ML17334B471

From kanterella
Revision as of 06:22, 29 June 2018 by StriderTol (talk | contribs) (Created page by program invented by StriderTol)
Jump to navigation Jump to search
Application for Amend to License DPR-74,requesting Relief from TS Surveillances Until Refueling Outage,Currently Scheduled to Begin on 940806
ML17334B471
Person / Time
Site: Cook American Electric Power icon.png
Issue date: 04/16/1993
From: FITZPATRICK E
INDIANA MICHIGAN POWER CO. (FORMERLY INDIANA & MICHIG
To: MURLEY T E
NRC OFFICE OF INFORMATION RESOURCES MANAGEMENT (IRM)
Shared Package
ML17331A288 List:
References
AEP:NRC:1181, NUDOCS 9304220175
Download: ML17334B471 (207)


Text

ACCELERATF/i DOCUii'll 5'l'ISTRLBUTlOY SYSTEMREGULAINFORMATION "DZSTRZBUTZOtOYSTEN (RZDSlACCESSION NBR:9304220175 DOC.DATE:

93/04/16NOTARIZED:

YESDOCKETIFACIL:50-316 DonaldC.CookNuclearPowerPlant,Unit2,IndianaM05000316AUTH.NAME.AUTHORAFFILIATION FITZPATRICK,E.

IndianaMichiganPowerCo.(formerly Indiana!;MichiganEleRECIP.NAME RECIPIENT AFFILIATION MURLEYFTEDDocumentControlBranch(Document ControlDesk)DISTRIBUTION CODE:AOOIDCOPIESRECEIVED:LTR JENCLgSIZE:TITLE:ORSubmittal:

GeneralDistribution NOTES:Jfp~.~pk7~RECIPIENT COPIESRECIPIENT IDCODE/NAME LTTRENCLIDCODE/NAME PD3-1LA11PD3-1PDDEAN,N22.,COPIESLTTRENCL11

SUBJECT:

Application foramendtoLicense-DPR-74,requesting relieffromTSsurveillances untilrefueling outage,currently scheduled tobeginon940806.e~jINTERNAL:

NRR/DE/EELB NRR/DRCH/HICB NRR/DSSA/SPLB NUDOCS-ABSTRACT OGC/HDS2EXTERNAL:

NRCPDR111111111011NRR/DORS/OTSB NRR/DSSA/SCSB NRR/DSSA/SRXB OCE01NSIC111011101111NOTETOALL"R1DS"REClPlEHTS:

PLEASEHELPUSfOREDUCEWASTE!CONlAClTllEDOCU).'EYT COii'TR(>!

D!:.~V,ROOMP1.37(EXT.504-20o5)

TOEL!MIYATEYOURHA."lEFROliD]STRiliUTlON LiSTSFORDOCU!4EYl'SYOUDOi"l'T)REED!TOTALNUMBEROFCOPIESREQUIRED:

LTTR16ENCL13 l

IndianaMichiganPowerCompanyP.O.Box16631Columbus~".iH 43216IIHtMSlHSl svaamramaue POUFFEDonaldC.CookNuclearPlantUnit2DocketNo.50-316LicenseNo.DPR-74SURVEILLANCE INTERVALEXTENSION FORUNIT2CYCLE9AEP:NRC:1181 U.S.NuclearRegulatory Commission DocumentControlDeskWashington, D.C.20555AttnrT.E.MurleyApril16,1993

DearDr.Murley:

Thisletterconstitutes anapplication foramendment totheTechnical Specifications (T/Ss)fortheDonaldC.CookNuclearPlantUnit2.Specifically, werequestanextension forcertainsurveillances whichtheT/Ssrequiretobeperformed beginning January2,1994.Wearerequesting relieffromtheseT/Srequirements untiltheUnit2refueling outage,whichiscurrently scheduled tobeginAugust6,1994.Manyofthesesurveillances canonlybeperformed duringshutdown; therefore, toavoidunnecessary shutdownoftheplant,weaskthatyourreviewofthisrequestbeperformed onanexpedited basisandthatyourespondtousbyDecember1,1993.Adescription oftheproposedchangesandouranalysisconcerning significant hazardsconsiderations arecontained inAttachment 1tothisletter.Theproposed, revisedT/Spagesarecontained inAttachment 2.TheexistingT/Spages,markedtoreflecttheproposedchanges,arecontained inAttachment 3.Alloftherequested surveillance extensions areassociated withsurveillances normallyperformed duringrefueling outages.Thecurrentcyclewillbelengthened approximately fivemonthsduetoaplannedpowerreduction toapproximately 70%ofratedthermalpower,whichistobegininMay1993andremainineffectuntiltheendofthe.cycle.Thepurposeofextending thecycleistoseparatetherefueling outagesbetweenUnit1'(whichisscheduled forrefueling inJanuary,1994)andUnit2.9304220i75 9304ibPDRADOCK050003ibg0l Dr.T.E.MurleyAEP:NRC:1181 Duringthelastrefueling outage,whichwasextendedapproximately sixmonthsduetoturbine-generator rotorvibrations, aneffortwasmadetore-perform asmanysurveillances aspossible.

Asignificant numberofT/Ssurveillances (approximately 70)werere-performed, reducingthenumberofsurveillances forwhichwearerequesting extensions.

However,oureffortswereconstrained becauseUnit1wasinarefueling outageatthesametime.SomeoftheTechnical Specification pagesaffectedbythissubmittal arepagesforwhichchangesarependingduetopriorsubmittals.

Theproposedchangescontained inthissubmittal areinadditiontoourpreviousrequestsanddonotsupersede them.Thepagesincludedinthiscategoryandtheapplicable priorsubmittals whichhavenotyetbeenprocessed areprovidedinthetablebelow:LetterNumberDateTSPaeNumbersAEP:NRC:1131A April19,1991AEPsNRC:1178 September 24,1992AEP:NRC:1143 May1,19923/44-333/46-143/47-2063/47-40Inaccordance with10CFR50.92(c),

ourevaluation ofthechangesindicates nosignificant hazardsbecausethesechangesdonot:(1)involveasignificant increaseintheprobability orconsequences ofanaccidentpreviously evaluated; (2)createthepossibil'ity ofanewordifferent kindofaccidentfromanyaccidentpreviously evaluated; or(3)involveasignificant reduction inthemarginofsafety.TheseproposedchangeshavebeenreviewedandapprovedbythePlantNuclearSafetyReviewCommittee andbytheNuclearSafetyandDesignReviewCommittee.

Incompliance withtherequirements of10CFR50.91(b)(1),

copiesofthisletteranditsattachments havebeentransmitted totheMichiganPublicServiceCommission andtotheMichiganDepartment ofPublicHealth.

Dr.T.E.MurleyAEP:NRC:1181 Thisletterissubmitted pursuantto10CFR50.54(f)and,assuch,anoathstatement isenclosed.

Sincerely, E.E.FitpatrickVicePresident drAttachments cc!A.A.Blind-BridgmanJ.R.PadgettG.CharnoffA.B.Davis-RegionIIINRCResidentInspector

-BridgmanNFEMSectionChief

~'Dr.T.E.MurleyAEPsNRC:1181 bc:S.J.BrewerD.H.Malin/K.J.TothM.L.Horvath-BridgmanJ.B.ShinnockW.G.Smith,Jr.W.M.Dean,NRC-Washington, D,C.AEP:NRC!1181 DC-N-6015.1

~C~STATEOFOHIOCOUNTYOFFRANKLINE.E.Fitzpatrick, beingdulysworn,deposesandsaysthatheistheVicePresident oflicenseeIndianaMichiganPowerCompany,thathehasreadtheforgoingTechnical Specifications ChangesProposedinLetterAEPsNRC:1181 andknowsthecontentsthereof;andthatsaidcontentsaretruetothebestofhisknowledge andbelief.Subscribed andsworntobeforemethisdayof19NOTARYPUBLICRITAD.HILLNOTARYPUBLIC.STATEOFOHIO TENSILEWOLWOL005WOLTENSILECNARPYCNARPY~EYERI.OCRCHARPYCNARPYCHARPYCHARPYCHARPYICHARPYCHARPYCHARPYCNARPYCAPSULEUNT-12NTllIRf-l2Nf.72NT-72IOI-71NT-71IOf-70NT7010f69HT69068HT-68MHT-67IOf-66NT-6610f-65NT-6WCflHT6910f-63HT-63fN-62HT-62Of-61NT-61HH-72NL-48NH-70-f16NK-71NL&7NII-69-f15HK-67KL&3KH-66HL~2KH-65KL-91HKHfl-62III63HH-61SPECIMENCODE:MT-PLATEC552I-2(TRANSVERSE)

KL-PLATF.C552I-2(LONGITUDINAL)

MW-WELDMETALMH-WELDHEATAFFECTEDZONEQgyERYURECARO>isoavailable 0~ApertureCaE'dFigure4-2CapsuleUDiagramShowingLocationofSpecimens, ThermalMonitorsandDosimeters

SECTION5.0TESTINGOFSPECIHENS FROMCAPSULEU5.1OverviewThepost-irradiation mechanical testingoftheCharpyV-notchandtensilespecimens wasperformed attheWestinghouse ScienceandTechnology Centerhotcellwithconsultation byWestinghouse PowerSystemspersonnel.

Testingwasperformed inaccordance with10CFR50,Appendices GandH~~,ASTHSpecification E185-82~~,andWestinghouse RemoteHetallographic Facility(RHF)Procedure RHF8402,Revision2asmodifiedbyRHFProcedures 8102,Revision1'and8103,Revision1.Uponreceiptofthecapsuleatthehotcelllaboratory, thespecimens andspacerblockswerecarefully removed,inspected foridentification number,andcheckedagainstthemasterlistinWCAP-8512~

~.Nodiscrepancies werefound.Examination ofthetwolow-melting point579'F(304'C)and590'F(310'C)eutecticalloysindicated nomeltingofeithertypeofthermalmonitor.Basedonthisexamination, themaximumtemperature towhichthetestspecimens wereexposedwaslessthan579'F(304'C).TheCharpyimpacttestswereperformed perASTHSpecification E23-88~~andRHFProcedure 8103,Revision1onaTinius-Olsen Hodel74,358Jmachine.Thetup(striker) oftheCharpymachineisinstrumented withaGRC830Iinstrumentation system,feedinginformation intoanIBHXTcomputer.

Withthissystem,load-time andenergy-time signalscanberecordedinadditiontothestandardmeasurement ofCharpyenergy(ED).Fromtheload-time curveshowninAppendixA,theloadofgeneralyielding(PGy),thetimetogeneralyielding(tGY),themaximumload(PH),andthetimetomaximumload(tH)canbedetermined.

Undersometestconditions, asharpdropinloadindicative offastfracturewasobserved.

Theloadatwhichfastfracturewasinitiated isidentified asthefastfractureload(PF),andtheloadatwhichfastfractureterminated isidentified asthearrestload(PA).5-1 Theenergyatmaximumload(EM),wasdetermined bycomparing theenergy-time recordandtheload-time record.Theenergyatmaximumloadisroughlyequivalent totheenergyrequiredtoinitiateacrackinthespecimen.

~*Therefore, thepropagation energyforthecrack(E')isthedifference

.betweenthetotalenergytofracture(ED)and'theenergyatmaximumload.Theyieldstress(ay)wascalculated fromthethree-point bendformulahavingthefollowing expression:

ay=PG~*[L/[B*(W-a)

  • C])whereLdistancebetweenthespecimensupportsintheimpacttestingmachine;Bthewidthofthespecimenmeasuredparalleltothenotch;Wheightofthespecimen, measuredperpendicularly tothenotch;a-notchdepth.TheconstantCisdependent onthenotchflankangle(P),notchrootradius(p),andthetypeofloading(i.e.,purebendingorthree-point bending).

Inthree-point bendingaCharpyspecimeninwhichP45'ndp-0:010",Equation1isvalidwithC1.21.Therefore (forL-4W),oy=PGy*[L/[B*(W-a)

  • 1.21])-[3.3PGyW]/[B(W-a)

](2)FortheCharpyspecimens, B=0.394in.,W-0.394in.,anda-0.079in.Equation2thenreducesto:Gy=33.3xPGy(3)whereoyisinunitsofpsiandPGyisinunitsoflbs.Theflowstresswascalculated fromtheaverageoftheyieldandmaximumloads,alsousingthethree-point bendformula.Percentshearwasdetermined frompost-fracture photographs usingtheratio-of-areas methodsincompliance withASTHSpecification A370-89[].Thelateralexpansion wasmeasuredusingadialgagerigsimilartothatshowninthesamespecification.

5-2 Tensiontestswereperformed ona20,000-pound InstronModel1115,split-console testmachine,perASTMSpecification E8-89b~~andE21-79(1988)~~,andRMFProcedure 8102,RevisionI.Allpullrods,grips,andpinsweremadeofInconel718hardenedtoHRC45.Theupperpullrodwasconnected throughauniversal jointtoimproveaxialityofloading.Thetestswereconducted ataconstantcrosshead speedof0.05inchesperminutethroughout thetest.Extension measurements weremadewithalinearvariabledisplacement transducer (LVDT)extensometer.

Theextensometer knifeedgeswerespring-loaded tothespecimenandoperatedthroughspecimenfailure.Theextensometer gagelengthis1.00inch.Theextensometer isratedasClassB-2perASTME83-85~II~.

Elevatedtesttemperatures wereobtainedwithathree-zone electricresistance split-tube furnacewitha9-inchhotzone.Alltestswereconducted inair.Becauseofthedifficulty inremotelyattaching athermocouple directlytothespecimen, thefollowing procedure wasusedtomonitorspecimentemperature.

Chromel-alumel thermocouples wereinsertedinshallowholesinthecenterandeachendofthegagesectionofadummyspecimenandineachgrip.Inthetestconfiguration, withaslightloadonthespec'imen, aplotofspecimentemperature versusupperandlowergripandcontroller temperatures wasdeveloped overtherangeofroomtemperature to550'F(288'C).Theuppergripwasusedtocontrolthefurnacetemperature.

Duringtheactualtestingthegriptemperatures wereusedtoobtaindesiredspecimentemperatures.

Experiments indicated thatthismethodisaccurateto+2'F.Theyieldload,ultimateload,fractureload,totalelongation, anduniformelongation weredetermined directlyfromtheload-extension curve.Theyieldstrength, ultimatestrength, andfracturestrengthwerecalculated usingtheoriginalcross-sectional area.Thefinaldiameterandfinalgagelengthweredetermined frompost-fracture photographs.

Thefractureareausedtocalculate thefracturestress(truestressatfracture) andpercentreduction inareawascomputedusingthefinaldiametermeasurement.

5-3 5.2Char-NotchImactTestResultsTheresultsoftheCharpyV-notchimpacttestsperformed onthevariousmaterials contained inCapsuleU,whichwasirradiated to1.58x10n/cm(E>1.0MeV),arepresented inTables5-1through5-4andarecomparedwithunirradiated results~~asshowninFigures5-1through5-4.Thetransition temperature

'increases anduppershelfenergydecreases fortheCapsuleUmaterials aresummarized inTable5-5.Irradiation ofthereactorvesselintermediate shellplateC5521-2Charpyspecimens orientedwiththelongitudinal axisofthespecimenparalleltothemajorrollingdirection oftheplate(longitudinal orientation) to1.58x10n/cm(E>1.0MeV)at550'F(Figure5-1)resultedina30ft-lbtransition temperature increaseof95'Fandina50ft-lbtransition temperature increaseof110'F.Thisresultedina30ft-lbtransition temperature of120'Fanda50ft-lbtransition temperature of165'F(longitudinal orientation).

TheaverageUpperShelfEnergy(USE)oftheintermediate shellplateC5521-2Charpyspecimens (longitudinal orientation) resultedinaenergydecreaseof16ft-lbafterirradiation to1.58x10n/cm(E>1.0MeV)at550'F.ThisresultsinanaverageUSEof111ft-lb(Figure5-1).Irradiation ofthereactorvesselintermediate shellplateC5521-2Charpyspecimens orientedwiththelongitudinal axisofthespecimennormaltothemajorrollingdirection oftheplate(transverse orientation) to1.58x10n/cm2(E>1.0MeV)at550'F(Figure5-2)resultedina30ft-lbtransition temperature increaseof130'Fandina50ft-lbtransition temperature increaseof135'F.Thisresultedina30ft-lbtransition temperature of160'Fanda50ft-lbtransition temperature of205'F(transverse orientation).

5-4 TheaverageUSEoftheintermediate shellplateC5521-2Charpyspecimens (transverse orientation) resultedinanenergydecreaseof14ft-lbafterirradiation to1.58x10n/cm(E>1.0MeV)at550'F.ThisresultedinanaverageUSEof72ft-lb(Figure5-2).Irradiation ofthereactorvesselcoreregionweldmetalCharpyspecimens to1.58x10n/cm(E>1.0MeV)at550'F(Figure5-3)resultedina75'Fincreasein30ft-lbtransition temperature anda50ft-lbtransition temperature increaseof40'F.Thisresultedina30ft-lbtransition temperature of85'Fandthe50ft-lbtransition temperature of110'F.TheaverageUSEofthereactorvesselcoreregionweldmetalresultedinanenergydecreaseof6ft-lbafterirradiation to1.58x10n/cm(E>1.0MeV)at550'F.ThisresultedinanaverageUSEof71ft-lb(Figure5-3).Irradiation ofthereactorvesselweldHeat-Affected-Zone (HAZ)metalspecimens to1.58x10n/cm(E>1.0MeV)at550'F(Figure5-4)resultedina30ft-lbtransition temperature increaseof105'Fanda50ft-lbtransition temperature increaseof110'F.Thisresultedina30ft-lbtransition temperature of45'Fandthe50ft-lbtransition temperature of80'F.TheaverageUSEofthereactorvesselweldHAZmetalexperienced anenergydecreaseof33ft-lbafteri}radiation to1.58x10n/cm(E>1.0MeV)at550'F.ThisresultedinanaverageUSEof82ft-lb(Figure5-4).Thefractureappearance ofeachirradiated Charpyspecimenfromthevariousmaterials isshowninFigures5-5through5-8andshowanincreasingly ductileortougherappearance withincreasing testtemperature.

Acomparison ofthe30ft-lbtransition temperature increases anduppershelfenergydecreases forthevariousD.C.CookUnit2surveillance materials withpredicted valuesusingthemethodsofNRCRegulatory Guide1.99,Revision2~~ispresented inTable5-6.Comparison ofthe30ft-lbtransition 5-5 temperature increasefor'heintermediate shellplateC5521-2(transverse orientation) is33'FgreaterthantheRegulatory Guideprediction.

However,theNRCRegulatory Guide1.99,Revision2requiresa2sigmaallowance of34'Fbeaddedtothepredicted reference transition temperature toobtainaconservative upperboundvalue.Thus,thereference transition temperature increaseisboundedbythe2sigmaallowance forshiftprediction.

Thiscomparison indicates thatthetransition temperature increases andtheuppershelfenergydecreases oftheIntermediate ShellPlateC5521-2(longitudinal orientation) andsurveillance weldresulting fromirradiation to1.58x10n/cm(E>1.0MeV)arelessthantheRegulatory Guidepredictions.

Thiscomparison alsoindicates thattheuppershelfenergydecreaseoftheintermediate shellplateC5521-2(transverse orientation) resulting fromirradiation to1.58x10n/cm(E>1.0HeV)islessthantheRegulatory Guideprediction.

Theendoflicense(32EFPY)RTNDTvaluesforalltheD.C.CookUnit2beltlineregionmaterials areshowninTable5-7.Thesevalueswerepredicted usingRegulatory Guide1.99,Revision2methodology andareprojected tobewithintheRegulatory limits.Photographs ofthecharpyandtensilespecimens beforetestingareshowninAppendixB.5.3TensionTestResultsTheresultsofthetensiontestsperformed onthevariousmaterials contained inCapsuleUirradiated to1.58x10n/cm(E>1.0HeV)arepresented inTable5-8andarecomparedwithunirradiated results~~asshowninFigures5-9and5-10.5-6 rTheresultsofthetensiontestsperformed ontheintermediate shellplateC5521-2(transverse orientation) indicated thatirradiation to1.58x10n/cm(E>1.0MeV)at550'Fcausedlessthana18ksiincreaseinthe0.2percentoffsetyieldstrengthandlessthana16ksiincreaseintheultimatetensilestrengthwhencomparedtounirradiated data~~(Figure5-9).Theresultsofthetensiontestsperformed onthereactorvesselcoreregionweldmetalindicated thatirradiation to1.58x10n/cm(E>1.0MeV)at550'Fcausedlessthana9ksiincreaseinthe0.2percentoffsetyieldstrengthandlessthana8ksiincreaseintheultimatetensilestrengthwhencomparedtounirradiated data~~(Figure5-10).Thefractured tensionspecimens fortheIntermediate ShellPlateC5521-2materialareshowninFigure5-11,whilethefractured specimens fortheweldmetalareshowninFigure5-12.Theengineering stress-strain curvesforthetensiontestsareshowninFigures5-13and5-14.05.4Wede0eninLoadinSecimensPerthesurveillance capsuletestingprogramwiththeIndianaMichiganPowerCompany,theWOLspecimens willnotbetestedandwillbestoredattheWestinghouse ScienceandTechnology Center.5-7 TABLE5-1CHARPYV-NOTCHIMPACTDATAFORTHED.C.COOKUNIT2INTERMEDIATE SHELLPLATEC5521-2IRRADIATED AT550F,FLUENCE1.58x10ngcm2(E>1.0Mey)Temperature ImpactEnergyLateralExpansion

~SemieNo.~F~C~ft-ib~J~mile~mmLon'tudinalOrientation ShearML45ML48ML42ML44ML41ML43ML46ML4775(24)100(38)125(52)175(79)200(93)225(107).250(121)300(149)14(19)27(37)35(47)62(84)55{75)103(140)114(155)115(156)102327'242507982(0.25)10{0.58)20(0.69)30(1.07)50{1.07)50(1.27)90(2.01)100(2.08)100MT62MT61MT66MT71MT64MT72MT70MT69MT63MT68MT67MT6525(-4)50(10)75(24)125(52)150(66)175(79)200(93)215(102)225(107)250(121)275(135)300(149)Transverse Orientation 5(7)214(19)1217(23)1019(26)1625(34)2133(45)2837(50)3039(53)3363(85)5267(91)5472(98)5077(104)58(0.05)5(0.30)10(0.25)15(0.41)30(0.53)35(0.71)40(0.76)45(0.84)65(1.32)95(1.37)100(1,27)100(1,47)1005-8 TABLE5-2CHARPYV=NOTCHIMPACTDATAFORTHED.C.COOKUNIT2REACTORVESSELWELDMETALANDHAZMETALIRRADIATED AT550'F,FLUENCE1.58x10n/cm(E>1.0MeV)~SamleNo.Temperature

('F)('C)ImpactEnergy(R-1b)(J)WeldMetalLateralExpansion (mils)(mm)Shear(~c)MW70MW64MW71iiIW68MKV63MAV61MW72MW65MW66MW62MW67MW69MH67MH63MH71MH69MH72MH70MH62MH64MH61MH65MH68MH66-100255075100125150175185200250-2525506575100125150175200225250(-23)(-18)(-4)(10)(24)(38)(52)(66)(79)(85)(93)(121)(-32)(-4)(10)(18)(24)(38)(52)(66)(79)(93)(107)(121)23(31)29(39)17(23)21(28)26(35)42(57)60(81)71(96)47(64)62(84)78.(106)74(100)HAZMetal4(5)21(28)48(65)18(24)64(87)39(53)118(160)72(98)83(113)103(140)74(100)69(94)16261421203750573949626221030194432715561715366(0.41)(0.66)(0.36)(0.53)(0.51)(0.94)(1.27)(1.45)(0.99)(1.24)(1.57)(1.57)(0.05)(0.25)(0.76)(0.48)(1.12)(0.81)(1.80)(1.40)(1.55)(1.80)(1.35)(1.68)2535304060808510085100100100103555309050100.951001001001005-9 TABLE5-3INSTRUMENTED CHARPYIMPACTTESTRESULTSFORTHED.C.COOKUNIT2INTERMEDIATE SHELLPLATEC5521-2IRRADIATED AT550'F,FLUENCE1.58x10n/cm(E>1.0MeV)SampleNcehesTestCharpyTempEnergy~s'ft-1hNormalized EnerCharpyMaximumEd/AEm/Aft-lbiniesProp.Ep/AYieldLoad~lbsTimeMaximumTimetotoYieldLoadMaximum~csee~lhs~cseeFractureLoad~lhsArrestYieldFloeLoadStressStress~lhs~ksi~ksiLonitudinalOrientation ML45ML48ML42ML44ML41ML43ML46ML47751410027125351756220055225103250114300115113642171672821244992414431228293089182349261474850157258321521684779372236703945346737313262326531260.1439290.1446000.2942580.1447350.2841390.1445070.1445460.1440710:200.380.380.530.380.540.540.3839294600425845633887**6388583847921340**124127122137131136115136124131108129108130104120Transverse Orientation MT62MT61MT66MT71MT64MT72MT70MT69MT63MT68MT67MT65255501475171251915025175332003721539225632506727572300774011313715320126629831450754058062012778848124156128153236221222223283549105771107360038252969338127231935839733593288305131531103438170368116132890.100.140.140.210.140.130.280.140.150.140.160.1413194154427331874194427340964158.4457.4212424942510.140.220.250.240.320.380.390.380.540.540.540.54131941544273318741944273409641584225**5512651320215772083215125333236374012012912713499102112126114128122129109124112130109125101121105123*Fullyductilefracture.

Noarrestload.0 TABLE5-4ArrestYieldFlowLoadStressStress~lbs~ksi~ksiINSTRUMENTED CHARPYIMPACTTESTRESULTSFORTHED.C.COOKUNIT2MELDMETALANDHEAT-AFFECTED-ZONE (HAZ)METAL,IRRADIATED AT550'F,FLUENCE1.58x10n/cm(E>1.0MeV)Normalized EneriesTestCharpyCharpyMaximumPropYieldTimeMaximumSampleTempEnergyEd/AEm/AEp/ALoadtoYieldLoadNumber~r~ft-1bft-lbin~lbs~mesc~lbsWeldMetalMW70MW64MW71MW68MW63MW61MW72MW65MW66MW62MW67MW69-1002550751001251501751852002502329172126426071476278741852341371692093384835723784996285961331068385131151239235221231250231521275484791872443371582693783653898389137763847365537123323351133973280375432830.140.140.140.260.140.260'40.140'40.130.280.144576448241054021443043594581453544044232444042730.310.280.230.300.320.420.540.540.500.540.620.544576448241054021443043594581440477846797894116184631252*810129141129139125131128131121134123134110131117134113130109125125136109125HAZMetalMH67MH63MH71MH69MH72MH70MH62MH64MH61MH65MH68MH66-25255065751001251501752002252504214818643911872831037469321693871455153149505806688295965561547166581621143012402432531872281712222187354200649340425576409328964332737973653391029703352399136223642306633300.100.210.140.140.140.210.160.220.140.150.170.145-111133348645573834453036184355475646624799398142870.170.230.380.200.370.380.530.540.540.540.500.521133348644203834450036184756****14685821269713802954*4056*323511111312613912112413014099109111128133145120138121140102117111126*Fullyductilefracture.

Noarrestload.

TA8LE5-5EFFECTOF550FIRRADIATION TO1.58x10n/cm(E>1.0HeV)ONTHENOTCHTOUGHNESS PROPERTIES OFTHED.C.COOKUNIT2REACTORVESSELSURVEILLANCE HATERIALS Average30ft-lb('I)Transition Temperature (F)Average35milLateralExpansion Temperature (F)Average50ft-lb('1)Transition Temperature (F)AverageEnergyAbsorption atFullShear(ft-lb)HaterialUnirradiated Irradiated ATUnirradiated Irradiated 4TUnirradiated Irradiated ATUnirradiated Irradiated d(ft-lb)PlateC5521-2(Longitudinal) 25120955015010055165110127111-16PlateC5521-2(Transverse) 3016013070190120702051358672-14MeldHetal108575501005070110407771-6HAZHetal-6045105-4085125-308011011582-33(1)"AVERAGE" isdefinedasthevaluereadfromthecurvefittedthroughthedatapointsoftheCharpytests(Figures5-1through5-4).y5-12 TABLE5-6COMPARISON OFTHED.C.COOKUNIT2SURVEILLANCE MATERIAL30FT-LBTRANSITION TEMPERATURE SHIFTSANDUPPERSHELFENERGYDECREASES WITHREGULATORY GUIDE1.99REVISION2PREDICTIONS 30ft-lbTransition Tem.ShiftUerShelfEnerDecreaseMaterialFluencePredicted (a)MeasuredCapsule10n/cm('F)('F)Predicted (a)Measured(>)(>)PlateC5521-2(Longitudinal) 0.2640.6831.061.5855778897559095951620222413191913PlateC5521-2(Transverse) 0.2640.6831.061.5855778897801001031301620222414201916WeldMetal0.2640.6831.061.5845637280405070751518212349108HAZMetal0.2640.6831.061.5850707210513211229(a)Regulatory Guide1.99,Revision25-13 TABLE5-7PROJECTED ENDOFLICENSE(32EFPY)RTNDTANDUPPERSHELFENERGYVALUESFORD.C.COOKUNIT2BELTLINEREGIONMATERIALS PERREGULATORY GUIDE1.99,REVISION2MATERIALDESCRIPTION RTNDTFUPPERSHELFENERGYft-lbsIntermediate ShellPlate,C5556-2Intermediate ShellPlate,C5521-2216171(171)7666LowerShellPlate,C5540-2LowerShellPlate,C5592-11001284752Intermediate ShellLongitudinal Welds90(56)(locatedat10'zimuth) 62LowerShellLongitudinal Welds(locatedat90'zimuth) 84(50)62Circumferential Meld102(67)62Notenumbersin()arebaseduponsurveillance capsuledata.5-14 TABLE5-8TENSILEPROPERTIES FORTHED.C.COOKUNIT2REACTORVESSELSURVEILLANCE MATERIALS IRRADIATED AT550'FTO1.58x10n/ctn(E)1.0MeV)MaterialSampleNumberTestTemp.~F0.2%YieldUltimateFractureFractureFractureUniformTotalReduction StrengthStrengthLoadStressStrengthElongation Elongation inArea~ksi~ksi.~ki~ksi.~ksi.PlatePlateMTllMT1215055079.570.397.493.73.603.65172.0131.873.374.410.59.620.116.75744WeldWeldMW11MW12'2555082.575.996.892.73.203.50173.9190.265.271.39.08.119.517.163585-15

(~C)-150-100-500501001502001008060c%40031008060>C4020016014000I0tl'F~0UNIRRADIATED

~IRRADIATED

<550'F),FLUENCEI58xIOn/cd1.51.00.5020012010080560402000No'F~~~160120-8040-200-1000100200300400TEMPERATURE

('f)Figure5-1.CharpyV-NotchImpactProperties forD.C.CookUnit2ReactorVesselIntermediate ShellPlateC5521-2(Longitudinal Orientation) 5-16

(~C)-150-100-50050100150200100806040200001008060'C40200120Ic9'F~t0NIIRRADIATED

~IRRADIATED (550'F),FLUEHCEl58xIOn/cn~2.52.01.51.00.516010080I604020l35'F013I'F~~1208040-200-1000100200300400500TEMPLRATURL

('f)Figure5-2.CharpyV-NotchImpactProperties forD.C.CookUnit2ReactorVesselIntermediate ShellPlateC5521-2(Transverse Orientation) 5-17 (C)-150-100-5005010015020010080604p20000~0~~1008060>C4020012050F0~0UNIRRADIATED

~IRRADIATED (550'F),FLUENCE!50xIOn/cn2.51.51.00.516010080I60400i0'F00T5F0~120804p-200-1000100200300400500TEMPERATURE

('F')Figure5-3.CharpyV-NotchImpactProperties forD.C.CookUnit2ReactorVesselSurveillance WeldMetal5-18

('C)-150-100-5005010015020010080K60~400081008060OC40200002oS~Ol25'I'~004~1.51.00,51601401200UNIRRADIATED

~IRRADIATED (550'F),ELUEhEEI$8xIOn/cn~002001601008060LJ40,20o000~ll9'I'~00~~1208040-200-1000100200300400TEMPERATURE (f)Figure5-4.CharpyV-NotchImpactProperties forD.C.CookUnit2ReactorVesselWeldHeat-Affected-Zone Netal5-19 ML45ML48ML42ML41ML43ML46ML47Figure5-5.CharpyImpactSpecimenFractureSurfacesforD.C.CookUnit2ReactorVesselIntermediate ShellPlateC5521-2(Longitudinal Orientation) 5-20 MT62MT61MT66MT71tfI*r!'iMT64MT72MT69&NWBSNWWsst<.

qIItqw(!i~4~AM+%38!!!!!!

hMT63MT68MT67MT65Figure5-6.CharpyImpactSpecimenFractureSurfacesforD.C.CookUnit2ReactorVesselIntermediate ShellPlateC5521-2(Transverse Orientation) 5-21 MW70MW64MW71MW68MW63MW61MW72MW65S<hI)-ca)iMW66MW62MW67MW69Figure5-7.CharpyImpactSpecimenFractureSurfacesforD.C.CookUnit2ReactorVesselSurveillance WeldNetal5-22 MH67MH63MH71MH69MH72MH62MH64tycholaMH61MH65MH68MH66Figure5-8.CharpyImpactSpecimenFractureSurfacesforD.C.CookUnit2ReactorVesselWeldHeat-Affected-Zone Metal5-23 12011010050100('C)150200250300800700g80cn7060504080ULTIMATETEHSILESTRENGTH02%YIELDSTRENGTHQQUNIRRADIATED 4~IRRADIATED AT550'F,FLUENCEL50xIOg'cn600'004003007060950-40g3020REDUCTION INAREATOTALELONGATION 10UNIFORHONGATION100200300400TEMPERATURE

('F)500FigUre5-9.TensileProperties forD.C.CookUnit2ReactorVesselIntermediate ShellPlateC5521-2(Transverse Orientation) 5-24 120110100Q90g80cn7050('C)100150200250300Il.TIMATE TENSILESTRENGTH2+D2%YIELDSTRENGTH8007006005004004080b,0UNIRRADIATED 4~IRRADIATED AT550F,FLUENCEL58xI019n/cn2 REDUCTION INAREA30060~50UNIFORMELONGATIII 10TOTALETION100200300400TEMPERATURE

('F)500Figure5-10.TensileProperties forD.C.CookUnit2ReactorVesselSurveillance WeldHetal5-25 889SpecimenMT11150'FSpecimenMT12550'FFigure5-11.Fractured TensileSpecimens fromD.C.CookUnit2ReactorVesselIntermediate ShellPlateC5521-2(Transverse Orientation) 5-26 SpecimenMW11125'FSpecimenMW12550'FFigure5-12.Fractured TensileSpecimens fromD.C.CookUnit2ReactorVesselSurveillance WeldMetal5-27 100.0090.0080.0070.006o.oo50.00h40.0030.0020.0010.000.000.00.10.STRAIN,IN/INMT11150F0.20100.0090.0080.0070.0060.00(050.00IM40.0030.0020.0010.000.000.00.040.080.12STRAIN,IN/INMT12550F0.16Figure5-13.Engineering Stress-Strain CurvesforPlateC5521-2TensileSpecimens NTllandHT12(Transverse Orientation) 5-28 100.0090.0080.0070.0060.005000IM40.0030.0020.0010.000.000.00.040.080.12STRAIN,IN/INMW11125F0.160.20100.0090.0080.0070.006o.oo50.00le40.0030.0020.0010.000.000.00.040.080.12STRAIN,IN/INMW12550F8.160.20Figure5-14.Engineering Stress-Strain CurvesforWeldMetalTensileSpecimens NWllandMW125-29 SECTION6.0RADIATION ANALYSISANDNEUTRONDOSIMETRY 6.1Introduction Knowledge oftheneutronenvironment withinthereactorpressurevesselandsurveillance capsulegeometryisrequiredasanintegralpartofLWRreactorpressurevesselsurveillance programsfortworeasons.First,inordertointerpret theneutronradiation-induced materialpropertychangesobservedinthetestspecimens, theneutronenvironment (energyspectrum, flux,fluence)towhichthetestspecimens wereexposedmustbeknown.Second,inordertorelatethechangesobservedinthetestspecimens tothepresentandfuturecondition ofthereactorvessel,arelationship mustbeestablished betweentheneutronenvironment atvariouspositions withinthereactorvesselandthatexperienced bythetestspecimens.

Theformerrequirement isnormallymetbyemploying acombination ofrigorousanalytical techniques andmeasurements obtainedwithpassiveneutronfluxmonitorscontained ineachofthesurveillance capsules.

Thelatterinformation isderivedsolelyfromanalysis.

Theuseoffastneutronfluence(E>1.0MeV)tocorrelate measuredmaterials properties changestotheneutronexposureofthematerialforlightwaterreactorapplications hastraditionally beenacceptedfordevelopment ofdamagetrendcurvesaswellasfortheimplementation oftrendcurvedatatoassessvesselcondition.

Inrecentyears,however,ithasbeensuggested thatanexposuremodelthataccountsfordifferences inneutronenergyspectrabetweensurveillance capsulelocations andpositions withinthevesselwallcouldleadtoanimprovement intheuncertainties associated withdamagetrendcurvesaswellastoamoreaccurateevaluation ofdamagegradients throughthepressurevesselwall.Becauseofthispotential shiftawayfromathreshold fluencetowardanenergydependent damagefunctionfordatacorrelation, ASTHStandardPracticeE853,"Analysis andInterpretation ofLightWaterReactor6-1 Surveillance Results,"

recommends reporting displacements perironatom(dpa)alongwithfluence(E>1.0MeV)toprovideadatabaseforfuturereference.

Theenergydependent dpafunctiontobeusedforthisevaluation isspecified inASTMStandardPracticeE693,"Characterizing NeutronExposures inFerriticSteelsinTermsofDisplacements perAtom."Theapplication ofthedpaparameter totheassessment ofembrittlement gradients throughthethickness ofthepressurevesselwallhasalreadybeenpromulgated inRevision2totheRegulatory Guide1.99,"Radiation DamagetoReactorVesselMaterials."

Thissectionprovidestheresultsoftheneutrondosimetry evaluations performed inconjunction withtheanalysisoftestspecimens contained insurveillance CapsuleU.Fastneutronexposureparameters intermsoffastneutronfluence(E>1.0MeV),fastneutronfluence(E>0.1Mev),andironatomdisplacements (dpa)areestablished forthecapsuleirradiation history.Theanalytical formalism relatingthemeasuredcapsuleexposuretotheexposureofthevesselwallisdescribed andused=toprojecttheintegrated exposureofthevesselitself.Alsouncertainties associated withthederivedexposureparameters atthesurveillance capsuleandwiththeprojected exposureofthepressurevesselareprovided.

6.2DiscreteOrdinates AnalsisAplanviewofthereactorgeometryatthecoremidplaneisshowninFigure4-1.Eightirradiation capsulesattachedtothethermalshieldareincludedinthereactordesigntoconstitute thereactorvesselsurveillance program.Thecapsulesarelocatedatazimuthal anglesof4.0,40.0',140.0,176.0',184.0,220.0,320.0,and356.0relativetothecorecardinalaxesasshowninFigure4-1.Aplanviewofasurveillance capsuleholderattachedtothethermalshieldisshowninFigure6-1.Thestainless steelspecimencontainers are1.0inchsquareandapproximately 38inchesinheight.Thecontainers arepositioned axiallysuchthatthespecimens arecenteredonthecoremidplane, thusspanningthecentral3feetofthe12-foothighreactorcore.6-2 Fromaneutrontransport standpoint, thesurveillance capsulestructures aresignificant.

Theyhaveamarkedeffectonboththedistribution ofneutronfluxandtheneutronenergyspectruminthewaterannulusbetweenthethermalshieldandthereactorvessel.Inordertoproperlydetermine theneutronenvironment atthetest'pecimen locations, thecapsulesthemselves mustbeincludedintheanalytical model.Inperforming thefastneutronexposureevaluations forthesurveillance capsulesandreactorvessel,twodistinctsetsoftransport calculations werecarriedout.Thefirst,asinglecomputation intheconventional forwardmode,wasusedprimarily toobtainrelativeneutronenergydistributions throughout thereactorgeometryaswellastoestablish relativeradialdistributions ofexposureparameters (P(E>1.0Mev),P(E>=0.IMev),anddpa)throughthevesselwall.Theneutronspectralinformation wasrequiredfortheinterpretation ofneutrondosimetry withdrawn fromthesurveillance capsuleaswellasforthedetermination ofexposureparameter ratios;i.e.,dpa/P(E>1.0MeV),withinthepressurevesselgeometry.

Therelativeradialgradientinformation wasrequiredtopermittheprojection ofmeasuredexposureparameters tolocations interiortothepressurevesselwall;i.e.,theI/4T,I/2T,and3/4Tlocations.

Thesecondsetofcalculations consisted ofaseriesofadjointanalysesrelatingthefastneutronflux(E>1.0MeV)atsurveillance capsulepositions, andseveralazimuthal locations onthepressurevesselinnerradiustoneutronsourcedistributions withinthereactorcore.Theimportance functions generated fromtheseadjointanalysesprovidedthebasisforallabsoluteexposureprojections andcomparison withmeasurement.

Theseimportance functions, whencombinedwithcyclespecificneutronsourcedistributions, yieldedabsolutepredictions ofneutronexposureatthelocations ofinterestforeachcycleofirradiation; andestablished themeanstoperformsimilarpredictions anddosimetry evaluations forallsubsequent fuelcycles.Itisimportant tonotethatthecyclespecificneutronsourcedistributions utilizedintheseanalysesincludednotonlyspatialvariations offissionrateswithinthereactorcore;but,alsoaccounted fortheeffectsofvaryingneutronyield6-3 perfissionandfissionspectrumintroduced bythebuild-inofplutonium asthetburnupofindividual fuelassemblies increased.

Theabsolutecyclespecificdatafromtheadjointevaluations togetherwithrelativeneutronenergyspectraandradialdistribution information fromtheforwardcalculation providedthemeansto:l.Evaluateneutrondosimetry obtainedfromsurveillance capsulelocations.

2.Extrapolate dosimetry resultstokeylocations attheinnerradiusandthroughthethickness ofthepressurevesselwall.3.Enableadirectcomparison ofanalytical prediction withmeasurement.

4.Establish amechanism forprojection ofpressurevesselexposureasthedesignofeachnewfuelcycleevolves.Theforwardtransport calculation forthereactormodelsummarized inFigures4-1and6-1wascarriedoutinR,8geometryusingtheDOTtwo-dimensional discreteordinates code~5~andtheSAILORcross-section library~~.TheSAILORlibraryisa47groupENDFB-IVbaseddatasetproducedspecifically forlightwaterreactorapplications.

Intheseanalysesanisotropic scattering wastreatedwithaP3expansion ofthecross-sections andtheangulardiscretization wasmodeledwithanSBorderofangularquadrature.

Thereference corepowerdistribution utilizedintheforwardanalysiswasderivedfromstatistical studiesoflong-term operation ofWestinghouse 4-loopplants.Inherentinthedevelopment ofthisreference corepowerdistribution istheuseofanout-infuelmanagement strategy; i.e.,freshfuelonthecoreperiphery.

Furthermore, fortheperipheral fuelassemblies, a2auncertainty derivedfromthestatistical evaluation ofplanttoplantandcycletocyclevariations inperipheral powerwasused.Sinceitisunlikelythatasinglereactorwouldhaveapowerdistribution atthenominal+2u6-4 levelforalargenumberoffuelcycles,theuseofthisreference distribution isexpectedtoyieldsomewhatconservative results.AlladjointanalyseswerealsocarriedoutusinganS8orderofangularquadrature andtheP3cross-section approximation fromtheSAILORlibrary.Adjointsourcelocations werechosenatseveralazimuthal locations alongthepressurevesselinnerradiusaswellasthegeometric centerofeachsurveillance capsule.Again,thesecalculations wereruninR,8geometrytoprovideneutronsourcedistribution importance functions fortheexposureparameter ofinterest; inthiscase,P(E>1.0MeV).Havingtheimportance functions andappropriate coresourcedistributions, theresponseofinterestcouldbecalculated as:R(r,8)-frf8fE)(r,8,E)S(r,8,E)rdrd8dEwhere:R(r,8)=P(E>1.0MeV)atradiusrandazimuthal angle8Adjointimportance functionatradius,r,azimuthal angle8,andneutronsourceenergyE.S(r,8,E)-Neutronsourcestrengthatcorelocationr,8andenergyE.Althoughtheadjointimportance functions usedintheanalysiswerebasedonaresponsefunctiondefinedbythethreshold neutronflux(E>1.0MeV),priorcalculations haveshownthat,whiletheimplementation oflowleakageloadingpatternssignificantly impact-themagnitude andthespatialdistribution oftheneutronfield,changesintherelativeneutronenergyspectrumareofsecondorder.Thus,for,agivenlocationtheratioofdpa/P(E>1.0MeV)isinsensitive tochangingcoresourcedistributions.

Intheapplication oftheseadjointimportance functions totheDCCookUnit2reactor,therefore, theirondisplacement rates(dpa)andtheneutronflux(E>0.1MeV)werecomputedonacyclespecificbasisbyusingdpa/It)(E.>1.0MeV)andP(E>0.1MeV)/P(E>1.0MeV)ratiosfromtheforwardanalysisinconjunction withthecyclespecificIl')(E>1.0MeV)solutions fromtheindividual adjointevaluations.

6-5 Thereactorcorepowerdistribution usedintheplantspecificadjointcalculations wastakenfromthefuelcycledesignreportsforthefirsteightoperating cyclesofDCCookUnit2[17through19]Selectedresultsfromtheneutrontransport analysesareprovidedinTables6-1through6-5.Thedatalistedinthesetablesestablish themeansforabsolutecomparisons ofanalysisandmeasurement forthecapsuleirradiation periodandprovidethemeanstocorrelate dosimetry resultswiththecorresponding neutronexposureofthepressurevesselwall.InTable6-1,thecalculated exposureparameters

[P(E>1.0MeV),4(E>0.1MeV),anddpa]aregivenatthegeometric centerofthetwosymmetric surveillance capsulepositions forboththedesignbasisandtheplantspecificcorepowerdistributions.

Theplantspecificdata,basedontheadjointtransport

analysis, aremeanttoestablish theabsolutecomparison ofmeasurement withanalysis.

Thedesignbasisdataderivedfromtheforwardcalculation areprovidedasapointofreference againstwhichplantspecificfluenceevaluations canbecompared.

SimilardataisgiveninTable6-2forthepressurevesselinnerradius.Again,thethreepertinent exposureparameters arelistedforboththedesignbasisandtheCycles1through8plantspecificpowerdistributions.

Itisimportant tonotethatthedataforthevesselinnerradiusweretakenattheclad/base metalinterface; and,'hus, represent themaximumexposurelevelsofthevesselwallitself.Radialgradientinformation forneutronflux(E>1.0MeV),neutronflux(E>0.1MeV),andironatomdisplacement rateisgiveninTables6-3,6-4,and6-5,respectively.

Thedata,obtainedfromtheforwardneutrontransport calculation, arepresented onarelativebasisforeachexposureparameter atseveralazimuthal locations.

Exposureparameter distributions withinthewallmaybeobtainedbynormalizing thecalculated orprojected exposureatthevesselinnerradiustothegradientdatagiveninTables6-3through6-5.6-6 Forexample,theneutronflux(E>1.0MeV)atthe1/4Tpositiononthe45'zimuth isgivenby:PI/4T(45')

.i$(220.27,45')F(225.75,45')where:p~/4T(45')

Projected neutronfluxatthe1/4Tpositiononthe45'zimuth 4(220.27,45')

Projected orcalculated neutronfluxatthevesselinnerradiusonthe45'zimuth.

F(225.75,45')=Relativeradialdistribution functionfromTable6-3.Similarexpressions applyforexposureparameters intermsofP(E>O.lMeV)anddpa/sec.6.3NeutronDosimetrThepassiveneutronsensorsincludedin.theDCCookUnit2surveillance programarelistedinTable6-6.AlsogiveninTable6-6aretheprimarynuclearreactions andassociated nuclearconstants thatwereusedintheevaluation oftheneutronenergyspectrumwithinthecapsuleandthesubsequent determination ofthevariousexposureparameters ofinterest[III(E>1.0Mev),P(E>O.lMeV),dpa].Therelativelocations oftheneutronsensorswithinthecapsulesareshowninFigure4-2.Theiron,nickel,copper,andcobalt-aluminum

monitors, inwireform,wereplacedinholesdrilledinspacersatseveralaxiallevelswithinthecapsules.

Thecadmium-shielded neptunium anduraniumfissionmonitorswereaccommodated withinthedosimeter blocklocatednearthecenterofthecapsule.6-7 TheuseofpassivemonitorssuchasthoselistedinTable6-6doesnotyieldadirectmeasureoftheenergydependent fluxlevelatthepointofinterest.

Rather,theactivation orfissionprocessisameasureoftheintegrated effectthatthetime-andenergy-dependent neutronfluxhasonthetargetmaterialoverthecourseoftheirradiation period.Anaccurateassessment oftheaverageneutronfluxlevelincidentonthevariousmonitorsmaybederivedfromtheactivation measurements onlyiftheirradiation parameters arewellknown.Inparticular, thefollowing variables areofinterest:

Thespecificactivityofeachmonitor.Theoperating historyofthereactor.Theenergyresponseofthemonitor.Theneutronenergyspectrumatthemonitorlocation.

Thephysicalcharacteristics ofthemonitor.Thespecificactivityofeachof-theneutronmonitorswasdetermined usingestablished ASTMprocedures

[20through33].Following samplepreparation andweighing, theactivityofeachmonitorwasdetermined bymeansofalithium-drifted germanium, Ge(Li),gammaspectrometer.

Theirradiation historyoftheDCCookUnit2reactorduringCyclesIthrough8wasobtainedfromNUREG-0020, "Licensed Operating ReactorsStatusSummaryReport"fortheapplicable period.Theirradiation historyapplicable toCapsuleUisgiveninTable6-7.Measuredandsaturated reactionproductspecificactivities aswellasmeasuredfullpowerreactionratesarelistedinTable6-8.Reactionratevalueswerederivedusingthepertinent datafromTables6-6and6-7.Valuesofkeyfastneutronexposureparameters werederivedfromthemeasuredreactionratesusingtheFERRETleastsquaresadjustment code~~.The6-8 FERRETapproachusedthemeasuredreactionratedataandthecalculated neutronenergyspectrumatthethecenterofthesurveillance capsuleasinputandproceeded toadjustapriori(calculated) groupfluxestoproduceabestfit(inaleastsquaressense)tothereactionratedata.Theexposureparameters alongwithassociated uncertainties wherethenobtainedfromtheadjustedspectra.IntheFERRETevaluations, alog-normal least-squares algorithm weightsboththeapriorivaluesandthemeasureddatainaccordance withtheassigneduncertainties andcorrelations.

Ingeneral,themeasuredvaluesfarelinearlyrelatedtothefluxPbysomeresponsematrixA:(s,)f(s)(~)ZAgiggwhereiindexesthemeasuredvaluesbelonging toasingledatasets,gdesignates theenergygroupand~delineates spectrathatmaybesimultaneously adjusted.

Forexample,RZ1gigrelatesasetofmeasuredreactionratesR;toasinglespectrumPbythemultigroup crosssectiono;g.(Inthiscase,FERRETalsoadjuststhecross-sections.)

Thelog-normal approachautomatically accountsforthephysicalconstraint ofpositivefluxes,evenwiththelargeassigneduncertainties.

IntheFERRETanalysisofthedosimetry data,thecontinuous quantities (i.e.,fluxesandcross-sections) wereapproximated in53groups.Thecalculated fluxesfromthediscreteordinates analysiswereexpandedintotheFERRETgroupstructure usingtheSAND-IIcode~~.Thisprocedure wascarriedoutbyfirstexpanding theapriorispectrumintotheSAND-II620groupstructure usingaSPLINEinterpolation procedure forinterpolation inregionswheregroupboundaries donotcoincide.

The620-point

.spectrum wastheneasilycollapsed 6-9 tothegroupschemeusedinFERRET.Thecross-sections werealsocollapsed intothe53energy-group structure usingSANDIIwithcalculated spectra(asexpandedto620groups)asweighting functions.

ThecrosssectionsweretakenfromtheENDF/B-Vdosimetry file.Uncertainty estimates and53x53covariance matriceswereconstructed foreachcrosssection.Correlations betweencrosssectionswereneglected duetodataandcodelimitations, butareexpectedtobeunimportant.

Foreachsetofdataorapriorivalues,theinverseofthecorresponding relativecovariance matrixMisusedasastatistical weight.Insomecases,asforthecrosssections, amultigroup covariance matrixisused.Moreoften,asimpleparameterized formisused:2MggRN+RgRgPggwhereRNspecifies anoverallfractional normalization uncertainty (i.e.,completecorrelation) forthecorresponding setofvalues.Thefractional uncertainties Rspecifyadditional randomuncertainties forgroupgthatarecorrelated withacorrelation matrix:I2P,(I-8)b',+8exp[~~~]9999272Thefirsttermspecifies purelyrandomuncertainties whilethesecondtermdescribes short-range correlations overarange7(8specifies thestrengthofthelatterterm).Fortheaprioricalculated fluxes,ashort-range correlation of76groupswasused.Thischoiceimpliesthatneighboring groupsarestronglycorrelated when8iscloseto1.Stronglong-range correlations (oranticorrelations) werejustified basedoninformation presented byR.E.Maerker~~.Maerker's resultsarecloselyduplicated when76.Fortheintegralreactionratecovariances, simplenormalization andrandomuncertai.nties werecombinedasdeducedfromexperimental uncertainties.

6-10 ResultsoftheFERRETevaluation oftheCapsuleUdosimetry aregiveninTable6-9.Thedatasummarized inTable6-9indicated thatthecapsulereceivedanintegrated exposureof1.58x10n/cm2(E>1.0MeV)withanassociated euncertainty of+8X.Alsoreportedarecapsuleexposures intermsoffluence(E>0.1MeV)andironatomdisplacements (dpa).Summaries ofthefitIoftheadjustedspectrumareprovidedin"-Table 6-10.Ingeneral,excellent resultswereachievedinthefitsoftheadjustedspectrumtotheindividual experimental reactionrates.Theadjustedspectrumitselfistabulated inTable6-11fortheFERRET53energygroupstructure.

Asummaryofthemeasuredandcalculated neutronexposureofCapsuleUispresented inTable6-12.Theagreement betweencalculation andmeasurement fallswithin+8Xforallfastneutronexposureparameters listed.Thethermalneutronexposurecalculated fortheexposureperiodundepredicted themeasuredvaluebyapproximately afactoroftwo.Neutronexposureprojections atkeylocations onthepressurevesselinnerradiusaregiveninTable6-13.Alongwiththecurrent(8.65EFPY)exposurederivedfromtheCapsuleUmeasurements, projections arealsoprovidedforanexposureperiodof16EFPYandtoendofvesseldesignlife(32EFPY).Intheevaluation ofthefutureexposureofthereactorpressurevesseltheexposureratesaveragedoverthefirsteightcyclesofoperation wereemployed.

Inthecalculation ofexposuregradients foruseinthedevelopment ofheatupandcooldowncurvesfortheDCCookUnit2reactorcoolantsystem,exposureprojections to16EFPYand32EFPYwerealsoevaluated.

Databasedonbothafluence(E>1.0MeV)slopeandaplantspecificdpaslopethroughthevesselwallareprovidedinTable6-14.InordertoaccessRTNDTvs.fluence6-11 trendcurves,dpaequivalent fastneutronfluencelevelsforthe1/4Tand3/4Tpositions weredefinedbytherelations

~'I/4/)='I(I()(44(I())(I/4/)='I(II)(I(I())Usingthisapproachresultsinthedpaequivalent fluencevalueslistedinTable6-14.InTable6-15updatedleadfactorsarelistedforeachoftheDCCookUnit2surveillance capsules.

Thesedatamaybeusedasaguideinestablishing futurewithdrawal schedules fortheremaining capsules.

Inordertoprovideaconsistent databaseforcomparison withmeasuredshiftdata,thedosimetry setsfrompreviously withdrawn surveillance capsules(X,Y,andT)werere-evaluated usingthepreviously described leastsquaresadjustment methodology alongwithcurrentreactioncross-sections andnucleardata.Theresultsofthosere-evaluations wereasfollows:FLUENCE[E>1.0MeV]CapsuleXCapsuleYCapsuleT1.O6X10>>6.83X102.64Xlol8Thelouncertainty associated witheachofthesefluenceevaluations isSX.6-12

~00~0gg~~

TABLE6-1CALCULATED FASTNEUTRONEXPOSUREPARAMETERS ATTHESURVEILLANCE CAPSULECENTERItI(E>1.0MeV)~ncm~sec2P(E>O.IMev)~ncm~sec2IronDisplacement Ratedasec4.0'0.0'.0'0.0'.0'0.0'ESIGN BASIS2.82X10109.05X10108.15X103.04X10114.58X10lll.ssxlo-'0CYCLE1CYCLE2CYCLE3CYCLE4CYCLE5CYCLE6CYCLE7CYCLE82.12X106.682.29X106.622.21X105.462.19X105.47224X1010493193X10105192.12xlo'.04.7o1.66X10104.76X1010xlo'0xlo'0xlo'0X1010xloloX1010xlo'06.13X10106.62X10106.39X10106.33X10106.47xlo'05.58X10106.13X10104.80X10102.24X1O"2.22X10111.83X10111.84X1O"1.66X1O"1.74XIO"1.58X10111.60X10113.43X10113.71X10113.58X10113.55X10113.63X10-11313X10-113.43X10112.69X10111.14xlo-101.13X10109.34X10-119.35X10-118.43X10118.87X10118.04X1018.14X10-11 TABLE6-2CALCULATED FASTNEUTRONEXPOSURERATESATTHEPRESSUREVESSELCLAD/BASE METALINTERFACE E>I.OMeVnc~sec0.0'5.0'0.0'5.0'ESIGN BASIS6.43X10091.36X10101.72X10102.60X1010CYCLE1CYCLE2CYCLE3CYCLE4CYCLE5CYCLE6CYCLE7CYCLE86.34X10096.74X10096.43X10096.58xlo096.50X1009587xlp09639X104.92X1091.O1X1O'01.03X10109.59X10104X10109.54X10099.46X10099.99X10097.4oxlo091.26X101.94X10101.24X10101.92X10101.06X10101.60Xlolo1.11X10101.63X10109.83X101.46X101.02X101.53X10109.63X10091.41X10109.53X101.42X10E>0.1MeVncm2~sec0.0'5.0'0.0'5.0'ESIGN BASIS2.11X103.41X104.34X106.96X10CYCLE1CYCLE2CYCLE3CYCLE4CYCLE5CYCLE6CYCLE7CYCLE81.59X10101.69X10101.61X101.65X10101.63X10101.47X1011.60X101.23X10102.54X10103.18X105.04X1059Xlpl0312Xlplp499Xlplp2.41X10102.67X10104.16X10102.61X102.80X104.24X102.39X10102.48X10103.80X10102.37X10102.57X10103.98X1010251X1010243X1010367X1010186xlplo24pxlplp369Xlpl06-15 TABLE6-2(Continued)

CALCULATED FASTNEUTRONEXPOSURERATESATTHEPRESSUREVESSELCLAD/BASE METALINTERFACE IronAtomDislacementRatedasec0.0'5.0'0.0'5.0'ESIGN BASIS1.37X10112.19X10112.73X104.26X10CYCLE1CYCLE2CYCLE3CYCLE4CYCLE5CYCLE6CYCLE7CYCLE81.03X10111.63X10-111.10X101.66X1011p5Xlp-ll154Xlp-ll1.07X10111.67X1011p6Xlp-ll154Xlp-llg57Xlp-12152Xlp-ll1.04X10111.61X10118.02X1021.19X1011ppXlp-ll3p8Xlp-llg7Xlp-ll3p5Xlp-ll1.69X10112.54X1076Xlp-ll25gXlp-ll1.56X1012.32X10111.62X10112.43X101153Xlp-ll224Xlp-ll1.52X102.26X10116-16 TABLE6-3RELATIVERADIALDISTRIBUTIONS OFNEUTRONFLUX(E>1.0MeV)WITHINTHEPRESSUREVESSELWALLRadius~cm0'5'0'5'20.27(1) 220.64221.66222.99224.31225.63226.95228.28229.60230.92232.25233.57234.89236.22237.54238.86240.19241.51242.17(2) 1.000.9770.8840.7580.6410.5370.4480.3720.3090.2550.2110.1740.1430.1170.09610.07830.06350.05110.04831.000.9780.8870.7620.6440.5400.4510.3730.3100.2570.2120.1750.1440.1180.09630.07830.06320.05010.04691.000.9790.8890.7650.6480.5450.4550.3790.3150.2610.2160.1780.1470.1210.09890.08070.06560.05190.04871.000.9770.8850.7560.6370.5340.4430.3670.3030.2500.2060.1690.1380.1130.09120.07360.05840.04540.0422NOTES:1)BaseMeta1InnerRadius2)BaseMeta1OuterRadius6-17 TABLE6-4hRELATIVERADIALDISTRIBUTIONS OFNEUTRONFLUX(E>0.1HeV)WITHINTHEPRESSUREVESSELWALLRadius~cmpo15'0'5'20.27(1) 220.64221.66222.99224.31225.63226.95228.28229.60230.92232.25233.57234.89236.22237.54238.86240.19241.51242.17(2) 1.001.001.000.9650.9160.8610.8030.7460.6890.6330.5780.5250.4740.4240.3750.3280.2830.2390.2291.001.000.9960.9580.9060.8490.7900.7320.6750.6190.5650.5130.4630.4140.3670.3220.2770.2320.2201.001.001.000.9680.9190.8650.8090.7520.6950.6400.5860.5340.4830.4330.3850.3380.2920.2450.2321.001.000.9940.9530.8980.8380.7770.7170.6570.6000.5440.4900.4370.3870.3380.2910.2440.1960.183NOTES:1)BaseMetalInnerRadius2)BasePetalOuterRadius6-18 TABLE6-5RELATIVERADIALDISTRIBUTIONS OFIRONDISPLACEMENT RATE(dpa)WITHINTHEPRESSUREVESSELWALLRadius0015'0'5'20.27(1) 220.64221.66222.99224.31225.63226:95228.28229.60230.92232.25233.57234.89236.22237.54238.86240.19241.51242.17(2) 1.000.9830.9130.8180.7280.6470.5740.5100.4530.4020.3560.3150.2770.2430.2120.1820.1550.1310.1251.000.9830.9140.8190.7280.6460.5730.5070.450.0.3990.3530.3120.2750.2410.2100.1810.1540.1280.1221.000.9840.9180.8270.7390.6590.5870.5230.4660.4140.3680.3270.2890.2540.2220.1920.1640.1370.1301.000.9830.9150.8200.7300.6470.5730.5070.4490.3970.3490.3070.2690.2330.2010.1700.1410.1130.106NOTES:1)BaseMeta1InnerRadius2)BaseMeta1OuterRadius6-19 TABLE6-6NUCLEARPARAMETERS FORNEUTRONFLUXMONITORSMonitorMaterialReactionofInterestTargetWeightFractionResponse~RaneProductHalf-Life FissionYield~XCopperIronNickelUranium-238*

Cu(n,e)CoFe4(n,p)HnNi58(n,p)Co58 U238(nf)Cs1370.69170.05820.68301.0E>4.7MeVE>1.0MeVE>1.0MeVE>0.4HeV5.272yrs312.2-days70.90days30.12yrs5.99Neptunium-237*

Np(n,f)CsCobalt-Aluminum*

Co(n,y)CoCobalt-Aluminum Co(n,y)Co1.0E>0.08MeV30.12yrs0.0015-:E>0.015MeV5.272yrs0.00150.4ev>E>0.015HeV5.272yrs6.50*Denotesthatmonitoriscadmiumshielded.

TABLE6-.7MONTHLYTHERMALGENERATION DURINGTHEFIRSTEIGHTFUELCYCLESOFTHEDCCOOKUNIT2REACTOR3/784/785/786/787/788/789/7810/7811/7812/781/792/793/794/795/796/797/798/799/7910/79ll/7912/79l/802/803/804/805/806/807/808/809/8010/8011/8012/801/812/813/814/815/816/817/818/8153096521821653969136547812470831529472217877922311198482382476056224071422205622483455216426914493470225816425136902266726152234600584404220940324187992354329248325021876111408949249659423937831414143014887582505373227168410538770449803237420217758772338703THERMALGENERATION

~MONTNW-hTHERMALGENERATION MW-h243071428478424358482517865229594421961908335552391274251693723311682496782101151722413322293400157531103415342242228253360224282342461540185146117113733436372693211188161453959383687435731235476733977000417277341526325725423846056182059199361108271484IIONTII9/8110/8111/8112/811/822/823/824/825/826/827/828/829/8210/8211/8212/821/832/833/834/835/836/837/838/8329/83210/8311/8312/8321/8422/8423/844/845/846/847/8418/8429/84210/842ll/84212/8411/8512/852THERMALGENERATION THMW-h246148824495232532441245162310490026063901632491372641201934720436401360957000098098020340551973118201457919742082039056203932517760491596034565732080553184977014097631485651012580921973726199508820398141900060203846614326390000rMON3/854/855/856/857/858/859/8510/8511/8512/851/862/863/864/865/866/867/868/869/8610/8611/8612/861/872/873/874/875/876/877/878/879/8710/8711/8712/871/882/883/884/885/886/887/888/8880NTH0000007752602288800253045012973152508038215583024521432493553235581724543078611302282581253406724528832165049176722200001338296188793525330402110364224178224471362495857241016624351505909072357045251913119127202474282244252712191689/8810/8811/8812/881/892/893/894/895/896/897/898/899/8910/8911/8912/891/902/903/904/905/906/907/908/909/9010/90ll/9012/901/912/913/914/915/916/917/918/919/9110/91ll/9112/911/922/92THERMALGENERATION

~MII-h6-21 TABLE6-8MEASUREDSENSORACTIVITIES ANDREACTIONRATESMonitorandxialLocationMeasuredActivitydissec-mSaturated Activitydissec-mCapsuleCenterReactionRate~IIPNULiUCu-63(n,a)Co-60Top-Middle MiddleBottom-Middle Average1.23x1051.23x1051.24x1051.23x1052.67x1052.67x1052.70x1052.68x1053.94x1017Fe-54(n,p)

Mn-54TopTop-Middle MiddleBottom-Middle BottomAverage9.19x1059.45x1059.50x1058.59x1059.30x1059.21x1052.15x1062.21x1062.22x1062.01x1062.18x1062.15x1063.64x10-15Ni-58(n,p)Co-58TopMiddleBottomAverage3.93x1063.93x1063.96x1063.94x1063.21x1073.21x1073.24x1073.22x1075.41x1015U-238(n,f)Cs-137(Cd)Middle4.88x1052.94x1061.94x10146-22 TABLE6-8MEASUREDSENSORACTIVITIES ANDREACTIONRATES-cont'dMonitorandxialLocationMeasuredActivitydissec-mSaturatedActivitydissec-mCapsuleCenterReactionRate~IIPNUCLEUSNp-237(n,f)

Cs-137(Cd)Middle4.26x1062.57x1071.61x1013Co-59(n,y)Co-60TopBottomAverage1.88x1071.74x1071.81x1074.09x1073.78x1073.94x1072.70x1012Co-59(n,y)Co-60(Cd)Bottom32x1061.59x107120x10-126-23 TABLE6-9SUMMARYOFNEUTRONDOSIMETRY RESULTSTIMEAVERAGEDEXPOSURERATESP(E>1.0MeV){'n/cm2-sec}

4(E>0.1MeV)(n/cm2-sec}

dpa/sec4(E<0.414eV)(n/cm2-sec}

5.78x10102.00x10119.78x10-116.29x1010+15X+10X+20X(E>1.0MeV)(n/cm2}4(E>0.1MeV)(n/cm2}dpaINTEGRATED CAPSULEEXPOSURE1.58x105.46x102.67x102+15X+10X4'E<0414eV)(n/cm2}1.72x1019+20XNOTE:Tota1Irradiation Time=8.65EFPY6-24 TABLE6-10COMPARISON OFMEASUREDANDFERRETCALCULATED REACTIONRATESATTHESURVEILLANCE CAPSULECENTERReactionpeas~edAdjustedCalcuationCu-63(n,a)Co-60Fe-54(n,p)Mn-54Ni-58(n,p)Co-58U-238(n,f)Cs-137(Cd)Np-237(n,f)Cs-137(Cd)Co-59(n,y)Co-60Co-59(n,y)Co-60(Cd)3.94xl0173.64xl0155.41xl0151.94xlo-'4 1.6lx10132.70x10121.20xl0123.94x10173.74x10155.28xl0151.93xl0141.61xl0132.69X10-12 1.20x10121.001.030.981.001.001.001.006-25 TABLE6-11ADJUSTEDNEUTRONENERGYSPECTRUMATTHESURVEILLANCE CAPSULECENTERGroupEnergyAdjusyedFlux(Mev)(n/cm-sec)GroupEnergy(Mev)Addus/edFlux(n/cm-sec)12345678910ll121314151617181920212223242526271.73xl011.49xl011.35xl011.16xl01l.ooxlol8.61x1007.4lx1006.07xl004.97x1003.68xl002.87xl002.23xl001.74xl001.35xl00l.llxl008.2lx1016.39xlO14.98x1013.88x10I3.02xlO11.83x101l.llxlO16.74xlO24.09x1022.55xlO21.99xlO21.50xlO23.36x1068.20xl063.76x1079.5lx1072.29xl084.llxl089.86xl081.42xl092.92x1093.69xl097.37xl099.24x109,1.21x1010 1.22xl010

2.0 8xl010

2.22x1010 2.18x1010 1.55xl010

2.0 5xl010

2.27x1010 2.16xl010 1.71xl010 1.23xl010 7.42xl098.90xl094.83xl096.52xl09282930~31323334353637383940414243444546474849505152539.12x1035.53x1033.36x1032.84x1032.40xlO32.04xlO31.23xlO37.49xlO44.54xlO42.75x1041.67xlO41.0lxlO46.14x1053.73xlO52.26xlO51.37xlO5832xlO65.04xlO63.06xlO61.86xlO61.13x1066.83xlO74.14x1072.51x1071.52x1079.24xlO88.36xl091.05xl010 3.25xl093.09x1092.98x1098.60xl098.31xl097.99xl097.73x1098.15xl098.85xl098.8lxl098.79xl098.66xl098.48xl098.31x1098.02xl097.55xl097.18x1096.72xl095.29xl096.28x1091.03xl010

1.0 5xl010

1.05x1010 3.16x1010 NOTE:Tabulated energylevelsrepresent theupperenergyofeachgroup.6-26 0TABLE6-12COMPARISON OFCALCULATED ANDMEASUREDEXPOSURELEVELSFORCAPSULEUCalculated Measured~CMC(E>1.0MeV)(n/cm)4(E>O.1MeV)(n/cm)1.49x10195.01xIO>>1.58x10195.46x10190.940.92dpa2.55x1022.67x1020.96%(E<0.414eV){n/cm)8.84x10181.72x10190.516-27 TABLE6-13NEUTRONEXPOSUREPROJECTIONS ATKEYLOCATIONS ONTHEPRESSUREVESSELCLAD/BASE HETALINTERFACE 8.65EFPY(E>1.0Hev)[n/cm2](E>O.lHeV)[n/cm2]IronAtomDisplacements

[dpa](E>1.0Hev)[n/cm2]C(E>O.lHeV)[n/cm2]IronAtomDisplacements

[dpa](E>1.0Hev)[n/cm2](E>O.lHeV)[n/cm2]IronAtomDisplacements

[dpa]45'.65X10'84.48X1016.12X1016.95X1017.79X101.21X1012.92X103.93X104.46X104.91X107.39X1016.0EFPY15'0'5'.31 X10184.51X10185.12X10185.72X10188.58X1018.8.28X10181.13X10191.29X101.44X10192.23X10195.40X107.26X1038.24X109.09X101.36X1032.0EFPY45'.63X109.02X101.02X101.14X101.71X101.66X102.26X102.56X102.87X104.45X101.08X1021.45X1021.64X1021.81X1022.72X10 TABL14NEUTRONEXPOSUREVALUESFORUSEINTHEGENERATION OFHEATUP/COOLDOWN CURVESNEUTRONFLUENCEE>1.0HeVSLOPE(n/cm)16EFPY~daSLOPE(equivalent n/cm2)Surface~14T~34TSurface~14T~34T0010'5'0'5'.31 x10184.51xlp5.12x10185.72x108.58x10181.75xlp2.40x10182.72x10183.07x10184.51x103.61x10174.96x10175.63x10176.46x10179.01x10173.31x10184.51xlp5.12x10185.72x108.58x10'.12x10182.88x10183.27x10183.73x105.49xlpl7.69x10171.04x10181.18x10181.38x10181.90x10NEUTRONFLUENCEE>1.0HeVSLOPE(n/cm)32EFPY~daSLOPE(equivalent n/cm2)Surface~14T34TSurface14T~34T0010'5'0'56.63x109.02x101.02x101.14x10'91.71x103.51x10184.80x10185.45xlp6.15x10189.02x10187.22x10179.92x10171.13x10181.29x10181.80x10186.63x109.P2x1P181.02x10'91.14x10191.71x104.24x1018x1P186.54x10187.46x1P181.10x10'91.54x10182.07x10182.35x10182.77x10183.79x10186-29 TABLE6-15UPDATEDLEADFACTORSFORDCCOOKUNIT2SURVEILLANCE CAPSULES~CasuleLeadFactorTXUYSVWZ344(a)341(c)340(d)344(b)130(d)1.30(d)1.30(d)1.30(d)(a)Plantspecificevaluation basedonendofCycle1calculated fluence.(b)Plantspecificevaluation basedonendofCycle3calculated fluence.(c)Plantspecificevaluation basedonendofCycle5calculated fluence.(d)Plantspecificevaluation basedonendofCycle8calculated fluence.6-30 SECTION7.0SURVEILLANCE CAPSULEREMOVALSCHEDULEThefollowing removalschedulemeetsASTME185-82andisrecommended forfuturecapsulestoberemovedfromtheD.C.CookUnit2reactorvessel:CapsuleCapsuleLocationLead(deg.)FactorRemovalTime()Estimated Fluence(n/cm2)4032022014043561841763.443.443.443.441.301.301.301.301.08(Removed) 3.24(Removed) 5.27(Removed) 8.65(Removed) 32StandbyStandbyStandby2.64x6.83x1.06x1.58x2.22X10(Actual)10(Actual)10(Actual)1019(Actual)10'9(a)Effective FullPowerYears(EFPY)fromplantstartup.7-1 SECTION

8.0REFERENCES

1.J.A.Davidson, etal.,"American ElectricPowerCompanyDonaldC.CookUnitNo.2ReactorVesselRadiation Surveillance Program",

WCAP-8512, November1975.2.CodeofFederalRegulations, 10CFR50,AppendixG,"Fracture Toughness Requirements",

andAppendixH,"ReactorVesselMaterialSurveillance ProgramRequirements,"

U.S.NuclearRegulatory Commission, Washington, D.C.3.Regulatory Guide1.99,ProposedRevision2,"Radiation DamagetoReactorVesselMaterials",

U.S.NuclearRegulatory Commission, Hay1988.4.SectionIIIoftheASMEBoilerandPressureVesselCode,AppendixG,"Protection AgainstNonductile Failure."

5.ASTME208,"Standard TestMethodforConducting Drop-Weight TesttoDetermine Nil-Ductility Transition Temperature ofFerriticSteels."6.ASTHE185-82,"Standard PracticeforLight-Water CooledNuclearPowerReactorVessels,E706(IF)."7.ASTHE23-88,"Standard TestMethodsforNotchedBarImpactTestingofMetallicMaterials."

8.ASTHA370-89,"Standard TestMethodsandDefinitions forMechanical TestingofSteelProducts."

9.ASTME8-89b,"Standard TestMethodsofTensionTestingofMetallicMaterials."

10.ASTHE21-79(1988),

"Standard PracticeforElevatedTemperature TensionTestsofMetallicMaterials."

8-1 ll.ASTME83-85,"Standard PracticeforVerification andClassification ofExtensometers."

12.SwRIProjectNo.02-5928,"ReactorVesselMaterialSurveillance ProgramforDonaldC.CookUnitNo.2AnalysisofCapsuleT",E.B.Norris,September 16,1981.013.SwRIProjectNo.06-7244-002, "ReactorVesselMaterialSurveillance ProgramforDonaldC.CookUnitNo.2AnalysisofCapsuleY",E.B.Norris,February1984.14.SwRIProjectNo.06-8888,"ReactorVesselMaterialSurveillance ProgramforDonaldC.CookUnitNo.2AnalysisofCapsuleX",P.K.NairandM.L.Williams, Hay1987.15.R.G.Soltesz,R.K.Disney,J.Jedruch,andS.L.Ziegler,"NuclearRocketShielding Methods,Modification, UpdatingandInputDataPreparation.

Vol.5-Two-Dimensional DiscreteOrdinates Transport Technique",

WANL-PR(LL)-034, Vol.5,August1970.16."ORNLRSCIDataLibraryCollection DLC-76SAILORCoupledSelf-Shielded, 47Neutron,20Gamma-Ray, P3,CrossSectionLibraryforLightWaterReactors".

17.AEPLetterRBB88-005/4, R.B.Bennett(AEP)toH.C.Walls(Westinghouse),

January29,1988.18.AEPFAX,G.John(AEP)toS.L.Anderson(Westinghouse),

October6,1992.19.B.J.Johansen, et.al.,"NuclearParameters andOperations PackagefortheDonaldC.CookNuclearPlant(Unit2,Cycle8)",WCAP-12651, October1990.(Proprietary) 20.ASTMDesignation E482-89,"Standard GuideforApplication ofNeutronTransport MethodsforReactorVesselSurveillance",

inASTHStandards, Section12,AmericanSocietyforTestingandMaterials, Philadelphia, PA,1991.8-2 21.ASTMDesignation E560-84,"Standard Recommended PracticeforExtrapolating ReactorVesselSurveillance Dosimetry Results",

inASTHStandards, Section12,AmericanSocietyforTestingandMaterials, Philadelphia, PA,1991.22.ASTHDesignation E693-79,"Standard PracticeforCharacterizing NeutronExposures inFerriticSteelsinTermsofDisplacements perAtom(dpa)",inASTMStandards, Section12,AmericanSocietyforTestingandMaterials, Philadelphia, PA,1991.23.ASTMDesignation E706-87,"Standard MasterMatrixforLight-Water ReactorPressureVesselSurveillance Standard",

inASTHStandards, Section12,AmericanSocietyforTestingandMaterials, Philadelphia, PA,1991.24.ASTMDesignation E853-87,"Standard PracticeforAnalysisandInterpretation ofLight-Water ReactorSurveillance Results",

inASTMStandards, Section12,AmericanSocietyforTestingandMaterials, Philadelphia, PA,1991.25.ASTHDesignation E261-90,"Standard MethodforDetermining NeutronFlux,Fluence,andSpectrabyRadioactivation Techniques",

inASTMStandards, Section12,AmericanSocietyforTestingandMaterials, Philadelphia, PA,1991.26.ASTMDesignation E262-86,"Standard MethodforMeasuring ThermalNeutronFluxbyRadioactivation Techniques",

inASTHStandards, Section12,AmericanSocietyforTestingandMaterials, Philadelphia, PA,1991.27.ASTMDesignation E263-88,"Standard MethodforDetermining Fast-Neutron FluxDensitybyRadioactivation ofIron",inASTMStandards, Section12,AmericanSocietyforTestingandMaterials, Philadelphia, PA,1991.28.ASTHDesignation E264-87,"Standard MethodforDetermining Fast-Neutron FluxDensitybyRadioactivation ofNickel",inASTHStandards, Section12,AmericanSocietyforTestingandMaterials, Philadelphia, PA,1991.8-3 29.ASTMDesignation E481-86,"Standard MethodforMeasuring Neutron-Flux DensitybyRadioactivation ofCobaltandSilver",inASTHStandards, Section12,AmericanSocietyforTestingandMaterials, Philadelphia, PA,1991.30.ASTMDesignation E523-87,"Standard MethodforDetermining Fast-Neutron FluxDensitybyRadioactivation ofCopper",inASTHStandards, Section12,AmericanSocietyforTestingandMaterials, Philadelphia, PA,1991.31.ASTHDesignation E704-90,"Standard.

MethodforMeasuring ReactionRatesbyRadioactivation ofUranium-238",

inASTHStandards, Section12,AmericanSocietyforTestingandMaterials, Philadelphia, PA,1991.32.ASTMDesignation E705-90,"Standard MethodforMeasuring Fast-Neutron FluxDensitybyRadioactivation ofNeptunium-237",

inASTHStandards, Section12,AmericanSocietyforTestingandMaterials, Philadelphia, PA,1991.33.ASTMDesignation E1005-84, "Standard MethodforApplication andAnalysisofRadiometric MonitorsforReactorVesselSurveillance",

inASTMStandards, Section12,AmericanSocietyforTestingandMaterials, Philadelphia, PA,1991.34.F.A.Schmittroth, FERRETDataAnalsisCore,HEDL-THE79-40,HanfordEngineering Development Laboratory,

Richland, WA,September 1979.35.W.N.HcElroy,S.BergandT.Crocket,AComuter-Automated Iterative MethodofNeutronFluxSectraDetermined bFoilActivation, AFWL-TR-7-41, Vol.I-IV,AirForceWeaponsLaboratory, KirklandAFB,NM,July1967.36.EPRI-NP-2188, "Development andDemonstration ofanAdvancedMethodology forLWRDosimetry Applications",

R.E.Maerker,etal.,1981.

APPENDIXALoad-Time RecordsforCharpySpecimenTestsA-0 Wi-P~=MAXIMUMLOADP-FRACTURELQaOPGY.NGENERALYIELOLQAOIIIIIIIItGYjIIIIIIIIIIII.I.IIIPA*ARRESTLQAOmairivEb'igureA-1.Ideali.oad-timerecord CIv'EN2"U"DQiL45NL45g~aa~D~8I~6TILE2+4(lCEC>3024.0'iEN2U"OCIRA8N48~DeBIo6TItK2e4(ttSEC>3I24+0FigureA-2.Load-time recordsforSpecimens ML45andML48'

'EN2'U"OCttt42orC9CUwl.De8I~62e4TIttE<ttSEC>3024+0XI2"u'Cttt.44

~DI6TItK2e4CtCEC>3024m0FigureA-3.Load-time recordsforSpecimens ML42andML44 CleE12"UOCt1L.4101.41w~C9~Do81~6T11K2e4(tSEC>3024.0'A02'U"DCtL43Plg~O0(U8~D~81+624TI%(NSEC>3e24m0FigureA-4.Load-time recordsforSpecimens ML41andML43

E<<2"U"OCttL46g~oRCIeD~81~6TIttE2e<(tSEC)3e24.0CIEI2'U"ge~D~81e6TIttE2e4CtSEC)3024e0FigureA-5.Load-time recordsforSpecimens ML46andML47

~CNT62NT62eD~81.6TINE2,4<tSEC)3e24,0CIQNUNOCNT6INT6ICl~D~8I~6TINE2,4CtSEC)3e24o0FigureA-6.Load-time recordsforSpecimens MT62andMT61 lgI2%USttT66Pl~~oroDo81~6Tlt1E<tCEC)2+43o24e0CllOX12'U"g~arS0GiCL'CI~D~81~6T1tK2+4CNSEC)3024e0FigureA-7.Load-time recordsforSpecimens MT66andMT71 OCNT64HT64~8I6TilKRe4CNSEC)30R4+0'iEIR"Ui+67itKRe4(ICEC)30R4m0FigureA-8.Load-time recordsforSpecimens MT64andMT72

'E02OU>>OcttT70ttTPOrarQOlPOl~4~p~8I~6L4TIttECtCKC)3024e0vEN2"U"OCttT69ttT69gcoorgOlCO~D~8I~62e4TItK.<tSEC)3t24e0FigureA-9.Load-time recordsforSpecimens MT70andMT69

'EN2"UDMT63tlT63CCOCUDD~D<<8I~6TIttE2e4(CEC)3124e0CI%0aI2"UOCttT68gEOoWC9IcUO~D~~8I~62+4TIttECHSEC)3024,0FigureA-10.Load-time recordsforSpecimens MT63andMT68

~EgeiuNT67C)~D1.6TINEReh<NSEC)308ho0Xia"uNT65g~oC9IcUo~De8Ie6TINE8+4(!CEC)3og4.0FigureA-ll.Load-time recordsfor.Specimens M'Z67andMT65

'EIIQNUNIIII70XIDo8le6TltlEBo4(tlSEC)3084e0CI181QNOCt0I64IDI64gcoe~XCI~D~81.68+4.TItIE<IISEC)3084m0FigureA-12.Load-time recordsforSpecimens MW70andMW64

'EN2"U".OCtNl71.e81~6TlttE2o4(NSEC)3124m0XN2'U"<<81~624TI%(tCEC)3024+0FigureA-13,Load-time recordsforSpecimens MW71andMW68 o~iENR"U"OCMtt63ttll63PloCUo~D~81~6TittERe4(tCEC)3t24e0~DXNRUOCtttt61tNt61COo~De81~6TINERo4<tSEC)3024o0FigureA-14.Load-time recordsforSpecimens MW63andMW61 OQSU%OCtCl78C9~D~8I+6TItKRe4<NSEC)3o84e0OX18U"g~oXD~81.6TIlKRo4<tLXC)3084+0FigureA-15.Load-time recordsforSpecimens MW72andMW65

'EtJR"U"OCt0J66NJJ66oaAJ.D.81.6R.4TiNE(NSEC>30R4.0uEttR"U"OCNJJ6RAJ~4O~D.8i+6TINERo4CNSEC)30R40FigureA-16.Load-time recordsforSpecimens MW66andMW62 PloIDCl0(UaCl~8I+62+4TINE<ttSEC)3.24.0CI'E<<2U"OCtSI69Nt69hoQcUDCU~D~8I.62.4TIlK<tCEC)3024,0FigureA-17.Load-time recordsforSpecimens MW67andMW69 olEIIQNUNOCtIK67tQt67g~oDAI~IDAl.D~81.6TlttERl4(ttSEC)3084.0~EIQIIUNOcttK63ttK63a~oClC9DAI5lD.81.62.4TIE(ttSEC)3.24.0FigureA-18.Load-time recordsforSpecimens MH67andMH63 vEN2"U"PlWoIDC9oDo8I~62+4TINE(NSEC>3@24~0XN2U"OCNH69Ntt69g~'CU~4O~Do81.62,4TINECNSEC>3124.0FigureA-19.Load-time recordsforSpecimens MH71andMH69 N2"U"Oct1H72r~oCJJC9C-iCIJEZoCU,81.62o4TIttECtCEC)3.24e0ZN2Ug~omCJJC9OCUcZCICU~D.81,6TltCE2.4CtSEC)3024.0FigureA-20.Load-time recordsforSpecimens MH72andMH70 v'Ett2"UOCtN62t%62xoO.De81.6TIttE2.4(NSEC)3t24.0'IEtt2HU$OCt%64ttH64"aC9oD8l,6TIttE2+4(ttSEC)3.24.0FigureA-21.Load-time recordsforSpecimens MH62andMH64

'eiENB"U"OCNH61NH61olEa0INa0O.D.81.62ehTINE<NSEC)3084.0'ENR"U"OCNH65o~D~8Io6TINER.h(t5EC)3084.0FigureA-22.Load-time recordsforSpecimens MH61andMH65 g2NUN0Ct%68W68aNaoD.81~62.4TllC<ICEC)4.0'EN2"U"OCt%66A<66eD~81~62e4TllC(NSEC)3024o0FigureA-23.Load-time recordsforSpecimens MH68andMH66 APPENDIXBPhotographs ofCharpy,TensileandWOLSpecimens PriortoTestingB-0 FigureB-1.Charpyimpactspecimens ML45,ML48,ML42,andML44fromIntermediate ShellPlateC5521-2(longitudinal orientation) beforetesting.B-IRM-28359 FigureB-2.Charpyimpactspecimens ML41,ML43,ML46,andML47fromIntermediate ShellPlateC5521-2(longitudinal orientation) beforetesting.B-2RM-28360 FigureB-3.Charpyimpactspecimens MT62,MT61,MT66,MT71,MT64,andMT72fromIntermediate ShellPlateC5521-2(transverse orientation) beforetesting.8-3RM-28361 FigureB-4.Charpyimpactspecimens MT70,MT69,MT63,MT68,MT67,andMT65fromIntermediate ShellPlateC5521-2(transverse orientation) beforetesting.RM-28362 FigureB-5.Charpyimpactspecimens MW70,MW64,MW71,MW68,MW63,andMW61fromtheweldmetal,beforetesting.B-5RM-28363 FigureB-6.Charpyimpactspecimens MW72,MW65,MW66,MW62,MW67,andMW69fromtheweldmetal,beforetesting.B-6RM-28364 FigureB-7.Charpyimpactspecimens MH67,MH63,MH71,MH69,MH72,andMH70fromtheheat-affected zone(HAZ),beforetesting.B-7RM-28365 FigureB-8.Charpyimpactspecimens MH62,MH64,MH61,MH65,MH68,andMH66fromtheheat-affected zone(HAZ),beforetesting.B-8RM-28366 FigureB-9.Tensilespecimens MTllandMT12fromD.C.CookUnit2reactorvesselIntermediate ShellPlateC5521-2(transverse orientation) beforetesting.B-9RM-28367 FigureB-10.Tensilespecimens MWllandMW12fromD.C.CookUnit2reactorvesselweldbeforetesting.B-10RM-28368 FigureB-11.WOLspecimens MW5,MW6,MW7andMW8,fromD.C.CookUnit2reactorvessel.Thespecimens werenottested,butstoredforfuturereference, B-11RM-28369 APPENDIXCHeatupandCooldownLimitCurvesforNormalOperation C-0 TABLEOFCONTENTSSectionTitle~acae1INTRODUCTION C-42FRACTURETOUGHNESS PROPERTIES C-43CRITERIAFORALLOWABLE PRESSURE-TEMPERATURE RELATIONSHIPS C-54HEATUPANDCOOLDOWNLIMITCURVES5ADJUSTEDREFERENCE TEMPERATURE C-8C-106REFERENCES C-24 LISTOFILLUSTRATIONS

~FiereTitle~~Pa<ac1D.C.CookUnit2ReactorCoolantSystemHeatupLimitations (Heatuprateupto60'F/hr)Applicable fortheFirst32EFPY(WithoutMarginsForInstrumentation Errors)C-162D.C.CookUnit2ReactorCoolantSystemHeatupLimitations (Heatuprateupto60'F/hr)Applicable fortheFirst32EFPY(WithMarginsof10'Fand60psigForInstrumentation Errors)C-173D.C.CookUnit2ReactorCoolantSystemCooldown(Cooldown Ratesupto100'F/hr)

Limitations Applicable fortheFirst32EFPY(WithoutMarginsForInstrumentation Errors)C-184D.C.CookUnit2ReactorCoolantSystemCooldown(Cooldown Ratesupto100'F/hr)

Limitations Applicable fortheFirst32EFPY(WithMarginsof10'Fand60psigForInstrumentation Errors)C-195D.C.CookUnit2ReactorCoolantSystemHeatupLimitations (Heatuprateupto60F/hr)Applicable fortheFirst15EFPY(WithoutMarginsForInstrumentation Errors)C-20D.C.CookUnit2ReactorCoolantSystemHeatupLimitations (Heatuprateupto60'F/hr)Applicable fortheFirst15EFPY(WithMarginsof10'Fand60psigForInstrumentation Errors)C-217D.C.CookUnit2ReactorCoolantSystemCooldown(Cooldown Ratesupto100'F/hr)

Limitations Applicable fortheFirst15EFPY(WithoutMarginsForInstrumentation Errors)C-22C-2 LISTOFILLUSTRATIONS continued FiciureTitlePacae8D.C.CookUnit2ReactorCoolantSystemCooldown(Cooldown Ratesupto100'F/hr)

Limitations Applicable fortheFirst15EFPY(WithHarginsof10'Fand60psigForInstrumentation Errors)C-23LISTOFTABLESTableTitle~PaeD.C.CookUnit2ReactorVesselToughness Table(Unirradiated)

C-11SummaryofAdjustedReference Temperature (ART)at1/4Tand3/4TLocationfor32EFPYC-123SummaryofAdjustedReference Temperature (ART)at1/4Tand3/4TLocationfor15EFPYC-13Calculation ofAdjustedReference Temperatures forLimitingD.C.CookUnit2ReactorVesselHaterial-Intermediate ShellPlate,C5556-2for32EFPYC-145Calculation ofAdjustedReference Temperatures forLimitingD.C.CookUnit2ReactorVesselHaterial-Intermediate ShellPlate,C5556-2for15EFPYC-15C-3 1.INTRODUCTION Heatupandcooldownlimitcurvesarecalculated usingthemostlimitingvalueofRTNDT(reference nil-ductility temperature) forthereactorvessel.ThemostlimitingRTNDTofthematerialinthecoreregionofthereactorvesselisdetermined byusingthepreservice reactorvesselmaterialfracturetoughness properties andestimating theradiation-induced hRTNDT.RTNDTisdesignated asthehigherofeitherthedropweightnil-ductility transition temperature (NDTT)orthetemperature atwhichthematerialexhibitsatleast50ft-lbofimpactenergyand35-millateralexpansion (normaltothemajorworkingdirection)'minus 60'F.RTNDTincreases asthematerialisexposedtofast-neutron radiation.

Therefore, tofindthemostlimitingRTNDTatanytimeperiodinthereactor's life,ARTNDTduetotheradiation exposureassociated withthattimeperiodmustbeaddedtotheoriginalunirradiated RTNDT.TheextentoftheshiftinRTNDTisenhancedbycertainchemicalelements(suchascopperandnickel)presentinreactorvesselsteels.TheNuclearRegulatory Commission (NRC)haspublished amethodforpredicting radiation embrittlement inRegulatory Guide1.99Rev.2(Radiation Embrittlement ofReactorVesselMaterials)~

~.Regulatory Guide1.99,Revision2isusedforthecalculation ofRTNDTvaluesat1/4Tand3/4Tlocations (Tisthethickness ofthevesselatthebeltlineregion).2.FRACTURETOUGHNESS PROPERTIES Theunirradiated RTNDTvaluesforthebeltlineregionmaterials intheD.C.CookUnit2reactorvesselwereestablished usingtheguidanceprovidedinNUREG-0800, BranchTechnical

Position, NTEB5-2~~,andsubarticale NB-2331oftheASHEBoilerandPressureVesselCode,SectionIII~~.Thepre-irradiation fracture-toughness properties oftheD.C.CookUnit2reactorvesselarepresented inTablel.C-4 3.CRITERIAFORALLOWABLE PRESSURE-TEMPERATURE RELATIONSHIPS TheASMEapproachforcalculating theallowable limitcurvesforvariousheatupandcooldownratesspecifies thatthetotalstressintensity factor,KI,forthecombinedthermalandpressurestressesatanytimeduringheatuporcooldowncannotbegreaterthanthereference stressintensity factor,KIR,forthemetaltemperature atthattime.KIRisobtainedfromthereference fracturetoughness curve,definedinAppendixGtotheASMECode~~.TheKIRcurveisgivenbythefollowing equation:

KIR=26.78+1.223exp[0.0145(T-RTNDT+160)]whereKIR=reference stressintensity factorasafunctionofthemetaltemperature Tandthemetalreference nil-ductility temperature RTNDTTherefore, thegoverning equationfortheheatup-cooldown analysisisdefinedinAppendixGoftheASMECode~~asfollows:CKIM+KIT<KIRwhere(2)KIM-stressintensity factorcausedbymembrane(pressure) stressKIT=stressintensity factorcausedbythethermalgradients KIR=functionoftemperature relativetotheRTNDTofthematerial=2.0forLevelAandLevelBservicelimits=1.5forhydrostatic andleaktestconditions duringwhichthereactorcoreisnotcriticalAtanytimeduringtheheatuporcooldowntransient, KIRisdetermined bythemetaltemperature atthetipofthepostulated flaw,theappropriate valueforRTNDT,andthereference fracturetoughness curve.Thethermalstressesresulting fromthetemperature gradients throughthevesselwallarecalculated andthenthecorresponding (thermal) stressintensity factors,KIT,fortheC-5 reference flawarecomputed.

Fromequation2,thepressurestressintensity factorsareobtainedand,fromthese,theallowable.

pressures arecalculated.

Forthecalculation oftheallowable pressureversuscoolanttemperature during,cooldown, thereference flawofAppendixGtotheASHECodeisassumedtoexistattheinsideofthevesselwall.Duringcooldown, thecontrolling locationoftheflawisalwaysattheinsideofthewallbecausethethermalgradients producetensilestressesattheinside,whichincreasewithincreasing cooldownrates.Allowable pressure-temperature relations aregenerated forbothsteady-state andfinitecooldownratesituations.

Fromtheserelations, composite limitcurvesareconstructed foreachcooldownrateofinterest.

Theuseofthecomposite curveinthecooldownanalysisisnecessary becausecontrolofthecooldownprocedure isbasedonthemeasurement ofreactorcoolanttemperature, whereasthelimitingpressureisactuallydependent onthematerialtemperature atthetipoftheassumedflaw.Duringcooldown, theI/4Tvessellocationisatahighertemperature thanthefluidadjacenttothevesselID.Thiscondition, ofcourse,isnottrueforthesteady-state situation.

Itfollowsthat,atanygivenreactorcoolanttemperature, thebTdeveloped duringcooldownresultsinahighervalueofKIRattheI/OTlocationforfinitecooldownratesthanforsteady-state operation.

Furthermore, ifconditions existsothattheincreaseinKIRexceedsKIT,thecalculated allowable pressureduringcooldownwillbegreaterthanthesteady-state value.Theaboveprocedures areneededbecausethereisnodirectcontrolontemperature attheI/4Tlocationand,therefore, allowable pressures mayunknowingly beviolatediftherateofcoolingisdecreased atvariousintervals alongacooldown'amp.

Theuseofthecomposite curveeliminates thisproblemandensuresconservative operation ofthesystemfortheentirecooldownperiod.Threeseparatecalculations arerequiredtodetermine thelimitcurvesforfiniteheatuprates.Asisdoneinthecooldownanalysis, allowable pressure-temperature relationships aredeveloped forsteady-state conditions aswellasC-6 finiteheatuprateconditions assumingthepresenceofa1/4Tdefectattheinsideofthewallthatalleviate thetensilestressesproducedbyinternalpressure.

Themetaltemperature atthecracktiplagsthecoolanttemperature; therefore, theK1Rforthe1/4TcrackduringheatupislowerthantheK1Rforthe1/4Tcrackduringsteady-state conditions atthesamecoolanttemperature.

Duringheatup,especially attheendofthetransient, conditions mayexistsothattheeffectsofcompressive thermalstressesandlowerK1R'sdonotoffseteachother,andthepressure-temperature curvebasedonsteady-state conditions nolongerrepresents alowerboundofallsimilarcurvesforfiniteheatuprateswhenthe'1/4Tflawisconsidered.

Therefore, bothcaseshavetobeanalyzedinordertoensurethatatanycoolant-temperature thelowervalueoftheallowable pressurecalculated forsteady-state andfiniteheatupratesisobtained.

Thesecondportionoftheheatupanalysisconcernsthecalculation ofthepressure-temperature limitations forthecaseinwhicha1/4Tdeepoutsidesurfaceflawisassumed.Unlikethesituation atthevessel,insidesurface,thethermalgradients established attheoutsidesurfaceduringheatupproducestresseswhicharetensileinnatureandtherefore tendtoreinforce anypressurestressespresent.Thesethermalstressesaredependent onboththerateofheatupandthetime(orcoolanttemperature) alongtheheatupramp.Sincethethermalstressesattheoutsidearetensileandincreasewithincreasing heatuprates,eachheatupratemustbeanalyzedonanindividual basis.Following thegeneration ofpressure-temperature curvesforboththesteadystateandfiniteheatupratesituations, thefinallimitcurvesareproducedby.constructing acomposite curvebasedonapoint-by-point comparison ofthesteady-state andfiniteheatupratedata.Atanygiventemperature, theallowable pressureistakentobethelesserofthethreevaluestakenfromthecurvesunderconsideration.

Theuseofthecomposite curveisnecessary tosetconservative heatuplimitations becauseitispossible'for conditions toexistwherein,overthecourseoftheheatupramp,thecontrolling condition switchesfromtheinsidetotheoutside,andthepressurelimitmustatalltimesbebasedonanalysisofthemostcriticalcriterion.

C-7 Finally,the1983Amendment to10CFR50~4~

hasarulewhichaddresses themetaltemperature oftheclosureheadflangeandvesselflangeregions.Thisrulestatesthatthemetaltemperature oftheclosureflangeregionsmustexceedthematerialRTNDTbyatleast120'Ffornormaloperation whenthe'ressureexceeds20percent'f thepreservice hydrostatic testpressure(621psigwithoutmarginsforinstrumentation errorand561psigwithmarginsforD.C.CookUnit2).Table1indicates thatthelimitinginitialRTNDTof30'FoccursinthevesselflangeofD.C.CookUnit2,sotheminimumallowable temperature ofthisregionis150'Fexcluding marginsforinstrumentation errorand160'Fwithmargins.TheselimitsareshowninFigures1through8wheneverapplicable.

4.HEATUPANDCOOLDOWNLIMITCURVESLimitcurvesfornormalheatupandcooldownoftheprimaryreactorpressurevesselhavebeencalculated usingthemethodsdiscussed inSection3.Ifpressurereadingsaremeasuredatotherlocations thanthelimitingbeltlineregion,'he pressuredifferences betweenthepressuretransmitter andthelimitingbeltlineregionmustbeaccounted forwhenusingthepressure-temperature limitcurvesherein.Theindicated pressureandtemperature labelsprovidedonthecurvesrelatetothelimitingbeltlineregionofthereactorvessel.Figures1,2,5and6containtheheatupcurvesfor60'F/hr.Figures3,4,7and8containthecooldowncurvesupto100'F/hr.Figures1and3areapplicable forthefirst32EFPYofoperation andincludenomarginsforpossibleinstrumentation errors.Figures2and4areapplicable forthefirst32EFPYofoperation andincludemarginsof10'Fand60psigforpossibleinstrumentation errors.Figures5and7areapplicable forthefirst15EFPYofoperation andincludenomarginsforpossibleinstrumentation errors.Figures6and8areapplicable forthefirst15EFPYofoperation andincludemarginsof10'Fand60psigforpossibleinstrumentation errors.ThecurrentD.C.CookUnit2lowtemperature overpressure protection system(LTOP)setpoints arevaliduptothe15EFPYpressure-temperature limitcurves.C-8 The32EFPYpressure-temperature limitcurvescannotbeusedwiththecurrentLTOPsetpoints.

Allowable combinations oftemperature andpressureforspecifictemperature changeratesarebelowandtotherightofthelimitlinesshowninFigures1through8.Thisisinadditiontoothercriteriawhichmustbemetbeforethereactorismadecritical.

TheleaklimitcurveshowninFigures1,2,5and6represents minimumtemperature requirements attheleaktestpressurespecified byapplicable codesI~~.Theleaktestlimitcurvewasdetermined bymethodsofReferences 2and4.Thecriticality limitcurveshowninFigure1,2,5and6,specifies pressure-temperature limitsforcoreoperation toprovideadditional marginduringactualpowerproduction asspecified inReference 4.Thepressure-temperature limitsforcoreoperation (exceptforlowpowerphysicstests)arethatthereactorvesselmustbeatatemperature equaltoorhigherthantheminimumtemperature requiredfortheinservicehydrostatic test,andatleast40'Fhigherthantheminimumpressure-temperature curveforheatupandcooldowncalculated asdescribed inSection3.Themaximumtemperature fortheinservice hydrostatic testfortheD.C.CookUnit2reactorvesselfor32EFPYis348'Fwithmarginsforinstrumentation errorsand335'Fwithoutmarginsforinstrumentation errors.Averticallineat348Fand335Fonthepressure-temperature curves(withandwithoutmargins),

intersecting acurve40'Fhigherthanthepressure-temperature limitcurve,constitutes thelimitforcoreoperation forthereactorvessel.Themaximumtemperature fortheinservice hydrostatic testfortheD.C.CookUnit2reactorvesselfor15EFPYis324'Fwithmarginsforinstrumentation errorsand311'Fwithoutmarginsforinstrumentation errors.Averticallineat324'Fand311'Fonthepressure-temperature curves(withandwithoutmargins),

intersecting acurve40'Fhigherthanthepressure-temperature limitcurve,constitutes thelimitforcoreoperation forthereactorvessel.Figures1through8definelimitsforensuringprevention ofnonductile failurefortheD.C.CookUnit2reactorvessel.C-9 5.ADJUSTEDREFERENCE TEMPERATURE FromRegulatory Guide1'.99'ev.

2[1]theadjustedreference temperature (ART)foreachmaterialinthebeltlineisgivenbythefollowing expression:

ART=InitialRTNDT+hRTNDT+Margin(3)InitialRTNDTisthereference temperature fortheunirradiated materialasdefinedinparagraph NB2331ofSectionIIIoftheASMEBoilerandPressureVesselCode.IfmeasuredvaluesofinitialRTNDTforthematerialinquestionarenotavailable, genericmeanvaluesforthatclassofmaterialmaybeusediftherearesufficient testresultstoestablish ameanandstandarddeviation fortheclass.hRTNDTisthemeanvalueoftheadjustment inreference temperature causedbyirradiation andshouldbecalculated asfollows:[CF]f(0.28-0.101ogf)NDT(4)Tocalculate hRTNDTatanydepth(e.g.,at1/4Tor3/4T),thefollowing formulamustfirstbeusedtoattenuate thefluenceatthespecificdepth.(depthX)surface(-.24x(5)wherex(ininches)isthedepthintothevesselwallmeasuredfromthevesselclad/base metalinterface.

Theresultant fluenceisthenputintoequation(4)tocalculate ARTNDTatthespecificdepth.CF('F)isthechemistry factor,obtainedfromReference 1.Allmaterials inthebeltlineregionofD.C.CookUnit2wereconsidered forthelimitingmaterial.

RTNDTat1/4Tand3/4Taresummarized inTables2and3for32and15EFPYrespectively.

FromTables2and3,itcanbeseenthat'helimitingmaterialistheintermediate shellplateC5556-2forheatupandcooldowncurvesapplicable upto32and15EFPY.Samplecalculations fortheRTNDTfor32and15EFPYareshowninTables4and5.

TABLE1D.C.COOKUNIT2REACTORVESSELTOUGHNESS TABLE(Unirradiated)

MaterialDescription ClosureHeadFlange,4437-V-1VesselFlange,4436-V-2CU(X)NII-RTNDT(a)(>)('F)-20(b)30(b)Intermediate Shell,C5556-2Intermediate Shell,C5521-2*0.150.570.1250.585838LowerShell,C5540-2LowerShell,C5592-1O.ll0.140.640.59-20-20Intermediate andLowerShellLong.andGirthWeldSeams(Ht.S3986,Linde124,FluxLotNo.0934)*0.0520.967-35*Xweightcopperandnickelcontentaremeanvaluesbasedontheavailable chemistry testresultsasindicated belowa.TheinitialRTNDT(I)valuesfortheplatesandweldsaremeasuredvaluesbasedonactualdata.b.Tobeusedforconsideqgg flangerequirements forheatup/cooldown curvesl~.MaterialPlate,C5521-2DataSourceOriginalMillTestReportSurveillance Program[1]MeanvalueCopper~wtX.0.140.110.125Nickel~wt.X0.580.580.58WeldOriginalMillTestReportSurveillance Program[1]Surveillance Program[1]Meanvalue0.050.0550.050.0520.970.970.960.967 TABLE2SUMMARYOFADJUSTEDREFERENCE TEMPERATURE (ART)AT1/4Tand3/4TLOCATIONFOR32EFPY~Comonent32EFPYRTNpTat1//4T',~34T'Intermediate ShellPlate,C5556-2Intermediate ShellPlate,C5521-2201159(158)171135(129)LowerShellPlate,C5540-2Lower.ShellPlate,C5592-1891146886Intermed.

ShellLongitudinal Welds(a)LowerShellLongitudinal Welds(b)80924568Circumferenti alWeld92(64)68(40)RTNpTnumberswithin()arebasedonchemistry factorcalculatedusingcapsuledata.(a)Intermediate shelllongitudinal weldsarelocatedat10'b)Lowershell'ongitudinal weldsarelocatedat90'-12 TABLE3SUMMARYOFADJUSTEDREFERENCE TEMPERATURE (ART)AT1/4Tand3/4TLOCATIONFOR15EFPY~Comonent15EFPYRTNDTat~l4T'~34TFIntermediate ShellPlate,C5556-2Intermediate ShellPlate,C5521-2178141(137)150118(110)LowerShellPlate,C5540-2LowerShellPlate,C5592-173935467Intermed.

ShellLongitudinal Welds(a)LowerShellLongitudinal Welds(b)524020llCircumferential Weld77(49)41(28)RTNDTnumberswithin()arebasedonchemistry factorcalculated usingcapsuledata.I(a)Intermediate shelllongitudinal weldsarelocatedat10'b)Lowershelllongitudinal weldsarelocatedat90'-13 TABLE4CALCULATION OFADJUSTEDREFERENCE TEMPERATURES FORLIMITINGD.C.COOKUNIT2REACTORVESSELMATERIAL-INTERMEDIATE SHELLPLATE,C5556-2FOR32EFPYParameter ReulatorGuide1.99-Revision232EFPY~14T~34TChemistry Factor,CF('F)Fluence,f(10n/cm)()FluenceFactor,ff108.351.0271.007108.350.37030.725ARTNDT=CFxff('F)InitialRTNpT,I('F)Margin,H('F)(b)1095834795834Revision2toRegulatory Guide1.99AdjustedReference Temperature, ART=InitialRTNpT+ARTNDT+Margin201*171********************************************************************************

(a)Fluence,f,isbaseduponfsurf(10n/cm,E>1Hev)=1.71at32EFPY.TheD.C.CookUnit2reactorvesselwallthickness is8.5inchesatthebeltlineregion.(b)Marginiscalculated as,H=2[uI+e~].Thestandarddeviation fortheinitialRTNpTmarginterm,oI,isassumedtobeO'FsincetheinitialRTNpTisameasuredvalue.Thestandarddeviation forARTNDTterm,o>,is17'Fforthebasemetal,exceptthato~neednotexceed0.5timesthemeanvalueofhRTNDT.*Limitingvalueusedindevelopment ofheatupandcooldownlimitcurves.

TABLE5CALCULATION OFADJUSTEDREFERENCE TEMPERATURES FORLIMITINGD.C.COOKUNIT2REACTORVESSELMATERIAL-INTERMEDIATE SHELLPLATE,C5556-2FOR15EFPYReulatorGuide1.99-Revision215EFPYParameter 14T~34TChemistry Factor,CF('F)Fluence,f(10n/cm)()FluenceFactor,ff108.350.4830.797108.350.17420.537ARTNDT=CFxff('F)86'8InitialRTNDTI(F)5858Margin,M('F)34,.34*******************************************************************************

Revision2toRegulatory Guide1.99AdjustedReference Temperature, ART=InitialRTNDT+hRTNDT+Margin178*150*(a)Fluence,f,isbaseduponfsurf(10n/cm,E>lMev)0.804at15EFPY.TheD.C.CookUnit2reactorvesselwallthickness is8.5inchesatthebeltlineregion.(b)Marginiscalculated as,H-2[O'I+a~].Thestandarddeviation fortheinitialRTNDTmarginterm,o'I,isassumedtobeO'FsincetheinitialRTNDTisameasuredvalue.Thestandarddeviation forhRTNDTterm,o~,is17'Fforthebasemetal,exceptthata<neednotexceed0.5timesthemeanvalueofARTNDT.*Limitingvalueusedindevelopment ofheatupandcooldownlimitcurves.

MATERIALPROPERTYBASISLIMITINGMATERIAL:

INTERMEOIATE SHELLPLATE,C5556-2LIMITINGARTAFTER32EFPY:'/4T,201'F3/4T,171'F25002250LEAKTESTLMIT2000175015001250a.1000750500UNACCEPTABLE OPERATION HEATUPRATEUPto60'F/HRACCEPTABLE OPERATION CRlTICALlTY LIMITBASEDONINSERVICE HYDROSTATIC TESTTEMPERATURE (335F}FORTHESERVICEPERIODUPTO32EFPY250'050100150200250300350400450500INOICATEO TEMPERATURE (OEG.F)Figurel.D.C.CookUnit2ReactorCoolantSystemHeatupLimitations (Heatuprateupto60'F/hr}Applicable fortheFirst32EFPY(WithoutMarginsForInstrumentation Errors)

MATERIALPROPERTYBASISLIMITINGMATERIAL:

INTERMEDIATE SHELLPLATE,C5556-2LIMITINGARTAFTER32EFPY:'/4T,201'F3/4T,171'F25002250:LEAKTESTLIMIT2000175015001250g1000Ch,,WI750500250UNACCEPTABLE OPERATION HEATUPRATEUPto60'F/HRACCEPTABLE OPERATION CRITICALITY LIMITBASEDONINSERVICE HYDROSTATIC TESTTEMPERATURE (347F)FORTHESERVICEPERIOD,UPTO32EFPY050100150200250300350400450500INOICATEO TFMPERATURE (OEG.F')Figure2.D.C.'ookUnit2ReactorCoolantSystemHeatupLimitations (Heatuprateupto60'F/hr)Applicable fortheFirst32EFPY(WithMarginsof10'Fand60psigForInstrumentation Errors)

MATERIALPROPERTYBASISLIMITINGMATERIAL:

INTERMEDIATE SHELLPLATE,C5556-2LIMITINGARTAFTER32EFPY:1/4T,201'FI'-3/4T,171'F25002250200017501500w1250g1000OLJI=750O2:500250COOLDOWNRATESF/HR0204060100UNACCEPTABLE OPERA'EON ACCEPTABLE OPERATION 050100150200250300350400450500.INDICATED TEMPERATURE (DEG.F)Figure3.D.C.CookUnit2ReactorCoolantSystemCooldown(Cooldown ratesupto100'F/hT)

Limitations Applicable fortheFirst32EFPY(WithoutMarginsForInstrumentation Errors)

MATERIALPROPERTYBASISLIMITINGMATERIAL:

INTERMEDIATE SHELLPLATE,C5556-2LIMITINGARTAFTER32EFPY:1/4T,201F3/4T,171'F25002250200017501500w1250L,1000UNACCEPTABLE OPERATION ACCEPTABLE OPERATION O4JIOZ750500250COOLDOWNF/HR02040601000050100150200250300350400<50500INOICATEO TEMPERATURE (OEG.F')Figure4.D.C.CookUnit2ReactorCoolantSystemCooldown(Cooldown ratesupto100'F/hr)

Limitations Applicable fortheFirst32EFPY(WithMarginsof10'Fand60psigforInstrumentation Errors)

MATERIALPROPERTYBASISLIMITINGMATERIAL:

INTERMEDIATE SHELLPLATE,C5556-2LIMITINGARTAFTER15EFPY:1/4T,178'Fh">'r3/4T150F25002250LEAKTESTLIMK'00017501500NCLw1250a.1000CiLJI750oX500250UNACCEFIABLE OPERATION HEAIUPRAKUPtoN'F1HRACCEFI'ABLE OPERA'IION CRIIICALITY LIMITBASEDONINSERVICE HYDROSTATIC TEST'IEMPIHtATURE g1lF)FORTHESERVICEPERIODUPTO15EFPY050100150200250300350400450500INDICATED,TEMPERATURE (DEG.F)Figure5.D.C.CookUnit2ReactorCoolantSystemHeatupLimitations (Heatuprateupto60'F/hr)Applicable fortheFirst15EFPY(WithoutMarginsForInstrumentation Errors)C-20 MATERIALPROPERTYBASISLIMITINGMATERIAL:

INTERMEDIATE SHELLPLATE,C5556-2LIMITINGART'FTER15EFPY:1/4T,178'F3/4T,150'F25002250LEAKTESTLIMIT200017501500UNACCEPrABLE OPERATION 12501000OI750Cl500250HEATUPRA1EUP60oF/HRACCEPI'ABLE OPERA%ION CRITICALITY LIMITBASEDONINSERVICE HYDROSTATIC TEST'IEMPERATURE (324%)FORTHESERVICEPERIODUP'IOISEFPY050100150200250300350400450500INOICATEDTEMPERATURE (BEG.F)Figure6.D.C.CookUnit2ReactorCoolantSystemHeatupLimitations (Heatuprateupto60'F/hr)Applicable fortheFirst15EFPY(WithMarginsof10'Fand60psigForInstrumentation Errors)

MATERIALPROPERTYBASISLIMITINGMATERIAL:

INTERMEDIATE SHELLPLATE,C5556-2LIMITINGARTAFTER15EFPY:1/4T,178'F'.'I3/4T, 150'F250022502000175015004I1250a.1000OI750O5002500204060100UNACCBFrABLB OPERATION ACCEPTABLE OPBRAIION 050100150200250300350400450500INDICATED TEIAPERATURE (DEC.F)Figure7.D.C.CookUnit2ReactorCoolantSystemCooldown(Cooldown ratesupto100'F/hr)

Limitations Applicable fortheFirst15EFPY(WithoutMarginsForInstrumentation Errors)C-22 MATERIALPROPERTYBASISLIMITINGMATERIAL:

INTERMEDIATE SHELLPLATE,C5556-2LIMITINGARTAFTER15EFPY:1/4T,178'F3/4Ts150F250022502000175015001250a.1000750ClX500250UNACCEPI'ABLE OPERATION COOLDO%NRATES'F/HR0204060IOQACCEFI'ABLE OPERATION 050100150200250300350400450500INDICATKD TKLIPKRATURK (DKG.F')Figure8.D.C.CookUnit2ReactorCoolantSystemCooldown(Cooldown ratesupto100'F/hr)

Limitations Applicable fortheFirst15EFPY(WithMarginsof10'Fand60psigforInstrumentation Errors)C-23 6.REFERENCES 1Regulatory Guide1.99,Revision2,"Radiation Embrittlement ofReactorVesselMaterials,"

U.S.NuclearRegulatory Commission, May,1988.2"Fracture Toughness Requirements,"

BranchTechnical PositionMTEB5-2,Chapter5.3.2inStandardReviewPlanfortheReviewofSafetyAnalysisReportsforNuclearPowerPlants,LWREdition,NUREG-0800, 1981.3ASMEBoilerandPressureVesselCode,SectionIII,Division1-Appendixes, "RulesforConstruction ofNuclearPowerPlantComponents, AppendixG,Protection AgainstNonductile Failure,"

pp.558-563,1986Edition,AmericanSocietyofMechanical Engineers, NewYork,1986.4CodeofFederalRegulations, 10CFR50,AppendixG,"Fracture Toughness Requirements,"

U.S.NuclearRegulatory Commission, Washington, D.C.,FederalRegister, Vol.48No.104,May27,1983.5LetterReport,MT-SMART-090(89),

"D.C.CookUnit2ReactorVesselHeatupandCooldownLimitCurvesforNormalOperation",

N.K.Ray,April1989.6WCAP-8512, "American ElectricPowerCompanyDonaldC.CookUnitNo.2ReactorVesselRadiation Surveillance Program",

J.A.Davidson, etal.,November1975.7"Fracture Toughness Requirements forProtection AgainstPressurized ThermalShockEvents",10CFRPart50,Vol.58,No.94,May15,1991.C-24

.ATTACHMENT IDATAPOINTSFORHEATUPANDCOOLDOWNCURVES(WithoutMarginsforInstrumentation Errors)Thedatapointsusedinthedevelopment oftheheatupandcooldowncurvesshowninFiguresIand3arecontained ontheattachedcomputerprintoutsheets.C-25 AMP60DEG-F/HRHEATUPREG.GUIDE 1.99,REV.2 WITHOUTMARGIN09/28/92THEFOLLOWING DATAWERECALCULATEOFOR THEINSERVICE HYDROSTATIC LEAKTEST.MINIMUMINSERVICE LEAKTESTTEMPERATURE (32.000EFPY)PRESSURE(PSI)TEMPERATURE (DEG,F)3142485335PRESSURE(PSI)PRESSURESTRESS(PSI)214441.5K1M(PSISQRTIN)89745248526645112505 AMP,60DEG-F/HRHEATUPREG.,GUIDE 1.99~,REV.2WITHOUT,MARGIN,.'>;

.:>C,COMPOSITE CURVEPLOTTEDFORHEATUPPROFILE2HEATUPRATE(S)(DEG.F/HR)

K60.009/28/92' IMIRRADIATION PERIOD=32.000EFPYEARSFLAWDEPTHw(1"AOWIN)T:

-,*'NDICATED INDICATED TEMPERATURE PRESSURE(DEG.F)(PSI)INDICATED TEMPERATURE (DEG.F)12345686.00090.00095.000100.000105.000"110.000-44~4.Rh~~8:&-436z64--';:-.--,::;.,",,

21'85,00022-190.00025205.000~.-""i;26,,"210.000INDICATED PRESSURE(rSI)513.04S24.65537.13550.71565.38.'681.19..7'...115.000 8':120.0009125.00010130.00011135.00012.'40.000.13-,,146.00014".-15Q;OQO15155.00016160.00017165.00018'170.00019.'75.00020-.18Q.OQOC433.80":.'.:~::,';:,:~~~"27

'.215000,'.,':,>698.11-34'2~.>'.

',"'4~i'8

""'220000:';6'16'45435.5329225.000636.06437.7730230.000657.31440.8531235.000680.15444'.72'.-',,";-".':.'"32,

'..."-'240.000.,;-

-'-.704;60"...:

449.38".':;;:=~33

',.245.000'".,-',.-'730.85'454,73';..5'c,'.34 "4>250,000"-..::.?-'759.-27

..-'.460.8435255.000789.61467.6336260.000822.35475.1837265.000857.45483.45',:,.'8.

.,270.000-::.":-.,;.895.

10492.53-~.39:27S.-OOO-.'";935~62502.30INDICATED INDICATED TEMPERATURE PRESSURE(DEG,F)(PSI)?40280;000'h-':.

978,92.',41285:000=-':'.102S.5242290.0001075.5643295.0001129.2844300.0001186.8045'-,305;,000",',248.53.46,h',310';.OQO..:h::"

.1314.7047,.;-'31S..OQQ.':>->

-1385,56, 48320.0001461.5549325.0001542.8750,330.000,1629.8551'-.,;.'35'.000

-'1723:05'2:;

34Q;OOQ;-';.:::;:

1822.90.-53""'45'.OQQ:::'-.>'924.64 54350.0002020.0755355.0002121.9156360.0002230.6357.'--'.;365.000',.

2346".74=

58-,:.:370;QOO",.:::,

-2470,52-

?'P??-h=.h>>'X5 DDLDOWNCURVESREG.GUIDE1.99,REV.2 WITHOUTMARGIN09/28/92THEFOLLOWING DATAWEREPLOTTEDFORCDOLDOWNPROFILE1(STEADY-STATE CDDLDDWN)IRRADIATION PERIODR32.000EFPYEARSFLAWDEPTH~ADWINTINDICATED INDICATED TEMPERATURE PRESSURE(DEG.F)(PSI)INDICATED INDICATED TEMPERATURE PRESSURE(DEG.F)(PSI)INDICATED INDICATED TEMPERATURE PRESSURE(DEG.F)(PSI)1234567891011121314151617181985,00090.00095.000100.000105.000110.000115.000120.000125.000130.000135.000140.000145.000150.000155.000160.000165.0001VO.OOO175.000492.98495.89499.02502.38505.99509.88514,06518.55523.38528.57534.15540.05546,50553.44560.90568.91577.54586.68596.6420212223242526272829303132333435363738180.000185.000190.000195.000200.000205.000210.000215.000220.000225.000230.000235.000240.000245,000250.000255.000260.000265.0002?0.000607.36618.87631.24644.42658.74674.1'I690.49?08,28727.34747.75769.81V93.38e1&.e4846.11875.34907.00940.84977.141016.15394041424344454647484950515253545556275.000280~000285.000290.000295.000300.000305.000310.000315.000320.000325.000330.000335.000340.000345.000350.000355.000360.0001058.28'1103.351151.781203.561259.451319.451383.701452.621526.551605.821690.701781.VV1&79.211983,422094.782214.282341.47247V.36 AMPCODLOOWNCURVESREG.GUIDE1.99,REV.2 WITHOUTMARGIN09/28/92THEFOLLOWING DATAWEREPLOTTEDFORCOOLDOWNPROFILE2(20OEG-F/HRCOOLDOWN)IRRADIATION PERIOD~32.000EFPYEARSFLAWDEPTH~ADWINTINDIGATEDTEMPERATURE (DEG.F)INDICATED PRESSURE(rSI)INDICATED INDICATED TEMPERATURE PRESSURE(DEG.F)(PSI)~INDICATED TEMPERATURE (DEG.F)INDICATED PRESSURE(rSI)23456789101112131485.00090.00095.000100.000105.000110.000115.0QO120.OQQ125.000130.000135.000140.000145.000150.000449.12452,03455.19458.58462.27466.23470-52475.13480.13485.49491.30497.44504.19511.431516171819202122.2324252627155.000160.000165.000170.000175.000180.000185.OOQ1SO.QOO195.000200.000205.000210.000215.000519.26527,68536.76546.42556.96568.28580.49593.50607.65622.87639.12656.75675.7328293031323334353637383S40220,000225,000230.000235.000240.000245.000250.000255.000260.000265.000270.000275.000280-0006S5.99717.97741.44766.88794.05823.42854.93888.77925.12964.441006.491051.771100.35IPD%O ODLDOWNCURVESREG.GUIDE:1,99,REV.2 WITHOUTMARGINIRRADIATION PERIOD=32.000EFPYEARSFLAW'EPTH

~AOWINT0,0THEFOLLOWING DATAWEREPLOTTEDFORCOOLDOWNPROFILE3(40DEG-F/HRCOOLDOWN)09/28/92hC,INDICATED INDICATED INDICATED INDICATED TEMPERATURE PRESSURETEMPERATURE PRESSURE(DEG.F)(PSI)(DEG.F)(PSI}85,QOO404.27,.-..;.:.:,15 155.000"476.972.;...9Q.OOO 407.14~,".".'5,

';.]6,.',160.000"

...485.84'395.000410.3417165.000495.354100.000413.7918170.000505.685105.000417.5619175.000516.856110.000421.62.,20180.000.528.867,115,000.426.04'.-','.,"

21,.185.000..

'.:541.74

.8',.'120.00Q'-430.80..'.:"'22-..-.-

.190'000",.555.71,9125.000435.9823195.000570.8010130.000441.4924200.000586.9111135.000447.5425205.000604.4312-;140.000,454.06.,',"",:;.,"'".26,',

,210.000:.,'23.28, 13-:"145.000

-;-:461.,12"'.i",."27,"'

.',215.'000:,

'i'643;47

.'1415Q.OQO-'

'68.73INDICATED TEMPERATURE (DEG.F)28,220.00029..225.00Q'0 230.00031235.00032240.00033245.00034-'250.000 35255.00036260-00037265.00038270F00039,."275.000 4Q,"'&0;000,,

INDICATED PRESSURE(rSI)665".35

-'88;7?.714.14741.31770.69802.22'36.07"872.54,911.96954.24999.65i1048.51:".'101':.03 nIED;-;,'.?c5 AMPCODLDOWNCURVESREG.GUIDE1.99,REV.2 WITHOUtMARGIN09/28/92THEFOLLOWING DATAWEREPLOTTEDFORCOOLDDWNPROFILE4(60DEG-F/HRCDOLDOWN)IRRADIATION PERIOD=32.000EFPYEARSFLAWDEPTH~AOWINTINDICATED INDICATED TEMPERATURE PRESSURE(DEG.F)(PSI)INDICATED INDICATED TEMPERATURE PRESSURE(DEG.F)(PSI}INDICATED INDICATED TEMPERATURE PRESSURE(DEG.F)(PSI)1234567891011121385,00090.00095.000100.000105.000110.000115.000120.000125.000130.000135.000140.000145,0QO358.24361.20364.41367.93371.80375.99380.56385.5Q390.89396.71403.05409.83417.27141516171819202'1222324252615Q.000155.000160.000165.000170.000175.000180.000185.000190.000195.000200.000205.000210.000425.29433.99443.30453.48464.44476.32489.12502.88517.80533.93551.19569.96590,0527282930313233343536373839215.000220.000225.000230.000235.000240.000245.000250.0QQ255.000260.000265.000270.000275,000611.88635.24660.61687.75717.21748.73782.71819,44858.89901.34947.04S96.211049.09 COOLOOWNCURVESREG.GUIDE-1,99,REY.2.

WITHOUTMARGINTHEFOLLOWING DATAWEREPLOTTEDFORCOOLOOWNPROFILE5(100DEG-F/HRCOOLDOWN) 09/28/92IRRADIATION PERIOD<32.000EFPYEARS",-.FLAMDEPTHAOWINT?INDICATED INDICATED INDICATED INDICATED INDICATED INDICATEO TEMPERATURE PRESSURETEMPERATURE PRESSURETEMPERATURE PRESSURE(OEG.F)(PSI),,(OEG.F)(PSI),(DEG.F)(PSI)1',85,000'62,'50,"::,,':;;;:;~:,14, 150;000-'36.15';~27.h',2.15,000

',.551'.052-'90.000,.-'.265F58""':,"'".5."::i 15'155.'000,';.345,99,-';-'h,"."'28,;h

-'.220;OOQ

'578,41',395.000269.0116160.000356.6329225.000607.884100.000272.7517165.000368.1630230.000639.625105,000276.9018170.000380.6631235.000674.056110.000281.41;',:.":;::;.:-

19175.000:'394.26;-

',32,.240.000'11;017115.000.286,36.

.,-;,."
.".',20

'180.000;-.408-.87'.

--:33'45.000-';750;898,'120,000'=,=:291,76.-'..;",:,'.,'-';.2t"

185.000'".'.',.;;-

424.79-'..,':..',,..

34;.,',,';:250..'000

,-.793.84-,

9125.000297.70~22190.000441.9135255.000840.1710130.000304.1323195.000460.5336260.000890.0411135.000311.1824200.000480.6337265,000943.8312?;,:'140.000:-.;.-.",.:,

318.82<:,h

-..?K~'.":i"'25

"'05;000'.

';',.502".30,:..:,.;,:':-"

38,';j270,'OOO,

','.1001.60,';."'-

13'"'.'",,L45OOO,:;~-'-'*'"";-,327'2"*.',"'"";"',,"26",

',','210'000-","".

',.'25'6,""::?

i'i":,'",'c,

'",'"""",'.'.';

""..",'c."",.:.'

"'h>.'""',,'.,

'l:iwc,IM?.hh5h ATTACHMENT 2DATAPOINTSFORHEATUPANDCOOLDOWNCURVES(WithMarginsof10'Fand60psigforInstrumentation Errors)Thedatapointsusedinthedevelopment oftheheatupandcooldowncurvesshowninFigures2and4arecontained ontheattachedcomputerprintoutsheets.C-33 AMP60DEG-F/HRHEATUPREG.GUIDE1.99.REV.2WITHMARGINS10/12/92THEFOLLOWING DATAWERECALCULATEDFOR THEINSERVICE HYDROSTATIC LEAKTEST.MINIMUMINSERVICE LEAKTESTTEMPERATURE (32.000EFPY)PRESSURE(PSI)TEMPERATURE (DEG.F)3262485347PRESSURE(PSI)PRESSURESTRESS1.5K1M(PSI)(PSISO.RT.IN.)2208892529248527288115366 AMP60DEG-F/HRHEATUPREG.GUIDE1.99,REV.2WITHMARGINS10/12/92COMPOSITE CURVEPLOTTEDFORHEATUPPROFILE2HEATUPRATE(S)(DEG.F/HR)

IRRADIATION PERIOD=32.000EFPYEARSFLAWDEPTH>(1"AOWIN)Ti>0.0INDIGATEDINDICATED TEMPERATURE PRESSURE(DEG.F)(PSI)INDICATED INDICATED TEMPERATURE PRESSURE(DEG.F)(PSI)INDICATED INDICATED TEMPERATURE PRESSURE(DEG.F)(PSI)123456789101112131415161718192085.00090.00095.000100.000105.000110.000115.000120.000125.000130.000135.000140.000145.000'150.000155.000160.000165.000170.000175.000180.000~f669373.80374.12375.53377.77380.85384.72389.38394.73400.84407.63415.18423.4537$gO21,22232425262728293031323334353637383940185.000190.000195.000200.000205.000210.000215.000220.000225.000230.000235.000240.000245.000250.000255.000260.000265.000270.000275.000280.000432.53442.30453.04464.65477.13490.71505.38521.19538.11556.45576.06597.31620.15644.60670.85699.27729.61762.35797.45835.104142434445464748495051525354555657585960285.000290.000295.000300.000305.000310.000315.000320.000325.000330.000335.000340.000345.000350.000355.000360.000365.000370.000375.000380.000875.52918.92965.521015.561069.281126.801188.531254.701325.561401.551482.871569.851663.051762.901869.461979.872082.952193.342311.052436.53 OOLDDWNCURVESREG.GUIDE1.99.REV.2WITHMARGINS10/12/92THEFOLLOWING DATAWEREPLOTTEDFORCOOLDOWNPROFILE1IRRADIATION PERIOD<32.000EFPYEARSFLAWDEPTH%AOWINT(STEADY-STATE COOLDOWN)INDICATED TEMPERATURE (DEG.F)INDICATED PRESSURE(PSI)INDICATED INDICATED TEMPERATURE PRESSURE(DEG.F)(PSI)INDICATED TEMPERATURE (DEG.F)INDICATED PRESSURE(PSI)23456789101112131415161718192085.OOQ90.00095.000100.000105.000110.000115.OOQ120.000125.000130.000135.000140.000145.000150.000155.000160.000165.000170.000175.000180.000428.34430.89433.55436.50439.67443.08446.75450.69454.93459.49464.39469.65475.32481.30487.85494.89502.45510.59519.34528.622122232425262728293031.32'33343536373839185.QQO190.000195.000200.000205.000210.000215.000220.000225.000230.000235.000240.000245.000250.000255.000260.000265.000270.000275.000538.72549.59561.28573.70587.20601.72617.30633.95651.99671.20692.05714.40738.34764.15791.84821.50853.59887.92924.794041424344454647484950'1.52535455565758280.000'85.000290.000295.000300.000305.000310.000315.000320.000325.000330.000335.000340.000345.000350.000355.000360.000365.000370.000964.381006.911052.621101.741154.52121'I.181271.921336.951407.011481.901562.301648.491740.741839.561945.082058.162178.952308.092445.60 AMPCOOLDDWNCURVESREG.GUIDE1.99,REV.2WITHMARGINSTHEFOLLOWING DATAWEREPLOTTEDFORCODLDDWNPROFILE2(20DEG-F/HRCODLDOWN)IRRADIATION PERIOD~32.000EFPYEARSFLAWDEPTH%ADWINT10/12/92INDICATED INDICATED TEMPERATURE PRESSURE(DEG.F)(PSI)INDICATED TEMPERATURE (OEG.F)INDICATED PRESSURE(PSI)INDICATED INDICATED TEMPERATURE PRESSURE.

(DEG.F)(PSI)23456789101112131485.00090.00095.000100.000105.000110.000115.000120.000125.000130.000135.000140.000145.000150.000384.45386.97389.72392.68395.89399.33403.08407.10411.46416.14421.21426.65432.55438.79151617181920-21~'-'2232425262728155.000160.000165.000170.000175.000~180.000185.000190.000195.000200.000205.000210.000215.000220.000445.63452.99460.94469.47478.59488.50499.19510.68523.07536.28550.64566.08582.58600.472930313233343536373839404142225.000230.000235.000240.000245.000250.000255.000260.000265.000270.000275.000280.000285F000290.000619.71640.29662.57686.41712.18'?39.80769.45801.54835.91872.80912.49955.141001.021050.33ICa)

CODLODWNCURVESREG.GUIDE1.99,REV.2WITHMARGINSTHEFOLLOWING DATAWEREPLOTTEDFORCOOLDOWNPROFILE3(40DEG-F/HRC(i::LDOWN

)IRRADIATION PERIOD=32.000EFPYEARSFLAWDEPTH~AOWINT10/12/92INDICATED INDICATED TEMPERATURE PRESSURE(DEG.F)(PSI)INDICATED INDICATED TEMPERATURE PRESSURE(DEG.F)(PSI)INDICATED INDICATED TEMPIRATUREPRESSUR1'ILG.F)

(PSI)23456789101112131485.00090.00095.000100.000105.000110.000115.000120.000125.000130.000135.000140.000145.000150.000339.64342,16.--

344.92347.84351.09354.60358.43362.55367.04371.88377.14382.73388.88395.501516171819202122232425262728155.000160.000165.000170.000175.000180.000185.000190.000195.000200.000205.000210.000215.000220.000402.68410.40418.77427.77437.43447.91459.25471.45484.53498.71514.02530.37548.16567.272930313233343536373839404142225.000230.000235.000240.000245.000250.000255.000260.000265.000270.000275.000280.000285.000290.000587.78609.98633.75659.48687.07716.71748.86783.24820.25860.04903.09949.17998.741051.84ICO AMPCOOLDDWNCURVESREG.GUIDE1.99,REV.2WITHMARGINSTHEFOLLOWING DATAWEREPLOTTEDFORCOOLODWNPROFILE4(60DEG-F/HRCOOLODWN)IRRADIATION PERIOD=32.000EFPYEARSFLAWDEPTH~AOWINT10/12/92INDICATED TEMPERATURE (DEG.F)INDICATED PRESSURE(PSI)INDICATEO INDICATED TEMPERATURE PRESSURE(DEG.F)(PSI)INDICATED TEMPERATURE (DEG.F)INDICATED PRESSURE(PSI)123456789101112131485,00090~00095.000100.000105.000110.000115.000120.000125.000130.000135.000140.000145.000150.000293.63296.15298.93301.94305.21308.80312.73316.99321.64326.66332.14338.05344.50351.381516171819202122232425262728155.000160.000165.000170.000175.000180.000185.000190.000195.000200.000205.000210.000215.000220.000358.94367.08375.92385.38395.72406.85418.91431.91445.88461.02477.29494.93513.98534.3729303132333435363738394041225.000230.000235.000240.000245.000250.000255.000260~000265.000270.000275.000280.000285.000556.53580.24605.99633.53663.40695.43729.92767.02807.21850.25896.63946.47'1000.17ICALD COOLDDWNCURVESREG.GUIDE1.99,REV.2WITHMARGINSTHEFOLLOWING DATAWEREPLOTTEDFORCOOLDOWNPROFILE5(100DEG-F/HRCOOLI.iN)IRRADIATION PERIOD=32.000EFPYEARSFLAWDEPTH%ADWINT10/12/92INDICATED TEMPERATURE (DEG.F)INDICATED PRESSURE(PSI)INDICATED INDICATED TEMPERATURE PRESSURE(DEG.F)(PSI)INDICATED INDICATED TEMPERATURE PRESSURE(DEG.F)(PSI)123456789101112131485.00090.000S5.000100.000105.000110.000115.000120.000125.000130.000135.000140.000145.000150.000197.87200.43203.30206.44209.94213.76217.98222.64227.61233.10239.14245.69252.86260.6215161718192021222324252627155.000160.000165.000170.000.175.000180.000185.000190.000195.000200.000205.000210.000215.000269.06278.24288.24299.05310.76323.47337.28352.12368.29385.67404.59424.99447.0028293031323334353637383940220.00~225.0Cii230.000235.000240.000246.000250.000265.000260.000265.000270.000276.000280.000470.82496.49524.26554.18586.40621.20658.85699.35742.94789.96840.55895.10953.54nIlD ATTACHMENT 3DATAPOINTSFORHEATUPANDCOOLDOWNCURVES(WithoutMarginsforInstrumentation Errors)Thedatapointsusedinthedevelopment oftheheatupandcooldowncurvesshowninFigures5and7arecontained ontheattachedcomputerprintoutsheets.

~THFOLLOWING DATAWEREPLOTTEDFORCOOLOOWNPROFILE1(STEADY-STATE COOLOOWN)IRRADIATION PERIOD~15.000,EFP,YEARS, INDICATED INDICATEO INDICATED INDICATED INDICATED INDICATED TEMPERATURE PRESSURETEMPERATURE PRESSURETEMPERATURE PRESSURE(DEGF)(PSI)(OEGF)(PSI)395.000517.6220180.000670.9637265.0001193.0621185.000687.0938270.0001248.065,.105.000,,527.5022,,190,000.,704,6239275.0001307,039125.000552.0125210.000788.4943295.0001589.4810130.000559.3627215.000813.6144300.0001673.05135.000567.2628220.000840.4645305.0001763.0615155.000605.1532240.000969.6049325.0002189.5716160.000616.5033245.0001008.2750330.0002315.4217,165.000.628,.7034,250,000

,.1049.65,51335.000 2449.49 THEFOLLOWING DATAMEREPLOTTEDFORCOOLDOWNPROFILE2(20DEG-F/HRCOOLDOWN),xIRRADIATION PERIOD~h15,000EFPYEARSINDICATED INDICATED INDICATED INDICATED.

INDICATED INDICATED TEMPERATURE PRESSURETEMPERATURE PRESSURETEMPERATURE PRESSURE395.000475.1015155.000566.7827215.000789.014100.000479'.9916160.000578.7928220.000817.935...105,0003,485,30,17165,000,591,6129225,000,848,869125.000510.8321185.000653.8733245.000998.1910130.000518.5222190.000672.5334250.0001042.7411135.000,,526.82,9....23.,

,195.000 692,4935.,255,000 1090.58,nI\bCYXvh982h h(4vX'M0hv wh4Xh2'X05080XNY(kX'4e/XkkvXh49khXNW hfNN)hvXX N2(X'hh.0kX4077hXXXkvX' v774Xv THEFOLLOWING DATAWEREPLOTTEDFORCOOLOOWNPROFILE3(40DEG-F/HRCOOLDOWN),.,IRRADIATION PERIOD,15,.000,EFPYEARS,,INDICATED INDICATED INDICATED INDICATED, INDICATEO INDIGATEDTEMPERATURE PRESSURETEMPERATURE PRESSURETEMPERATURE PRESSURE(DEG.F,),

,(PSI),...,(OEG,F),

(PSI},,(.)(395.000431.6815155.000528.0627215.000765.794100.000436.7416160.000540.69...,5105.000,,442,17,.

,17,,165,000 554.46,29 225,000,830.059125.000468.9521185.000620.8733245.000990.9210130.000477.0322190.000640.6934250.0001038.9111,135.000,,

485.77,.23,195,000 662.2235255.0001090.58 THEFOLLOWING DATAWEREPLOTTEDFORCOOLOOWNPROFILE4(60DEG-F/HRCOOLDOWN),,IRRADIATION PERIOD=15.000EFPYEARS..INDICATED INDICATED INDICATEO INDICATED INDICATED INOICATEO TEMPERATURE PRESSURETEMPERATURE PRESSURETEMPERATURE PRESSURE(DEG.F),

...(PSI)...

,,.,(OEG.F)

,(PSI},...(OEG.F,)(PSI)395.000387.3015155.000489.0026210.000712.864100.000392.5616160.000502.4727215.000743.835105.000398~3017165~000517~1428220.000777.159125.000426.3421185.000588.0732240.000938.5010130.000434.8622190.000609.4733245.000986.8011135.000,,444.03.,23.,,195,.000 632,5434,250.0001038.71 THEFOLLOWING GATEWEREPLOTTEDFOROOOLOOWNPROFILEE(IOOOEG-F/HROOOLPOWN)

,IRRADIATION, PERIOD,>...15,000 EFPYEARS...,INDICATED INDICATED INDICATED INDICATED INDICATED INDICATED TEMPERATURE PRESSURETEMPERATURE PRESSURETEMPERATURE PRESSURE,,(DEG,F),L(PSI),,,...(DEG,F)

(PSI,}(DEG.F)(PSI)395.000295.4614150.000395.6425205.000635.734100.000301.2215"155.000.409.9726210.000669.415105.000307.55,16,,160.000425.5027215.000705.629125.000338.8520180.000501.3231235.000880.9110130.000,348.4321185.000524.3232240.000933.5511135.000358.88,,22,...,L190,000 549.0233.245.000990.30, COMPOSITE CURVEPLOTTEDFORHEATUPPROFILE2HEATUPRATE(S)(DEG.F/HR)

~60.0IRRADIATION PERIODm15.000EFP,,YEARS INDICATED INDICATED INDICATED INDICATED INDICATED INDICATED TEMPERATURE PRESSURETEMPERATURE PRESSURETEMPERATURE PRESSURE395.000464.7421185.000572.8639275.0001147.474100.000460.1722190.000588.7140280.0001206.005,105,000457,67.23.,195,000.605,98419125.000462~0227215.000689~2745305.0001569.4410130.000466.0028220.000714.3246310.0001658.28,135,.000.47,1,04

,,29,,.,225;000

..741;08..47,3,15,.0001753,,2715155.000500.2433245.000870.1351335.0002203.3716160.000509.8434250.000908.5752340.0002325.8217,165.000,,520.,41, 35,,255.,000 949,.85,

,53...,.345.000,,

2448.35nI ATTACHMENT 4DATAPOINTSFORHEATUPANDCOOLDOWNCURVES(WithMarginsof10'Fand60psigforInstrumentation Errors)Thedatapointsusedinthedevelopment oftheheatupandcooldowncurvesshowninFigures6and8arecontained ontheattachedcomputerprintoutsheets.C-48

~THEFOLLOWING DATAWEREPLOTTEDFORCOOLDOWNPROFILE.1 (STEADY-STATE COOLDOWN),IRRADIATIONPERIOD

=415,000EFPYEARSINDICATED INDIGATEDINDICATED INDICATED INDICATED INDICATEO TEMPERATURE PRESSURETEMPERATURE PRESSURETEMPERATURE PRESSURE(PEG.F)(PSI),,(OEG,F),(PSI).,,(OEG.F)(PSI,)39500044908211850005957939275000113306*4100.000453.2022190.000610.9640280.0001188.065105.000,,

457162,,23

,,195,000,,,,

627..0941285.000 1247,.03 9125.000478.8127215.000705.2845305.0001529.4810130.000485.1728220.000728.4946310.0001613.0511135.000.492.0129225.000..753.6147315.0001703.0615155.000524.8933245.000873.8251335.0002129.5716160.000534.5934250.000909.6052340.0002255.4217,.165.000,,545.15,,35...255.000

,,948,.27, 53345,.0002389.,49 THEFOLLOWING DATAWEREPLOTTEDFORCOOLDOWNPROFILE2(20DEG-F/HRCOOLDOWN)IRRADIATION PERIOD,>,,15,.000,EFP,YEARS INDICATED INDICATED INDICATED INDICATED INDICATED INDICATED TEMPERATURE PRESSURETEMPERATURE PRESSURETEMPERATURE PRESSURE..(OEG,.F,),

(PSI)...(DEG.,F),

(PSI)(DEG.F)(PSI)395.000406.3416160.000495.6228220.000702.274100.000410.5417165.000506.7829225.000729.015105.000415.1018170.000518.7930230.000757.93~9125.000437.0622190.000576.4934250.000896.7410130.000443.6823195.000593.8735255.000938.1911135.000~450.8324200.000612.5336260.000982.74OI THEFOLLOWING DATAWEREPLOTTEDFORCOOLDOWNPROFILE3(40DEG-F/HRCOOLDOWN),.IRRADIATION,PERIOD,=.,15,000,EFP YEARSINDICATED INDICATED INDICATED INDICATED INDICATED INDICATED TEMPERATURE PRESSURETEMPERATURE PRESSURETEMPERATURE PRESSURE(OEG.F)(PSI),.(OEG.~F,(PSI)2.616160.000456.2228220.000676.8617165.000468.0629225.000705.795,105,000...,,,371;68.....,

18,.170.000, 480...,69 30230.000, 736.739125.000394.5322190.000542.3234250.000886.2010130.000401.4523195.000560.8735255.000930.9211,135.000.,408,,95,,

24200,.000,,580,.69.

..36,260,.000

,978.91PlIVl8 THEFOLLOWING DATAWEREPLOTTEDFORCOOLDOWNPROFILE4(60DEG-F/HRCOOLOOWN)IRRADIATION, PERIOD~,15,000EFPYEARS'.;yg':,'":.':':'~."":"'";","

,;;-'~"."':"""-""":,"~'"

$":-'."'~"":..':".g:.".""'rS~i4'NDICATED INDICATED INDICATED INDICATED INDICATED INDICATED TEMPERATURE PRESSURETEMPERATURE PRESSURETEMPERATURE PRESSURE,,,(DEG,F)

...(PSI,),,...,,...,..

.,(DEG.F),

,(PSI).(DEG,F)....(PSI),395.000317.9615155.000404.7827215.000623.974100.000322.4316160.000416.4128220.000652.865105.000327.3017165.000429.0029225.000683.839125.000351.1821185.000489.9333245.000833.6610130.000358.4522'I90.000508.3234250.000878.50135.000,,366.34,,23195,000528.0735255.000926.80IQl

~THEFOLLOWING DATAWEREPLOTTEDFORCOOLDOWNPROFILE5(100DEG-F/HRCOOLDOWN)

~IRRADIATION PERIOD,,~

,15,,000EFP

YEARS, INDICATED INDICATED INDICATED INDICATED INDICATED INDICATED TEMPERATURE PRESSURETEMPERATURE PRESSURETEMPERATURE PRESSURE~(PEG.F)(PSI),,,(OEG,.,F)

(PSI)<OEG.F395.000225.3215155.000322.3827215.000575.734100.000230.1416160.000335.6428220.000609.415...105.,000.235.46,,,17,.,165,.000 349,97299125.000261.9121185.000420.1633245.000820.9110130.000269.9922190.000441.3234250.000873.5511135.,000,.278.8523195.000464.32,35255,000930.30 COMPOSITE CURVEPLOTTEDFORHEATUPPROFILE2HEATUPRATE(S)(OEG.F/HR) 2260.0~IRRADIATION, PERIOD<15,0009EFP,YEARS,INDICATEO INDIGATEDINDICATED INDICATED INDIGATEDINDICATED TEMPERATURE PRESSURETEMPERATURE PRESSURETEMPERATURE PRESSURE,(DEG.F)(PSI)....(DEG.F)(PSI)(DEG.F)(PSI)395.000420.9822190.000498.0640280.0001032.734100.000411.4223195.000512.8641285.0001087.475105.000,,404,74,,24,,200,000v528,,71v42290,.000,,1 146.009125.000397.2728220.000606.1546310.0001426.2210130.000399.0329225.000629.2747315.0001509.44vv"4r;.~-:;"..m"5~-vry"4..w"".v.3.y40yr2v4r V.5vrr444yv4va

""y4"*44vr"~~""...~.:.v,%~~~.v.::.awerr15155.000423.5634250.000774.2452340.0002019.6016'l60.000'31.6235255.000810.1353345.0002143.3717,,,165.000,440124,0..6.,36,,260.,000.,.

.4848...57v

,.,7544,350,000 9,2265.

82,Vl

9304220175 Attachment 1toAEP:NRC:1181 Reasonsand10CFR50.92Significant HazardsEvaluations forChangestotheTechnical Specifications forDonaldC.CookNuclearPlantUnit:2

,f Attachment 1toAEP:NRC:1181 Page1Asdiscussed inthecoverletter,thepurposeofthisproposedamendment istopreventasurveillance outagebeforeournextrefueling outage,currently scheduled tobeginAugust6,1994.Thissubmittal requestsextensions forsurveillances thatmustbeperformed duringshutdownorthatpresentsuchoperational difficulty thatperforming thesurveillance isnotpractical atpower.Weproposetoaddthefollowing Technical Specification (T/S)toSection4.0oftheT/Ss.4.0.8Byspecificreference tothis.section, thosesurveillances whichmustbeperformed onorbeforeAugust13,1994,andaredesignated as18-monthor36-monthsurveillances (orrequiredasoutage-related surveillances undertheprovisions ofSpecification 4.0.5)maybedelayeduntiltheendofthecycle9-10refueling outage.Forthesespecificsurveillances underthissection,thespecified timeintervals requiredbySpecificati'on

4.0. 2willbedetermined

withthenewinitiation dateestablished bythesurveillance dateduringtheUnit21994refueling outage.DescritionofChaneDueDateWereference thisSpecification byfootnoteinallsurveillances thatrequirethisextension.

Thisfootnotewillbeapplicable tothefollowing T/Sswiththeindicated surveillance duedate.DatesgivenincludethegraceperiodallowedbyT/S4.0.2.(1)4.3.1.1.3 4.3.2.1.3 Delaytime-response testingforreactortripandengineered safetyfeaturesinstrumentation 01/02/94limitingduedate(2)4.5.1.d4.5.2.e4.6.2.1.c 4.6.2.2.c 4.6.3.1.2 4.7.1.2.e 4.7.1.2.f 4.7.3.l.b 4.7.4.l.b 4.7.5.1.e.2 4.7.6.l.d.3 Delaytestingforequipment responsetoESFsignals(safetyinjection, containment pressurehigh-high, containment isolation phaseAandBandpurgeexhaust)04/15/94limitingduedate(3)Table4.3-2<,Item6.d4.7'.2.e4.7.1.2.f Delayauxiliary feedwater systemtestingincluding channelfunctional testingoflossofmainfeedwater pumpsignal05/05/94.

Attachment 1toAEP:NRC:1181 Page2(4)(5)(6)4.8.1.1.2.e 4.8.1.24.4.11.34.7.4.1.b Table4.3-1>,Items7&84.3.2.1.2 (P-12)Table4.3-2>,Item4.dTable4.3-6AItems5,6,7&8Table4.3-10,Items2,3,11Table4.3-1>,Items7,9,10&llTable4.3-2>,Iteml.d4.3.2.1.2 (P-11)4.4.11.1.b DescritionofChaneDelaydieselgenerator testingincluding reliefvalvetestingandessential servicewatervalvetestingDelayRTDcalibrations Delaypressurizer pressure&levelcalibrations, interlock functiontesting,andPORVcalibrations DueDate03/25/94.

limitingduedate04/28/9401/29/94(8)4.1.3.3(9)(10)4.5.2.d.14.5.3.14.7.7.l.a Table4.3-1<,Item54.3.1.1.2 (P-6)(12)4.6.5.9(7)Table4.3-10,Item16DelayReactorVesselLevelIndication Syst:emCalibration Delayanalogrodpositionindication functional testingDelayRHRauto-closure interlock testingDelayvisualinspection ofinaccessible snubbersDelayintermediate rangecalibration andinterlock functional testingDelaydividerbarriersealinspection 04/20/9405/03/9403/07/94.

03/19/9401/17/9403/08/94(13)(14)4.7.9.2.b.l Table4.3-10,Item184.5.2.d.2 4.5.3.1Delaycontainment waterlevelcalibrations and"sumpvisualinspection 01/31/94limitingduedateDelayRCPfireprotection testing03/30/94(15)4.2.5.2Table4.3-1>,Items12&13Delayreactorcoolantflowcalibrations 01/28/94 Attachment 1toAEP:NRC:1181 Page3(16)Table4.3-2>,Items9.a,9.b,9.c&9.dDescritionofChaneDelayESFManualTripActuating DeviceOperational TestDueDate04/15/94limitingduedate>Tables4.3-1and4.3-2refertoT/S4.3.1.1.1 andT/S4.3.2.1.1, respectively.

Adescription oftheproposedchanges,thereasonsforthechanges,andouranalysesconcerning significant hazardsconsiderations foreachgroupofextension requestsaregivenintheremainder ofthisattachment.

Itisworthnotingthattwosimilarextension requestsfortheUnit2Cycle6-7outagewereapprovedbytheNRConDecember28,1987andFebruary29,1988viaAmendments 97and99,respectively.

Thesetwoamendments grant:edextensions fortheT/Ssdescribed ingroups1through9and16,above.1and2'eact:orTriandESFResonseTestinWearerequesting extensions forthetime-response testingrequiredbyT/Ss4.3.1.1.3 and4.3.2.1.3 forthereactortripandEngineered Safet:yFeatures(ESF)instrumentation inT/STables3.3-1and3.3-3.Inaddition, wearerequesting extensions forsurveillance requirements involving equipment thatactuatesonanESFsignal(seetablebelow).Thesesurveillances inmanycasesinvolvethesameequipment andareperformed inparttosatisfytheresponsetimetestingofT/Ss4.3.1.1.3 and4.3.2.1.3.

Theseadditional surveillances, theaffectedcomponents, andtherespective ESFactuation signalsareasfollows:It:em~TS2~4.5.l.d4.5.2.e4.6.2.1.c Comonentsaccumulator isolation valvesECCSautomatic valvescentrifugal chargingpumpsafetyinjection pumpresidualheatremovalpumpcontainment sprayautomatic valvesandpumps~ESPSinalSISISISISIcontainment pressurehigh-high 4,6.4.6.2.2.c 4.6.3.1.2 4.7.1.2.e,f spray,additivesystemautomatic valvescontainment isolation valvescontainment purgeandexhaustvalvesauxiliary feedwater automatic valvesandpumpstartingcontainment=pressure high-high PhaseAisolation PhaseBisolation containment purgeandexhaustisolation variousSeeT/SGroup(3)

Attachment 1toAEP:NRC:1181 Page4Item~TS7.4.7.3.1.b 8.4.7.4.1.b

~Gomonentscomponent coolingwaterautomatic valvesessential servicewaterautomatic valvesESFSialSISISeeT/SGroup(4)9.4.7.5.l.e.2 controlroomventilation 10.4.7.6.1.d.3 ESFventilation SIPhaseAisolation containment pressurehigh-high Theextensions areneededfromJanuary2,1994(mostlimitingsurveillance duedate),untiltheUnit2refueling outage.AttheCookPlant,responsetimetestingisperformed inseveralparts.Theportionsofcircuitry fromthetransmitter tothebistable, fromthebistabletothemasterrelaycontact,andfromthemasterrelaycontacttoequipment operation aretestedseparately.

Testingofthecompleteportionfromthetransmitter tothemasterrelaycontactcannotbeperformed atpowerwithoutviolating theT/Ssoradversely impacting plantoperation, i.e.,reactortrip.T/Ss3.3.1.1,3.3.2.1and3.0.3requiretheplanttobeshutdownifsufficient reactortriporESFinstrumentation isnotoperable.

Bothtrains(allchannels) ofthefunctionbeingtestedmustbetakenoutofserviceduringthistestbecausethesametestsignalgoesintobothtrains,whichgenerates areactortripsignalorESFactuation.

Shouldtheynotbeintest,eachsignalwouldinitiateprotective functions suchassafetyinjection andcontainment spray.Therefore, theportionofthetime-response testsfromthebistableuptothemasterrelaymustbedoneduringshutdown.

However,testingfromthetransmitter tothebistablecanbeperformed atpowerandwillbepriortoitssurveillance duedate.Thebalanceoftheequipment, i.e.,fromthemasterrelaycontacttoequipment operation, istestedaspartofthesurveillances listedinthetableabove.Ofthesesurveillances, Items2through8arespecifically requiredbyT/Sstobeperformed duringshutdown.

Items1,9and10arenotspecifically prohibited byT/Ssfrombeingperformed atpower.However,todothistesting(aswellastheothertestinglistedinthetable)wouldrequireustoremoveanentiretrainofsafetyequipment fromoperation (withtheexception ofthespecificequipment beingtested).Becausethisremovesalayerofprotection builtintotheplant,andbecauseitinvolvesoperating theplantinanabnormalconfiguration, itisnotconsidered prudenttoperformthistestingatpower.Thesurveillance historyoftheseESFsystemsshowsthatwehavenoreasontobelievethattheremaybeanyfailuresinmeetingtheT/Srequirements duetoequipment degradation duringtheextension period.Additionally, wenotethattheESFandreactorprotection systemchannelsaresubjected toaT/Srequiredsurveillance programofchannelchecksandchannelfunctional tests.Allrequiredchannelchecksandchannelfunctional testswillcontinuetobeperformed.

Webelievetheseadditional testsprovide'ndication oftheoperability ofthesystems,andwouldprovideindication ofsignificant degradation.

Attachment 1toAEP:NRC:1181 10CFR50.92CriteriaPage5Per10CFR50.92,aproposedamendment willnotinvolveasignificant hazardsconsideration iftheproposedamendment, doesnot:(1)involveasignificant increaseintheprobability orconsequences ofanaccidentpreviously

analyzed, (2)createthepossibility ofanewordifferent kindofaccidentfromanyaccidentpreviously analyzedorevaluated, or(3)involveasignificant reduction inamarginofsafety.Ourevaluation oftheproposedchangewithrespecttothesecriteriaisprovidedbelow.Criterion 1Basedonourreviewofpasttestdata,andthefactthattheequipment issubjecttoasurveillance programwhichincludeschannelchecksandchannelfunctional tests,webelievetheextensions wearerequesting willnotresultinasignificant increaseintheprobability orconsequences ofapreviously evaluated
accident, norwillitresultinasignificant reduction inamarginofsafety.Criterion 2Thisextension willnotresultinachangeinplantconfiguration oroperation.

Therefore, theextension shouldnotcreatethepossibility ofanewordifferent kindofaccidentfromanypreviously evaluated oranalyzed.

Criterion 3SeeCriterion 1,aboveLastly,wenotethattheCommission hasprovidedguidanceconcerning thedetermination ofsignificant hazardsbyproviding certainexamples(48FR14870)ofamendments considered notlikelytoinvolvesignificant hazardsconsideration.

Thesixthoftheseexamplesreferstochangeswhichmayresultinsomeincreasetotheprobability ofoccurrence orconsequences ofapreviously analyzedaccident, buttheresults,ofwhicharewithinlimitsestablished asacceptable.

Forthereasonsdetailedabove,webeliev'ethischangefallswithinthescopeofthisexample.Therefore, webelievethischangedoesnotinvolvesignificant hazardsconsideration asdefinedin10CFR50.92.

Attachment 1toAEP:NRC:1181 Page63AuxiliaFeedwater PumTestinT/STable4.3-2Item6.drequiresachannelfunctional testofthemotordrivenauxiliary feedwater pumpstartonlossofmainfeedwater pumpsignaltobeperformed onan18monthbasis.Toperformthi'stestingduringpoweroperations wouldinvolvetrippingatleastonemainfeedpump,whichwouldresultinareduction ofpowerandcauseathermaltransient tobeimposedontheplant.T/Ss4.7.1.2.e

&4.7.1.2.f requiretestingtodemonstrate thatthemotor-andturbine-driven auxiliary feedwater pumpsstartandthattheassociated automatic valvesactuatetotheircorrectpositionuponreceiptoftheappropriate signalaslistedinT/STable4.3-2.PerT/Ss4.7.1.2.e

&4.7.1.2.f, thistestingmustbeperformed duringshutdown.

Theseextensions areneededfromMay5,1994,untiltheUnit2refueling outage.Basedontheabove,wecannotperformthesesurveillances whileatpower.However,inpractice, theessential portionsoftheseT/Ss(thatis,startupoftheauxiliary feedwater pumpswhenrequiredandmovementofthevalvestotheircorrectposition) occurwhentheunittrips.ThelastreactortripoccurredonJuly2,1992.Priortestingexperience withregardtothesesurveillances hasindicated nosignificant problemswhenthesurveillance,was performed.

Althoughwerecognize thatnotalltheactuation circuitry hasbeenchallenged asaresultofthereactortrip,wefeelthatourrecentexperience, inconjunction withtheexcellent testhistoryinthisarea,justifies ourrequesttoextendthesurveillance interval.

10CFR5092CriteriaPer10CFR50.92,aproposedamendment willnotinvolveasignificant hazardsconsideration iftheproposedamendment doesnot:(1)involveasignificant increaseintheprobability orconsequences ofanaccidentpreviously evaluated, (2)(3)createthepossibility ofanewordifferent kindofaccidentfromanyaccidentpreviously analyzedorevaluated, orinvolveasignificant reduction inamarginofsafety.Ourevaluation oftheproposedchangewithrespecttothesecriteriaisprovidedbelow.

Attachment 1toAEP:NRC:1181 Criterion 1Page7Asdiscussed above,portionsofthesystemhaveundergone achallenge duetoarecentactuation (duringaunittrip).Thisfact,coupledwithourexcellent testhistoryforthesesurveillances, leadsustobelievetheextension wearerequesting willnotresultinasignificant increaseintheprobability orconsequences ofapreviously evaluated

accident, norwillitresultinasignificant reduction inamarginofsafety.Criterion 2Thisextension willnotresultinachangeinplantconfiguration oroperation.

Therefore, theextension shouldnotcreatethepossibility ofanewordifferent kindofaccidentfromanypreviously evaluated oranalyzed.

Criterion 3SeeCriterion 1,above.Lastly,wenotethattheCommission hasprovidedguidanceconcerning thedetermination ofsignificant hazardsbyproviding certainexamples(48FR14870)ofamendments considered notlikelytoinvolvesignificant hazardsconsideration.

Thesixthoftheseexamplesreferstochangeswhichmayresultinsomeincreasetotheprobability orconsequences ofapreviously evaluated

accident, buttheresultsofwhicharewithinlimitsestablished asacceptable.

Vebelievethischangefallswithinthescopeofthisexample,forthereasonscitedabove.Thus,webelievethischangedoesnotinvolvesignificant hazardsconsideration asdefinedin10CFR50.92.

Attachment 1toAEP:NRC:1181 4DieselGenerator TestinPage8Anextension ofthesurveillance intervalisrequested for=thesurveillance requirements ofT/S4.8.1.1.2.e.

Thesesurveillances arerequiredbyT/Sstobeperformed duringshutdown.

Therequirements includesubjecting thedieseltoaninspection inaccordance withmanufacturer's recommendations, aswellastestingtoverifythatthedieselgenerator anditsassociated circuitry arecapableofenergizing, sequencing andsheddingtheemergency loadsuponreceiptoftheappropriate signal.Anextension ofthesurveillance intervalisalsonecessary forpartoftherequirements ofT/S4.8.1.2,since4.8.1.1.2 isreferenced there.Theextension isneededfromMarch25,1994(limiting duedate),throughtheUnit2refueling outage.DuringthefourandahalfmonthperiodfromMarch25untilthestartoftheoutage,eachdieselgenerator shouldaccumulate 5additional startsand5-7additional runninghours.Theaffectthattheseadditional startswouldhaveonthedieselgenerators isbelievedtobeinsignificant basedonthewearhistoryofeachmachine.Thus,webelievetheadditional startsdonotconstitute sufficient needtoperformthesubjectsurveillances priortotheproposedextendeddate.Thehistoryofdieselgenerator repairsfromthepastfewyearsdonotindicateanyproblemareaswhich,inourjudgement, wouldbesignificantly affectedbytheproposedsurveillance intervalextension.

Furthermore, conditions whichhaverequiredmaintenance onthedieselgenerators havebeencorrected atthetimeofdiscovery andhavenotrequireddeferraluntilanoutage(i.e,,weshouldnotbedeferring anysignificant maintenance itemsthroughtheextension period).Currently, wehaveatrendingprogramfortheparameters measuredduringourT/Srequiredmonthlytesting.Thesetrendsarereviewedbyourdieselgenerator systemengineer.

Ifanadversetrendbegantodevelop,thepreventive/corrective measureswouldbetakentopreventasignificant problemfromoccurring.

Also,areviewofprevioustestresultsdidnotindicateanyreasonstosuspectthatthedieselgenerator associated circuitry (i.e.,energizing, sequencing, andsheddingthevariousemergency loads)wouldnotpassrequiredsurveillance testswiththesurveillance intervalextended.

Basedontheabove,webelievethatthereisnoreasontosuspectthatthedieselgenerators wouldnotbecapableofperforming theirsafetyfunctions asrequiredbytheT/Ss.Twootherextensions relatedtothedieselgenerators arealsonecessary toavoidashutdown.

Thesearefortherequirements ofT/Ss4.4.11.3and4.7.4.l.b.

T/S4.4.11.3requirestestingoftheemergency powersupplyforthepoweroperatedreliefvalves(PORVs)andtheirassociated blockvalves.SincethistestinginvolvescyclingthePORVsandblockvalves,.itisgenerally performed duringshutdownandinconjunction withthedieselgenerator testingrequirements ofT/S4.8.1.1.2.e, assuggested byT/S4.4.11.3.

T/S4.7.4.1.b involvestestingautomatic valvesintheessential servicewater(ESW)system.PerT/Ss,thissurveillance testingmustbeperformed duringshutdown.

SincesomeoftheESWvalveswhicharerequiredtobetestedinvolvecoolingwaterforthedieselgenerator anditsassociated equipment, thistestingisgenerally conducted inconjunction withthedieselgenerator testingofT/S4.8.1.1.2.

Theextension forboththeESWvalvesandthePORVemergency powersupplyareneededfortheperiodofApril15,1994throughtheUnit2refueling outage.Previoustest Attachment 1toAEP:NRC:1181 Page9resultsdonotindicateanyreasontosuspectthatthevalvesandtheirassociated circuitry wouldnotpasstherequiredsurveillance withtheextendedinterval.

10CFR5092CriteriaPer10CFR50.92,aproposedamendment willnotinvolveasignificant hazardsconsideration iftheproposedamendment doesnot:(1)involveasignificant increaseintheprobability orconsequences ofanaccidentpreviously

analyzed, (2)createthepossibility ofanewordifferent kindofaccidentfromanyaccidentpreviously analyzedorevaluated, or(3)involveasignificant reduction inamarginofsafety.Ourevaluation oftheproposedchangewithrespecttothesecriteriaisprovidedbelow.Criterion 1Forthediesel-generator machinery, theextension willresultonlyinapproximately 5additional startsand5to7additional runhours.Thisisconsidered insignificant withregardtothewearhistoryofeachmachine.Forthediesel-associated circuitry, theESWautomatic valves,andthePORVemergency powersupply,ourreviewofprevioustestdatahasnotindicated anyreasontobelievetheequipment wouldnotpasstherequiredsurveillance testswiththeextendedinterval.

Forthesereasons,webelievetheextension wearerequesting willnotresultinasignificant increaseintheprobability orconsequences ofapreviously evaluated

accident, norwillitresultinasignificant reduction inamarginofsafety.Criterion 2Thisextension willnotresult.inachangeinplantconfiguration oroperation.

Therefore, theextension shouldnotcreatethepossibility ofanewordifferent kindofaccidentfromanypreviously evaluated oranalyzed.

Criterion 3SeeCriterion 1,above.Lastly,wenotethattheCommission hasprovidedguidanceconcerning thedetermination ofsignificant hazardsbyproviding certainexamples(48FR14870)ofamendments considered notlikelytoinvolvesignificant hazardsconsideration.

Thesixthoftheseexamplesreferstochangeswhichmayresultinsomeincreasetotheprobability ofoccurrence orconsequences ofapreviously analyzedaccident, buttheresultsofwhichareclearlywithinthelimitsestablished asacceptable.

Webelievethesechangesfallwithinthescopeofthisexample.Therefore webelievethischangedoesnotinvolvesignificant hazardsconsideration asdefinedin10CFR50.92.

Attachment 1toAEP:NRC:1181 Page105RTDCalibrations Extensions arerequested forthecalibration ofresistance temperature detectors (RTDs).Theextensions areneededfromApril28,1994,untiltheUnit2refueling outage.TheT/Ssurveillances involving theRTDcalibration arelistedbelow.Re'irement 4.3.1.1.1, Table4.3-1,Item74.3.1.1.1, Table4.3-1,Item84.3.2.1.2 (P-12)4.3.2.1.1, Table4.3-2,Item4.dOTATChannelCalibration OPATChannelCalibration TotalInterlock FunctionTestingSteamFlowinTwoSteamLines--HighCoincident withT,~--Low-LowChannelCalibration 4.3.3.5.1 Table4'-6A,Items5&7Calibration ofAppendixRRemoteShutdownMonitoring Instrumentat ionReactorCoolantLoops(2&4)Temperature (Cold)4.3.3.5.1 Table4.3-6A,Items6&8Calibration ofAppendixRRemoteShutdownMonitoring Instrumentation ReactorCoolantLoops(2&4)Temperature (Hot)4.3.3.6Table4.3-10,Item2Calibration ofPost-Accident Monitoring ReactorCoolantOutletTemperature

-Tao>Channel4.3.3.6Table4.3-10,Item3Calibration ofPost-Accident:

Monitoring ReactorCoolantInletTemperature

-Tco<zChannel4.3.3.6Table4.3-10,Item11Calibration ofPost-Accident Monitoring ReactorCoolantSystemSubcooling MarginMonitorChannel

Attachment 1toAEP:NRC:1181 Page11Theextensions requested inthiscategoryareforthecalibration ofthesensorsonly.Thecalibration procedure requiresdatatobetakenatRCStemperatures rangingfromapproximately 250'Fthroughoperating temperatures.

Thisprocedure cannotbeperformed atpowerbecauseofthelowtemperatures necessary forthecalibration andbecauseisothermal conditions throughout theRCSarerequired.

ThechannelsinvolvedwiththeRTDsaresubjecttoT/Srequiredchannelchecksand/orchannelfunctional tests.Thistesting,whichwillcontinueduringtheextension period,wouldbeexpectedtoprovideindication ofRTDdrift.Also,sincenarrowrangeRTDsfeedthehTcircuits, comparisons ofhT~tothecalorimetric calculated powerorpowerrangedetectors shouldshowdriftinthenarrowrangeRTDs.WehavefoundRTDsattheCookNuclearPlanttobeverystable,andhavenotexperienced significant driftingproblems.

Forallofthesereasons,wehavenoreasontobelievethattheRTDswillnotremainoperableduringtheextension period.10CFR50.92CriteriaPer10CFR50.92,aproposedamendment willnotinvolveasignificant hazardsconsideration iftheproposedamendment doesnot:(1),involveasignificant increaseintheprobability orconsequences ofanaccidentpreviously

analyzed, (2)createthepossibility ofanewordifferent kindofaccidentfromanyaccidentpreviously analyzedorevaluated, or(3)involveasignificant reduction inamarginofsafety.Ourevaluation oftheproposedchangewithrespecttothesecriteriaisprovidedbelow.Criterion 1TheRTDsattheCookNuclearPlanthavetraditionally beenverystable.Severalindependent instruments areavailable whichwouldallowustonoticedriftoftheRTDs.Also,channelsinvolving theRTDsaresubjecttoT/Srequiredchannelchecksand/orchannelfunctional tests,whichwillcontinue, tobeperformed duringtheextension period.Forthesereasons,webelievetheextension wearerequesting willnotresultinasignificant increaseintheprobability orconsequences ofapreviously evaluated
accident, norwillitresultinasignificant reduction inamarginofsafety.Criterion 2Thisextension willnotresultinachangeinplantconfiguration oroperation.

Therefore, theextension shouldnotcreatethepossibility ofanewordifferent kindofaccidentfromanypreviously evaluated oranalyzed.

Attachment 1toAEP:NRC:1181 Page12Criterion 3SeeCriterion 1,above.Lastly,wenotethattheCommission hasprovidedguidanceconcerning thedetermination ofsignificant hazardsbyproviding certainexamples(48FR14870)ofamendments considered notlikelytoinvolvesignificant hazardsconsideration.

Thesixthoftheseexamplesreferstochangeswhichmayresultinsomeincreasetotheprobability orconsequences ofapreviously evaluated

accident, buttheresultsofwhicharewithinlimitsestablished asacceptable.

Webelievethischangefallswithinthescope'fthisexample,forthereasonscitedabove.Thus,webelievethischangedoesnotinvolveasignificant hazardsconsideration asdefinedin10CFR50.92.

Attachment 1toAEP:NRC:1181 6Pressurizer Pressure&LevelCalibrations andPORVCalibrations Page13Wearerequesting anextension fortheperformance ofsomeofthepressurizer channelcalibrations (pressurizer pressureinstruments NPS-153&NPP-153,andpressurizer levelinstrument NLP-153)andinterlock testinginvolving thepressurizer pressureinstrumentation.

Wearealsorequesting reliefforthecalibration ofthePORVs.Theextensions areneededfromJanuary29,1994,untiltheUnit2refueling outage.TheaffectedT/Ssareasfollows:Reuirement4.3.1.1.1, Table4.3-1,Item7Calibration forOTATReactorTrip.4.3.1.1~1,Table4.3-1,Item9Calibration forPressurizer Pressure-Low ReactorTrip4.3.1.1.1, Table4.3-1,Item10Calibration forPressurizer Pressure-High ReactorTrip4.3.1.1.1, Table4.3-1,Item11Calibration forPressurizer WaterLevel-High ReactorTrip4.3.2.1.1, Table4.3-2,Iteml.d~~~~~Calibration forPressurizer Pressure-Low ESFActuation 4.3.2.1.2 (P-11)Interlock TotalFunctionTesting4.4.ll.l.b Calibration ofPowerOperatedReliefValvesPerformance ofthiscalibration isnotconsidered tobeprudentatpowerduetotheconfiguration ofthepressurizer pressureandlevelinstrumentation.

Twoofthepressurizer pressureinstruments (NPS-153andNPP-153)shareacommonsensinglinewithoneofthepressurizer levelinstruments (NLP-153).

Calibrating eitherNPS-153orNPP-153posestheriskofperturbing the,inputtotheothertransmitter, whichcouldresultinatrip.Calibrating NLP-153posestheriskofperturbing theinputtoNPS-153andNPP-153transmitters,'hich alsocouldresultinatrip.Theexemption

'forthePORVsisalsoneededbecausethecalibrations makeallthreePORVsinoperable atthesametime,whichiscontrarytotherequirements ofT/S3.4.11.Asdiscussed inthepreviousparagraph, certainchannelsofpressurizer pressureandlevelinstrumentation poseathreattotrippingthereactor.However,therearethreechannelsofpressurizer levelinstrumentation andfourchannelsofpressurizer pressureinstrumentation ofwhichtwolevelandtwopressurechannelsofinstrumentation can,andwill,becalibrated asrequiredbytheTechnical Specifications.

Thus,twoofthethreepressurizer levelandtwoofthefour Attachment 1toAEP:NRC:1181 Page14pressurizer pressurechannelswillsatisfytheT/Ssurveillance requirements.

Also,theinstrumentation channelsforwhichwearerequesting surveillance intervalextensions aresubjecttoT/Srequiredchannelfunctional testingand/orchannelchecks.Thechannelfunctional testsweperformarefarmorestringent thanrequired.

Thesetestsnotonlydemonstrate channelfunctionality, butalsoverifycalibration oftripsetpoints, actuations andalarms.Theonlyportionofthechannelthatisnottestedisthesensor,whichisqualitatively verifiedduringchannelchecks.Thus,thetestingwewillcontinuetoperformwouldbeexpectedtoprovideindication oftheoperability ofthesystems,andwouldprovideindication ofsignificant degradation.

Lastly,wenotethatbasedonourreviewofthesurveillance history,webelievethisequipment willremainoperableduringtheextension period.10CFR5092CriteriaPer10CFR50.92,aproposedamendment willnotinvolveasignificant hazardsconsideration iftheproposedamendment doesnot:li(1)involveasignificant increaseintheprobability orconsequences ofanaccidentpreviously

analyzed, (2)createthepossibility ofanewordifferent kindofaccidentfromanyaccidentpreviously analyzedorevaluated, or(3)involveasignificant reduction inamarginofsafety.Ourevaluation oftheproposedchangewithrespecttothesecriteriaisprovidedbelow.Criterion 1Completing therequiredT/Ssurveillances ontwoofthethreepressurizer levelchannelsandtwoofthefourpressurizer pressurechannelswillensurethatthemajorityoftheequipment iscalibrated asrequired.

Also,theapplicable channelfunctional testsandchannelchecksshouldensurethatthesesystemswillperformasdesigned.

Additionally, basedonthesurveillance historyoftheequipment, webelievethattheequipment willremainoperableduring-theextension period.Wetherefore believetheextension wearerequesting willnotresultindeterioration totheextentthattheequipment cannotperformitsintendedfunction.

Forthesereasons,webelievetheextension wearerequesting willnotresultinasignificant increaseintheprobability orconsequences ofapreviously evaluated

accident, norwillitresultinasignificant reduction inamarginof.safety.Criterion 2Thisextension willnotresultinachangeinplantconfiguration oroperation.

Therefore, t'eextension shouldnotcreatethepossibility ofanewordifferent kindofaccidentfromanypreviously evaluated oranalyzed.

Attachment 1toAEP:NRC:1181 Page15Criterion 3SeeCriterion 1,above.Lastly,wenotethattheCommission hasprovidedguidanceconcerning thedetermination ofsignificant hazardsbyproviding certainexamples.(48 FR14870)ofamendments considered notlikelytoinvolvesignificant hazardsconsideration.

Thesixthoftheseexamplesreferstochangesthatmayresultinsomeincreasetotheprobability orconsequences ofapreviously evaluated

accident, buttheresultsofwhicharewithinlimitsestablished asacceptable.

Webelievethischangefallswithinthescopeofthisexampleforthereasonscitedabove.Thus,webelievethischangedoesnotinvolveasignificant hazardsconsideration asdefinedin10CFR50.92.

Attachment 1toAEP:NRC:1181 Page167ReactorVesselLevelIndication SstemAnextension isrequested forthechannelcalibration oftheReactorVesselLevelIndication System(RVLIS)requiredbyT/STable4.3-10,Item16.Therequiredcalibration cannotbeperformed atpowerbecauseworkmustbeperformed inthelowervolumeofcontainment andreactorheadarea,whichareonlyaccessible whentheunitisshutdown.Theextension isneededfromApril20,1994,untiltheUnit2refueling outage.RVLIShastwotrainsofindication thataresubjected toT/Srequiredmonthlychannelcheckswhichwewillcontinuetoperformduringtheextension period.Thesechannelchecksprovideindication oftheoperability ofthesystem,andwouldbeexpectedtoprovideindication ofsignificant degradation ofthesystem.Ourreviewofthemaintenance historyofthesystemgivesusnoreasontobelievethesystemwouldbeinoperable duringtheextension period.Additionally, indication ofinadequate corecoolingcanbeobtainedbyobserving coreexitthermocouple readingsorbycheckingthesubcooling marginmonitor.Thesearethemethodstheoperators wouldhaveusedtoassessinadequate corecoolingpriortohavingRVLIS.Wealsonotethatthereareannunciators whichindicatefailureofRVLIS.Forthesereasons,webelievethattheextensions wearerequesting willnotadversely impacttheabilityofthisequipment toperformitssafetyfunction.

~~10CFR5092CriteriaPer10CFR50.92,aproposedamendment willnotinvolveasignificant hazardsconsideration iftheproposedamendment doesnot:(1)involveasignificant increaseintheprobability orconsequences ofanaccidentpreviously

analyzed, (2)createthepossibility ofanewordifferent kindofaccidentfromanyaccidentpreviously analyzedorevaluated, or(3)involveasignificant reduction inamarginofsafety.Ourevaluation oftheproposedchangewithrespecttothesecriteriaisprovidedbelow.Criterion 1Theequipment issubject.tonormalsurveillances whichwouldbeexpected'toprovideindication ofsignificant degradation.

Also,otherinstrumentation isavailable whichalsoprovidesindication ofinadequate corecooling.Lastly,thepastmaintenance historyoftheequipment givesusnoreasontobelievethattheequipment wouldbeinoperable duringtheextension period.Forthesereasons,webelievetheextension wearerequesting willnotresultinasignificant increaseintheprobability orconsequences ofapreviously evaluated

accident, norwillitresultinasignificant reduction inamarginofsafety.

F Attachment 1toAEP:NRC:1181 Page17Criterion 2Thisextension willnotresultinachangeinplantconfiguration oroperation.

Therefore, theextension shouldnotcreatethepossibility ofanewordifferent kindofaccidentfromanypreviously evaluated oranalyzed.

Criterion 3SeeCriterion 1,above.Lastly,wenotethattheCommission hasprovidedguidanceconcerning thedetermination ofsignificant hazardsbyproviding certainexamples(48FR14870)ofamendments considered notlikelytoinvolvesignificant hazardsconsideration.

Thesixthoftheseexamplesreferstochangeswhichmayresultinsomeincreasetotheprobability ofoccurrence orconsequences ofapreviously analyzedaccident, buttheresultsofwhicharewithinlimitsestablished asacceptable.

Forthereasonsdetailedabove,webelieve'this changefallswithinthescopeofthisexample.Therefore, webelievethischangedoesnotinvolvesignificant hazardsconsideration asdefinedin10CFR50.92.

Attachment 1toAEP:NRC:1181 Page188RodPositionIndication Sstem,Thischangewoulddelayfunctional testingoftherodpositionindicator (RPI)channelsrequiredevery18monthsbyT/S4.1.3.3.Theextension isneededfromMay3,1994,untiltheUnit2refueling outage.AlthoughT/S4.1.3.3isonlyapplicable inModes3,4,and5,webelievereliefisneededfromthisT/Stocontinueoperation inModes1and2sinceT/S3/4.1.3.2 requirestheRPIchannels,tobeoperableinthesemodes.Thesurveillance weperformtosatisfyT/S4.1.3.3isactuallyacalibration oftheRPIchannelsovertherodinsertion range.Sincerodsmustbeinsertedtoperformthecalibration, itcannotbeperformed atpowerbecausetodosowouldviolatetherodinsertion limitsofT/Ss3.1.3.5and3.1'.3.6.

Theoperability oftheRPIchannelsisfunctionally verifiedonceper12hoursperT/S4.1.3.2bycomparison tothedemandpositionindication system.Also,duringthe31daysurveillance tosatisfyT/S4.1.3.1.2, therodsaremovedatleasteightstepsandtheRPImetersareverifiedtotrackwiththedemandposition.

Thesecomparisons wouldbeexpectedtoindicatesignificant degradation intheRPIchannels.

Surveillances thatindicatethecoreisperforming asdesignedareprovidedbytheincorefluxmaps,'which aretakenatleastonceevery31effective fullpowerdaystosatisfytherequirements ofT/Ss4.2.2.2(Fo(Z)),4.2.3(F~H)and4.2.1.4(AxialFluxDifference TargetBand).Coreperformance isalsoindicated bytheexcoredetectors, whichareusedtomeasurethequadrantpowertiltratioperT/S4.2.4andaxialfluxdifference perT/S4.2.1.1.a.

Thesesurveillances wouldbeexpectedtoindicatesignificant discrepancies betweenindicated andactualrodposition.

Lastly,sincetheT/Srequiredsurveillances usedtoverifyoperability oftheRPIswillcontinuetobeperformed duringtheextension period,thereisnoreasontobelievethatwewouldbeoperating outsidetheboundsofT/S3.1.3.2.10CFR5092CriteriaPer10CFR50.92,aproposedamendment willnotinvolveasignificant hazardsconsideration iftheproposedamendment doesnot:(1)involveasignificant increaseintheprobability orconsequences ofanaccidentpreviously

analyzed, (2)createthepossibility ofanewordifferent kindofaccidentfromanyaccidentpreviously analyzedorevaluated, or(3)involveasignificant reduction inamarginofsafety.Ourevaluation oftheproposedchangewithrespecttothesecriteriaisprovidedbelow.

Attachment 1toAEP:NRC:1181 Page19Criterion 1T/Srequiredcomparison oftheRPIchannelstothedemandpositionindication systemwouldbeexpectedtoindicatesignificant degradation intheRPIchannels.

Inaddition, othersurveillances suchasthedetermination ofthequadrantpowertiltratio,axialfluxdifference andincorefluxmappingsurveillances, provide...acomparison ofcoreperformance todesignandwouldbeexpectedtoindicatesignificant deviations oftherodsfromtheirindicated position.

Sinceoperability oftheRPIswillcontinuetobedetermined withourT/Srequiredsurveillances duringtheextension period,thereisnoreasontobelievethatwewouldbeoperating outsidetheboundsofT/S3.1.3.2.Forthesereasons,webelievetheextension wearerequesting w'illnotresultinasignificant increaseintheprobability orconsequences ofapreviously evaluated

accident, norwillitresultinasignificant reduction inamarginofsafety.Criterion 2Thisextension willnotresultinachangeinplantconfiguration oroperation.

Therefore, theextension shouldnotcreatethepossibility ofanewordifferent kindofaccidentfromanypreviously evaluated oranalyzed.

Criterion 3SeeCriterion 1,above.Lastly,wenotethattheCommission hasprovidedguidanceconcerning thedetermination ofsignificant hazardsbyproviding examples(48FR14870)ofamendments considered notlikelytoinvolvesignificant hazardsconsideration.

Thesixthoftheseexamplesreferstochangeswhichmayresultinsomeincreasetotheprobability orconsequences ofapreviously evaluated

accident, buttheresultsofwhicharewithinlimitsestablished asacceptable.

Webelievethischangefallswithinthescopeofthisexample,forthereasonscitedabove.Thus,webelievethischangedoesnotinvolveasignificant hazardsconsideration asdefinedin10CFR50.92.

Attachment 1toAEP:NRC:1181 Page209RHRAuto-Closure Interlock Wearerequesting anextension fortheresidualheatremoval(RHR)auto-closure interlock testrequiredbyT/S4.5.2.d.l.

Anextension isalsorequested forT/S4.5.3.1sinceitreferences T/S4.5.2.Theextensions areneededfromMarch7,1994,untiltheUnit2refueling outage.TheRHRauto-closure interlock automatically isolatestheRHRsystemfromtheRCSifRCSpressureisabove600psig.Inordertodemonstrate operability oftheautoclosureinterlock, itisnecessary toopentheRHRisolation valvesinthecooldownlinefromthehotleginordertoverifythatthevalveswouldautomatically closewiththeRCSpressureabove600psig.Thiscannotbeaccomplished withtheunitoperating (i.e.,withtheRCSfullypressurized) becauseitwouldresultinexposingtheRHRsystemtopressures higherthantheRHRsafetyvalves'etpoints; Previoussurveillance testinghasdemonstrated thattheauto-closure interlock isveryreliable.

Theprevioustestresultsgiveusnoreasontobelievetheauto-closure interlock wouldbeinoperable duringtheextension period.Thecalibration fortheRCSwide-range pressuretransmitters, whichprovideinputintotheinterlock, canbedoneatpowerandwillbeperformed byitsSeptember 9,1993duedate.Thus,theonlyportionoftheinterlock forwhichthesurveillances willnotbecurrentistheportionfromthebistableoftheRHRsuctionvalvesthroughvalveoperation.

Additionally, wenotethatwhentheunitisoperating (i.e.,notonRHR),theRHRsuctionvalvesareclosedandprocedures requirepowertoberemovedfromthevalveoperators.

Thisprecludes inadvertent valveopeningandthusalleviates theneedfortheauto-closure interlock tofunction.

10CFR50.92CriteriaPer10CFR50.92,aproposedamendment willnotinvolveasignificant hazardsconsideration iftheproposedamendment doesnot:(1)involveasignificant increaseintheprobability orconsequences ofanaccidentpreviously

analyzed, (2)createthepossibility ofanewordifferent kindofaccidentfromanyaccidentpreviously analyzedorevaluated, or(3)involveasignificant reduction inamarginofsafety.Ourevaluation oftheproposedchangewithrespecttothesecriteriaisprovidedbelow.

Attachment 1toAEP:NRC:1181 Page21Criterion 1Thesurveillance testhistoryoftheauto-closure interlock hasshownthatthesystemishighlyreliable, andgivesusnoreasontobelievetheequipment wouldbeinoperable duringtheextension period.Thewide-range pressuretransmitters, whichprovideinputintotheauto-closure interlock, willhaveacurrentcalibration.

Additionally, wenotethatwhentheRHRsystemisnotinservice,powerisremovedfromthesuctionvalveoperators, thuspreventing inadvertent valveopeningandeliminating theneedfortheauto-closure interlock.

Forthesereasons,webelievetheextension wearerequesting willnotresultinasignificant increaseintheprobability orconsequences ofapreviously evaluated

accident, norwillitresultinasignificant reduction inamarginofsafety.Criterion 2Thisextension willnotresultinachangeinplantconfiguration oroperation.

Therefore, theextension shouldnotcreatethepossibility ofanewordifferent kindofaccidentfromanypreviously evaluated oranalyzed.

Criterion 3SeeCriterion 1,above.Lastly,wenotethattheCommission hasprovidedguidanceconcerning thedetermination ofsignificant hazardsbyproviding certainexamples(48FR14870)ofamendments considered notlikelytoinvolvesignificant hazardsconsideration.

Thesixthoftheseexamplesreferstochangeswhichmayresultinsomeincreasetotheprobability orconsequences ofapreviously evaluated

accident, buttheresultsofwhicharewithinlimitsestablished asacceptable.

Vebelievethischangefallswithinthescopeofthisexample,forthereasonscitedabove.Thus,webelievethischangedoesnotinvolveasignificant hazardsconsideration asdefinedin10CFR50.92.

Attachment 1toAEP:NRC:1181 Page2210VisualInsectionofInaccessible SnubbersThischangewoulddelayvisualinspections of,inaccessible snubbersrequiredbyT/S4.7.7.1.a.

Theextension isneededfromMarch19,1994,throughtheUnit2refueling outage.Theextension isrequiredbecause,bydefinition inT/S4.7.7.l.a andTable3.7-9,thesesnubbersareinaccessible duringreactoroperation, thusrequiring theinspections tobeperformed duringshutdown.

Notethatfunctional testingofsnubbersperT/S4.7.7.1.c isnotrequireduntilafterthescheduled refueling outagestartdate.Inthepasttenyearsofvisualinspections onUnit2inaccessible

snubbers, wehavefoundonlyoneinoperable snubber.Theinoperable snubberwasdiscovered duringthesteamgenerator outagein1988.Sincethen,fourvisualinspections havebeenperformed ontheinaccessible
snubbers, inwhichnonehavebeenfoundtobeinoperable.

Basedontheseinspection results,weareallowedtoperformtheinspections atthemaximumallowedT/Sfrequency of18months(125X).Itshouldbenotedthatwesubmitted arequestinourletterAEP:NRC:1143, datedMay1,1992topermanently changethesurveillance intervals forsnubbervisualinspections.

Thesubmittal isbasedonguidancefromGenericLetter90-09,"Alternate Requirements forSnubberVisualInspections Intervals andCorrective Actions."

IfwecouldapplytheguidanceofGenericLetter90-09orourproposednewSpecifications onourcurrentvisualinspection resultsofinaccessible

'nubbers, wewouldhaveuptothemaximum48monthintervalallowedforournextinspection.

Thiswouldputourinspection duedatebeyondthescheduled refueling outagestartdate,thuseliminating theneedforthisextension.

Basedonthehistoryofourinaccessible snubbersandontheguidanceofGenericLetter90-09,webelievetheinaccessible snubberswillremainoperableduringtheextension period.10CFR50.92CriteriaPer10CFR50.92,aproposedamendment willnotinvolveasignificant hazardsconsideration iftheproposedamendment doesnot:(1)involveasignificant increaseintheprobability orconsequences ofanaccidentpreviously

analyzed, (2)createthepossibility ofanewordifferent kindofaccidentfromanyaccidentpreviously analyzedorevaluated, or(3)involveasignificant reduction inamarginofsafety.Ourevaluation oftheproposedchangewithrespecttothesecriteriaisprovidedbelow.

Attachment 1toAEP:NRC:1181 Page23Criterion 1Oursurveillance historyofvisualinspections oninaccessible snubbershasfoundonlyoneinoperable snubberinthepasttenyears.Also,ifGenericLetter90-09guidanceisapplied,oursurveillance intervalwouldbe48months.Basedontheabove,wehavenoreasontobelievetheinaccessible snubberswillbeinoperable duringtheextension period.Forthesereasons,webelievetheextension wearerequesting willnotresultinasignificant increaseintheprobability orconsequences ofapreviously evaluated

accident, norwillitresultinasignificant reduction inamarginofsafety.Criterion 2Thisextension willnotresultinachangeinplantconfiguration oroperation.

Therefore, theextension shouldnotcreatethepossibility ofanewordifferent kindofaccidentfromanypreviously evaluated oranalyzed.

Criterion 3SeeCriterion 1,above.Lastly,wenotethattheCommission hasprovidedguidanceconcerning thedetermination ofsignificant hazardsbyproviding certainexamples(48FR14870)ofamendments considered notlikelytoinvolvesignificant hazardsconsideration.

Thesixthoftheseexamplesreferstochangeswhichmayresultinsomeincreasetotheprobability ofoccurrence orconsequences ofapreviously analyzedaccident, butwheretheresultsarewithinthelimitsestablished asacceptable.

Webelievethischangefallswithinthescopeofthisexample,forthereasonscitedabove.Therefore, webelievethischangedoesnotinvolveasignificant hazardsconsideration asdefinedin10CFR50.92.

Attachment 1toAEP:NRC:1181 Page2411Intermediate RaneDetectorCalibrations Thischangewoulddelaythecalibration oftheintermediate range(IR)detectors requiredbyT/S4.3.1.1.1, Table4.3-1,Item5.Also,itwoulddelayinterlock functional testingofP-6requiredbyT/S4.3.1.1.2.

Theseextensions areneededfromJanuary17,1994,untiltheUnit2refueling outage.Theneedforthisextension isbecausetheIRdetectors cannotbecalibrated whileatpower.Thecalibration requiresthatatestsignalcoveringtherangeof10to10ampsbesuperimposed overtheexistingcurrent.SincethecurrentoftheIRdetectors isinthe104ampsrangeduringpoweroperation, asuperimposed signallessthanthatcouldnotbeobserved.

Therefore, theIRdetectors couldnotbecalibrated belowtheactualcurrentatwhichweareoperating.

Pastoperating historyinUnit2hasshownthattheIRdetectors haveperformed withoutseriousdegradation.

Thereisnoreasontobelievethatthedetectors wouldbeinoperable duringtheextension period.TheIRissubjected toaT/Srequiredchannelcheckevery12hours.TheIRcurrentsaretrendeddailyandnormalized to25Xpowertoensurethatthehighfluxatlowpowertripsetpointsdonotbecomenonconservative.

Throughthechannelchecksandtrendingprogram,itisexpectedthatanydegradation inanIRdetectorwouldbenoticed.Lastly,theprotection providedbythesedetectors isrequiredwhileshutdown,oratlowpower(approximately lessthan10X)andnotatournormaloperating power.10CFR5092CriteriaPer10CFR50.92,aproposedamendment willnotinvolveasignificant hazardsconsideration iftheproposedamendment doesnot:(1)involveasignificant increaseintheprobability orconsequences ofanaccidentpreviously

analyzed, (2)createthepossibility ofanewordifferent kindofaccidentfromanyaccidentpreviously analyzedorevaluated, or(3)involveasignificant reduction inamarginofsafety.Ourevaluati'on oftheproposedchangewithrespecttothesecriteriaisprovidedbelow.

Attachment 1toAEP:NRC:1181 Page25Criterion 1Ouroperating historyoftheUnit2IRdetectors haveshownthattheyarehighlyreliable, andgiveusnoreasontobelievetheywouldbeinoperable duringtheextension period.Ourchannelchecksandtrendingprogramwoulddetectdegradation inanIRdetector.

Forthesereasons,webelievetheextension we.arerequesting willnotresultinasignificant increaseinthe,probability orconsequences of"'apreviously evaluated

accident, norwillitresultinasignificant reduction inamarginofsafety.Criterion 2Thisextension willnotresultinachangeinplantconfiguration oroperation.

Therefore, theextension shouldnotcreatethepossibility ofanewordifferent kindofaccidentfromanypreviously evaluated oranalyzed.

Criterion 3SeeCriterion 1,above.Lastly,wenotethattheCommission hasprovidedguidanceconcerning thedetermination ofsignificant hazardsbyproviding certainexamples(48FR14870)ofamendments considered notlikelytoinvolvesignificant hazardsconsideration.

Thesixthoftheseexamplesreferstochangeswhichmayresultinsomeincreasetotheprobability orconsequences ofapreviously evaluated

accident, buttheresultsofwhicharewithinlimitsestablished asacceptable.

Webelievethischangefallswithinthescopeofthisexample,forthereasonscitedabove.Thus,webelievethischangedoesnotinvolveasignificant hazardsconsideration asdefinedin10CFR50.92.

Attachment 1toAEP:NRC:1181 Page2612DividerBarrierSealInsectionT/S4.6.5.9requiresavisualinspection ofatleast95Xof-theseal'sentirelength.Also,itrequiresthattwotestcouponsberemovedfromthesealfortestingtoensurethephysicalproperties arewithinspecified limits.PerthisSpecification, theinspection istobeperformed whileshutdown.Theextensions areneededfromMarch8,1994,untiltheUnit2refueling outage.Thedividerbarriersealisapassivedesignfeature,thusitisnotsubjected toanyoutsideforcesotherthantheenvironment.

Duringthecycle7-8refueling outage,wereplaced100Xofthedividerbarrierseal.Oursubsequent inspection, duringthelastoutage,revealednodegradation oftheseal.Also,whenthetestcouponsweresubjectedtothetensilestrengthandelongation tests,theysatisfied theacceptable physicalpropertyrequirements.

Basedonthefactsthatthedividerbarriersealispassive,new,andhasshownnodegradation, webelievethereisnoreasontosuspectthatitwouldnotbeoperableduringtheextension period.10CFR5092CriteriaPer10CFR50.92,aproposedamendment willnotinvolveasignificant hazardsconsideration iftheproposedamendment doesnot:(1)involveasignificant increaseintheprobability orconsequences ofanaccidentpreviously

analyzed, (2)createthepossibility ofanewordifferent kindofaccidentfromanyaccidentpreviously analyzedorevaluated, or(3)involveasignificant reduction inamarginofsafety.Ourevaluation oftheproposedchangewithrespecttothesecriteriaisprovidedbelow.Criterion 1Thedividerbarriersealisapassivedesignfeaturewhichwasentirelyreplacedin1990.Oursubsequent inspection revealednodegradation tothesealandthephysicalproperties ofthetestcouponswereacceptable.

Forthesereasons,webelievetheextension wearerequesting willnotresultinasignificant increaseintheprobability orconsequences ofapreviously evaluated

accident, norwillitresultinasignificant reduction inamarginofsafety.Criterion 2Thisextension willnotresultinachangeinplantconfiguration oroperation.

Therefore, theextension shouldnotcreatethepossibility ofanewordifferent kindofaccidentfromanypreviously evaluated oranalyzed.

Attachment 1toAEP:NRC:1181 Page27Criterion 3SeeCriterion 1,above.Lastly,wenotethattheCommission hasprovidedguidanceconcerning thedetermination ofsignificant hazardsbyproviding certainexamples(48FR14870)ofamendments considered notlikelytoinvolvesignificant hazardsconsideration.

Thesixthoftheseexamplesreferstochangeswhichmayresultinsomeincreasetotheprobability orconsequences ofapreviously evaluated

accident, buttheresultsofwhicharewithinlimitsestablished asacceptable.

Webelievethischangefallswithinthescopeofthisexample,forthereasonscitedabove.Thus,webelievethischangedoesnotinvolveasignificant hazardsconsideration asdefinedin10CFR50.92.

Attachment 1toAEP:NRC:1181 Page2813ReactorCoolantPumRCPFireProtection T/S4.7.9.2.b requiresthattheRCPsfireprotection systembefunctionally testedevery18months.Inordertoperformthetest,theRCPfiredetection instrumentation requiredperT/STable3.3-11andthefiresuppression systemrequiredbyT/S3.7.9.2mustbemadeinoperable, whichisnotconsidered prudentduringoperation oftheRCPs.Itisalsonotedthat,sincetheRCPsarelocatedinahighradiation area,afirewatch cannotbeestablished perActionStatement BofT/S3.7.9.2.Therefore, wewouldbeforcedtorelyonclosed'circuittelevision coverageasasubstitute forthecontinuous firewatch.

Intheeventthatacamerafailed,wewouldbeinnon-compliance withtherequirements ofT/S3.7.9.2.Theextension isneedfromMarch30,1994,untiltheUnit2refueling outage.BasedonthepastRCPsprinkler systemsurveillance history,thereisnoreasontobelievethatitwouldnotbecapableofperforming it'sintendedsafetyfunctionduringtheextension period.Also,wehaveseismically qualified oilcollection systemsontheRCPs,installed inaccordance with10CFR50,AppendixR.ThesesystemsaredesignedtomitigatetheeffectsofaRCPlubeoilleak.10CFR5092CriteriaPer10CFR50.92,aproposedamendment willnotinvolveasignificant hazardsconsideration iftheproposedamendment doesnot:(1)involveasignificant increaseintheprobability orconsequences ofanaccidentpreviously

analyzed, (2)createthepossibility ofanewordifferent kindofaccidentfromanyaccidentpreviously analyzedorevaluated, or(3)involveasignificant reduction inamarginofsafety.Ourevaluation oftheproposedchangewithrespecttothesecriteriaisprovidedbelow.Criterion 1BasedontheRCPfireprotection systemsurveillance recordthereisnoreasontobelievethatitwouldnotbecapableofperforming it'sintendedsafetyfunction.

Additionally, itisnotedthattheRCPoilcollection systemisdesignedtomitigatetheeffectsof'RCPlubeoilleak.Forthesereasons,webelievetheextension wearerequesting willnotresultinasignificant increaseintheprobability orconsequences ofapreviously evaluated

accident, norwillitresultinasignificant reduction inamarginofsafety.Criterion 2Thisextension willnotresultinachangeinplantconfiguration oroperation.

Therefore, theextension shouldnotcreatethepossibility ofanewordifferent kindofaccidentfromanypreviously evaluated oranalyzed.

Attachment 1toAEP:NRC:1181 Page29Criterion 3SeeCriterion 1,above.Lastly,wenotethattheCommission hasprovidedguidanceconcerning thedetermination ofsignificant hazardsbyproviding certainexamples(48FR14870)ofamendments considered notlikelytoinvolvesignificant hazardsconsideration.

Thesixthoftheseexamplesreferstochangeswhichmayresultinsomeincreasetotheprobability orconsequences ofapreviously evaluated

accident, buttheresultsofwhicharewithinlimitsestablished asacceptable.

Webelievethischangefallswithinthescopeofthisexample,forthereasonscitedabove.Thus,webelieve'his changedoesnotinvolveasignificant hazardsconsideration asdefinedin10CFR50.92.

Attachment 1toAEP:NRC:1181 Page3014Containment WaterLevelInstrumentation andSumVisualInsectionT/S4.3.3.6,Item18requiresthatthecontainment waterlevelinstrumentation becalibrated every18months.T/S4.5.2.d.2 requiresthatthesumpanditsinletsbesubjected toan18monthvisualinspection.

Anextension isalso"neededforT/S4.5.3.1sinceitreferences T/S4.5.2.Thesesurveillances cannotbeperformed duringreactoroperation sincetheyrequireentryintothelowervolumeofcontainment.

Theextensions areneededfromJanuary31,1994(calibrations) andMarch21,1994(visual),

untiltheUnit2refueling outage.Ourpasthistoryoncontainment waterlevelinstrumentation hasnotshownanysignificant degradation.

Thiswaterlevelinstrumentation isusedtomeasuretheamountofwateronthecontainment floorabovethesump.Normally, thereisnowateronthefloor.Theinstrumentation consistsofRTDs,whichhaveshownstableoperation inthepast.Sincetheinstruments havea"live"zeropointonthescale,areadingofzeroorgreaterindicates thattheinstruments areperforming correctly.

Inaddition, therearetworedundant channelsthataresubjected toT/Srequiredmonthlychannelchecksandthechannelscanbecomparedtoshowifdriftexists.Thereisnoreasontobelievethatthecontainment waterlevelinstrumentation wouldbeinoperable duringtheextension period.Thevisualinspection isperformed toensurethatwehaveacleansystempriortostartup.Duringreactoroperation, entryintothecontainment sumpareaisrestricted.

Also,wehaveverystrictmaterialcontrolrequirements forentryintocontainment andattheendofanoutage,a"containment closeouttour"isperformed toensurethatnomaterialisleftwithincontainment.

Inaddition, performance ofvisualinspections following reactoroperation hasshownthatverylittledebris,everaccumulates inthesump.Thereisnoreasontobelievethatthesumporit'sinletswouldbecomeblocked.10CFR50.92CriteriaPer10CFR50.92,aproposedamendment willnotinvolveasignificant hazardsconsideration iftheproposedamendment doesnot:(1)involveasignificant increaseintheprobability orconsequences ofanaccidentpreviously

analyzed, (2)createthepossibility ofanewordifferent kindofaccidentfromanyaccidentpreviously analyzedorevaluated, or(3)involveasignificant reduction inamarginofsafety.Ourevaluation oftheproposedchangewithrespecttothesecriteriaisprovidedbelow.

Attachment 1toAEP:NRC:1181 Page31Criterion 1Ourpasthistoryoncontainment waterlevelinstrumentation hasnotshownanysignificant degradation oftheseinstruments.

Typically, thereisnowateronthecontainment floorfortheinstruments tomeasure;however,theinstrumentation iscalibrated toreada"live"zerolevel.Also,wehavetworedundant channelsthataresubjected tomonthlychannelchecks,whichwouldshowifdriftexists.Therefore, thereisnoreasontobelievethatthecontainment'ater levelinstrumentation wouldnotperformitsintendedfunctionduringtheextension period.Thelikelihood ofasignificant amountofdebrisenteringthesumpisverylowbecausewehaveverystrictrequirements formaterialcontrolinsidecontainment, restricted accessintothecontainment sumparea,andaninspection ofcontainment isperformed attheendofanoutage.Thereisnoreasontobelievethatthesumporitsinletscouldbecomeblockedduringtheextension period.Forthesereasons,webelievetheextension wearerequesting willnotresultinasignificant increaseintheprobability orconsequences ofapreviously evaluated

accident, norwillitresultinasignificant reduction

,inamarginofsafety.Criterion 2Thisextension willnotresultinachangeinplantconfiguration oroperation.

Therefore, theextension shouldnotcreatethepossibility ofanewordifferent kindofaccidentfromanypreviously evaluated oranalyzed.

Criterion 3SeeCriterion 1,above.Lastly,wenotethattheCommission hasprovidedguidanceconcerning thedetermination ofsignificant hazardsby.providing certainexamples(48FR14870)ofamendments considered notlikelytoinvolvesignificant hazardsconsideration.

Thesixthoftheseexamplesreferstochangeswhichmayresultinsomeincreasetotheprobability orconsequences ofapreviously evaluated

accident, buttheresultsofwhicharewithinlimitsestablished asacceptable.

Webelievethischangefallswithinthescopeofthisexample,forthereasonscitedabove.Thus,webelievethischangedoesnotinvolveasignificant hazardsconsideration asdefinedin10CFR50.92.

Attachment 1toAEP:NRC:1181 Page3215ReactorCoolantFlowTransmitter Calibrations T/S4.2.5.2andT/S4.3.1.1.1, Table4.3-1,Items12&13requirethereactorcoolant(RC)flowinstrumentation foreachlooptobecalibrated every18months.Thesecalibrations shouldnotbeperformed atpowerbecauseofthepossibility ofareactortrip.Eachsetoftransmitters (3perloop)hasacommonsensingline,whichwhenvalvingin(orout)oneofthetransmitters couldcauseareduceddifferential pressureinthe.othertwotransmitters.

Thiscouldcauseareactortriponlowflowinoneloopsincethetwooutofthreetrip-logicwouldbesatisfied.

Theextension forthesesurveillance requirements areneededfromJanuary28,1994,untiltheUnit2refueling outage.Pastsurveillance historyhasshownthattheRCflowchannelsareverystable;verylittleornodriftisfoundduringcalibration andtheyhavealwaysbeenwithintheirallowable range.Also,sincetherearethreechannelsperloop,driftwouldbeexpectedtobediscovered duringtheT/Srequiredshiftlychannelchecksormonthlyfunctional checks.Sincethechannelshavebeenverystableandwehavethreechannelsperlooptoindicatedrift,thereisnoreasontobelievethatcontinued operation duringtheextension periodwouldcausetheinstrumentation tobecomeinoperable.

10CFR5092CriteriaPer10CFR50.92,aproposedamendment willnotinvolveasignificant hazardsconsideration iftheproposedamendment doesnot:(1)'involveasignificant increaseintheprobability orconsequences ofanaccidentpreviously

analyzed, (2)createthepossibility ofanewordifferent kindof'ccident fromanyaccidentpreviously analyzedorevaluated, or(3)involveasignificant reduction inamarginofsafety.Ourevaluation oftheproposedchangewithrespecttothesecriteriaisprovidedbelow.Criterion 1Ourreactorcoolantflowchannelshavebeenverystableinthepast.VehavethreechannelsperloopandperformT/Srequiredchannelchecksandfunctional testswhichshouldshowanyindication ofdrift.Therefore, thereisnoreasontobelievethatthereactorcoolantflowchannelswouldnotbeoperableduringtheextension period.Forthesereasons,webelievetheextension wearerequesting willnotresultinasignificant increaseintheprobability orconsequences ofapreviously evaluated
accident, norwillitresultinasignificant reduction inamarginofsafety.

Attachment 1toAEP:NRC:1181 Page33Criterion 2Thisextension willnotresultinachangeinplantconfiguration oroperation.

Therefore, theextension shouldnotcreatethepossibility ofanewordifferent kindofaccidentfromanypreviously evaluated oranalyzed.

Criterion 3SeeCriterion 1,above.Lastly,wenotethattheCommission hasprovidedguidanceconcerning thedetermination ofsignificant hazardsbyproviding certainexamples(48FR14870)ofamendments considered notlikelytoinvolvesignificant hazardsconsideration.

Thesixthoftheseexamplesreferstochangeswhichmayresultinsomeincreasetotheprobability orconsequences ofapreviously evaluated

accident, buttheresultsofwhicharewithinlimitsestablished asacceptable.

Webelievethischangefallswithinthescopeofthisexample,forthereasonscitedabove.Thus,webelievethischangedoesnotinvolveasignificant hazardsconsideration asdefinedin10CFR50.92.

Attachment 1toAEP:NRC:1181 Page3416TriActuatinDevice0erational TestinESFmanualactuation Extensions arerequested fortheTripActuating DeviceOperational Testing(ESFmanualactuation switches) specified inT/S4.3.2.1.1, Table4.3-2,Items9.a,9.b,9.c,and9.d.Thesetestscannotbeperformed atpowersincetheywouldactuatetheESFfunctions associated withtheswitches(seetablebelow).Theextensions areneededfromApril15,1994,throughtheUnit2refueling outage.Table4.3-2ItemNoDescrition9.aSafetyinjection (ECCS)Feedwater Isolation ReactorTrip(SI)Containment Isolation PhaseAContainment PurgeandExhaustIsolation Auxiliary Feedwater PumpsEssential ServiceWaterSystem9.bContainment SprayContainment Isolation PhaseBContainment AirRecirculation Fan9.cContainment Isolation PhaseAContainment PurgeandExhaustIsolation 9.dSteamLineIsolation Thecircuitry associated withmanualactuation ofESFfunctions issubjected toT/Srequiredchannelfunctional tests,monthlyorbi-monthly.

Theonlyportionofthechannelnottestedisthemanualactuation switches.

Previoussurveillance testingoftheswitcheshaveshownthemtobehighlyreliable; infact,therehasneverbeenafailureofanyoftheESFmanualswitchesdetectedduringsurveillance testingoftheswitchesineitherunit.Additionally, wenotethatthemanualcircuitry servesasabackuptoautomatic actuation

channels, whichinitiatethesameESFfunctions.

Theautomatic channelsaresubjected toT/Srequiredchannelchecksandchannelfunctional teststoverifyoperability.

Attachment 1toAEP:NRC:1181 Page3510CFR50.92CriteriaPer10CFR50.92,aproposedamendment willnotinvolveasignificant hazardsconsideration iftheproposedamendment doesnot:(1)involveasignificant increaseintheprobability orconsequences ofanaccidentpreviously

analyzed, (2)createthepossibility ofanewordifferent kindofaccidentfromanyaccidentpreviously analyzedorevaluated, or(3)involveasignificant reduction inamarginofsafety.Ourevaluation oftheproposedchangewithrespecttothesecriteriaisprovidedbelow.Criterion 1Thesurveillance testhistoryoftheESFmanualswitchesisexcellent, indicating nofailuresoftheswitchesineitherunit.Themajorityofthemanualcircuitry issubjecttoachannelfunctional testonamonthlyorbi-monthly basis.Thechannelfunctional testingwillcontinuetobeperformed duringthesurveillance extension period.Additionally, wenotethatthemanualcircuitry servesasabackuptoautomatic circuitry, whichinitiates thesameESFfunctions.

Forthesereasons,webelievetheextension wearerequesting willnotresultinasignificant increaseintheprobability orconsequences ofapreviously evaluated

accident, norwillitresultinasignificant reduction inamarginofsafety.Criterion 2Thisextension willnotresultinachangeinplantconfiguration oroperation.

Therefore, theextension shouldnotcreatethepossibility ofanewordifferent kindofaccidentfromanypreviously evaluated oranalyzed.

Criterion 3SeeCriterion 1,above.Lastly,wenotethattheCommission hasprovidedguidanceconcerning thedetermination ofsignificant hazardsby,providing certainexamples(48FR14870)ofamendments considered notlikelytoinvolvesignificant hazardsconsideration.

Thesixthoftheseexamplesreferstochangeswhichmayresultinsomeincreasetotheprobability orconsequences ofapreviously evaluated

accident, buttheresultsofwhicharewithinlimitsestablished asacceptable.

Webelievethischangefallswithinthescopeofthisexample,forthereasonscitedabove.Thus,webelievethischangedoesnotinvolveasignificant hazardsconsideration asdefinedin10CFR50.92.