432 10 34.87, 08Q0 21.029. 0 1.5" -23.98 -0.33ý .0.30 3000 315 124.71 108.72 4M a16 84.22 34.87 0.8 21.829 0 I.5 -23.66 -0.33 -0.30 3000 315 124.71 108.72 42 96 6 4.322 M 34.87 C00 21829 -23.66 -0.33 -0.30 3000 315 124.71 108.72 424 so 6 94.34.87, 0.80 21.829. 0 1.5 -23.88 -0.33 -0.30 3000 315 124.71 108.72 42046 6 84.32 100-W 34.87 O.80 21.829 0 1.5 -23.86 -0.33 -0.30 3000 315 124.71 108.72 4245 89 94M 106 34.87 0A. 21.5 0,0 1.5 -23.66 -0.33: -0.30 3000 315 124.71 108.72 4246 "6 84.32 I 34.87 0.80 21.829 0 15 -23. -0.33 0.30 3000 315 14.71 108.72 4M 2 5 9 8 5. 5 34.87 0.8D0 21.82 0 1.5 -23.66 -0.33 -0.30 3000 310 14.71 109.72 424 85 64.32 l1 34.87 000 21.829 0 1.5 -23.88 -0.33 -0.30 3000 315 124.71 108.72 4246 96 94 J os 1s 34.87 00 21.829 0 15 -23.98 .0.33 -0.30 3000 315 124.71 109.72 4246 a S4.31 34.87 0.80+ 21.829 0 1.5 -23.66 -0.33 -0.30 3000 315 124-71 108.72 4248 95 4.3 106.5 34.87 0.00 21.8' 1.5 -23.66 -0.33 -0.30 3000 315 124.71 109.72 4M 4 6 9 .32 1.34.37, 0.80' 21.829 0 1.5 -23.66 -0.33 -0.30 3000 315 124.71 108,72 4246 B 4.2 8905,5 34.87 0.* 21.829 c IS -23.88 -0.33 .0.30 3000 315 124.71 108.72 4246 89 2 34.87, 0.8 21.829M 0 1.5 -23.66 -0.33 -0.30 3000 315 124.71 109.72 4M46 89 4.3 1" 3487 0.01 21.829 0 1.5 -23.66 -0.33 -0.30 3000 315 124.71 108.72 4246 89 14 12 3487 0.80 21.829 0 1.5 -23.66 -0.33 -0.30 3000 315 124.71 109.72 42 6 114,32 INA 34.87, 0.8 21.829 0-23.66 -0.33 -0.30 3000 315 124.71 108.72 8446 108,i1 CaIc-Pa.44-3 At-1SDC_Cooldo'rim.42460Q I; Cooldov21l 3r2g20M8,12:49 PM Calc 17321-01-PM-44.3, Shutdown Cooing 2ime Attachrnen
2. fage 10 Time Tub. 85.6 hr. Tta h C-p Tn, k V1 Re F, 02 -k2- R0.1 28.37 118.41 61.60 0.S873 3.60E-04 0.369 5A609 49,342 3.6975 1468 t160. 01.06 9.9177 4.M3E44 03 31M2 107.,3W 4.5176 1167 8.7486 321.4 3037 117.63 61.61 0.9973 3.83M-04 0.369 0609 49,082 3.7200 1496 S0.33 61M0 0SAW6 4664 S 36 1t7.100 4.60 Its 8.746 321.27 31.3 117.57 61.62 0.9973 3.684E-4 0.369 5.609 48,963 3.7303 1494 100.23 01.36 DAN?0 467-504 Om 30 10,006 4.63M 1186 8.745 321.15 31.87 117.44 61.62 0.9973 3.84E-04 0.369 5.609 4.005 3.7353 1493 I100.19 6I.M DA 4.67344 86 31662 066.64 4.6539 10 8.744 321.09 32.37 117.31 61.62 0.9973 3.84E-04 0.369 5609 48,848 3.7403 1493 100.14 61.90 0.967 4.57E44 0.32 3M05 106.04 4.M63 1160 8.744 321.03 32.67 117.19 61.63 0.6073 3.65E-04 0.369 5.609 4,72 3.7452 1492 080.10 -00 0.0077 4.6704 0.362 3.852 101,60056 4.6 116 8.743 320.97 33.37 117.07 61.63 0.9973 3.81E-04 0.369 5.609 48,737 3.7500 1491 100.066 02*0 0.00? 4ME6304 0.382 3102 10507 4M6429 116 8.-143 320.1 33.7 16.95 61.62 0.6973 3.86E44 0.369 5.606 48.664 327047 1490 100.01 026 0.9077 4.663404 0a32 3,5 1066'75 4.5452 1164 8.743 32.86 3437 116.83 61.63 0.6672 3.86E-04 0.369 S10 48,631 3.704 1490 266-? 5 77 4003.04 03m2 3,652 6.713 4.5474 1554 8.742 320.80 34.87 116.71 61.64 01672 3.87E-04 0.369 S6N 40,579 3.7639 1489 99.93 026 OM7 4-6E44 53 3A. 1665? 4.54S6 1064 8.742 320.75 34.87 116.71 61.64 0.6872 3.67E-04 0.366 5.609 48,579 3.7839 1486 96 0216 0.997 4163A4 0.352 3.4 52 1660 4.5408 1054 8.742 320.75 34. 116.71 81.64 0.9972 3.87604 0.366 5.609 48,579 3.7636 1469 16.93 0206 0"77 4.61144 Om 3,52 106.667 4.4 1084 8.742 320.75 3.7 116.71 61.84 0.6672 3.676404 0.386 0 600 480576 3.7863 1489 666 020 0.07 46 0 0.332 316 106*6 4.4 1158 8.742 307.67 671 61.64 0.6872 317644 0.369 5.609 48,579 3.7639 489 0 6 0."M77 4.ME304 03 3.m 106,67 4.360 1154 8.742 320.70 347 10.71 1.64 0.9972 3.87E4 0.366 0606 45576 3.786 0466 6 5 0 4 0 3 1 4 1184 8.742 320.75..17 116.71 61.64 0.9972 3.67604 0.369 5.609 48,579 3.7639 1489 90.93 00 0.677 4.68E0,4 5.362 1O6* 4.640 15564 8.742 ý 30.71 3417 116.71 61,64 0.9972 3187E-04 0.369 5609 48,579 3.7639 1486 663 62.66 6077 4-6E-04 0.362 3A62 1I66*W 4.546 I184 8.742: 320.75 3417 116.71 61.64 0.9972 3164E-04 0.369 8A60 48,576 3.7639 1489 6. .6 41IE04 0.382 35 1060*7 4.5496 1t154 8.742 320.75 3417 116.71 61.64 019972 3187E-04 0.369 506A 40,579 3.7639 1489 903 600 0M.7 4416604 0.362 3062 1060,367 415490 1194 8.742' 320.75 3417 116.71 61.64 0.9972 3137E-64 0.36 5.609 48,579 3.7639 1489 06.53 Slag 5167 416004 6362 3102 106*67 4.5495 1154 8.742 320.75 3417 116.71 611A4 0.1972 3.67644 0.369 5.609 48,0579 37639 1489 8613 016 0M" 4.6E04 032 3AW 166067 4A5466 1164 8.742 325.7 3417 116.71 61.64 0.9072 3.87E-04 0.369 5A60 48,579 3.7639 1489 660 62.60 0.991n 84E44 OM 3152 106067 446 11i4 8.742 320.75 3417 006.71 61.64 0.9972 3.67-04 0.369 0A60 48,579 3.7639 1486 903 62600 O677 4.E6844 0m 3J2 16,6157 4.54 1184 6.742 320.75 34.87 06.71 6164 0.9972 3.67E-04 0.369 5.609 48,579 3.09 1489 6 3 02O 0310t7 418E04 am 3,652 IO166 4.5496 1154 6.742! 320.75 3417 116.71 61.64 0.9972 3.76E-04 0369 5060 4,579 3.7639 1489 666 Z O.0 0,99r7 4.68E44 0-362 3153 160*67 4.436 1$5 8.42': 320.75 3417 116.71 61.64 0.6672 3187E-04 0.369 5.609 40,579 3.7639 14869 9.93 02.00 067 4,8E-04 Om 3.6 106,867 4.5496 1184 8.742 320.75 3417 116.71 610.4 0.9972 3187E-04 0.369 5.609 48,579 3.7639 1489 39.80 WO 0.0077 4A.6644 0.362 3.052 106*6? 4.54096 114 8.742 3207 34.87 1106.71 61.64 0.6672 3187E-64 0.369 50606 48,579 3.7639 14896 603 02*0 0.9977 4.36304 Om3.662 10607 4.%N36 9154 6.742; 320.70 3417 106.71 610.4 0.9972 3.17E-04 0.369 5.609 48,579 3.7639 1489 "M U20 0.0077 41&3304 0.362 3.052 166*6 4.6491 1 8.742 320.70 3417 106.71 61.64 0.9972 3.67E64 0.369 5609 48,579 3.7639 1489 N.3 20 0.m 4.83E,44 O 3 1 4 04 8.742 320.75 3417 016.71 61.64 0.9972 3.37E644 0.369 5.609 48,579 3.7639 1466 99.68 2,0 0.977 4.M6E04 63 310 185,567 4 N 14-84 8.742: 320.75 3417 116.71 61.64 0.9972 3.87E-04 0.369 5609 480578 3.7638 1489 6013 3210 0.9677 4,ME-04 0.2 3.12 6 52 106 4.5486 1184 8.742 320.70 34.87 116.71 61.64 0.9972 3.87E-04 0.369 5.609 48,579 3.7639 1466 " 02.66 !* 4.5$E44 Om 3.05 106*7 4.5436 1084 8.742 320.75 34.87 106.71 81.64 0.6872 3.87E604 0.366 0.609 480,79 37636 48 0456 6. 2 0530 0.977 4.566-04 0.362 3.652 106*67 4.5400 014 8.7421 320.70 34187 116.71 61164 0.9972 3.87E644 0.366 0.606 460,76 3.7636 0486 16.) 021D0 .9077 4.063.04 0.362 3182 506*67 4.5406 1084 8.7421 320.75 34.87 116.71 61.64 0.9972 3.37E-44 0.369 5.609 48,579 3.7039 1489 6.33 0 0.01W 4183.08 D0.302 3.662 106,867 4.5496 42 33 347 116.71 61.6,4 0.9972 3.$7E-04 0.369 5.609 48,579 3.7639 1439 999 6201 OM 41E0 Om 3.5 IOA 4.49 114 72 -20 XV 116,71 61.64 0,972 3.87E.404 0.3169 5.609 48,579 3.7639 1489 W9 62.00 177 4.BE,04 CM34 3AS12 106607 4.49 ti04 8742ý 320.75 CsI.P4W44..3 AlJ2.ISI3CCoodownTime424S0..ls Cook4owl326208 2:0P 3r91208,12:49 POO I Cale 1732"I-0180-44-3, Shutdown Cooling Time e~el2 e.I Atthrnent
2. Page I11 I I I I I I Time SOC HX tube side I 81C HX Whdlde SDC Duty Tt,. ý , Ts.o I .. a..Ctw, CW Duty Total CCW Flow____ S -I- -p k 4 4. 4 ~hns 28.37 30.37 31-.37 31.87 32.'37 32,87 33.37 33.87 34.37 34.87 34.87 34.87 34.:7 34.87 34.87 34.87 34.87 34.87 34.87 34.87 34.87 34.87 34.8 34.87 34.87 34.87 34.87 34 .87 34.87 34.87 34.87 34 .87 34.87 34.87 34.87 34.87 1.483.227 1.478.3283 1.482.569 1,478,550 1,482,706 1,478.671 1.482.773 1,478.730 1.481.838 1,470,788 1,482.903 1.478.845 1.482,916 1.478,901 1,483,028 1,478,956 1.483,88 1479009 1.483148 1479,062 1.483.148 1,479.062 1,483,148 1,470.082 1.483.148 1.479.062 1.483,148 1,47,0862 1.483.148 1,479,082 1.483.148 1,478,062 1.483.148 1,479,062 1.483.148 1,479.062 1,483.148 1.479,062 1.483.148 1.479.0862 1,483,148 1,470.062 1.483.148 1,479,062 1,483.148 1,471.062 1.483,148 1,478,082 1.483,148 1A479.062 1.483.148 1,479,062 1,483.148 1,47,062 1,483.148 1,479.062 1.483148 1,478,062 1.483,148 14478.062 1,483,148 1,478,062 10483.148 1,47,0862 1.483,148 1,47,0862 1.483,148 1.477,082 1,483,148 1,478.082 1.483.148 1.479.062 1,483.148 1,470.052 Cr 0.702 0,702 0.702 0.702 0.702 0.702 0.702 0.702 0.702 0.702 0.702 0.702 0.702 0.702 0.702 0.702 0.702 0.702 0.702 0.702 O020 0.702 03702 0.702 0.702 0.702 0.702 0.702 0.702 0.702 0.702 0.702 0,702 0.702 0.702 0.702 0.702 NTU tfffec.v m DT0 I TI.o W W4 p Cr NTU ife neei DTI;1.092 0.527 17.08 109.87 2,111,14 2,18MA M.A ~ OM 11.0 1.091 0.527 16.71 109.40 2,111"?37 2,10"n O4M N JIMA 18,73 1.00 0.527 18.54 108.30 2,11,2*7 2,188,36 *" 3 3MOA All 1.090 0.527 18.46 108.21 2,111,7 2,1066383 O4M 34MA 41" 11,6M 1.908 0.528 18.28 186.13 2.111,817 2,,3 *1 3M SMA 30 10" M 1.080 0.526 18.20 109.04 2,111,330 2,106.416 3M 3M 30. 11.44 1.089 0.826 16822 10899 2,1113 2,186,436 M A a 0" 11,28 1.089 0.526 1:.14 108.88 2,111,3713 2,1664j64 OM OW 3A 11M3 1.080 0.526 18.07 108.80 2,811,31 2t186.60 3M 3MO 3 11.W 1.08- 0.528 15.08 108.72 2,181,486 2,146 3M 3MIM 0123 1.088 0.528 10.0' 108.72 2,11466 2,0Z0467 3M 3 A 1123 1.088 0.526 15.99 108.72 2,11,11406 2,16:467 3M 3M 3W 11,23 1.088 0,028 15.99 108.72 2,1114,1 6 6,487 3MS 3M 3M 11.13 1.089 0.n26 1589 108.72 2,11,408 21.86487 3M a" ~ 1123 t.0M 0.528 15.99 108.72 2,111.400 Z108546 WA 3MNA 11.23 1.089 0.526 15.99 108.72 2,1t1.409 2,16.467 M3MA 3M 3 11.23 1089 0.526 15.19 108.72 2,011,406 2,1084697 A 3M 3 M 81123 1,088 0.526 15.99 1D8.72 2,111,409 2,61.87 3M 3M 3M 1123 1.088 0.528 15.8 108.72 2,181,406 2,186,47 3M R" 3M 1123 1.088 0.526 15.99 108.72 2,111,40 2.104,17 3A I 3A 3 11,23 1.088 0.526 10.98 108.72 2,11,401 2,16,7 M 3M 3M 1023 1.089 0.528 15.99 108.72 2,11,486 2,016687 M ~M P" 11.23 1.088 0.528 15.99 108.72 2,111.t40 2.016467 3M aMt ~ 1123 1.088 0.525 15.99 100.72 2,811"40 2 ,A1, 3M ~M 1123 1.088 0.526 15.99 108.72 2,181,486 2,1606,457 3M 3M 11,23 1.089 0,526 15.99 108.72 2,111,486 2,156*7 3M R" 3 1123 1.088 0.526 15.99 101172 2,111,409 2,186,46 MA 3 *M 11.23 1.088 0.528 15.99 108.72 2,111.40 2,18647 3M A M 3M 1823 1.089 0.526 15.99 108.72 2,111.40 2,106,47 EllA 3M 3M 1123 1.088 0.526 15.99 108.72 2,101,406 2,186,87 3 340M 3M 11,23 t.088 0.528 15.99 108.72 2,111,40 2,106,4617 3MA 3 3M 1123 1.00 0.526 15.99 108.72 2,101,406 2,186 7 3M 0" 3M 8123 I.08 0.528 15.99 108.72 2,111,486 2., 4117 OM 3a P" 1123 1.089 0.526 15.99 108.72 2,111,4A 2,186,467 3M W" 3M 1123 1.089 0.526 15.99 108.72 2,111,409 2,187 3M 3M AM 1823 1.089 0.528 15.98 108.72 2101, 2,8664*7 M 3A a ~ 1823 1.888 0.526 15.99 108.72 2,111,406 2,866,47 3M 3MA ~ 1123 Ts.o loom8 10610.1 13*m 10007 886*Z 10M 886,86 IOSM 103*%105.5 830.*105.55 803* s 83*6 106.668 13*M 105.5 25.2'24.71 24.4f 24.34 24.1Z 23.91 23.85 23.'r mMBU.WI mmBsft IP8 8 CCW Hx CCW Duty CCW p. HX Temp mBu Ts,o 3 10.87 94.54 3 10.69 94.46 3 10.61 94.43 109.87 106.53 109.48 106.19 109.30 106.04 10821 10887 7.358 32.61 8,100 7.358 32.07 8.100 7.358 31.02 .8100 7.3 31.70 810n 3 10.57 109.13 105.89 10.8.4 105.o2 108.08 105.75 7.358 7 -ftR 31.58 31 aA 8.100)A 10M 3 10.53 3 1 049 94.41 94.39 8538.-+ :: : : :'::: :94 41.4**,I-g 100.081 10008 108.88 105.61 7.3-8W 7.358 3123 31.12 8,100 8,100 3 10.41 94.35 3 10.37 94.33 23.66 108.72 100.55 7.358 31.02 8.100 3 10.34 94.32 23.86 108.72 100.55 7.308 31.02 8.100 3 10.34 894.32 23.66 108.72 105.55 7.358 31.0 2 .100 3 10.34 894.32 23.0 _ 108.72 105.55 7.358 31.02 8.100 3 10.34 84.32 23.06 108.72 105.55 7.358 31.02 8.100 3 10.34 94.32 23M8 108.72 100.55 7.388 31.02 8.100 3 10.34 94.32 23.66 108.72 105.55 7.358 31.02 8,100 3 10.34 84.32 23.66 108.72 105.05 7.358 31.02 8,100 3 10.34 94.32 23.68 108.72 105.55 7.358 31.02 8,100 3 10.34 94.32 23.66 108.72 105.55 7.358 31.02 8.100 3 10.34 94.32 238 108.72 105.55 7.358 31.02 8.100 3 10.34 94.32 23.66- 108.72 10.55 5 7.308 31,02 8.100 3 10.34 94.32 2308 108.72 105.55 7.358 31.02 8.100 3 10.34 94.32 23.66 108.72 105.55 7.358 31.02 8,100 3 10.34 94.32 238 108.72 10.55, 7.358 31.02 8.100 3 10.34 9,4.32 23.66 108.72 100.55 7.358 31,02 8.100 3 W1034 94.32 23.66 108.72 105.55 7.358 31.02 8.100 3 10.34 "94.32 23.66 108.72 100.55, 7.358 31.02 8.100 3 10.34 94.32 23.66 108.72 105.55: 7.358 31.02 8.100 3 10.34 84.3 23.066 108.72 105.55 7.358 31.02 8.100 3 10.34 9432 2336 108.72 105.55 7.358 31.02 8.100 3 10.34 94.32 23. 108.72 105.55 7.358 31.02 8.100 3 10.34 94.32 23.66 108.72 105.55 7.358 31.02 8.100 3 10.34 94.32 23.66 108.72 105.55 7.358 31.02 8,100 3 10.34 94.32 23.66 108.72 105.55 7.358 31.02 8.100 3 10.34 94.32 23.66 10. 10.55 7.358 31.02 8.100 3 10.34 9432 Celc-PMr-44-3 At62.l SDCCooldownTim"24SQ.,lo Coolcdoim 4348,124P 3/2942008,12:49 PM Calc 17321-01-PM-44-3, Shutdown Cooling Time Attachment 2, Page 12 Shutdown Cooling Temperature Transient with 90F River Water SDC Hx Fouling = 0.001 hr-F-sqft/Btu, CCW Hx Fouling = 0.0015 hr-F-sqft/Btu 370 330 290 250 L-ff 210 0 E 0 170 130 90 50 170 4 160 150 4 140 1 130 U.4-aE E 0 I---Pri Cool Temp-SDC Return Temp CCW Temp S120 i 110 100 1 b90 0 4 8 12 16 20 24 28 32 36 40 Time, hours Calc-PM-44-3 Att2-1_SDCCooldownTime4246Q.xls; Chart3 3/29/2008, 12:49 PM Calc 17321-01-P444-3, Shuldowm Coolig Time Attachment 2, Page 13 Shutdown Cooling Temperature Transient with 90F River Water SDC Hx Fouling = 0. hr-F-qftJBtu, CCW Hx Fouling -0. hr-F-sqfftBtu InrAl RC Temperatue.

F 350 SOC MX CCW HX Irntl Time 2 2754 Shal Fim Mu~tlier 0.09751 ,RCS after 8 hs.-. 140.93 0Shel Fim Re power 0.61709 Time alter Ib to 130F Pimary Coolant Tenp 13.73 541 CCW to SDCH. 4246' Shell Flm P power 0.333 Tim aer SDC niaton to 13OF PC Temp 11.7 MCCW FlowStep Teyp, 275' ýFoufing (totl -tube Mde) 0, 0.Decary heat equW*leum at 9OF dyer temp 1228 0.00418 0.004 Tim. Step 1(D) P(pp) P(OP) PSd& Total 0 dTrc Tube U hr. Sm degFt 0, 9gpm PI Tti Tto QWm Pi TO. Ts,.o 2.00 0.1 54.986 Is 1.5 -214.20 -139.73 -127.03 3000 315 350.00 192.77 434 66 9646l 212.14 2.10 0.10 54.107 10 1.5 -204.01 -130.40 -118.65 3000 315 337.30 183.43 4246 66 l66ow 26.7 220 0.10 53.300 1s 1.5 -194.43 -121.63 -110.58 3000 315 325.44 194.32 M6 96 197.4 Mitl 2.30 0.10 52.540 18 1.5 -185.4S -113.41 -103.10 3000 315 314,38 180.44 424 96 16I73 11" 2.40 0.10 51.92= 1S 1.5 -177.03 -109.71 -96.10 3000 315 304.07 176.79 42 6 1.66 11".s1 2.50 0.10 51.143 18 1.5 -169.15 -9950 -89.55 3000 316 294.47 173.33 42 06 6N3 187AS 2.60 0.10 50.000 19 1.5 -161.79 -91.78 -13143 3000 315 285.51 170.08 4M 95 5 6613 1 2.70 0.05 49.8" 19s 1.5 -154.899 45.50 -77.73 3000 315 277.17 167.03 4M 6 t591.06 11M.6 2.75 0.10 49.593 19 1.5 -151.68 -82.58 -75.08 3000 315 273.28 165.59 4A46 95 104.1 177.1 2.85 0.10 49.024 18 1.5 -145.46 -76094 -69.94 3000 315 265.77 162.80 4N2 66 104.00 1A-I 2.95 0.10 48.401 10 1.5 -139.44 -71.68 45.16 3000 315 258.76 160.18 46 956 1632 179.34 3.05 0.10 47.961 1i 1.5 -134.24 46.78 -60.71 3000 315 252.26 157.73 4AI4 66 16lOM 167.27 3.15 0.10 47.464 19 1.5 -129.19 42.23 -56.57 3000 315 246. 19 155.43 434 956 12.64 14*AI 3.25 0.10 446.967 19 1.5 -124.47 47.99 -52.72 3000 316 240.53 153.27 46 16 .4 161.73 3.35. 0.10 44.529 18 1.5 -120.06 -54.05' -49.13 3000 315 235.26 15125 446 966 00174 191.21 3.45' 010 44.089 19 1.5 -115.97 -50.38 45.80 3000 315 230.35 149.35 424a 96 101.62 3.55' 0.10 45.64 1M 1.5: -112.14 -46.989 -42.71 3000 315 226.77 147.50 4246 96 101.19 154.73 3.65 0.11 45.251 18 1.5 -108.51 -43.76 -39.79 3000 315 221.42 145.88 434 6 186.67 1 Z67 3.76 0.12 44.822! 18 1.5 -104.87 -40.55 -36.86 3000 315 217.08 144.18 4246 66 1160.56 1500 3.8I 0.t3 44.381 18 1.5 -101.26 -37.39 -33.98 3000 315 212.76 142.49 4246 66 1 4 148.4.00 0.14 43.926 19 1.5. -97.69 -34.25 -31.14 3000 315 208.49 140.80 4246 U 6.93 14 4.14 0.15 43.455 19 1.5 -94.14 -31.18 -29.35 3000 315 20427 139.13 4304 66 "62 144.51 429 0.16 42.9658 1 1.5 -90.84 -28.17 -25.61 3000 315 200.10 137.46 4M6 a6 61 1421 445 0.18 42.460 0 1.5 -87.19 -43.231 -39.30 3000 315 195.99 13$.$2 4346 96 66. 140.5 4.62 0.20 41.930 0 1.5 -81.3 -37.951 -34.50 3000 315 189.05 133.02 4246 96 6.46 13725 4.82 0.13. 41.373 0 1.5, -75.3 -32.86 -29.87 3000 315 162.32 130.29 4246 66 7,97 134.04 4.95 0.14' 41.027f " 1.5 -72.54 -30.02 -27.29 3000 315 176.52 128.74 4246 96 97 1322 5.09. 0.17, 40.645 0 .5 -9.23 -27.08 -24.62 3000 315 174.56 127.11 44 956 97.6 130M 5.26 0.18' 4M 3 4 1.5 -65.76 -24.06 -21.97 3000 315 170.44 125.41 434 6 5 9 76 1J, 5.44. 0.20 39.780 O 1.5 -62.42 -21.14 -19.22 3000 315 165.44 123.75 4IM e6 6.76 U1 5.64 0.20 39.319 1.5 -59.21 -18,39 -16.72 3000 310 162.59 122.15 4M 956 66446 5.54 0.20 39.879 0 1.5 -56.41 -16.04 -14.58 3000 315 159.25 120.76 434 66 06* 123.03 6.04, 0.20 38.458 00 1.5 -53.99 -14.02 -12.75 3000 315 156.33 119.53 4l46 e 6 6.97 t2l4 6.24 0.20 30.600 -51.85 -12.30 .11.18 3000 315 153.79 119.46 43M 966 65.77 121M4 6.44, 0.20 37.970 -15 49.99 -10.82 -9.83 3000 316 151.55 117.52 424 966 066.6 1i.3 6.64* 0.20' 37.300' 49 1.5' 48.35 49.550 -4.68 3001 315 149.53 116.68 4246 U 6644 11&43 6,94. 0.20 36.944 0 1.5 -46.90 -4.46 -7.69 3000 315 147.94 115.95 4246 96 631 117M 7.04 0.20 36.602 0 1. 45.82 -7.52 -4.83 3000 315 146.31 11529 44 6 9 6".19 116.47 724 020 36.272 0 1.5 -44.48 46.71 46.10 3000 310 144.94 114.71 4246 96 966* l1e 7.44 0.20 35.94 1.5 -43.47 -4.01 -6.47 3000 315 143.72 114.19 4346 96 646 115M 7.64 0.20 3547 1 -42.50 -.41' -4.92 3000 315 142.63 113.72 4M 96 646 115.2 7.84 0.20i 35.391 0q 1. -41.74 -4.89: 4."4 3000 315 141.64 113.30 44 6 66.42 114.45 8.04 0.20 35.065' 0 1 -41.00 -4.44 -4.03 3000 315 140.75 112.92 4 96 94.75 M 6.24 020 34.78, 0 1.5 -40.33 -4.04' -3M 3000 315 138.95 112.58 4246 66 4.6 13.I 8.44 0.20 34.519 O 1.5 -39.72 -3.70 .3.36 3000 315 139.21 112.2 6 M 9434 6 943 11.I 9.64 0.20 34.259 0 IV -39.16 -3.40 -3.09 3000 315 138.54 111.97 4346 66 66157 113.18 8.84 0.20 34.007 -1.5 --314 -2.96 3000 315 137.92 111.71 4346 66 64.63 112.89 9.04 0.20 33.762 1.5 -317 -291 -2.65 3000 315 137.35 111.46 4346 66 6446 M1 924 0.201 33.524 151 -37.73 27 -2.44 3000 315 136.,2 11123 4246 6 ,4.44 ,10.30; 33,2035 -37.33 -2,53 -230 3000 315 136.33 111.02 4246 66 6449 112.5 9.64. 0.20 33.068 09 1.5' -36.94 -2.38 -2.16 3000 315 135.87 110.92 4246 96 94.6 11961 9.84 020' 32.850' -30.59 -2.24ý -2.03 3000 315 135.44 1106A3 43 6 64.33 111,71 Calc-PM-44-3 A2-1 Time4246Q.xls Cootdo, m212,49 PM Cakc 17321.01-PM-44-3, Shutdown Cooing Time Attachment

2. Page 14 Time Tube hre TtaveI rho k Vl Re Pr h(BUM- Ttanel rho Cp k u Vol Re hPr (2-F) oo .2.00 271.39 55.59 1.0185 1.40E-04 0.396 5.609 121,220 1.2931 2168 16160 60S? 1.0007 2A"44 0.3 366 180O"42 1420 9.402' 588.21 2.10 262.86 56.04 1.0163 1.456E04 0.396 58.60 117.469 1.3428 2146 157.73 61.04 1A04 2.7X2104 0.361 3M 170M 2.743 1400 9.365 583.76 220 254.88 56,45 1.0143 1.51E-04 0.396 5.60 113,883 1.3935 2123 15416 6t.10 1.A00M Z7 0 3 3 1J.6I2 2.4 13946 9.330 579.39 2.30 247.41 56.83 1.0125 1.57E-04 0.395 58.69 110.470 1.4449 2100 151.7S 61.16 .80 2654 0.365 35 166* 2.7086 1366 9.297 575.15 2.40 248.43 57.17 1.0110 1.62E04 0.395 5.609 107,235 1.4968 2078 145.64 6111 SAM 251 5-0 G.V3 3M MAU546 6 1371 9.268 571.06 2.50 233.90 57.47 1.0097 1.6E-04 0.394 5.60 104,177 1.5490 2056 146.40 612 6 SAM 0.37 M 3 162331 2.6915 9366 O .241 567.11 2.60 227.60 57.75 1.0065 1.74E-04 034 5.609 101,296 1.6013 2034 144.16 0 SAID A 04 0.7 am 100.334 21317 131 9.216. 563.31 2.70 222.10 56.01 1.0075 1.79-04 0.393 5.60 98.96 1.6534 2013 141.A7 61.34 SAM 34064 0.37 & 166.5642 2.60 1353 9.192 559.06 2.75 219.44 58.13 1-0070 1.2E-04 0.393 5.608 97,315 116789 2003 140.63 61.36 016 4 0376 36 166364 2.7 1343 9.181, 557.93 2.85 214.29 51135 1.0062 1.78E-04 0.392 5.609 94.49 1.7304 1983 138.62 61.40 0 9.17044 0.376 J16 1.736 313 1341 9.159 554.51 2.95 209.49 58.55 1.0054 1.93E-04 0.392 5.809 92,537 1.7814 1964 13616 61.43 0.9680 322E-04 0.7S &2 150,41 31664 1334 9.139 551.25 3.05 205.00 56.74 I.0047 I66E-04 0.391 5.609 80.375 1.8316 1945 13i.17 61.46 066 327E-04 0.375 32 146= 3.1376 130 :.120 548.14 3.15 200181 58.91 1.0042 2.03E-04 0390 5.609 88,352 1A80" 1928 t363.2 61.46 J 3 3.E-4 0.374 316 146.D6 1.1801 1.321 9.103 545.19 325 196.90 59.07 1.0036 2.06E-04 0,390 5.609 6,462 1.292 1911 13116 61.2 0.1M 33W044 0.374 3A52 144,=3 2337 ts316 9.087 542.38 3.35 193.26 5921 1.0032 2.13E-04 0.389 5.609 54,697 1.9764 1895 130,55 61.4 0.9167 3.40E-04 0.373 316 142.650 3.27 1380 9.071 539.72 3.45 189.85 59.34 1.0028 2.16E-04 0.389 5.606 83,049 2.0224 1879 12621 61.56 0.016 3A44004 0.373 140,M3 3.325 1306 9.057, 537.19 3.55 186.67 59A6 1.0024 222E-04 0.399 5.609 91,511 2.0671 1865 27A 615 0.9116 3.46044 0.372 3,82 138,418 3.3624 1300 9.044 534.80 3.65 183.65 S9.57 1.0020 2.27E-04 0.387 58609 80050 2,1113 151 126.77 61160 0.986 3 .52E4 0.372 3= 137,179 3A021 125 9.03, 532.50 3.78 19013 5.9.9 1.8017 231E-04 0.387 5.609 78,589 2.1572 1837 125.516 61.2 06 3.-5E-4 0.371 3M2 13643 3 126 9.019 530.16 3.88 177.63 59.79 1.0014 2.36E-04 0.386 5.609 77.136 22047 1823 024.4 61.14 6164 3165.0 0.371 3A62 136,117 3.4836 1216 9.006 527.81 4.00 174.65 59.90 1.0011 241E-04 0.388 5.609 75.699 22536 1808 12322 61M 06 314646 0.371 3.62 133.76 3M.3 1261 9.993 525.44 4.14 171.70 60.80 1.0008 2.46E-04 0.385 5.609 74277 2.3040 1794 122.6 61.8 61663 3A57.4 0.370 3j2 132,38 32M6 127 8.979' 523.85 429 160.78 80.11 1.0005 2.51E-04 0.354 5.609 72.873 2.3557 1779 1011 61.70 0.903 3.71E-04 0.370 3102 10,346 316 1212 &.966 52015 4.45 165.90 60.20 1.0003 2.57E-04 0,384 5.609 71.490 2A086 1765 1160.7 61.72 0.1662 3.15E4 0.369 316 129.66N 31616 1266 8.953' 51.20 4.62 161.04 6036 0.9999 2.6E04 0.382 5.60 69.161 2.033 1740 117M 61.75 0.9661 312504 0.69 31 6 207.331 3.7252 120 8.930 514.16 4.82 156.30 60.52 0.9995 2.76E-04 0.381 5.609 66,902 21617 1715 1610 61.7"7 0.9961 3185.06 0.368 3J16 125.16 3.W 12f2 9.809 510.09 4.95 153.63 6010 0.993 2.01E-04 081 5.609 65,630 25603 1701 11416 61.7 01666 3.6344 0.315 312 123"0 3.6616 1246 8.897 507.75 5.09 150I 4 60.69 0.9991 2.6E644 0.380 5.609 64,308 2.7237 1686 1136 6111 09060 317E04 0.367 3O62 1WZ 38a732 1243 8.854 505.28 5.26 147.93 60.78 0.99M 2.64E-04 0.379 5.609 62.932 2.7927 1670 112.71 61.62 0166 4.62544 0.367 3 121367 31356 1f26 ,971 502.37 5.44 145.10 60.86 0.9987 3.01E-04 0.378 5.609 61.599 2.8829 1655 111t11 61.84 0.9671 4A.4 0.386 3062 1189,666 3.3 0234 1.859 500.11 5.64 142.37 6014 0.9955 3.08E-04 0.377 5.809 80.321 219329 1639 11014 601.35 SAM 4.11E04 0,380 3.52 40 1230 8.847' 497.61 5.64 140.00 61.01 0.9984 3.14E-04 0.377 5.609 59,213 2.9964 1626 10961 6117 0.967 4.14i44 0.3 3.62 117,666 4.0717 1221 8137 45.42 6.04 137.93 61.07 0.9993 3.19E.04 0.378 5.609 58.248 3.0537 1614 166.5 61.66 WA 4.16644 0.6 3162 116,766 4.1004 0222 8.828: 493.48 624 136.12 61.12 0.9992 3.24E604 0.375 5.609 57,407 3.1053 1604 106.16 6016 5163 4.21604 0,M6 3.662 115,943 4.466 1210 8.820' 491.77 6.44 134.53 61.16 0.196 3-28E-04 0.375 5.609 56,670 3.1519 1595 167.46 6116 07 4.2344 0.365 11539 4.1866 1207 6.14 490.26 6.64 133.13 61.20 089980 3.33E204 0374 5.609 56,023 3.1939 1587 10906 61.6 0.CAM 4.S2664 0-365 318 114*600 4.1VA 1214 8.808 488&93 6.84 131.90 6123 0.9979 3.36E804 0.374 5.609 55.452 32317 1579 106.46 61.8 0.11M 4.2E64 0.364 3.662 114.M1 10212 8.8031 487.74 7.04 130.80 61.26 0.9979 3.40E-04 0.374 5.S09 54,948 32658 1573 106,6 601.6 4.IOE64 0.364 3052 113.66 4.236 1210 8.798T 48.68 724 129.63 6129 05678 3.34E-04 0.373 5.609 54,500 32967 1567 160,6 61.*2 01AW 43.31E4 0354 11315 4271 126 8.74 485.73 7.4 12.896 61.31 09979 3.45E-04 0.373 5609 54,101 33247 1562 106531 6S0t.67 61 4-3E64 6.366 3,052 112,750 42738 8367 8.791 48419 7.64 128.18 61.33 01677 3.4#E-04 0.373 SA09 S3,743 3.3502 1558 165* 61.15 4.3464 0-364 3162 112465 426 1266 8.788' 484.12 714 127.47 61.25 0.9977 3.50E-04 0.373 5.609 53,422 3.3733 1553 104.74 61.63 0.6997 4.-346 01364 112*5 4.3011 0266 8.785 433.44 8.04 126.84 61.36 0.9977 3.52E-04 0.372 5.609 53.132 3-3845 1550 104.49 SIM 0677 4*544 0.354 3152 111.515 4.3139 8.782' 482.81 6.24 126.26 61.38 0.9977 3.54E-04 0.372 5.609 52,869 3.4139 1546 10427 61.14 0.77 4.36E46 0.364 36 t1*61 4.250 1203 8.780 48224 8.44 125.74 61.38 0.9976 3.55E-04 0.372 5.609 52,629 3,4318 1543 104106 61.964 0,9117 4.36E.04 0.303 3.852 113,3 4-33 1202 8.7781 481.72 k64 125.26 61.40 0.9876 3.57E-04 0.372 5.609 52,410 3.4482 1540 0a3168 61.i 01.0977 4.3E4-4 0.363 316 101,118 41445 1201 8.776 48115 9.84 124.81 61.41 0.9976 3.5E-04 0.372 5.609 52209 3.4635 1538 100.71 6116 0167 4A4E44 0" 310 1100.24 43631 120 8.774 480.81 9.04 124.41 61.42 0.9976 3.60E-04 0.372 5.609 52,023 3.4777 1535 103.5 61S1 0.A7? 4.1644 0.363 36652 110.74 4.3610 .773 480.4 9Y4 124.03 61.43 0.9976 3.61E-04 0.371 5.609 51.851 3,4910 1533 165.40 61196 0.67`7 4,4204 0,363 11068 4.3684 1165 8.771 480.02 9.44 123.7 61.44 0.9875 3.62044 0.371 5.609 51,691 3.5034 1531 10327 61.16 01977 4.426E04 0.363 3.462 10,424 41753 116 8.770 478.67 9.64 123.34 6145 0.9975 3.62-04 0.371 5.609 51,541 3.5150 1529 103.14 61SM 0.177 4A35.04 0.353 3A6 1103726 4.366 1166 8.769 478.34 9.84 123.04 61.40 0.9975 3.64E-04 0.371 5.609 51,401 3.5280 1527 1010.62 6M SA. M 4,43E-04 0.363 3$6M 1110.144 4.39 1066o$ 8.767' 479.03 Cs~o-PM844-3 AR2-1_SOCCooldomaTi,ro24600,rI CooW~2r 32108 29P 3r29/2008,12:49 PM Ca8c 17321-014-M44-3, Shutdowm Cooing Time Aitachmnent 2, Page 15+CCW HX Foulng0 TiToe SC MX 1 800 wc m" Ti Ts.o QDo'w, CCW Duty Total 0 CCW H. CCW Duty CCW Tie DCHXtue id Md ~eSD Dtyiterate Iterate ov CCW Paw HX T"rn hwe W W VCP Cr NTU iffe nOvenes DT Tt.o Al Vw p D o U ,,rr meen DT. T so 6 5 mm trn rh, mm .BkA*. gpm m Oabf T..o 2.00 1,337,560 1.362359 0.856 2.167 0.654 157.23 192.77 2662 2.0r67 OW 39 M 1031.66 21214 214.20 192.77 212.54 7.358 221.56 8,100 3 73.05 109.46 2.10 1,348,494 1,370.412 0.659 2.138 0.651 148.87 186.43 2,65,6 2.J1 0 O M
  • OM 961011 2016.,7 204.01 198.43 206.78 7.35$ 211.37 8.100 3 70.46 108.68 220 1.358.397 1.377.766 0.662 2.111 0.649 141.12 184.32 2.006 2.1115166 1 M 3M 91 O3O2 2M1.3 194.43 164.32 201.36 7.358 201.79 8.100 3 6726 107.94 2.30 1.367.378 1.364.494 0.665 2.085 0.647 133.95 10.44 ROM M 2,, 3M UM4 16627 185.45 180.44 196.27 7.358 162.01 8,100 3 64.27 10723 2.40 1.375.534 1.390.658 0.667 2.061 0145 127.30 176.76 I T 263 264,7 WM 41 3M 4 1.61 177.03 176.70 191.51 7'359 14.39 8100 3 61.46 , 106.56 2.50 1,382,949 1,0396311 0.670 2.039 0.643 121.14 173.33 266176 Z,6,362 #WA Sa 1" 811. 16716 169.15 173.33 187.05 7.358 176.51 8.100 3 58.84 105.93 2.60 1.389,619 1.401,501 0.672 2.016 0.641 115.43 1700 2,011707 2M,66 M M em 77.6 16*Ism 161.78 170.00 182.87 7.356 169.13 6.100 3 56.38 105.34 2.70 1,390,648 1,406.270 0.474 1.996 0.639 110.14 167.03 2666 2,667,63 EIPA S ~ 7I4.19 1761? 154.69 167.03 178.97 7.358 162.24 9.100 3 54.08 104.73 2.75 1,3986,67 1.409,469 0.675 1.989 0.638 107.69 16519 2,M06.727 2,6,1T6 3" O MA 72.64 177.16 151.68 165.59 177.15. 7.358 159.03 8,100 3 53.01 104.51 2.85 1.404,031 1.412.678 0.676 1.970 0.637 102.97 162.60 2.,W63 2,069,155 3M EA 3 m3 173=3 145.46 162.80 173.63 7.350 152.82 6,100 3 50.94 104.00 2.95 1,4080932 1,416,552 0.678 1.954 0.635 9.59 160.19 2..62,103 2,6,072 MA 39 OUA 6662 170.34 139.66 10019 170.34 7.358 147.02 8,100 3 49.01 103.52 3.05 1.413.413 1,420,119 0.679 1.936 0.634 94.53 157.73 2.053,157 2,660,62 30A 34A M 0420 167.27 134.24 157.73 167.27 7.359 141.60 8.100 3 47.20 103.07 3.15 1,417,514 1,423.406 0.690 1.923 0.632 90.76 155.43 2.064,12 2,091.711 34A 3M S34A 61,76 164.41 129.159 155.43 164.41 7.358 136.55 8.100 3 45.52 102.64 3.25 1.421.272 1,426,436 0.682 1.909 0.631 87.26 15327 26.0" 2,6,2 , 3A 3M SWA 56,49 11.72 124.47 153.27 161.73 7.325 131.83 8.100 3 43.94 10224 3.35 1.424,717 1,429230 0.683 15869 0.630 84.01 15125 2,666 2,121 34A a " 34A Ism2 120.08 151.5 159.23' 7.358 127.43 8,100 3- 42.48 10157 3.45 1.427,879 1,431,808 0.664 1.883 5.625 61.00 149.39 24U6M 2.063,749 3M EIA M 55.3 166.61 115.97 149.35 156.91 7.358 123.33 .160 3 41.11 101.52 3.55 1.430,764 1,434,169 0.685 1.672 0.628 78.19 147.58 2.67,336 2,064,334 3A 3M 36 52% 164.73 112.14 147.58 154.73 7.350 119.50 6.100 3 39.93 101.19 3.65 1,433,502 1,436.424 0.666 5.965 0.627 75.54 145.86 2,666,60S 2,084,U6 3A S3WM 3A 8M10 126 108.51 145.8 152.67 7.358 115.86 8,100 3 38.62 100.87 3.76 1,436,180 1,438,637 0167 1.850 0.626 72.90 144.18 2.,66 6 ZM634 3M 3M M 66 500.60 5904.87 144.15 150.60 7,358 11223 8,100 3 37AI 100.56 3.86 1.4386.04 1,440,615 0.667 1.639 0.625 70.26 142.49 ZEISS= 26.677 EM 3M EM 46,31 14M 501.26 142.49 148.55 7.358 108.61 8.100 3 36.20 10024 4.00 1,441.363 1,442,948 0.686 1.826 0.624 67.69 14010 2,.64 2,06,513 3A 3M EM "M 4116.a 97.66 140.00 146.52 7.358 100.64 8.100 3 35.01 99.93 4.14 1.443,957 1,445,034 0.689 1.817 0.622 65.14 139613 2,166.94 2,667,666 3M 3M 3 441" 144.61 94.14 139.13 144.51 7.358 101.49 8.105 3 33.03 59.62 4.20 1.446.283 1,447,072 0.690 1.606 0.621 62.64 137,46 2,1091291 3 03A ~ 4321 142.52 00.64 137.46 142.52 7.350 98.00 8.100 3 32.67 99.31 4.45 1.448.639 1,449.056 0.691 1.795 0.620 60.17 135.82 26,6 M 3MA *VA 41.50 1406 87.19 135.82 140.56 7.356 94.55 8,100 3 31.52 09.00 4.62 15452520 1,452.352 0.692 1.777 0.619 56.03 133.62 2,102w 2.W,619 3M *" 3M 36.77 137.2$ 81.38 133..0 137.25 7.358 88.73 8,100 3 29.58 98.48 462 1,456,206 1,455,485 0.693 1.759 0.617 52.03 13029 2.183,782 2,.735 M 3M E 134.14 75.73 13020 134.04 7.356 63.09 8.100 3 27.70 97.97 4.96 1450.236 1457.22 0.694 1.749 0.616 49.76 128.74 2,104,318 2,100,194 3M 3m a" 34lA4 01 72.54 126.74 132.22 7.358 7590 8.100 3 26.63 97.68 5.08 1,460,314 1.59,005 0.695 1.739 0.615 47.45 127.11 2,196,671 2,1 EMS1 A a" am 3 1130.13 69.23 127.11 130.33 7.358 76.59 8.100 3 25.53 97.38 5.26 1,462,44 1,460,35 0.695 1.727 0.614 45.03 125.41 2,166.42 2,19,192 0" S" EM 31,31 12.37, 65.78 125.41 128.37' 7.358 73.14 8,100 3 24.38 97.06 5.44 1464,471 1,462,587 0.66 1.717 0.613 42.68 123.75 2,106,691 3M 3 EM 26.70 126,46 62.42 123.75 136.46 7.358 69.78 8,100 3 2326 96.75 5,64 1,466,381 1,464241 0197 1.706 0.611 40.44 122.15 2,106.513 ZIO66O, 3M 3M Em 26.17 124A12 1 5921 12.125 124.62 7.35 66.57 8.100 3 22.19 96.46 564 1.468,014 1,46.5658 0.697 11A97 0.610 30.49 120.76 2,166, 6 162,16 SA M3A 3M 3 26.63 13AS 56.41 120.76 123.03 72358 63.77 8,100 3 2126 96.2 6.04 1,469.414 1,466.677 0.669 1160 0.610 36.W0 119.53 2,187,361 2,102,127 3WM V 3l 25.7 121 ,4 53.98 116.53 121.64 7.358 61.34 8,100 3 2045 95.97 6.24 1,470.62151,467.929 0.69 1,182 0.609 35.32 558.44 2.1678 3" 3 3M 34A5 13.4 51.85 558.46 120.43 7.358 5921 8.100 3 19.74 95.77 6.44 1,471,666 1,466,841 0.698 11676 0.609 34.03 117.M2 213,384 3M 3M 0M 116.36 49.99 157.52 119.36 7.358 57.34 8,100 3 19.11 95.60 6.64 1,472.574 1,469,636 0.699 1.670 0.608 32.90 116168 2,166.28 2,13,612 3M 3M EM 22, 106.43 48.35 511.69 118.43' 72358 55.70 8,100 3 18.57 95.44 6.84 1,473.367 1,470,330 0190 1.665 0.607 31.90 115.95 2,1086464

.,165,063 3M WM 3MWA 222 117.80 46.90 115.95 117.60 7.358 5426 8,100 3 18.09 95.31 7.04 1,474,064 1,470.941 0.699 1.661 0107 31.01 11529 2,9069,53 29,103,911 M 30 WM 29*M 116.87 __ 45.62 115.29 116.871 7.358 52.96 8,100 3 t7.66 95.19 724 1,474,677 1,471,479 0.69 1.657 0.606 3023 114.71 2,160,1111 2,104,147 3MA 3M 3 29.14 1162z 44.48 114,71 116.22 7.358 51.64 8,100 3 1728 7.44 1,475,220 1.471,57 0.700 1.654 0.606 29.53 114.19 2.16.6 2,164,37 3MA ~ 3 3 1129M54 43.47 114.19 115.64 7.358 50.82 8,100 3 16.94 94.98 7.64 1,475,704 1,472,382 0.700 1.651 0106 28.90 113.72 2,1Z9,136 2,14,413 3M A a a" 2022 116.92 42.56 113.72 115.12 7.358 49.92 8,100 3 16.64 94.90 7.84 1,476,136 1.472,763 0.700 1.648 0.605 28.34 113.30 2,866*66 2,104,150 OM 3M 3M 19.63 114*5 41.74 113.30 11415 7.358 49.10 8,100 3 16.37 94.82 8.04 1.476,524 1.473,105 0.700 1.645 0.605 27.83 112.92 2,166,37 2,104*7 3M ~ U3 19AS 114.1 41.00 112.91 114.23 7.358 48.36 8,100 3 16.12 94.75 8.24 1,476,875 1.473,414 0.700 1.43 0.605 27.37 112.58 2.109.476 2,80-4,716 3A 3M ~ 1MIS IM" 40.33 112.." 113.85 7.358 47.69 8,100 3 15.90 94.69 8.44 1,477,193 1.473.694 0.700 1,641 0.605 26.95 11226 2,666 2,66r PM IM M 1 113 1.350 39.72 11226 13,MW 7.358 4710 8,100 3 15.69 94.63 8.64 1,477,412 1,473,9O0 0.700 1.639 0104 26.57 111.97 2,16.,63 2.164,97A6 M *MA M ism60 113.19 39.16 111.97 113.19 7.358 46.52 8,100 3 15.51 94.57 08641 ,477,747 1.474,14 0,700 5137 0.604 26.22 511.71 2,566,731 2,04,M0 3A I4/WA 3 I63" 112.81 3615 111.71 112.69 7.350 46.01 8,100 3 15.34 94.53 9.54 1,477,991 1,474,400 0.700 1.636 0.604 25,89 111.46 2,18616 2,105,615 0M 3M 3A 16.13 012*2 __ 38.17 111.46 112.62 7.358 45.53 8,100 3 15.18 9404 924 1.476.217 1,474,599 0,700 1.634 0h04 25.59 11123 2,16,8 125,0075 3M ~ ~ 17S3 112.36 37.73 111.23 112.36 7.3.0 45.09 8,100 3 15.03 94.44 9.44 5.478,426 1.474,784 0.701 1.633 0.604 25.31 111.02 2.166.131 AN SK ~ 17-73 112.13 37.33 111.02 112.13 7.350 44.66 14.89 494.40 9.64 1,476,620 1,474,956 0.701 1.31 0103 25.05 110M 216,6 ,65,163 0" 3M 3M 17.6 11MAI 36.94 110.82 111.91 7.358 44.30 8.100 3 14.77 94ý36 9.84 1,476,802 1.475,117 0.701 1.630 0103 24.60 110.63 2.11te42 2. M 4 0" M 17.36 119.71 36.59 110.63 115.7 7.358 43.94 8,100 3 14,65 94.33 CaI-PSM-44-3 A122-1_SOCCooldoTime4246Q04s.

Cood:own2 MM2Q008, 12:49 PM Calc 17321-01-PM-44-3, Shutdown Cooling Tim, Attah-mnt 2, Page 16 SDCHx T30 Step 1(D) P(pp) PO9P) P Tol r Tube h. h mmstbo. degF/hr 0, qp0m Pi Tt,t Tt,o Q, opm Pi T$.i Tso 10.04 0.20 32,837 0 1.5 -355 -2.11 -1.52 3000 315 135A3 110.46 446 09 4.A 10J4 10.24 0.20 32.430 0 1.5 -35.93 -2.00 -1.82 3000 315 1343.5 11029 424 509 9c4,1 11 10.24 0.20 3122.4 0 1.5 -35.63 -1.90 -1.73 3000 315 134.28 109.04 438 11 4 1M1.10.64 0.20ý 32.031, 0 1.5 -35.34 -1.81 -1.35 3000 315 133.94 109.40 43 96 34.21 11.00 10.64 0.20 31.839 0 1.5 -35.07 -1.73 -1.37 3000 315 133.61 109.84 4246 26 34.08 I10 11.04 0.20 31.651 0 1.5 -34.01 -1.42 -1.21 3000 315 13329 109.21 4240 96 "4.07 1.O 1124 020 31768 0 1.5 -34356 -1.59 -1.25 3000 315 132.99 109.10 4M 15 8 34.3 110.93 11.24 020 31.289 0 1.5 -3.32 -1.53 -1.39 3000 315 132.05 109.45 4" 96 9It 186.1 112.4 0.20 31.115 0. 1.5 -34.9 -1.47 -1.34 3000 315 132.42 109.33 42I4 0 9 34A 114121 12.84 0.20 30.9447 0 1.5' -33.87 -1.42 -1.19 3000 315 132.16 10922 426 6 0 9 40 3 1IL 12.04 020 30.777. 0, 1.51 -33.65 -1.38' -125 3000 315 131.90 109.10 4246 95 "A37 IS 12.24 0.0 30.613 0 1.5 -33.45 -1.33 -1.21 3000 315 1310.5 109.00 426 09 93.3 1o6i4 12.24 0.20 293044 0, 1.5 -33.24 -1.29 -1.17 3000 315 131.40 108. 434 96 3034 IN" 1234" 0.2 30297 0 1.5 -33.05 -1.51 -1.14 3000 315 131.17 108.79 4246 91 n" 162 12.84 0.0 30.14 0 1.5 -32.86 -IlO -1.11 3000 315 130.94 10892 4M 0 3.91 03.1 13.04 0.20 2.4 0 1.5 -.. 1.15 -0.3 3500 215 129.99 108.59 4246 65 33.6 I146 13.24 020 29.270 0 _ 1,56 -321.0 -3O5 -1.05 3000 315 130.50 108.50 4M 0 9 3. 1Ml 1.24 0.20 29.702 0 1.5 -32.33 -1. -1.2 3500 315 129.51 109.07 4 33.66 110.27 13.64 0.20 29.0 0 1.5 -32.16 -1.10 -1.00 3000 315 130.09 108.32 46 09 "3A8 188.31 13.04 0.20 29.422. 0 t, -31.99 -1.07. -0.97 3000 315 129.89 10723 4246 09 3.39 t1403.14.04 0.20 29.286 0 1.5 -31.83 -1005 -0.95 3000 315 129.70 108.15 426 95 13,4- 109" 1424 0, 0 29.1 -30.94 -0.93 -0.83 3000 315 129.51 10.887 426 09 337 15.44 9.2 29.022 0 1.5 -310.2 -0.00 -0.82 3000 315 129.32 107.6 428 09 3. 107.1 14.64 020 2B2893 O" 1581 -31.37 -0.09 -0.89 3000 315 129814 107.91 4246 096 $33 10873 14.84 0.2_ 28.767 0 1.5 -3102. -0.87 -0.87 3000 315 128.96 107.63 4346 9 337 19L6.15.04 020 28.643 0 1.5" -31.045 -0.94 -0.85 3000 315 128.79 107.75 46 I9N "3.I4 1524 02 28.521 0 1.5 -30294 -0.92 -0.73 3000 315 127.82 107.63 4246 9 33.71 IWA6 15.44" 0.o" 27.401 1.5_ -30.80 -0.90 -0.72 3000 315 127.45 107.3 4246 95 937 1tan 15.64 028 27.70 0 1tI -30.67 -0."9 -0.70 3000 315 12829 1072.3 426 069 3.70 17U6 18.94 0.31 27,187 0 1 _ -30.91 -0.87 -072 3000 315 128.13 107.46 Q4 95 333 10 16.04 27.103 0 1.5 230.47 -005' -0.77 3000 315 127.97 107.40 424W 95 33.34 1L7 16.24. 020' 27.941" 0 1.5 -3028. -0.83 -0.76 3M0 315 127.51 107.33 4M so 13.72 IOaL IO 16.44' 02e 27.831" 0 15' -30.15 -0.82' -0.74 3000 315 127,8 10726 42 95 9371 16.0 16.641 020m 27.722 0ý 1.5' -30.03 -0.90: -0,73 3000 315 127.51 107,20 424 05 93.1 16.94' 6.2 7.6VMS' o -29.91 -0.79' -0J72 3000 315 127,37 107.13 420W 95 93A loy.17.04 020, 27.510 0 1.5: -29.79 -0.78 -0.71 3000 315 12722 107.07 424 16 95 93 07IA2 1724 020 27.407 0 1.5 -29.67 -0.76 -0.69 3000 315 127.08 107.01 4346 0 9337 907-.7 1744 023 27.305 -29.56 -0.75 -0.68 3000 315 126.94 106.95 426 I9 SIM t07 174 0 27205N 1.5 -29.44 -0.74 -017 3000 315 126.81 106.99 42 9 3A4 107.33 Cokc.-PIM,44-3 At12- _SDCCooldom.ime4246QJds; CooGdom.2 3rZ9/00, 12:49 PM Calc 17321-01-PM-44-3.

Shutdown Cooling Time Attachment

2. Page 17 I I I I I I -I I I I II II Time Tube a"d hen Ttan. de 8 ,e k I Val ft Ro (ft"'., TR,. 1.10 C no It I .Val Pr I.(lU&W~.W Id I -I p I h 112--n 10.04 122.74 1146 0.9175 3.65E-04 0.371 5.609 51.269 3.5364 1525 1SM1 61.6 0.9677 4,44644 0.363 3A.92 110.017 4.3036 1197 8166 470.74 1024 122.47 61.47 0.9975 3.66E-04 0.371 5.09 51,145 35463 1523 1629 61.6 0.9077 4A46474 0.363 3102 1067 4.3"0N 1197 8,765 470.47 10.44 122.21 61.48 0.9975 3.07E.04 0.371 5.609 51,027 3.5M57 1522 182.70 60M 67 SAM 4 9.33 3SA 062 101.703 4,4042 1196 8.764 47820 121.96 61.48 0.9975 3.6E-04 0.371 5.609 50,915 385647 1520 1",, 61.66 4AS04 036. 361I'm i.S 4A.M0 1166 8.763 477.96 10.84 121.73 61.4 0.9975 3.69E-4 0.371 5.609 50,09 3.5733 1519 10.61 61.SI 0,077 4AGE-04 1.303 3.052 10.572 4.4136 1 19 8.762 477.72 11.04 121.50 61.49 0.9974 3.70E.04 0.371 o609 50,706 3.5815 1518 10,43 61.09 667 4.45404 0.363 3.62 109.473 4A.I42 1109 8.762 477.49 11.24 121.28 61.50 0.9M74 3.70E-04 0.370 .609 50.609 3.5894 1516 ¶02.34 61.07 0,967 4.47E44 0.363 3.52 1096379 4.4225 10 8.761! 47717 11.44 121.08 61.50 0.9974 3.71E-04 0.370 5.60* 50,515 3.5970 1515 14. 61.7 60.77 4,41E44 0.363 SAM 109,M 1194 0.760 477.06 11.64 120.89 61.51 0.9974 3.72E-04 0.370 5.609 50.425 3.M044 1514 10.16 61.6 6.77 4A4734 0.313 3102 106= 4.439 1194 8.759ý 476.86 11.84 120.69 61.51 0.9974 3.72E-04 0.370 5.609 50,339 3.6115 1513 112.11 61J. 0.677 4. 04 6.363 t 3 .02 19,111 4,4345 1104 0.758 476.67 12.04 120.50 91.52 0.9974 3.73E-04 0.370 5.609 50,255 3,604 1511 1.06 S60 0.0977 4AI4654 .W 3A52 10.9,03 4A382 1193 8.758 476.48 12.24 120.32 61.52 0.9974 3.74E-04 0.370 5.609 50,174 3.6251 1510 101.s 7 61S7 0.9077 4AS404 0.3611 3,02 108966 4.4418 11393 8.7571 476.30 12.44 120.15 91.53 0.9974 3.74E-4 0.370 5.609 50,096 3*S319 1 800 ¶10%0 61.67 07 4A46544 06 U52 166.844 4.494U 1193 8.756 476.12 12.64 11919 61.53 0.9974 3.75E04 0.370 5.609 50,020 3.6379 1508 101,.4 61.*7 OM'7 4.0644 0S363 3S 106.811 4A46 1192 8.756 475.95 12.84 119 82 61.53 0.9974 3.75E-4 0.370 5.609 49,946 3.6441 1507 61 f7 4.404 0 3.02 108.740 4.4510 1182 8.755 475.79 13.04 119.96 91.04 0.9974 3.76E-04 0.370 5.609 49.875 3.6500 1506 1601.71 61*7 6.07 4.O6E04 06 .02 108,671 4.4A61 1162 8.754 475.62 13.24 119.80 91.54 0.9974 3.77E-04 0.370 5.609 49,905 3.6559 1505 101.06 6110 0.67 4.004 0.3 62 13M 1066 4.4512 1112 8.754 475.47 13.44 119.35 61.5 0.9974 377E-04 0.370 5.609 49.738 3.9616 1504 101.00 1.00 667 4.6064 0,382 32 106,516 4A412 1191 0.753 475.31 13.64 119.21 61*5 0.9673 3.78E-04 0.370 5.609 49,672 3.6672 1506 104 61.0S 6.WT7 415E46 0.362 3.02 10644 4,4662 1161 8.753* 475.16 13.64 119,06 61.55 0.9973 3.76E-04 0.370 5.609 49.607 3.6726 1503 101.6 01I0 OM" 4.51644 6.362 3 16,412 4A.71 110 8.752, 475.02 14.04 118.92 91.M6 0.9973 3.79E804 0.370 5.609 49,54 3.6779 1502 01A3 61S1 0.9M 4.51E404 0,362 3A62 108,352 4,16 "1$1 8.752 474.88 14.24 118.79 61.56 0.9973 3.79E-04 0.370 5.609 49.483 3.9032 1501 801.3 61104 6.077 4A1E504 0 .32 3.16 108= 4.4726 9110 8.751 474.74 14.44 118*5 91.56 0.9973 3.80E-64 0.369 5-609 49,423 3Sam3 1500 101.33 61.09 0*67 4.11-4 O6 3M2 ¶0616 4A4763 1110 8.751 474.60 14.64 11,.52 61M56 0.9973 3.8E-04 0.369 5.609 49.365 3.6933 1499 101.36 61 0677 412046 0.362 3.82 4.4780 1I10 8.750 474.47 14.84 118.40 61.57 0.9973 381E-04 0,369 5.609 49,307 3.6982 1499 101.23 011 0.677 4-%M44 0.362 3A1 106123 4.469 1106 8.750 474.34 15.04 11827 61.57 0.9973 3.81E-04 0,369 5.609 49.251 3.7030 1498 101.19 61.0 0.077 0.362 3.062 10.9 4A631 1190 8749 47421 15.24 119.15 61.57 0.9973 3.81E-04 0.369 5.609 49,197 3.7077 1497 101.13 6116 IM 977 4.0264 0.362 3.062 106901 4,4356 1l1ot 8.749 474.09 15.44 118.03 61.5 0.9973 3.82E64 0.369 5.609 49,143 3.7124 1496 101.0 61.98 049077 0.362 3.652 107.64 4.40* 1199 8.7481 473.96 15.64 117.91 61.58 0.9973 3.82E.04 0.369 5,609 49,090 3.7170 1496 101.04 611a0 6.77 4.565 06 S3102 07.,913 414004 110 8.748 473.84 15.84 117.80 61.58 0.9973 3.83E-04 0.369 5.09 49,038 3.7214 1495 101.00 61.10 0177 41364 O3 3M2 107^3 4A6 1166 9.748, 473.72 16.04 117.68 61.58 0.9973 3.83E-04 0.369 5.609 40,9 3.7259 1494 lo0m I 61i0 6.077 4.36344 0.362 3102 107*14 4.4065 1109 8.747 473.61 1624 117.57 61.59 0.9973 3.83E-04 0.369 5609 48,938 3.7302 1494 100.*1 601A 0.077 413304 0.32 3.6 107.766 4.973 lif 8.747 473.49 16.44 117.46 61.59 0.9973 3.8E-04 0.369 5.609 4,869 37345 1493 10-0. 61.0 0.66?? 4*E604 0.6 3102 107,719 4.46 1196 8.746' 473.38 16.64 117,36 61.50 0.9973 3.4E-04 0.369 5.609 48,841 3.7386 1492 16om 6110 OM" 41E64 0.232 310 107d$73 41017 1119 8.746 47327 16.84 11725 61,59 0.9973 3.85E-04 0-389 5.609 48794 3.7420 1492 100.79 6I1 0M" 4.454E4 0.6 SAW 1070211 41 119 8.745 473.16 17.04 117.15 91
  • 0.9973 3.8E-04 0.369 5.609 481748 3.7468 1491 106.75 610 0.0" 4.ME04 0.23 SAW 17.3 4JM 11189 8.745 473.06 1724 117.05 61.90 0.9973 3,65-004 0.369 5.09 48,703 3.7508 1490 100.71 6110 0 7 4-44E-04 0.362 312 10710 4.W l19 8.745 472.95 17.44 11695 61.6 0.9973 3.86E-04 0.369 5.609 48,658 3.7548 1490 110.7 61.0 0,077 41E4 0.34 2 M ISO 107,496 4101 f 117 8.744 472.05 17.4, 116.85 61.60 0.9973 3.66--04 0.369 5.609 48,614 3.7587 1489 1AS 6110 0677 4.6 04 0.3U 30 107,044 4.121 1117 8.744 472.75 CaWI-PM-44-3 A12-.1_SOC

_CooldowTlnme4246Q004; Cooldown2 3/29208, 12;49 PM Cale I7321-01-PM-44-3, Shutdom Cooing Time Aftachment 2, Page 18 Ti me SDC X b $We j HX obd SDC Duty Tto Tso CCw, Duty C Tow CCw H CCW Duty CCW iterte Iterate oe CCW Flo. par KX Terp Sm W WCp Cr NTU ,nn DT Tto w jw 09IW C NTU ffle. 0)T. T., .,U mlnBbft mniatnlo gpm mmnkom r Ts,o 10.04 1478.973 1,475268 0.701 1.629 0.603 24.57 110.46 2.106*5 2,1Z 66 WM am am 17.22 M1AI1 3625 110.46 111.51 7.358 43.61 8,100 3 14.54 9 04.30 10.24 1,479.134 1.475.411 0.701 1.628 0.603 24.35 110.29 2,110,040 2,05,321 SM 3M W" 17.07 111.23 35,93 11029 111.33 7.358 43.29 8,100 3 14.43 94.27.0.44 1.479,288 1.475,545 0.701 1.627 0.603 24.16 10.14 2,160,6 " a" o" 6. 111.16 35.4"3 110.14 t11.16 7.358 42.99 8.100 3 14.33 94.24 10.64 11479.430 1.475,673 0.701 1.626 0.603 23.95 109.99 2.110,225 2,1016462 3M 3M 3M I6.2 111.80 35.34 109.99 111.00I 7.358 42.70 0 3 14.23 1 94.21 10.94 1.79.567 I.475,795 0.101 1.62M 0.603 23.76 109.84 2.110,66 OW SA ~ 16 I10.4 35.07 109.94 110.84 7.350 42.43 0,100 3 14.14 94.19 11.04 1,479.698 1,475,911 0.701 1.624 0.603 23.58 109.71 2,t0,66 2,0106474 M iIA 3M 6Ism 110.6 34,81 109-71 110.69 7.358 42.17 8,100 3 14.06 94.16 11.24 1.479,M22 1.476.021 0.701 1.623 0.603 23.41 109.56 2.1004 MA M 3 !41 1" _t0 __ 34.56 _ 109.58 110.55" 7.350 41.92 8,100 3 13.97 94.14 11.44 1,479.942 1,476,127 0.701 1.622 0.602 2325 109.45 2,100.381 2,1,6041 i 3M 1o"0 110P41 sm 34.32 109,45 110.41 7.358 41.68 8,100 3 13.89 94.11 11.64 1,480.057 I,476.229 0.701 1622 0.602 23.09 109.33 2,110.416 2,106,67r3 SIA A MUA 16.16l 10,2 34.09 109.33 110.28 7.3568 41.45 8,100 3 13.82 94.09 l1.04 IA00,167 1.476,327 0.701 1.621 0602 22.84 I09.22 2,16.414 2,101103 AW 3 16W1A 110.15 33.87 109.22 110.15 7.358 41.22 8lO1 3 13.74 94.07 12.04 1.460.273 1.476.422 0.701 1.620 0.602 22.79 109.10 2,10.461 2,106*32 *M 3M S 16,86 10003 33.85 109.10 110.03 7.358 41.01 8,100 3 ,3.67 94.05 l2.24 1.480,376 1.476.513 0.701 1.619 0.602 22.65 109.60 2,110.619 2,105, #M 3M 1W6" 166*J1 33.45 109.00 109.91 7.358 40.80 8l100 3 13.60 94.03 12.44 1.480,475 1.476.601 0.701 I.A19 09602 22.51 109.99 2,1160,40 2,006,667 3M W" S3 15.7 6 1" 33.24 108.89 109.80 7.368 40.60 8,100 3 13.53 94.01 12.64 1.480,571 1.476.696 0701 1.619 0s02 22.38 108.79 2,116,670 2,105.714 3M 3M 3~ 16.70 1Il66 33.05 108.79 109.690 7.356 40.41 8100 3 13.47 93.99 12.04 I,460.884 1.470,769 0,701 1617 0.602 22.25 108M9 2,110,M66 2.166,7*0 3M 3M %M 96 M -32.86 109.69 109.58 7.356 40.22 8,IO0 3 13.41 93.97 13.94 1,480,754 1.476,849 0.701 1.617 0.602 22.13 108.59 2,11w 2,106,704 3M 3M 3M 066 0.4T 32.68 108.59 109,47 7.3S$ 40.04 8.100 3 , 13.35 ., 93.96 13.24 1,4809,42 1.476,927 0.701 1.616 0.602 22.01 109.506s 11 2,103 2,106,766 am8A 3MA #" IS.3 186.37 _ 32.56 108.50 109.37 7.358 39.86 8,100 3 13.29 93.94 13.44 1,480,927 1,477,003 0.701 1.61 0.602 21.89 1081, 2,11O*7 2.106*152

  • " 3M 3M 16.36 116.27 32.33 108.41 109.27 7.358 39.66 8.100 3 13.23 93.92 13.64 1.481.010 1.477.077 0.701 1.615 0.02 21.77 108,32 2,916,703 2,106A. S635 a3 3M 1527 106.16 32.16 108.32 109.I8 7.358 39.52 8,100 3 13.17 93.91 13.94 1,481,091 1.477.149 0.701 1.614 0.602 21.66 10823 2.0.7V7 2,96 *66 3 16.19 106A. 31.09 108.23 109.08 7.358 39.35 8,100 3 13.12 93.89 14.04 1.481,170 1.477.219 0.701 1.614 0.602 21.55 108.15 2,1106,71 2,105, M A SM 15.12 MOM 31._3 109.15 108.99' 7.358 39.19 8,100 3 -13.06 93.87 14.24 1.481 246 1.477.287 0.701 1.613 0.601 21.44 108.07 2,110.774 2,166,910 OW 3M ~ 16.04 166.0 _ 31.67 108.07 108.90 7.358 39.03 8,100 3 13.01 93.06 14.44 1.481,321 1,4T7,354 0.702 1.613 0.601 21.34 107.98 2.110.707 2,1056*3 WM 3M 3M 14.97 I01S, 31.52 107.96 108.81 7.358 38.88 8,100 3 , 12.95 93.94 14.94 1.481,299 1,477.419 0.702 1.612 0.601 2l.23 107.91 2,110,616 2,106,642 3 3 3 04,66 166,73 31.37- 107.91 108.73: 7.358 38.73 8.100 3 12.91 93.83 14.94 1.481,466 1,477,483 0.702 1.612 0.601 21.13 107.83 2,110,641 2,10610,2 3W 3M p3 14833 104.64 31.22 107.83 108.64, 7.356 38.58 8,100 3 12.86 93.82 15.04 1,481,536 1.477,545 0.702 1.611 0.601 21.03 107.75 2,1,1016 2:,06 3M 3MA S 14.76 1 0oom 31.08 107.75 108.56 7.356 36.44 8.100 3 12.81 93.80 15.24 1,481,604 1,477,606 0.702 1.611 0.601 20.94 107.60 2,116,683 2,166,001 3M 3MA 3 14.6 1 WA 30.94 107.68 10B.4" 7.358 38.30 8,100 3 , 12.77 , 93.79 15.44 IAl81,671 1A477,656 0.702 1.610 0.601 20.94 107.61 2,110,690 2,1066,1 3MA 3M 3M 14.63 106640 30.80 107.61 108.40' 7.359 35.16 8,100 3 12.72 93.77 15.64 1,481,737 1.477,724 0.702 1.610 0.601 20.75 107.53 2,11009,3 2,1606,8 N6 3 3A 3M 14.6 10,32 30.67 107.53 108.32. 7.358 38.02 8,100 3 12.67 93.76 15.94 l491,01 1,4778782 0.702 1.609 0.601 20.66 107.46 2,11.43 2,1,06.66 3M 3M 3M 14.60 6 30.53 107.46 109.25 7.358 37.89 8,100 3 12.63 , 93.75 16.04 118" 1,477.3 0.702 1.609 0,601 20.57 l07.40 2,110,W 2.106,013 3M ~3M 3 14A 166.17 30.40 107.40 108.17 7.308 37.76 9.100 3 12.59 93.74 16.24 I.481,920 1.477,693 0.702 1.609 0.601 20.49 107.33 21.9116 2 ,166,61 W 3 3M 3MA 1438 108.16 30.28 107.33 108.10 7.358 37.63 8,100 3 12.54 93,72 16.44 1,481.986 l,477.947 0.702 1.m 0.609 20.40 107.26 2,110*66 2.0.106 3M 3M S 3 14.32 loam 30.15 107.24 108.03 7.35. 37.51 8.109 3 12.50 93.71 1,.64 18492,045 1.478,000 0.702 1.607 0.601 20.32 10720 2,111,017 2,106,124 3M OW 3M 107.66 30.03 107.20 107.96 7.358 37.38 8,100 3 12.46 ,93.70 16.94 1.482,103 1.478,051 0.702 1.607 0.60o 20.23 107.13 2,11*50 2,106,141 3M 3M 3MU 14.20 107.66 29.91 107.13 107.89 7.350 37.26 8,100 3 12.42 93.69 17.04 1,482.160 1,478.102 0.702 1.607 0.601 20.15 107.07 2,111* 2,106,167 3IM M 3MA 14.14 107,82 29.79 107.07 107.82 7.358 37.15 6,100 3 12.38 93.68 17.24 1.482.216 1,478.152 0.702 1.606 0.60l 20.07 107.01 2,111*.6 2,106.173 M 3 3 14.06 10A7I __ 29.67 107.01 107.75 7.358 37.03 8,10 3 12.34 93.67 17.44 l.482.271 1,478.202 0.702 1.606 0.601 19.99 106.95 2,11,666 2,06,146 3M 3M ~ 14A63 107,66 29.56 106.95 107.69 7.358 36.91 8,100 2 12.30 93.65 17.64 1.462,325 1470,250 0.702 1605 0.601 19.92 10 .99 2.15,106 2,106,36 3M A 3M 3 13.66 1076A 29.44 106.499 107.62 7.256 .60 9,100 3 , 12.27 .93.94 Calb-PM-44-3 A02-1_SDCCooldomnTimo4246Q0Is.

Cooldowo2 3r29/2008,12:49 PM Calc 17321-01-PM-44-3, Shutdown Cooling Time Attachment 2, Page 19 Shutdown Cooling Temperature Transient with 90F River Water SDC Hx Fouling = 0. hr-F-sqftlBtu, CCW Hx Fouling = 0. hr-F-sqft/Btu 370 330 290 250 I.2 210 E 0 170 130 90 50 , 1 7 0---+ 160-150 i 140 u: 130 SL E 120-Pri Cool Temp-SDC Return Temp-CCW Temp\\S"., 110 100 ,1 90 0 4 8 12 16 20 Time, hours Calc-PM-44-3 Att2-1_SDC_CooldownTime4246Q.xls; Chart2 3/29/2008,12:49 PM Calc 17321-014-44.3, Shutdown Cooling Time Afttahment

2. Page 20 Shutdown Cooling Temperature Transient with 9OF River Water SDC Hx Fouling -0.00418 hrF.4qftIBtu, CCW Hx Fouling = 0.0015 hr-F-sqftiBtu Mnal RC Temperature.

F _ 34 SDC HX CCWHX InMtal Time 2 2754 Shel Fil M r 0.09751 RCSTe-peratureafer8homnn 21320 ShFiRpower

= 0.617092 Time alter rip to 13SF PFrnwy Co'lant Temp 73.21 ritUa CCW to SDCHx 4246 Shel Film Pr power 0.333 Time after SOC Wl,4im to 13SF PC Temrp 7121 CCW FloStep Temp 275 Fohnq (total -tbe side) 0.00418 O.OM1 Pecay heat aquibdum at 90F ma tImp 64.37 0.00418 0.004 SOCtx Time Steop (D) P(pp) POP) Pb& Totl a drrc Tube hr h. t degFlr 0. gam Pr Ttj Tt.o 0, Opm Pi TS3 Ts.o 2.009 0.1 54.956 18 1.5 -132.55 -52.80 3000 315 350.00 253.61 4246 16 166.410 570.17 2.10 0.10 54.107 1I 1.5 -129.83 -5682 -51.11 3000 315 344.72 250.50 434 15 106I. 5 t7023 2.20 0.10 53.300 Is 1.5 -127.20 -54.40 -49.45 3000 315 339.61 247,47 430 65 107.76 tow 2.30 0.10 52.540 Is 1.5 -124.65 -52.61 47.83 3000 315 334.64 244.54 4a4 66 507.44 1'147, 2.40 0.10 51.R22. 1 1.5 -122.15 -50.86 -48624 3000 315 329.88 241.70 434 6 IOT1A$5I 2.50 0.10 51.143 16 1.5 -119.80, -49.15 -44.69 3000 315 32526 238.96 434i 6 5 06 54.13 2.60 0.10 50.500 18 1.5 -117.49 -47.4A9 -43.17 3000 315 320.78 22326 4 21 0 4246 9 M 162.73 2.70' 0.10" 40.6618' 16 1.5 -115.26 -45.87 -41.70 3000 315 316A7 233.69 4 65 0124 91 2.80 0.10 49.305 18 1.5 -113.11, -44.30 -4028 3000 315 312.30 231.19 44 98 166*6 16100 2.90 0.10 48.749 16 1.5 -111.03 -42.78 -36.89 3000 315 30827 228.78 426 18 105.74 1" 2.00 0.10 46.216 18 1.5 .109.02 -41.30 -37.55 3000 315 304.38 226.43 4346 6 56.4 567*6 3.10 0.10 47.710 1 1.5 -107.08 -39.67 .3624 3000 315 300.63 224.17 4346 96 105.5 11 MA 320 0.10 47123 18 1.5 -109.20 -30.40 -34.98 3000 315 297.01 221.96 4348 65 106 167 3.30 0.10 46.756 18 1.5 -103.40, -37.14 -33.76 3000 315 293.51 219.8 43 95 104.78 154.17 3.40 0.10 46.307 18 1.5 -101.65 -35.84 -32.50 3000 315 290013 217.82 4M 95 1046 853.15 3.50 0.15 45.676 18 1.5 -99.97 .34.59 -31.45 3000 315 286.87 21MI94 46 16 104.35 162A.3.65 0.15 45.26 16 1.5 -97.56 -32.78 -28.81 3000 315 28222 213.01 426 96 1046 $54A2 3.95 0.16 44.667 18 1.5 -95.19 .31.03 -2820 3000 315 277.84 21022 46 96 103.73 141.16 3.96 0.17 44.080 I6 1.5 -92.87 -2928 -26.63 3000 315 273.16 207A. 4M46 95 M0AI* 147.77 4.13 0.18 43.493 18 1.5 .90.56* -27.57- -25.00 3000 315 28.689 204,75 4346 96 163-16 4.31 0.19 42.906 18 1.5 -0927 -25.8S -23.51 3000 315 264.25 02.02 424 65 102A 8447 4.49 020o 42.319 -a 1.5 -65.90 -24.16 -21.97 3000 315 256.AI 199.31 434 6 5 TOM1. M 4.69 0.21 41.729 18 1.5 -43.72 -22.49 -20.44 3000 315 255A5 19.61 4346 95 102.2 2 4.91 023 41.136 16 1.5 -81.47 -20.83 -18.94 3000 315 251.10 193.63 4M 95 101*6 146*4 5.13 024 40.537 i1 1.5 -7924 -1920 -17.46 3000 315 248.79 19126 424 96 1011.0 19m 5.386 0.26 39.932. 19 1.5 -77.04 -17.60 -16.00 3000 315 242.52 188.61 424 6 9 105.4 low .4 5.64 029, 39.319 18 1.5 -74.85 -16.03 -14.58 3000 315 238.30 185.99 436 9 5 101.14 1t3 5.93 0.31 30.695 18 1.5 -72.70 -14.50 -13.18 3000 315 234.12 183.39 43 46 5 loom1 135 624 0.34 38+058. 18 1.5 -70.571 -13.01 -11.83 3000 315 230.00 180.62 4246 8 1606 134200.38 37.406, 18 1.5 -60.48 -11.57 -10.52 3000 315 225.95 178.29 4246 95 100.31 13242 6,96 0.42 36.735 1s 1.5 -6.42' -10.10 -9.26 3000 315 221.96 175.79 4346 66 800.04 131*7 7.39 0.48 36.042 18 1.5 -64.40 -0.86 -0.05 3000 315 218.64 173.34 44 95 111177 1CA4 7.86 0.54 35.323 18 1.5 -62.43 -7.60 -6.91 3000 315 214.22 170.93 4M 65 0.61 120.23 8.40" 0.62 34.573' 1 1.5 -40.560' -6.43 -5.85 3000 315 210.48 168.58 44 95 0612 9.02 0.72 33.786 18 -1.5 -58.63 -5.35 -4.86 3000 315 206J85 186.30 4246 66 0Al 12A 9.75 0.66' 32.954V 18 1.5 -.6*.2 -4.37 -3.97 3000 315 203.34 164.0W 44 95 6 ,1 1 10.60 1.03 32.071 0 1.5 -55.08 -21.50 .19.55 3000 315 196.24 161.93 4346 65 9664 11.63 126' 31.126' 0 1.5 -44.81 -12.18 -11.07 3000 315 179.44 14912 4346 9 6 7.1 116 I,14 12.69 0o2 30.109 0 1.5 -37.68 -6.07 -5.52 3000 315 166.00 14026 4246 95 96.22 I14 13.14 0.45 29.917 0 1.5 -36.95 -5.53 -5.03 3000 315 164.50 139.34 434 6 ,11.12 1 13*13.60 0.91' 29.5931 0 1.5 -35.79+ -4.70 -4.27 3000 315 162.31 137.88 4346 65 M7 12 .14.50 0.99 25.952 0 1.5 -33.02 -3.34 -3.03 3000 315 156.44 135.32 434 16 26,30 551.77 15.50 1.17' 28.3680 0 1.5 -3228 -2.42 -2.20 3000 315 155.42 133.43 4346 95 1O6*3 16.67' 1.65, 27.709, 0 1.5 -30.980 -1.77 -1.61 3000 315 152.85 131.76 46 65 ".31 116*3 18.32 2.28 26.877 0 1.5 -29.63 -1.25 -.14 3000 315 15020 130.05 446 95 6.13 010920 20.59 3,11 25.879 0 1.5 -28.31 -0.93 -0.85 3000 315 147.61 128.36 4346 95 944 1TO 23.70 4.39 24.729 0 1.5 -26.97 .0.74 -0.68 3000 315 144.97 129.64 4346 95 64.77 50M 28.09 5.00 23.408 0 1.5 -25.47 -0.56 -0.51 3000 315 142.00 124.71 434 66 646 106.33.09 5.00r 22.201 0 1.5 -24.186 -0.40 -0.43 3000 315 138.45 123.05 434 6 96 941 1:66 38.09 6*6' 21f215' 0 1.5 -23.080 -0.37 -0.33 3000 315 137.28 121.63 424 4 6 644 965.44.09 6.06 20.236 0 1.5 -22,07: -0.34 -0.30 3000 315 13521 120.32 4240 46 64,1 104,51 50.65 10.36 19.349 0 1.5 -21906 -021 -0.19 3000 315 13321 119.01 46 66 93A 1 Al Calc.PM-44-3 A02-l_SOC_Cooldoolime4246Qx.s; Cooldowe3 3129=208,12:49 PM Calc 17321-01-PM-44-3.

Shutdown Cooling rime Attachment

2. Page 21 F + F 4 + F + 4 4 4 4 4- + I- -4 + F + -I I- -I 4 F -F -I_ _ I I I- I- 4 I- -i + i + 44- 4 -+ -i Time Tube a 1 -.11 Re -7 57 T,,Toe -I I -I VI Re IT hBl -2.00 301.81 55.59 1.0281 1290-04 0.286 5.609 138149 1.1470 2291 140.14 61.37 $AM 3.13E.0 03M 3*6 2*966 1346 9.432 169.81 2.10 29751 55.78 1.0I68 O 125E-04 0,396 5109 136269 1.1647 2281 030.A 61.6 9.9002 3.1r6,0 7 3*6 13.3 .M 5343 9.416 169.6, 220 293.54 55.96 1.0253 1.27E-04 0.396 5.609 134,429 1.1824 2271 13&.19 1A 0GAM 3.166-04 .376 3 .532 51.61 3*6 030 9.400 169.51 2.30 289860 S6,13 1.0240 1290-04 0.396 5.809 132.629 12003 2261 072*6 614A2 UM666 32504 .75 6 i 0* 3M f336 9.395 169.31 2.40 285.78 56.20 1.0228 1.31E-04 0.396 5.609 130871 1.2184 2251 1. 61.44 UM 32464 3= &SW 14366 t.2 1032 9.370 169.24 2.50 282.10 56.46 1.0217 1.33E-04 0.386 5.609 129,157 12265 2241 15.49 S6I 1.461 66 3244 40375 3652 40 323 0 9J56' 169.15 2.60 278.53 56.61 1.0206 1.356-04 0.396 5.609 127,486 1.2547 2231 f"341 6S1A7 CAW 3.644 0.37 3 1476M6 3.16 0236 9.342 1688.9 2.70 27568 56.76 1A196 1.37E-04 0.396 5.609 1259859 1.2729 2221 133.63 61.41 CAM 3.311E4 0.374 3162 146.57 3,17711 1323 9.328 168.$: 2.80 271.75 56.90 1.0186 1.40E-04 0,396 58.09 124277 12911 2211 133.08 61.M6 0 I666 333E4 0.374 3.62 14SA6 32014 120 9.315 168.651268.52 57.03 1.0178 1.420-04 0.396 5.09 122,739 1 .3093 2201 13" 61.51 04040 ".3-04 0.374 3.662 144,675 32247 1317 9.303ý 168.51 3.00 265.41 57.16 1.0169 1.44E-04 0.386 5.609 121,24S 1.3275 2191 130.64 61.62 0*66 3.76-4 0.373 36 143W.775 346 1314 9291 168.4: 3.10 262.48 5728 1.0161 146E-04 0.396 5.609 119,795 1.3456 2182 130ISM 61.4 O.67 3,39E04 0.373 3*62 142*96 566 031l 9.2801 168.i 3 320 259.49 57.38 1.0154 1.48E-04 0.396 5.609 111,389 1.3637 2172 130.4 6155 0.0047 3.4E04 0,373 3A62 142,089 3.165 130I 9.269 168.11256*9 57.50 1.0147 1.100-04 0.396 5.609 117W0A5 1.3617 2163 056.4 6SIM 6.906 3.4E404 t373 3*52 141, 3=..3120 306 9.258, 168.04 3.40 253.97 57*61 1.0140 1.52E-04 0.396 S609 115,703 1.3995 2154 126.64 SIM 0.9006 *6-64 0.373 3.52 140,43 323? 103 9248 167.94 3.51 25136 57.71 1.0134 1.540-04 0.396 5.609 114,422 1.4172 2145 12822 S1M 0*610 3.4E1-4 0&372 3J* 130,732 33M t01 9.239 167*3.65 247.61 57.96 1.0126 1.57E-04 0.395 5.609 112,584 1.4435 2132 127.33 61.66 0.9166 3,6544 0.372 3652 13&01 3-363W 1266 9.225' 1675 3.80 243.93 57.99 1.0117 1.60E-04 0.395 5609 110,771 1.4703 2118 0346 61.0 6 .6666 3s.6384 O.3= 36 137,610 1204 9.211 167.41 3.96 240.32 6.13 1.0110 1.630-04 0.395 5.609 108.985 1.4977 2105 125.1 61.62 01666 3.644 OA 3.02 136.561 3A414 1261 9.198 167.31 4.13 236.72 58.26 1.0102 1.66E-04 0.385 5.60S 107,199 1.5260 2092 120.70 61*A4 D0.4 3644 0l.1 3.2 1361,666 3,470 7 9.184 167.14 4.31 233.13 56.39 1.0095 1.59E-04 0.384 5A09 105,417 1"554 2078 12l.62 61.6 0.66 3,61E4 0.371 3.662 134,42 3*66 26 9.171 166.91 4.49 229.57 58*52 5.0044 1.72E-04 0.394 5.609 103,642 1.5(57 2064 123.66 61*06 9664 3.84r-4 0.371 3*M 133,634 3J3m 112M 9.158 168.71 4.69 226.03 58"5 1*082 1.7504 0.394 5.609 101,874 1.6171 2050 i1322 61.6 DAM 3*7644 6.376 3*6 1332.15 3M. 17 9.145, 16NA 4.91 222.51 58.77 1.0075 1.79E044 0.393 5.609 100,116 1.6495 2036 121.45 61.6 019113 317068. 0,370 3AS2 131,506 3S6 W274 9.132 166.4;5.13 219.03 58.99 1.0069 1.82E-04 0D3I3 5.609 98.369 1.6829 2022 102.5 61.70 0.6682 3.73E-04 0.370 3,62 130.666 3.*21 1a71 9.119 16621 5.38 215S7 59.01 1.0064 1.86E-04 0.393 5.609 96,636 1.7174 2007 0110.7 61.71 6.9962 3.75E904 0.369 3.62 51 66 3.6516 1256 1.16 M 0'5.64 212.14 59.13 5.0058 1.90E-04 0.392 5.609 94.919 1.7528 t903 11.7 61.73 6OA2 3. 78E104 0.366 362 126*42 3*3 1264 9.093 165.85 5.93 208.76 5924 1.0053 1.94E-04 0.362 5.609 93,221 1.7893 1976 18.17 61174 0666IM2 3.3E04 06 356 127l 6 3.711 07U1 9.081 165.61 624 285A. 59.35 1.00468 1.98-04 0.391 5.609 91,544 18268 1964 087,. 61.76 0.9015 3,84646 0.300 3,62 126.760 3,743; 12f6 9,068 165,4 6.58 202.12 59.46 1.0043 2.02E.04 0,391 5.609 99,891 1.8653 1949 116.61 6130.76 0* 3,67044 036 3M 126,9 3.7745 t025 9.056 16521 6.96 198.87 59.56 1.0039 2.064E-4 0.390 5.609 86,265 1.9046 1934 116*6 61.75 66S1 3JOE4 0.388 3*6 124,960 3.8051 tm29 9.044 165.01 7.39 185*.9 59.66 1.0035 2.10-044 0.390 5.609 86,671 1.9447 1920 115.11 61,79 0.996 3*5.4 0.368 3A*2 124*62 3*2 1240 9.032 164.*1 7.86 192.58 59.76 1.0031 2.14E-04 0.389 50A 65,112 1.9855 1905 114.37 61*0 0.9000 3*66.4 CA6 Um 1S=3256 366 0248 8.825 5164.7(8.40 1i89*3 59W5 1.0027 2.16E-04 0.389 5.609 83,892 2.0268 1891 043. 61*1 66M6 3.9E46 6,567 3A t12 low664 1243 9.010 164.5(9.02 t5667 59.94 5*024 222E-04 0.388 5.609 82,116 2.066 1577 112-7 61.8 C*AM 4A*E4 5.367 356 12103 3M47 1240 8.998 164.31 8.75 183.75 60.03 1.5020 227E-04 0.387 5.609 80,686 2.1105 1863 51U23 61*5 6*66 4*1664 "7 3.552 120.!800 3.96U 5237 8.987' 14.5;10.60 180.93 60.11 1.0017 231SE-04 0.387 5.609 792307 2.1526 1849 01*t6 61.4 0.9079 4*6644 0.36 3*62 120,45 3."815 1234 8.975, 163.94 11M5 164.57 COS7 1.0002 259-04 0.383 5.609 71.231 2.4341 1766 107.*3 610 0.978 422E44 3.W II*SA 4.1614 1205 8.9095 162.71 12.89 153.13 S07 0.9993 2.820.04 0.380 8*09 95685 2.*714 1704 106.07 61.93 CA 4.34E44 0.364 3652 11262 42803 1207 8.864 161.81 13.14 151.96 60.90 0.9992 2.85E-04 0.380 5.609 65,103 2.6978 1696 104. SIM 0.0974 4,3164 0.364 1352 112.284 42M 120I 8.859 161.71 13.60 I5som 60.95 0.9991 2.9E-04 0.380 5.609 64.203 2.7411 1687 104,7 61*.4 0*677 4.37E44 0.364 3*6 11t,712 4.3146 1204 8.852 161 ýC 14.50 146.81 61.02 0.9988 2.97E-04 0.379 5.609 62,674 2.5176 1689 103.73 616 95 6D 7 4A.E604 0.353 3*6 1510,94 4,3517 1201 8.840 161.31 15.58 144.43 61.08 0.9987 3.03E-04 0.378 5.609 61,489 2.8798 1655 560G 6SIM6 0.977 4.43E-4 0.363 3.W 110.304 4,3007 1586 8.83t5 161.15 16.67 142.31 61.13 0.9985 3.06E-04 0.377 5.609 60.481 2.8346 1643 102.67 610*96 0*7 4,4504 0.363 3.65 4A.4 lS 1196 8.823 160.95 18.32 140.12 61.19 0.9984 3.140-04 0377 5.609 59.446 2.9931 1631 12.107 7 .94177 4.47E,04 0.363 3*2 109,1162 4.4315 1464 8.8155 160.71 20.57 137.99 6124 0.9983 3.19E-04 0.376 5.609 58.435 3.0522 1618 10.168 61.97 0.6177 4.5(,04 0.6 3*62 10.627 4.4571 1192 8.807 160,51 23.70 135.80 6128 0.9982 325-04 0.375 5.609 57.409 3.1145 1605 101.37 61*6 0*77 4 *S264 0.362 3*62 106,062 4A634 1190 8.799 580.4(28.09 133535 61.34 0.9980 3.32-04 0.375 5.609 56,260 3.1872 1591 1601 6S1M 0*67 4.5644 0.3O2 3.62 IOTA" 4.133 1067 8.790 160.51 33.08 13125 61.39 0.9979 3.380-04 0.374 5.609 55.278 32518 1579 100,lI3 W1.* 6*67 4*544 em 3. 106666 4*36 1II 8.782 159.0 38.08 129.46 61.42 0.9978 3.44E-04 0.373 5609 54,445 3.3086 1568 667'2 6.0 0,977 4.5E44 0.362 3*6 106.48 45613 11113 8.776 159.81 44.00 127.80 61.46 0.9977 3.49E-04 0.373 5.609 53,679 3.3625 1558 96.34 62"0 OM 41E644 0.381 3662 6 IMM8 46MI6 1162 8.770 159.6!50.65 126.15 615A9 0.9977 3.54-.04 0.372 5.609 52,915 3A478 5540 WAS 61. CAM 4*X-044 0.25 341 108. 4*06 16 6.765: 159.4A C al-PIM-.44-3 Aft2-t_SOC_Coo~doelimre4246Q0*s; Cooldooo3 312/208,12:49 PM CaM 17321"014-44-3.

Shuadow- Cooling Tim2 Afttchment 2, Page 22 CCW HX Foubn I Ttwole TSOe .4h. CCW CTo tl 0 CCW HC Dt CIW I,. 0 Cjr Cr NTU W&OM9e.e1 DT Tt~o 0 Op Cr N teovr. DTs T.,o Bull,. -~~ af p m~2.00 1,337,60 1375.146 0.858 0A20 0.399 06.39 25311 2,00.110 2M060 OV OM 340. OAT 1716 132.55 253.61 171.00 7.358 139.91 0.100 3 46.64 100.41 2.10 1,342.146 1,377,007 01w60 0.6 0.398 94.22 250.50 2,0 2,88W61 *#A 3M 3MA 0.15 1 1289.3 250.50 170.23 7.358 137.19 5,100 3 45.73 109.08 2.20 1,346,529 1.380.565 0161 0.616 0.397 92.13 247A7 2X1.343 2,18O.46 3M #A O low63 127.20 247.47 168.63 7.358 134.56 0,100 3 44.95 107.75 2.30 1.350,719 1,383,126 0.662 0.615 0.397 90.12 244.r. 2.1 2,089,913 OW 3M *" W64 167S 124.65 244.54 167.00 7.358 132.01 8,100 3 44.00 107.44 2.40 1,354.723 1.385,591 0.663 0.613 0.396 80.18 241.70 2,M,447 28W,34 A1"A 3M 3 5 15.5. 122.10 241.70 105.580 7.358 129.54 8.100 3 43.18 107.13 2.50 1,358.549 1.387,963 0.664 0.612 0.395 86.31 238.95 2,092,N6 2O,70.T6 9WlA #WA M" 57.30 164.13 119.80 23.859 164.13 7.358 127.16 8,100 3 42.39 106.84 2.60 1.362.206 1,390,248 0.665 0.610 0.394 94.51 23629 2163.470 2,91,075 A o3 3M 66.18 162.73 117A9 236.20 162.73 7.358 124.85 8,100 3 41.62 106.55 2.70 1,365,702 1.392,447 0.966 0.609 0.394 82.70 2321.69 2,093"1 2,005115 3M 3M 3M 6.11 161.30 115.26 233.69 161.38 7.358 122.62 8,100 3 40.87 10627 2.80 1.369,044 1.394,563 0.667 0.607 0.393 61.11 231.19 3M 3M OA 54.07 160.07 113.11 231.19 160.07 7.358 120.47 8,100 3 40.16 106.00 2.90 1,372,238 1.396.601 0.667 0.606 0.393 79.50 228.78 2.64,60 2.C01 3M W" 3MA 53150 68.61 111.03 226.78 158.81 7.358 119.38 8,100 3 39.46 105.74 3.00 1.375,292 1,398,562 0.068 0.600 0.392 77.95 226.43 2,08.2106 2092.864 3MA M 62,10 167.50 109.02 226,43 157.59 7.358 116.38 0,100 3 387 105.49 3.10 1.378,213 1,400,450 0.669 0103 0.391 76.44 224.17 2.666A6 2692, 680 A 3M 3M A 51.101 56,41 107.08 224.17 156A1 7.358 114.44 8100 3 3A.15 10525 320 1.3=1,007 1,402.267 0.670 0.602 0`391 75.02 2211M 2,8664 2,63,313 3M I 3Mf 50.3 165.27 10520 221.98 15527 7.358 112.56 0,100 3 37.52 105.01 3.30 1.383,679 1.404.016 0.671 0101 0.390 73.64 219.6 25,474 2,M= MA 3 S3M 45.39 154.17 103.40 219.86 154.17 7.358 110.75 8.100 3 36.92 104.7B 3.40 1,306.235 1,405.700 0.671 0.600 0U390 72.31 217.12 26N636 2003,924 3M ~ W3M 46-5 163.11 101.65 217.82 153.11 7.350 109.01 8,100 3 104.56 3.50 1.389.682 1.407,322 01672 0.599 0.389 71.03 215.A4 2M7,100 2.054,213 AWA 3M MA 47.3 152.6 99.97 215.44 152.09 7.358 107.32 0,100 3 35.77 104.35 3.65 1.392,143 1.409.632 0.673 0.597 0.381 6921 213.01 2J,766 2,094A4 3MA M" 3M 486 135.2 97.56 213.01 150.62 7.358 104.92_ 0,100 ' 3 34.97 104.05 3.80 1,395.502 1.411094 0.674 0.595 0.388 67.42 21022 2,66,176 2,896A97 3MA 3 oM 45.44 145.11 95.19 210.22 149.18 7.358 102.55 9,100 3 34.18 103.75 3.96 1,399,757 1,414,104 0175 0.594 0.387 65.66 207.40 2,09,6 6,3 3MA P 3MA 44.32 147.77 92.7 207.46 147.77 7.358 10.23 8,100 3 33.41 103.45 4.13 1,401.960 1.4162290 0.676 0.593 0.386 63.94 204.75 2,6M.1203 265,1 3M 3 3M 43.21 045.37 90.56 204.75 146.37' 7.358 97.92 8,100 3 3214 103.16 4.31 1N001609 1.418,474 0.677 0.591 0.3086 62.23 202.02 2.801.596 2.05166 3MA PM I3M 42.11 144.5 8827 202.02 144.97 7.358 9512 8,000 3 31.87 102.86 4.49 1.408.199 1.420,627 0.678 0.5"9 0.345 60.52 199.31 2.100))44 2ý1575 3M 3M 3 41.01 143T16 OAS 199.31 143.58 7,358 93.34 8,100 3 31.11 102.57 4.69 1.411230 1,422,750 0.679 0.580 0.364 58.64 196161 2.10G195 Z*96,957 3M 3M 3M 32 1 42U22 03.72 196061 142.20 7.358 91.06 8,100 3 30.36 10228 4.91 1.414.202 1.424.864 01679 0.586 0.393 57.18 193.93 2.10.943 2,57,331 3M M ow 3314 M 4 91.47 193.93 140.84, 7.358 88.83 9,100 3- 29.61 101.99 5.13 1,417,112 1.426.M44 0.680 0.585 0.83 55.53 191.26 2.,101',36 2,921 PM a" 3M 37.78 139AS 6 7924 191.20 139.441 7.358 8606 8,100 3 28.87 101.70 5.38 1,419,0M 1.420,996 0161 0.503 0.282 53.91 10s1 2.101115 2,6*1 3M P" 3M 25.72 138.14 77.04 1868.61 13.14 7.358 64.39 8.100 3 , 28.13 .101.42 5.64 1.422.740 1.431.019 0.682 0.52 0381 52.31 185.99 ZiC12.24 0 3M 3MA 3 3517 74.5 185.99 136.81 7.350 8221 8,100 3 27.40 101.14 5.93 1,425,455 1.433,008 0.683 0.580 0.301 50.73 193.39 2,162, 2AW779 3M am M A 4 13645A 72.70 163.39 135.49 7,350 60.05 9.100 3 261. 100lo6 6.24 1,428,100 1,434,963 0.604 0.579 0,380 49.18 190182 2.16,86? 2,665,126 3M 3 3A 3362 134.2 70.57 190.82 134.016 7.358 77.93 8,100 3 25.98 100.58 6.3 1,430.673 1.436,878 0.684 0.577 0.379 47.86 17629 2.103.487 2,DN.466 3M ~ R3 112.02 68.48 176.29 132.92 7.358 75.83 8.100 3 2528 , 100.31 6.96 1,433,171 1.438.752 0.685 0.578 0.379 48.16 175.79 2.,36 SA ow 3 313 131AT 66A2.43 175.79 131.67 7.358 73.78 5,100 3 24.59 100.04 7.39 1.435.590 1.440,581 0.689 0.575 0.378 44.70 173.34 2,104240 2,180.13 3M 3A 3M 30,6 130.44 64.40 173.34 130.44 7.358 71.76 8,100 3 23.92 99.77 7.06 1,437.920 1.442.360 01687 0.573 0.377 4328 170.93 2.1541 2,10010 5Z , 3 3M 3 32.2 12123 62.43 170.93 12923 7.358 69.78 8,100 3 2326 99.51 6.40 1.440,177 1,444,M5 0,887 0.572 0.377 41.90 16816 2151,63 U010753 3M MA 26 1 216,616 60IS0 168.58 128.06 7.358 67.86 8.100 3 22.62 9926 9.02 1,442.337 1.445.751 0199 0.571 0.376 40.50 166.30 2.06,3.16 2-100A* 3M ~ 3M 27.91 126.02 58063 106.30 126.92 7.358 65.99 8,100 3 22.00 99.01 9.75 1,444,404 1,447.3%6 0M89 0.589 0.375 39,26 164.08 2. 5A 209.342 3MOIW 3A 3M 77A4 56.82 164.080 125.82* 7.358 64.18 8.100 3 21.39 90.70 10.60 1,446.376 1,448,997 0.689 0.968 0.375 38.01 161.93 2105,6970 Z,0 3M 3M 3M 22.29 124.76 55.08 161.93 124.75 7.358 62.43 8,100 3 20.81 98.54 11.63 1.457,482 1,457735 0.693 0.561 0.371 30.74 14920 2,17*16 2103237 3M ~ 3M 21.0 16.0 44.81 14920 118.40 7.358 52.16 8,100 3 17.39 97.18 12.99 1,464.689 1.463,616 0196 0.555 0,369 25.74 14026 Z,15MA 2.104.345 3M 3M 3 17AO 14.12 _ 37.68 14026 114.12 7.358 45.03 9,100 3 15.01 96.22 13.14 148.1397 1.464200 019 0.555 0369 25.24 139,34 Z.9.154 2,104,457 3M 3M am 1716 113AP6 34.00 139.34 103.68 7.300 44.31 8.100 3 14.77 96.12 13.6 1,46,520 1.465,128 0.696 0.554 0.368 24.43 137M 2J09=105 0 W M ~ 3 171l9 11217 35.79 137.86 112.97: 7.358 43.15 8.100 3 14.38 95.97 14.50 1,469,406 1,486,692 0.697 0.552 0.368 23.00 135,38 2.1069716 2,104.8" 3M ~ 3A 16.07 111.7? 33.82 135.38 111.77 7.358 41.19 8,100 3 13.73 95.70 15,50 1.489,947 1,467,893 0.697 0.551 0.367 21.99 133.43 2,135,8 2J.174 MA 3M M 16.34 11613 ___ 3228 133.43 110.831 7.350 39.64 8,100 3 1321 95.49 16.67 1,471,056 1,468,905 0698 0.560 0.367 21.09 131.76 2,110,180 2,105.374 MA MI 3M 14.71 11613 30.98 131.76 110.03 7.358 38.33 8.100 3 12.79 , 95.31 18.32 1,4722M 1.469.936 0199 0.549 0.366 20.16 130.05 2.110,423 2.6051 3M 3M MVA 14,07 29863 130,05 10920 7.358 36.99 .100 3 12.33 95.13 20.59 1.473.474 1,470,835 0193 0.548 0.366 1925 128.36 2119,43 2.145,736 3M 3M 3M 03AS 106.40 28.31 128.36 108.40 7.358 35.67 8,100 3 1119 94.95 23.70 1.474,60 1.471,940 0.699 0.547 0.365 19.32 126.4 2,110.86 2,10S64 3M R" 3M 12.81 I1OT 26.97 126.64 107.58 7.358 34.33 8,100 3 11.44 94.77 26.09 1,475,001 1,473,053 0.699 0.546 0.364 17.29 124.71 2.111,113 2.16,202 3M a" 3M 12*1 10616 25.47 124.71 106.66 7.358 32.83 8,100 3 10.94 94.50 33.6 1,477,090 1.473,906 0.700 0.045 0.364 16.40 123.05 2,18544 3 3 11,6 166.67 24.1M- 123.05 105.07 7.358 31.54 8,100 3 .10.51 94.39 38.09 1,47:,021 1,474:789 0.700 0.544 0.364 15.65 12t13 2.111,508 2,i0.574 M 3 3M 1016 16.,20052 2308 121.63 10120, 7.358 30.44 8.1W0 3 t00.15 -i 9424 44.09 0,478,867 1,475.512 0.700 0.543 0.363 14,96 120.32 Z,1107 2,106,720 3M OV A M 10.46 108 22.07 120.32 104.58! 7.358 29,43 8,100 3 , 9.81 94.10 50.65 1,479,702 1,476,227 0.701 0.542 0.263 1427 119.01 2,11130 2,106,7 M3MA aM M 10*1 163.65 21.06 119,01 103.96 7,358 20.42 8,100 3 9.47 93.96 CaIc-PM-44-3 Ait2-1_SDC_CooldownTime4246Q ls; Co.ldon3 3129/2008,12:49 PM Cakr 17321-01.PM-44-3.

Shutdown Cooling Ti2 2 Attachmet 2, Palle 23 SOCHx Tir. Step O(D) P(pp) POP) Padc TotW 0 dTrc Tube Ghd h6s h.s mmsturf dgFfh 0, gprn Pi TOI TI.o 0 .im Pin TsO Ts.61.00 6#84 10.221 0 1.5 -20.05 -0.33 -0.30 3000 315 131.28 117-70 46 9 6 103.34 67.64 3.32 17.823' 0 1.5 -19.05 0.00 0.07 3000 315 129.28 116.39 4246 95 93M1 18L072 70.95 6C4" 17.353 0 1.5 -19.16 -0.31 -028 3000 315 129.52 116.55 4246 6 03.70 1020 77.59 3.32 16.159 1.5 -18.22 0.14 0.13 3000 315 127.44 115.31 4266 9 3.0? 102L2 80.91 018 16.832 0 1.5 .18.43 -0.30 -0.27 3000 315 12&.06 115.59 424 6 310 18238 87.54 3.32 16.214 0 1.5 -17.52 0.19 0.17 3000 315 12628 114A1 46 905 134 0 11 90.86 614 16.020 0 1.5 .17.81 -0.29 -0.27 3000 315 126.83 114.78 4W6 86 0212 10.17 97.50 0.00 15.660 0 1.5 -16.93 0.23 0.21 3000 315 125.07 113.63 431 IN A3O 1OIA82 97.50 .408 15.660 0 1.5 -16.93 023 021 3000 315 125.07 113.63 436141 6

  • 3" 80t.42 97.50 0.10 15.660 10 5 -16893 0.23 0.21 3000 315 125.07 113.A3 446 5 6033 1091,2 97.5 0CO 15.80 0 1.5 -1693 023 0.21 3000 315 125.07 113A3 42 N ".130 ,42 97.50 010 15.860 0 1.5 -16.93 023 021 3000 315 125.07 113.63 46 06 3 101842 97.50 4.080 15.60 0 1.5 -16.93 0.23 021 3000 315 129.07 113.63 4W4 16 S3I 101.42 97.50 .08 15.660 0 1.5 -16.93 023 0.21 3000 315 125.07 113.63 4W 6 109.42 97.59 0i80 15.860 0 1.5 -18.93 023 021 3000 315 125.07 11363 424 95 63.3M 101A2 97.80 018 15.680 0 1.5 -16.93' 023 021 3000 315 125.07 1133 4246 16 33 V10A12 97.50 00 15.880 0 1.5 -16.93 023 021 3000 315 125.07 113A3 4M 06 113.39 109A2 97.50 m80 15.660 0 1.5 -16.93 023 021 3000 315 125.07 113123 4w 96 6330 l1ow 97.50. OJ 15660 0 1.5 -16.93, 023 021 3000 315 125.07 113.63 434 16 02.0 I1A2 97.50 0.A 15.660 0 1.5 -16.93 023 021 3000 315 125.07 113.63 46 8 030 11.4I2 97.5 01G0 15.660w 13 -16.93 023 021 3000 315 125.07 113.63 46 16 9 83.M 1.IA2 97.50 010 15.660 0 1.5 -16.83 023 021 3000 315 125.07 11313 4M46 11 93.39 IOtA 97.50' 00 15.660 0 1.5 -16.93' 023 021 3000 315 12M07 113163 AM 966 632 lI,2 97.50 010 15.660 0 1.5 -16.93 023 021 3000 315 125.07 113.63 4266 00 0 .30 A18 975 0.00, 15.660 0 1.5 -16.93 023 021 3000 315 125.07 113.63 4246 0 63.30 101.42 87.59 6.00i 15.660 0 1.5 -1683 023 021 3000 315 125.07 113.63 4W IN 03.3 I0A2 97.50 0,"1 15.860 0 1.5 1.693 023 021 3000 315 125.07 113.13 4240 95 93, 109,1 97.59 010 15.60 0 1.5 16.93' 023 021 3000 315 12M.07 113.63 43* 68 93. 50012 97.509 080 15.660 1.5 -16.93: 023 021 3000 315 125.07 113.63 42G 6 3.30 001.2 9"T50 O+1s: Is.660 0 1.5+ -16.93 0.23 0Oi1 3000 315 125.07 113.63 43 so 933 tolA2 9759 010 15660 0 1 5 -165
  • 023 0211 3000 315 125.07 113.03 426 66 .30 800A2 9759 01.0 15660 0 1.5 -1863: 0.23 0.21 3000 315 125.07 113,63 4X6 es 93.30 114 97.5 08IL0 15.660 1.5 -16.93; 023 021 3000 315 125.07 113.63 42O6 4 133 101.42 97.50 0800 15.660 0 1.5 -18.93 023 021 3000 315 125.07 113.63 440 IN 03.3 010.42 Clc-PM-44-3 A12-l_SDC_CCoddownTime4246Qx; Cooldoin 3 3r29t2O8.

12:49 PM Calc 17321-01-PM-44-3.

Shutdow Coo04g Time Aft-ahmet2, Page 24 Twne I I I I I I I I I I 70.9" 77.59 90.91 87.54 90.66 97.50 97.50 97.50 97.90 97.50 97.50 97.50 97.50 97.50 97.30 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97.50 97'.50 97.50 97.00 97.50 Tube i i T~ wve I 124,49 122.84 123.0 121.48 121.83 120.33 120.91 119.35 119.,15 119.35 119.35 119.35 119.35 119.35 119.35 119.25 119.35 119.35 119,39 119.35 119.35 119.35 119M5 119.35 119.35 119.35 119.35 119.35 119.35 119.25 119,35 11935 119.35 119.35 61.53 0.5076 3.60E-04 61.56 0.9575 3.65E-04 61.56 0.9957 3.64E-04 61.59 0.9974 3.70E-04 61.38 0.9975 3.68E04 61.91 0.9974 3.74E-04 61.60 0.9974 3.72E-04 A1.63 0.9974 3.77E-04 61.63 0.9974 3.77E-04 61.63 0.9974 3.77E-04 61.63 0.9974 3.77E-04 61.63 0.9974 3.77E-04 61.63 0.9974 3.77E-04 61.63 0.9974 3.77E-04 61.63 0.9974 3.77E-04 61.63 0.9974 3.776-4 61.63 0.9974 3.77E-04 61.63 0.9974 3.77E-04 61.63 0.9974 3.77E-04 61.63 0.9974 3.77E-04 61.63 0.9974 3.77E-04 61.63 0.9974 3.77E-64 61.63 0.9974 3.776-04 61.63 0.9974 3.77E-04 61.63 0.9974 3.77E-04 61.63 0.9974 3.77E-04 61.3 0.9974 3.77E-04 61.63 0.9974 3.77E-04 61563 0.9974 3.77E-04 6163 0.9974 3.77E-04 61A63 0.9974 3.77E-04 61.63 0.9974 3.77E-04 61.63 0.9974 3.77E-04 61.63 0.9974 3.77E-04 k IV. I Re 0.372 5.609 52.1 0.371 5.909 51.3 0.371 5.609 51,4 0371 5.609 50.1 0.371 5.609 50,.0.370 5.609 50.s 0.370 5.609 50s, 0.370 5.609 49,1 0.370 5.609 49,.0.370 5.609 49,!0.370 5.609 49,.0.370 5.609 49.4 0.370 5.609 49,.0.370 5.609 49.4 0.370 5.609 49.4 0.370 5.609 49,4 0,370 5.609 49.4 0.370 5.609 49,.0.370 5.609 49.4 0.370 5.609 49,4 0.370 5.609 49.4 0.370 5.609 49,!0.370 5.609 49,.0.370 5.609 49,.0,370 5.09 49,4 0.370 5.609 49,.0.370 5.609 49,4 0.370 5.609 49,.0.370 5.609 49.4 0370 5.609 49,.0.370 5.609 49,.0.370 5.609 49,4 0.370 5.609 49.4 0.370 5.609 49,4 154 395 644 774 344 533 469 866 O66 866 6O6 866 O66 406 866 866 66 6O6 O66 866 866 866 066 866 O66 O66 866 866 O66 6O6 O66 866 6O6 866 Pr h (Bwtu~-Pr 2-F)3.4747 1539 3.5331 1528 3.5362 1529 3.5024 1519 3.5696 1521 3.6247 1512 3.6070 ISis 3.6617 1506 3.6617 1506 3.6617 1506 3.M917 1506 3.6617 1506 3.6617 1506 3.6617 1506 3.6617 1506 3.6617 1506 3.6617 1506 3.6617 1506 3.6617 1506 3.6617 1506 3.6617 1506 3.9617 1506 3.6617 1506 3.6617 1506 3.6617 1506 3.6617 1506 3.6617 1506 3.6617 1506 3.6617 1506 3.6617 1506 3.6617 1506 3.6617 1506 3.6617 1506 3.6617 1506 Tt,Mv 9.AI 97.41.7.97 67*97.74 97.41 W7AI 97.41"7.41 WAS 97.4A 97.41 97,40 97.41 97.41 STAI 67.41 97.41 97AI 97A1 97.41 97.41 17AI 97.41 97.41 97.41 97.41 97.41 97.41 97AI 97AI 97.41 97.41 9.2 0.9670 4.67544 GM U.97764 16 4.0CAM76 4*544 90.9 U 4.71.06 OM 0.67 4.0.544 OM DA 4.70iE,04 ON CUM 4AOE-0 U90.0 0. 046 .71E4 OM0 0.9067 4,71544 92-03 0.096 4.71 E04 U 0.A6 4.71E504 920 0.06)7 4711546 M49 0.9076 4.715E04 92.03 0.67 4.71E-04 92.3 0.9676 4.71E504=A 0ý.076 4.710504 90.03 6.9676 4,71E0544 UM 067 4.711EI4 9. 966 4.71E504 9203 0.67 471E-04 C. 0.965 4.71E-04 Q0i3 967 4.704&L43 U06 4.71E04 62.03 0.6676 4.715E-4 2.9 0.0676 4.71,04 92.03 0.96 4.715E044 0-09 0.9?6 4.71E44 90.03 0.997 4.71E-44 2.03. 0.6 4.715E-04 920.9 0.0976 4.70E504 02.03 0.9676 4.715E04 92.99 0.9676 4.715E-4 k .Re R k5(99'w.&3 &M 1oci$$ 4.6239 1178 8.759 159.33 0.301 .9 t94,73 4.9445 1177 8.754, 159.16 9.361 3S2 166764 44 1177 8.754 159.10 0.301 3. 164.30 4.414 1175 8.749 159.03 0G3"1 3 165M479 4A.74 1176 8.750 159.06 0Cu1t 39 t140W 4.r19 1174 8.745 158.91.361 3S2 106420 4.9704 1174 8.747 159.96 0.301 3A52 163,50 4.92 1173 8.742 150.91 0.351 3.952 109.050 4.0012 1173 8.7423 158.81 0.361 362 1639 4A9 1173 8.742 158.81 0.361 3A.9 103,850 4A6 1173 8.742 159.81 0.361 3. 1603.9 4.9992 1173 8.742 158.81 0.361 3A 10990W 4.66 1173 8.742 158.81 0.301 3,652 103.350 4.9 1173 8.742 158.81 0.361 3652 103,80 4.690 1173 8.742, 158.81 0.361 3.6 1093.66 4*0M 1173 8.742 158.51 0.381 3.692 MOO 4*9 1173 9.742 158.81 0.301 3U 103.00 4* 1173 $.742 158.81 0.361 3.92 M3*O6 4 1173 8.742 158.81 0.361 3.02 103.906 4.9 1173 .742 158.91 0.381 3J2 163,6 4A0 173 6.742 158.81 0.361 3092 MA 4j. 1173 8.742 158.81 9.I 3.9 1093330 41 73 8.742 158.61 0.361 3.2 19A 4*9 1173 $.742 158.91 0361 39 0 4.02 1173 8.742 158.81 0.361 3A62 103,090 4.09 1173 6.742 158.81 0.31 3.062 I063000 410 1173 8.742 158.81 0.1 3.0 103.850 4M2 1173 8.742 158.81 0.391 3AW9 193.01 492 1173 8.742 158.81 0.361 MW69 103,M 4*67 1173 8.742 106"1 0.36 3.652 193.06 492 1173 8.742 158.81 0.361 3.602 103M06 4.492 11M3 8.742 158.81 0.361 3*2 1923.90 4*90 1173 8.742 158.81 0.361 3.052 103.90 4.692 1173 8.742 158.81 Calc'PM-44-3 At.2-1_SDCCooldownTimn4246Qxk; Cooldokn3 3r29/2008.12:49 PM Calc 17321-0i-PM-44-3.

Shutdown Cooing Timo Afteohenwt 2, Page 25 II I I I I I I Time SOC HX tube side I 80C h8Cd"Idde I SOC Outy fteI~o terat I T". 8mTM.other Tco otal~I , CW CCW Duty e D MINCWF4o pm X CCW Ternp__ -~ -4 +/- 4 V---4 + I-hns 61.0A 67.64 70.64 77.51 80.91 87.54 90.ii 97.5(97.54 97.R4 97.64 97.N 97.54 97.64 97.54 97.54 97.64N 97.6 97.64s 97.6 97.6 97.64s 97.54 97.5(97.5(97.54 97.64 97.64 97.54 97.6 97.645 97.54 97.54 97.54 W IWMI Cr 1,490,526 1.476,934 0.701 1.481.334 1.477,633 0.701 1,481242 1.477,551 0.701 1.481.995 1.479.201 0.701 1,491.827 1,470,055 0.701 1,482.542 1,478.674 0.702 1.482,316 1,470,476 0.702 1,483.008 1,479,078 0.702 1,423,008 1.479.078 0.702 1,483,008 1,479,078 0.702 1,483.008 1.479.078 0.702 1,483,008 1,479,078 0.702 1.403,000 1.479.078 0.702 1,483,008 1,479.078 0.702 1.483,009 1,479,078 0.702 1,483,008 1,479.079 0.702 1.483.001 1.479.073 0.702 1.483,008 1.479.078 0.702 1.483,008 1,479,078 0.702 1.413,00, 1,479.078 0.702 1,483,008 1,479,078 0.702 1.483,008 1,479.078 0.702 1,483,008 1,479.078 0.702 1.413,008 1,479,078 0.702 1,483.000 1,479,079 0.702 1,483,000 1.479,078 0.702 1.483,008 1.479,078 0.702 1,483,008 1,479,070 0.702 1,483,008 1,479.078 0.702 1.483,009 1,479.078 0.702 1,483.001 1,479.070 0.702 1,483,003 1,479.070 0.702 1.483.008 1.479.078 0.702 1,493,008 1,479,070 0.702 NTU tffectkvone OT Tto 0.542 0,262 13.58 117.70 0.541 0.262 12.-9 116.29 0.541 0.282 12.97 116.55 0.540 0.362 12.33 115.31 0.540 0.362 12.47 115.59 0.539 0.362 11.85 114A1 0,540 0.362 12.05 114.79 0.539 0.361 11.44 113.63 0.539 0.361 11.44 113.6M 0.539 0.361 11.44 113.63 0.539 0.361 11.44 113.63 0.539 0.361 11.44 113,63 0.539 0.361 11.44 113.63 0.539 0.361 11.44 113.63 0.539 0.361 11.44 113,63 0.539 0.361 11.44 113.63 0.539 0.361 11.44 113.63 0.539 0.291 11.44 113.63 0.539 0.361 11.44 113.63 0.539 0.361 11.44 113.63 0.539 0.261 11.44 113.63 0.539 0.361 11.44 113.63 0.539 0.361 11.44 113.63 0.539 0.361 11.44 113.63 0.539 0.361 11.44 113.63 0.539 0.361 11.44 113,63 0.539 0.361 11.44 113.63 0.539 0U261 11.44 113.63 0.539 0.361 11.44 113.63 0.539 0.361 11.44 113.82 0.539 0.361 11.44 1132.3 0.539 0.361 11.44 113.62 0.539 0.361 11.44 112.63 0.539 0.361 11.44 113.63 IN W,,p C, NTU Ofci-a T.2,111,2 2.107,A3" LEA mA ~ em 2,112165IS 2,110711112 OVA Ill" EAw SM 2,112,134 2,107,164 LE La LNA I"M 212,36 2.107.308 LEA so IEA SM.2,112.251 2,107.274 OVA LE A LA 4.76 2,12,106 2,107,410 LEA LA LE 6.X$112.3650 2.107,387 LEA LEA LEA 6.46 2,112,491 2,107.500 LA LEA #EA 6m 2,112,461 M,15006 LEA LEA LEA 6m 2,12,401 2.10.7;!0 LM A lEA LEA 2.112.461 2,167.500 LEA LEAh LEA $A 2,112,401 2,1071506 LEA LEA E 6.9 2,112,491 2,107.586 LEA LEA LA 69 2,112.491 2,1017,86 LA LEA lEA 6.2.112,489 2,107.696 LEA 0EA LEA 6.03 2,1124111 2,101.680 LEA LEA LEA MO 2,112* 2,107,466 LEA LEA LEA MO 2.152*1 2,107,500 LEA LEA LWA MO111 2.1121 2,1067600 IA LEA LEA *M 2,112.491 2,1017,00 LEA LEA LEA MO 2.112.461 2.107.686 LEA LEA LEA amO 2.112,41 2,107,50 LEA LEA OEA MO0 2,112.461 2,107.666 LEA LEA flEA MO 2,112ASI 2,167AN6 LEA LEA LEA MOA t12.1121 2,101.66 LEA LEA LE MO0 2,11201 2,167,9590 LEA LE LEA MO0 2.112*1t 2,101.66 LA LEA LEA 6.63 2,112,41 2.107.566 LEA LEA LEA 6.03 2,112.491 2,101.666 LEA LEA LEA MO0 2,092.41 2.107"08 LEA LEA LEA MOI 2.112.461 2.101.86 LEA Lam LEA MO.0 2.12*91 2.107,506 LEA LEA LEA MOI 2.1 12,4w 2.1076 LEA LEA LEA amO 2, 1 2*1 2,167.66011 LEGA LEA LEA MO,0 Ts,o 103.34 110.72 1102.22 161.711 101.,43 101.43 101.43 101.43 161.43 114.43 161,.43 10.IA3 016.43 61.43 101.43 101.43 101.43 165.43 101A3 101.43 101.43 IDIAS 161.43 101.43 to0.4 B95t Tn,o 20.05 117.70 103.34 7.358 27.41 8,100 3 9.14 93.82 19.05 116.39 102.72 7.359 26.40 8,100 3 8.80 93.68 19.16 116.55 102.80 7.358 26.52 8.100 3 8.54 93.70 18.22 115.31 102.22 7.358 25.58 8,100 3 8.53 93.57 18.43 115.59 102.5 7.359 25.79 8,100 3 8.60 93.60 17.52 114.41 101.79 7.358 24.98 9,100 3 8.29 93.48 17.81 114.78 101.97 7.358 25.17 8,100 3 8.39 93.52 16.93 113.63 101.42 7,358 24.29 8.100 3 8.10 93.39 16.93 113.62 10.42 7.358 24.29 8.100 3 8.10 93.39 16.93 113.63 101.42 7.358 24.29 8.100 3 8.10 93.39 16M93 113.63 101.42 7.358 24.29 8.,00 3 8.10 93.39 16.93 113.63 101.42 7.350 24,29 8,100 3 8.10 93.39 16.93 113.63 101.42 7.358 24.29 8.100 3 8.10 93.39 16.93 113.63 101.42 7.350 24.29 8.100 3 8.10 93.39 16.93 113.62 101.42 7.358 24.29 8.100 3 8.10 93.39 16.93 113.63 101.42 7.358 24.29 8.100 3 8.t0 93.39 16.93 113.63 101.42 7.358 24.29 8.100 3 8.10 , 93.39 16.93 113.63 101.42 7.350 24.29 8.100 3 8.10 93.39 16.93 113.63 101.42 7.358 24.29 8,100 3 8.10 93.39 16.93 113.63 10i.42 7.358 24.29 8.100 3 8.10 93.39 16.93 113.63 101.42 7.358 24.29 8.100 3 8.10 93.39 16.93 113.63 101.42 7.358 24.29 8.100 3 8.10 93.39 16.92 113.63 101.42 7.358 24.29 8,100 3 8.10 93.39 16.93 113.63 101.42 7.358 24.29 8.100 3 S.10 -93.39 16.93 113.63 101.42 7.358 24.29 8,100 3 8.10 93.39 16.93 113.63 101.42 7,358 24.29 9,100 3 .10 93.39 16.93 113.63 101.42 7.358 24,29 8,100 3 8.10 93.39 16.93 113.63 101.42 7.325 24.29 8,100 3 8.10 93.39 16.93 113.63 101.42ý 7.358 24,29 8,100 3 8.10 93.39 16.93 113.63 101.42 7.358 24.29 8,100 3 0.00 93.39 106.93 113.62 101.42 7.358 24.29 8,100 3 , 8.10 93.39 16.93 113.63 101.42 7.358 24.29 8,100 3 8.10 93.39 16.93 113.63 101.42 7.358 24.29 8,100 3 8,.10 9339 18.93 113.63 101.42 7.358 24.29 8,100 3 8.10 93.39 Calo-PM-44-3 Att2.lsoC_CootdoýoTtme42480a4., Cooldooo332920.19M 312912008.12:49 PM Calc 17321-01-PM-44-3, Shutdown Cooling Time Attachment 2, Page 26 370 330 290 250 U.S210 E S 170 130 90 50 Shutdown Cooling Temperature Transient with 90F River Water SDC Hx Fouling = 0.00418 hr-F-sqftlBtu, CCW Hx Fouling = 0.0015 hr-F-sqftlBtu 170 160 150 140 U-130 CL E 120-Pri Cool Temp-SDC Return Temp-CCW Temp 110 100 I I .90 0 8 16 24 32 40 48 56 64 72 80 88 96 104 Time, hours Calc-PM-44-3 Att2-1_SDC_CooldownTime4246Q.xls; Chart3 3/29/2008,12:49 PM I Cao 17321.-01-P%44-3, Shutdown Cooling Tim2 Aheachment 2, Page 27 Shutdown Cooling Temperature Transient with 9OF River Water SDC Hx Fodling -0.001 hr-F.4qftIBtu, CCW Hx Fouling = 0.004 hw.F-&qftRIBu inbal .RC To 310 SDC HX CCW HX hnb.l lwTi 2 2754 Shea Film Muler 0.09751.RCS Temperatue aftw 8 hours9.259259e-5 days <br />0.00222 hours <br />1.322751e-5 weeks <br />3.044e-6 months <br /> 157.97 2She Film Re powr 0.61709 Timae oti ,p to 130F Primy Coolant Temp 26A41764 ntal CCWito SDCH. 4246 Shed Fpm PLrw 0.333 T,11 atr SDC 5t45.on to 130F PC Tewp 244 CCW Flow Stop Tenp 275 Fmubnv(totl tube side) 0.001 0.004 Decoh equrbdum at 9OF riv teon 24.75 CCW Fow Step now 42460 0.00418 0.004 1 1 SOCHx 7ow Stop 0(D) POpp) P(k,) Pfdc Totwb 0 dT. Tub. 01" h -doglffl 0, .go t TOj Tho ,gMT Tc 2.00 0.1 54.966 10 1.5 -178.49 -104.02 -94.57 3000 315 350.00 219.49 44 s MA 1.11 212.19 2.10 0.10 54.107 i6 1.5 -172.02 -98.41 -89.46 3000 315 340.54 21525 44 99 126.0 207.82 2.20 029 53.300 10 1.5 -165.87 -93.07 -44.61 3000 315 33120 211.26 4M 16 12.9 203 2.40 0.20 51.122 18 1,5 -154.20 462.88 -75.34 3000 315 M14.68 203.59 42M 96 121.4 196I1 2.60 020 50,500 1s5 1.5 -143.76 -73.76 -67.06 3000 315 299,61 196.66 430 66 119.71 1IS6 2.80 0.20 49.305 10 1.5 -134.45 -65.64 -59.68 3000 315 296.1 190.42 42 88 ItJ7 110M 3.00 0.2 48.218 19 1.5 -126.14 -58.42 -53.11 3000 315 274.20 184.82 4245 84 11tll1 1610 3.20 020 47.223 1s 1.5 -118.74 -52.01 -4729 3000 315 263.64 179.78 43 6 1165 171.10 3.40 6.20 46.307 1 1.5 -112.14 -46.33 -42.12 3000 315 254,10 17526 4346 95 193IR WtAS 3.60 M0 45.460 18" 1.5 -10629 -4129 -37.54 3000 315 245.76 17121 5 1"314 3.80 9.2 44.673 1i 1.5 -101.01 -36.44 .33.49 3040 315 238.25 167.57 426 6 119,i13 061.4.00 029 43.939 16 1.5 496.33 -32.69 -29.90 3000 315 231.55 164.30 4246 16 110.73 19679 420 &20 43252 Is' 1.51 -92.15 -29.40 -26.73 3000 315 22557 161.038 42 6 10I6s3 Il13*7 4.40 0.2) 42060 1 1.5 -88.42 -26.31 -23.92 3000 315 220.23 158.75 434 95 1023 IS6A16 4.60 020 41.990 1s 1.5 -85.07 -23.58 -21.43 3000 315 215.44 156.38 424 956 lm 1461.14 4.80 020 41.425 18 1.5 -42.08 -21.16 -19.23 3000 315 211.16 15428 4240 96 1671 147.17 5.001 042 40.893 181 1.5 -79.40 -19.01 -17.28 3000 315 207,31 152.34 424 95 0MA 140.6 5.20 0.20 40.368 18 1.5 -76.98 -17.12 -15.56 3000 315 203S5 150.62 434 95 0 1469 143.73 5.40 0.2 39.879 1w 1.5 -74.81 -15.43 -14.03 3000 315 20074 149.06 4340 95 157 14221 5.60* &M0 39.413 0' 1.5 -72.85 -31.94 -29.04 3000 315 197.83 147.65 43" 95 106.11 94014 5.80 0 2 038.969 06 1.5 -68.81 -28.34 -25.76 3000 315 192.13 144.73 4346 66 16 " 138.20 6.00 6 35.544 o* 1.5 49.22 -25.17 -22.88 3000 315 186.97 142.12 43" 96 104.46 135.7 6.20 020 38.135 0 1.5 -62.03 -22.39 -20.36 3000 315 182.40 139.79 4245 " 104AS 133.62 6.40 620 37.749 0 1.5 -5920 -19.95 -18.14 3000 315 17633 137.72 424 96 0C0L0 131.71 6.60 0.20 37.375 0 1.5 -56.68 -17.01 -16.19 3000 315 174.70 135.86 4346 06 103.6 130.6 6.60 9.2 37,017 0 1.5 -S4.43 -15.92 -14.47 3000 315 171.46 134.20 4346 0 102 1 2 7.00 .- 36.672 0 1.5 -52.43 -14.26 -12.96 3000 315 169.57 132.71 434 12.516 127.12 7.20 020 36.339 0 1.5 -50.63 -12.79 -11.63 3000 315 165.97 131.37 44 65 10119 12011 7.40' 020 36.019 0ý 1.5 -49.02 -11.50 -10.46 3000 315 163.65 130.17 4M 06 !01. 124M 7.60 020 35.710 0 1.5 -47.57 -10.30 -9.42 3000 315 16156 129.08 4M 66 1012 12114 7.80 421 X.412 O' 1.5 -4627 -9.36 -4.51 3000 315 1S2.67 120.11 44 as 10.9.4 12L.8 8.01 0.24 35.104 0 1.5 -45.01 48.41 .7.65 3000 315 157.86 127. '16 420 6 100M6 12.10 825 027 34*774 0 1.5 -43.76 -7.49 -6.80 3000 315 156.04 125.21 43 95 IDA) 12126 8.52 .30 34.4181 0 1.5 -42.50 46.59 -5.99 3000 315 15422 125.27 434 95 10.111 120.40-.82 0.3 34.030 0 1. 4125 -5.72 -520 3000 315 152.40 124.32 4M 66 9 119-16 0.17" 0.41 332220 -40.00 -4.06 -445 3000 315 100om 123.36 436 9 6 WAS 118.70 9.58 AS4 33.136 0 1.5 -39.75 -4.11 -3.74 3000 315 148.76 122.41 44 56 6S 117,11 10.07 0.10 32.610 0 1.5 -37A9 -3.38 -3.08 3000 315 14M.5 121.40 434 1619 0 ll0*10.57 0,50 32.103 0 1.5 -36.44 -2.83 -2.58 3000 315 145.41 120.65 4345 06 66 17 It 11.07 0.50 31.627 0 1.5 -35.55 -2.42 -2.20 3000 315 140.12 119.97 424 6 6626 115 11.57" 0.6 3f.179 0 1.5 -34.78 -2.12 -1.92 3000 315 143.02 118.39 Q4 95 "614 15t.1 12.07 6.60 30.755 0 1.5 -34.13 -1.08 -1.71 3000 315 142206 118.08 446 6 9 1 4.12.57 0.66 30.3-5 0' 1.5 -33.55 -1.69 -1.54 3000 315 14120 116.43 4249 66 9639 114.33 13.07 O.6 29.974 0 1.5 -33.02 -1.55 -1.41 3000 315 140.43 118.02 43 6 4619 10391 13.57 o.90 29.613 0 1.5 -32.54 -1.43 -1.30 3000 315 132.73 117.65 426 "6 91.1 1113 14.07 O6M 29.269 0 1.5 -32.05 -1.33 -1.21 3000 315 138.00 117.31 4244 66 0J9 13.5 14.57 O9.8 28.940 0 1.5 -31.68 -124 -1.13 3000 315 130A8 116.90 43 66 061 10317?15.07 0.00 28.627 0 1.5 -3130 -1.17 -1.06 3000 315 137.91 11.689 4346 6 9 r/17A Ift 15.57 O0M 30220 0 1.5 -30.93 -1.11 -1.00 3000 315 13723 116.41 43 06 6M7 112A 16.07* 0.90 28.638 0 1.5 -30.59 -1.05 -0.95 3000 315 136.88 116.14 4a46 66 9 7.16 112,2 16.57 C0.0 27.762 0 1.5 -3026 -1.00 -0.91 3000 315 13A.40 115.89 43 6 17 .72 112.10 17.07 5 9.0 27.497 0 1.5 -29.95 -0.951 -0.87 3000 315 135.65 115.65 426 86 971 l119191 Colo-PM-44-3 At12-1_SDC_CooldownTime4246Q0bs; Coodovwn4 3/29/2008,12:49 PM Caol 17321-01-P4-44-3, Shutdown Cookg Time Aftachment 2, Page 28 F + 1 4 1 1 1 1 1 t I I I I Time Tube lee TIeeeI rho Cp Mn k Val ft. P, h ~ v po C n 6 Vl R h(Ber- SnI) U~~1..e C' 02-)2.00 264.74 55.59 1.0225 1.320-04 0.396 5.609 128.630 1.2234 2224 168.15 WAD 1.0014 2JE44 0.384 3.,02 1:1,412 2.314 1447 9.468 374.47 2.10 277.91 55.93 1.0206 1.36E-04 0.396 5.609 125,596 1.2579 2206 lax37 60.0 1.601 2A" 0.303 S.A 167.17 2A.24 1438 9.439 373.09 2.20 271.43 56.24 1.0186 1.40 0.396 51009 122.`69 1.2929 219 13.74 2 1..68 21 4 &M 3 104:30 .467 11420 9.411 371.73 2.40 259.13 56.82 1.0153 1.48E-04 0.396 5109 116,9"7 1.3660 2153 166.73 61.02 1.15 2. 4 0.361 3V 11277.912 2504 1412 9.356 369.01 3.60 249.13 57.31 1.0127 1.56E-64 0.395 5.809 111,814 1.4398 2119 5 610 10 4 6 3 11 2 137 9.305 366.42 3.80 238.31 57.73 1.0106 1.64E-04 0.395 5.609 107,113 1.8134 2094 160.23 61.19 .65 2.5S0 0.34 V 3.662 167.063 2.7412 1363 9.266 363.99 3.00 229.54 58.10 1.0068 1.72E-04 0.394 5109 102.870 1.0890 2052 14516 8026 0409 6 0.3216 362 162.637 212 1370 9229 361.72 320 221.71 5841 1.0074 1.60E-04 0.393 5109 99.054 1.1571 2022 436 61.31 0.194 215454 0.377 316 156,2 5= 9064 1356 9.195 350.60 3.40 214.72 58.68 1. 0062 1,876-4 0.392 5.609 95.032 1.72S0 1904 140.6 S 0.9M 3.12E04 0.376 3162 166.061 2.600 1348 9.166. 357.64 3.60 208.48 58.92 1.003 1 .94004 0.392 51509 92.568 1.7924 1968 036.6 8 1.41 0101* 3.19E60 0.3715 31 151.600 3.0643 1338 9.140 355.84 3.80 202.91 59.13 1.0044 2.010-04 0.391 5.609 89,827 1.8559 1944 1351.7 61.46 0.6660 3.28E04 0.375 148, 3.9164 1220 9.116 354.17 4.00 197.93 59.31 1.0038 2.07E-044 0390 5109 87.376 1.9164 1923 133.70 81.46 01 3.31E04 0.374 3.652 146,497 3.795 11322 9.095 352165 4.20 193.47 58.47 1.0032 2.13E-04 0.389 5.609 95,183 1.9736 1902 131195 61.62 0.966 3.3644 0.374 3A2 144,2 3234 1315i 9.076 35125 4 189.49 5910 1.0027 2190-04 0.389 5.109 93.222 2.0275 1984 130.33 61.54 0.967 SA1104 0.373 3.852 142.296 3257 1 M6 9.059. 349.17 4.60 185.91 59.73 1.0023 2239.04 0.398 51609 81,466 2.0791 1667 12l.85 61.57 0.9660 0.373 3,M 140,532 3.3323 1304 9.044 349.1 4.80 192.71 59813 1.0019 0.387 79.892 2.1255 1952 12A.8S S5 0.9 3AE4044 012 3.452 135,954 3.3751 1291 9.031. 347.74 5.00 179.92 59.93 1.0016 2.33E-04 0.387 5.60 78,480 2.16"9 183.8 I 12.41 61.51 6.5 3. 04 0.372 3A52 1037,42 3.4143 9284 9.019 346.77 5.20 17723 60.01 1.0014 2.370-4 0.386 5,609 77.212 22111 1826 120-3 6143 0.5664 3.97E44 OX3 3.652 3.401 1200 9.008 345.88 5.40 174.90 o.09 1. 0011 2.41E-04 0.386 5109 76,070 2.2494 1814 124A4 61.6 Q4 1 86 Q51 44 0..1 3,852 134,139 3.4&W 26 .999 345.07 5.60 172.79 60.16 1.0009 2.44E-04 0.385 5.809 75,042 2.2851 1804 12. 01IA S .564 3ME-04 0471 3A52 10136 5 3.5120 123 .995 344.3 5.80 166.43 6029 1.0005 2.520-04 0.384 5109 72,916 2.3621 1782 13116 6116 .138 3.E00 0 31062 1 2="4 3175 1216 &.968 342.76 6.00 164.55 60A I .0002 2.591-04 0.383 51809 71.033 2.4345 1792 12 61.71 0. 3.34164 5360.93.61 3.6 34 6" 34123 620 181.09 60.52 0.9999 2.66004 0.382 5.609 69.363 2.5022 1744 11864 691.73 .65 3.76E44 0.309 3.652 126,468 3.6U73 164 8.934 340.04 6.40 1958.02 6011 0.9996 2.72E-04 0.382 5.609 67,881 2.5653 1727 97.0 61.76 019681 3.W304 0.30 3M 127,10 2 3.7T53 1258 8.920 339.60 6.0 155.28 60.68 0.9994 2.78E-04 0.381 5.609 66.563 21239 1713 116.50 61.T77 51661 36E784 0.36W 3.662 1272 3.77H 12$4 9.07 337.92 6.0 152.83 60.76 9.9992 2.83E44 0.380 5.609 65,389 2.6782 1700 115.52 81.7B 0.9981 3.11E504 0.36 3.652 124,57 38185 190 6.896 33.668 7.00 158."4 60.82 0.9991 2.9E-04 0.380 509 64.341 2.7294 968S 11464 61.79 DAM 3.E44 0.368 366 1232549 3.0846 1247 8.886 335.99 720 148.67 60.87 0.9990 2.938-04 0.379 5.609 63,405 2.7743 1677 1193.6 61.61 5 317104 0.367 3.62 42108 3.8m 1243 8.877 33521 7.40 146.91 60.92 0.9988 2.87E-04 0.379 5,609 62356 2.8176 1667 103.95 6* 4A.06 0.367 3662 1219,M 3.5170 246 8.869' 334.49 7.60 145.32 60.96 0.9987 301E-04 0.378 5.609 61,813 2.8571 1658 1212.52 61.2 060 4.06 0.307 3M2 1216A 3.w 1238 8.862 333.85 7.80' 14389 61.00 0.896 304E-04 0.378 509 81,136 2.89 1690 1114.5 SIM 587 4A.646 0.3W7 3.632 12G0391 3.0W 1236 8.856 33326 8.01 142.51 61.04 0.9985 3.08044 0.377 5.609 60,483 2.92M6 1642 111.36 61.6 0.891M 4A7644 0.366 3*6 l16.76 3.9m 1233 8.850 332.69 825 141.13 61.07 0.995 3.11E0-4 0.377 5.009 58.831 2.9860 1634 16.9 8I 61 6 A 7 4.0244 0,306 3.= 119,12 4*957 1231 8.844 332.11 8.52 139.74 61.11 0.994 3.15004 0.377 5.609 59,181 3.0035 1627 115.2 61 0DA9NN 4.12546 6 3 2 511 74 440412 6.838, 331.53 8.92 138.36 61.14 0.9983 319E-04 0.376 5109 58,531 3.0417 1619 10&.74 $ .O 4.94154 0.36 16 2 11W7.3.7 4.0158 122 8.832 330.94 9.17 136.97 61.18 0.9982 3.22E-04 0.376 5.089 57,863 3.0089 1911 $0.108 SI 0,997V 4OW 0.385 31652 117= 4.O07 9 22 8.9362 330.35 9.58 135.59 6121 0.9981 326E-04 0.375 5.609 57,235 3.1209 1603 10664 SIAS 0,615 4.1 F544 0.3" 3 =6 I 11SAN 4.1156 1222 8.8201 329.76 10.07 134.20 6125 0.9981 3.30E-04 0.375 5.609 56.589 3.1617 15915 16J08 61*6 0MS.66 DI6 3162 115.616 4.1412. 1219 9.615' 329.16 10.57 133.03 6128 0.9980 3.33E-04 0.374 5.809 56,043 3.1971 9998 6IAS 6678 4.2364 0.385 318 108,9 4.1629 1217 S.A10 328.65 11.07 132.04 61.30 0.9979 3.360.04 0.374 5199 55,587 3.2271 1582 107.2 61.80 0.8916 4-A0 D 35 W 11 CM 4.181 026 9.806ý 32922 11.57" 131.20 61.32 0.9979 3.39E-04 0.374 5.899 55,197 32533 1577 168.91 SIAS 6.8675 4.644 3A52 114473 4.1918 1414 8.802 327.98 12.07 130.47 89.34 0.9979 3.41 E.04 0.374 5.609 54,857 32763 1573 106.2 61.91 0.99n 4.27104 0.354 365 114.241 1213 8,799 327.52 12V57 129.82 61.35 0.9978 3.43E-04 0.373 5.609 54.556 32971 1569 10.35

  • 4S44 0.384 3A2 1 6 4.= 121929 9.7966 32723 13.07 12923 61.37 0.6078 3.44E-04 0.373 5.109 54,284 3.3160 9585 16.13 651.6 6.6675 42K-04 0.364 312. 14366 4.2341 1210 8.794 326.97 13.57 1928.69 6138 0.9978 3.489-4 0.373 5.19 54,037 3.3334 1562 I96.6 $1.02 O.8 4.3044 U.364 3.152 113A3 42443 1210 89.7' 326.73 14.07 128.19 61.39 0.9978 3.4804 0.373 5.609 53,809 3.3496 1559 16.72 61.92 6 7 0.36 3,68 113.214 4.2 1298 8.790 326.1 14.57 127.73 61.40 0.9977 3:49E-04 0.373 5.609 53,597 3.3647 1556 106.54 60.2 0.7 4.32E04 0.3" 31 113,07 426 1206 .78 38.3 15.07 127.30 69.49 0.9977 3.50E-04 0.373 5.608 53,398 3,3790 1554 1908 61.63 0.5978 4.33544 8.354 2.62 4.2609 18 8.799 326.99 1557 126.90 6143 0.9977 3.52E-04 0.372 5.10 53.212 3.3926 9551 109.21 61.63 0.997S 4.33,04 0.364 3215 11230 42767 927 8.7855 325.92 16.07 126.59 61.43 0.9977 3.530-04 0.372 5.609 53.035 3,4055 1549 I6.0 6i19 0M73 4.346" 0.24 3.52 112,488 431I 1206 8.783' 325.75 16.57, 126.15 61.44 0.9977 3.54E.04 0.372 5.009 52,98 3.4178 1547 1041 61.3 6O7 0.34 316 2 112I4 492 212S 8.782 325,58 17.07 125.60 61.45 0.9976 3.55E44 0.372 5109 52.708 3.4296 1545 104.77 61.93 07 4-E- 0.34 4 O 12 012.130 4.2919 120 8.7W0 325.43 Celo-PM-44-3 Att2-1_SOC_CooddonTi-e424603fs.

Cooldobn4 UQ9r2001, 12:49 PMA Cak 17321.01-PM-44-3, Shutdown Cooing Tim2 Attachment

2. Page 29 r 7 7 7 7 7 1 r T ~T.CCW HX Foo64V SDC HX tkbe Od.S1C HX ohd " TI~o SDCDut ftTt Ts,o Iter.at hr.2.00 2.10 2.20 2.40 2.60 2.80 3.00 3.20 3.40 3.60 3.80 4.00 420 4.40 4.60 4.00 5.00 5.20 5.40 5.60 5.80 6.00 6.20 0.40 6m9 6.0O 7.00 7.20 7.40 7.60 7.80 8.01 0.25 e.82 9.17 9.50 10.07 10.57 11.07 11.57 12.07 12.57 13.07 13.57 14.07 14.57 15.07 15.57 16.07 16.57 1707 W WCp Cr 1.337,560 1.367,602 0.660 1.345,732 1,373,188 0.662 1,353.291 1.378,397 0.664 1,367,145 1,388,068 0,890 1.379,004 1,396,491 0.671 1,389,188 1,403.940 0,74 1.397.960 1,410289 0,S76 1,405,936 1.415.937 0.878 1,412,102 1,420,897 0.090 1.417.100 1,425259 0.692 1,422,772 1.429,100 0.604 1,427,111 1,432,489 0.605 1,430,909 1,435,481 0.6OM 1,434.245 1,431.129 0.97 1,437,181 14400475 0.099 1,439,773 1,442,558 0.619 1,442.067 1.444,411 0.689 1,444,102 1,446,062 0.690 1,445.913 1,447,530 0.691 1,447,528 1,448,859 0.691 1,450.818 1,451,562 0692 1,453,675 1,453,925 0.693 1.456,164 1,455,994 0.694 1.458.339 1,457.810 0.695 1,4600245 1,459,408 0.695 1,461.920 1.40,817 0190 1,463,396 1 462.063 0.696 1,464,702 1,463,167 01697 1,465,859 1,464,149 0.697 1,466,109 1,465,024 0.697 1,467,007 1,465,905 0.698 1,468,685 1,466,054 0.698 1,469,555 1,467297 0190 1,470,416 1,460,034 0.698 1,471 69 1,468,764 0.699 1,472,113 1,469,489 0.699 1,472,948 1,47020N 0.699 1,473.775 1,470,920 0.699 1,474,468 1,471,517 0.700 1.475.043 1,472.014 0.700 1,475,532 1,472,437 0.700 1,475955 1,472,003 0,700 1,4760329 1,473.127 0.700 1,476,665 1,473,410 0,700 1.476,970 1.473.683 0.700 1,477.250 1,473,926 0.700 1,477,509 1,474,151 0.701 1,477,750 1,474,361 0.701 1,477,977 1,474,550 0.701 1,479,191 1,474,744 0.701 1,478,393 1.474,921 0.701 1 470 00 1 47600 0.701 NTU offecbveneo, OT Tt,o 1.375 0.563 130.51 219.49 1.364 0.S81 12527 21521 1.354 0.579 120.34 21126 1,233 0.576 111.09 203.59 1.317 0.572 102.95 196.60 1.302 0.5609 95.77 190.42 1288 0.567 89,44 104.82 1275 0.564 83.96 179.76 1,264 0,502 79.92 175.26 1253 0.500 74.55 17121 1.244 0.558 7019 167.57 1236 0.557 6725 1604.30 1,228 0,555 6420 161.38 1.222 0.554 61,4A 158.75 1216 0.553 59.06 156.38 1210 0.951 56.90 154,26 1205 0.551 54.97 152.34 1201 0.550 5324 150.62 1.197 0.549 51im 149.906 1.193 0,54 50128 147.65 1.185 0.547 47,40 144.73 1.179 0,545 441.0 142.12 1.172 0.544 42.60 139.79 1.167 0.543 40M1 137.72 1.162 0.542 31,84 135.86 1.158 0.541 3726 13420 1.154 0.540 35,86 132.71 1.150 0.539 34,00 131.37 1.147 0,539 33.48 130.17 1.144 0.531 32.47 129,98 1.141 0.537 31.57 128.11 1.139 0.527 3019 127.16 1.136 0.536 29.192 12621 1.134 0.536 28.95 125.27 1.131 0.535 28.09 124.32 1.129 0.535 27.22 123.36 1.126 0.534 26.35 122.41 1.123 0.524 25.49 121.40 1.121 0.533 24.76 120.65 1,119 0.533 24.15 119.97 1.118 0.532 23.93 119.39 1.116 0.532 23.18 110.89 1.115 0.532 22.77 119.43 1,114 0.532 32.41 118.02 1.113 0.531 22.00 117.65 1.112 0.531 21.77 117.31 1.111 0.531 21.A9 116.99 1.110 0.531 2123 1160.0 1.110 0.531 20,9 116.41 1.109 0U531 20.74 116.14 1.108 0.530 20.52 115.09 1.107 0.30 20.30 115.09 WI WCp Cr 2.670277 207 9P" 2,07451? 2,~7,461 PMA2,MO6U6 9PM 2,061,113 2AW114oM 9UM 2,6,760 26,480 UWA 2.900.71 2,00837 9PM 2.008"4 2,00,6 sm 2,060,66 2.096*M #$M Z01,421 2,089.5 OW 2*2,707 2,066*23 9PM 2,38,36 2.091,597 9PM 2M,608,3 2,M,459 OPM 2,960.61M 2,003,225 9PM 2'oSlS 2,Mý SNA 2,07,52 2.094,512
  1. ,MWA 2,M.207 2,M PMA 2.91,781 2095,&M 9MA 2*6,313 .006.96 9MA 2*0.776 2.9,309 UMA 2,500,7356 2.067.05$0 " P 2,161,874 2,97.901, 0 09 2,1112,309 2*8,462 ON^2,102.960 2.09.030 UM ,111352 2,666515 9PMA 2,094*3 2,M,945 EM Z1006,476 Z10,3662,11 9PM 2.166.871 21060.66 0" 2,105=5 2,169,34 9PM Z,105.541 2.190.247 9PM 2,1665=2 2,161.90 MW 2.1500M 2,501,3621 9MA 2.106,3 2,19,08 9MA 2,106,380 2,592,431 9PM 2,107,165 2,162,64 9MA 2,107.,429 M2,10,6 9PM 2,507,3012 2,l02, SWA 2.1061C0 2,100.924 9MA 2,11111= 2,100A2746 9PM 2.100.9603 2,1082,962 MA 2,1660170 2,5663,166 UMA 2,106.967 2,106,516 9MA 2,16601171 00,04M 9MA 2.108,670 V2,1194 9MA 2,169.944 2,100.319 MA 2,108.110 2.1046530 9PM 2,009,166 2,106,46 9PM 2,109,162 2,104.16 *AM 2.022'l~ 211115511 N NTU ýffoctvwnesl DT0 I Ts,o**MA SIM 10M 212.16 9PMf 9P 625)0 3750a#WA A 70.00 20356 MA MA 74.17 1"161 MA Ma 0057 166,70 MA M 048.A2 12m SMA MAt "6 17" MWA MAk um,9 1700 MWA MA 370 117,46 9PM OmA 48M6IN*MA MA% 40A10856 MWA MfA 46,6 1tow7 PMA 0"M 42A2 tMA5 MA MA 4063 146.19 9PM SMA 390.1 147.17 ONM MWA 3750 145,311 PRA MA 36.74 143,.73 M&A MA MM 142.211 MA MA 34.7 144 MA 32 10" I MA amA 31AS 137 MA MA 356 13M5 MA MA 2.29 130.71 Owl am 7AM 1129 A MVA MA 36 1310 MA MA 2c 0 13`1 MA M 246 11.121 t.MA MA 14,12 .I6N MWA MA 22A4 123*INA MA 22.10 122-6 pmA MIA 21.42 =1031 A MA 20.12 12125 MA NMA 202 t1)SN M ~ 5IM 110.60 M WM 14.02 110.70 MA 9PM 18.4 11756$MA M#A 17.83 117.01 p" ~P 17*3 116,23 9PM MWA M"5 110.0 IIM MA 00.64 1150.1 MA OVM 10.22 114.75 MA OWM 16569 114.23 p" OAM 06*6 MIT5 MA MWA 01565 T13*36 MA MWA 1836 1123.0 MWA MWA 14.57 11 2.6 MWA MWA 1454 11222 MWA MA 14,59 112.0 MAK MIA 1412 11156il 170.49 219,49 172.02 21521 Ocoý.o0he no.B.,,t 7.358 7.350 DyTot CCW CCW Duty CCW CCW Duy w CCW F. Per HX Te.v mmBtAr op. nmmtuhnr T.,o 185.85 8,100 3 61.95 126.11 179.37 8.100 3 59.79 124.92 212.19 207.02 165.87 21126 203.68 7.35S 173.23 8.100 3 57.74 12330 15420 203.59 195.81 7.358 161.56 8100 3 52.85 121.40 70.007 150.02 143.73 7.358 151.12 8,100 3 50.37 11907 134,45 190.42 182.5 7.358 141.81 8,100 3 47.27 117.97 126.14 7 14,92 176,90 7.358 133.50 8100 3 44.50 116.41 118.74 179.73 171.90 7.358 126.09 8.100 3 42.03 115.01 112.14 175426 167. 45 7.358 119.50 8,100 3 39.13 113.76 10625 17121 163.49 7.358 11361 8,100 3 37.871 1124.64 101.01 167.57 159395 7.358 108.37 8,100 3 36.12 111.63 96.33 164.30 156.79 7.358 103.69 8,100 3 34.56 110.73 92.15 161.38 153.97 7.358 99.51 8.100 3 , 33.17 109.93 58.42 155.75 151.45 7.358 95.77 8,100 3 31.92 10921 507 131.37 149.19 7.358 9243 8,100 3 30.81 108.56 82.08 154.26 147.17 7.358 50.39 8,100 3 29.87 107,.9 79.40 152.,4 142.36 7.358 86.75.3 ,100 3 2.392 107.46 76.98 150.62 143.73 7.358 84.34 8,100 3 28.11 106.99 4.01 149.06 142.20 7.358 52.17 8,100 3 27.39 106.57 72.85 W 1140,94 7.358 8021 8,100 3 26.74 106.18 6412. 15.73 13820 7.350 76.16 8,100 3 25.39 105.39 65.22 142.12 135.78 7.358 72.57 8,100 3 24.19 104.69 62.03 139.79 133.62 7.350 69.39 8,100 3 23.13 104,96 5920. 137.72 131.71 7.358 60.56 8,100 3 22.19 103.50 3NO49 135.46 130.00 7.358 44.04 8.100 3 21.35 103.00 53.443 1.342 128648 7.358 61.79 8,100 3 .200 102.56 2.43. 132.71 1275.1 7.350 59.79 6,100 , 3 19.93 0 102.76 50.63 131,37 125.91 7.358 57.99 8.100 3 19.33 101.80 49.23 1308.17 124.82 7.358 54.49 " 8,100 3 13.83 101.40 47.7 129.08 123.84 7.358 54.93 0,100 3 18.31 101.20 4627 1.2 1,97 7.351 40.20 8,100 3 17.88 00.94 22.54 127.16 122.16 7.358 52.37 8,100 3 17.46 100,89 43.76 12621 1 12125 7.358 51.12 8,100 3 17.04 100.43 3. NO'125267.

1130.40 7.358 439.846 ,100 3 13.1 1 6 .018 31.3 124.32 11025. 7.358 48.61 8,100 3 1620 99.93.116 112.70 7.358 20.29 0,100 3 15.70 97.60 "17.986 7.358 .46.10 .0,00 3 15,37 99.43 37.49 121.40 117.01 7.358 44.85 8,100 3 14.95 97.18 36.20 120.69 1162.1 7.358 43.79 8.100 3 14.60 99.97 35.55 ' 119.97 115,89 7.358 42.91 8.100

  • 3 .14.30 .98.79 34.79 119.39 115,18 7.358 42.15 8,100 3 14.05 98.64 11.8 7.358 41.49 8,100 .3 .13.83 .98.50 33.55ý 118.43 1143,3 7.358 40.91 8.100 3 13.64 98.39 33.02 118.02 113.97 7.358 40.38 8.100 3 113.46 9828 32.54' 11 7M6 113.651 7.358 39.90 0,100 3 13.30 "As1 309 117.31 113.35 7.358 39.45 8,100 3 13.15 941.09 316 6 IM 113.07 t.3o 390 ,0 3.01 98.01 31 11 i6,6 1128( .35 N8.I5 :,1600 3 12.88 97,93 3091116.41 112.56 7.358 38.2 ::1100 3 .12.76 ..97.&-30.59_ -116.14 112.32 7,358 37.95 8,100 3 12.65 97.79 29.95 115,65 111.90 7.358 37.31 8.100 3 12.44 97.72 97.66 1? 07 1478 1 AWS 0701 CM.b-PM-44-3 A012-I_SOCold oTi42460oJl; Coo3l3/ 2 31292008, 12:49 PM Caec 17321-01-PM-44-3 Shutdo Cooing Time Attachment 2, Page 30 Tine Step hS hrs O(D) P(pp) P(p) Podo Total -mm)Btuq.I I I I I dTrc Tube I had degFlr 17.57 0&0O 27.242 0 1.5 -29.65 -0.91 -0.53 18.07 0,0 26.996 0 1.5 -29.37 -0.97 -0.80 18.57 0.90 26.759 0 1.5 -29.10 -0.94 -0.76 19.07 9.0 26.530 0 1.5 -28.84 -0.81 -0.73 19.57 00 26.209 0 1.5 -28.59 -0.78 -0.71 20.07 0.60 _26.095 0 1.5 -29234 -0.75 -0.68 20.57 0.50 25.889 0 1.5 -28.11 -0.72 -0.66 21.07 0.0 25.689 0 1.5 -27.89 -0.70 -0.64 21.57 0.90 25.495 0 1.5 -27.67 -0.68 -0.61 22.07 0.80 25.307 0 1.5 -27.46 -0.65 -0.59 22.97 00 25.1 24 0 1.5 -27.29 -0.63 -0.58 23.07 0G5 24.947 0, 1.5 -27.06 -0.61 -0.56 23.57 09M0 24.775 1.5 -26.87 -0.60 -0.54 24.07 0.90 24.607 0 1.5 -26.69 -0.58 -0.53 24.57 9,.5 24.444 0 1.5 -26.51 -0.56 -0.51 25.07- 0.0 24.296 0 1.5 -26.33 -0.55 -0.50 25.57 0.90 24.131 0 1.5 -26.16 -0.53 -0.48 29.07 090 23.981 0 1.5 -26.00 -0.52 -0.47 26.57 0.C0 23.934 0 1.5 -25.84 -0.50 -0.46 27.07' 0.9 23.6911 -25.99 1.5 -0.49 -0.45 27.57. 0M0 23.551 0 1.5 -25.53 -0.48 -0.43 28.07 90 23.415 0 1.5 -2538 -0.47 -0.42 28.57 0.50 23282 0 1.5 -2524 -0.46 -0.41 29.07 0.90 23.152 0 1 .5 -25.10 -0.44 -0.40 29.57 0.50 23.024 0 1.5 -24.90 -0.43 -0.39 20.67 0.90 22.900 W 1.5 -24.92 -0.42 -0.39 30.57 0.9 22.778 0 -5 .24.69 -0.41 -0.38 31.07 9.90 22.659 0. 1.5 -24.56 -0.41 .0.37 31.57 0.90 22.543 0 i5- -24.44 -0.40 -0.36 31.57, 90. 22.543 0 1.5 -24.44 -0.40 -0.36 31.57 0.00 221543 1.5 -24,44. -0.40 -0.36 31.57 0.00 22.543 0 1.5 -24.44 -0.40 -0.36 31.57 O.00 22.543 0 1.5 -24,4 -0.40 -0.36 31.57' 0.00 2.543 0' 1.5 -24.44 -0.40 -0.36 31.57 0900 22.543 0, 1.5 .24.44 -0.40 -0.36 31.57 0.00 22.543 0 1.5 -24.44 -0.40 -0.36 31,571 0.90 22.543 0' 1.5 -24.44 -0.40 -0.36 31.57 0.90 22.543 0 1.5 -24.44 -0.40 -0.36 31.57 O.9 22.543 0 1.5 -2444 -0.40 -0.36 31.57 .0 22.543 0 1.5 -24.44 -0.40 -0.36 31.57 0.00 22.543 0 1.5 -24.44 -0.40 -0.36 31.57 0.00 22.543 0 1.5 -24.44 -0.40 -0.36 31.57 .00 22.543 0 1.5 -24.44 -0.40 -0.36 31.57. 0.90 22.543 0 1.5 -24.44 -0.40 -0.36 31.57 0.90 22.543 0 1.5 -24.44 -0.40 -0.36 Oman 3MO 3000 3000 3M00 3000 3000 36000 3000 36000 36000 3000 3M0 3200 3000 3000 3000 3M0 3000 3000 3000 3000 3600 3000 3000 3000 3M00 3000 3000 3000 3600 3M0 3000 3000 3000 3200 3000 3000 3000 3000 3000 3000 3000 3000 3O00 3000 3000 PI TU Tt.o 0 o , T.I T.o 315 !35.52 115.42 46 96 71tM 111MA 315 135.10 115.20 424 so 0704 0111'315 134.71 114.9M 434 90 97.96I 111.31 315 134.32 114.78 U WA7* 111.14 315 133.6 114.59 434 96 WAS7 10.97 315 133.60 114.40 43 9 e3 190.90 315 13326 114.22 44 9 1 0.2 110it4 315 132.93 114.04 4246 0 $7.24 110.9 315 132.62 113.87 4346 90 4J1 11034 315 132.31 113.71 4246 95 W.1 1l0a0 315 132.01 113.55 424 of 7.1I 110A90 315 131.72 113.40 434 07.0 1" 315 131.44 11325 4248 90 704 1.315 131.17 113.10 43 90 7AI 1031 315 130.91 112.96 4246 a 90MA 0.9 315 130.66 112.93 434 06 W.03 10MA4 315 130.A1 112.69 4346 so 911A 109.32 315 130.17 112.57 4M 9 "A0 10.21 315 129.93 112.44 4246 90 06*3 105.10 315 129.70 112.32 434 90 06.76 100 315 129.48 11220 4246 90 W76 10.315 12926 112.00 446 96 .73 109.74 315 129.05 111.97 4246 90 06.70 106AN 315 129.84 111.86 434 90 6em 1M 315 129.64 111.75 424 90 06 9 100.9 315 128.44 111.65 4346 9 106.91 315 128.25 111.54 4246 e0 0630 163 315 128.06 111.44 4248 90 96.07 108.23 315 127.99 111.34 46 90 6M 160.19 315 127.99 111.34 4346 95 M0.94 106.19 315 127.98 111.34 4346 9 4 15&1 315 127.9 111.34 4346 Is 06.M4 106 315 127.La 111.34 4246 9 06.64 106.19 315 1 27.9 111.34 4346 90 0 4 M0.19 315 127.98 111.34 4246 90 $6.4 106.1 315 127.86 111.34 4246 90 96.04 109.16 315 127.99 1lt.34 4246 90 90.54 106.15 315 127.99 111.34 4246 90 06.04 19619 315 127.98 111.34 4246 96 90.04 10.19 315 127.99 111.34 4346 90 9004 10619 315 127.M9 111.34 4346 SS 106.9s 315 12739 111.34 434 90 06M 100.19J 315 127.88 111.34 6 as 0 M ti0.5 315 12739 111.34 4M4 9 Sam 106o1c CaIc-PM-44-3 At2-1 _SDC_CooldonTimoe4246QxI&;

Cooldown4 3129/"20, 12:49 PM Cate 17321-01-PM-44-3.

Shutdosm Coogm0 Time Afttchment 2, Page 31 I I rime IV..I.. TI~ave 17.57 125.47 18.07 125.15 18.57 124.84 19.07 124.55 19.57 12427 20.07 124.00 20.57 122.74 21.07 123.42 21.57 123.24 22.07 123.01 22.57 122.78 23.07 122.56 23.57 122.35 24.07 122.14 24.57 121.94 25.07 121.74 25.57 121.55 26.07 121.37 26.57 121.19 27.07 121.01 27.57 120.84 28.07 120.67 28.57 120.51 29.07 120.35 28.57 12020 30.07 120.04 30.57 116.90 31.07 119.75 31.57 119.61 31.57 119.61 31.57 119.61 i.7 116.61 S 118.61 31.57 119.61 V1.57 119.61 31.57. 11.81 31.57i 118.61 31.57~ 119.61 31.57 119.81 31.57 116.61 i 118.61 31.57 119.61 31.57 119.61 31.57 119.61 Tube I I I 3 [ I 61.46 0.9976 3.568-04 81.46 0.9976 3.57E-04 61.47 0.9976 3.58E-04 61.48 0.9976 3.59E-04 61.48 0.9976 3.60E-04 81.49 0.9976 3.61E-04 61.49 0.9975 3.62E-04 61.50 0.9975 3.63E-04 61.51 0.9975 3.64E-04 61.51 0.9975 3.64E-04 61.52 0.9975 3.65E-04 61.52 0.9975 3.661-04 61.53 0.9975 3.67E-04 61.53 0.9975 3.67E-04 81.53 0.9975 3.68E-04 61.84 0.9975 3.69E-04 61.54 0.9974 3.69E-04 61.55 0.9974 3.70E-04 61.55 0.9974 3.71E-04 61.56 0.974 3.71E-04 61.56 0.9974 3.72E-04 81.56 0.9974 3.72E-04 61.57 0.9974 3.73E-04 91.57 0.9974 3.74E-04 61.57 0.9974 3.74E-04 61.59 0.9974 3.75E-04 S1.59 0.9974 3.75E-04 61.59 0.9974 2.758-04 61.59 0.9974 3.76E-04 61.59 0.9974 3.76E-04 61.M9 0.9974 3.76E-04 61.59 0.9974 3.76E-04 61.59 0.9974 3.76E-04 61.59 0.9974 3.76E-04 81.59 0.9974 3.768-04 91.59 0.9974 3.768E-04 61.59 0.9974 3.768-04 61.59 0.9974 3.76E-04 81.59 0.9974 3.76E-04 61.59 0.9974 3.78E-04 61.5M 0.9974 3.768-04 61.59 0.9974 3.78E-04 61.59 0.9974 3.768-04 61.59 0.9974 3.76E-04 61.59 0.4974 3.76E-04 4v I 0.372 5.609 0.372 5.609 08372 5.609 0.372 5.609 0.371 5109 0.371 5.609 02371 5.509 0.371 5.609 0.371 5.609 0,371 5.609 02371 5.609 08371 5.98 02371 5909 0,371 5.609 0.371 5.609 0.371 5909 0.371 5.609 8278 5609 0.370 5.609 0.370 5609 0.370 5.609 0.370 5.609 0.370 5.609 0.370 5.609 0.370 5.609 0.370 5109 0.370 51609 0.370 5609 0.370 5.609 02370 51509 0.370 5.609 0.370 5.809 0.370 5109 0.370 5.809 0.370 51609 0.370 5.609 0.370 5.609 0.370 5.609 0.370 5.609 0,370 5.608 0370 5.609 0.370 5.609 0370 5.609 0.370 5,609 0.370 5.806 Re Pr Tt,-e 'ho 52,556 3.4410 1543 104.84 9138 0307C 4-3NE04 52411 314519 1541 14. 61.64 S .MCA 4.37rS04 52,272 3.4824 1539 104A 91.84 63677" 4 44 52,138 3.4726 1537 190424 601.4 OA7 4291-064 52,010 3.4824 1535 104.17 8134 0.11177 4.-11-04 51,886 3.4919 1534 104307 6M4 0.077 4.31E.04 51.767 3.5010 1532 1033?7 613M, an7 4.31E-44 51,652 3.0099 1531 168.17 616 GM7 4A4E-04 51,541 3.5186 1529 103.77 603M 03977 4.40E04 51,434 3.5270 1526 103.M 9M1. 0.7 4A.E-04 51,330 3.5351 1528 19a3. 61.3S 377 4.41E044 51,230 3.5430 1525 103.80 61SA 037 4A.E-04 51.132 3`5508 1524 lm42 61.6 6.577 4,E04 51 038 3.5583 1522 103.34 61.6 .077 4,42-04 50.946 3.M956 1521 1032 61.65 03.9977 4,42F-4 50,957 3.5727 1520 10.618 6.1M 03677 4,41E-04 S0.771 3.5797 1519 1.11 nt 36I 0.9677 4A36-=4 50,687 3.0564 1518 103,03 6135 CAST7 4.43114 50.605 3.5931 1517 1823 61SM A77 4,44E,14 50,525 3.5995 1516 1I0.2 6IM 06077 4.441E-04 50,448 3.9059 1515 10215 613.6 0367 4A44 50,372 3.6120 1513 1.2-76 SIM6 6M7 4A.4114 50298 3.,181 1512 102.70 6136 1.177 4,64E04 50,226 3.6240 1512 102.64 613 0.377 4A4E-4 50,156 3.6298 1511 1913S8 6136 8.1677 4A46544 50,018 3.6355 1510 161 61.S4I 0.-977 4.46644 50.021 3.6410 1509 124 4 6 13 SI 6677 4A.904 49.,56 3.8465 1508 106A0 913.7 O.51 4.4GE44 49,892 3.619 1507 114.2 61.67 8.67 4,.4 46,892 3.6518 1507 1036 61.67 8 0.77 49,882 3.65t8 1507 IN.35 61397 0.37 4,47064 49,692 3.9518 1507 103.3 61397 8M77 4.47E04 49,892 3.4518 1507 1023. 6137 8677 4ATE-04 49,892 3.6518 1507 10" 6017 8.96 4.47E-04 49,892 3.6518 1507 18236 613.7 6M" 4,47E44 49,892 3.6518 1507 7 O. 77 4,47E-04 49,892 3.6518 1507 1U.35 61.7 0.977 4,47E4 49.892 3.6518 1507 102.35 61397 CAM 49,892 3.6518 1507 16 61397 4377 4.471044 49,892 3.6518 1507 102.,3 61397 0.9677 4A.E7-4 49,892 3.6518 1507 102.36 9117 OM" 4A.E-04 489,892 3.6518 1507 61j37 C.4i77 4.47E-4 49,892 3.6518 1507 18M2 61307 O6377 4.47504 49,892 3.6518 1507 1129 6137 03677 4.4E-44 49.892 3.6518 1507 16.295 61.37 037 4A476D4 I I k Vel R N kmetl UIty 0.34 3 2 111*60 4.3083 126 8.779' 32528 0264 3.662 111,666 4.310 1204 8.778 325.13 42M4 33652 i1.712 4.3144 1203 8.776 324.99 0.364 3.,82 111,161 4.2342 1203 8.775 324.99 0263 3362 I111J 4.22 1283 8.774 324.73 0.X3 3 111,38 4,326A 1202 8.772 324.61 O06 3.s62 111.216 43491 1W 8.772 324.49 0,363 32 111.166 4.36 1201 8.771 324.37 0.303 362 1101.7 4.3495 1201 8.770 324.26 0.383 3.62 110.6= 4.346 1266 8.769 324.15 0.3 36 110761 4.SA 1260 8.768 324.04 8.5 3 .116.8 4.3034 130 8.767 323.94 0. 33.62 10,197 4.671$ 1166 8.767 323.84 0.363 3.552 1108 4.77 11t9 8.766 323.75 0,383 3.652 110.416 4.38 119 8.7651 323.65 0.363 3J3 110,328 4.3766 116 -.7641 323.5R 0MI3 3.2 10.243 4.31%4 1139 .764' 323.47 0.363 3J82 110,161 4371 1166 .763 323.39 0.303 36M2 110,.01 4.2607 1107 8.762 323.30 0.363 3.62 110003 4.3942 11i7 8.761 323.22 0,M 3A62 109A27 42676 1187 8.761 323.14 0363 3052 10.864 4.4010 113 8.760 323.06 8.363 232 100,761 4.4042 18il 8.760 32210 0.303 336 109,711 4.4074 1169 8.759 322.91 0.363 3.052 1t0,4 484C G 113 8.758 322.84 0.353 3.6 106,676 4.4136 1185 8.758 322.77 0,2 336 103,610 4.4136 8195 8.757 322.70 0.63 3362 1i86,46 4.4181 1166 8.757 32213 0.363 3352 109.384 4,23 1196 8.756 332.58 0.363 3362 109,364 4.423 1166 8.756 322.56 0.263 3352 109,364 4.4223 1196 8.758 322.58 0363 3362 109,34 4.4223 116, 8.756 332.58 0.303 2J.2 106,264 4.3 1196 8.756 322.56 0.363 3362 109,384 4.423 1166 8.756 322.56 0.363 3&6M 1609 4,2 1119 8.756 322.58 0.33 3362 106,384 01t 8.756' U2.56 0.363 3.632 109.364 4.23 ill 8.7568 322.56 0.363 336 10,34 4.4223 1169 8.756 322.56 0.36 32 106,364 4.421 1196 8.756 322.56 0.363 36 106,34 4,42 0163 8.758 322.58 0.363 3.52 109,364 4.4223 "19 9.75 N 332.58 0.363 36.2 109,364 4,4223 115 8.756 _ 322.56 0263 33662 166,28 4.44323 03 878 32 0.6 3362 1809.324 4,4223 1196 8.75 322.56 0.263 3302 106.364 4.4223 1196 8.756 322.56 CaWWPM44-3 A9t2-l SOCCoo~doeT~m*42460.4e.

Cookldo-4 3216014P 3/29Q008.12 49 PIA I Calc 17321.01-P4W44-3.

Shutdos Cooing Tim3 Aftnhrmnt 2, Page 32 SD Tt,o Tio QCW, CCWDuty Total CCW CCW Duty CCW Ti -n e SOC HX 5 e sde 6CC HX 8 6 S DC Duty terate iterate o wh CC D -l Fl C o pIr HX Te mp h6. W WOp C, NT0NTU Decba OT. T..o 660tuh ,mootft on98,0l pm "oo651, Ts.o 17.57 1.478.768 1.475247 0.701 1.107 0.530 20.10 115.42 2,10t6 2,104,800 3A A 3M 1406 111.0 29.65 115.42 111.69 _ 7.358 37.01 8,100 3 12.34 97.60 18.07 1,478,942 1.475,399 0.701 1.106 0.530 19.91 115.20 2,140,360 2,50"66 WA F tA 136 M1A0 29.37 115-20 111.50 7368 3673 8,100 3 12,24 97.04 18.57 1.479,109 1.475,544 0.701 1.106 0.530 19.72 114.96 2,t(19416 2.104,664 MA ow 4A t83. 111.31 29.10 114.98 111.31 7.358 36.46 8.100 3 12.15 97.49 19.07 1.479.269 t.476.684 0.701 1.105 0.530 19.04 114.78 2106.467 2.104,7112 RI a m ota 13.70 111.14 20.84 114.78 111.14 7.358 36.20 8,100 3 12.07 97.43 19.57 1.479.422 1.475,817 0.701 1.105 0.530 19.37 114.59 11 2,1Z04,7 M* M A M A 13.66 110-t 28.59 114.59 110.47 7.358 35.94 8.100 3 11.98 97.38 20.07 1.470,569 1,475.6 0.701 1.104 0.630 19.20 114.40 2.100,- 2,104,M01 OWA MA RtA 13A7 110.6 28.34 114.40 110.80 7.358 35.70 8,100 3 11.90 97.33 20.57 1,479,710 1,476,069 0.701 1.104 0.529 19.05 114.22 2.109,613 2,104,$43 OW MA MA 1536 110.54 28.11 114.22 110864 7.350 35.47 8,100 3 11.82 97.29 21.07 1.479.849 1.476,188 0.701 1.103 0.529 18,89 114.04 2,109,668 2,104,884 IM RiA *#A 13.25 110.49 27.896 114.04 110.49 7.358 35.25 8,100 3 11.75 97,24 21.57 1,479.977 1,476.303 0.701 1.103 0.529 18.74 113.87 2,106,701 2,104,623 RitA SM 0W A 13.15 110.34 27.67 113.87 110.34 7.358 35.03 8,100 ?3 11.69 97.20 22.07 1.480,104 1.470.414 0.701 1.102 0.529 18.60 113.71 2,109,743 2,104.961 RiA ONA MA 1386 110.26 27.460 113.71 110.20 7.358 34.82 8,100 3 11.61 97.16 22.57 1,480,226 1,476.521 0.701 1.102 0.529 18.46 113.55 2.166,764 2,004ý6 OWA RtA 3M 12.66 110,66 27.26 113.55 110.06 7.358 34.62 8,100 3 11.54 97.11 23.07 1.480,345 1.476,624 0.701 1.101 0.529 18.33 113.40 2,1006623 2,966,634 WA 3PIr S2,6 146.6 27.06 113.40 109.93 7.354 34.42 8.100 3 11.47 97.07 23.57 1.480,459 1,476.725 0.702 1.101 0.529 18.20 11325 2,100,861 2.106,066 M I" 3 12.7i 26.871 11325" 109.800 " 7.358 34.23 8,100 3 11.41 87.04 4.0 1,480,570 1,476.822 0.702 1.100 0.529 18.07 113.10 2,109.86 2,106,101 RitA M ow 112,54 1096,6 26.49 113.10 109.60 7.358 34.04 8,100 3 11.35 97.00 24.57 1.480.677 1 476.816 0.702 1.100 0.529 17.95 112.96 2,166,934 2.0106134 3M 3M OM 12.59 W9.55 26.51 112.84 109.55 7.358 33.86 8,100 3 11.29 96.96 25.07 1,480,781 1,477,007 0.702 1.100 0.529 17.83 112.83 2166 2.16065,86S R A 3M t 3 12.51 .44 26.33 112.83 109.44 7.3S0 33.69 8,100 3 11.23 96.93 25.57 1.460.M92 1.477.095 0.702 1.099 0.528 17.71 112.69 2,1106 .9 2,16666 3M4 12A3 19.328 26.16 112.69 109.32 7.358 33.52 8,100 3 11.17 96.869 26.07 1,480,940 1,477.161 0.702 1.099 0.528 17.60 112.57 2,110.,03 2,165"S OM OWA 11" 12.-M 10&21 26.00 112.57 109.21 7.358 33.36 8.100 3 11.12 96.86 26.57 1,481,075 1.477.25 0.702 1.099 0.520 17,49 112.44 2,1106,67 2.053595 M 3A MA 12.A27 16.80 25.84 112.44 109.10 7.358 33.20 8,100 3 , 11.07 96.63 27.07 1,481,168 1:77.340 0.702 1.098 0.528 17.3 112 22 .66 2,12 A 3 A s12. 806.66 25.689 112.32 108.99 7.358 33.04 8,1001 3 11.01 96.79 27.57 1.481.250 1,477,42M 0.702 1.098 0,528 17.28 112.20 2,910J26 2,146310 WM 3M RN 12.13 106.66 25.53 112.20 108.89 7.358 32.89 8.100 3 10.96 99.76 28.07 1.481.346 1,4"7:502 0.702 1.098 0.528 17.18 112.08 2.10,1S? 2.906,337 3M *M 3M 1206 106.79 25.38 112.08 109.79 7.350 32.74 8,100 3 10.91 96.73 28.57 1,481,431 1,477,577 0,702 1.097 0.529 17.08 111.97 21".185 2,106,3 R S 3 3M 11Mpg 01" 25,24 111.97 10.BM 7.358 32.59 8,100 3 10.86 96.70 2907 1.481,514 1,477.650 0.702 1.097 0.528 16.A9 111.99 2,11,214 216.16M 3MA 3M 3M 1,6 I M 16.0 245.10 111.85 108.80 7.358 32.45 8,100 3 10.72 96.86 29.57 1,481.595 1,477.721 0.702 1.097 0.528 18,69 111.75 2.11021 2,16.,413 R#WA OA 3M 96 96.5 24.96 111.75 100.50 7.358 32.2 8.100 N3 10. 7 96.65 30.07 1.481,674 1,477.791 0.702 1.096 0.526 16.I0 111.65 2166,437 IW 3NM 11-.79 106641 24.82 111.65 106.41 7.358 32.18 8,100 10.73 95.62 30.57 1,481,751 I477.858 0.702 1.096 0.528 16.71 111.54 2,116.24 2.186,461 RiA 3M RItA 11.73 to6, 24.69 111.54 108.32 7.350 3255 8,800 3 10.6 96.59 31.07 1,4818 1.477,:25 0.702 1.096 0.529 16s2 111.44 2,116019 ,106,464 3. M 117 166.3 24.56 111.44 10823 7.358 31.92 8100 3 10.64 96.57 31.57 1.481,60 1,477,99 0.702 1,086 0.528 t6,54 111.34 2,110,344 2,1856,07 3M 3M OWA 11,611 10.s 24.44 111.34 108.15 " 7.35 31.00 8,800 3 10.60 96.54 31.57 1.481,900 1,477,989 0.702 1.096 0.528 16.54 111.34 2,116,344 2,166,497 3M 3M 3M 11.61 16.16 2444 111.34 108.15 7.358 31.80 6,100 3 10.60 96.54 31.57 1,481,900 1,477.988 0.702 1.099 0,528 16.54 11,34 2,04 2,1680 3Mi 39 Rt l11 9.16 24.44 111.34 108.15 7.358 31.80 8,100 3 10.60 96.54 31.57 1,481,900 1,477,989 0.702 1.096 01528 14.04 11.34 2,110,344 2,106,407

  1. 3M 0.6 196 24.44 111.34 100.15 7.358 31.80 8.100 3 10.60/96,04 31.57 1,481,900 1,477,989 0.702 1.096 0.528 16.54 111.34 2,116,344 2,165,07 3M
  • M#A Mal.6 1608.15 24.44 111.34 108.15 7.358 31.80 8,100 3 10.60 96.04 31.57 1.481,900 1,4?7.989 0702 1.096 0.528 16.54 111.34 2,110.34 2.,6 7 WM RA 3MA 11et1 10616 24.44 111.34 108.15 7.350 31.80 8,100 3 10.60 99.04 3157 1,481,900 1.477669' 0.702 1.096 0.528 16.54 111.34 Z10,344 3M 3M 91.51 966.1S 24.44' 111.34 108.15 7.358 31.80 t.100 3 10.60 96.04 31.57 1,481,900 1,477,9689 0.702 I1068 0.528 16.54 111.34 2,11344 2.1605,07 3M 3M 3A 99.61 066.16 24.44 111.34 199.15 7.358 31.80 6.19o 3 10.60 96.54 31.57 1,481,900 1,477,98 0.702 1.096 0.528 16.54 111.34 2,116,344 2,866,617 349 RiA 3M 1151 16,1 24.44 181.34 108.15 7.358 31.80 0,100 3 10.60 96.54 31.57 1.481,940 1,4776989 0.702 1.096 0.528 16.54 111.34 2,10.344 2,166,607 S 3 3M 3 0151A 106,06 24.44 111.34"_ 108.15 7 358 31.00 8,100 , 3 10.60 96.54 31.57 1.481.900 1,477.989 0.702 1086 0.528 16is4 111.34 2,110,344 2,866,607 3M N3 .M 11t 16.8 24.44 111.34 108.15 7.358 31.80 8,100 3 10.60 9.64 31.57 1,481,900 1,477.989 0.702 1.096 0.528 16.64 111.34 2.,109,44 2,6,907 3 3M 1561 16.1. 24.44 181.34 108.15 7.359 31.80 6,100 3 10.60 :9.04 31.57 1,481,900 1,477,99 0.702 1.096 0.528 16.54 111.34 2,010,344 2,16,60 3M a m 015.61 06.9S 24.44 181.34 100.15 7.358 31.80 6,100 3 10.60 96.54 31.5 1,481,900 1.477,689 0.702 li 086 058 16.04 181.34 2,110,344 2.160597 3MA 3M OVA 11561 106.16 24.44 111.34 100.15 7T358 38.60o 8,100 , 3 10.60 95.54 31.57 1,431,900 1.477,989 0.702 1.096 0.528 16.54 111.34 2.11.34 2.105,l PM S" O 11.61 24.44 "11.34 10'.15 7.35$ 31.800 8,100 3 10.60 96.54 31.57 1,491,900 1,477,909 0.702 1.096 0.528 16.54 111.34 2,106607 3M 3M am 0151 166.16 24.44 111.34- 108.15 7.358 31.80 8,00 3 10.60 96.54 31.57 1,481,900 1.477,989 0.702 18096 0.520 16.04 181.34 2,010,344 2.1066.07 RM SiNA MA 111M 108.16 24.44 111.34 108.15 7.358 31.60 , 6.100 10.60 9 86.54 31.57 1.481.900 1.477.989 0.702 1.096 0.528 16.54 111.34 2,110,304 2.10,56. 3M ow *a 19.60 104916 24.44 111.34 109.15 7.358 31.80 8.100 3 10.60 96.54 Calo-POA.44-3 Aft2 I_jSOCCoddooo,Ti424GOx%;

Cookldo.-A/930914P 3/292008, 12:49 PIA Calc 17321-01-PM-44-3, Shutdown Cooling Time Attachment 2, Page 33 Shutdown Cooling Temperature Transient with 90F River Water SDC Hx Fouling = 0.001 hr-F-sqft/Btu, CCW Hx Fouling = 0.004 hr-F-sqft/Btu 370 330 290 250 LL E 210 0 E 170 130 90 50 170 160 150 140 LL 131) C E 120-Pri Cool Temp-SDC Return Temp-CCW Temp 110 100 90 0 5 10 15 20 25 30 Time, hours 35 Calc-PM-44-3 Att2-1_SDC_CooldownTime4246Q.xls; Chart4 3/29/2008, 12:49 PM Cak 17321-01-P4-44-3, Shutdown Cookng Tim2 Aftch-me 2, Pep 34 Shutdown Cooling Temperature Transient with 6*F River Water SDC Hx Fouling -0.00416 hr-F CCW Hx Fouling = 0.004 hr-F4qntI3u ln.1 RC Tenqoerntue.

F 389 s & SDCHX CCWHX ntal Tim. 2 2754 Shel Fin 0.09751 ,RCS Temeratxe afer 8h-our 2172, Sh. Film Re po 0.61709 Timn after tip to 013F Prirnry Coont Ten OONUMI WU CCW to SOCx 4424. Shel Finm P, po 0,33 Ti.r oftenr S3C k4.l5.on to 130F PC Tem VNUMA! CCW Flow Step TempW 275 Fole 9 (totld b l.be de) 0.00418 0.004 D ry heat _m_ at _OF 6m_ to" 74.85_ , ,0.00418 0.004 sOCHo ______rime Se OD Padlc ToWa 0 dTrc Tubeen 2.00" 0.1 54.966 1t 1.5 -128.171 .53.76 -40.82 3000 315 350.00 256.05 424 96 116.79 In" 2.10 0.10 54.107 18 1.5 -125.734 -52.13 47.39 3000 315 34512 253.50 426 6 a 1116.33 INA 220 0.10 53.300 18 1.5 -123.3"8 -50.57 -45.97 3000 315 340.30 251.04 426 6 SO li6 I1N 2.30 0.10 52.540 18 1.5 -121.071 -49.03 -44.57 3000 315 335.78 248.25 424 916 1SM 5 .41 2.40 010 51832 10 1.5 -118.43 -47.52 4320 3000 315 331.32 245.55 42 66 1 I5.6 ill."6 2.50 0:10 51:143 1, 1.5 -116.83' -46.04 41.85 3000 315 327.00 2423 42 3 46 114AI If 2.60 0.10 50.500 18 1.5 -114.589 -44.58 -40.54 3000 315 322.82 240.37 4M46 SO 11402 116.11 2.70 0.10 49.858 18 1.5 -112.561 43.17 -3925 3000 315 318.77 237.89 4M 95 113.64 1V7ON 2.0 0.10 49.305 1i 1.5 -110.596 -41.79 -37.99 3000 315 314.84 235.49 426 96 113,41 16&.41 2.90 0.10 48.749 18 1.5 -108.694 -40.44 -36.77 3000 315 311.04 233.16 4340 89 113.10 6lll3 3.00 0.20 48218 18 1.5 -100.053 -39.13 -35.50 3000 315 307.36 230.91 424 66 112.76 1UM 3.20 0.40 47.223 I8 1.5 -103268 -20.57 -33.24 3000 315 30025 228.53 4266 5 112,07 161,4 3.60 0.50 45.460 18 1.5 -06.627 -31.67 -28.79 3000 315 286.95 218.31 4246 66 11s.6 1IN 4.10 0AM0 43.590 18 1.5 489,414 -26.32 -23.93 3000 315 272'56 209.36 4266 06 INAS I192.4.600 0.80 41.999 18 1.5 43.418 -21.92 -19.93 3000 315 260.59 201.87 46 66 11"A2 4 19 5.10, 8.80 40.62n 18 1.5 -70.428 -18.31 -16.64 3000 315 250.83 198.51 4266 66 07 144.70 5.00 8.50 39.413 18 1.5 -74.262 -15.35 -13.95 3000 315 242.31 19035 46 N 16.W 6 141i 6.10 08.9 38.336 18 1.5 -70.770 -12.93 -11.76 3000 315 235.33 105.83 46 66 106.76 130.53 6.10 8.50 37.375 18 1.5 -67.530 -10.95 -9.96 3000 315 229.45 18220 4246 5 169.09 137.54 7.80 0.8' 36.504 -18 1.5 -65.341 .4.34 -.49 3000 315 224.48 179.03 46 96 164.71 13S1 7.60 O:O 35.710 58 63.220 -8.01 -7.2 3000 315 22023 176.32 4268 6 IN 164.0 160.50" Z3412 18 1.5 -61.402 -6.92 -6.29 31M0 315 210.59 173.09 42 95 l,1" 8.60 .0 34.31 18 5 9.032 46.02 -5.47 3000 315 213.45 171.98 4246 95 163.63 1)2.1 9. 10 8.80 33.883 18 1.5 M.466' -5.27 4.10 3000 315 210.71 17022 406 95 032 13121 9.60 0.50 33.114 18 1.5 -47270 -466 -423 3000 315 208.31 160.8 428 9 165.12 1 MD 10.10 0.50 32.576 18 1.5 -56215% .4.14 -3.76 3000 315 206.20 167.32 423 6s 1021 1201 10.60 0.84 32.071 18 1.5 .65.277 -3.71 -3.37 3000 315 204.31 166.11 42 9 66 102.73 12 11.14 9.80 31.561 18 1.5 -64.370 -3.31 -3.01 3000 315 202.50 164.94 426 66 102.66 IS4 11.74 05818 31.027 18 1.5 -53.464 -2.94 -2.67 3000 315 200.68 163.77 4M 66 102.37 127.82 12.42 08.0 30.4"7 0 1.5 -52.558 -20.59 -18.72 3000 315 198.86 162.60 4246 95 102.16 127.01 12.92: .0 30.081 0 1.5 -47.900' -16.32 -14.84 3000 315 189.50 15.55 42 66 101.30 124 13.42 s 80 29714 1.5 -44214 -13.08 -11.82 3000 315 182.08 151.73 4246 95 101053 121.5 13.92 0 29.36 0 1.5 41282' -10.42 -9.47 3000 315 178.17 147.89 434 66 9.4 119.67 14.42 0.80 29.033 0 1.5 -38.136 -4.40 -7.64 3000 315 171.44 144.80 4266 95 117.?14.928 800 28.715 0 1.5 -37.046 -6.82 -621 3008 315 167.62 142.30 436 66 "AV 11156.7 15.42 8.80 28.411 0 1.5 -35.510 -5.60 -5.09 3000 315 164.01 14026 426 66 114.78 i 15.92 0.50 2a.119 0 1.5 -34253 ,4.63 421 3000 315 161.97 138.59 42 66 96 K 1U4.8 16.42 0.8,2 27.40 0 1.5 -33213 -387 -3.52 300 315 159.80 13721 4246 66 0. 114.16.94 O8 15 27.563 0 1.5 -32.315 -325 -2.96 3000 315 158.04 136.01 4266 66 U.14 1lUW 17.56 0.76 27.247 0 1.5 -31,42o .2.67 -2.43 3000 315 156.23 134.82 4246 66 27* 11211 18.30 8.93T 28.8012 0 1.5 -30.524. -2.14 -1.95 3000 315 154.41 133162 426 9 6 I67.77 t12 1924, 1.19, 2.454 0 1.5 -29.628. -1.57 -1.52 3000 315 152.59 132,42 4246 96 111,7 20.43 1.8 25.944 0 1.5 -28.733 -1.29 -1.17 3000 315 150.77 131.22 42 66 7AI M10 21.98 2.0M 25.330 0 1.5 -27.839 -1.0 0.91 3000 315 148.05 130.02 426 66 9723 11AD46 23.98 2.0i' 24.630 0 1.5 -26,.45 -0641 -0.74 3000 315 147.13 129.832 66 9 VAG6 106.66 25.98 2. 24.00 0 1.5 -262221 -0.72 40.05 3000 315 145.66 127.84 4M4 95 66.66 10,.3 27.98 2.001 23.420 0 13 -25.583 -0105 -0.59 3000 315 14436 12608 424 6S 6.77 1063 29.9: 2.001 22.921 0 .5 -25.008: -0.59 -0.3 3000 315 14319 126.21 426 9 61 "A6 a 1 31.98 2.80 22.448 0 1.5 -24.485 -0.54 -0.49 3000 315 142,12 125.50 4246 6 06626 166.1 33.98, 2.80 22.012 0 .I -24.006 -0.49 -0.45 3000 315 141.15 124.85 4246 66 "A 107.4 35L8 2.00 21.60W 0 1.5 -23.566 -0.46 -0.42 3000 315 140.25 12426 426 0 067 10751 37.98: 2.00 21,35 0 1.5 -23.159, -0.42 -0.39 3000 315 139.42 123.71 630 6 6 167 Calo-PM.44.3 A12-1_SDCCooldownTime4246Q8l; Cooido325 3/29r208, 12 49 PM I Cak 17321-014W44-4-3.

Slretdoýa Cool,,o Tim oclme , e.3 Attachmet 2, Poge 35 TieTube a Th- T.- i T k V.1 ----ue h hre~~~t2F Ttee k. e e P t.e r Vel Re Pr ý I.(5*h r ~Udirty 2.00 303A2 SIM 1.0287 122E-04 0.396 5.60 139.053 1.1405 2297 147 61.24 0.S07 2.SE-04 0" 3= 193A4 2,0 1373 9.459 170.31 2.10 299.51 55.76 1.0273 1.24E-04 0.396 5609 137,300 1.1566 2289 146a. 616 0*.96 2.9864 0C.' U62 102,315 2A314 1366 9.444 170.18 2.20 295.71 55.93 1.0260 126E-04 0.396 5A09 135,580 1.1729 2279 148A46 6126 0.SI 6M 3.006504 0276 &$62 181 .930 2A3 1306 9A29 170.04 2.230 292.02 56.09 1.0248 1.28E-04 0.396 5.609 133,895 1.1893 2269 144W46 61.29 0SA8N 3 0.37" 3.2 159,786 262 1)62 9.415 169.90 2.40 288.44 5625 1.0236 1.30E-04 0.396 9W09 132,246 1.2058 2260 1431$0 61.31 0.994 316604 0.377 &W 19679 2.073 1398 9401 169.76 2.50 284.96 56.40 1.0225 1.32E-04 0.396 5.809 130,634 1.2224 2251 142.57 61.3) 01984 3. 0377 3A 157,412 29316 1356 9.387 t69.63 2.60 281.59 56.54 1.0215 1.34E-04 0.396 5.609 129,060 12390 2241 141.66 61.3 0A6S 3R.0 04 0.3 3M2 180.282 2.9598 1352 9.373 169.50 2.70 27833 5615 1.0205 1.35E-04 0.356 5.809 127,524 12557 2232 140.70 6126 *953 3.12i-44 0376 VW 15,188 2.1791 1348 9.360 169.37 2.80 275.17 56.81 1.0196 1,37E-04 0.,36 5.609 126,028 1.2724 2223 130i4 SIM SAM 3.14& " 0.376 1652 54.13 SAM1 1346 9.348 16924 2.90 272.10 56.94 1,0187 1 39E-04 0.396 5.609 124,569 1.2891 2213 1U9.12 61M 0.992 3.16644 0.376 3.052 163.10 3.6 1342 9.336 169.11 3.00 269.14 57.06 1.0178 I410E-04 0.396 5.609 123,150 1.3058 2204 138.32 6t141 0*61 3.11608 0.376 3.662 12121 31470 1340 9.324 168.99 3.20 263.39 57.29 1.0164 1.45E-04 0.396 5A09 120,382 1.3396 2186 136,71 61.43 O*60 322544 0C7 3.6 150211 3*0 1334 9.301 168.74 3.60 252.63 57.71 1-0137 1.53X-04 0.396 5609 115.140 1.4086 2150 133.6 61*.4 0*J6 3.319544 0274 3.2 146,656 3M176 1)33 9260 168.25 4.10 240.9* 58.15 1,0111 1.2-04 0.395 0.609 109,380 A.4927 2109 130.70 61.64 0.6667 3A0E,04 0.37) 362 1043,98 3.2716 1311 9.215 167.70 4.60 231.23 58.50 1.0091 1.71E-E04 0.394 50609 104.537 1.5714 2072 128.10 S1* 0.666 3AE604 0.372 39, 13.69 32668 1301 9.178 16720 5.10 223.12 58.79 1.9076 1.78E-04 0.393 0J609 100,477 1.6438 2040 128* 61 82 0*66 0.372 3.6 137,034 9.147 166.77 5.60 216.33 59.02 1.0065 1.85E-04 0.393 5.60A 97,071 1.7096 2011 124.17 61.69 0.604 0.371 3.652 114. 3,14 I 9.122 166.40 6.10 21013 59.21 1.0056 1.92E-04 0.392 056A 64.209 1.7689 1987 82A.S 618.87 0"03 3.6504 0.370 3.662 133026 3.6466 127 9.100 166,07 6.60 205.03 59.36 1.004 1.97E-04 0.391 5A09 91.794 1.8221 1968 121.37 W1* 0.63 3."E704 0.370 3.82 131,496 3M2 1274 9.082 165.79 7.10 201.75 59.49 1.0043 2.02E-44 0.391 5.609 89,747 1.8688 1948 1120. 61.71 0*82 3.746"4 02370 3.652 130= 3.0 1270 9.086 165.54 7,60 1828 5810 1.0038 2.06E04 0.390 S109 8,8003 1,9120 1932 118.3 61.72 0*2 &77604 0266 3.652 028103 37 1 9.053 165.32 8.10 19529 59.70 1.0034 2.10E-04 0.39 5.609 96,506 1.9498 1918 118.57 61.73 0.86642 3.66E-04 0266l 3.652 12,182 3.79 1263 9.042 165.14 0.60 192.71 59.76 1.0031 2.14E-04 0.399 5.609 55,214 1,1837 106 117A 61.74 0"166 3.82604 0*6 3652 3.7246 13S0 9.032 164.97 9.10 190,47 59.85 1.0029 2.17E-04 0.389 5109 64,090 2.0140 1m96 11728 61.75 01661 3,84E44 626 3.652 03*S46 317479 1287 9.023 164.82 9.60 188050 5091 1.0026 220E-04 0.388 5N09 83,106 2.0413 1886 116.16 61.76 0"1 3*60O4 06 3.68 12812 3.766 128 9.016 164.70 10.10 196.76 59.16 1.0024 2226-04 0.388 SA.09 62,238 2.0659 1078 11&30 61.77 01661 3.6604 0266 3.662 125.486 3671 1283 9.009 164.58 10.60 185.21 60,00 1,0022 224-04 0.383 5.609 81,466 2.0883 1070 115 60.1.68 0. 3.80646 0266 3.6S2 182503 3*36 1252 9.003 164.48 11.14 183.72 60.05 1.0020 227E-04 0.387 5109 80,721 2.1103 1963 11A64 61 .7 0*6A 3.816E04 06 3.682 124,37 3197 120 8.997 164.37 11.74 182.22 60.09 1.0019 .29E-04 0.387 6.609 79,977 2.1328 1856 1t6.10 61.79 01860 3.93E,04 0.358 3.052 12t4A71 31366 1368 8.991 164.27 12.42 150.73 60,13 1.0017 2.31E-04 0.367 5.609 79.232 2.1507 1848 114.70 61.79 0*66 02346 3.652 123A0N 3,162 1247 8.985 164.17 12.92 17.02 60.35 1.0009 2.4E-04 0.385 5.609 75,411 2.2811 1810 112A6 61.62 01660 4.02-04 0,357 3.652 121 =2 3.397 1236 8.953 163.62 13.42 166.91 60.52 1.0004 2.55E-04 0.384 5.609 72,396 2.3900 1778 11104 6S* 01679 4.09604 0.66 3.652 11,,343 4A 122 8.927 163.16 13.92 162.03 60.65 1.0000 24E-04 0.33 5N09 70,005 2.4836 1752 096.76 61* 6*79 4.14E-44 06 3.052 811184 4.0662 1228 8.907 162.78 14.42 158.12 60.76 0996 2.72E-044 0382 5A09 61,097 2.50633 1731 106.73 61* 0@1876 4.116-04 0.365 3.6 116.966 4.1120 1222 8.891 162.47 14.92 154A 60.84 0.9994 2.79E-04 0.361 51609 66.563 2I6M09 1714 16.6 68* 0.867 422604 026 3182 1158,70 4.604 1216 8.878 162.22 15.42 152.32 60.90 0.92 2.4E-04 0.380 509 65,321 Z61882 1700 107.22 61* 0.6878 42604 0266 3M2 114*.414 4.0162 1215 5.965 162.00 15.92 15028 60.95 01891 289E-04 0.350 5.09 64,305 2-7367 1689 186.67 61.1 0.67M 4270"4 6264 36 114300 426 1213 8.860 161.83 16.42 148.54 61.00 0.9989 293E-044 0.379 5.609 63,466 2-7781 1679 168.21 651.1 9 42E04 O284 3.A 103.777 1 42 1211 8.853 16110 16.94 147.03 61.03 0.9989 2.860-04 0.379 5N09 62,743 28146 1670 186.82 01868 4.31E04 6.264 36182 113.326 1210 8.847 161.55 17.56 145.52 61.07 0.9687 3.0OE-04 0.375 5.609 62.022 2.6520 1662 105.42 61.92 0.978 4286404 6 4 3.652 112,816 1200 8.41 161.42 18.30 144.01 61.10 0.996 3.04E-04 0.378 5.609 61,302 2.8903 1653 106.63 013 0.6678 414644 0264 3.682 112426 4276 1206 8 35 1612A 1924 142.50 61.14 0.985 3.08E-04 0.377 5.609 60,584 2.9294 1045 1065 61.94 6678 4-21E644 0.364 3.2 111.977 4.069 1804 8.829 161.15 20.43 141.00 61.15 0.9985 3.11-04 0.377 5.609 59,868 2.9695 1636 61.14 0677 4318604 0 63 3.652 1100529 4.264 123 8.823 161.02 21.98 139.49 61.21 0."84 3.15E-04 0.376 5.609 59.153 3.0105 1627 103.64 61.95 0."077 4,40,04 0263 316 111,081 4.3661 1261 8.818 160.88 23.98 137.98 6124 0.983 3.19E-04 0.376 5.609 58,439 3.0524 1618 10346 61516 6.077 4.41E,04 0633 32662 110.34 42666 i106 8.812 160.74 25.98 136.75 6127 0.9982 323E-04 0.376 5.609 57,863 3.0871 loll 103.13 61. 018977 4.436,04 0.3w 3.862 110.273 42821 t166 8.807 160.63 27.98 135.67 61.30 0.9981 3.26E-04 0.375 S.609 57,354 3.1184 1605 106 61* 0.77 4.404 0.38 3.682 1095 4.6-984 I"?7 8.803 160.53 29.9 134.70 61,32 0.9961 3.28-04 0.375 5.609 56.897 3.A470 1589 102-60 6118 01077 4.4 04 023 3162 1096667 4A604 1t56 8.800 160.44 31.98 13321 61.34 0.9M0 3.31E-04 0.375 5109 56,481 3.1734 1594 10.37 6.917 01877 4704 023 3,052 109,407 4,4213 18 8.796 160.35 33.98 133.00 61S5 0.9980 3233&04 0.374 5A09 S6,102 3.1979 1589 102.16 61.I7 0DA77 447E.04 6 3.602 10.168 44322 1194 8.793 16028 35.98 13225 61.37 0.9980 3.35E-04 0.374 5.609 55,753 3.2207 1585 61.67 0.0977 4.4144 02.63 3.652 1.6949 4,422 1193 8.791 16021 37.98 13114 61.39 0.179 337E-04 0.374 5.609 55,431 32421 1581 10.78 SIM OAS 0 4,496, 4.4,6,4 0M2 3 19747 4,4616 1192 8.788 160.14 Cakc-PM-44-3 A82.1 ISC Cookdowrn&in42460-ls; Cooldomr5 3/2912008.12:49 PM Caic 17321-014WU-44-3, Shutdown, Cooing Tan.aodmo , a.3 Attachment 2, Page 36: 4 * .. I~~CCW HX Fpulng .Tana m tHXtbe side BBOC Hx slidII SDC Duty teo 8t.. o0he CCW Duj TotalCCW c CCW Duty CCW-'"Had oh Flow # vwý per HX Ten*t.. 09 WCII Q. 1411 Iffdivo,,a DT Tt,0 W5 WJCp Ca 14TU M~~oao T... 69.01 2.0M 1.337.560 1.375.913 0.660 0.621 0.399 93.15 256.85 265.1,910 1 ,11-11" I MA Usa- 614A 17.27 128.17' 256.85 178.27. 7.358 135.53 8.100 3 45.18 -116.79 2.10 1,341,802 1,378.432 0.661 0.620 0.399 9122 253.90 2 .36 NM MA U " In76.6a 125.73 253.90 176.62 7.358 133,09 8,100 3 44.36 116.33 220 1.345,872 1.380.685 0.662 0.618 0.398 89.34 251.04 2,096,33 2,.75 A USA S 66.14 1791 63 123.37 251.04 175.03 7.358 130.73 8.100 3 43.58 115.98 2.30 1,349.776 1,383217 0.663 0.617 0397 87.53 24825 2,007,461 20866 #A A UA 66.6 17.461 121.07 24825 173.48 7.358 121.43 8.100 3 42.81 115.45 2.40 1.353,519 1,385.489 0.664 0.615 0.397 95.78 245.55 2,06 2,666 USA SWA MSA 9. I7IJ.8 118.84 245.55 171.98 7.358 12620 8.100 3 42.07 115.03.50 1.257,t08 1,387.661 0665 0614 0306 84.08 242.92 2.066.66 2,087.3606 AA *SA USA 46.06 1706 116.689 242.92 170.52 7.358 124.04 8,100 3 41.35 114.62 2.60 1,360,549 1,389,79 0.666 0.612 0.395 82.45 240.37 2,089312 2,167,766 MA MA OSA 64. 18&11 114.59 240.37 169.11 7.358 121.95 ,t8.100 3 40.65 114.22 2.70 1.363.849 1.391.143 0.667 0.611 0395 80.87 237.89 2,066.754 2,066.1 U MA USA USA 063.90 11674 112.56 237.89 167.74 7.358 119.62 8,100 3 39.97 113.84 2.00 1.367,013 1,393,816 0.667 0.610 0.394 7935 235.49 2,88*7 2,666,166 USA USA PU" 5 1664a 110.60 235.49 166.41 , 7,358 117.95 8.100 3 39.32 113.46 2.00 1.370.046 1,395.720 0.668 0.608 0.393 77.88 233.16 2,696.766 2,08,666 USA UA UA 62A3 18. 156.66' 233.16 165.13 7.358 116.05 8.100 3 38.68 113.10 3.00 1,372,954 1,397,958 0.669 0.807 0,393 76.46 230.91 2Z011,254 2,068,397 USA USA USA 61.14 I1m 166.85 230.91 163.89 7.358 11421 8100 3 38.07 112.75 320 1.378,508 1.401,102 0.670 0.605 0.392 73.72 228.53 2,062,166 2,866,146 UWA USA #WA 49,42 160 103.29. .53 161.49 7.358 110.65 86100 3 36.86 1 M07 3.60 1.388,6n2 1,407,677 0.673 0.600 0.30 60.64 218.31 2,063,613 2,1,166 UA UA UA 166.6 96.63 218.31 156.99 7.350 103.98 8,100 3 34.66 110.79 4.10 1.399,118 1.414,729 0.676 0.595 0.387 63.20 209.36 2,096.737 2,63,0121 UA UA SA 42.T7 16.12 99.41 20936 152.12 , 7.358 , 96.77 , 81001 3 3226 109.40 4.60 1.407.669 1.420.539 0.678 0.591 0.385 58.72 201.87 Z,09722 2664.246 UA SA SA 39. HI46. 93.42 20187 148.07 7.358 90.78 8.100 3 30.26 108.24 5.10 1.414,522 1,425,337 0.680 0.587 0.384 50.02 195.61 2,6S.42 2,096.267 A UWA Ua 376.43 144.74 78.43 195.61 144.70 7.358 85.70 8.100 3 26.60 4727 5.60 1.420,099 1.429.315 0.682 0.584 0262 51.9 191.35 2,M.444 2,966.069 UWA #WA USA 3643 141JIM 7426 190.35 141.89 7.358 81.62 8,100 3 2721 106.46 6.10 1.424,672 1,432,627 0.683 0.582 0.381 49.40 165.93 2,100,274 2,096,T71 USA USA USA 33.79 1395.3 70.77 185.93 139.53 7.358 79.12 8.100 3 26.04 105.78 6.60 1,428,450 1.435.400 0684 0.580 0.380 4726 18220 2,106,6 2067.350 USA USA USA 32.34 137.54 87.83 18220- 137.54 7.358 75.19 8.100 3 25.06 10520 7.10 1.431,598 1,437,734 0.685 0.578 0.379 45.45 179.03 2,11,56 A USA *MA 31.15 1356 65.34 179.03 135.86 7.358 72.70 9,100 3 24.23 104.71 7.60 1,434,241 1,439,712 0.686 0.578 0.379 43.91 176.32 2,10263 2,66.851 USA USA USA 30.13 534.43 63.22 176.32 13443 7.358 70.58 9,100 3 23.53, 10429 9.10 1.436,481 1.441,401 0.687 0.575 0.378 42.60 173.99 2,102,453 2,066,6646 UA 2626 133,2 61.40' 173.99 133.20 7.356 68.76 8.100 3 22.92 103.94 9.60 1,438,393 1,442,852 0.687 0.574 0.378 41.47 171.98 2,102,811 2,066,666 USA USA USA 25.51 19;13 59.83 171.98 132.13 7.358 7.19 6.100 3 22.40 103.63 9.10 1.440,041 1.444,109 0.688 0.573 0.377 40A9 170.22 2,103,121 2,0911172 UA IA USA 27.5 131.21 58647 17022 131.21 7.358 85.82 9.108 3 21.94 103.36 9.60 1.441,472 1,445.20 0.698 0.572 0.377 39.63 168.68 Z103i 2,666.402 USA USA USA 27241 130.40 57.27 130.40 7.256 6463 0,100 3 21.54 103.12 10.10 1,442,725 1,446,171 0.689 0.571 0.376 3297 167.32 2,103,63 2,666w UA USA USA 26.77 12,11 5621. 167.32 129.69 7.358 63.57 6.100 3 21.19 102.91 10.60 1.443.832 1,447,026 0.689 0.571 0.376 38.20 166.11 1,11140 2,6066.754 UA US *SA 26.2 126.06 55.28 166.11 129.05 7.358 62.63 8,100 3 20.M8 102.73 11.14 1,444,854 1,447,849 0.689 0.570 0.376 37.55 164.94 2,164,062 2,09909 UWA UA 29 .66 52.44 54.37 164.94 12.44 7.358 61.73 8,100 3 20.58 102.55 11.74 1.445,949 1.4481670 0.690 0.569 0375 36.91 163.77 2,1664 2,1606.139 USA UA *#A ,112 53.46 163.77 127.82 7.358 60.82 -8.100 3 2027 102.37 12.42 1,446,997 1.449,488 0.690 0.569 0.375 3626 162.60 2,09446 2,1006;6M A USA 12721 52.56 162.60 12721 7.358 59.92 8,100 3 19.97 102.19 12.92 1.452282 1.453,649 0.692 0.565 0373 32.95 156.55 2,,470 Z101.886 MUA USA UA 22. 124M 47.90 156.55 124.56 7.358 55.26 " 8,100 3 18.42 101.26 13.42 1,456,334 1.456,884 0.693 0.562 0.372 30,35 151.73 2,10116.,2 2,101,675 USA SA USA 121.56 4421 151.73 121.56 7.358 51.57 8,100 3 17.19 100.53 13.92 1,459,474 1,459,415 0.6$4 0.560 0371 2629 147.69 2,8.60 2,92425 UA UA USA 19,64 1.67 4*1-28 147.69 119.57 7.358 46.64 1,100 3 1621 99.94 14.42 1,461,931 1,461,412 0.695 0.556 02370 26.64 144.60 1107*,30 2,102,66160 UA WA U V 15 tS.52 817, 38.94' 144.60 117.98 7.356 46.29 8,100 3 15.43 99.47 14.92 1,463,876 1,463,001 0.656 0.557 0.370 25.32 142.30 2,107,78 2,103.210 USA UA USA 17,60 11.70 37.05 142.30 116.70 7.358 44.40 6.100 3 14.80 9908 1542 1,465.430 1,464,278 0.656 0.555 0369 2425 14026 2,40,104 2,103,40636 A USA USA 16.66 155.66 35.51' 14020 115.660 7.358 42.87 9,190 3 14.29 98.78 15.92 1.486,688 1.465.314 0.697 0.554 0.368 23.38 138.59 2.11,364 2,103.724 UA USA 1928 194AI 34.25 138.59 114.81 7.358 , 41.61 .100 3 13V87 9.53 16.42 1.467.716 1.466,164 0.697 0.554 0.368 32.65 137.21 2.,56 8 21,03.614 MUA 0U" UA 156.7 114.10 3321 13721 114.10 7.358 40.57 8.100 3 13.52 98.32 16.94 1.468,594 1.466,893 0.697 0.553 0.368 22.03 136.01 ,IO.6 2,104,7 UA UA UA 15.,3 113 32.32_ 1.01 113.50 7.358 39.67 8.100 3 1322 98.14 17.56 1.469.465 1.467.616 0.697 0.552 0.367 21A1 134.62 21166,644 2,104,2 USA USA SWA 14.93 112AS 31.42ý 134.82 112.89 , T7.358 38.78 , 8.100 3 12.93 97.96 16.30 1.470,327 1,481.333 0.698 0.551 0.267 20.79 133.62 2,104,406 USA UMA UMA 14.6 1122 30.52 133.62 112.28 7.358 37.88 8,100 3 12.63 -97.77 1924 1.471,181 1,469,046 0.698 0.551 0,367 20.17 132.42 2,10,306 2,164,06 A UA USA 14.6 1M1AT7 20.63, 132A2 111.67 7.358 36.99 8.100 3 12.33 97.59 20.43 1,472,026 1.469,752 0.698 0.550 0266 19.59 13122 2,6648 Z104.731 USA UA USA 13.6 M11 28.73 131.22 111.061 7.358 36.09 8.100 3 12.03 97.41 21.98 1,472,862 1,470,453 0.699 0.549 0.368 18.93 130.02 2109611U 2,104,6 USA UA USA 1323 10.46 27.84 130.02 110.48 7.358 3520 8.100 3 11.73 97.23 2398 1.473.690 1.471,149 0.699 0.549 0.366 18,32 128.92 2,10,4 2,16664 USA USA USA 12.66 169.0 26.95 128.82 1D9.895 7.358 34.30 8.100 3 11.43 97.05 25.98 1.474,354 1,471,707 0.699 0.548 0.365 17.82 127.84 2,50,66 2,166,105 USA UMA USA 12.46 106.36 2622 127.84 109.38 7258 33.58 8,100 3 11.19 9W.9O 27.98 1.474.936 1.472.198 0.691 0.547 0.365 17.35 126.98 2,110,117 2,108,301 SA USA USA 12.15 161603 25.58' 126.98 108.93 7.358 32.94 8.100 3 10.98 96.77 29.98 1.475,456 1,472,638 0.699 0.547 0.365 19.58 12621 2,110,231 2.1066404 USA USA USA 11.98 166.64 25.01 12621 108.54 7.358 32.37 8.100 3 10.79 09.66 31.98 1.475,926 1,473,035 0.700 0.546 0.365 16.62 125.50 2,116,336 2,5.40911 USA UWA UWA 1.13 106.18 24.48 125.50 108.1-8 7.358 31.84 ,.100 3 10.61 96.55 33.98 1,476,354 1.473,397 0.700 0.548 0.365 1629 124.865 2,01,426 2,165,55 .SA USA UA 19.40 1107.16 24.011 124.85 107.8 7.358 31.36 8,100 3 10.45 96.45 35.98 1,476,745 1,473,729 0.700 0.548 0.364 15.9" 12420 2,110.516 2,106,864 UM USA Ua 11.51 1107.5 23,57 12426 107.56 7.358 20.93 8.100 3 10.31 86.37 37.9- 1,477,105 1,474.034 0.700 0.545 0.364 15.71 123.71 2,110.594 2.100.737 USA USA USA 11.06 107,2 23.161 123.71 107.28 _ 7.350 20.52 .100 3 3 10.17 96.28 CWPM44-3 A02-1-SE)C-Cooldom'riff*42460-xb; Cookl~5 3/2942008.12:49 PM I Calc 17321-014WM44-3.

Shutdown Cooing rime Attadhmer

2. Page 37 soOoox I Time Step O(D) P(pp) P$Ip) IP& Totl 01 dTrc sMcKX i i L Tube I tan toil mm59alo d4gFf 39495 2M00 20.899 0 1.5 -22.781 -0.40 -036 55 3 2 ,0 20.889 0 1.5 -22.429 -0.37 -0.34 5.98 0.75 20.252 0 1.5 -22.100 -0.32 -0.32 45.48 10.5 20.034 0 1.5 -21.404 -0.53 -0230 46098, .75 19.257 0 1.5 -21.5 -0.25 -0.2 48.48 0.75 19.625 0 1.5 -21.432 -0.31 -0.22 4923 0.76 19.528 0 1.5 -2.1.329 -0.30 -0.27 49.98 0.s 19.433 0 1.5 -21229 -0.30 -027 50.73 0.75 19.339 0 1.5 -21.130 -0.29 -0.26 1.487 0.15 19.248 0 1.5 -21.033 -0.29 -0.26 5223 0.59 19.158 0 1.5 -20,938 -0.28 -0.25 52.973 0.5 19.07o 0 1.5 -2o.8457 -0.27 -025 5373 0.5" 18.104 0 1t5 -20.753 -027 -025 54,486 075 18.899 0 1.5 -20.664 -026 -024 5523 07.5 18.016 0 1.5 -20.575 -026 -024 55.98 0.75 17.734 0 1.5 -20.489 -026 -023 64.73 0.75 18.653 0 1.5 -20.404 -022 -023 57.48 0.59 18.574 0 1.5 -20.321 -025 -022 5823 0.59 18.497 0 1.5 -20239 -0.24 -022 VS'9 4~j 1.421 01 1.5 -20.159' -0.24 -0.22 65.73 0.509 1.7345 0 1.5 -209.05 -023 -021 6023 0.509 1727 4 1.S -20.047 -0.23 -021 60.73 0250 18247 0 1.5 -19.978 -023 -021 61.23 035 1$199 0 1.5 -19.928i -0.23 -021 61.73 02. 171151 0 1.5 -19.878 -023 -021 627.2 0.50 18.104 0 1.5 -19.M29 -023 -0.20 627.3 0.50 17.057 0 1.5 -19.781 -022 -0.20 63237 0.50 18.061 0 1.5 -19.734 -022 -020 63.73 0.501 17.965 0 1.5 -19.988 -022 -020 64.23 0.50 17.920 0 1.5 -19.643 -0.22 -0.20 64.31 0.50 17.875 0 1.5 -19.539 -022 -020 6823 0.50 17.831 0 1.5 -19.348 -0.23 -020 65.73 0,50 17.787 0 1.5 -19.515 -023 -021 6823 0.50* 17.743 0 1.5 -19.475 -0.23 -021 66.73 0102 ý17.700 0 1.5 -19.439 -024 -0.22 66.93 0.20 17.683 0 1.5 -19.424 -024 -0.27 6 9713 0 .0 17.532 0 1.5 -19. 111 -0.24 -0.22 68.36 0.10 17.549 8 1.5 -19.392 -0.25 -02.3 67.53 0.20 17.516 0 1.5 -19.385 -0.23 -02.3 67.73 0.20 17.615 0 1.5 -19.374 -026 -023 67,93: 0 ,16' 173iK9 of 1.5 -19.363" -0.26 -0.24 68.03. 0*10 17.5W0 0 1.5 -19,398ý -027 -02.4 69.13 0.106 17.482 0 1.5 -19.1353 -027 -025 6823 0.10 17.574 0 1.5 -19.340 -027 .0.25 68.33 0.10 17.5N5 0 1.5 -19.344 -028 -025 68.43 0,10 17.557 0 1.5 -19.340 -028 -0.26 69.23 0,10, 17.549 0 1.5 -19.336 -0.2 -0.26 68.63 0.10 17.540 0 1.5 -19.3 -0.29 -0.27 so -73! 0.10 17.532 0 1.5 -19.32 -0.30 -0.27 so8.83] 0.i 1 T524 0 1.5 -19.326:1

-0.30 -0.27_68.93 0.,10 17.515 0 1.5 -19.3241 4031 -0.28 69.03 010 1 7,508w 0 1.5 -49.321 i -0.31 -0.2 69.13 0,10 1 7.49"9 0 1.5 -19.319 -0.32 -0.29 6923 0.10' 17A491 0 1.5 -M9318 -0.33 -0.30 69a33 0.10'1 7.483 0 1.5 -1 9.V17' -0.33 -0.30 0. gpm 3000 3000 5000 5000 3MO 3000 3000 3O50 3000 3000 3M00 3000 3000 3000 3000 3O50 3000 3000 3000 3000 3000 30D0 3000 3000 3000 3000 3000 3000 3000 3500 3000 3000 3000 3000 5000 5000 5000 3000 3000 3000 3MO 3000 3000 3000 30D0 3000 3000 3000 3500 30OO 3000 3000 3000 3000 30O0 3000 3000 Pi Ti Tt.o 10.gm 315 132.65 123.19 44 315 137.93 122.72 4246 315 13725 122.27 46 315 136.78 1211A5 44 315 136.32 121.65 44 315 135.89 121.36 44 315 135.69 12122 46 315 135.47 121.09 434 315 135.27 120.95 4W 315 135.07 120.82 4M 315 13418 120.69 44 315 134.69 120.56 434 315 134.59 120.44 44 315 134.32 120.32 44 315 134,14 12020 4346 315 133.98 120.08 4 315 133.78 119M6 42 315 123.61 119.65 4 315 132.45 118.74 43 315 133228 119.63 4w 315 133.12 11.52 446 315 133,01 119.45 4346 315 133.91 119.M 4346 315 132.80 118.31 434 315 132.70 11924 43 31S 132.59 119.18 434 315 13249 119.11 434 315 132.39 119.05 43 315 13229 118.98 434 315 122.19 118.92 434 315 132.69 115.56 315 131.98 118.80 4 315 131.8 118.74 215 131.78 118.69 4246 315 131.67 118.63 4O 315 131.63 1191l 434 315 131.59 118.50 4246 315 131.54 118.57 424 315 131.50 118.5I 4w46 315 131.45 118.53 315 121.40 118.52 315 131.3 118.51 4 315 1312A6 1150 446 315 131.33 118.49 434 315 131,31 11849 4346 315 13128 118.48 4246 315 13120 118.47 4246 315 131.23 118.46 4246 315 13120 118.46 434 315 131.17 118.45 434 315 131.15 118.45 424 315 131.12 118.44 4M 315 .31.09 118.43 4366 315 11. 118.43 43 315 131.03 116.43 4246 I I I P Ti Ts.o so 98.21 107102 9 6M.15 10m, 96 198.64 98 OW1 106.04 9, 9.U 1065.7 96 " 1t9 98 98.6 198.84 16 067 IOSAI 98 866 109841 98 98*71 05.31 98 95M 106.31 95 :. te4.", 95 1&" 1 8 16.8 6 9 109.14 Its 1664 46.12 98 IS.6 I"G 96 95W2 198.64 98 9M 104.61 98 9863 504.76 98 2 2* 104.61 IS 98.6 104.99 26 98*3 104.71 98 96.63 104.70 es 98.63 104.7" 98 96*2 104.71 98 9811 104.75 95 98611 1641 98 ISM6 164.6 98 "M* 104.A1 98 96.61 104.61 98 98M 104.64 98 98" 106A3 95 ISM, 104*6 98 ISM 10404 50 ISM 104.6 98 98A 10." Cato-PM44-3 A6t2-1 _SDCCooldomeTime4246&Q .c; Cooldo2 15 3/29/208.12:49 PM I Calc 17321-O1-PM44.4-3, Shudom Cooing Time Attachment 2, Page 38 Time 39.99 41.98 43.'99 45.41 4699N 4492 49.94 52.23 52.F 52.73 54.41 55.23 55.9 56.73 57.48 58.23 5811 59.73 60.23 60.73 62.22 62.72 63.23 63.72 64.22 64.73 65.2 65.72 66.22 66.72 66.92 67.12 67.23 67.52 67.72 67.92 68.93 66.12 66.23 66.31 66.43 66.52 66.62 615.*73 66.62 66.93 69.92 69.12 69.22 69.22 I I I Tube Ttaee 130.92 130.32 129.76 129.37 129.99 128.62 128.45 128.28 128.11 127.95 127.78 127.62 127.47 127.32 127.17 127.02 126.97 126.73 126.59 126.45 126.32 126.23 126.14 126.05 125.97 125.59 125.50 125.72 125.64 125.55 125A7 125.39 125.31 125.23 125.15 125.12 125.09 125.06 125.02 124.99 124.96 124.94 124.93 124.91 124.90 124.98 124.86 124.65 124.93 124.01 124.80 124.78 124.76 124.75 124.73 6:,0 0.9979 3.39E-04 68A8 0.9979 3.41E-04 61.42 0.9973 3.43E-04 68.43 I.997 3.44E-04 61.44 0.9979 3,45E-04 61.45 0.9978 3,46E-04 61.45 0.9978 3.47E-04 61.48 0.9978 3A7E-04 61.46 0.9977 3.48E-04 61.46 0.9977 3.48E604 61.47 0.9977 3.49E-04 61.7 0.9977 3.49E-04 61.47 0.9977 3.50E-04 6184 0.9977 3.51E-04 61.49 6.9977 3.516E-4 68.4 0.9977 3.51E-04 61.49 0.9977 3.52E-04 61.49 0.9977 3.52E-04 61.49 0S9977 3.53E-04 S1.49 0.9977 3.536-04 61.50 0.9977 3.6E-04 61.50 0.9977 3.54E-04 61.50 0.9977 3.54E-04 61.50 0.9976 3.54E-04 61.50 0.9976 3.554E-4 61.51 9.9976 3.55E-04 64.51 0.9976 3.556E-04 61.51 0.9976 3.56E-04 61.51 0,9976 3.56E-04 61.51 0.9976 3.56E-04 61.51 9.9976 3.56E-04 61.52 0.9976 3.57E-04 61.52 0.9976 3.57E-04 61.52 0.9976 3.57E-04 61.52 0.9976 3.57E-04 61.52 0.9976 3.57E-04 61.52 0.9976 3.896-04 61.52 0.9976 3.56E-04 61.52 0.9976 3.58-04 61.53 0.9976 3.58E-04 61.53 0.9176 3.58E-04 61.53 0.9"76 32.6-04 68.53 0.9976 3.59E-04 61.53 0.9976 3.58E04 61.53 0.9976 61.53 0.9976 389E-04 61.53 0.9976 3.56E-04 61.53 0.9976 3.56604 61.53 0.9976 3.58E-04 61.53 0.9976 3.59E-04 61.53 0.9976 3.596-04 61.53 0.9976 3.59E-04 61.53 0.9976 3.59E-04 61.53 0.9976 3.59E-04 68.53 0.9976 3.59E04 k Vol 0.374 5.609 0.374 5.609 0.373 5A09 0.373 5.609 0.373 5609 0.373 5.609 0.373 5.06 0.373 5.609 0.373 5609 0.373 5109 0.373 9.609 0.373 5A09 0.373 5509 0.373 5.609 0.372 5109 0.372 5109 0.372 5A09 0.372 5.909 0.372 5109 0.372 509A 0.372 5609 0.372 5.609 0.372 5.609 0.372 S.608 0,372 5.609 0.372 9106 0.372 5109 0.372 5.609 0.372 5109 0.372 5A09 0.372 5809 0.372 519M 0.372 5A09 0.372 5.609 0.372 51609 0.372 5A09 0.372 5.609 0.372 5.60 0.372 5.609 0.372 5A09 0.372 5.609 0.372 5.609 0.372 5.699 0.372 5.09M 0.372 5.609 0.372 5.609 0372 5.609 0.372 5.609 0.372 5.609 0.372 5.609 0.372 5.609 0.372 5A09 0.372 5.909 0.372 5.609 0.372 5.609 R" I fr [ Btm'"2-F) 1 4 1 Re" 5 .me. 4m Ch.p I emJ 4 V.1 Re P1 55.132 3.2621 1577 101862 65.96 0C967? 460 =3 3.652 1069.69 4A463 54.853 3.2810 1573 W01.46 61.1 0.9A77 4.51044 0,62 3.662 01,384 4,469 54,593 32988 1570 909.31 69IM 0C577 4.51E4 16 &6 362 102 4A70 54,410 3.3115 1567 010.21 6W.69 0.9677 4 64 0.362 3.662 141,106 4.4814 54.234 3.3237 1565 101.11 6I5M 0. 45X6" 6.362 .6 141 97.64 4A.6 54.065 3.3355 1563 101.02 6.66 0.377 4.636E4 0.362 3.62 107116 4.46 53IN5 3.3412 1562 100.97 61.16 0.0977 4 544 O.362 32 167.t37 4.4440 53.905 3.3468 1561 1003 01.66 0.977 4M644 0.3M 36 107.767 4A 53.629 3.3523 1560 10060 01.96 0.37 446,50 0.26112 36 1107.736 4AW 53,751 3.3577 1559 10.6A4 61.61 677 0.6 36 1071 0 4.5000 53.676 3.3630 5 1 1860w 61. 0.M77 4.64644 0m 36 107,648 4.310 53,603 3.3663 1557 160.76 69.9 0101 4.6E404 03 3,662 107.697 4.5063 53,531 3.3735 1556 100.72 61.39 0.67 4.54604 0.362 167.66 4.3075 53,460 3.3786 1555 M 077 4.66-64 062 3.652 107.907 4.6 53,391 32836 1554 160.64 0.3 067 4.906 0.3 3.552 107A3 45116 53.322 3.3685 1553 866.6 6169 0.07 4.566544 0.6 3.2 107,420 4.516 52.255 3.3933 1552 100.6? 61.3 0M" 4.6664 O6. 36.65 107,371 4.5157 53,190 3.3981 1552 106.63 61. 0377 4.6644 0.362 31652 101?.3 4.176 53.125 3.4028 1551 100.46 69.31 016C277 46 04 0.362 3.6 107,206 4196M 53,062 3.4074 1550 90.46 61.19 0177 4.646 0.362 3.662 17-,256 4.1215 52,989 3.4120 1849 1042 61.99 0J6977 4.35.0 0.382 3J6 107,217 4.0W3 52.958 3.4850 8549 900.40 61M CM"6 4.53.44 0292 3.66 107.191 4.5245 52,918 3.4180 1548 10. 61169 0l n 4.56646 026 3AW 455 52,679 3.4281 1547 100.32 S61 0AW 4.5504 0.302 3.9 10,140 41270 52,638 3.4239 1547 100.33 61.3 0.317 4ME44 0.382 3=2 1i7.115 4*292 52.799 3.4268 1546 190."1 611.96 0" 4.6E504 0 M 3.6 107*1 4.29 52.761 3.4295 1546 10626 i06 OW17 450.04 0.6 3.6 907,065 433115 52,723 3.4324 1545 1 0027 6116 M CA 4.6704 0-392 369 4.37 52,685 3.4352 1545 10025 61 007 4.67544 0.6 3562 167,6918 4.2 52,647 3.4360 1544 190022 6116 61677 4.576,44 09 3.62 105.99 4.6M 52,610 3.4408 1544 10020 61.3 03" 4A76504 0.39W 3-W 108,971 4.5351 52,573 3.4436 1543 100.18 61 01677 4,67544 0.362 3.152 196,946 45M9 52,536 3.4463 1543 900.17 6116 O0.77 4.57E404 0.362 362 966 4.6 52,499 3.4491 8542 100,16 61SM 0CAM 4.5644 0"2 3.2 166,619 46M79 52.463 3.4518 1542 900,13 61.9 01W7 4.57B44 6.362 3.652 1N6 4.538 52,449 3.4529 1542 100.12 81.6 0M77 417E504 0,M 3162 1910113 4.5383 52,434 3.4540 1542 61.9 0 7 4.56704 CAW2 3.6 966175 4.5367 52,4189 3,4551 1541 100.11 62.0 0M7 4.57E4 0.3OM 3,652 190686 4.5400 52.405 3.4562 1541 100,10 OM77 4.754 O ? 3.65 106,6 4.564W 52.390 3.4573 1541 900.19 20 61 97 7 4.57r," 0.5 3*52 166*3 45401 52.375 3.4584 1541 900.0 20 0867 4.575U O.3m2 3.662 1606546 4.5410 52.368 3.4590 1541 960.0 62.00 0167 4.67544 6.9 3.662 1086643 4.9412 52,360 3.4596 1541 1008 6-00 0.111 4.57E44 03262 3.652 106,30 4,5414 52.353 3.4601 1848 l60m (2OD O.77 4.75Y44 0.392 316 18,37 4.6415 52,334 3.4607 1540 90066 6280 0M7 4A7604 0.6 106,3 4.5417 52.338 3.4682 1540 106. 6210 0.9677 4.57E34 03= 31 106.00 4.540t 52,331 3.4618 1540 9160.0 612. 0.9577 4-6E504 0= 3.62 906,127 4,5420 52.323 3.4624 1540 10017 62.0 0177 451544 032 3.52 106,824 4.5421 52,316 3.4630 1540 900.67 62.60 0.9977 4.69544 D=36 3,692 166072 4.942 52,309 3.4635 8540 160.7 6210 08677 4.6504 0.39 3.662 1066596 4.5424 52.301 3.4841 18540 860.97 62.0 0677 4,58E04 OM6 1906.16 4.5425 52,293 3.4647 1540 l1o00 6.0 0M7 4.US-04 02M2 3.652 i80.94 4f5420 52295 3.4653 1540 10016 R6Z 0.9077 4.69544 0.362 3.62 190611 4.5427 52;278 3.4659 1540 90 5 CAM 02923 .6 10619 4.2 52270 3.4665 1539 900.66 6 0.6677 4 0.32 3= 106,6 4.5430 O 8oun.- k-metI 12-F)1161 8.786 1ist 8.784 1160 8.782 9966 8.78C 91189 .779 1189 9.779 1lse 8.775 1161 9.77C Its$ 9.776 99" 8.775 9ti6 8.775 11a 8.774 1169 8.773 19l7 8.773 1697 8.772 1la7 $.772 9167 8.771 9867 8.771 1967 8.77C I8ls 8.77C 9166 8.76S 89le 9.76s 1196 9.769!196 9.769 Ilse 11160 910 8.764 9111 9.761 91o6 8.767 i196 1.767 1166 8.767 1915 9.766 116e 8.766 1146 8.766 1996 8.766 1166 8.765 1196 8.765 1165 8.768 1199 8.768 1966 a.761 Ills 8.765 t186 8.760 1116 8.765 1166 8.765 1918 8.764 lie 8.764 1166 8.764 1185 9.764 1968 8.764 9118 8.764 1ll6 8.764 1966 8.764 If*5 8.764 1196 8.764 1185 8.764 1186 8.764 uO88y 160.08 160.02 159.97 159.93 859.99 159.99 159.84 159.12 159.80 159.79 1859.77 159.76 159.74 159.73 159.71 159.70 159,6a 159.67 159.65 159.64 159.83 159.62 159.61 159.60 159.59 159.59 159.50 159.57 859.56 859.55 159.54 159.53 159.53 159.52 159.51 159.51 159.51 159.50 159.50 159.5w 159.49 159.49 159.49 159.49 159.49 859.49 159.49 159.48 159.48 159.46 159.48 159.47 159.47 Colo-P8.844-3 Ag2-I SDCCooldomelinv4246Q.988; Ceoodown51820.124P 3/29=208.12:49, PM Cab 17321-01-PM-44-3, Shutdoom Coolng Time Attachment 2, Page 39 I I I T'-.hr.39.99 41.98 43.98 45.48 48.98 46.48 49.23 49.99 50.73 51.48 52.23 52.99 53.73 54.49 55.23 55.96 56.73 57.49 59.23 58.98 59.73 60.23 60.73 61.23 61.73 62.23 62.73 63.23 63.73 6423 64.73 65.33 65.73 66.73 66.93 67.13 6 7.33 67.53 67.73 67.93 68.03 68.13 68.23 68.33 68.43 68.53 68.73 68.83 68.93 69.03 69.13 69.23 69.3 SDC ttX b"e side I SOC MIX d& ad.I SDC Doly TIto Ts~o Iterale I terate aOw. To tal T. CWMI *9 1 W CCW Duty.r-CW~t Flow pea lX TMI Temnp w WCp C4 1.477.437 1.474.316 0.700 1,477,745 1,474,579 0.700 1,478,033 1,474,623 0.700 1,479.234 1.474,995 0.700 1,478,427 1,475,159 0.700 1.479.612 1.475.316 0.701 1.478,700 1.475.392 0.701 1,478,787 1.475.466 0.701 1.478.872 1,475.538 0.701 1,478,955 1,475,609 0.701 1,479,036 1,475.679 0.701:,7,1116 , 7: 1 0-701.479.1561.475,747 0.71 1.479.195 1,475,814 0.701 1,479.271 1,475,980 0.701 1.479.347 1.475,944 0.701 1.479.421 1,476.007 0.701 1,479.493 1.476.069 0.701 1,479,564 1,4765130 0.701 1.479,634 1,476190 0.701 1,479, 702 1,476.248 0.701 1.479.770 1.476.306 0.701 1,479.014 1.476,344 0.701 1.479.858 1,476.381 0.701 1,479,901 1,476,415 0.701 1.479,944 1.476,455 0.701 1,471,9416 1.476,491 0.701 1,480,029 1.476.521 0.701 1,460,071 1.476,164 0.701 1,480,112 1.479,600 0.701 1,480.154 1.476,636 0.701 1,480,196 1,476,672 0.701 1.480238 1.476.708 0.701 1,480290 1,476,744 0.701 1,480,322 1,476.781 0.701 1.480.35 47619 0.701 1.480.383 1,476.634 0.701 1.480,401 1.476,60 0.701 1,480,419 1.476,866 0.701 1,480,438 1,476,U62 0.701 1,480,457 1.476,399 0.701 1,480,476 1,476,916 0.701 1.480,486 1,476,925 0.701 1,490.496 1.476.933 0.701 1,480.506 1,476942 0.701 1,480.516 1,476.951 0.701 1.480.526 1,476,961 0.701 1,480,537 1.476.970 0.701 1,480,547 1,476.900 0.701 1,480,558 1,476,989 0.701 1,490.569 1.476,999 0.701 1.430,550 1,477,009 0.701 1.480,592 1,477.019 0.701 1,480,604 1,477.030 0.701 1.450,615 11477:041 0.701 1,480,628 1,477.051 0.701 NTU offective"I DT TIo 0.545 0.364 150A 123.19 0.50 01364 1521 122.72 0.544 0.364 14.91 122.27 0-544 0,364 14A3 121.95 0.544 0.364 14A07 121.65 0U544 0.364 14.53 121.36 0.544 0.364 14.46 121.22 0.544 0.363 14.39 121.09 0.54 0.363 14.32 120.95 0.544 0.363 1425 120.82 0.544 0.363 14.19 120.69 0.543 0.363 14.12 120.56 0.543 0.363 14.06 120.44 0.543 0.363 14.00 120.32 0.543 0.363 13.94 120-20 0.543 0.63 13.88 120.08 0.543 0.363 13.82 119.06 0,543 0,63 13.77 114.85 0.543 0.363 13.71 119.74 0.543 0.363 13M.5 119.63 0.543 0.363 13.60 119.52 0.543 0.363 13.56 119.45 0.543 0.363 13.53 119.38 0.543 0.363 13.49 119.31 0.543 0.363 13.46 119.24 0,543 0.363 13.42 119.17 0.543 0.363 13.39 119.10 0.542 0.363 13.36 119.03 0.542 0.363 13.32 119.97 0,542 0.363 1329 118.90 0.542 0.363 1325 118.83 0.542 0.36 13.22 116.76 0.542 0.363 13.18 116.70 0.542 0.363 13.15 118.63 0.542 0.363 13.11 118.56 0.542 0.363 13.10 119.53 0.542 0.363 13.08 118.50 0.542 0.363 13.07 118.47 0.542 0.363 13.05 118.44 0.542 0.363 13.04 118.41 0.542 0.363 13.02 116.38 0.542 0.363 13.01 118.37 0.542 0.363 13.00 11.35 0,942 0.363 12.96 118.34 0.542 0.363 12.98 118.32 0.542 0.363 12.98 118.30 0.542 0.363 12.97 11829 0.542 0.363 12.96 118.27 0.542 0.363 12.95 118.25 0,542 0.363 12.94 119.24 0,542 0.363 12.93 118,2 0.542 0.363 12.92 116.20 0.542 0.363 12.91 118,18 0542 0.363 12.90 118.16 0.542 0.363 12.89 118.15 w I WCP Cr 2`110.8 2.166? am 2."107M 2.16U*9 MM 2.116*61 2. 06ý09 #A ilt0U1S 2.1 0654*7 3 2.110"93 2,1.066 OM 2.106* 21506M S 3M X,11C" 08'M 2.116.961 Z.196,101 3M 2,111010 2,106,118 M 2,111 78 2,106.135 MA 2.1111047 2IO.1662 3IMk 2,111.065 2,109M1 0 0 2,111*06 2,106,126 M 2,111.179 2,061t J3M 2,111,046 2,1066.216 3 2.111.062 2.166.275 3MA 2,111.864 2.166 MA 2,111.266 21006.9 I3A 2,111,215 2,1666,7 3MA 2.111J=5 2,106,316 3M 2,1t1,361 2,166,25 MA 2.111264 3M Z,10953 Nam 4.111217 2.06633 3MA 2.101*6e 2.166*6 3M 2.1 11.212 2. 166.366 3MA3M 2,111*21 2.06,677 3MA 2,11511 2.10666 AM 2,111 306 2.166,31 3M 2.1t1,1414 2,0166* MA 2,11 9X0 Z.111,405 3MA 2,111.320 2.106.409 3 M 2,111,31 2,06,162 3A 2,111,331 2,08,414 3A 2,M1,34 2,t06A17 3M 2.111,237 2,166,420 M 211.0036 2.166,C492 3MA 2, 1011341 2.1W.423 3MA 2:,101,26 2.06,1:1 3M 2,111.3" 2.108,42 3MO 2,111,340 2,1086* 3MA 2,101,"7 2.106,429 3M 2,101.34 2,105,630 3M 2.119*4 2,105,431 3M 2,1.350* 2,108,432 3MA 2,101,261 2,106,433 3MA 2,101,*2 Z2.011,434 3MA 2,111,M3 2,106.435 3Mo 2.119*6 2.106.436 3MA 2.111,26 2,106.437 3MA Tu 18 OT. mT.o JIM *V 1t96 197*a SIM to," 166.7 JIM 10.4A 8 0M" 3M M 1O.3A I 10"1 3m 3M 96.3 006.66 Ma MA 16.03 106.60 3M WA 3M 66 t066*0 3MA 3 9M 6* N.77 OWA ONA Sk l00aIm MA f" MB 16s6.7 3MA *" "1 166.66 A" 3MW 9.74 106,43 ow 3Mk &.6 166*I o" o" to t08.12 3M 3M 5.M 006.20 ow r o" AY I "I 3MA M 6.53 106.150.5t ftt4J 3M 3M 9.46 006.92 3M 3M SAl 10668 3M0 3M 6.43 1056.9 3M 3MA 9.1 105.06 ON OVA t.9 104JI OlWA OV 9.t 35 14. 95 3M 3W L.4 104.*3M MA 9-2 104.66 3M" 3MA 92 104.85 3M 3 0.2710 6 OK S3 6.34 104.76 3MA 3A 6922 1064.76"A 3MA 6.16 004.72 3M MA 96.8 104.71 3MA 3MA 617 1066.6 3M M .A 196 0 104M 3M 3MA Us0 004.67 3MA 3MA 6.14 066.66 P" 3M 6.03 104A4 3MA ONA 3 .12 1006"A M 6.02 104A2 3M 3MA 9.11 004.*3MA 3IM 6.00 104 601 3MA OA 6.00 1006*#MA *M 6.6 104.56 3MA 3MA 8.0 104*6l 3MA 3MA 6.3 04.57*a 3MA 6.06 004.67 MA 3MA 6.04 10D4.55*a OA

  • I" I Bku/r mnftu/hrr mBuffir gpm mmBtu/hi 22.78 123.1 1 7.358 30.14 8.10 3 1.0O 96.21 22.53 122.72 15553 7.358 29.9 8,100 3 9.93 96.13 22.10 122327 15.47 7.358 89,15 3 9.20 96.07 21.87 121.95 10.41 7.358 29.23 8,100 3 9.74 96.02 21.65 121.85 10.5 7.358 29.00 8.100 3 9.67 95.87 21.43 121.34 105.30 7.358 28.79 8,100 3 9.60 95.93 21.33 121922 10504 7.358 28.69 8.100 3 9.56 95.91 21.23 121.05 105.9 7.358 28.59 8,100 3 9.53 95.69 21.13 120.945 105.5 7.358 27.49 8,100 3 9.50 95.87 21.03 1209.82 105 7.358 27.39 8,100 3 9.46 95.15 22 19.31 5.0 7.358T 27.30 ::100 3 9.45 95.83 20.84 120.52 105 7.358 28207 8.10 3 49.0 95.61 20.759 120.44 105.05 7.358 28.11 9.100 3 9.37 95.79 20.66 104.9 7.358 28.13 8.10 3 9.34 95.77 21.72 12020 10.5 7.358 27.93 8 9.100 3 9.31 , 95.79 201.4 120.08 104. 7.358 27.85 8,100 3 9.20 95.74 2019 119.90 1054. 7.359 27676 8.100 3 9251 95.72 21.325 119.85 106.35 7.358 27.98 8,100 3 9.23 95.71 20.24 119.74 104.3 7.358 27.60 8.100 3 9.20 91.69 209.4 119.6. 165.79 7,358 27.32 8 9,100 3 9.7 95.37 20M. 119.52 105 7.358 27.44 8,100 3 9.15 95.66 20.037 119.45 105.15 7.358 , 27.38 8,100 3 9.13 95165 19.97 119838 105.71 7.358 27.33 9.100 3 9.11 95.63 19.921 119.31 194.69 7.358 27.28 a 100 3 9.09 95.62 19,730 119.24 104.8 7.358 27.23 -8.100 3 90. 95.61 19.82 119.4 105.07 7.358 27.18 ,100 3 9.06 91.40 19.77 119.1 104.96 7.358 27.13 8,100 3 9.04 95.59 19.721 119.03 104.95 7.358 27.08 8.100 3 9.03 95.58 19.27 118.97 104.63 7.358 27.53 8,100 3 9.01 95.47 19.32 119. 104.8 7.358 26.98 8.100 3 8.95 95.56 19.57 118.$3 104.63 7.358 26.53 8,100 3 6.98 95.55 19.18 116.73 154.61 7.358 26.14 0.100 3 6.96 95.54 19.16 118.70 154.60 7.358 26.53 8,100 3 8.94 .9553 19.42 118.63 104.60 7.358 26.78 8,100 3 8.93 95.52 19.37 118.52 154.59 7.358 26.72 ,100 3 8.91 95.51 19.12 118.53 104.5 , 7.358 26.70 8 9,100 3 6l.83 95.51 19.321 118.5 0 7,358 26.47 8,155 3 0.-9 95.50 19.30 119.47 7,358 26.45 .8100,5 3 9.89 95.50 19.028 118.44 104.6 7.358 26.63 .,100 3 .888 95.49 19.06 118.41 104.55 7.358 26.61 8.100 3 8.87 95.49 19 2 11838 1D46 7.358 2.59 8,100" 3 0.86 , 9.48118.37 1 .3 7.358 26.57 810 3 '8.86954 1920 1181. 14.6 7.358 26.5 8,00 " 3 8.85 "95.48 19.19 118l.34 10M7.359 26.55 8,100 3 0.85 95.47 19.18 116.32 104.51 7.358 26.54 s,100 3 8.55 95.47 19.03 118.15 104.54 7.358 26.52 8,100 3 8.84 95.47 19.15 ,1 18.29 04 7.358 25.51 0,810D 3- .8.84 .95.47 19.14- 11827 10.9 7.358 "26.49 8,100 3 8.83 95.46 19,12, 11825 045 7.358 .25.48 .,100 .3 5 .113 95A46 19.11' 11824 10.7.358 26.47 8.100 3 8.829.4 1 I.09 18 04.5 7.358 26.45 8100 3 6.82954 04.561118 7.358 26.44 010 3 8.81 95.45 19.06 118.181 045 7.358 26.42 8,100 3 8.81 95.45 19.0,5_ 11:.1684.8 1 7.8 " :41 8,.100 1 M.8 95.45 ISM0 1 10.51 045 7:358 2.6 8,100 3 8.80 95A4 I Catc-PMA4-3 A182-I_SDCCooldom1Time42460xls; Cooldowe 5 3r29/2008,12:49 PM Calc 17321-01-PM-44-3, Shutdown Cooling Time Attachment 2, Page 40 Shutdown Cooling Temperature Transient with 90F River Water SDC Hx Fouling = 0.00418 hr-F-sqft/Btu, CCW Hx Fouling = 0.004 hr-F-sqft/Btu 370 330 290 250 L.I 210 0 E 170 130 90 50 170 160 150 140 LL 130 a.E 120 0* Pri Cool Temp-SDC Return Temp-CCW Temp I 110 100 90 0 I I 3 0 I 5 I 10 20 30 40 50 60 70 80 Time, hours Calc-PM-44-3 Att2-1_SDC_CooldownTime4246Q.xls; Chart5 3/29/2008,12:49 PM Cakl 17321.01-PM.44-3.

Shutwdow Cooling Time Afttahmet 2, Pagie 41 Shutdown Cooling Temiperature Transient with 9OF River Water SDC Hi Fouling -0. hr-F-4qMBtu, CCW Hx Fouling -0.004 hr-F.4qft/Btu InIaeIRCTe pet.rF I 3n: SDCHX CCW HX Indat TimeI I 2L 2754 Shel Film Muler 0.09751 RCS Tempewati-e afet 8 honJs 146.83, 5h Fm Re power .0.6709:11me afte to 13OF Pfimay Coo nTemp 18.55 M5tMal CCWtoSCH 424 hal44 FimP o 0.333 Time saew SDC otM to 130F PC Temp 16.5 CCW Flow S*p Temp 275 Fohmtg htotl -tbe Side) 0 0.004 Decoty heat eqnibiium vit 90F river tenp 17.14, 0.06418" 0.004____ _SOCHx Time sp O(D) P(pp) POP) Ps Tot 0 dTrc Tube Sbu h.l'h I. ýBbf Pi~f TO~ TIo 0 P i Tj T, 2.00 0.1 54.966 11 1.5 -196.968 -122.50 -111.36 3000 315 350.00 205.00 436 80 I".AS 4 2.10 0.10 54.107 181 1.5 .198.703 -115.10 -104.63 3000 315 338.06 201.29 434 95 1.118 210 2.20 0.10 53.300 11 1.5 -160.894 -100.09 -90.27 3000 315 328.40 197.12 4M 90 1266 213.2.30 0.10 52.540 10 1.5 -173.523 -101.40 -92.26 3000 315 310.57 193.10 4346 16 1t 21 2.40 0.10 51.6n 10 1.5 -166.574!

-95.25 -06.59 3000 315 309.35 189.44 4346 16 13. 26IS 2.50 0.10 51.143 1is 1.5 -160.028 -89.38 -81.26 3000 315 300.60 185.90 434 6 1410.74 260 0.10 50.500 10 1.5 -153.865 -83.07 -7624 3000 315 292.56 182.56 4M I16 As 50*2.70 0.10 49.0M0 10 1.5 -148.068 -78.60 -71.53 3000 315 204.94 179A1 434 94 130.51 16 As 2.80 0.10 49.30M 10 1.5 -142.616 -73.81 467.10 3000 315 277.70 176.43 44 16 556.46 2.90 0.10 48.749 10 1.5 -137.490 -0924 -62.95 3000 315 271.08 173.62 44 is 91111.64 1 3.00 0.10 48.210 10 1.5 -132.673 -04.86 -69.05 3000 315 264.78 170.07 426 90 11.3 118130 3.10 0.10 47.710 10 1.5 -128.154 -60.04 -05.40 3000 315 258.48 16046 46 85 11.76 1 3.20, 0.10 47.223 10 1.5 -123.908 -57.19 -51.09 3000 315 293.34 166.10 4!4 00I 156.66 3.30. 0.10. 46.755 10 1.5 -119119. -53.6 .48.70 3000 315 240.14 163.87 4346 95 11633 07.-3.40 0.10 46.307 10 1.5 -116.172 -50 .36 45.79 3000 315 243.26 161.77 4246 80 914.2 57Ml8 3.50' 0.10 45.876 10 1.5 -112.651 -47.28 -42.90 3000 315 238.68 159.80 424 95 15316 0.10 45.400 10 1.5 -109.344 -4.30 35 3000 315 22.38 157.94 4246 85 51322 65.57 3.701 0.10 45.50 1i 1.5 -10.237 41.60 -37.09 3000 315 230.35 156.10 4246 80 112,63 16.47 3.90 0.101 04.673 18 1.5 -103.317 -39.14 -35.69 3000 315 226.55 154.53 4M4 " 1127 IS16 3.90 0.10 04.300 Is 8 1.5 .100.574 -36.77 -3343 3000 315 223.00 152.07 434 Is 11.J6 0S1 4.00 0.10 43.939 1s 1.5 -97.995 -34.59 -31.41 3000 315 2190.6 11.50 4246 85 559* 197J5 4.10 020 43.590 10 1.5 -95.671 -32.40 -29.53 3000 315 216.52 150.12 4246 I l 1t4 24 4.30 0.40 42.924 10 1.5 491.013 -.2.59 -25.99 3000 315 210.61 147.51 46 00 16611 5 9U 4.70' 0.0' 41.700 181 1.5 -82.94 -21.78 -19.80 3000 315 200.21 142.68 4346 9 I508. 1447.7 5.20 00 40.368 01 1.5 -75.337 -33.47 -30.43 3000 315 190.32 138.43 436 80 9 66I 1 5.70 9.50, 39.108 0 1.5 -43.589 -.22. -20.82 3000 315 175510 131.52 4240 0 564.3S7 6.20 a.n0 0 1.9 -55.562 -16.92 -14.48 3000 315 164,69 126.73 4246 98 1 6I 247 6.70 0,50 37.194 0 1.5 -49.990 -11.30 -1027 3000 315 157.45 123.37 4 06 9loin 47 7.20 40 36.330 0 _ 1.5 -01.43 -.20 -.4 30 315 152.32 120.97 q42 26 102 2 7.70 9.0 35.500 0 1.5 .43.10 -6.12 -9.56 3000 315 14.59 110.2 4246 95 10.33 1 0.20 M0 34.044 0 1.5 -41.046 -4.70 427 3000 316 145.81 117.91 4246 80 66* 118.49 8.70 11.64 34.184 0 1.5 -39.408 -3.72 -3.39 3000 315 143.67 116.00 4246 9 "M. 1 10" 9.24 *.6? 33.529 0 1.5 -38.015 -2.99 -2.71 3000 315 141.85 116.04 424 80 U.1 117,37 9.91 0.1I 32.779 0 1.5 -36.624 .2.34 -2.13 3000 315 140.04 115.18 446 Is " 1 A 0 10.76 1.10i 31.011 0 1.5 -M5233 -1.82 -1.65 3000 315 138.22 114.32 4246 Is 5 11.06 145 30.8n 01 1.5 -33.644 -1.42 -I.29 3000 315 130.40 113.45 4204 6 11,44 114.13.27 1.77 29.624 0 1.5 -,2.455 -1.13 -I.03 3000 315 134.55 112.59 4346 WIG 0113.5 15.04 23.0 28.643 0 1.5 -318A7 -0.92 -0.84 3000 31 5 32.76 111.72 43M4 I66 11,0 17.04 2.00 27.511 0 1.5 -29.756 -0.77 -0.70 3000 315 531.08 110.91 4246 95 9,113* 111.79 19.041 Z"8 26.542 0 1.5 -28.7121 -0.67 -0.61 3000 315 129.07 110.24 4M 80 7A671 IIIJ 21.04 2.001 25.699 0 1.5 -27.784 -0.59 -0.53 3000 315 128.40 109.65 4246 05 9.22 17.42 23.04: 0.100 24.956 0 1.5 -26.975 -0.52 -0.47 3000 315 127.39 109.14 420 9 16 109, 23.04 0.60 24.95 0 15.5 -28.975 -0.52 -.047 3000 315 127.39 109.14 4246 95 A 16.7 23.04, 0.00 24.956 0 1.5 -2.875. -0.52 -447 3000 315 127.39 109.14 4346 90 $Tf* 109.8 23.04 010, 24.95S 1.5 .26.979 -4.52 -4.47 3000 315 127.39 109.14 424 85 97A. I 23.04 010 24.950 0 1.5 -20.975 .52 -.47 3000 315 127.39 109.14 4246 95 P0G MO.T 23.04 o0n0 24.956 1.5 -26.975 -0.52 -0.47 3000 315 127.39 109.14 4246 5 STG 10 23.04 a10 2405 0 1. --26.975 -0.52 -0.47 3000 315 127.39 109.14 426 66 95 7M I6e17 2304 0G0 24.950 0 .5 -26.075 -0.52 -047 3000 315 127.39 109.14 a66 66 6 0-23.04 0G0M 24.956 15 -26.975 -0.52 -0.47 3000 315 127.39 109.14 44 96 7*M lo1 23.04 016A 245 0 -20.75 -0.52 4.47 3000 315 127.39 109.14 434 U 171T0 I 23064" 010 24.9508 I .5 26875 -057 -0.47 3000 315 127.39 100.14 424 16 00 67*~ 1 Cal-PM-44-3 Att2-.l_SDC_CooldondnTiew4246Q0s; Cooldo3 0 5 3/2912008.12.49 PM CaIc 17321-01-PM-44-3.

Shuldome Cooling Time Afcmenit 2, Page 42 Time Tube f hrm T1,,,,,, r I C~p mu I k Val ] e I P t -F [ tae p I m k Val Re Pr hMft2-F krneW a r ~ ty 2.00 277.84 55.59 1.0204 1.365-04 0.396 5.609 124,795 1.2583 2195 177,00 OM.93 1 A21 50 02868 3.U 201177M 22160 1472 9.471 600.55 2.10 270.05 55.99 1.0182 1.45E-04 0.3916 5060 121,360 1.3005 2175 1731"2 6.71 1.0I1A 2.43#04 0L36 6 3=6 '7,131 22,74 1461 9.437 596.35 2.20 262.76 56.35 10162 1.45E-04 0.396 5.609 118,062 1.3434 2155 170.I? 0.78 1.06 2.496 0.394 3114 2 I 6266 22320 1460 9.404 59222 2.30 255.87 56.69 1.0145 1.505-04 0.396 5606 114908 1.3869 2135 167.6 6. 1.0012 2.4-04 0363 3.6 1M IS 2.3606 1440 9.372 5 g8.18 2.40 249.39 56.99 1.0130 1.555-04 0.396 5.609 111.900 1.4309 2114 54'04 61 JAM 25D604 0.363 UN 094,760 2,436 1430 9.342 584.25 2.50 243.30 5727 1.0416 1 £05-04 0.395 5.j9 109,041 1.4750 2094 61.23 60.67 111007 266504 0262 3.62 6.1136 2.622 1421 9.314 590.45 2.60 237.56 57.53 1.0104 1.655-04 0.395 5.06 106,327 1.5193 2075 t M 61.0 IA1.00M 2.715E04 0-11 32 2263 1412 9288 576.78 2.70 232.17 57.77 1.0093 1.70E-04 0.394 0.609 103,758 1.5634 2059 166.5 61.07 0*46 1.76E_04 0.381 "a J 1743 20M 1463 9.295 57325 2.80 227.11 57.99 1.0064 1.745-04 0.394 5.960 101,329 1.6074 2037 13,.76 6.12 11401 2A1E040 0.310 3= 2.6 I13 9243 5696 2.90 222.35 58.19 1.0075 1.795-04 0.393 5.606 61,036 1.6510 2019 161.54 61.16 0A6 2.60504 0.376 3.662 1M,72 2.7107 1387 9.222 566.60 3.00 217.87 58.36 1.0067 1.645-04 0.393 5260 96,873 1.6942 2002 046* 6412ý8 0.66 2.05E04 0.379 3.662 16.03 2.72 J10 9202 563.47 3.10 213A7 58.55 1.0061 1.85-04 0.392 5.6" 94.33 1.7369 1965 147.62 61.24 0CA 2.56504 0.379 3.662 163,631 2.6001 1373 9.184 560.48 3.20 206.72 50.71 123054 1.3E-04 392 506 92,913 1.7796 1669 1 6,27 0 2.66504 0.376 3.662 141*3 2.6616 1367 9.168 55722 3.30 209.06 58.76 1.0049 1,90 0.391 5.609 91,120 1.9201 1954 143.0 61.31 0.4 24 3.04E04 0277 3.652 16,1 2. IUD 1360 9.160 554.88 3.40 20222 58.69 1.0044 2.97E-04 0.391 506A 89.405 1.8605 1936 642.36 61.33 066 3.64 02377 3.662 597. 2.0374 13&4 9.135 55227 3.50 19924 59.12 1.0039 2.055-04 0.390 5.609 87,806 1.9001 1925 140.53 612.06 8o6 3.12E04 0.376 3.6S2 566237 276 1346 9.120 549.79 3.60 196.16 5923 1.0035 2.09E-04 0.390 5,209 86,303 1.9387 1911 139.40 612839 O.662 3.1504 0.376 3.062 1563456 3.171 1344 9.107 547.42 3.70 193.26 59.34 1.0032 2.13E-04 0U39 5.609 64,990 1.9763 1898 136.6 61.41 Al 0.6 3.19654 0.376 3.62 151.790 3J546 1332 9.094 545.17 3.80 1906.4 59.44 1.0026 2.175-04 0.389 5A09 93,562 2.0129 1J66 130.76 6i.43 066 3.E04 o.376 3.662 160,227 3.6 1334 9.082 543.02 3.96 187so 59.53 1.0025 2-29E-04 0 388 5.609 92314 2.0465 1874 13265 601.4 066 3.266 0.376 3.62 143,760 3.1246 132 9.071 540.99 4.00 16520 5022 12023 2245-04 0.388 5209 91,141 2.0630 1863 13WAS R7 0.66111 32985-04 0274 3 147,3 3.1676 1320 9.060 539.05 4.10 183.32 59.70 1.0020 2275-04 0.387 5.609 80.039 2.1163 1852 133.43 61 AS 060 3366-04 0.374 144,664 3.184 1321 9.050 53721 4.31 17920 59.65 1.0015 2345.04 0.307 5209 77.966 2.1819 1932 131.46 61.55 096 3.2450 0.373 3,652 143A73 32802 1314 9.032 533.70 4.70 171.55 60.10 1.0006 2.465-04 0.385 5.606 74.319 2.3066 0755 12.6 61.66 0 3*6164 07 3. 136*30 3 1300 9.060 527.35 5.20 164.37 60.34 1,0002 2.95-04 0.363 5209 70.853 2.4378 1759 124*4 61*4 O.6t4 3.M-04 027 3.652 136*14 3.750 1267 8.964 521.06 5.70 153.31 6020 0.9993 2.82E-04 0.380 5909 65,549 2.6674 1701 110.62 61.72 0,3961 376A644 0-316 3.652 164 36013 1287 8.910 510.98 6.20 145.71 60.90 0296 3.204-04 0.376 5.609 61,943 2.6473 1659 1 1600 61.77 0.09 3.9664 0.369 3.6 125.160 3.7M 1 262 9.275 503.79 6.70 140.41 61.o4 02964 3,135-04 0.377 5260 59,450 2.9653 1929 113.67 61*81 o t06 3R. 0 0287 3.662 1022.6 3"00 1242 62850 498.64 7.20 13225 61.15 0.9962 3235-04 0.376 5.609 57660 3.0902 1609 111.66 61*3 CASTS 4E04 0.366 3.662 13037 363726 123 98.33 494.92 7.70 133.91 6122 0.990 3.31E-04 0.375 5209 56,417 3.1705 1592 010.66 61.66 06 4.0660 03 3.514 1186.17 4AM 123- 8.21 492.18 862 131.86 6127 0.9979 3.37E-04 0.374 5206 55,470 32328 1580 101.96 6127 CAM7 4.14504 0.3W9 3.662 17,734 4.IN6 1225 8.812 490.11 9.70 13029 61.31 0.9979 3.41E-04 0.374 5.60 S4,744 32820 1571 10.03 $1JA8 OM9 4.17E504 9.3 3J62 116,104 4.105 1223 s.905 488.50 964 128.95 61.34 0.9978 3A5E-04 0.373 5209 54,128 3.3250 1563 06.3 6196 0 6 42E-04 0266 30 106,136 4.1305 12M 8.800 487.13 9.91 127.21 6126 0.9977 3.505-04 0.373 5206 53,512 3.3688 1555 106771 61.M 0.67 42.04 0.0 3,652 0116*66 4.1960 1216 8.794 485.75 10.76 12627 61A1 0.9977 3.545-04 0.372 5209 52,96 3.4137 1547 107.10 61.66 C7 425E04 o06 3152 114.764 4.1877 121s 8.788 464.36 11.86 124.93 61.44 02976 3.56E-04 0.372 52S9 5296 3.4596 1536 06.4 0 0 0M 42W.2 )4 O3 3. 114A94 4.21" 12t2 8.793 42.96 1327 123.58 61.47 0.9975 3.63E-04 0.371 5.609 51,674 3.5065 1531 106.66 61.2 6O.A7 4.30504 0.364 &62 42961 1210 S.777 481.56 15.04 12224 St.50 0.9975 3,67E-04 0.371 5.606 51,064 3.5546 1523 10627 61.66 0.66 4.-3E04 66 3.6 112011 4.2766 1207 8.771 460.14 17.04 121.00 61.53 0.9974 3.71E-04 0.370 5.609 60,651 3.6000 1515 104.70 61.0 0.8078 4,36E04 0.3 3.562 102*96 4.2W 1366 8.766 478.82 19.04 11929 61.56 02974 3.75E-04 01370 5609 50,030 3.6388 1509 10423 61J*4 0M2 4-3E604 0.33 3=2 101,16 4.M 1203 9.762 477.71 21.04 11962 61.58 02973 3.785-04 0.370 5206 49,623 3.6729 1503 16.2 SIAS 047 4261504 CAM 3.R 111*6A4 4.473 t291 0.759 476.75 23.04 11827 61.59 0.9973 3-81E-04 0.369 5206 49268 3.7031 1498 5 6646 5 619 0.06ý7 405 36 2 110"4 4 1160 8.755 475.91 23.04 11827 6129 02973 3.15E-04 0369 5.609 49628 3.7031 1498 166*6 61*4 0.1177 4116,04 06.2 3.662 160546 4.1363 1199 8.755 475.91 23.04 11827 61,59 0.9973 3.81E-04 0.369 5.609 49.266 3.7031 1496 154*6 61.36 077 4.41604 0.36 3 2 1000,46 42166 11"6 e.755 475.91 23.04 11827 61.59 0.9973 3.91E-04 0.369 5.609 4.668 3.7031 1498 103A4 61.3 0.6 41504 0-.363 3.662 100,40 4.3063 S1lo 8.755 475.91 23.04 11927 6129 0.9973 3.81E-04 0.369 5.609 49269 3.7031 1498 103.46 61.96 0.6M77 4.4 E604 0.3n 3.82 1 0*49 42663 0166 8.755 475.91 23,04 11827 61.59 02973 3.81E-04 0.369 5209 49.266 3.7031 1498 103.4 61.96 0.3977 4*504 0.363 3=.62 110049 4.3563 116 8.755 475.91 23.04 11627 6129 0,9973 3.15E-04 0.369 5209 49268 3.7031 1498 01. O.77 4.41604 0.563 3.652 110*40 4.3663 1190 8.755 475.91 23.04 11827 60.59 0.9973 3.15-04 0.369 5209 3.7031 1498 103.4i 61.36 o0677 4.411604 o00 3.602 110549 4.23 166 8.755 475.91 23.04 11827 61.9 02973 3.215-04 0.369 5.609 49.269 3.7031 1498 103A O977 4.41E44 0,363 3.662 10546 43M 113 8.755 475.91 23.04 11827 61S9 02973 315E-04 0.369 5.S09 49296 3.7031 1498 1038.4 601.6 O977 4.41604 0.363 3.652 1100 4.-663 516 6.755 475.91 23.04 11827 61.59 0.9173 3.815-04 0.369 5.609 49268 3.7031 1498 103.46 01.11 07 4.15-04 0063 3.62 130.64* 4296 1013 8.755 475.91 Calc-P9A-44-3 Att2-I_S.CCoo~mTo1me4246Qxls; Cooýlom3 0 2 3r29/2008,12:49 PM I Calc 17321-014PM-44-3.

Shutdown Coong Tme.Afttahmet 2, Page 43 CCWcXFm.,ft,, 0.004 Tme S___HXU"" OCHX" SOC Duty Tto To.o Qocw. CCW Duly TOl CCW CCWDAy CCW Itete Iterate of- Flow # CCW pa HX Temp hrs W WCp Cr NTU ,Sectivwee DT Tt'o W WCp C, NTU wafreoe. DTs3. T,.o Btu/hr mmBblhw Mm , gpm mm-13.h T6o.2.00 1.3378560 1.364,823 0.660 2208 0.154 144.32 205.88 26416l0 2A"372 WSM 8 A 0.10 228.64 188.817 205.68 224.84 7.3598 204.33 8.100 3 68.11 129.46 2.10 1.347,164 1,371,852 0.662 2.183 0.652 137.57 20129 2056702 2.871266 USA am *A 91.11 21".8 188.70 201.29 219.07 7.358 198.06 8,100 3 65.35 127.96 220 1.355,952 1,377,858 0.889 2.157 0.650 131.28 197.12 2,703,8N 230738Ml SMW m ow a m 213I08 180.89 197.12 213.80 7.358 188125 0.100 3 82.75 126.59 2.30 1.284.004 1282,782 0.667 2.134 0.648 125.40 193.18 247240 208,72 SWM SM SM 83.A4 2K04 173.52 193.18 208.84 7.358 180.88 8,100 3 60.29 12520 2.40 1.371,389 1,289M173 0.689 2.111 0.647 118.81 189.4 2.10.40188 302 SfA SM **A 60.23 S4.10 166.57 189.44 204.15 7.358 173.93 8,100 3 97.98 123.93 2.50 1,378.168 1,3"4,166 0.671 2.090 0145 114.78 185.80 270.38A 2,0"77.T78 MA WA 77.82 19074 180.03 185.90 199.74 7.358 167.38 8,100 3 55.00 122.72 2.60 1,384.396 1.398,794 0.673 2.070 0,543 110.00 182.58 2,078*182 2,070,100 SWA SA SOA 74.60 I50.61 152.87 182.56 195.58 7.358 16122 8,100 3 53.74 121.58 2.70 1,390.124 1.403,089 0.674 2.095 0.842 105.53 179.41 2.079.0i2 2,0402A OSM S SM 71.17 10116 148.07' 179A4 7.358 155,43 8 ,100 3 _51.81 120.51 2.80 1.395.397 1,407,070 0.676 2.033 0.40 101.38 176.43 2.M01442 2061352 SM SMA SM 0.81 188.00 142.2 176.43 188.00 7.358 149.97 8,100 3 49.99 119.49 2.90 1.400.254 1,410,770 0.677 2.018 0139 97.46 173.82 2M.6.01 2,082,788 SM SM S U66M 14.65 137.49 173.62 184.55 7.358 544.5 8,100 3 48.28 118.54 3.00 1,404.732 1,414,207 0.679 2.00 0.830 93.81 170.87 2A.4.257 2,093A" SM SM S 63.07 1411.30 132.67 170.97 161.30 7.358 540.03 8,100 3 41.8 117.83 3.1 1,408,864 1.417.401 0.680 1.985 0.636 90.41 168.46 2.0.015 2,04,U M m NA 61A7 172.0 128.15 168.46 17825 7.58 135.51 8100 3 45.17 116.79 320 1.412.680 1,420.371 0.681 1.971 0.63 87.24 166.10 230,0.M 2105.754 SM fS SM 5S. 175.3 123.41 186.10 175.39 7.358 131.27 8.100 3 4376 115.99 3.30 1.418.207 1.423,134 0.682 1.957 0.634 8426 163.87 2.867.774 26,14 SOA SM SM 67,4 17 IWO 119.92 163.87 172.70 7.359 12728 8.100 3 42.43 115.23 3.40 1.418.470 1,425.705 0.683 1.945 0.633 81.48 161.77 7 2.017.418 MA SM SM 96.0 110.57 116.17 181.77 170.17 7.358 123.53 8.100 3 41.1 114.52 3.50 5,422,490 15428,88 0.804 1.933 01632 78.98 155.80 2.38,730 O45 o" S 5M .0 107,80 112.65 159.00 167.80 7.358 120.01 8,100 3 40.00 113.85 3.60 1.425287 1,420.328 0.665 1.921 0.631 76.45 157.94 2.000 2,o 71 SM SM SM 02. 1415M 129.34 157.94 165.57 7.358 518.70 8,100 3 38.90 113.22 3.70 1,427,881 1.432,405 0.686 1.951 08630 74.17 556.18 2,06426 2,081).27 SM SM SM 50.84 163,47 10824 1--.18 163.47 7.358 113.59 8,100 3 37.86 112.63 3.80 1,430287 1,434,341 0.686 1.901 0129 72.03 154.53 20.101 2,90,140 SM SM SM 49,43 11.00 154.53 161.50 7.358 110.68 8.100 3 36.89 112.07 3.80 1,432.521 1.436.146 0.687 1.891 8828 70.03 152.87 2=3 0 2. ,71l4 MA SM SM 48.10 108M 100.57' 152.97 158895 7.358 107.93 8,100 3 35.98 111.55 4.00 ,434596 1437,820 0.688 1.882 0328 88.55 151.50 2309363 2.6091 5 NA SM SM 460.86 157.91 98.00 151.50 157.91 7.358 105.35 8,100 3 35.12 111.05 4.50 5,4368526 1,438.401 0.888 1.874 0.827 80.40 55.52 2..0 3. SM S S 4 5 150.12 15628 7.358 502.83 8.100 3 34.21 110.5.4.230 5440.100 1,442,326 0.88 5,858 0.625 63.58 147.95 R3 26A SM 4340 1 91.01 147.51 15320 7.358 ' 9.37 -8.100 3 32.79 109.71 4.70 5.446217 1,447.375 0.895 1.829 0.623 57.23 142.88 2,097.331 23094.3 S8A SM SM 39.62 82.98 142.88 147.78 7.358 90.34 0.100 3 30.11 108.16 520 1,451,820 1452,007 0.893 1.801 0120 55.89 58.43 2.080.107 21916 S S S 0 142* 75.28 138.43 142.62 7.358 82.69 8.100 3 27.56 106.67 970 5480,034 1,455894 0.89 1.758 0.816 43.58 13152 Z,1013.00t 230179 S S S 32.31 13407 82.58 131.52 134.67 , 7.358 70.95 8,100 3 23.65 , 104.37 820 15465,341 1 463515 0.697 5.728 0.653 37.96 126.73 2,188.770 2307. 26 ASM SM SM 26,46 129.24 55. 126.73 12924 7.358 62.92 8, 100 3 20.7 102.78 6.78 1,448,877 1,466,557 0.698 1.707 0.611 34.09 123.37 2,1*013 2,10.761 SM SM MS 2300 49.99 123.37 125.47 7.358 57.35 8,100 3 15.12 101.68 7.2 1,471,306 1,468,656 0.899 1.882 0.610 31.35 120.87 2,105.873 2.101 SW *48 SWA 21* 52.) 46.04 1 1 7 3 17.89 100.89 1- 12-9 !12'o738 34 ,0608 1 Dose3 7.70 1.473.827 1,470,149 0.698 1.681 0.608 29.37 11822 2,10 2,102,071 M SM SM 20.54 12. 43. 18 118922 120.86 7.358 50.54 6,100 3 16.85 500.3 82 1A74287 1,475.248 0.700 1872 0.08 27.0 117.91 2,106343 2.1 0 l.40 S S SMA 2 111 41.05' 117,91 119.41 7.358 148.40 68.100 33 8.89 8.70 1.475.242 1.472,078 0.700 5.88 0.607 20.77 118.90 2.107.20 2,5027 SM SM Sm 15.74 1530 28.45 116.90 118.30 7.358 46.77 ,100 3 15.59 99.56 924 1.476,044 1.472.778 0.700 1.660 0.608 25.85 116.04 2.107,582 2.103,01 SA S" SM 16.0 6 20.0 116.94 117.36 7.35 45W7 8,100 3 15.12 8828 9.91 1,4768.37 1,473.471 0.701 1.855 0106 24.86 115.56 2,107A72 2,109,6 SM SM SM 1741 110.42 36.62 115.18 116.42 7.358 43.98 8,100 3 14.66 99.00 10.78 1.477.620 1.474,158 0.701 1.649 0.605 23.90 114.32 Z100.161 Z2038 SM SM SMA 16.71 116.47 252 114.32 115.47 7.358 42.59 8.500 3 1420 98.72 11.86 1,478389 1,474.838 0.701 1.644 0.605 22.95 113.45 2.108,40 2.16,711 SM SM SM MOO 114.53 33.84' 153.45 114.03 i 7.358 41.20 8,100 3 ' 13.73 98.44 1327 1,479,160 1,475,511 0.701 .638 0104 22.00 112.59 2.108.733 2,1043,03 SPM SM SM 0A2 11.0 32.45! 112.59 113.59 7.358 39.61 8,10 D 3 1327 98.16 55.04 1.479.918 1,476.176 0.702 1.633 0.603 21.05 111.72 2,09016 z,6406 SM SM 14S1M 54 1216 31.07 111.72 112.65 7.358 38.43 8,100 3 12.81 97.88 17.04 1,480,607 1,476,786 0.702 1.628 0.603 20.17 110.91 2,160970 2,150832 SM PS SM 14.10 111.70 2.79 110.91 111.78 7.358 37.14 8,100 3 12.38 97.63 19.04 5.481.179 1.477291 0.702 1.623 0.602 19.44 11024 2,109,462 2,100.734 SM SMa S 1334 1119065 28.71 11024 115.09 7.358 36.07 8.100 3 12.02 97.41 21.04 5,481,689 1,477,725 0.702 1.620 0.602 18.80 109.685 2,0, 2,1083 SM SM SOA 1320 I542 27.78 108.89 510.42 t 7.358 35.14 '8,100 3 1j.7 8 97.22 23.04 1,482I094 1.478,101 0.702 1.858 0.802 1825 109.14 2,190,04 2,105,040 SM SM SM 1221 1009.7 20.97 109.14 109.87 7.358 34.33 .8100 3 11.44 97.00 23.04 1,482.094 1.478,101 0.702 t.816 0.602 18.25 509.14 2.1609.0 2.10k4 SM SMA SMN 1281 100.07 26.987 109.14 109.8 7.358 34.33 8,100 3 11.44 "97.06 23.0 482.064 1478,101 0.702 1.61 0.803 5820 158.54 2,160 2,10340 SA M SMA 1231 100.7 297 108.14 109.87 7.358 34.33 8,100 3 11.44 97.06 23.04 1482094 1,478,501 0.702 1.858 012 1825 109.14 2,166*40 2.18053 SM Sm OS 15238 16017 26.97 108.14 109.87 7.358 -34.33 8.100 3 11.44 97.06 23.04 1,482,094 1,478,101 0.702 1.616 0.602 18.25 159.14 2,109,049 SM SM SM 12.81 10.507 26.97 109.14 109587 7.358 34.33 8.100 3 11.44 97.06 23.0 482.094 1,47.,101 0.702 1.616 0.602 1825 109.14 2,1096040 2,18.6009 SM SM SM 12.81 1006.7 28.87 109.14 109,8.7 7.358 34.33 8,100 3 11.44 97.00 22.0 1,482,0094 1.478,101 0.702 1.616 0.602 1820 109.14 2,l... 2,16,040 SM S 121 500.0? 201971 109.14 109.87 7.358 34.33 8.589 3 51.44 97.06 23.04 1.482.094 1,478,101 0.782 5.818 0.802 1825 508,54 2.19040 2,160340 SflA SM SM 12.01 18"7 -2A.97 1, 4 0 7 4 34.03--8529 109.14 109.3 1,44 97,0 23.04 1,482,094 1.478,101 0.702 1.816 0.602 18.25 109.14 2,500.040 2.106W0 0 S SM SM 1235 10ow 26.97 I09.54 109.87 7.358 34.33 8,500 3 11.44 97.08 23.04 :1482.094 1,476,101 0.7.2 1.61 8.602. 5 825 109.14 2,900,040 21,06 M SMA SA 1235 16A8.7 26.97 109.14 109.87 7.358 34.33 8,100 3 11.44 97.06 23.04 ,482094 1479,105 0.702 1.818 0.602 1825 109.14 ,180 SM SA 12.1 1x 26.97' 109.14 109.67 7.358 34.33 -8.100 3 11.44 97.06 CaWIs-O-44-3 Att2 1S SC Coo doos,lin,o42460YU j.&CodooW319208"24 5 3/2W2008,12:49 PM Cak 17321-01-PM-44-3.

Shutdown Cooling Tim2 Attachmen 2, Page 44 Tm.- St-p O(D) IP(0 0) IP*'p) IP44 TotW 0 1dTrc 5M0CI1I4 Tube I J i I hrs hs I mmStdhln den/hr 23.04 0.00 24.956 01 1.5 -26.975 -0.52 -0A7 23.04 0.0 24956 1.5 -26.975 -0.52 -0.47 23.04 000 24956 1.5 -26.975 -0.52 -0.47 23.04' 090 24.9 0 1.5 -26.975" -0.52 -0.47 23.04 0.00 24.95 0 1.5 -26.975 -0.52 -0.47 23.04 0.00 24.956 0 1.5 -26.975 -0.52 -0.47 23.04 0M0 24.954 o 1.5 -26.975 -0.52 -0.47 23.04 0.0 24.956 0 1.5 -26.975 -0.52 -0.47 23.04 0.00 24.95 0 1.5 -26.975 -0.52 -0.47 23.04 0M0 24.956 0 1.5 -26.975 -0.52 .047 23.04 9.9 24.9W 0 1.5 -26.975 -0.52 -0.47 23.04 0,00 24.M956 t0 15 -26.975 -0.52 -0.47 23.04 0.90 24.956 ___ __ .26.97;5 -0.52 -.4A7 23.04 04.00 24.956 0 1.5 -26.975 -0.52 -0.47 23.04" 0.90 24.956 __ 0__ 10 -26.975 -.52 -0.47 23.04 0.00 24.96 1.5 -26.975 -0.52 -0.47 23.04 0.00 24.956 1.5 -26.975 -0.52 -0.47 23.04 0.00 24.956 026.975 -0.2 -0.47 23.04 0.00i 24.956 1.5 -26.975 -0.52 -047 23.044 O0 24.956 0 1.5 -26.975' -0.52 -0.47 23.04 0.00 24.956 0 15 -26.975 .0.52 -0.47 23.04 0.00 24.956 0 1 .5 -26.975 -0.52 -0.47 23.04 0.00 24.954 0 1 -26.975 -0.52 -0.47 23.04 0.00 24.956 0 1.5 -26.975, -0.52 -0.47 23.04 0.00 24.956 0 1.5 -26.975 -0.52 -0.47 23.04 0.00 24. 0 1 975 -052 -0.47 23.04 0.00 24.956 -26.975 -0.5 -0.47 23.04' 0.00 24.9 0 1 .5 -26.975ý -0.52 -0.47 23.04 0.00 24.956 01 iS -26.975 -0.52 -0.47 23.04 0.00 24.956 0 1.5 -26.975 -0.52 -0.47 23.04 0.00. 24.956 0 1.5 -26.975 -0.52 -0.47 23.04 0.00 24.956 0 .5 -26.975 -0.52 -0.47 23.04 0.00 24."G 0 .5 -.975' -0.52 -0.47 23.04 0.00 24.56 0 1.5 -26.975 -0.52 -0.47 23.04ý 0.00 .24.956 0 1.5 -26.975 -0.52 -0.47 23.04 0.56 2496, 0 1.5 -26.975 -0.52 -0.47 23.04 0.00 24.956 0 1.5 -26.975 -0.52 -0.47 23.04 0.56 24.M 0 1.5 -26.975 -0.52 -0.47 23.04 0.500 24.6 0 1.5 .26975 -0.52 -0.47 23.04 0.00 24.956 0 1.5 -26.975 -0.52 -0.47 23.04 0.00 24.956 0 1.5 -2.975 -0.52 -0.47 23.04 0. 00 24.956 ,0 iS -26.975, -0.52 -0.47 23.04 0.00 24.956 0 1.5 -26.975 -0.52 -0.47 2304 0.00 24.956 0 .5 -26.975: -0.52 -0.47 23.04 0.00 24.956 0 1.5 -26.975 -0.52 -0.47 23.04 0.00 24.956 0 1.5 -26.975 -0.52 -0.47 23.04 0.00 24.956 0 1.5 -26.975 -0.52 -0.47 23.041 0.00 24.956 0 1 :91 -. -047 23.04 0.00 24.956 0-26.975 -0.52 -0.47 23.04 0.00 24.956 0 1.5 -26.975 .0.52 -0.47 23.04 0.00 24956 0 1.5 -26.975 -0.52 -0.47 23.04 0.00 24.956 0 1.5 -26.975 -0.52 -0.47 23.04 0.00 24.956 0 1.5 -26.975 -0.52 -0.47 23.04 0.00 24.956 1.5 -26.975 -0.52 -0.47 230I4 0 .1 -695 -il 0. pm'3000 36000 3000 3MO 3000 3000 3MO 3000 3000 3000 3000 3000 3M00 3000 3000 3000 3000 3000 3000 3000 3000 300O 3000 3000 3000 3M00 3000 3O0 3000 3O0 3O20 3000 3000 3OO0 300 3200 3000 3OOO 3000 30O0 3000 3M00 3000 3O40 3000 3oO0 3O0 3000 3000 3=00 3000 3000 3000 300O Pi TO i *lt,o 0, gp.315 127.39 109.14 43"4 315 127.39 100.14 4M96 315 127.39 109.14 44 315 127.39 109.14 426 315 127.39 109.14 434 31S 127.39 109.14 49 315 127.32 109.14 436 315 127.39 109.14 43 315 127.39 109.14 4246 315 127.39 109.14 4W 315 127.39 109.14 434 315 127.39 109.14 4M 315 127.39 109.14 @96 315 127.39 109,14 429 315 127.39 109.14 4346 315 127.39 109.14 4345 315 127.39 109.14 434 315 127.39 109.14 4346 315 127,39 109.14 44 315 127.39 109.14 4346 315 127.39 109.14 4248 315 127.39 109.14 4346 315 127.39 109.14 434 315 127.39 log0.14 43 315 127.39 109.14 436 315 127.39 109.14 426 315 127.39 100.14 315 127.U6 109.14 AM 315 127.39 109.14 4M 315 127.39 109.14 46 315 127.39 109.14 4M 315 127.39 109.14 426 315 127.39 109.14 46 315 127.39 109.14 46 315 127.39 109.14 424 315 127.39 109.14 4M 315 127.39 109. 14 42 315 127.39 109.14 4366 315 127.39 109.14 46 315 127.39 109.14 426 315 127.39 109.14 420 315 127.39 109.14 420 315 127.39 100.14 4M4 315 127.39 109.14 46 315 127.39 109.14 41M 315 127.39 109.14 4M4 315 127.39 109.14 43M 315 127.63 109.14 4346 315 127.39 109.14 434 315 127.39 109.14 416 315 127.39 109.14 4346 315 127.39 109.14 424 315 127.39 109.14 4N6 315 127.39 100.14 436 315 127.26 109.14 4M I I 951 46 16 66 65 69 99 99 66 U 96 U'9 66 16 O6 16 46 96 66*6 U 96 16 96 U 96 66 96 U U U U 96 69 69'S U 48 96 O6 U 69 46 69 48 96 66 96 69 69 69 96 96 48 TsO. Ts1o 67*J 100.67 WAS loWts WAJI famlr im tlow 67,* 196*7t SIAS l09.3 WA01 WAS SIM 196.67 WAS 106.87 WA,0 IN.r?WA* WASN 109.8 7*M 109.67 67* 109A7 WASi lao.8 W7M 196.A7 617** towr WASlM I 09A 67* tow W'M 109-17 27M 109.67 WAS 106.67 67* 109w 17* 1 ow8 61M 106.67 VIM6 109.87 67*S 10963 97* 109.w WM* tow.9 67*G 189V.0 97* 106.67 WAS 1063 67*6 106.67 ti* to ,W WAS 1 ow0 Calo-POJ44-3 AV-ISOCC.oldo...Th..42460,I.

CooWdossq6 32J914P 3rW0, 12:49 PM Celc 17321"01-PM-44-3, ShutkoM Cooing Time Attachment 2, Page 45 Tim 23.04 23.04 23.04 23.04 23.04 23.04 i3.04 23.04 23.04 23.04 23.04 23.04 23.04 23.04 23.04 23.04 23.04 23.04 23.04 23.04 23.04 23.04 23.N4 23.04 23.04 23.04 23.04 23.04 23.04 23.04 23.04 23.04 23.04 23.04 23.04 23.04 23.04 23.04 23.04 23.04 23.04 23.04 23.04 23.04 23.04 23.04 23.04 23.04 23.04 23.04 23.04 23.04 23.04 23.04 23.04 ITb I I II Ti...e 11627 11827 11827 118.27 11827 11827 11827 11827 11827 11827 11827 11627 11827 11827 11827 11827 11827 11827 11827 11827 11827 11827 11827 11827 11827 11827 11827 11827 11827 11827 11827 11827 11627 11827 11827 11827 11827 11827 11827 11827 11827 11827 11827 11827 11827 11827 11827 11827 11827 11827 11827 11827 11827 11827 11827 rho I Cp -I 81.08 0.8973 3.51E-04.1.58 0.8873 3.81E-04 61.59 8.8973 3.8tE-04 61.09 0.8873 3,81E-04 61.59 0.9973 3.81E-04 61.59 0.8873 3,81E-04 81.00 0.8973 3.81E-04 61.08 0.8973 3.81E-04 81.88 0.9173 3.81E-04 61.59 0.9973 3.818-04 61.59 0.9"73 3.51E-04 61.59 0.9973 3.81E-04 61.59 0.8873 3.81E-04 61.59 0.9973 3.81E-04 61.59 0.8073 3.81E-04 61.59 0.0073 3.81E-04 61.59 0.8873 3.81E-04 61.59 8.8873 3.81E-04 61.59 0.8873 3.81E-04 61.59 0.8873 3.81E-04 81.08 0.8873 3.81E-04 61.59 0.8873 3.81E-04 61.59 0.9973 3.618-04 61.59 0.8873 3.81E-04 61.59 0.8873 3.81E-04 61.59 0.8073 3.81E-04 61.59 0.8873 3.51E-04 61.59 0.9973 3.81E-04 61.59 0."973 3.81E-04 61.59 0.9973 3.81E-04 61.59 0.8973 3.81E-04 61.59 .0873 3.51E-04 61.59 0.9973 3.81E-04 61.58 09873 3.81E-04 61.59 0.9973 3A1E-04 61.59 0.9873 3.81E-04 61.59 0.9973 3.81E-04 61.59 0.9973 3.81E-04 S1. 0.8873 3.81E-04 81.08 0.9973 3.81E-04 61.59 0.9973 3.81E-04 61.59 0.8973 3.81E-04 61.59 0.9973 3.81E-04 61.59 0.9973 3.81E-04 61.59 0.9873 3.81E-04 61.59 0.9973 3.A1E-04 61.59 0.9873 3.818-04 61.59 0.9973 3.818E-04 61.59 0.0873 3.81E-04 61.59 0.9173 3.81E-04 61.59 0.9973 3.81E-04 61.09 0.9973 3.81E-04 61.09 0.8973 3.81E-04 61.59 0.8673 3A1E-04 61.59 0.9973 3.81E-04 k Vel 0.369 0.609 0,369 5.609 0.369 5.009 0.369 50609 0.369 5.609 0.369 0.609 0.369 5.600 0,360 509 0369 5.609 0.309 5.609 0.369 5.609 0.369 5.609 0.369) 3.69 0.369 5.6W9 0.369 5.609 0.369 069 0.369 5.609 0.369 5.609 0.360 5.609 0.369 5.609 0.369 5.609 0.369 5.609 0.369 5.609 0.369 5.609 0.369 5.609 0,360 5.609 0.369 5.609 0.369 5.609 0.369 5.609 0.389 5.009 0.369 5.609 0,369 5.609 0.369 5.609 0369 5.609 0.369 0.609 0.369 5.609 0.369 5.609 0.369 5.609 0.369 5.609 0.364 5.009 0.369 5.609 0.369 5.609 0369 5.609 0.369 5.609 0.369 5.609 0.369 5.609 0.369 5.609 0.368 5.609 0.369 SAM0 0.369 5.609 0.369 5.609 0.369 5.609 0.369 S.409 0.369 5.609 i I Re P.hi iB k ve1 49268 3.7031 1498 103.46 01.M6 0. 4AI.-04 0AM 5.6 49.268 3.7031 1498 346 6189 0.SI7M 4A4 026" 60 48.266 37031 149 10346 01.8 0SIM 4.4$40 04 8" 3 48266 3.7031 1498 1"9.46 6IM8 0.8A?? 4.4 1rE04 0263 U5 48.366 3.7031 1489 103.46 01t.80 0.8677 4.4*41 028 3.66 49.268 3.7031 1498 103M4 81.81 0.807? 4.45E04 8263 36 49.268 3.7031 1498 1N.46 8.6 4.495-04 0& 3.62 49268 3.7031 1498 10.46 6118 0I 77 4.41E-04 06M3 3.65 48268 3.7031 1498 14 0I1.0 0.977 4.4AE04 023U 3.662 49.268 3.7031 149 103449 01SIM 0MT? 4.41F04 82S .6 49268 3.7031 149 863. 60.68 8 7 4.41E04 02.33 3.65M 49266 3.7031 1498 103.46 61.06 0.W8'7 4.41604 0am63 3 49268 3.7031 1488 103.48 6101% 0.997 4.41E04 06 3.5 49268 3.7031 1498 1034 61.965 O87 4A49E04 0.26 3.662 498268 3.7031 1498 1084 S.M 0.31177 4A41504 006 am 49.268 3.7031 1498 13 6 .09 66T? 4A.E-04 a" sign 49.268 3.7031 1498 103.46 S1I.6 0*? 4.41504 0263 3SA 48268 3.7031 1498 103.46 61.5 0.S 4.41E904 0AS 3.652 48260 3.7031 1498 105.40 SIA 06T6 4.41E,04 OA6 SAW 492S8 3.7031 149S 103.46 6118 0667 4.4AE04 0.63 3612 48268 3.7031 1498 903.46 01.65 0.667 4.49E06 O26 3.652 498268 3.7031 149 9036 61.056 06W7 4.IE41 4 O.A 3.6W 49268 3.7031 1489 903.4 6IJ. 01 4.49E.04 0.33 SAW 49,260 3.7031 1498 903.46 61.95 "T?? 4A41E94 063 SAW 49268 3.7031 1498 103.4 61.95 0 *M7 4A4E-04 O.36 3 62 49268 3.7031 1494 8 108.48 3 6 .5 09? 4.41E44 0265 3.652 48288 3.7031 1498 903.45 69.68 017 4A4i504 0.36 3.4W.268 3.7031 149 903,45 01.95 016?? 4,41504 026 3.052 49268 3.7031 148S 10.46 S1* 0.77 4.415-04 0.363 3 498268 3.7031 1498 103.46 SIM 0M? 4.4115-04 63 SAW52 49268 3.7031 1498 103L46 65.65 Ni 677 4.411504 063 3=49,268 3.7031 149 10 5.46 61.66 01 ?? 4.41 044 0A 3 3 18 49826 3.7031 1498 91083 61I6 6." 4.4154 026 3.652 48C26 3.7031 1498 903,48 S96 6.1667 4.41E04 0263 3.62 498268 3.7031 1498 1934 0191 0187 4.41E44 0261 S3 49.269 3.7031 1498 103.45 6118 0 4.41504 0AS 3mA 498268 3.7031 1498 103.46 1i. 0.077 4.41E04 063 S 3S 498268 3.7031 1498 903.4 61.66 0AS" 4.41504 0.33 3 49269 3.7031 1498 103,46 61SM 0* 4.48544 020 3m 48269 3.7031 1498 1i03.45 6 1095 0.5? 4AE504 063 3m523.7031 1498 903.46 SIM 0*? 4A41r04 6263 3m 498268 3.7031 1498 103.46 9M1 0*7 4.41904 0.363 S3 49288 3.7031 1498 903.46 0S1M OAT 4.41E04 0AS 3m 49.26 3.7031 1498 103.46 6109.66 0 07 4..49I ,044 A0S6 3 49268 3.7031 1498 103.46 6,1.66 A077 4.41-04 02633 3m62 49828 3.7031 1498 103.4 61.66 06 7 4.41E44 026 3M 49828 3.7031 1498 103.46 61.6 0 4.4904 026 3m6 48.288 3.7031 1498 160A.4 61.1 0"66 4A4E504 0263 3m 49268 3.7031 1498 103.46 61.6 8d 6?? 4.41E04 0263 3 m 49828 3.7031 1498 10346 61696 0M ?? 4 026 3 m6 49266 3.7031 1498 16 .4 61.96 0??77 4.41E04 026 3m 49.260 3.7031 1498 1. 6 611" 0.967 4.41 04 0363 3,62 49268 3.7031 1498 103.46 6.5 OM" 4. 4149E04 0t 3m.66 48288 3.7031 1489 1.46 0 4AI4E44 *MS 3 498268 3.7031 1498 983.46 6S.I6 o0.657 4.41 E-04 0.63 3 I I I I I 4 0 Re Pr 110*4 463 190008 4531.10,60 4A,3 IOS"e 4,AS 1104,49 4283 190140 4266 110,40 42603 110* 4 -64 53 110141 4263 110,646 4-53 190*80 4253r 110.40 4M53 IIOA 4 AM 910*46 42653 15*4 4.23 11,0614 42613 19* 4266 19I0*5" 4.353 110,840 42663 110,*40 4-853 990*4 4353 110.646 4-353 1100*46 4265 110*5 45S3 090*804-253 110,649 4AW 9100*5 42692 190*80 40353 110*5423153 110,64S 4266 110*80 4,3663 1190*80 4253 110*46 4M53 190*80 CASS 110.*0 42053 110,640 428653 110,680 42353 9 10*840 4.3553 110*80 4.3533 110*649 4253 110, 542 543M 110*80 4,3653 910,*49 4.536 910*AU404253 990*0 42A53 990*50 4.S365 rBb.or- km-t.12-F)! 118 8.755 118 8.755 51t" 8.755 i998 8.75t 1166 8.755 91t6 8.755 1986 8.755 1i18 8.78 198 8.755 81101 8.755 916 8.755 1196 8.755 01t 8.755 1169 8.759 I060 8.755 1198 8.755 5186 8.755 16t 8.755 11t 8.758 5966 8.755 9986 8.75 1986 8.755 118 8.755 9988 8.755 1986 8.755 186 8.755 1186 81755 1186 8.7S5 1599 8.755 1966 6.755 1500 8.755 1199 8.755 119 6.755 1t8 8.755 19t8 8.755 1196 8.755 1190 8.755 119 8.755 16le 8.755 1190 0.755 1111 83755 1195 8.755 1t6" 8.755 1588 8.755 1160 8.755 119% 8.755 1i9 8.755 1586 8.755 116 8.755 11" 8.755 15I6 8.755 10 8.755 1tl0 8.765 Uadty 475.91 475.91 475.91 475.91 475.91 475.91 475.91 475.91 475.91 475.91 475.91 475.91 475.91 475.91 475.91 475.91 475.91 475.91 475.91 475.91 475.91 475.91 475.91 475.91 475.91 475.91 475.91 475.9i 475.91 475.91 475.91 475.91 475.91 475.89 475.91 475.91 475.91 475.91 475.91 475.81 475.91 475.91 475.91 475.91 475.91 475.91 475.91 475.91 475.91 475.91 475.91 475.91 475.91 475.91 475.91 C.IoPI..4-3 A992-I.SOCCootdomorl-rr42460.4o, Cooldoorr6 3210 29P 3/29/20, 12:49 PM I C*. 17321-01-PM-44-3, Shutdown Cooing T.me Afttchmen 2, Page 46 I I I I I I rh.23.0 23A04 23.04 23104 23.04 23.04 23.04 23.04 23.04 23.*04 23.04 23.04 23.04 23.0-4 23.04 23.04 23.04 23.04 23.04 23.04 23.04 23.04 23.0 23.04 23 .0 23.04 23.04 23.'04 23.04 23.04 23.W4 23,.23.04 23.04 23.04 23.0 23.0 23.04 23 .04 23.04 23.0 23.04 23.04 23.0 23.04 23.04 23.04 23.0 23.04 23.04 23.04 23.04 23.04 23.04 23.0 Sac HX It. $wde I 0 lOXudml"d SDC DuLy TIOt Ts,o Iterate a-1 CCW Durty Toldw CCWaccWIUcc Dt ofm F.P., HX mm.80bft w.88.0,t opm ffnauf ccw Tenrp T.,o w5 wcP 1482.094 1478,101 1.482.094 1,478101 1t482.094 1.478,101 1,482.094 1,478,101 1,482,094 1.478,101 1.492.094 1,478,101 1,482,094 1.478,101 1.482,084 1,478I101 1.482.094 1.478,101 1.482.094 1,478,101 1482,084 1,478.101 1482,04 1478:101 1.482.094 1478101 1,482.094 1,478,101 1,482.094 1478101 1480 ,4 1:478:101 1,462,084 1478,101 1.482.094 1.478,101 1.482,094 1,478,101 1,4832094 1,478,101 1.482.094 1,478,101 1,482,094 1,478,101 14832094 1,478,101 14823084 1.478,101 1,482,094 1,478,101 1.482,094 1.478,101 1 482,094 1,478,101 1482,094 1.478,101 1,4832094 1478,101 1,482,094 1478.101 1483084 1478 101 1482094 1478101 1,482,094 1478,101 1,482,094 1,478.101 1,482,094 1,478.101 1.4832094 1,478,101 1,483,084 1.4781t01 1,482.094 1,478,101 1,482094 1478101 1,482,094 1.478.101 1.482094 1 4768101 1,4832094 1:478,101 1,482,094 1.478,101 1,4832094 1,478,101 1,4832094 1,478,101 1.482,094 1,478.101 1,482,094 1.478,101 1.4823094 1.478.101 1,482,094 1.478.101 1.482.094 1,478.101 1,482.094 1.478.101 1,482.094 1.478.101 1,492.094 1.478,101 Cr 0 ,702 0.702 0.702 0.702 0.702 0.702 0.702 0.702 0.702 0.702 0.702 0.702 0.702 0.702 0.702 0.702 0.702 0.702 0.702 0.702 0.702 0.702 0.702 0.702 0.702 07302 0.702 0.702 0.702 0.702 0.702 0.702 0.702 0.702 0.702 0.702 0.702 0.702 0.702 0.702 0.702 0.702 0.702 0.702 0.702 0.702 0.702 0.702 0,702 0.702 0.702 0.702 0.702 0.702 0.702 NTU pffectvnelo DT 7To W WCp Cr 1.616 0.602 1825 109.14 2,186,40 2.0,046 OA 1s18 0.602 1825 109.14 2,1640 2,181,046 OA 1616 0.602 1825 109.14 2,16108,0 0" is16 0.602 1825 109.14 2.0840 2,IM0644 OVA 1.16 0402 1825 108.14 2,186*40 2,105,046 MVA 1.616 0.602 1825 109.14 2,109.40 2.051,046 OWA 1.616 0.602 1825 109.14 2,10940 2,1015,04 OA 1416 0.802 1829 109.14 Z109,840 2,180,049 OVA 1.818 0402 18,25 108.14 2,106*40 2,06. V I416 0.602 18.25 109.14 ,19,648 2,18,049 ONA I1A: 0402 18,2 108.14 2.1,0.A 2.105.49 O.1.16 0402 1825 109.14 2,108,M4 2.100 MOA 1.16 0.602 1825 109.14 2,18 2,185,089 SOA 1616 0402 1825 108.14 2,100,540 2,105,0* OVA Is1 0402 1825 109.14 2,109840M 2,.06*44 OWA 1418 0402 1825 109.14 2,1 14,0 2,'1066 MVA 161 0402 1825 109.14 2,106M4 2,05.046 1is1 0.602 1825 109.14 2,105,049 MA 1418 0.602 1825 109.14 2,100,640 2105,04 ORA 1Me1 04602 1825 109.14 2,106,086 OVA 1418 0402 1825 109.14 2,10,686 2,106,046 MA Is1 0402 1825 109.14 2109A41 2,1006,6 POA 1.816 0402 1825 109.14 2,16.40 2,1i8,6 OA 1e18 04602 1825 109.14 2,180MG 2.105.0 I1Ala 0.602 1825 109.14 2,109,40 2,106,00 OVA 1s18 0402 1825 108.14 2,186.048 OWA i018 0402 1825 109.14 2,000*40 206,086 IOVA Is1l 0402 1825 108.14 2,1098M40 2,1054 OWA I41e 0402 1825 108.14 4100.840 2,1056,086 OVA 1.16 0.602 1825 109.14 2,10840 2,186,0* MOA 1e18 8402 1825 109.14 2,100,808 Z,105,68 OWA Is14 0.602 1825 108.14 2,100,0 2,105" ONA Is14 0.602 1825 109.14 2,109,0 2,10049 OWA 181 0.602 1825 109.14 2,186,0* 2,1050,46 OVA iA148 0.602 182 108.14 Z,1069110 2,105,616 MA 1418 0402 1825 108.14 2,8,4 2 0 1A18 0402 1825 109.14 2.09:MB Z,05.0* OWA 14s1 8402 18.25 109.14 ZIDOA" 2,106,8 OWA Is18 0.602 1825 109.14 2,010940 2,10580 OVA is1l 0.602 1825 108.14 2,1 06,08 OVA 1418 0.602 1825 109.14 2,16*4 2,105 OA 14618 0.602 1825 109.14 2,101,086 2,000,0 OVA 14s1 0402 1825 109.14 2,10640 2.10M,0 OWA I416 0402 1825 109.14 2,106,080 2,05064 OWA 1416 0402 1825 109.14 2,100.40 2,18S6,0 OWA I148 0402 1825 109.14 ZI,0840 2,1t05A MA 1.616 04602 1825 109.14 2,109,040 2,105*4 V.A 14s1 0.602 1825 109.14 2,186,040 210I,406 oV 1416 0.402 1825 109.14 2,1061,40 2,185.049 OVA Is18 0402 1825 109.14 2,1060N 2,1 W068 OA Is18 0.802 1825 109.14 2,109,5 2,105M OA 1.616 0.02 1825 109.14 2,186,40 2,81804 OVA 1416 0.602 1825 109.14 2.1060.G 2,105,646 OA 1.616 04602 1825 109.14 2,100.&40 2,108,046 OVA 1,418 04602 1825 1098. 14 2,106MB 2.10:. OVA NTU DTs 0 Ts.o OWA OAl 12.A1 186.7 0" A 12i1 lom6,6 OVA OVA 1248 106.67 OVA OVA 12s1 08647 OVA OVA 12i8t I86os OVA W" 12,61 186167 10"A -12,1 10W1 OVA OVA 12,A1 logo OVA OV 12,A0 10567 VA OVA 12.81 106147 INA OA 1241 106.87 OVA OA 12,81 10647 OVA OVA 1241 106.67 OVA OVA 12A118667 OVA OVA 12A*1low OVA OVA 1281 low7 ONA OVA 12A4 l6,4a?A OVA 12A1 109,7 OVA OVA 1221 109,87 oVA OVA 12.81180017 OVA OVA 121 1186,7 OVA OVA 12.*11086*

OVA OVWA 1241 106,67 OVA OVA 12A1 109,67 ONA OVA 12I NOW, OVA OVA 12211007 OV Oa 12.61 10047 OVA OVA 12*11 .86 OVA OVA 12,60 106.7 OVA OVA 12.81 10.86 OMA OVA 12A, 180*-" OVA 12A M8617 MVA -W 12AI 100*7 OVA OVA 12-*1 106*7 OVA Oam 12A 180.67 MVA OVA 12st 100*7 OVA Oa" 12.81 1Wei OVA OVA 1240 100.2 OVA OVA 12A1 109.97 OVA MVA 1241 low6 OVA OVA 12*1106.67 Oa" OVA 1240 1801,07 OVA oVA i2*48low OVA OVA Mal*1096 OVA OVA 12*I1 086*7 OVA OVA 12*1 10W,8 OVA Oa" 12-*1 lowS OVA OVA 12.61 1096*OVA OVA 12.81 109.8#NA OVA 12AI1086W OVA OVA 12.31106.67 OVA OVMA 12A1 10W.8 I ftf' 26.97 109.14 109.87 7.358 34.33 8,100 3 11.44 97.06 26.97 109.14 108.87 7.359 34.33 8,100 3 11.44 97.06 264.7 109.14 109.87 7.358 34.33 8,100 3 11.44 97.06 26.87 109.14 109.87 7.358 34.33 8,100 3 11.44 97.06 26.97 109.14 108.87 7.358 34.33 8.100 3 11.44 97.0 26.97' 109.14 109.87 7.358 34.33 8,100 3 11.44 97.06 26.97 109.14 108.87 7.358 34.33 8.100 3 11.44 97.06 26.97 109.14 109.87 7.358 34.33 8,100 3 11.44 97.08 26.97 109.14 108.87 7.358 34.33 8.100 3 11.44 97.08 26.97 109.14 108.87 7.358 34.33 8,100 3 11.44 97.08 26.97 109.14 108.87 7.358 34.33 8,100 3 11.44 97.06 26,97 109.14 108.87 7.358 34.33 8.100 3 11.44 97.06 28.97, 108.1 109.87 7.358 34.33 8,100 3 11." 97.06 26.871 108 104 7.358 34.33 8.100 3 11.44 97.06 26.97 109.14 10887 7.358 34.33 8100 3 11.44 97.06 26.97 109.14 10.7 7.358 34.33 8,100 3 11.44 97.06 26.97 109.14 108.87 7.358 34.33 8.100 3 11.44 97.08 26.97 104.14 1.87 7.358 34.33 8,100 3 1144 97.06 26.971 109.14 108.87 7.358 34.33 8.109 3 11.44 97.08 26,971 109.14 108.87 7.358 34.33 :8,1800' 3 11.44 97.06 28.978 109.14 109.7 7.358 34.33 8,100 3 11.44 97.08 26.97 109.14 108.87 7.358 34.33 8,100 3 11.44 897.0 26.97 109.14 108.87 7.358 34.33 8,100 3 11.44 97.06 26.97 10914 10887 7.358 34.33 8,100 3 11.44 97.06 26.87, 109.14 108.87 73 34,43 8,100 , 3 11.44 97.06 26.97 109.14 108.87 7.358 34.33 9.100 3 11.44 97.06 26.97 109.14 109.87 7.358 34.33 9.100 3 Wl.44 97.06 26.97 109.14 109.87 7.3S8 34.33 8,100 3 11.44 97.08 26.97 109.14 19877.3 34.33 .1008 3 11.44 97.06 26.97 109.14 1087 7.358 34.33 8,100 3 11.44 87.08 26.97: 109.14 108.87 7" 333 0.108 3 11.44 87.06 26.97 109.14 1087 7.358 34.33 8,108 3 11.44 97.06 26.97 109.14 108,67 7.358 34.33 8,108 3 11.44 97.06 26.97 109.14 10.87 7.38 34.33 8,100 3 11.44" 97.06 26.97 109.14 108.87 7.358 34.33 8,100 3 11.44 87.08 26.97 109.14 108.87 7.358 34.33 8,100 3 11.44 97.06 26.97 109.14 108.87 7.35 34.33 8,108 3 11.44 97.06 26.97 109.14 10.7 7.358 34.33 8.100O 3 11.44 97.06 26.97, 100.14 10.7 7.358 34.33 9 ,0 1.4"f7.06 26.97j 109.14 7.358 34.33 P 8.108 3 11.44 87.06109.14 10.7 7.358 34.33 8,1010 3 1 1."4 97.06 26.97" 1019.14 7.e7 358 34:33 8.1010 " 3 11.44 + 97.05 26.97 109.14 108.87 7.358 34.33 8,180 3 11.44 97.06 26.97 109.14 109.97 7.358 34.33 8.100 3 11.44 97.06 26.7919.1 7.358 34.33 8.100 3 11."4 26.97 109. 114 09.7 7.358, 34.33 8,0 3 1.4976 26,97-: 1091 738 433 810 i" i .4 97r.05 2.7 109.14 WW7.358 34.033 810. 14 26.97" 109.14 ID.7 7.358 34.33) 8100 3 11.:44 "9"7.06 26.97 109.14 1.7 7.358 X 433 8.100 3 11,44 97.06 26A97 109.14 10.7 7.358 34.33 8,100 3 11.44 97.06 26.97 109.14 10.7 7358 34.33 6:;100 3 11."4 97.06 26.97; 109.14 tlw7.358 813 11.44 i 97.06 26.97 109.14 10.7 7.358 34.33 ' ,00 + 3 tl1." 97,06 I Csolý-P44-3 At82-1_SOCý_CooldiowTirm42490j4..

Cooldow,6 3220 28P 3/29f2M0, 12:49 PM Calc 17321-01-PM-44-3, Shutdown Cooling Time Attachment 2, Page 47 Shutdown Cooling Temperature Transient with 90F River Water SDC Hx Fouling = 0. hr-F-sqft/Btu, CCW Hx Fouling = 0.004 hr-F-sqft/Btu 370 330 290 250 U-E 210 0 a.E I--170 130 90 50 170 160 150 140 u.nI-1..130 a.E i--120 o-Pri Cool Temp-SDC Return Temp-CCW Temp 110 100 T 90 0 5 10 15 20 25 Time, hours Calc-PM-44-3 Att2-1_SDC_CooldownTime4246Q.xls; Chart6 3/29/2008, 12:49 PM Calc 173211-P0.1-44-3.

Shutdmo" Cooling Time Attachment 2, Page 48 Shutdown Cooling Temperature Transient with 9HF River Water SDC Hx Fouling

  • 0.00415 hr-F-.qfliMtu, CCW Hx Fouling = 0.0015 hr-F-sqft/Btu Init4 RC Tenmpertuare!

F 3 SDC HX CCWHX Inirdl Time 1 _2754 Shel Film Mu _ _ 0.09751÷Rr-S Tempraue Ot~er 9 ho-r 1 150.13 IShe FA. R powe 0.61709 Time aefT ip to 13OF Pdrnwy Coolant T"e 14.95 Inii CCWo SOC -t" 424 0 She Film Pr poer 0.333 Tim after SDC 9n959.o to 130F PC Temp 13.0 CCW Flow Step Temp 275 Fong ( UM $0s0) 0.00418 0.0018 D0 y aet equs W. at 9OF iver tempy 0.00 2 RX Temp 2 0.00418 0.004 Time Step 0(D) P) Psdc Totel 0 dTM HT h t tee sm40 degFAr 0. Opm Pi Tt. To 0, op. TO T,.2.00" 0.1 54.9661 19.5 -132.55 -M8.06 -52.80 1 3000 315 350.00 253.61 434 16 106,410 171M 2.10 0.10 54.107 19.5 -129.83 -56.22 -01.7: 1 3000 315 344.72 250.50 416 96 106 1 2.20 0.10 53.300 19.5 -12720 -54.40 -49A5 1 3000 315 339.61 247.47 436 in 107.79 116*3 2.30 0.10 52.540 19.5 -124.65 -52.61 47.83 1 3000 315 334.66 244.54 4M16 006 17.44 167A 2.40 0.10 51.822 19.5 -122.18 -50.86 -.4624 1 3000 31 329268 241.70 431 "6 107r.0 IN 2.50 0.10 51.143 19.5 -119.80 .49.15 -44.69 I 3000 315 32526 238.95 431 98 1080.4 164.13 2.60 0.10 50.500 19.5 -117.49 .47.49 43.17 1 3000 315 320.79 23628 431 6 009S 168.2.70 0.10 49.8889 19.5 -1153_6 45.87 41.70 1 3000 315 316.47 233.69 4236 16 10.27 101.2.80 0.10 49.305 19.5 -113.11 -44.30 .40289 1 3000 315 312.30 231.19 4246 16 805 0 Q 160" 2.90 0.10 48.749 19.5 -111.03" -42.78 -38.89 1 3000 315 308.27 228.78 4206 96 105.74 156.61 3.00 0.10 48.218 19.5 -109.02 .41.30 -37. ; -1 3000 315 304.30 226.43 43 96 106 18rI7M 3.10 0.10' 47.710 19.5 -107.08 -39.87 -3624 3000 315 300.63 224.17 4366 96 1025 186.41 3.20 0.10 47.223 19.5 -1090 -38.49 -34.9 1 3000 315 297.01 2212M 43 06 18.01 150`3.30. 0.10 44.796 19.5 -103.40 -37.14 -33370 1 3000 315 293.51 219.86 46 16 10476" U159 3.408 `1 48307 19.5 -101.65 -35.84 -32.58 1 3000 315 290.13 217.82 431 0 10.60 10311 3.50 9.10 45.576 19.5 -99.97 -34.59 -31.4- 1 3000 315 286,87 215.94 4M 05 104.36 1AI 3.60 9.16 45.460 19.5 -98.34 -33.381 -1 3000 315 283.73 213.93 42436 6 10418 1M1.10 3.70 9.16 45.059 19.5 .96.77 -32.21 -2929-28 -3000 315 200.69 212.08 4246 86 0.6 185.14 3.80 0.10 44.673 19.5 -9526 -31.08 -.20 1 3000 315 277.77 210.30 4M66 96 103.76 149A 3.900 0.10 44.300 19.5 -93.79 -30.00 -2727 1 3000 315 274.94 208.7 4N6 06 8103A. 14L 4.00 0Us. 43.939 16.5 -92.38 -28.95 -26.31 1 -3000 315 27221 206.90 4266 96 105.86 147AS 4.10 9.10 43.590 19.5 -91.02 -27.93 -2539 1 3000 315 269.58 20529 4346 16 103 22 IM 420÷ 0.80, 43.252 19.5 -89.71 -26.96 .24.51 1- 3000 315 267.04 203.74 4246 96 103 1456 4.30 0101 42.924 19.5 -98.44 -26.02 -23.65: 1 3000 315 264.59 20223 436 956 10z* 14680 4.40 6.80 42.609 19.5 -8722 .25.11 -22.83 i 3000 315 262.23 200.78 44 06 102.73 14433 4.50 9.86 42298 19.5 -86.04 -2424 -22.04 I 3000 315 259.94 199.33 43 96 108566 1 4.60 0910 41.999 19.5 -84.90 -23.40 -2127 1 3000 315 257.74 109.02 434 16 10A 143 4.70 90 41.708 19.5 -83.80 -22.59 -20.54 1 3000 315 255.61 196.71 46 06 168*8 4.809 Us0 41.425 19.5 -82.74 -21.81 -19.83 1 3000 315 253.56 195.44 43 956 10.80 141.1 4.90: 0.101 41.148 19.5 -81.70 .21.06 -19.14 1 3000 315 251.56 194.21 430A 16 102.2 0 5.01t 911 4!.880 19.5 -80.67 -20.30 -18.46 1 3000 315 249.56 192.87 4316 96 181* 140 5.11 0.11 40.567 19.5 -79.64 -19.55 -1777 1 3000 315 247.56 191.73 4M1 a6 101.76 136.7 S23 6.82 40.302 19.5 -78.60 -48.80 3000 315 24&.56 190.49 43 6 11 101.21 5.34 9,83 40.015 91.5 -77.57 -18.06 41 I 3000 315 243.56 18926 43 06 95 1* IO 1l 5.47 9833 39.725 19.5 -76.54 -17.31 -15.74 3004 315 241,56 180.01 43 96 10136 137A3 5.50 11.3' 39.431 19.5 -75500 -16.57 -15.07 1 3000 315 239.56 186.77 4M 96 10122 13720 5.72 9.84, 39.133 19.5 -74.47 -15.84 -1440 1 3000 315 237.56 185.53 4" 96 10.09 1l3L 5.860 S.1 38.831 19.5 -73.4 -15.11 -17 1 3000 310 235.56 18429 414 96 10.8M 135N 6.081 OA1 38.525 19.5 .72.41 -14.38 -13.07 1 3000 315 233.56 183.04 436 96 10.8 1.3 6.16 C.14 34.213 19.5 -71.37 -13.6 .4 1 3000 315 231.56 181.79 436 6 100 134 6.32 0`17 37..9i 19.5 -70.34 -12.94 -11.77 1 3000 385 220.56 180.55 4" 96 10O66 I 6.49 0.10 37.572 19.5 -69.31 -12.24 -11.12 1 3000 315 227.08 179.30 46 M 0 19 415 O 133A 6.67 6.88 37.242 19.5 -828 -11.53 -10.48 1 3000 315 225.56 178.05 43 M 661006 132 1 6.86 0`t0 38.905 19.5 -53.77 -51.14 -46.49 2 2000 315 223.56 167.43 354 "6 105.31 O&6.96 0100 30.733 19.5 -51.86 -47.48 -4316' 2 2000 315 218.91 154.87 3$4 96 164AN 137N 7.04 v.: 30.054 19.5 -50.09 -44.09 4008 2 2000 315 214.59 162.48 35 06 104MA 135642 7.16 0.10 36.3908 19.5 48.43 40.96 -3723 2 2000 315 210.58 160926 3 06 803.6 1347 726 9.0 36.236 19.5 46.90 -30.00 -34.60 2 2000 315 206.86 158.18 35 16 10.67 U 8 7.36 9.16 36.076 19.5 , 45.47 -30.37 -3215 2 2000 315 203.40 15625 324 6 10l 1 131A.7.8 6.t8* 35.19 19.5 4485 -3.98 -29.89' 2 2000 315 200.19 154.46 3U4 1 102 1361 7.56 0.10 35.765 1.5 -42.92 48.0 4416 2 2000 310 117.30 152.78 5 16 10.58 15*3 7.664 0.101 35.614 1.5 41.18 45.10 -41.009 2 2000 315 802.78 150.30 354 6 l0a06 12713 Caso-PM-44-3 Al2-.I_SOC_CoidownTime42468 .ds; 3029/2008,12:49 PM Calc 17321-01WM..44-3 Shutdown Coolng rim2 Aft.ch.Me 2, Page 49 Trme iTube h. rtavel hCp I mu k V, kRe f ft IOUV- kmtal U" 2.00 301.1 58.59 1.0281 123E44 0.396 5.609 138.149 1.1470 2291 45 61.37 CAM &3E G SA 1 9.432 169.81 2.10 297.61 56.78 10266 12544 01.396 5608 136269 1.1647 2281 13S.6s 41 .3011 6Di 3.11" 0.37 3.W 153,183 3SA6 1343 9.416 169.67 220 293.54 55.96 1.0253 127E-04 0.396 5608 134.429 1.1824 2271 136.15 65*6 0 3.56604 0.DAM 3*62 1an6I6I 3.686S 1330 9.400 169.53 2.30 268.60 56.13 1.0240 1.-28E-04 0.396 5108 132,628 1.200 2261 137.20 65.43 0.066 3.244 0.76 3.452 1566 3S0AM 11335 9.305 189.38 2.40 268.79 56.30 1.0228 1.31E44 0.386 5109 130.871 1.2184 2251 1 6 61"44 0A6 36a" 0.75 3M 3,11W 1332 9.370 169.24 2.50 292.10 56.46 1 .0217 1.33E-04 0.396 5.60 1289157 1236 2241 15364 WAS4 DAM663.26644 0.375 3.AW 146516 3A253 5338 9.356 169.10 2.60 278.53 56.61 1.0206 1.35E-04 0.396 5108 127.486 1.2547 2231 63656 WIAY *AM853. 04 0.374 3852 147578 13 1302 5 9.342 1680 2.70 275.08 56.76 1.0196 1.37604 0.396 5N08 125,859 12729 2221 IS33A 61* 0.1080 131144 0.374 3.42 146576 3.1TI U1323 98328 168.83 2.80 271.75 56.86 1.0186 1.40E-04 0.396 9W09 124,277 1.2911 2211 11&06 61.8 tom.683314 034 3862 14650 32014 1320 9.315 168.69 2.98 268.52 57.03 1.0178 1.42E-04 0.396 508 122.739 1.3003 2201 1325U 61.51 DAM 3.35E- 0.374 3.03 144015 3.347 1317 9.303 168.56 3.00 385.41 57.16 1.0169 1.44E-4 0.386 5.608 121245 1.3275 2191 13.654 65.62 066 3.37E44 0.373 3.852 143,775 32476 1314 9.291 168.43 3.10 362.40 57.28 1.0161 1.I4664 0.396 5108 119,795 13456 2182 13013 S5M 0*66 3.3904 0.373 3.562 143t 6 32615 1311 9.280 168.31 320 268.49 57.28 1.0154 1.466404 0.386 5.608 118388 1.3637 2172 130.1 61.56 0.67 3.42E104 0.373 3*AW 142,069 32856 1366 9.269 168.18 3.30 256.69 57.56 1.0147 1.50044 0.396 5.608 117,06 1.317 2163 1205 SIM 0*656 3.44E46 0.73 3*61 141,3 3.312 1365 9.358 168.06 3.40 253.97 57.65 1.0140 1.52E-04 0.366 508 116,703 A .389 2154 126.4 61.57 0.8665346644 0.373 SAW 140.4$3 L333? 1303 9.24 167.94 3.60 251.36 57.71 1.0134 1.54E604 0.36 5089 114,422 1.4172 214S 128.22 61.568 SA 3A764T 4 0.372 3A6 13$,732 33530 1301 9.239 167.82 3.60 248.83 57.81 1.0123 1.56E-04 0.3986 5.60 113.182 1.4340 2136 127.62 81.59 0.9088 3.49E504 OM 5 9.229 187.71 3.76 246.38 57.60 1.0123 1.56904 0.395 5.609 1195813 1.4623 2127 127.04 elm 0.6 3.51 04 0,3M SAW 138311 156 9.220 167.60 3.80 244.83 87.68 1.018 1.59E.04 0.39 9.608 158.620 1.4686 2119 123046 0J6 0.M 0.372 3 137,636 3.416 5294 9.21 1667.498 3.80 241.76 58.68 1.013 1.34E-04 0.390 5 AW 1089.86 1.4887 2111 152.5 6S.IM 0JO 3.E,4 0,372 SAW 136,910 3A26 1212 9.203 167.38 4.00 239.56 516. 15.0108 1.563E04 0.380 5108 1*06 5.50306 2102 5 25.43 653 0 53.58E44 0.371 3M 1 36.85 3A70 1210 9.158 57.728 4.10 237.44 S.724 1.0106 1.65E.04 0.386 5.08 A 07510.6 .6i3 2080 536.3 650 0S C 4 3)6E04 0 .375 SAW 135:M 3A06 126 89.187 107.17 4.30 236.38 58.O3 1.0100 1.676E-4 0.398 :M09 106,6390 5.538 2087 61 M &AU 3.59E44 0.37 3.71 2 SAM 136.11 3SAW7 13 9.532 1507.0 4.30 233.41 58.38 5.006 1.59E-04 0.394 A608 185.556 1.5531 2067 123.64 61* 0*66 3.1164 0a.01 302 534*340 3.061 13264 9.121 166.68 4.46 225.80 58.45 I.0012 1.706E04 0.3894 S08 14,860 1.5691 2067 153.83 65. 0.9064 3.6E104 0.371 3.5 134560 3*540 1363 9.115 166.588 4. 229.66 58.52 1.0088 1.72E-04 0.394 5108 103.68 1.5080 2066 I5310 61.66 0.9064 3A814 OA37 3.W 1336,50 11 3M 1281 9.158 166.78 4.60 227.86 58.56 1.0085 1.74E-04 0.394 5108 102,797 1.6004 2060 12 6 ".67 OAKS 365E404 0.t0 3.7SA 133,66 3.)46 12751 9.152 506.70 4.70 226.56 59.84 1.0062 1T.E744 0.394 5109 101.983 1.159 2661 122*7 61A6 0.663 3*7146 0274 3.0 513272 Vim 1278 9.514 186.61 4.65 224.60 58.70 1.0078 1.77E-04 0.398 5108 101,108 1.6310 2044 112AS 61.66 0.9W2 3.60604 0.370 3.AW 13564 3.5735 1276 9.813 16652 4.60 222.86 58.76 1.0076 1.7E404 0.393 0109 100,300 1.6460 2630 121250 a1i 0.9903 3.6644 0.370 SAW 53140 3.0874 1274 9.133 186.44 5.01 225.12 5892 1.0073 1.686E-4 0.393 508 9t,469 1.8613 2031 6 21.12 01.6 0.9M6 3.71 04 0.370 3.0 53.954 3.15 5273 9.127 166.35 5.11 219645 59.47 1.0047 1.82E-04 0.393 5109 9,680 1.6769 24 120.74 6.670 .3 3744 0.370 SAW 130,740 316 15271 98.12 165.26 5.23 218.03 58.93 5.0m6813E-04 0.393 mg0 87,808 .6927 2058 12 1 6.71 0.966 3.73E504 0.370 3.02 I530.316 3.626 1270 9.115 166.18 5.34 216.41 58.98 1.0065 2.18564 0.393 618 57.057 15.7000 2015 119. 61.71 0.962 3.1 44 0.33 3A.5 120983 SAM 1266 9.1,0 166.08 5.47 211.79 59.04 5.0062 1.7E-04 0.392 5S08 96.244 1.72 2004 116.6* 66.72 0.965 31.70E04 0.3N6 A I.6 n, 30 3$1(6 137 9.03 166.00 5.59 253.16 59.08 1.0060 1. 0.302 S.608 98.4232 .7421 IS7? 121 61.72 0 2 S.?04 0f 3. 62* 13.927 331 5256 94.087 186.81 5.72 211.54 59.15 1.0087 5.8664 8.362 9608 94,618 1.752 58 110.63 65.73 0.86 3.79E04 0.369 3.652 123,474 316177 9.091 165.82 5. 20082.82 59.20 1.0055 1.92E-4 0.372 59 0 3. 80 1 .7766 1993 666 61.74 0.9W 3.8004 0.56 3062 526 $. 126I 9.085 185.T3 6.01 206.30 5926 1.0052 1.94E44 0.392 5109 92.491 1.7944 15976 11*7 61.74 0.52 3.2044 0.30 3*03 127,571 3.7172 5361 9.070 165.64 6.18 206.88 S9.31 1.0060 1,96644 0.391 S.60 92.176 1.8120 1960 117.88 61.75 0.605 3*36-04 0.369 3SAW 127,120 3.753n 1266 9.073 165.54 6.32 208.05 59.36 1.0040 1.66644 0.391 S.609 91,362 1.8310 5962 117.3 61.70 G)a6l 3.86544 0.369 3.02 530.6 3.7472 12585 9.067 565.45 649 203.43 58.41 1.0045 2.046404 0391 510 86.547 1.8498 59856 11* 6.70 0.886 3.60.04 0.3611 3.6 131,116 3.7. 52.6 9.001 165.35.6.7 205.60 89.47 5." $,72& .0043 2.026404 0.91 6.608 8972 589 947 1*4 6.77 0.66 376414 0.366 3*52 120.,78 3.7775 1254 9.055 165.26 6.00 195.60 59.52 1.0035 2.10E-04 0.390 3.739 57,572 5.9472 1384 132204 e6ta 0.9663 3.6E0.0 0.370 2.799 6101382 3.67 6463 9.053 555.63 6.86 191.89 69.84 1.0030 2.15E-04 0.381 3.739 56.380 1.8947 1372 120.65 61.70 0*.698 3. 04 6.376 710 2 508.203 SAM7 1080 9.039 155.56 7.08 188.54 59.76 1.0026 2.20644 0.388 3.739 55273 2.0647 1361 110.46 61.11 0.0A5 3.75E.04 0.370 2.710 90,476 351 50751 9.025 158.30 7.58 185.42 59.85 1.0022 2.24604 0.38 3.739 54.245 210553 1350 11641 61.73 0.868 3.76644 0-360 2385 WON8 3,8965 1073 9.013 1.550 7.26 562.52 09.94 1.0019 2.29E04 0.387 3.739 53291 2.5263 1340 156.16 61.74 0.866 UIE-04 0.4*9 2.799 97A83 3.7142 1070 9.02 184.62 7.3 173 60.03 1.0056 2.33E44 0.387 3.139 52,404 2.1008 5221 117.34 61.75 0*66 3.84144 0.36 2.76 97,107 3.7456 105 8.991 554.60 7.46 57.32 60.50 1.0014 2.376404 0.386 3.739 51,512 22066 5322 6116.6 601.70 S*6M 371046 0.368 2.799 66AM2 3.7706 1ON 8.980 1584.40 7.56 174.9 60.17 1.0011 2.IE644 0.306 3.739 50,857 21479 1313 165.06 01.78 0CAM5 &.0"0 0.3161 2.78 66A70 3.603 10$2 8.970 15420 7.66 17.5.4 60.28 5.00W8 2.4E044 0.305 3.739 48.60 2.3067 5301 114.6 61.76 060 SAW .5464 0.304 IT7O 94.66 SAW6 180 8.985 153.8 Cac-PM-44-3 A6t2-1_SDC_Coold-ow nme4246Q0js; Cooldowg9 WW8, 12:49 P Cak 17321-43-PM-44-3, Shutdewn Cooing Time Attachment

2. Page 50_ {;J 1 If _ ___ I [1 _ I- I _ _ _ I I I [I _1- l-------+

I-4 -I- 4 _.00 __I. --~a~'Time h-2.00 2.10 220 2.30 2.40 2.50 2.60 2.70 2.80 2.90 3.00 3.10 320 3.30 3.40 3.50 3.60 3.70 3.80 3.90 4.00 4.10 420 4.30 4.40 4.50 4.60 4.70 4.80 4.90 5.01 5.11 523 5.34 5.47 5.59 5.72 5.86 6.01 6.16 6.32 6.49 6.67 6.86 6.96 7.06 7.16 7.26 7.36 7.46 7.56 7.60 SDC HX ke side i Soc 1,K Wde SDC (Pg Daly I TtIo T., W) Iterate Omffee Qowe CCW. Total oae, Duty CCW FIo-4Ar mmBSr gpm 7.35$ 139.91 6,100 CCWH CCW Daly pe. HX CeW Tee'p Ts,o 108.4 5 I 9/Op Cr INTU iIoeneao DT 1.337,560 1,375'146 0.658 0.620 0.399 96.39 1,342,146 1,377,907 0.660 0.61O 0.398 9422 1.346,529 1,380.565 0.661 0.616 0.397 92.13 1,350,719 1,382,126 0.662 0.615 0.367 90.12 1,354,723 1.385,591 0.663 0.813 0.396 U0.18 1,358,549 1.387.963 0.664 0.12 0.395 86.31 1.362,286 1,390.248 05065 0.110 0.394 64.51 1,365.702 1,392,447 0.666 50"6 0.394 82.76 1.389,044 1,394.563 0.667 0.607 0.393 81.11 1,372.39 1,396,601 067 0.606 0.393 79.50 1.375,292 1.398,562 0.69 0.605 0.392 77.95 1,378,213 1,400,450 0.5669 0.603 0.391 76.46 1.381.007 1,402,267 0.670 0.602 0.391 75.02 1,383,679 1,404,016 0.671 0.801 0.390 73.64 1.306.235 1.405,700 0.671 0A00 0.390 72.31 1,388.682 1,407,322 0.672 0.569 0.389 71.03 1.391,024 1.409.893 0.173 0.598 0.389 6990.1,393,265 1,410,386 0.673 0.597 0.388 6.11 1,395,412 1,411,833 0.674 0.596 0.388 67A7 1,397,468 1,413.227 0.674 0.595 0.387 66.37 1.399.437 1,414,569 0.675 0.594 0.387 65.31 1,401.324 1,415.'61 0.676 0 .53 0,3M6 6429 1.403,133 1.417.106 0.676 0.592 0.386 63.31 1,404,866 1,418,305 0.677 0.591 0.386 62.36 1.406,529 1,419.461 0.677 0.590 0.385 61.40 1,400,123 1.420,574 0.678 0.599 0.385 60.57 1,409.652 1.421,646 5176 0.588 0.385 O 59.72 1,411,120 1,422.680 0.678 0.589 0.384 58.90 1,412,529 1,423,676 0.679 0.587 0.364 58.12 1.413,893 1,424,644 01679 0.586 0.384 5735 1,415,249 1,425,610 0190 0.586 0.383 56.59 1,416,597 1,426,575 0.680 0.585 0.383 55.82 1,417,938 1,427,538 0.680 0.584 0.363 55.06 1.419,271 1.428.499 0.681 0.584 0.382 54.30 1,420,597 1,429,459 0.11 0.583 8.382 53.54 1,421,914 1,430,416 0.682 0.582 0.382 52.78 1,423,224 1,431,372 0192 0.582 0.381 52.03 1.424,526 1,432,325 0.692 0,581 0.381 5127 1.425,820 1,433.277 0.693 0.580 0.361 50.52 1.427,106 1,434,226 0.683 0.579 0.390 49.76 1,42$,385 1,438,174 0.694 0.579 0.380 49.01 1.429,655 1,436,119 0.684 0.576 0.380 48.26 1.430,918 1.437,061 0.684 0.577 0.379 47.51 85,782 958,077 0.596 0.916 0.75 56.12 96,70 958,574 0.597 0.814 0A74 54.04 608,465 960.953 0.598 0.011 0.473 52.11 960.077 962,224 0.59 0.609 72 50.33 961,555 863,3 0.599 0.607 0.471 40.68 962,910 964,476 0.600 0.805 0A71 47.15 964,155 965,473 0100 0.803 0.470 45.73 965,300 966,393 0101 0.801 0.409 4Al 9697 967741 0.601 0.7986 0.468 42.48 TO W YCa CO MA31 -ý 20a68*= MA 250,50 26* SM 247A7 mt M 2*86*66 P 244.54 O- 2.613 WA 241.70 -260349 A 238.95 6 2,00770 WPM 236.26 -M 2,061,175 INA 233.69 O M2,091.500 PMA 231.19 2,984GLW PM 228.78 PONSO6 21,38 SWP 226.43 Ot2,968 ONPA 224.17 OM 2.820,M, MNA 221M0 2HO ,313 PM 210 M 2*8M 0 PM 217.82 2*6 2 04 S" 215.64 M 2,04.13 EM 213.93 # 2A.661 PM 212.09 U1O 2,M4,758 EA 210.30 2M*66,99 PM 208.57 #WW2*8,266 INA 205,29 MOWN 2*96,732 PMA 203.74 2*68 P 20223 M M 06,165 MA 200.78 M 2,6,372 PM 199.38 2M" PM 198.02 WNO 2,66,76 PMA 196.71 O *66 PMSWA 195.44 PO 2*907,120 PM 194.21 HOPSO 2*97= S, P 192.97 M 20974 MA 191.73 2.6:07P5 PMA 190.49 2.62*6 PMW W 169.26 2*67*977 PMA 161 #00 M 2,96,147 PMA 186.77 MWM2*66,397 PM 185.53 W 6 M PM, 18428 WO 2,060*7 PM 183.04 2,96w HM PM 181.79 96 2M*694 MSO 26,331 PM 178.05 2*90,980 PM 167.43 M 1,96A7,11)

PMA 164,07 1 T.*747 PM 162.48 M 7,SM MA 16026 M t1.961 PM 159.18 1,68*4 PM 15625 1*9 I 6,13 MA0 154.46 OMWSW 1*.80k7O3 P 152.78 1#6WN 6JA 0 M NTU DTO I Teo PM PM 62.47s 171.86#W wA SU? VIAe am Pm 62.18 97013 aP PM 86 low60am ft" IOTA0 PMA PM 96.6 167M PMA MA 57.30 184.13 pM SWP 56.16 16.3 PM PMA 86.11 181.38 PMA PMA 4.07 166,8?PM PMA 53.016 18.611 M4A MMA 521I0 1571%PMA PM 61.16 167.66 am MWA PM 2t 15521 SWrA MW 49.29 04.07 PMA PM 489" 154,17 dPM P 47.73 152.60 PMA PM 46.8 161.10 M SWP 46.20 150,14 PMA PM 46.47 14962 PM PM 44.77 1,48.3 PMA PM 44.M 147AS PMA PM 42.63 146*S PM PM 42.19 1466 PM PMA 41.61 144.33 PMA PMA OM 14510 Pm PM 40.49 42-)2 PM PM 3M 14225 EM PMM 36.46 141.11 PMA PMW 38.46 186M PM PMA 37,97 393.72 I" M 37.47 1309 ow PMA 35.97 1,6*6 w" PMA 36.46 137.43 PMA PM 35.86 137.56 PMA PM 3646N 136.6 SAM PMA 2410190 PMA PMA XO*1901 PMA PM 3&561 93410 PMA PM 31101 133,43 PA PMA 32.52 02.80 PM PMA 33.4 156.76 PM PMA 32.26 93710 PA PMA 39.16 056.52 PM PM 30.59 t 934.07 PMA PM 29.16 832.72 PMA PM 27.44 1631t PMA PMA 387 12.22 132.55 129.83 127.20 mm864/tw 46.6 253.61 171.61 3 250.50 170.2: 247.47 168.6: 7.358 137.19 8,100 7.358 134.56 8.100 3 3 45.73 44.85 1: 108.08 107.75 124,65 244.54 167.08 7.358 132.01 8,100 3 44.00 15 107.44 122.18 241.70 165.58 7.358 129.54 6,100 3 43.18 16 107.13 119.80 238.95 164.13 7.358 127.16 9,100 3 42.39 17 106.84 117.49 236.28 162.73 7.359 124.85 6,100 3 41.62 1 0 156.55 115.26 233.69 161.38 7.358 122.62 8,100 3 40.87 19 10 .27 113.11 231.19 160.07 7.358 120.47 6,100 3 40.16 20 106.00 111.03 228.78 158.81 7.358 118.38 8,100 3 39.46 21 105.74 109.02 226.43 157.59 7.358 116.38 8,100 3 38.79 22 105.49 107.06 224.17 156.41 7.358 114.44 8.100 3 38.15 23 105.25 105.20 221.98 155.27 7,358 112.56 8,100 3 37.52 24 105.01 103.40 219.86, 154.17 7.358 110.75 8,100 3 36.92 25 104.78 101.65 217.82 153.11 7.358 109.01 8,100 3 36.34 26 1604.56 99.97 215.84 152.09 7.358 107.32 8,100 3 35.77 27 104.35 08.34 213.93 151.10 7.358 105.70 8,100 3 35.23 28 104.15 81.70 192.21 140.19 7.358 , 1061 9,100 3 34.71 29 103.95 0.6 92.7 149.3 7.358 102.1 8,100 3 2.20 30 103.75 93.79 208.57 148.3. 7.358 101.15 8.100 3 33.72 3 103.57 98.36 206.90 147.4 7.359 85.96 9100 3 3325 32 103.39 91.02 20529 146.64 7358 0493 DO,100 3 32.79 33 10322 89.71 203.74 145.85 7.358 97. ,07 8,100 3 32.36 34 103.05 78.44 202.23" 145.08 7,358 95.80 8,100 3 32.93 35 102.89 7.22 200.78 1434.3 7,358 94.58 8,150 3 31.53 36 !102.73 76.04 199.38 143.62 7.358 93.40 8,100 3 31.13 37 102.58 74.90 198.02 142.92 7.358 92.26 8,100 3 30.75 38 102.43 83.30 196.71 1422. 7.358 91.16 8,100 3 30.32 35 10229 82.74 195.55 141.61 7.358 90.10 8.100 3 25.03 42 102.5 81.70 194.21 140.94 7.358

  • 69.06 , 8,100 3 29.69 41 102.02 69.27 192 07 140.35 7.358 88.03 8,100 3 2M 234 42 101.89 53.74 191.73 139.72 7.358 87.00 8,100 3 29.00 45 101.75 78.60 19487 13970I 7.358 111.096 9.100 3 28.65 40 101.62 77.57 189.26 138.46 7.358 84.93 8,100 3 28.31 45 101.49 76.54 188.01 137.80 7.358 83.90 8,100 3 27.97 46 101.35 75.50 186.78 13.7.2 7.358 82.86 8,100 3 27.72 47 101.22 4.47 15.531 13.57 7.358 91.3 9,100 3 27.28 46 101.09 73.44 14.291 135.31 73 95.86 8,100 " 3 26.93 64 102.95 721 183.041 135.32 3 27.35010.8181.79' 134.69 7.358 78.73 8.100 3 26.24 51 100.68 70.34 180.55 134.06 7.358 77.70 8,100 3 25.90 52 100.55 69.31 179.30ý 133.43 7.358 76.67 8. 100
  • 3 25.56
  • 53 1I00.41 68.28 t78.05" M,280 7.358 75.63 6,100 3 25.21 54 100.28 53.77 167A3: 138.76 7.358 114.90 6 ,100 3 38.30 55 105.31 51.86 164.87" 137.08 7.358 111.07 8,100 3 37.02 5( 104.82 50.08 162.48. 135.52" 7,358 107.51 8,100 3 35.84 57 104 '38 48.43 160.26' 134.07 7.358 104.21 8,100 3 34.74 5j 1 03.96 46,90. 158.18 132.72 7,358 101.15 8,100 3 33,.72 591 103.571 45.47 156. 131.47 7.358 .98.30 8,1 -3 3.17 601 103-211 44.15 154.46' 130.31- 7.3,58 "95.66 8,100 Al "316 61 10.7 42,92 152.78 12922., .I --711 IlAll 7.358 93.20 8,100 3 71 -r .K? AIMc Al 31.07 621 102.55-OW'k C&IoPM-44-3 Coo9390 3/29/2008,12:49 PM