ML17334B471
ML17334B471 | |
Person / Time | |
---|---|
Site: | Cook |
Issue date: | 04/16/1993 |
From: | FITZPATRICK E INDIANA MICHIGAN POWER CO. (FORMERLY INDIANA & MICHIG |
To: | MURLEY T E NRC OFFICE OF INFORMATION RESOURCES MANAGEMENT (IRM) |
Shared Package | |
ML17331A288 | List: |
References | |
AEP:NRC:1181, NUDOCS 9304220175 | |
Download: ML17334B471 (207) | |
Text
ACCELERATF/i DOCUii'll 5'l'ISTRLBUTlOY SYSTEMREGULAINFORMATION "DZSTRZBUTZOtOYSTEN (RZDSlACCESSION NBR:9304220175 DOC.DATE:
93/04/16NOTARIZED:
YESDOCKETIFACIL:50-316 DonaldC.CookNuclearPowerPlant,Unit2,IndianaM05000316AUTH.NAME.AUTHORAFFILIATION FITZPATRICK,E.
IndianaMichiganPowerCo.(formerly Indiana!;MichiganEleRECIP.NAME RECIPIENT AFFILIATION MURLEYFTEDDocumentControlBranch(Document ControlDesk)DISTRIBUTION CODE:AOOIDCOPIESRECEIVED:LTR JENCLgSIZE:TITLE:ORSubmittal:
GeneralDistribution NOTES:Jfp~.~pk7~RECIPIENT COPIESRECIPIENT IDCODE/NAME LTTRENCLIDCODE/NAME PD3-1LA11PD3-1PDDEAN,N22.,COPIESLTTRENCL11
SUBJECT:
Application foramendtoLicense-DPR-74,requesting relieffromTSsurveillances untilrefueling outage,currently scheduled tobeginon940806.e~jINTERNAL:
NRR/DE/EELB NRR/DRCH/HICB NRR/DSSA/SPLB NUDOCS-ABSTRACT OGC/HDS2EXTERNAL:
NRCPDR111111111011NRR/DORS/OTSB NRR/DSSA/SCSB NRR/DSSA/SRXB OCE01NSIC111011101111NOTETOALL"R1DS"REClPlEHTS:
PLEASEHELPUSfOREDUCEWASTE!CONlAClTllEDOCU).'EYT COii'TR(>!
D!:.~V,ROOMP1.37(EXT.504-20o5)
TOEL!MIYATEYOURHA."lEFROliD]STRiliUTlON LiSTSFORDOCU!4EYl'SYOUDOi"l'T)REED!TOTALNUMBEROFCOPIESREQUIRED:
LTTR16ENCL13 l
IndianaMichiganPowerCompanyP.O.Box16631Columbus~".iH 43216IIHtMSlHSl svaamramaue POUFFEDonaldC.CookNuclearPlantUnit2DocketNo.50-316LicenseNo.DPR-74SURVEILLANCE INTERVALEXTENSION FORUNIT2CYCLE9AEP:NRC:1181 U.S.NuclearRegulatory Commission DocumentControlDeskWashington, D.C.20555AttnrT.E.MurleyApril16,1993
DearDr.Murley:
Thisletterconstitutes anapplication foramendment totheTechnical Specifications (T/Ss)fortheDonaldC.CookNuclearPlantUnit2.Specifically, werequestanextension forcertainsurveillances whichtheT/Ssrequiretobeperformed beginning January2,1994.Wearerequesting relieffromtheseT/Srequirements untiltheUnit2refueling outage,whichiscurrently scheduled tobeginAugust6,1994.Manyofthesesurveillances canonlybeperformed duringshutdown; therefore, toavoidunnecessary shutdownoftheplant,weaskthatyourreviewofthisrequestbeperformed onanexpedited basisandthatyourespondtousbyDecember1,1993.Adescription oftheproposedchangesandouranalysisconcerning significant hazardsconsiderations arecontained inAttachment 1tothisletter.Theproposed, revisedT/Spagesarecontained inAttachment 2.TheexistingT/Spages,markedtoreflecttheproposedchanges,arecontained inAttachment 3.Alloftherequested surveillance extensions areassociated withsurveillances normallyperformed duringrefueling outages.Thecurrentcyclewillbelengthened approximately fivemonthsduetoaplannedpowerreduction toapproximately 70%ofratedthermalpower,whichistobegininMay1993andremainineffectuntiltheendofthe.cycle.Thepurposeofextending thecycleistoseparatetherefueling outagesbetweenUnit1'(whichisscheduled forrefueling inJanuary,1994)andUnit2.9304220i75 9304ibPDRADOCK050003ibg0l Dr.T.E.MurleyAEP:NRC:1181 Duringthelastrefueling outage,whichwasextendedapproximately sixmonthsduetoturbine-generator rotorvibrations, aneffortwasmadetore-perform asmanysurveillances aspossible.
Asignificant numberofT/Ssurveillances (approximately 70)werere-performed, reducingthenumberofsurveillances forwhichwearerequesting extensions.
However,oureffortswereconstrained becauseUnit1wasinarefueling outageatthesametime.SomeoftheTechnical Specification pagesaffectedbythissubmittal arepagesforwhichchangesarependingduetopriorsubmittals.
Theproposedchangescontained inthissubmittal areinadditiontoourpreviousrequestsanddonotsupersede them.Thepagesincludedinthiscategoryandtheapplicable priorsubmittals whichhavenotyetbeenprocessed areprovidedinthetablebelow:LetterNumberDateTSPaeNumbersAEP:NRC:1131A April19,1991AEPsNRC:1178 September 24,1992AEP:NRC:1143 May1,19923/44-333/46-143/47-2063/47-40Inaccordance with10CFR50.92(c),
ourevaluation ofthechangesindicates nosignificant hazardsbecausethesechangesdonot:(1)involveasignificant increaseintheprobability orconsequences ofanaccidentpreviously evaluated; (2)createthepossibil'ity ofanewordifferent kindofaccidentfromanyaccidentpreviously evaluated; or(3)involveasignificant reduction inthemarginofsafety.TheseproposedchangeshavebeenreviewedandapprovedbythePlantNuclearSafetyReviewCommittee andbytheNuclearSafetyandDesignReviewCommittee.
Incompliance withtherequirements of10CFR50.91(b)(1),
copiesofthisletteranditsattachments havebeentransmitted totheMichiganPublicServiceCommission andtotheMichiganDepartment ofPublicHealth.
Dr.T.E.MurleyAEP:NRC:1181 Thisletterissubmitted pursuantto10CFR50.54(f)and,assuch,anoathstatement isenclosed.
Sincerely, E.E.FitpatrickVicePresident drAttachments cc!A.A.Blind-BridgmanJ.R.PadgettG.CharnoffA.B.Davis-RegionIIINRCResidentInspector
-BridgmanNFEMSectionChief
~'Dr.T.E.MurleyAEPsNRC:1181 bc:S.J.BrewerD.H.Malin/K.J.TothM.L.Horvath-BridgmanJ.B.ShinnockW.G.Smith,Jr.W.M.Dean,NRC-Washington, D,C.AEP:NRC!1181 DC-N-6015.1
~C~STATEOFOHIOCOUNTYOFFRANKLINE.E.Fitzpatrick, beingdulysworn,deposesandsaysthatheistheVicePresident oflicenseeIndianaMichiganPowerCompany,thathehasreadtheforgoingTechnical Specifications ChangesProposedinLetterAEPsNRC:1181 andknowsthecontentsthereof;andthatsaidcontentsaretruetothebestofhisknowledge andbelief.Subscribed andsworntobeforemethisdayof19NOTARYPUBLICRITAD.HILLNOTARYPUBLIC.STATEOFOHIO TENSILEWOLWOL005WOLTENSILECNARPYCNARPY~EYERI.OCRCHARPYCNARPYCHARPYCHARPYCHARPYICHARPYCHARPYCHARPYCNARPYCAPSULEUNT-12NTllIRf-l2Nf.72NT-72IOI-71NT-71IOf-70NT7010f69HT69068HT-68MHT-67IOf-66NT-6610f-65NT-6WCflHT6910f-63HT-63fN-62HT-62Of-61NT-61HH-72NL-48NH-70-f16NK-71NL&7NII-69-f15HK-67KL&3KH-66HL~2KH-65KL-91HKHfl-62III63HH-61SPECIMENCODE:MT-PLATEC552I-2(TRANSVERSE)
KL-PLATF.C552I-2(LONGITUDINAL)
MW-WELDMETALMH-WELDHEATAFFECTEDZONEQgyERYURECARO>isoavailable 0~ApertureCaE'dFigure4-2CapsuleUDiagramShowingLocationofSpecimens, ThermalMonitorsandDosimeters
SECTION5.0TESTINGOFSPECIHENS FROMCAPSULEU5.1OverviewThepost-irradiation mechanical testingoftheCharpyV-notchandtensilespecimens wasperformed attheWestinghouse ScienceandTechnology Centerhotcellwithconsultation byWestinghouse PowerSystemspersonnel.
Testingwasperformed inaccordance with10CFR50,Appendices GandH~~,ASTHSpecification E185-82~~,andWestinghouse RemoteHetallographic Facility(RHF)Procedure RHF8402,Revision2asmodifiedbyRHFProcedures 8102,Revision1'and8103,Revision1.Uponreceiptofthecapsuleatthehotcelllaboratory, thespecimens andspacerblockswerecarefully removed,inspected foridentification number,andcheckedagainstthemasterlistinWCAP-8512~
~.Nodiscrepancies werefound.Examination ofthetwolow-melting point579'F(304'C)and590'F(310'C)eutecticalloysindicated nomeltingofeithertypeofthermalmonitor.Basedonthisexamination, themaximumtemperature towhichthetestspecimens wereexposedwaslessthan579'F(304'C).TheCharpyimpacttestswereperformed perASTHSpecification E23-88~~andRHFProcedure 8103,Revision1onaTinius-Olsen Hodel74,358Jmachine.Thetup(striker) oftheCharpymachineisinstrumented withaGRC830Iinstrumentation system,feedinginformation intoanIBHXTcomputer.
Withthissystem,load-time andenergy-time signalscanberecordedinadditiontothestandardmeasurement ofCharpyenergy(ED).Fromtheload-time curveshowninAppendixA,theloadofgeneralyielding(PGy),thetimetogeneralyielding(tGY),themaximumload(PH),andthetimetomaximumload(tH)canbedetermined.
Undersometestconditions, asharpdropinloadindicative offastfracturewasobserved.
Theloadatwhichfastfracturewasinitiated isidentified asthefastfractureload(PF),andtheloadatwhichfastfractureterminated isidentified asthearrestload(PA).5-1 Theenergyatmaximumload(EM),wasdetermined bycomparing theenergy-time recordandtheload-time record.Theenergyatmaximumloadisroughlyequivalent totheenergyrequiredtoinitiateacrackinthespecimen.
~*Therefore, thepropagation energyforthecrack(E')isthedifference
.betweenthetotalenergytofracture(ED)and'theenergyatmaximumload.Theyieldstress(ay)wascalculated fromthethree-point bendformulahavingthefollowing expression:
ay=PG~*[L/[B*(W-a)
- C])whereLdistancebetweenthespecimensupportsintheimpacttestingmachine;Bthewidthofthespecimenmeasuredparalleltothenotch;Wheightofthespecimen, measuredperpendicularly tothenotch;a-notchdepth.TheconstantCisdependent onthenotchflankangle(P),notchrootradius(p),andthetypeofloading(i.e.,purebendingorthree-point bending).
Inthree-point bendingaCharpyspecimeninwhichP45'ndp-0:010",Equation1isvalidwithC1.21.Therefore (forL-4W),oy=PGy*[L/[B*(W-a)
- 1.21])-[3.3PGyW]/[B(W-a)
](2)FortheCharpyspecimens, B=0.394in.,W-0.394in.,anda-0.079in.Equation2thenreducesto:Gy=33.3xPGy(3)whereoyisinunitsofpsiandPGyisinunitsoflbs.Theflowstresswascalculated fromtheaverageoftheyieldandmaximumloads,alsousingthethree-point bendformula.Percentshearwasdetermined frompost-fracture photographs usingtheratio-of-areas methodsincompliance withASTHSpecification A370-89[].Thelateralexpansion wasmeasuredusingadialgagerigsimilartothatshowninthesamespecification.
5-2 Tensiontestswereperformed ona20,000-pound InstronModel1115,split-console testmachine,perASTMSpecification E8-89b~~andE21-79(1988)~~,andRMFProcedure 8102,RevisionI.Allpullrods,grips,andpinsweremadeofInconel718hardenedtoHRC45.Theupperpullrodwasconnected throughauniversal jointtoimproveaxialityofloading.Thetestswereconducted ataconstantcrosshead speedof0.05inchesperminutethroughout thetest.Extension measurements weremadewithalinearvariabledisplacement transducer (LVDT)extensometer.
Theextensometer knifeedgeswerespring-loaded tothespecimenandoperatedthroughspecimenfailure.Theextensometer gagelengthis1.00inch.Theextensometer isratedasClassB-2perASTME83-85~II~.
Elevatedtesttemperatures wereobtainedwithathree-zone electricresistance split-tube furnacewitha9-inchhotzone.Alltestswereconducted inair.Becauseofthedifficulty inremotelyattaching athermocouple directlytothespecimen, thefollowing procedure wasusedtomonitorspecimentemperature.
Chromel-alumel thermocouples wereinsertedinshallowholesinthecenterandeachendofthegagesectionofadummyspecimenandineachgrip.Inthetestconfiguration, withaslightloadonthespec'imen, aplotofspecimentemperature versusupperandlowergripandcontroller temperatures wasdeveloped overtherangeofroomtemperature to550'F(288'C).Theuppergripwasusedtocontrolthefurnacetemperature.
Duringtheactualtestingthegriptemperatures wereusedtoobtaindesiredspecimentemperatures.
Experiments indicated thatthismethodisaccurateto+2'F.Theyieldload,ultimateload,fractureload,totalelongation, anduniformelongation weredetermined directlyfromtheload-extension curve.Theyieldstrength, ultimatestrength, andfracturestrengthwerecalculated usingtheoriginalcross-sectional area.Thefinaldiameterandfinalgagelengthweredetermined frompost-fracture photographs.
Thefractureareausedtocalculate thefracturestress(truestressatfracture) andpercentreduction inareawascomputedusingthefinaldiametermeasurement.
5-3 5.2Char-NotchImactTestResultsTheresultsoftheCharpyV-notchimpacttestsperformed onthevariousmaterials contained inCapsuleU,whichwasirradiated to1.58x10n/cm(E>1.0MeV),arepresented inTables5-1through5-4andarecomparedwithunirradiated results~~asshowninFigures5-1through5-4.Thetransition temperature
'increases anduppershelfenergydecreases fortheCapsuleUmaterials aresummarized inTable5-5.Irradiation ofthereactorvesselintermediate shellplateC5521-2Charpyspecimens orientedwiththelongitudinal axisofthespecimenparalleltothemajorrollingdirection oftheplate(longitudinal orientation) to1.58x10n/cm(E>1.0MeV)at550'F(Figure5-1)resultedina30ft-lbtransition temperature increaseof95'Fandina50ft-lbtransition temperature increaseof110'F.Thisresultedina30ft-lbtransition temperature of120'Fanda50ft-lbtransition temperature of165'F(longitudinal orientation).
TheaverageUpperShelfEnergy(USE)oftheintermediate shellplateC5521-2Charpyspecimens (longitudinal orientation) resultedinaenergydecreaseof16ft-lbafterirradiation to1.58x10n/cm(E>1.0MeV)at550'F.ThisresultsinanaverageUSEof111ft-lb(Figure5-1).Irradiation ofthereactorvesselintermediate shellplateC5521-2Charpyspecimens orientedwiththelongitudinal axisofthespecimennormaltothemajorrollingdirection oftheplate(transverse orientation) to1.58x10n/cm2(E>1.0MeV)at550'F(Figure5-2)resultedina30ft-lbtransition temperature increaseof130'Fandina50ft-lbtransition temperature increaseof135'F.Thisresultedina30ft-lbtransition temperature of160'Fanda50ft-lbtransition temperature of205'F(transverse orientation).
5-4 TheaverageUSEoftheintermediate shellplateC5521-2Charpyspecimens (transverse orientation) resultedinanenergydecreaseof14ft-lbafterirradiation to1.58x10n/cm(E>1.0MeV)at550'F.ThisresultedinanaverageUSEof72ft-lb(Figure5-2).Irradiation ofthereactorvesselcoreregionweldmetalCharpyspecimens to1.58x10n/cm(E>1.0MeV)at550'F(Figure5-3)resultedina75'Fincreasein30ft-lbtransition temperature anda50ft-lbtransition temperature increaseof40'F.Thisresultedina30ft-lbtransition temperature of85'Fandthe50ft-lbtransition temperature of110'F.TheaverageUSEofthereactorvesselcoreregionweldmetalresultedinanenergydecreaseof6ft-lbafterirradiation to1.58x10n/cm(E>1.0MeV)at550'F.ThisresultedinanaverageUSEof71ft-lb(Figure5-3).Irradiation ofthereactorvesselweldHeat-Affected-Zone (HAZ)metalspecimens to1.58x10n/cm(E>1.0MeV)at550'F(Figure5-4)resultedina30ft-lbtransition temperature increaseof105'Fanda50ft-lbtransition temperature increaseof110'F.Thisresultedina30ft-lbtransition temperature of45'Fandthe50ft-lbtransition temperature of80'F.TheaverageUSEofthereactorvesselweldHAZmetalexperienced anenergydecreaseof33ft-lbafteri}radiation to1.58x10n/cm(E>1.0MeV)at550'F.ThisresultedinanaverageUSEof82ft-lb(Figure5-4).Thefractureappearance ofeachirradiated Charpyspecimenfromthevariousmaterials isshowninFigures5-5through5-8andshowanincreasingly ductileortougherappearance withincreasing testtemperature.
Acomparison ofthe30ft-lbtransition temperature increases anduppershelfenergydecreases forthevariousD.C.CookUnit2surveillance materials withpredicted valuesusingthemethodsofNRCRegulatory Guide1.99,Revision2~~ispresented inTable5-6.Comparison ofthe30ft-lbtransition 5-5 temperature increasefor'heintermediate shellplateC5521-2(transverse orientation) is33'FgreaterthantheRegulatory Guideprediction.
However,theNRCRegulatory Guide1.99,Revision2requiresa2sigmaallowance of34'Fbeaddedtothepredicted reference transition temperature toobtainaconservative upperboundvalue.Thus,thereference transition temperature increaseisboundedbythe2sigmaallowance forshiftprediction.
Thiscomparison indicates thatthetransition temperature increases andtheuppershelfenergydecreases oftheIntermediate ShellPlateC5521-2(longitudinal orientation) andsurveillance weldresulting fromirradiation to1.58x10n/cm(E>1.0MeV)arelessthantheRegulatory Guidepredictions.
Thiscomparison alsoindicates thattheuppershelfenergydecreaseoftheintermediate shellplateC5521-2(transverse orientation) resulting fromirradiation to1.58x10n/cm(E>1.0HeV)islessthantheRegulatory Guideprediction.
Theendoflicense(32EFPY)RTNDTvaluesforalltheD.C.CookUnit2beltlineregionmaterials areshowninTable5-7.Thesevalueswerepredicted usingRegulatory Guide1.99,Revision2methodology andareprojected tobewithintheRegulatory limits.Photographs ofthecharpyandtensilespecimens beforetestingareshowninAppendixB.5.3TensionTestResultsTheresultsofthetensiontestsperformed onthevariousmaterials contained inCapsuleUirradiated to1.58x10n/cm(E>1.0HeV)arepresented inTable5-8andarecomparedwithunirradiated results~~asshowninFigures5-9and5-10.5-6 rTheresultsofthetensiontestsperformed ontheintermediate shellplateC5521-2(transverse orientation) indicated thatirradiation to1.58x10n/cm(E>1.0MeV)at550'Fcausedlessthana18ksiincreaseinthe0.2percentoffsetyieldstrengthandlessthana16ksiincreaseintheultimatetensilestrengthwhencomparedtounirradiated data~~(Figure5-9).Theresultsofthetensiontestsperformed onthereactorvesselcoreregionweldmetalindicated thatirradiation to1.58x10n/cm(E>1.0MeV)at550'Fcausedlessthana9ksiincreaseinthe0.2percentoffsetyieldstrengthandlessthana8ksiincreaseintheultimatetensilestrengthwhencomparedtounirradiated data~~(Figure5-10).Thefractured tensionspecimens fortheIntermediate ShellPlateC5521-2materialareshowninFigure5-11,whilethefractured specimens fortheweldmetalareshowninFigure5-12.Theengineering stress-strain curvesforthetensiontestsareshowninFigures5-13and5-14.05.4Wede0eninLoadinSecimensPerthesurveillance capsuletestingprogramwiththeIndianaMichiganPowerCompany,theWOLspecimens willnotbetestedandwillbestoredattheWestinghouse ScienceandTechnology Center.5-7 TABLE5-1CHARPYV-NOTCHIMPACTDATAFORTHED.C.COOKUNIT2INTERMEDIATE SHELLPLATEC5521-2IRRADIATED AT550F,FLUENCE1.58x10ngcm2(E>1.0Mey)Temperature ImpactEnergyLateralExpansion
~SemieNo.~F~C~ft-ib~J~mile~mmLon'tudinalOrientation ShearML45ML48ML42ML44ML41ML43ML46ML4775(24)100(38)125(52)175(79)200(93)225(107).250(121)300(149)14(19)27(37)35(47)62(84)55{75)103(140)114(155)115(156)102327'242507982(0.25)10{0.58)20(0.69)30(1.07)50{1.07)50(1.27)90(2.01)100(2.08)100MT62MT61MT66MT71MT64MT72MT70MT69MT63MT68MT67MT6525(-4)50(10)75(24)125(52)150(66)175(79)200(93)215(102)225(107)250(121)275(135)300(149)Transverse Orientation 5(7)214(19)1217(23)1019(26)1625(34)2133(45)2837(50)3039(53)3363(85)5267(91)5472(98)5077(104)58(0.05)5(0.30)10(0.25)15(0.41)30(0.53)35(0.71)40(0.76)45(0.84)65(1.32)95(1.37)100(1,27)100(1,47)1005-8 TABLE5-2CHARPYV=NOTCHIMPACTDATAFORTHED.C.COOKUNIT2REACTORVESSELWELDMETALANDHAZMETALIRRADIATED AT550'F,FLUENCE1.58x10n/cm(E>1.0MeV)~SamleNo.Temperature
('F)('C)ImpactEnergy(R-1b)(J)WeldMetalLateralExpansion (mils)(mm)Shear(~c)MW70MW64MW71iiIW68MKV63MAV61MW72MW65MW66MW62MW67MW69MH67MH63MH71MH69MH72MH70MH62MH64MH61MH65MH68MH66-100255075100125150175185200250-2525506575100125150175200225250(-23)(-18)(-4)(10)(24)(38)(52)(66)(79)(85)(93)(121)(-32)(-4)(10)(18)(24)(38)(52)(66)(79)(93)(107)(121)23(31)29(39)17(23)21(28)26(35)42(57)60(81)71(96)47(64)62(84)78.(106)74(100)HAZMetal4(5)21(28)48(65)18(24)64(87)39(53)118(160)72(98)83(113)103(140)74(100)69(94)16261421203750573949626221030194432715561715366(0.41)(0.66)(0.36)(0.53)(0.51)(0.94)(1.27)(1.45)(0.99)(1.24)(1.57)(1.57)(0.05)(0.25)(0.76)(0.48)(1.12)(0.81)(1.80)(1.40)(1.55)(1.80)(1.35)(1.68)2535304060808510085100100100103555309050100.951001001001005-9 TABLE5-3INSTRUMENTED CHARPYIMPACTTESTRESULTSFORTHED.C.COOKUNIT2INTERMEDIATE SHELLPLATEC5521-2IRRADIATED AT550'F,FLUENCE1.58x10n/cm(E>1.0MeV)SampleNcehesTestCharpyTempEnergy~s'ft-1hNormalized EnerCharpyMaximumEd/AEm/Aft-lbiniesProp.Ep/AYieldLoad~lbsTimeMaximumTimetotoYieldLoadMaximum~csee~lhs~cseeFractureLoad~lhsArrestYieldFloeLoadStressStress~lhs~ksi~ksiLonitudinalOrientation ML45ML48ML42ML44ML41ML43ML46ML47751410027125351756220055225103250114300115113642171672821244992414431228293089182349261474850157258321521684779372236703945346737313262326531260.1439290.1446000.2942580.1447350.2841390.1445070.1445460.1440710:200.380.380.530.380.540.540.3839294600425845633887**6388583847921340**124127122137131136115136124131108129108130104120Transverse Orientation MT62MT61MT66MT71MT64MT72MT70MT69MT63MT68MT67MT65255501475171251915025175332003721539225632506727572300774011313715320126629831450754058062012778848124156128153236221222223283549105771107360038252969338127231935839733593288305131531103438170368116132890.100.140.140.210.140.130.280.140.150.140.160.1413194154427331874194427340964158.4457.4212424942510.140.220.250.240.320.380.390.380.540.540.540.54131941544273318741944273409641584225**5512651320215772083215125333236374012012912713499102112126114128122129109124112130109125101121105123*Fullyductilefracture.
Noarrestload.0 TABLE5-4ArrestYieldFlowLoadStressStress~lbs~ksi~ksiINSTRUMENTED CHARPYIMPACTTESTRESULTSFORTHED.C.COOKUNIT2MELDMETALANDHEAT-AFFECTED-ZONE (HAZ)METAL,IRRADIATED AT550'F,FLUENCE1.58x10n/cm(E>1.0MeV)Normalized EneriesTestCharpyCharpyMaximumPropYieldTimeMaximumSampleTempEnergyEd/AEm/AEp/ALoadtoYieldLoadNumber~r~ft-1bft-lbin~lbs~mesc~lbsWeldMetalMW70MW64MW71MW68MW63MW61MW72MW65MW66MW62MW67MW69-1002550751001251501751852002502329172126426071476278741852341371692093384835723784996285961331068385131151239235221231250231521275484791872443371582693783653898389137763847365537123323351133973280375432830.140.140.140.260.140.260'40.140'40.130.280.144576448241054021443043594581453544044232444042730.310.280.230.300.320.420.540.540.500.540.620.544576448241054021443043594581440477846797894116184631252*810129141129139125131128131121134123134110131117134113130109125125136109125HAZMetalMH67MH63MH71MH69MH72MH70MH62MH64MH61MH65MH68MH66-25255065751001251501752002252504214818643911872831037469321693871455153149505806688295965561547166581621143012402432531872281712222187354200649340425576409328964332737973653391029703352399136223642306633300.100.210.140.140.140.210.160.220.140.150.170.145-111133348645573834453036184355475646624799398142870.170.230.380.200.370.380.530.540.540.540.500.521133348644203834450036184756****14685821269713802954*4056*323511111312613912112413014099109111128133145120138121140102117111126*Fullyductilefracture.
Noarrestload.
TA8LE5-5EFFECTOF550FIRRADIATION TO1.58x10n/cm(E>1.0HeV)ONTHENOTCHTOUGHNESS PROPERTIES OFTHED.C.COOKUNIT2REACTORVESSELSURVEILLANCE HATERIALS Average30ft-lb('I)Transition Temperature (F)Average35milLateralExpansion Temperature (F)Average50ft-lb('1)Transition Temperature (F)AverageEnergyAbsorption atFullShear(ft-lb)HaterialUnirradiated Irradiated ATUnirradiated Irradiated 4TUnirradiated Irradiated ATUnirradiated Irradiated d(ft-lb)PlateC5521-2(Longitudinal) 25120955015010055165110127111-16PlateC5521-2(Transverse) 3016013070190120702051358672-14MeldHetal108575501005070110407771-6HAZHetal-6045105-4085125-308011011582-33(1)"AVERAGE" isdefinedasthevaluereadfromthecurvefittedthroughthedatapointsoftheCharpytests(Figures5-1through5-4).y5-12 TABLE5-6COMPARISON OFTHED.C.COOKUNIT2SURVEILLANCE MATERIAL30FT-LBTRANSITION TEMPERATURE SHIFTSANDUPPERSHELFENERGYDECREASES WITHREGULATORY GUIDE1.99REVISION2PREDICTIONS 30ft-lbTransition Tem.ShiftUerShelfEnerDecreaseMaterialFluencePredicted (a)MeasuredCapsule10n/cm('F)('F)Predicted (a)Measured(>)(>)PlateC5521-2(Longitudinal) 0.2640.6831.061.5855778897559095951620222413191913PlateC5521-2(Transverse) 0.2640.6831.061.5855778897801001031301620222414201916WeldMetal0.2640.6831.061.5845637280405070751518212349108HAZMetal0.2640.6831.061.5850707210513211229(a)Regulatory Guide1.99,Revision25-13 TABLE5-7PROJECTED ENDOFLICENSE(32EFPY)RTNDTANDUPPERSHELFENERGYVALUESFORD.C.COOKUNIT2BELTLINEREGIONMATERIALS PERREGULATORY GUIDE1.99,REVISION2MATERIALDESCRIPTION RTNDTFUPPERSHELFENERGYft-lbsIntermediate ShellPlate,C5556-2Intermediate ShellPlate,C5521-2216171(171)7666LowerShellPlate,C5540-2LowerShellPlate,C5592-11001284752Intermediate ShellLongitudinal Welds90(56)(locatedat10'zimuth) 62LowerShellLongitudinal Welds(locatedat90'zimuth) 84(50)62Circumferential Meld102(67)62Notenumbersin()arebaseduponsurveillance capsuledata.5-14 TABLE5-8TENSILEPROPERTIES FORTHED.C.COOKUNIT2REACTORVESSELSURVEILLANCE MATERIALS IRRADIATED AT550'FTO1.58x10n/ctn(E)1.0MeV)MaterialSampleNumberTestTemp.~F0.2%YieldUltimateFractureFractureFractureUniformTotalReduction StrengthStrengthLoadStressStrengthElongation Elongation inArea~ksi~ksi.~ki~ksi.~ksi.PlatePlateMTllMT1215055079.570.397.493.73.603.65172.0131.873.374.410.59.620.116.75744WeldWeldMW11MW12'2555082.575.996.892.73.203.50173.9190.265.271.39.08.119.517.163585-15
(~C)-150-100-500501001502001008060c%40031008060>C4020016014000I0tl'F~0UNIRRADIATED
~IRRADIATED
<550'F),FLUENCEI58xIOn/cd1.51.00.5020012010080560402000No'F~~~160120-8040-200-1000100200300400TEMPERATURE
('f)Figure5-1.CharpyV-NotchImpactProperties forD.C.CookUnit2ReactorVesselIntermediate ShellPlateC5521-2(Longitudinal Orientation) 5-16
(~C)-150-100-50050100150200100806040200001008060'C40200120Ic9'F~t0NIIRRADIATED
~IRRADIATED (550'F),FLUEHCEl58xIOn/cn~2.52.01.51.00.516010080I604020l35'F013I'F~~1208040-200-1000100200300400500TEMPLRATURL
('f)Figure5-2.CharpyV-NotchImpactProperties forD.C.CookUnit2ReactorVesselIntermediate ShellPlateC5521-2(Transverse Orientation) 5-17 (C)-150-100-5005010015020010080604p20000~0~~1008060>C4020012050F0~0UNIRRADIATED
~IRRADIATED (550'F),FLUENCE!50xIOn/cn2.51.51.00.516010080I60400i0'F00T5F0~120804p-200-1000100200300400500TEMPERATURE
('F')Figure5-3.CharpyV-NotchImpactProperties forD.C.CookUnit2ReactorVesselSurveillance WeldMetal5-18
('C)-150-100-5005010015020010080K60~400081008060OC40200002oS~Ol25'I'~004~1.51.00,51601401200UNIRRADIATED
~IRRADIATED (550'F),ELUEhEEI$8xIOn/cn~002001601008060LJ40,20o000~ll9'I'~00~~1208040-200-1000100200300400TEMPERATURE (f)Figure5-4.CharpyV-NotchImpactProperties forD.C.CookUnit2ReactorVesselWeldHeat-Affected-Zone Netal5-19 ML45ML48ML42ML41ML43ML46ML47Figure5-5.CharpyImpactSpecimenFractureSurfacesforD.C.CookUnit2ReactorVesselIntermediate ShellPlateC5521-2(Longitudinal Orientation) 5-20 MT62MT61MT66MT71tfI*r!'iMT64MT72MT69&NWBSNWWsst<.
qIItqw(!i~4~AM+%38!!!!!!
hMT63MT68MT67MT65Figure5-6.CharpyImpactSpecimenFractureSurfacesforD.C.CookUnit2ReactorVesselIntermediate ShellPlateC5521-2(Transverse Orientation) 5-21 MW70MW64MW71MW68MW63MW61MW72MW65S<hI)-ca)iMW66MW62MW67MW69Figure5-7.CharpyImpactSpecimenFractureSurfacesforD.C.CookUnit2ReactorVesselSurveillance WeldNetal5-22 MH67MH63MH71MH69MH72MH62MH64tycholaMH61MH65MH68MH66Figure5-8.CharpyImpactSpecimenFractureSurfacesforD.C.CookUnit2ReactorVesselWeldHeat-Affected-Zone Metal5-23 12011010050100('C)150200250300800700g80cn7060504080ULTIMATETEHSILESTRENGTH02%YIELDSTRENGTHQQUNIRRADIATED 4~IRRADIATED AT550'F,FLUENCEL50xIOg'cn600'004003007060950-40g3020REDUCTION INAREATOTALELONGATION 10UNIFORHONGATION100200300400TEMPERATURE
('F)500FigUre5-9.TensileProperties forD.C.CookUnit2ReactorVesselIntermediate ShellPlateC5521-2(Transverse Orientation) 5-24 120110100Q90g80cn7050('C)100150200250300Il.TIMATE TENSILESTRENGTH2+D2%YIELDSTRENGTH8007006005004004080b,0UNIRRADIATED 4~IRRADIATED AT550F,FLUENCEL58xI019n/cn2 REDUCTION INAREA30060~50UNIFORMELONGATIII 10TOTALETION100200300400TEMPERATURE
('F)500Figure5-10.TensileProperties forD.C.CookUnit2ReactorVesselSurveillance WeldHetal5-25 889SpecimenMT11150'FSpecimenMT12550'FFigure5-11.Fractured TensileSpecimens fromD.C.CookUnit2ReactorVesselIntermediate ShellPlateC5521-2(Transverse Orientation) 5-26 SpecimenMW11125'FSpecimenMW12550'FFigure5-12.Fractured TensileSpecimens fromD.C.CookUnit2ReactorVesselSurveillance WeldMetal5-27 100.0090.0080.0070.006o.oo50.00h40.0030.0020.0010.000.000.00.10.STRAIN,IN/INMT11150F0.20100.0090.0080.0070.0060.00(050.00IM40.0030.0020.0010.000.000.00.040.080.12STRAIN,IN/INMT12550F0.16Figure5-13.Engineering Stress-Strain CurvesforPlateC5521-2TensileSpecimens NTllandHT12(Transverse Orientation) 5-28 100.0090.0080.0070.0060.005000IM40.0030.0020.0010.000.000.00.040.080.12STRAIN,IN/INMW11125F0.160.20100.0090.0080.0070.006o.oo50.00le40.0030.0020.0010.000.000.00.040.080.12STRAIN,IN/INMW12550F8.160.20Figure5-14.Engineering Stress-Strain CurvesforWeldMetalTensileSpecimens NWllandMW125-29 SECTION6.0RADIATION ANALYSISANDNEUTRONDOSIMETRY 6.1Introduction Knowledge oftheneutronenvironment withinthereactorpressurevesselandsurveillance capsulegeometryisrequiredasanintegralpartofLWRreactorpressurevesselsurveillance programsfortworeasons.First,inordertointerpret theneutronradiation-induced materialpropertychangesobservedinthetestspecimens, theneutronenvironment (energyspectrum, flux,fluence)towhichthetestspecimens wereexposedmustbeknown.Second,inordertorelatethechangesobservedinthetestspecimens tothepresentandfuturecondition ofthereactorvessel,arelationship mustbeestablished betweentheneutronenvironment atvariouspositions withinthereactorvesselandthatexperienced bythetestspecimens.
Theformerrequirement isnormallymetbyemploying acombination ofrigorousanalytical techniques andmeasurements obtainedwithpassiveneutronfluxmonitorscontained ineachofthesurveillance capsules.
Thelatterinformation isderivedsolelyfromanalysis.
Theuseoffastneutronfluence(E>1.0MeV)tocorrelate measuredmaterials properties changestotheneutronexposureofthematerialforlightwaterreactorapplications hastraditionally beenacceptedfordevelopment ofdamagetrendcurvesaswellasfortheimplementation oftrendcurvedatatoassessvesselcondition.
Inrecentyears,however,ithasbeensuggested thatanexposuremodelthataccountsfordifferences inneutronenergyspectrabetweensurveillance capsulelocations andpositions withinthevesselwallcouldleadtoanimprovement intheuncertainties associated withdamagetrendcurvesaswellastoamoreaccurateevaluation ofdamagegradients throughthepressurevesselwall.Becauseofthispotential shiftawayfromathreshold fluencetowardanenergydependent damagefunctionfordatacorrelation, ASTHStandardPracticeE853,"Analysis andInterpretation ofLightWaterReactor6-1 Surveillance Results,"
recommends reporting displacements perironatom(dpa)alongwithfluence(E>1.0MeV)toprovideadatabaseforfuturereference.
Theenergydependent dpafunctiontobeusedforthisevaluation isspecified inASTMStandardPracticeE693,"Characterizing NeutronExposures inFerriticSteelsinTermsofDisplacements perAtom."Theapplication ofthedpaparameter totheassessment ofembrittlement gradients throughthethickness ofthepressurevesselwallhasalreadybeenpromulgated inRevision2totheRegulatory Guide1.99,"Radiation DamagetoReactorVesselMaterials."
Thissectionprovidestheresultsoftheneutrondosimetry evaluations performed inconjunction withtheanalysisoftestspecimens contained insurveillance CapsuleU.Fastneutronexposureparameters intermsoffastneutronfluence(E>1.0MeV),fastneutronfluence(E>0.1Mev),andironatomdisplacements (dpa)areestablished forthecapsuleirradiation history.Theanalytical formalism relatingthemeasuredcapsuleexposuretotheexposureofthevesselwallisdescribed andused=toprojecttheintegrated exposureofthevesselitself.Alsouncertainties associated withthederivedexposureparameters atthesurveillance capsuleandwiththeprojected exposureofthepressurevesselareprovided.
6.2DiscreteOrdinates AnalsisAplanviewofthereactorgeometryatthecoremidplaneisshowninFigure4-1.Eightirradiation capsulesattachedtothethermalshieldareincludedinthereactordesigntoconstitute thereactorvesselsurveillance program.Thecapsulesarelocatedatazimuthal anglesof4.0,40.0',140.0,176.0',184.0,220.0,320.0,and356.0relativetothecorecardinalaxesasshowninFigure4-1.Aplanviewofasurveillance capsuleholderattachedtothethermalshieldisshowninFigure6-1.Thestainless steelspecimencontainers are1.0inchsquareandapproximately 38inchesinheight.Thecontainers arepositioned axiallysuchthatthespecimens arecenteredonthecoremidplane, thusspanningthecentral3feetofthe12-foothighreactorcore.6-2 Fromaneutrontransport standpoint, thesurveillance capsulestructures aresignificant.
Theyhaveamarkedeffectonboththedistribution ofneutronfluxandtheneutronenergyspectruminthewaterannulusbetweenthethermalshieldandthereactorvessel.Inordertoproperlydetermine theneutronenvironment atthetest'pecimen locations, thecapsulesthemselves mustbeincludedintheanalytical model.Inperforming thefastneutronexposureevaluations forthesurveillance capsulesandreactorvessel,twodistinctsetsoftransport calculations werecarriedout.Thefirst,asinglecomputation intheconventional forwardmode,wasusedprimarily toobtainrelativeneutronenergydistributions throughout thereactorgeometryaswellastoestablish relativeradialdistributions ofexposureparameters (P(E>1.0Mev),P(E>=0.IMev),anddpa)throughthevesselwall.Theneutronspectralinformation wasrequiredfortheinterpretation ofneutrondosimetry withdrawn fromthesurveillance capsuleaswellasforthedetermination ofexposureparameter ratios;i.e.,dpa/P(E>1.0MeV),withinthepressurevesselgeometry.
Therelativeradialgradientinformation wasrequiredtopermittheprojection ofmeasuredexposureparameters tolocations interiortothepressurevesselwall;i.e.,theI/4T,I/2T,and3/4Tlocations.
Thesecondsetofcalculations consisted ofaseriesofadjointanalysesrelatingthefastneutronflux(E>1.0MeV)atsurveillance capsulepositions, andseveralazimuthal locations onthepressurevesselinnerradiustoneutronsourcedistributions withinthereactorcore.Theimportance functions generated fromtheseadjointanalysesprovidedthebasisforallabsoluteexposureprojections andcomparison withmeasurement.
Theseimportance functions, whencombinedwithcyclespecificneutronsourcedistributions, yieldedabsolutepredictions ofneutronexposureatthelocations ofinterestforeachcycleofirradiation; andestablished themeanstoperformsimilarpredictions anddosimetry evaluations forallsubsequent fuelcycles.Itisimportant tonotethatthecyclespecificneutronsourcedistributions utilizedintheseanalysesincludednotonlyspatialvariations offissionrateswithinthereactorcore;but,alsoaccounted fortheeffectsofvaryingneutronyield6-3 perfissionandfissionspectrumintroduced bythebuild-inofplutonium asthetburnupofindividual fuelassemblies increased.
Theabsolutecyclespecificdatafromtheadjointevaluations togetherwithrelativeneutronenergyspectraandradialdistribution information fromtheforwardcalculation providedthemeansto:l.Evaluateneutrondosimetry obtainedfromsurveillance capsulelocations.
2.Extrapolate dosimetry resultstokeylocations attheinnerradiusandthroughthethickness ofthepressurevesselwall.3.Enableadirectcomparison ofanalytical prediction withmeasurement.
4.Establish amechanism forprojection ofpressurevesselexposureasthedesignofeachnewfuelcycleevolves.Theforwardtransport calculation forthereactormodelsummarized inFigures4-1and6-1wascarriedoutinR,8geometryusingtheDOTtwo-dimensional discreteordinates code~5~andtheSAILORcross-section library~~.TheSAILORlibraryisa47groupENDFB-IVbaseddatasetproducedspecifically forlightwaterreactorapplications.
Intheseanalysesanisotropic scattering wastreatedwithaP3expansion ofthecross-sections andtheangulardiscretization wasmodeledwithanSBorderofangularquadrature.
Thereference corepowerdistribution utilizedintheforwardanalysiswasderivedfromstatistical studiesoflong-term operation ofWestinghouse 4-loopplants.Inherentinthedevelopment ofthisreference corepowerdistribution istheuseofanout-infuelmanagement strategy; i.e.,freshfuelonthecoreperiphery.
Furthermore, fortheperipheral fuelassemblies, a2auncertainty derivedfromthestatistical evaluation ofplanttoplantandcycletocyclevariations inperipheral powerwasused.Sinceitisunlikelythatasinglereactorwouldhaveapowerdistribution atthenominal+2u6-4 levelforalargenumberoffuelcycles,theuseofthisreference distribution isexpectedtoyieldsomewhatconservative results.AlladjointanalyseswerealsocarriedoutusinganS8orderofangularquadrature andtheP3cross-section approximation fromtheSAILORlibrary.Adjointsourcelocations werechosenatseveralazimuthal locations alongthepressurevesselinnerradiusaswellasthegeometric centerofeachsurveillance capsule.Again,thesecalculations wereruninR,8geometrytoprovideneutronsourcedistribution importance functions fortheexposureparameter ofinterest; inthiscase,P(E>1.0MeV).Havingtheimportance functions andappropriate coresourcedistributions, theresponseofinterestcouldbecalculated as:R(r,8)-frf8fE)(r,8,E)S(r,8,E)rdrd8dEwhere:R(r,8)=P(E>1.0MeV)atradiusrandazimuthal angle8Adjointimportance functionatradius,r,azimuthal angle8,andneutronsourceenergyE.S(r,8,E)-Neutronsourcestrengthatcorelocationr,8andenergyE.Althoughtheadjointimportance functions usedintheanalysiswerebasedonaresponsefunctiondefinedbythethreshold neutronflux(E>1.0MeV),priorcalculations haveshownthat,whiletheimplementation oflowleakageloadingpatternssignificantly impact-themagnitude andthespatialdistribution oftheneutronfield,changesintherelativeneutronenergyspectrumareofsecondorder.Thus,for,agivenlocationtheratioofdpa/P(E>1.0MeV)isinsensitive tochangingcoresourcedistributions.
Intheapplication oftheseadjointimportance functions totheDCCookUnit2reactor,therefore, theirondisplacement rates(dpa)andtheneutronflux(E>0.1MeV)werecomputedonacyclespecificbasisbyusingdpa/It)(E.>1.0MeV)andP(E>0.1MeV)/P(E>1.0MeV)ratiosfromtheforwardanalysisinconjunction withthecyclespecificIl')(E>1.0MeV)solutions fromtheindividual adjointevaluations.
6-5 Thereactorcorepowerdistribution usedintheplantspecificadjointcalculations wastakenfromthefuelcycledesignreportsforthefirsteightoperating cyclesofDCCookUnit2[17through19]Selectedresultsfromtheneutrontransport analysesareprovidedinTables6-1through6-5.Thedatalistedinthesetablesestablish themeansforabsolutecomparisons ofanalysisandmeasurement forthecapsuleirradiation periodandprovidethemeanstocorrelate dosimetry resultswiththecorresponding neutronexposureofthepressurevesselwall.InTable6-1,thecalculated exposureparameters
[P(E>1.0MeV),4(E>0.1MeV),anddpa]aregivenatthegeometric centerofthetwosymmetric surveillance capsulepositions forboththedesignbasisandtheplantspecificcorepowerdistributions.
Theplantspecificdata,basedontheadjointtransport
- analysis, aremeanttoestablish theabsolutecomparison ofmeasurement withanalysis.
Thedesignbasisdataderivedfromtheforwardcalculation areprovidedasapointofreference againstwhichplantspecificfluenceevaluations canbecompared.
SimilardataisgiveninTable6-2forthepressurevesselinnerradius.Again,thethreepertinent exposureparameters arelistedforboththedesignbasisandtheCycles1through8plantspecificpowerdistributions.
Itisimportant tonotethatthedataforthevesselinnerradiusweretakenattheclad/base metalinterface; and,'hus, represent themaximumexposurelevelsofthevesselwallitself.Radialgradientinformation forneutronflux(E>1.0MeV),neutronflux(E>0.1MeV),andironatomdisplacement rateisgiveninTables6-3,6-4,and6-5,respectively.
Thedata,obtainedfromtheforwardneutrontransport calculation, arepresented onarelativebasisforeachexposureparameter atseveralazimuthal locations.
Exposureparameter distributions withinthewallmaybeobtainedbynormalizing thecalculated orprojected exposureatthevesselinnerradiustothegradientdatagiveninTables6-3through6-5.6-6 Forexample,theneutronflux(E>1.0MeV)atthe1/4Tpositiononthe45'zimuth isgivenby:PI/4T(45')
.i$(220.27,45')F(225.75,45')where:p~/4T(45')
Projected neutronfluxatthe1/4Tpositiononthe45'zimuth 4(220.27,45')
Projected orcalculated neutronfluxatthevesselinnerradiusonthe45'zimuth.
F(225.75,45')=Relativeradialdistribution functionfromTable6-3.Similarexpressions applyforexposureparameters intermsofP(E>O.lMeV)anddpa/sec.6.3NeutronDosimetrThepassiveneutronsensorsincludedin.theDCCookUnit2surveillance programarelistedinTable6-6.AlsogiveninTable6-6aretheprimarynuclearreactions andassociated nuclearconstants thatwereusedintheevaluation oftheneutronenergyspectrumwithinthecapsuleandthesubsequent determination ofthevariousexposureparameters ofinterest[III(E>1.0Mev),P(E>O.lMeV),dpa].Therelativelocations oftheneutronsensorswithinthecapsulesareshowninFigure4-2.Theiron,nickel,copper,andcobalt-aluminum
- monitors, inwireform,wereplacedinholesdrilledinspacersatseveralaxiallevelswithinthecapsules.
Thecadmium-shielded neptunium anduraniumfissionmonitorswereaccommodated withinthedosimeter blocklocatednearthecenterofthecapsule.6-7 TheuseofpassivemonitorssuchasthoselistedinTable6-6doesnotyieldadirectmeasureoftheenergydependent fluxlevelatthepointofinterest.
Rather,theactivation orfissionprocessisameasureoftheintegrated effectthatthetime-andenergy-dependent neutronfluxhasonthetargetmaterialoverthecourseoftheirradiation period.Anaccurateassessment oftheaverageneutronfluxlevelincidentonthevariousmonitorsmaybederivedfromtheactivation measurements onlyiftheirradiation parameters arewellknown.Inparticular, thefollowing variables areofinterest:
Thespecificactivityofeachmonitor.Theoperating historyofthereactor.Theenergyresponseofthemonitor.Theneutronenergyspectrumatthemonitorlocation.
Thephysicalcharacteristics ofthemonitor.Thespecificactivityofeachof-theneutronmonitorswasdetermined usingestablished ASTMprocedures
[20through33].Following samplepreparation andweighing, theactivityofeachmonitorwasdetermined bymeansofalithium-drifted germanium, Ge(Li),gammaspectrometer.
Theirradiation historyoftheDCCookUnit2reactorduringCyclesIthrough8wasobtainedfromNUREG-0020, "Licensed Operating ReactorsStatusSummaryReport"fortheapplicable period.Theirradiation historyapplicable toCapsuleUisgiveninTable6-7.Measuredandsaturated reactionproductspecificactivities aswellasmeasuredfullpowerreactionratesarelistedinTable6-8.Reactionratevalueswerederivedusingthepertinent datafromTables6-6and6-7.Valuesofkeyfastneutronexposureparameters werederivedfromthemeasuredreactionratesusingtheFERRETleastsquaresadjustment code~~.The6-8 FERRETapproachusedthemeasuredreactionratedataandthecalculated neutronenergyspectrumatthethecenterofthesurveillance capsuleasinputandproceeded toadjustapriori(calculated) groupfluxestoproduceabestfit(inaleastsquaressense)tothereactionratedata.Theexposureparameters alongwithassociated uncertainties wherethenobtainedfromtheadjustedspectra.IntheFERRETevaluations, alog-normal least-squares algorithm weightsboththeapriorivaluesandthemeasureddatainaccordance withtheassigneduncertainties andcorrelations.
Ingeneral,themeasuredvaluesfarelinearlyrelatedtothefluxPbysomeresponsematrixA:(s,)f(s)(~)ZAgiggwhereiindexesthemeasuredvaluesbelonging toasingledatasets,gdesignates theenergygroupand~delineates spectrathatmaybesimultaneously adjusted.
Forexample,RZ1gigrelatesasetofmeasuredreactionratesR;toasinglespectrumPbythemultigroup crosssectiono;g.(Inthiscase,FERRETalsoadjuststhecross-sections.)
Thelog-normal approachautomatically accountsforthephysicalconstraint ofpositivefluxes,evenwiththelargeassigneduncertainties.
IntheFERRETanalysisofthedosimetry data,thecontinuous quantities (i.e.,fluxesandcross-sections) wereapproximated in53groups.Thecalculated fluxesfromthediscreteordinates analysiswereexpandedintotheFERRETgroupstructure usingtheSAND-IIcode~~.Thisprocedure wascarriedoutbyfirstexpanding theapriorispectrumintotheSAND-II620groupstructure usingaSPLINEinterpolation procedure forinterpolation inregionswheregroupboundaries donotcoincide.
The620-point
.spectrum wastheneasilycollapsed 6-9 tothegroupschemeusedinFERRET.Thecross-sections werealsocollapsed intothe53energy-group structure usingSANDIIwithcalculated spectra(asexpandedto620groups)asweighting functions.
ThecrosssectionsweretakenfromtheENDF/B-Vdosimetry file.Uncertainty estimates and53x53covariance matriceswereconstructed foreachcrosssection.Correlations betweencrosssectionswereneglected duetodataandcodelimitations, butareexpectedtobeunimportant.
Foreachsetofdataorapriorivalues,theinverseofthecorresponding relativecovariance matrixMisusedasastatistical weight.Insomecases,asforthecrosssections, amultigroup covariance matrixisused.Moreoften,asimpleparameterized formisused:2MggRN+RgRgPggwhereRNspecifies anoverallfractional normalization uncertainty (i.e.,completecorrelation) forthecorresponding setofvalues.Thefractional uncertainties Rspecifyadditional randomuncertainties forgroupgthatarecorrelated withacorrelation matrix:I2P,(I-8)b',+8exp[~~~]9999272Thefirsttermspecifies purelyrandomuncertainties whilethesecondtermdescribes short-range correlations overarange7(8specifies thestrengthofthelatterterm).Fortheaprioricalculated fluxes,ashort-range correlation of76groupswasused.Thischoiceimpliesthatneighboring groupsarestronglycorrelated when8iscloseto1.Stronglong-range correlations (oranticorrelations) werejustified basedoninformation presented byR.E.Maerker~~.Maerker's resultsarecloselyduplicated when76.Fortheintegralreactionratecovariances, simplenormalization andrandomuncertai.nties werecombinedasdeducedfromexperimental uncertainties.
6-10 ResultsoftheFERRETevaluation oftheCapsuleUdosimetry aregiveninTable6-9.Thedatasummarized inTable6-9indicated thatthecapsulereceivedanintegrated exposureof1.58x10n/cm2(E>1.0MeV)withanassociated euncertainty of+8X.Alsoreportedarecapsuleexposures intermsoffluence(E>0.1MeV)andironatomdisplacements (dpa).Summaries ofthefitIoftheadjustedspectrumareprovidedin"-Table 6-10.Ingeneral,excellent resultswereachievedinthefitsoftheadjustedspectrumtotheindividual experimental reactionrates.Theadjustedspectrumitselfistabulated inTable6-11fortheFERRET53energygroupstructure.
Asummaryofthemeasuredandcalculated neutronexposureofCapsuleUispresented inTable6-12.Theagreement betweencalculation andmeasurement fallswithin+8Xforallfastneutronexposureparameters listed.Thethermalneutronexposurecalculated fortheexposureperiodundepredicted themeasuredvaluebyapproximately afactoroftwo.Neutronexposureprojections atkeylocations onthepressurevesselinnerradiusaregiveninTable6-13.Alongwiththecurrent(8.65EFPY)exposurederivedfromtheCapsuleUmeasurements, projections arealsoprovidedforanexposureperiodof16EFPYandtoendofvesseldesignlife(32EFPY).Intheevaluation ofthefutureexposureofthereactorpressurevesseltheexposureratesaveragedoverthefirsteightcyclesofoperation wereemployed.
Inthecalculation ofexposuregradients foruseinthedevelopment ofheatupandcooldowncurvesfortheDCCookUnit2reactorcoolantsystem,exposureprojections to16EFPYand32EFPYwerealsoevaluated.
Databasedonbothafluence(E>1.0MeV)slopeandaplantspecificdpaslopethroughthevesselwallareprovidedinTable6-14.InordertoaccessRTNDTvs.fluence6-11 trendcurves,dpaequivalent fastneutronfluencelevelsforthe1/4Tand3/4Tpositions weredefinedbytherelations
~'I/4/)='I(I()(44(I())(I/4/)='I(II)(I(I())Usingthisapproachresultsinthedpaequivalent fluencevalueslistedinTable6-14.InTable6-15updatedleadfactorsarelistedforeachoftheDCCookUnit2surveillance capsules.
Thesedatamaybeusedasaguideinestablishing futurewithdrawal schedules fortheremaining capsules.
Inordertoprovideaconsistent databaseforcomparison withmeasuredshiftdata,thedosimetry setsfrompreviously withdrawn surveillance capsules(X,Y,andT)werere-evaluated usingthepreviously described leastsquaresadjustment methodology alongwithcurrentreactioncross-sections andnucleardata.Theresultsofthosere-evaluations wereasfollows:FLUENCE[E>1.0MeV]CapsuleXCapsuleYCapsuleT1.O6X10>>6.83X102.64Xlol8Thelouncertainty associated witheachofthesefluenceevaluations isSX.6-12
~00~0gg~~
TABLE6-1CALCULATED FASTNEUTRONEXPOSUREPARAMETERS ATTHESURVEILLANCE CAPSULECENTERItI(E>1.0MeV)~ncm~sec2P(E>O.IMev)~ncm~sec2IronDisplacement Ratedasec4.0'0.0'.0'0.0'.0'0.0'ESIGN BASIS2.82X10109.05X10108.15X103.04X10114.58X10lll.ssxlo-'0CYCLE1CYCLE2CYCLE3CYCLE4CYCLE5CYCLE6CYCLE7CYCLE82.12X106.682.29X106.622.21X105.462.19X105.47224X1010493193X10105192.12xlo'.04.7o1.66X10104.76X1010xlo'0xlo'0xlo'0X1010xloloX1010xlo'06.13X10106.62X10106.39X10106.33X10106.47xlo'05.58X10106.13X10104.80X10102.24X1O"2.22X10111.83X10111.84X1O"1.66X1O"1.74XIO"1.58X10111.60X10113.43X10113.71X10113.58X10113.55X10113.63X10-11313X10-113.43X10112.69X10111.14xlo-101.13X10109.34X10-119.35X10-118.43X10118.87X10118.04X1018.14X10-11 TABLE6-2CALCULATED FASTNEUTRONEXPOSURERATESATTHEPRESSUREVESSELCLAD/BASE METALINTERFACE E>I.OMeVnc~sec0.0'5.0'0.0'5.0'ESIGN BASIS6.43X10091.36X10101.72X10102.60X1010CYCLE1CYCLE2CYCLE3CYCLE4CYCLE5CYCLE6CYCLE7CYCLE86.34X10096.74X10096.43X10096.58xlo096.50X1009587xlp09639X104.92X1091.O1X1O'01.03X10109.59X10104X10109.54X10099.46X10099.99X10097.4oxlo091.26X101.94X10101.24X10101.92X10101.06X10101.60Xlolo1.11X10101.63X10109.83X101.46X101.02X101.53X10109.63X10091.41X10109.53X101.42X10E>0.1MeVncm2~sec0.0'5.0'0.0'5.0'ESIGN BASIS2.11X103.41X104.34X106.96X10CYCLE1CYCLE2CYCLE3CYCLE4CYCLE5CYCLE6CYCLE7CYCLE81.59X10101.69X10101.61X101.65X10101.63X10101.47X1011.60X101.23X10102.54X10103.18X105.04X1059Xlpl0312Xlplp499Xlplp2.41X10102.67X10104.16X10102.61X102.80X104.24X102.39X10102.48X10103.80X10102.37X10102.57X10103.98X1010251X1010243X1010367X1010186xlplo24pxlplp369Xlpl06-15 TABLE6-2(Continued)
CALCULATED FASTNEUTRONEXPOSURERATESATTHEPRESSUREVESSELCLAD/BASE METALINTERFACE IronAtomDislacementRatedasec0.0'5.0'0.0'5.0'ESIGN BASIS1.37X10112.19X10112.73X104.26X10CYCLE1CYCLE2CYCLE3CYCLE4CYCLE5CYCLE6CYCLE7CYCLE81.03X10111.63X10-111.10X101.66X1011p5Xlp-ll154Xlp-ll1.07X10111.67X1011p6Xlp-ll154Xlp-llg57Xlp-12152Xlp-ll1.04X10111.61X10118.02X1021.19X1011ppXlp-ll3p8Xlp-llg7Xlp-ll3p5Xlp-ll1.69X10112.54X1076Xlp-ll25gXlp-ll1.56X1012.32X10111.62X10112.43X101153Xlp-ll224Xlp-ll1.52X102.26X10116-16 TABLE6-3RELATIVERADIALDISTRIBUTIONS OFNEUTRONFLUX(E>1.0MeV)WITHINTHEPRESSUREVESSELWALLRadius~cm0'5'0'5'20.27(1) 220.64221.66222.99224.31225.63226.95228.28229.60230.92232.25233.57234.89236.22237.54238.86240.19241.51242.17(2) 1.000.9770.8840.7580.6410.5370.4480.3720.3090.2550.2110.1740.1430.1170.09610.07830.06350.05110.04831.000.9780.8870.7620.6440.5400.4510.3730.3100.2570.2120.1750.1440.1180.09630.07830.06320.05010.04691.000.9790.8890.7650.6480.5450.4550.3790.3150.2610.2160.1780.1470.1210.09890.08070.06560.05190.04871.000.9770.8850.7560.6370.5340.4430.3670.3030.2500.2060.1690.1380.1130.09120.07360.05840.04540.0422NOTES:1)BaseMeta1InnerRadius2)BaseMeta1OuterRadius6-17 TABLE6-4hRELATIVERADIALDISTRIBUTIONS OFNEUTRONFLUX(E>0.1HeV)WITHINTHEPRESSUREVESSELWALLRadius~cmpo15'0'5'20.27(1) 220.64221.66222.99224.31225.63226.95228.28229.60230.92232.25233.57234.89236.22237.54238.86240.19241.51242.17(2) 1.001.001.000.9650.9160.8610.8030.7460.6890.6330.5780.5250.4740.4240.3750.3280.2830.2390.2291.001.000.9960.9580.9060.8490.7900.7320.6750.6190.5650.5130.4630.4140.3670.3220.2770.2320.2201.001.001.000.9680.9190.8650.8090.7520.6950.6400.5860.5340.4830.4330.3850.3380.2920.2450.2321.001.000.9940.9530.8980.8380.7770.7170.6570.6000.5440.4900.4370.3870.3380.2910.2440.1960.183NOTES:1)BaseMetalInnerRadius2)BasePetalOuterRadius6-18 TABLE6-5RELATIVERADIALDISTRIBUTIONS OFIRONDISPLACEMENT RATE(dpa)WITHINTHEPRESSUREVESSELWALLRadius0015'0'5'20.27(1) 220.64221.66222.99224.31225.63226:95228.28229.60230.92232.25233.57234.89236.22237.54238.86240.19241.51242.17(2) 1.000.9830.9130.8180.7280.6470.5740.5100.4530.4020.3560.3150.2770.2430.2120.1820.1550.1310.1251.000.9830.9140.8190.7280.6460.5730.5070.450.0.3990.3530.3120.2750.2410.2100.1810.1540.1280.1221.000.9840.9180.8270.7390.6590.5870.5230.4660.4140.3680.3270.2890.2540.2220.1920.1640.1370.1301.000.9830.9150.8200.7300.6470.5730.5070.4490.3970.3490.3070.2690.2330.2010.1700.1410.1130.106NOTES:1)BaseMeta1InnerRadius2)BaseMeta1OuterRadius6-19 TABLE6-6NUCLEARPARAMETERS FORNEUTRONFLUXMONITORSMonitorMaterialReactionofInterestTargetWeightFractionResponse~RaneProductHalf-Life FissionYield~XCopperIronNickelUranium-238*
Cu(n,e)CoFe4(n,p)HnNi58(n,p)Co58 U238(nf)Cs1370.69170.05820.68301.0E>4.7MeVE>1.0MeVE>1.0MeVE>0.4HeV5.272yrs312.2-days70.90days30.12yrs5.99Neptunium-237*
Np(n,f)CsCobalt-Aluminum*
Co(n,y)CoCobalt-Aluminum Co(n,y)Co1.0E>0.08MeV30.12yrs0.0015-:E>0.015MeV5.272yrs0.00150.4ev>E>0.015HeV5.272yrs6.50*Denotesthatmonitoriscadmiumshielded.
TABLE6-.7MONTHLYTHERMALGENERATION DURINGTHEFIRSTEIGHTFUELCYCLESOFTHEDCCOOKUNIT2REACTOR3/784/785/786/787/788/789/7810/7811/7812/781/792/793/794/795/796/797/798/799/7910/79ll/7912/79l/802/803/804/805/806/807/808/809/8010/8011/8012/801/812/813/814/815/816/817/818/8153096521821653969136547812470831529472217877922311198482382476056224071422205622483455216426914493470225816425136902266726152234600584404220940324187992354329248325021876111408949249659423937831414143014887582505373227168410538770449803237420217758772338703THERMALGENERATION
~MONTNW-hTHERMALGENERATION MW-h243071428478424358482517865229594421961908335552391274251693723311682496782101151722413322293400157531103415342242228253360224282342461540185146117113733436372693211188161453959383687435731235476733977000417277341526325725423846056182059199361108271484IIONTII9/8110/8111/8112/811/822/823/824/825/826/827/828/829/8210/8211/8212/821/832/833/834/835/836/837/838/8329/83210/8311/8312/8321/8422/8423/844/845/846/847/8418/8429/84210/842ll/84212/8411/8512/852THERMALGENERATION THMW-h246148824495232532441245162310490026063901632491372641201934720436401360957000098098020340551973118201457919742082039056203932517760491596034565732080553184977014097631485651012580921973726199508820398141900060203846614326390000rMON3/854/855/856/857/858/859/8510/8511/8512/851/862/863/864/865/866/867/868/869/8610/8611/8612/861/872/873/874/875/876/877/878/879/8710/8711/8712/871/882/883/884/885/886/887/888/8880NTH0000007752602288800253045012973152508038215583024521432493553235581724543078611302282581253406724528832165049176722200001338296188793525330402110364224178224471362495857241016624351505909072357045251913119127202474282244252712191689/8810/8811/8812/881/892/893/894/895/896/897/898/899/8910/8911/8912/891/902/903/904/905/906/907/908/909/9010/90ll/9012/901/912/913/914/915/916/917/918/919/9110/91ll/9112/911/922/92THERMALGENERATION
~MII-h6-21 TABLE6-8MEASUREDSENSORACTIVITIES ANDREACTIONRATESMonitorandxialLocationMeasuredActivitydissec-mSaturated Activitydissec-mCapsuleCenterReactionRate~IIPNULiUCu-63(n,a)Co-60Top-Middle MiddleBottom-Middle Average1.23x1051.23x1051.24x1051.23x1052.67x1052.67x1052.70x1052.68x1053.94x1017Fe-54(n,p)
Mn-54TopTop-Middle MiddleBottom-Middle BottomAverage9.19x1059.45x1059.50x1058.59x1059.30x1059.21x1052.15x1062.21x1062.22x1062.01x1062.18x1062.15x1063.64x10-15Ni-58(n,p)Co-58TopMiddleBottomAverage3.93x1063.93x1063.96x1063.94x1063.21x1073.21x1073.24x1073.22x1075.41x1015U-238(n,f)Cs-137(Cd)Middle4.88x1052.94x1061.94x10146-22 TABLE6-8MEASUREDSENSORACTIVITIES ANDREACTIONRATES-cont'dMonitorandxialLocationMeasuredActivitydissec-mSaturatedActivitydissec-mCapsuleCenterReactionRate~IIPNUCLEUSNp-237(n,f)
Cs-137(Cd)Middle4.26x1062.57x1071.61x1013Co-59(n,y)Co-60TopBottomAverage1.88x1071.74x1071.81x1074.09x1073.78x1073.94x1072.70x1012Co-59(n,y)Co-60(Cd)Bottom32x1061.59x107120x10-126-23 TABLE6-9SUMMARYOFNEUTRONDOSIMETRY RESULTSTIMEAVERAGEDEXPOSURERATESP(E>1.0MeV){'n/cm2-sec}
4(E>0.1MeV)(n/cm2-sec}
dpa/sec4(E<0.414eV)(n/cm2-sec}
5.78x10102.00x10119.78x10-116.29x1010+15X+10X+20X(E>1.0MeV)(n/cm2}4(E>0.1MeV)(n/cm2}dpaINTEGRATED CAPSULEEXPOSURE1.58x105.46x102.67x102+15X+10X4'E<0414eV)(n/cm2}1.72x1019+20XNOTE:Tota1Irradiation Time=8.65EFPY6-24 TABLE6-10COMPARISON OFMEASUREDANDFERRETCALCULATED REACTIONRATESATTHESURVEILLANCE CAPSULECENTERReactionpeas~edAdjustedCalcuationCu-63(n,a)Co-60Fe-54(n,p)Mn-54Ni-58(n,p)Co-58U-238(n,f)Cs-137(Cd)Np-237(n,f)Cs-137(Cd)Co-59(n,y)Co-60Co-59(n,y)Co-60(Cd)3.94xl0173.64xl0155.41xl0151.94xlo-'4 1.6lx10132.70x10121.20xl0123.94x10173.74x10155.28xl0151.93xl0141.61xl0132.69X10-12 1.20x10121.001.030.981.001.001.001.006-25 TABLE6-11ADJUSTEDNEUTRONENERGYSPECTRUMATTHESURVEILLANCE CAPSULECENTERGroupEnergyAdjusyedFlux(Mev)(n/cm-sec)GroupEnergy(Mev)Addus/edFlux(n/cm-sec)12345678910ll121314151617181920212223242526271.73xl011.49xl011.35xl011.16xl01l.ooxlol8.61x1007.4lx1006.07xl004.97x1003.68xl002.87xl002.23xl001.74xl001.35xl00l.llxl008.2lx1016.39xlO14.98x1013.88x10I3.02xlO11.83x101l.llxlO16.74xlO24.09x1022.55xlO21.99xlO21.50xlO23.36x1068.20xl063.76x1079.5lx1072.29xl084.llxl089.86xl081.42xl092.92x1093.69xl097.37xl099.24x109,1.21x1010 1.22xl010
2.0 8xl010
2.22x1010 2.18x1010 1.55xl010
2.0 5xl010
2.27x1010 2.16xl010 1.71xl010 1.23xl010 7.42xl098.90xl094.83xl096.52xl09282930~31323334353637383940414243444546474849505152539.12x1035.53x1033.36x1032.84x1032.40xlO32.04xlO31.23xlO37.49xlO44.54xlO42.75x1041.67xlO41.0lxlO46.14x1053.73xlO52.26xlO51.37xlO5832xlO65.04xlO63.06xlO61.86xlO61.13x1066.83xlO74.14x1072.51x1071.52x1079.24xlO88.36xl091.05xl010 3.25xl093.09x1092.98x1098.60xl098.31xl097.99xl097.73x1098.15xl098.85xl098.8lxl098.79xl098.66xl098.48xl098.31x1098.02xl097.55xl097.18x1096.72xl095.29xl096.28x1091.03xl010
1.0 5xl010
1.05x1010 3.16x1010 NOTE:Tabulated energylevelsrepresent theupperenergyofeachgroup.6-26 0TABLE6-12COMPARISON OFCALCULATED ANDMEASUREDEXPOSURELEVELSFORCAPSULEUCalculated Measured~CMC(E>1.0MeV)(n/cm)4(E>O.1MeV)(n/cm)1.49x10195.01xIO>>1.58x10195.46x10190.940.92dpa2.55x1022.67x1020.96%(E<0.414eV){n/cm)8.84x10181.72x10190.516-27 TABLE6-13NEUTRONEXPOSUREPROJECTIONS ATKEYLOCATIONS ONTHEPRESSUREVESSELCLAD/BASE HETALINTERFACE 8.65EFPY(E>1.0Hev)[n/cm2](E>O.lHeV)[n/cm2]IronAtomDisplacements
[dpa](E>1.0Hev)[n/cm2]C(E>O.lHeV)[n/cm2]IronAtomDisplacements
[dpa](E>1.0Hev)[n/cm2](E>O.lHeV)[n/cm2]IronAtomDisplacements
[dpa]45'.65X10'84.48X1016.12X1016.95X1017.79X101.21X1012.92X103.93X104.46X104.91X107.39X1016.0EFPY15'0'5'.31 X10184.51X10185.12X10185.72X10188.58X1018.8.28X10181.13X10191.29X101.44X10192.23X10195.40X107.26X1038.24X109.09X101.36X1032.0EFPY45'.63X109.02X101.02X101.14X101.71X101.66X102.26X102.56X102.87X104.45X101.08X1021.45X1021.64X1021.81X1022.72X10 TABL14NEUTRONEXPOSUREVALUESFORUSEINTHEGENERATION OFHEATUP/COOLDOWN CURVESNEUTRONFLUENCEE>1.0HeVSLOPE(n/cm)16EFPY~daSLOPE(equivalent n/cm2)Surface~14T~34TSurface~14T~34T0010'5'0'5'.31 x10184.51xlp5.12x10185.72x108.58x10181.75xlp2.40x10182.72x10183.07x10184.51x103.61x10174.96x10175.63x10176.46x10179.01x10173.31x10184.51xlp5.12x10185.72x108.58x10'.12x10182.88x10183.27x10183.73x105.49xlpl7.69x10171.04x10181.18x10181.38x10181.90x10NEUTRONFLUENCEE>1.0HeVSLOPE(n/cm)32EFPY~daSLOPE(equivalent n/cm2)Surface~14T34TSurface14T~34T0010'5'0'56.63x109.02x101.02x101.14x10'91.71x103.51x10184.80x10185.45xlp6.15x10189.02x10187.22x10179.92x10171.13x10181.29x10181.80x10186.63x109.P2x1P181.02x10'91.14x10191.71x104.24x1018x1P186.54x10187.46x1P181.10x10'91.54x10182.07x10182.35x10182.77x10183.79x10186-29 TABLE6-15UPDATEDLEADFACTORSFORDCCOOKUNIT2SURVEILLANCE CAPSULES~CasuleLeadFactorTXUYSVWZ344(a)341(c)340(d)344(b)130(d)1.30(d)1.30(d)1.30(d)(a)Plantspecificevaluation basedonendofCycle1calculated fluence.(b)Plantspecificevaluation basedonendofCycle3calculated fluence.(c)Plantspecificevaluation basedonendofCycle5calculated fluence.(d)Plantspecificevaluation basedonendofCycle8calculated fluence.6-30 SECTION7.0SURVEILLANCE CAPSULEREMOVALSCHEDULEThefollowing removalschedulemeetsASTME185-82andisrecommended forfuturecapsulestoberemovedfromtheD.C.CookUnit2reactorvessel:CapsuleCapsuleLocationLead(deg.)FactorRemovalTime()Estimated Fluence(n/cm2)4032022014043561841763.443.443.443.441.301.301.301.301.08(Removed) 3.24(Removed) 5.27(Removed) 8.65(Removed) 32StandbyStandbyStandby2.64x6.83x1.06x1.58x2.22X10(Actual)10(Actual)10(Actual)1019(Actual)10'9(a)Effective FullPowerYears(EFPY)fromplantstartup.7-1 SECTION
8.0REFERENCES
1.J.A.Davidson, etal.,"American ElectricPowerCompanyDonaldC.CookUnitNo.2ReactorVesselRadiation Surveillance Program",
WCAP-8512, November1975.2.CodeofFederalRegulations, 10CFR50,AppendixG,"Fracture Toughness Requirements",
andAppendixH,"ReactorVesselMaterialSurveillance ProgramRequirements,"
U.S.NuclearRegulatory Commission, Washington, D.C.3.Regulatory Guide1.99,ProposedRevision2,"Radiation DamagetoReactorVesselMaterials",
U.S.NuclearRegulatory Commission, Hay1988.4.SectionIIIoftheASMEBoilerandPressureVesselCode,AppendixG,"Protection AgainstNonductile Failure."
5.ASTME208,"Standard TestMethodforConducting Drop-Weight TesttoDetermine Nil-Ductility Transition Temperature ofFerriticSteels."6.ASTHE185-82,"Standard PracticeforLight-Water CooledNuclearPowerReactorVessels,E706(IF)."7.ASTHE23-88,"Standard TestMethodsforNotchedBarImpactTestingofMetallicMaterials."
8.ASTHA370-89,"Standard TestMethodsandDefinitions forMechanical TestingofSteelProducts."
9.ASTME8-89b,"Standard TestMethodsofTensionTestingofMetallicMaterials."
10.ASTHE21-79(1988),
"Standard PracticeforElevatedTemperature TensionTestsofMetallicMaterials."
8-1 ll.ASTME83-85,"Standard PracticeforVerification andClassification ofExtensometers."
12.SwRIProjectNo.02-5928,"ReactorVesselMaterialSurveillance ProgramforDonaldC.CookUnitNo.2AnalysisofCapsuleT",E.B.Norris,September 16,1981.013.SwRIProjectNo.06-7244-002, "ReactorVesselMaterialSurveillance ProgramforDonaldC.CookUnitNo.2AnalysisofCapsuleY",E.B.Norris,February1984.14.SwRIProjectNo.06-8888,"ReactorVesselMaterialSurveillance ProgramforDonaldC.CookUnitNo.2AnalysisofCapsuleX",P.K.NairandM.L.Williams, Hay1987.15.R.G.Soltesz,R.K.Disney,J.Jedruch,andS.L.Ziegler,"NuclearRocketShielding Methods,Modification, UpdatingandInputDataPreparation.
Vol.5-Two-Dimensional DiscreteOrdinates Transport Technique",
WANL-PR(LL)-034, Vol.5,August1970.16."ORNLRSCIDataLibraryCollection DLC-76SAILORCoupledSelf-Shielded, 47Neutron,20Gamma-Ray, P3,CrossSectionLibraryforLightWaterReactors".
17.AEPLetterRBB88-005/4, R.B.Bennett(AEP)toH.C.Walls(Westinghouse),
January29,1988.18.AEPFAX,G.John(AEP)toS.L.Anderson(Westinghouse),
October6,1992.19.B.J.Johansen, et.al.,"NuclearParameters andOperations PackagefortheDonaldC.CookNuclearPlant(Unit2,Cycle8)",WCAP-12651, October1990.(Proprietary) 20.ASTMDesignation E482-89,"Standard GuideforApplication ofNeutronTransport MethodsforReactorVesselSurveillance",
inASTHStandards, Section12,AmericanSocietyforTestingandMaterials, Philadelphia, PA,1991.8-2 21.ASTMDesignation E560-84,"Standard Recommended PracticeforExtrapolating ReactorVesselSurveillance Dosimetry Results",
inASTHStandards, Section12,AmericanSocietyforTestingandMaterials, Philadelphia, PA,1991.22.ASTHDesignation E693-79,"Standard PracticeforCharacterizing NeutronExposures inFerriticSteelsinTermsofDisplacements perAtom(dpa)",inASTMStandards, Section12,AmericanSocietyforTestingandMaterials, Philadelphia, PA,1991.23.ASTMDesignation E706-87,"Standard MasterMatrixforLight-Water ReactorPressureVesselSurveillance Standard",
inASTHStandards, Section12,AmericanSocietyforTestingandMaterials, Philadelphia, PA,1991.24.ASTMDesignation E853-87,"Standard PracticeforAnalysisandInterpretation ofLight-Water ReactorSurveillance Results",
inASTMStandards, Section12,AmericanSocietyforTestingandMaterials, Philadelphia, PA,1991.25.ASTHDesignation E261-90,"Standard MethodforDetermining NeutronFlux,Fluence,andSpectrabyRadioactivation Techniques",
inASTMStandards, Section12,AmericanSocietyforTestingandMaterials, Philadelphia, PA,1991.26.ASTMDesignation E262-86,"Standard MethodforMeasuring ThermalNeutronFluxbyRadioactivation Techniques",
inASTHStandards, Section12,AmericanSocietyforTestingandMaterials, Philadelphia, PA,1991.27.ASTMDesignation E263-88,"Standard MethodforDetermining Fast-Neutron FluxDensitybyRadioactivation ofIron",inASTMStandards, Section12,AmericanSocietyforTestingandMaterials, Philadelphia, PA,1991.28.ASTHDesignation E264-87,"Standard MethodforDetermining Fast-Neutron FluxDensitybyRadioactivation ofNickel",inASTHStandards, Section12,AmericanSocietyforTestingandMaterials, Philadelphia, PA,1991.8-3 29.ASTMDesignation E481-86,"Standard MethodforMeasuring Neutron-Flux DensitybyRadioactivation ofCobaltandSilver",inASTHStandards, Section12,AmericanSocietyforTestingandMaterials, Philadelphia, PA,1991.30.ASTMDesignation E523-87,"Standard MethodforDetermining Fast-Neutron FluxDensitybyRadioactivation ofCopper",inASTHStandards, Section12,AmericanSocietyforTestingandMaterials, Philadelphia, PA,1991.31.ASTHDesignation E704-90,"Standard.
MethodforMeasuring ReactionRatesbyRadioactivation ofUranium-238",
inASTHStandards, Section12,AmericanSocietyforTestingandMaterials, Philadelphia, PA,1991.32.ASTMDesignation E705-90,"Standard MethodforMeasuring Fast-Neutron FluxDensitybyRadioactivation ofNeptunium-237",
inASTHStandards, Section12,AmericanSocietyforTestingandMaterials, Philadelphia, PA,1991.33.ASTMDesignation E1005-84, "Standard MethodforApplication andAnalysisofRadiometric MonitorsforReactorVesselSurveillance",
inASTMStandards, Section12,AmericanSocietyforTestingandMaterials, Philadelphia, PA,1991.34.F.A.Schmittroth, FERRETDataAnalsisCore,HEDL-THE79-40,HanfordEngineering Development Laboratory,
- Richland, WA,September 1979.35.W.N.HcElroy,S.BergandT.Crocket,AComuter-Automated Iterative MethodofNeutronFluxSectraDetermined bFoilActivation, AFWL-TR-7-41, Vol.I-IV,AirForceWeaponsLaboratory, KirklandAFB,NM,July1967.36.EPRI-NP-2188, "Development andDemonstration ofanAdvancedMethodology forLWRDosimetry Applications",
R.E.Maerker,etal.,1981.
APPENDIXALoad-Time RecordsforCharpySpecimenTestsA-0 Wi-P~=MAXIMUMLOADP-FRACTURELQaOPGY.NGENERALYIELOLQAOIIIIIIIItGYjIIIIIIIIIIII.I.IIIPA*ARRESTLQAOmairivEb'igureA-1.Ideali.oad-timerecord CIv'EN2"U"DQiL45NL45g~aa~D~8I~6TILE2+4(lCEC>3024.0'iEN2U"OCIRA8N48~DeBIo6TItK2e4(ttSEC>3I24+0FigureA-2.Load-time recordsforSpecimens ML45andML48'
'EN2'U"OCttt42orC9CUwl.De8I~62e4TIttE<ttSEC>3024+0XI2"u'Cttt.44
~DI6TItK2e4CtCEC>3024m0FigureA-3.Load-time recordsforSpecimens ML42andML44 CleE12"UOCt1L.4101.41w~C9~Do81~6T11K2e4(tSEC>3024.0'A02'U"DCtL43Plg~O0(U8~D~81+624TI%(NSEC>3e24m0FigureA-4.Load-time recordsforSpecimens ML41andML43
- E<<2"U"OCttL46g~oRCIeD~81~6TIttE2e<(tSEC)3e24.0CIEI2'U"ge~D~81e6TIttE2e4CtSEC)3024e0FigureA-5.Load-time recordsforSpecimens ML46andML47
~CNT62NT62eD~81.6TINE2,4<tSEC)3e24,0CIQNUNOCNT6INT6ICl~D~8I~6TINE2,4CtSEC)3e24o0FigureA-6.Load-time recordsforSpecimens MT62andMT61 lgI2%USttT66Pl~~oroDo81~6Tlt1E<tCEC)2+43o24e0CllOX12'U"g~arS0GiCL'CI~D~81~6T1tK2+4CNSEC)3024e0FigureA-7.Load-time recordsforSpecimens MT66andMT71 OCNT64HT64~8I6TilKRe4CNSEC)30R4+0'iEIR"Ui+67itKRe4(ICEC)30R4m0FigureA-8.Load-time recordsforSpecimens MT64andMT72
'E02OU>>OcttT70ttTPOrarQOlPOl~4~p~8I~6L4TIttECtCKC)3024e0vEN2"U"OCttT69ttT69gcoorgOlCO~D~8I~62e4TItK.<tSEC)3t24e0FigureA-9.Load-time recordsforSpecimens MT70andMT69
'EN2"UDMT63tlT63CCOCUDD~D<<8I~6TIttE2e4(CEC)3124e0CI%0aI2"UOCttT68gEOoWC9IcUO~D~~8I~62+4TIttECHSEC)3024,0FigureA-10.Load-time recordsforSpecimens MT63andMT68
~EgeiuNT67C)~D1.6TINEReh<NSEC)308ho0Xia"uNT65g~oC9IcUo~De8Ie6TINE8+4(!CEC)3og4.0FigureA-ll.Load-time recordsfor.Specimens M'Z67andMT65
'EIIQNUNIIII70XIDo8le6TltlEBo4(tlSEC)3084e0CI181QNOCt0I64IDI64gcoe~XCI~D~81.68+4.TItIE<IISEC)3084m0FigureA-12.Load-time recordsforSpecimens MW70andMW64
'EN2"U".OCtNl71.e81~6TlttE2o4(NSEC)3124m0XN2'U"<<81~624TI%(tCEC)3024+0FigureA-13,Load-time recordsforSpecimens MW71andMW68 o~iENR"U"OCMtt63ttll63PloCUo~D~81~6TittERe4(tCEC)3t24e0~DXNRUOCtttt61tNt61COo~De81~6TINERo4<tSEC)3024o0FigureA-14.Load-time recordsforSpecimens MW63andMW61 OQSU%OCtCl78C9~D~8I+6TItKRe4<NSEC)3o84e0OX18U"g~oXD~81.6TIlKRo4<tLXC)3084+0FigureA-15.Load-time recordsforSpecimens MW72andMW65
'EtJR"U"OCt0J66NJJ66oaAJ.D.81.6R.4TiNE(NSEC>30R4.0uEttR"U"OCNJJ6RAJ~4O~D.8i+6TINERo4CNSEC)30R40FigureA-16.Load-time recordsforSpecimens MW66andMW62 PloIDCl0(UaCl~8I+62+4TINE<ttSEC)3.24.0CI'E<<2U"OCtSI69Nt69hoQcUDCU~D~8I.62.4TIlK<tCEC)3024,0FigureA-17.Load-time recordsforSpecimens MW67andMW69 olEIIQNUNOCtIK67tQt67g~oDAI~IDAl.D~81.6TlttERl4(ttSEC)3084.0~EIQIIUNOcttK63ttK63a~oClC9DAI5lD.81.62.4TIE(ttSEC)3.24.0FigureA-18.Load-time recordsforSpecimens MH67andMH63 vEN2"U"PlWoIDC9oDo8I~62+4TINE(NSEC>3@24~0XN2U"OCNH69Ntt69g~'CU~4O~Do81.62,4TINECNSEC>3124.0FigureA-19.Load-time recordsforSpecimens MH71andMH69 N2"U"Oct1H72r~oCJJC9C-iCIJEZoCU,81.62o4TIttECtCEC)3.24e0ZN2Ug~omCJJC9OCUcZCICU~D.81,6TltCE2.4CtSEC)3024.0FigureA-20.Load-time recordsforSpecimens MH72andMH70 v'Ett2"UOCtN62t%62xoO.De81.6TIttE2.4(NSEC)3t24.0'IEtt2HU$OCt%64ttH64"aC9oD8l,6TIttE2+4(ttSEC)3.24.0FigureA-21.Load-time recordsforSpecimens MH62andMH64
'eiENB"U"OCNH61NH61olEa0INa0O.D.81.62ehTINE<NSEC)3084.0'ENR"U"OCNH65o~D~8Io6TINER.h(t5EC)3084.0FigureA-22.Load-time recordsforSpecimens MH61andMH65 g2NUN0Ct%68W68aNaoD.81~62.4TllC<ICEC)4.0'EN2"U"OCt%66A<66eD~81~62e4TllC(NSEC)3024o0FigureA-23.Load-time recordsforSpecimens MH68andMH66 APPENDIXBPhotographs ofCharpy,TensileandWOLSpecimens PriortoTestingB-0 FigureB-1.Charpyimpactspecimens ML45,ML48,ML42,andML44fromIntermediate ShellPlateC5521-2(longitudinal orientation) beforetesting.B-IRM-28359 FigureB-2.Charpyimpactspecimens ML41,ML43,ML46,andML47fromIntermediate ShellPlateC5521-2(longitudinal orientation) beforetesting.B-2RM-28360 FigureB-3.Charpyimpactspecimens MT62,MT61,MT66,MT71,MT64,andMT72fromIntermediate ShellPlateC5521-2(transverse orientation) beforetesting.8-3RM-28361 FigureB-4.Charpyimpactspecimens MT70,MT69,MT63,MT68,MT67,andMT65fromIntermediate ShellPlateC5521-2(transverse orientation) beforetesting.RM-28362 FigureB-5.Charpyimpactspecimens MW70,MW64,MW71,MW68,MW63,andMW61fromtheweldmetal,beforetesting.B-5RM-28363 FigureB-6.Charpyimpactspecimens MW72,MW65,MW66,MW62,MW67,andMW69fromtheweldmetal,beforetesting.B-6RM-28364 FigureB-7.Charpyimpactspecimens MH67,MH63,MH71,MH69,MH72,andMH70fromtheheat-affected zone(HAZ),beforetesting.B-7RM-28365 FigureB-8.Charpyimpactspecimens MH62,MH64,MH61,MH65,MH68,andMH66fromtheheat-affected zone(HAZ),beforetesting.B-8RM-28366 FigureB-9.Tensilespecimens MTllandMT12fromD.C.CookUnit2reactorvesselIntermediate ShellPlateC5521-2(transverse orientation) beforetesting.B-9RM-28367 FigureB-10.Tensilespecimens MWllandMW12fromD.C.CookUnit2reactorvesselweldbeforetesting.B-10RM-28368 FigureB-11.WOLspecimens MW5,MW6,MW7andMW8,fromD.C.CookUnit2reactorvessel.Thespecimens werenottested,butstoredforfuturereference, B-11RM-28369 APPENDIXCHeatupandCooldownLimitCurvesforNormalOperation C-0 TABLEOFCONTENTSSectionTitle~acae1INTRODUCTION C-42FRACTURETOUGHNESS PROPERTIES C-43CRITERIAFORALLOWABLE PRESSURE-TEMPERATURE RELATIONSHIPS C-54HEATUPANDCOOLDOWNLIMITCURVES5ADJUSTEDREFERENCE TEMPERATURE C-8C-106REFERENCES C-24 LISTOFILLUSTRATIONS
~FiereTitle~~Pa<ac1D.C.CookUnit2ReactorCoolantSystemHeatupLimitations (Heatuprateupto60'F/hr)Applicable fortheFirst32EFPY(WithoutMarginsForInstrumentation Errors)C-162D.C.CookUnit2ReactorCoolantSystemHeatupLimitations (Heatuprateupto60'F/hr)Applicable fortheFirst32EFPY(WithMarginsof10'Fand60psigForInstrumentation Errors)C-173D.C.CookUnit2ReactorCoolantSystemCooldown(Cooldown Ratesupto100'F/hr)
Limitations Applicable fortheFirst32EFPY(WithoutMarginsForInstrumentation Errors)C-184D.C.CookUnit2ReactorCoolantSystemCooldown(Cooldown Ratesupto100'F/hr)
Limitations Applicable fortheFirst32EFPY(WithMarginsof10'Fand60psigForInstrumentation Errors)C-195D.C.CookUnit2ReactorCoolantSystemHeatupLimitations (Heatuprateupto60F/hr)Applicable fortheFirst15EFPY(WithoutMarginsForInstrumentation Errors)C-20D.C.CookUnit2ReactorCoolantSystemHeatupLimitations (Heatuprateupto60'F/hr)Applicable fortheFirst15EFPY(WithMarginsof10'Fand60psigForInstrumentation Errors)C-217D.C.CookUnit2ReactorCoolantSystemCooldown(Cooldown Ratesupto100'F/hr)
Limitations Applicable fortheFirst15EFPY(WithoutMarginsForInstrumentation Errors)C-22C-2 LISTOFILLUSTRATIONS continued FiciureTitlePacae8D.C.CookUnit2ReactorCoolantSystemCooldown(Cooldown Ratesupto100'F/hr)
Limitations Applicable fortheFirst15EFPY(WithHarginsof10'Fand60psigForInstrumentation Errors)C-23LISTOFTABLESTableTitle~PaeD.C.CookUnit2ReactorVesselToughness Table(Unirradiated)
C-11SummaryofAdjustedReference Temperature (ART)at1/4Tand3/4TLocationfor32EFPYC-123SummaryofAdjustedReference Temperature (ART)at1/4Tand3/4TLocationfor15EFPYC-13Calculation ofAdjustedReference Temperatures forLimitingD.C.CookUnit2ReactorVesselHaterial-Intermediate ShellPlate,C5556-2for32EFPYC-145Calculation ofAdjustedReference Temperatures forLimitingD.C.CookUnit2ReactorVesselHaterial-Intermediate ShellPlate,C5556-2for15EFPYC-15C-3 1.INTRODUCTION Heatupandcooldownlimitcurvesarecalculated usingthemostlimitingvalueofRTNDT(reference nil-ductility temperature) forthereactorvessel.ThemostlimitingRTNDTofthematerialinthecoreregionofthereactorvesselisdetermined byusingthepreservice reactorvesselmaterialfracturetoughness properties andestimating theradiation-induced hRTNDT.RTNDTisdesignated asthehigherofeitherthedropweightnil-ductility transition temperature (NDTT)orthetemperature atwhichthematerialexhibitsatleast50ft-lbofimpactenergyand35-millateralexpansion (normaltothemajorworkingdirection)'minus 60'F.RTNDTincreases asthematerialisexposedtofast-neutron radiation.
Therefore, tofindthemostlimitingRTNDTatanytimeperiodinthereactor's life,ARTNDTduetotheradiation exposureassociated withthattimeperiodmustbeaddedtotheoriginalunirradiated RTNDT.TheextentoftheshiftinRTNDTisenhancedbycertainchemicalelements(suchascopperandnickel)presentinreactorvesselsteels.TheNuclearRegulatory Commission (NRC)haspublished amethodforpredicting radiation embrittlement inRegulatory Guide1.99Rev.2(Radiation Embrittlement ofReactorVesselMaterials)~
~.Regulatory Guide1.99,Revision2isusedforthecalculation ofRTNDTvaluesat1/4Tand3/4Tlocations (Tisthethickness ofthevesselatthebeltlineregion).2.FRACTURETOUGHNESS PROPERTIES Theunirradiated RTNDTvaluesforthebeltlineregionmaterials intheD.C.CookUnit2reactorvesselwereestablished usingtheguidanceprovidedinNUREG-0800, BranchTechnical
- Position, NTEB5-2~~,andsubarticale NB-2331oftheASHEBoilerandPressureVesselCode,SectionIII~~.Thepre-irradiation fracture-toughness properties oftheD.C.CookUnit2reactorvesselarepresented inTablel.C-4 3.CRITERIAFORALLOWABLE PRESSURE-TEMPERATURE RELATIONSHIPS TheASMEapproachforcalculating theallowable limitcurvesforvariousheatupandcooldownratesspecifies thatthetotalstressintensity factor,KI,forthecombinedthermalandpressurestressesatanytimeduringheatuporcooldowncannotbegreaterthanthereference stressintensity factor,KIR,forthemetaltemperature atthattime.KIRisobtainedfromthereference fracturetoughness curve,definedinAppendixGtotheASMECode~~.TheKIRcurveisgivenbythefollowing equation:
KIR=26.78+1.223exp[0.0145(T-RTNDT+160)]whereKIR=reference stressintensity factorasafunctionofthemetaltemperature Tandthemetalreference nil-ductility temperature RTNDTTherefore, thegoverning equationfortheheatup-cooldown analysisisdefinedinAppendixGoftheASMECode~~asfollows:CKIM+KIT<KIRwhere(2)KIM-stressintensity factorcausedbymembrane(pressure) stressKIT=stressintensity factorcausedbythethermalgradients KIR=functionoftemperature relativetotheRTNDTofthematerial=2.0forLevelAandLevelBservicelimits=1.5forhydrostatic andleaktestconditions duringwhichthereactorcoreisnotcriticalAtanytimeduringtheheatuporcooldowntransient, KIRisdetermined bythemetaltemperature atthetipofthepostulated flaw,theappropriate valueforRTNDT,andthereference fracturetoughness curve.Thethermalstressesresulting fromthetemperature gradients throughthevesselwallarecalculated andthenthecorresponding (thermal) stressintensity factors,KIT,fortheC-5 reference flawarecomputed.
Fromequation2,thepressurestressintensity factorsareobtainedand,fromthese,theallowable.
pressures arecalculated.
Forthecalculation oftheallowable pressureversuscoolanttemperature during,cooldown, thereference flawofAppendixGtotheASHECodeisassumedtoexistattheinsideofthevesselwall.Duringcooldown, thecontrolling locationoftheflawisalwaysattheinsideofthewallbecausethethermalgradients producetensilestressesattheinside,whichincreasewithincreasing cooldownrates.Allowable pressure-temperature relations aregenerated forbothsteady-state andfinitecooldownratesituations.
Fromtheserelations, composite limitcurvesareconstructed foreachcooldownrateofinterest.
Theuseofthecomposite curveinthecooldownanalysisisnecessary becausecontrolofthecooldownprocedure isbasedonthemeasurement ofreactorcoolanttemperature, whereasthelimitingpressureisactuallydependent onthematerialtemperature atthetipoftheassumedflaw.Duringcooldown, theI/4Tvessellocationisatahighertemperature thanthefluidadjacenttothevesselID.Thiscondition, ofcourse,isnottrueforthesteady-state situation.
Itfollowsthat,atanygivenreactorcoolanttemperature, thebTdeveloped duringcooldownresultsinahighervalueofKIRattheI/OTlocationforfinitecooldownratesthanforsteady-state operation.
Furthermore, ifconditions existsothattheincreaseinKIRexceedsKIT,thecalculated allowable pressureduringcooldownwillbegreaterthanthesteady-state value.Theaboveprocedures areneededbecausethereisnodirectcontrolontemperature attheI/4Tlocationand,therefore, allowable pressures mayunknowingly beviolatediftherateofcoolingisdecreased atvariousintervals alongacooldown'amp.
Theuseofthecomposite curveeliminates thisproblemandensuresconservative operation ofthesystemfortheentirecooldownperiod.Threeseparatecalculations arerequiredtodetermine thelimitcurvesforfiniteheatuprates.Asisdoneinthecooldownanalysis, allowable pressure-temperature relationships aredeveloped forsteady-state conditions aswellasC-6 finiteheatuprateconditions assumingthepresenceofa1/4Tdefectattheinsideofthewallthatalleviate thetensilestressesproducedbyinternalpressure.
Themetaltemperature atthecracktiplagsthecoolanttemperature; therefore, theK1Rforthe1/4TcrackduringheatupislowerthantheK1Rforthe1/4Tcrackduringsteady-state conditions atthesamecoolanttemperature.
Duringheatup,especially attheendofthetransient, conditions mayexistsothattheeffectsofcompressive thermalstressesandlowerK1R'sdonotoffseteachother,andthepressure-temperature curvebasedonsteady-state conditions nolongerrepresents alowerboundofallsimilarcurvesforfiniteheatuprateswhenthe'1/4Tflawisconsidered.
Therefore, bothcaseshavetobeanalyzedinordertoensurethatatanycoolant-temperature thelowervalueoftheallowable pressurecalculated forsteady-state andfiniteheatupratesisobtained.
Thesecondportionoftheheatupanalysisconcernsthecalculation ofthepressure-temperature limitations forthecaseinwhicha1/4Tdeepoutsidesurfaceflawisassumed.Unlikethesituation atthevessel,insidesurface,thethermalgradients established attheoutsidesurfaceduringheatupproducestresseswhicharetensileinnatureandtherefore tendtoreinforce anypressurestressespresent.Thesethermalstressesaredependent onboththerateofheatupandthetime(orcoolanttemperature) alongtheheatupramp.Sincethethermalstressesattheoutsidearetensileandincreasewithincreasing heatuprates,eachheatupratemustbeanalyzedonanindividual basis.Following thegeneration ofpressure-temperature curvesforboththesteadystateandfiniteheatupratesituations, thefinallimitcurvesareproducedby.constructing acomposite curvebasedonapoint-by-point comparison ofthesteady-state andfiniteheatupratedata.Atanygiventemperature, theallowable pressureistakentobethelesserofthethreevaluestakenfromthecurvesunderconsideration.
Theuseofthecomposite curveisnecessary tosetconservative heatuplimitations becauseitispossible'for conditions toexistwherein,overthecourseoftheheatupramp,thecontrolling condition switchesfromtheinsidetotheoutside,andthepressurelimitmustatalltimesbebasedonanalysisofthemostcriticalcriterion.
C-7 Finally,the1983Amendment to10CFR50~4~
hasarulewhichaddresses themetaltemperature oftheclosureheadflangeandvesselflangeregions.Thisrulestatesthatthemetaltemperature oftheclosureflangeregionsmustexceedthematerialRTNDTbyatleast120'Ffornormaloperation whenthe'ressureexceeds20percent'f thepreservice hydrostatic testpressure(621psigwithoutmarginsforinstrumentation errorand561psigwithmarginsforD.C.CookUnit2).Table1indicates thatthelimitinginitialRTNDTof30'FoccursinthevesselflangeofD.C.CookUnit2,sotheminimumallowable temperature ofthisregionis150'Fexcluding marginsforinstrumentation errorand160'Fwithmargins.TheselimitsareshowninFigures1through8wheneverapplicable.
4.HEATUPANDCOOLDOWNLIMITCURVESLimitcurvesfornormalheatupandcooldownoftheprimaryreactorpressurevesselhavebeencalculated usingthemethodsdiscussed inSection3.Ifpressurereadingsaremeasuredatotherlocations thanthelimitingbeltlineregion,'he pressuredifferences betweenthepressuretransmitter andthelimitingbeltlineregionmustbeaccounted forwhenusingthepressure-temperature limitcurvesherein.Theindicated pressureandtemperature labelsprovidedonthecurvesrelatetothelimitingbeltlineregionofthereactorvessel.Figures1,2,5and6containtheheatupcurvesfor60'F/hr.Figures3,4,7and8containthecooldowncurvesupto100'F/hr.Figures1and3areapplicable forthefirst32EFPYofoperation andincludenomarginsforpossibleinstrumentation errors.Figures2and4areapplicable forthefirst32EFPYofoperation andincludemarginsof10'Fand60psigforpossibleinstrumentation errors.Figures5and7areapplicable forthefirst15EFPYofoperation andincludenomarginsforpossibleinstrumentation errors.Figures6and8areapplicable forthefirst15EFPYofoperation andincludemarginsof10'Fand60psigforpossibleinstrumentation errors.ThecurrentD.C.CookUnit2lowtemperature overpressure protection system(LTOP)setpoints arevaliduptothe15EFPYpressure-temperature limitcurves.C-8 The32EFPYpressure-temperature limitcurvescannotbeusedwiththecurrentLTOPsetpoints.
Allowable combinations oftemperature andpressureforspecifictemperature changeratesarebelowandtotherightofthelimitlinesshowninFigures1through8.Thisisinadditiontoothercriteriawhichmustbemetbeforethereactorismadecritical.
TheleaklimitcurveshowninFigures1,2,5and6represents minimumtemperature requirements attheleaktestpressurespecified byapplicable codesI~~.Theleaktestlimitcurvewasdetermined bymethodsofReferences 2and4.Thecriticality limitcurveshowninFigure1,2,5and6,specifies pressure-temperature limitsforcoreoperation toprovideadditional marginduringactualpowerproduction asspecified inReference 4.Thepressure-temperature limitsforcoreoperation (exceptforlowpowerphysicstests)arethatthereactorvesselmustbeatatemperature equaltoorhigherthantheminimumtemperature requiredfortheinservicehydrostatic test,andatleast40'Fhigherthantheminimumpressure-temperature curveforheatupandcooldowncalculated asdescribed inSection3.Themaximumtemperature fortheinservice hydrostatic testfortheD.C.CookUnit2reactorvesselfor32EFPYis348'Fwithmarginsforinstrumentation errorsand335'Fwithoutmarginsforinstrumentation errors.Averticallineat348Fand335Fonthepressure-temperature curves(withandwithoutmargins),
intersecting acurve40'Fhigherthanthepressure-temperature limitcurve,constitutes thelimitforcoreoperation forthereactorvessel.Themaximumtemperature fortheinservice hydrostatic testfortheD.C.CookUnit2reactorvesselfor15EFPYis324'Fwithmarginsforinstrumentation errorsand311'Fwithoutmarginsforinstrumentation errors.Averticallineat324'Fand311'Fonthepressure-temperature curves(withandwithoutmargins),
intersecting acurve40'Fhigherthanthepressure-temperature limitcurve,constitutes thelimitforcoreoperation forthereactorvessel.Figures1through8definelimitsforensuringprevention ofnonductile failurefortheD.C.CookUnit2reactorvessel.C-9 5.ADJUSTEDREFERENCE TEMPERATURE FromRegulatory Guide1'.99'ev.
2[1]theadjustedreference temperature (ART)foreachmaterialinthebeltlineisgivenbythefollowing expression:
ART=InitialRTNDT+hRTNDT+Margin(3)InitialRTNDTisthereference temperature fortheunirradiated materialasdefinedinparagraph NB2331ofSectionIIIoftheASMEBoilerandPressureVesselCode.IfmeasuredvaluesofinitialRTNDTforthematerialinquestionarenotavailable, genericmeanvaluesforthatclassofmaterialmaybeusediftherearesufficient testresultstoestablish ameanandstandarddeviation fortheclass.hRTNDTisthemeanvalueoftheadjustment inreference temperature causedbyirradiation andshouldbecalculated asfollows:[CF]f(0.28-0.101ogf)NDT(4)Tocalculate hRTNDTatanydepth(e.g.,at1/4Tor3/4T),thefollowing formulamustfirstbeusedtoattenuate thefluenceatthespecificdepth.(depthX)surface(-.24x(5)wherex(ininches)isthedepthintothevesselwallmeasuredfromthevesselclad/base metalinterface.
Theresultant fluenceisthenputintoequation(4)tocalculate ARTNDTatthespecificdepth.CF('F)isthechemistry factor,obtainedfromReference 1.Allmaterials inthebeltlineregionofD.C.CookUnit2wereconsidered forthelimitingmaterial.
RTNDTat1/4Tand3/4Taresummarized inTables2and3for32and15EFPYrespectively.
FromTables2and3,itcanbeseenthat'helimitingmaterialistheintermediate shellplateC5556-2forheatupandcooldowncurvesapplicable upto32and15EFPY.Samplecalculations fortheRTNDTfor32and15EFPYareshowninTables4and5.
TABLE1D.C.COOKUNIT2REACTORVESSELTOUGHNESS TABLE(Unirradiated)
MaterialDescription ClosureHeadFlange,4437-V-1VesselFlange,4436-V-2CU(X)NII-RTNDT(a)(>)('F)-20(b)30(b)Intermediate Shell,C5556-2Intermediate Shell,C5521-2*0.150.570.1250.585838LowerShell,C5540-2LowerShell,C5592-1O.ll0.140.640.59-20-20Intermediate andLowerShellLong.andGirthWeldSeams(Ht.S3986,Linde124,FluxLotNo.0934)*0.0520.967-35*Xweightcopperandnickelcontentaremeanvaluesbasedontheavailable chemistry testresultsasindicated belowa.TheinitialRTNDT(I)valuesfortheplatesandweldsaremeasuredvaluesbasedonactualdata.b.Tobeusedforconsideqgg flangerequirements forheatup/cooldown curvesl~.MaterialPlate,C5521-2DataSourceOriginalMillTestReportSurveillance Program[1]MeanvalueCopper~wtX.0.140.110.125Nickel~wt.X0.580.580.58WeldOriginalMillTestReportSurveillance Program[1]Surveillance Program[1]Meanvalue0.050.0550.050.0520.970.970.960.967 TABLE2SUMMARYOFADJUSTEDREFERENCE TEMPERATURE (ART)AT1/4Tand3/4TLOCATIONFOR32EFPY~Comonent32EFPYRTNpTat1//4T',~34T'Intermediate ShellPlate,C5556-2Intermediate ShellPlate,C5521-2201159(158)171135(129)LowerShellPlate,C5540-2Lower.ShellPlate,C5592-1891146886Intermed.
ShellLongitudinal Welds(a)LowerShellLongitudinal Welds(b)80924568Circumferenti alWeld92(64)68(40)RTNpTnumberswithin()arebasedonchemistry factorcalculatedusingcapsuledata.(a)Intermediate shelllongitudinal weldsarelocatedat10'b)Lowershell'ongitudinal weldsarelocatedat90'-12 TABLE3SUMMARYOFADJUSTEDREFERENCE TEMPERATURE (ART)AT1/4Tand3/4TLOCATIONFOR15EFPY~Comonent15EFPYRTNDTat~l4T'~34TFIntermediate ShellPlate,C5556-2Intermediate ShellPlate,C5521-2178141(137)150118(110)LowerShellPlate,C5540-2LowerShellPlate,C5592-173935467Intermed.
ShellLongitudinal Welds(a)LowerShellLongitudinal Welds(b)524020llCircumferential Weld77(49)41(28)RTNDTnumberswithin()arebasedonchemistry factorcalculated usingcapsuledata.I(a)Intermediate shelllongitudinal weldsarelocatedat10'b)Lowershelllongitudinal weldsarelocatedat90'-13 TABLE4CALCULATION OFADJUSTEDREFERENCE TEMPERATURES FORLIMITINGD.C.COOKUNIT2REACTORVESSELMATERIAL-INTERMEDIATE SHELLPLATE,C5556-2FOR32EFPYParameter ReulatorGuide1.99-Revision232EFPY~14T~34TChemistry Factor,CF('F)Fluence,f(10n/cm)()FluenceFactor,ff108.351.0271.007108.350.37030.725ARTNDT=CFxff('F)InitialRTNpT,I('F)Margin,H('F)(b)1095834795834Revision2toRegulatory Guide1.99AdjustedReference Temperature, ART=InitialRTNpT+ARTNDT+Margin201*171********************************************************************************
(a)Fluence,f,isbaseduponfsurf(10n/cm,E>1Hev)=1.71at32EFPY.TheD.C.CookUnit2reactorvesselwallthickness is8.5inchesatthebeltlineregion.(b)Marginiscalculated as,H=2[uI+e~].Thestandarddeviation fortheinitialRTNpTmarginterm,oI,isassumedtobeO'FsincetheinitialRTNpTisameasuredvalue.Thestandarddeviation forARTNDTterm,o>,is17'Fforthebasemetal,exceptthato~neednotexceed0.5timesthemeanvalueofhRTNDT.*Limitingvalueusedindevelopment ofheatupandcooldownlimitcurves.
TABLE5CALCULATION OFADJUSTEDREFERENCE TEMPERATURES FORLIMITINGD.C.COOKUNIT2REACTORVESSELMATERIAL-INTERMEDIATE SHELLPLATE,C5556-2FOR15EFPYReulatorGuide1.99-Revision215EFPYParameter 14T~34TChemistry Factor,CF('F)Fluence,f(10n/cm)()FluenceFactor,ff108.350.4830.797108.350.17420.537ARTNDT=CFxff('F)86'8InitialRTNDTI(F)5858Margin,M('F)34,.34*******************************************************************************
Revision2toRegulatory Guide1.99AdjustedReference Temperature, ART=InitialRTNDT+hRTNDT+Margin178*150*(a)Fluence,f,isbaseduponfsurf(10n/cm,E>lMev)0.804at15EFPY.TheD.C.CookUnit2reactorvesselwallthickness is8.5inchesatthebeltlineregion.(b)Marginiscalculated as,H-2[O'I+a~].Thestandarddeviation fortheinitialRTNDTmarginterm,o'I,isassumedtobeO'FsincetheinitialRTNDTisameasuredvalue.Thestandarddeviation forhRTNDTterm,o~,is17'Fforthebasemetal,exceptthata<neednotexceed0.5timesthemeanvalueofARTNDT.*Limitingvalueusedindevelopment ofheatupandcooldownlimitcurves.
MATERIALPROPERTYBASISLIMITINGMATERIAL:
INTERMEOIATE SHELLPLATE,C5556-2LIMITINGARTAFTER32EFPY:'/4T,201'F3/4T,171'F25002250LEAKTESTLMIT2000175015001250a.1000750500UNACCEPTABLE OPERATION HEATUPRATEUPto60'F/HRACCEPTABLE OPERATION CRlTICALlTY LIMITBASEDONINSERVICE HYDROSTATIC TESTTEMPERATURE (335F}FORTHESERVICEPERIODUPTO32EFPY250'050100150200250300350400450500INOICATEO TEMPERATURE (OEG.F)Figurel.D.C.CookUnit2ReactorCoolantSystemHeatupLimitations (Heatuprateupto60'F/hr}Applicable fortheFirst32EFPY(WithoutMarginsForInstrumentation Errors)
MATERIALPROPERTYBASISLIMITINGMATERIAL:
INTERMEDIATE SHELLPLATE,C5556-2LIMITINGARTAFTER32EFPY:'/4T,201'F3/4T,171'F25002250:LEAKTESTLIMIT2000175015001250g1000Ch,,WI750500250UNACCEPTABLE OPERATION HEATUPRATEUPto60'F/HRACCEPTABLE OPERATION CRITICALITY LIMITBASEDONINSERVICE HYDROSTATIC TESTTEMPERATURE (347F)FORTHESERVICEPERIOD,UPTO32EFPY050100150200250300350400450500INOICATEO TFMPERATURE (OEG.F')Figure2.D.C.'ookUnit2ReactorCoolantSystemHeatupLimitations (Heatuprateupto60'F/hr)Applicable fortheFirst32EFPY(WithMarginsof10'Fand60psigForInstrumentation Errors)
MATERIALPROPERTYBASISLIMITINGMATERIAL:
INTERMEDIATE SHELLPLATE,C5556-2LIMITINGARTAFTER32EFPY:1/4T,201'FI'-3/4T,171'F25002250200017501500w1250g1000OLJI=750O2:500250COOLDOWNRATESF/HR0204060100UNACCEPTABLE OPERA'EON ACCEPTABLE OPERATION 050100150200250300350400450500.INDICATED TEMPERATURE (DEG.F)Figure3.D.C.CookUnit2ReactorCoolantSystemCooldown(Cooldown ratesupto100'F/hT)
Limitations Applicable fortheFirst32EFPY(WithoutMarginsForInstrumentation Errors)
MATERIALPROPERTYBASISLIMITINGMATERIAL:
INTERMEDIATE SHELLPLATE,C5556-2LIMITINGARTAFTER32EFPY:1/4T,201F3/4T,171'F25002250200017501500w1250L,1000UNACCEPTABLE OPERATION ACCEPTABLE OPERATION O4JIOZ750500250COOLDOWNF/HR02040601000050100150200250300350400<50500INOICATEO TEMPERATURE (OEG.F')Figure4.D.C.CookUnit2ReactorCoolantSystemCooldown(Cooldown ratesupto100'F/hr)
Limitations Applicable fortheFirst32EFPY(WithMarginsof10'Fand60psigforInstrumentation Errors)
MATERIALPROPERTYBASISLIMITINGMATERIAL:
INTERMEDIATE SHELLPLATE,C5556-2LIMITINGARTAFTER15EFPY:1/4T,178'Fh">'r3/4T150F25002250LEAKTESTLIMK'00017501500NCLw1250a.1000CiLJI750oX500250UNACCEFIABLE OPERATION HEAIUPRAKUPtoN'F1HRACCEFI'ABLE OPERA'IION CRIIICALITY LIMITBASEDONINSERVICE HYDROSTATIC TEST'IEMPIHtATURE g1lF)FORTHESERVICEPERIODUPTO15EFPY050100150200250300350400450500INDICATED,TEMPERATURE (DEG.F)Figure5.D.C.CookUnit2ReactorCoolantSystemHeatupLimitations (Heatuprateupto60'F/hr)Applicable fortheFirst15EFPY(WithoutMarginsForInstrumentation Errors)C-20 MATERIALPROPERTYBASISLIMITINGMATERIAL:
INTERMEDIATE SHELLPLATE,C5556-2LIMITINGART'FTER15EFPY:1/4T,178'F3/4T,150'F25002250LEAKTESTLIMIT200017501500UNACCEPrABLE OPERATION 12501000OI750Cl500250HEATUPRA1EUP60oF/HRACCEPI'ABLE OPERA%ION CRITICALITY LIMITBASEDONINSERVICE HYDROSTATIC TEST'IEMPERATURE (324%)FORTHESERVICEPERIODUP'IOISEFPY050100150200250300350400450500INOICATEDTEMPERATURE (BEG.F)Figure6.D.C.CookUnit2ReactorCoolantSystemHeatupLimitations (Heatuprateupto60'F/hr)Applicable fortheFirst15EFPY(WithMarginsof10'Fand60psigForInstrumentation Errors)
MATERIALPROPERTYBASISLIMITINGMATERIAL:
INTERMEDIATE SHELLPLATE,C5556-2LIMITINGARTAFTER15EFPY:1/4T,178'F'.'I3/4T, 150'F250022502000175015004I1250a.1000OI750O5002500204060100UNACCBFrABLB OPERATION ACCEPTABLE OPBRAIION 050100150200250300350400450500INDICATED TEIAPERATURE (DEC.F)Figure7.D.C.CookUnit2ReactorCoolantSystemCooldown(Cooldown ratesupto100'F/hr)
Limitations Applicable fortheFirst15EFPY(WithoutMarginsForInstrumentation Errors)C-22 MATERIALPROPERTYBASISLIMITINGMATERIAL:
INTERMEDIATE SHELLPLATE,C5556-2LIMITINGARTAFTER15EFPY:1/4T,178'F3/4Ts150F250022502000175015001250a.1000750ClX500250UNACCEPI'ABLE OPERATION COOLDO%NRATES'F/HR0204060IOQACCEFI'ABLE OPERATION 050100150200250300350400450500INDICATKD TKLIPKRATURK (DKG.F')Figure8.D.C.CookUnit2ReactorCoolantSystemCooldown(Cooldown ratesupto100'F/hr)
Limitations Applicable fortheFirst15EFPY(WithMarginsof10'Fand60psigforInstrumentation Errors)C-23 6.REFERENCES 1Regulatory Guide1.99,Revision2,"Radiation Embrittlement ofReactorVesselMaterials,"
U.S.NuclearRegulatory Commission, May,1988.2"Fracture Toughness Requirements,"
BranchTechnical PositionMTEB5-2,Chapter5.3.2inStandardReviewPlanfortheReviewofSafetyAnalysisReportsforNuclearPowerPlants,LWREdition,NUREG-0800, 1981.3ASMEBoilerandPressureVesselCode,SectionIII,Division1-Appendixes, "RulesforConstruction ofNuclearPowerPlantComponents, AppendixG,Protection AgainstNonductile Failure,"
pp.558-563,1986Edition,AmericanSocietyofMechanical Engineers, NewYork,1986.4CodeofFederalRegulations, 10CFR50,AppendixG,"Fracture Toughness Requirements,"
U.S.NuclearRegulatory Commission, Washington, D.C.,FederalRegister, Vol.48No.104,May27,1983.5LetterReport,MT-SMART-090(89),
"D.C.CookUnit2ReactorVesselHeatupandCooldownLimitCurvesforNormalOperation",
N.K.Ray,April1989.6WCAP-8512, "American ElectricPowerCompanyDonaldC.CookUnitNo.2ReactorVesselRadiation Surveillance Program",
J.A.Davidson, etal.,November1975.7"Fracture Toughness Requirements forProtection AgainstPressurized ThermalShockEvents",10CFRPart50,Vol.58,No.94,May15,1991.C-24
.ATTACHMENT IDATAPOINTSFORHEATUPANDCOOLDOWNCURVES(WithoutMarginsforInstrumentation Errors)Thedatapointsusedinthedevelopment oftheheatupandcooldowncurvesshowninFiguresIand3arecontained ontheattachedcomputerprintoutsheets.C-25 AMP60DEG-F/HRHEATUPREG.GUIDE 1.99,REV.2 WITHOUTMARGIN09/28/92THEFOLLOWING DATAWERECALCULATEOFOR THEINSERVICE HYDROSTATIC LEAKTEST.MINIMUMINSERVICE LEAKTESTTEMPERATURE (32.000EFPY)PRESSURE(PSI)TEMPERATURE (DEG,F)3142485335PRESSURE(PSI)PRESSURESTRESS(PSI)214441.5K1M(PSISQRTIN)89745248526645112505 AMP,60DEG-F/HRHEATUPREG.,GUIDE 1.99~,REV.2WITHOUT,MARGIN,.'>;
.:>C,COMPOSITE CURVEPLOTTEDFORHEATUPPROFILE2HEATUPRATE(S)(DEG.F/HR)
K60.009/28/92' IMIRRADIATION PERIOD=32.000EFPYEARSFLAWDEPTHw(1"AOWIN)T:
-,*'NDICATED INDICATED TEMPERATURE PRESSURE(DEG.F)(PSI)INDICATED TEMPERATURE (DEG.F)12345686.00090.00095.000100.000105.000"110.000-44~4.Rh~~8:&-436z64--';:-.--,::;.,",,
21'85,00022-190.00025205.000~.-""i;26,,"210.000INDICATED PRESSURE(rSI)513.04S24.65537.13550.71565.38.'681.19..7'...115.000 8':120.0009125.00010130.00011135.00012.'40.000.13-,,146.00014".-15Q;OQO15155.00016160.00017165.00018'170.00019.'75.00020-.18Q.OQOC433.80":.'.:~::,';:,:~~~"27
'.215000,'.,':,>698.11-34'2~.>'.
',"'4~i'8
""'220000:';6'16'45435.5329225.000636.06437.7730230.000657.31440.8531235.000680.15444'.72'.-',,";-".':.'"32,
'..."-'240.000.,;-
-'-.704;60"...:
449.38".':;;:=~33
',.245.000'".,-',.-'730.85'454,73';..5'c,'.34 "4>250,000"-..::.?-'759.-27
..-'.460.8435255.000789.61467.6336260.000822.35475.1837265.000857.45483.45',:,.'8.
.,270.000-::.":-.,;.895.
10492.53-~.39:27S.-OOO-.'";935~62502.30INDICATED INDICATED TEMPERATURE PRESSURE(DEG,F)(PSI)?40280;000'h-':.
978,92.',41285:000=-':'.102S.5242290.0001075.5643295.0001129.2844300.0001186.8045'-,305;,000",',248.53.46,h',310';.OQO..:h::"
.1314.7047,.;-'31S..OQQ.':>->
-1385,56, 48320.0001461.5549325.0001542.8750,330.000,1629.8551'-.,;.'35'.000
-'1723:05'2:;
34Q;OOQ;-';.:::;:
1822.90.-53""'45'.OQQ:::'-.>'924.64 54350.0002020.0755355.0002121.9156360.0002230.6357.'--'.;365.000',.
2346".74=
58-,:.:370;QOO",.:::,
-2470,52-
?'P??-h=.h>>'X5 DDLDOWNCURVESREG.GUIDE1.99,REV.2 WITHOUTMARGIN09/28/92THEFOLLOWING DATAWEREPLOTTEDFORCDOLDOWNPROFILE1(STEADY-STATE CDDLDDWN)IRRADIATION PERIODR32.000EFPYEARSFLAWDEPTH~ADWINTINDICATED INDICATED TEMPERATURE PRESSURE(DEG.F)(PSI)INDICATED INDICATED TEMPERATURE PRESSURE(DEG.F)(PSI)INDICATED INDICATED TEMPERATURE PRESSURE(DEG.F)(PSI)1234567891011121314151617181985,00090.00095.000100.000105.000110.000115.000120.000125.000130.000135.000140.000145.000150.000155.000160.000165.0001VO.OOO175.000492.98495.89499.02502.38505.99509.88514,06518.55523.38528.57534.15540.05546,50553.44560.90568.91577.54586.68596.6420212223242526272829303132333435363738180.000185.000190.000195.000200.000205.000210.000215.000220.000225.000230.000235.000240.000245,000250.000255.000260.000265.0002?0.000607.36618.87631.24644.42658.74674.1'I690.49?08,28727.34747.75769.81V93.38e1&.e4846.11875.34907.00940.84977.141016.15394041424344454647484950515253545556275.000280~000285.000290.000295.000300.000305.000310.000315.000320.000325.000330.000335.000340.000345.000350.000355.000360.0001058.28'1103.351151.781203.561259.451319.451383.701452.621526.551605.821690.701781.VV1&79.211983,422094.782214.282341.47247V.36 AMPCODLOOWNCURVESREG.GUIDE1.99,REV.2 WITHOUTMARGIN09/28/92THEFOLLOWING DATAWEREPLOTTEDFORCOOLDOWNPROFILE2(20OEG-F/HRCOOLDOWN)IRRADIATION PERIOD~32.000EFPYEARSFLAWDEPTH~ADWINTINDIGATEDTEMPERATURE (DEG.F)INDICATED PRESSURE(rSI)INDICATED INDICATED TEMPERATURE PRESSURE(DEG.F)(PSI)~INDICATED TEMPERATURE (DEG.F)INDICATED PRESSURE(rSI)23456789101112131485.00090.00095.000100.000105.000110.000115.0QO120.OQQ125.000130.000135.000140.000145.000150.000449.12452,03455.19458.58462.27466.23470-52475.13480.13485.49491.30497.44504.19511.431516171819202122.2324252627155.000160.000165.000170.000175.000180.000185.OOQ1SO.QOO195.000200.000205.000210.000215.000519.26527,68536.76546.42556.96568.28580.49593.50607.65622.87639.12656.75675.7328293031323334353637383S40220,000225,000230.000235.000240.000245.000250.000255.000260.000265.000270.000275.000280-0006S5.99717.97741.44766.88794.05823.42854.93888.77925.12964.441006.491051.771100.35IPD%O ODLDOWNCURVESREG.GUIDE:1,99,REV.2 WITHOUTMARGINIRRADIATION PERIOD=32.000EFPYEARSFLAW'EPTH
~AOWINT0,0THEFOLLOWING DATAWEREPLOTTEDFORCOOLDOWNPROFILE3(40DEG-F/HRCOOLDOWN)09/28/92hC,INDICATED INDICATED INDICATED INDICATED TEMPERATURE PRESSURETEMPERATURE PRESSURE(DEG.F)(PSI)(DEG.F)(PSI}85,QOO404.27,.-..;.:.:,15 155.000"476.972.;...9Q.OOO 407.14~,".".'5,
';.]6,.',160.000"
...485.84'395.000410.3417165.000495.354100.000413.7918170.000505.685105.000417.5619175.000516.856110.000421.62.,20180.000.528.867,115,000.426.04'.-','.,"
21,.185.000..
'.:541.74
.8',.'120.00Q'-430.80..'.:"'22-..-.-
.190'000",.555.71,9125.000435.9823195.000570.8010130.000441.4924200.000586.9111135.000447.5425205.000604.4312-;140.000,454.06.,',"",:;.,"'".26,',
,210.000:.,'23.28, 13-:"145.000
-;-:461.,12"'.i",."27,"'
.',215.'000:,
'i'643;47
.'1415Q.OQO-'
'68.73INDICATED TEMPERATURE (DEG.F)28,220.00029..225.00Q'0 230.00031235.00032240.00033245.00034-'250.000 35255.00036260-00037265.00038270F00039,."275.000 4Q,"'&0;000,,
INDICATED PRESSURE(rSI)665".35
-'88;7?.714.14741.31770.69802.22'36.07"872.54,911.96954.24999.65i1048.51:".'101':.03 nIED;-;,'.?c5 AMPCODLDOWNCURVESREG.GUIDE1.99,REV.2 WITHOUtMARGIN09/28/92THEFOLLOWING DATAWEREPLOTTEDFORCOOLDDWNPROFILE4(60DEG-F/HRCDOLDOWN)IRRADIATION PERIOD=32.000EFPYEARSFLAWDEPTH~AOWINTINDICATED INDICATED TEMPERATURE PRESSURE(DEG.F)(PSI)INDICATED INDICATED TEMPERATURE PRESSURE(DEG.F)(PSI}INDICATED INDICATED TEMPERATURE PRESSURE(DEG.F)(PSI)1234567891011121385,00090.00095.000100.000105.000110.000115.000120.000125.000130.000135.000140.000145,0QO358.24361.20364.41367.93371.80375.99380.56385.5Q390.89396.71403.05409.83417.27141516171819202'1222324252615Q.000155.000160.000165.000170.000175.000180.000185.000190.000195.000200.000205.000210.000425.29433.99443.30453.48464.44476.32489.12502.88517.80533.93551.19569.96590,0527282930313233343536373839215.000220.000225.000230.000235.000240.000245.000250.0QQ255.000260.000265.000270.000275,000611.88635.24660.61687.75717.21748.73782.71819,44858.89901.34947.04S96.211049.09 COOLOOWNCURVESREG.GUIDE-1,99,REY.2.
WITHOUTMARGINTHEFOLLOWING DATAWEREPLOTTEDFORCOOLOOWNPROFILE5(100DEG-F/HRCOOLDOWN) 09/28/92IRRADIATION PERIOD<32.000EFPYEARS",-.FLAMDEPTHAOWINT?INDICATED INDICATED INDICATED INDICATED INDICATED INDICATEO TEMPERATURE PRESSURETEMPERATURE PRESSURETEMPERATURE PRESSURE(OEG.F)(PSI),,(OEG.F)(PSI),(DEG.F)(PSI)1',85,000'62,'50,"::,,':;;;:;~:,14, 150;000-'36.15';~27.h',2.15,000
',.551'.052-'90.000,.-'.265F58""':,"'".5."::i 15'155.'000,';.345,99,-';-'h,"."'28,;h
-'.220;OOQ
'578,41',395.000269.0116160.000356.6329225.000607.884100.000272.7517165.000368.1630230.000639.625105,000276.9018170.000380.6631235.000674.056110.000281.41;',:.":;::;.:-
19175.000:'394.26;-
',32,.240.000'11;017115.000.286,36.
- .,-;,."
- .".',20
'180.000;-.408-.87'.
--:33'45.000-';750;898,'120,000'=,=:291,76.-'..;",:,'.,'-';.2t"
- 185.000'".'.',.;;-
424.79-'..,':..',,..
34;.,',,';:250..'000
,-.793.84-,
9125.000297.70~22190.000441.9135255.000840.1710130.000304.1323195.000460.5336260.000890.0411135.000311.1824200.000480.6337265,000943.8312?;,:'140.000:-.;.-.",.:,
318.82<:,h
-..?K~'.":i"'25
"'05;000'.
';',.502".30,:..:,.;,:':-"
38,';j270,'OOO,
','.1001.60,';."'-
13'"'.'",,L45OOO,:;~-'-'*'"";-,327'2"*.',"'"";"',,"26",
',','210'000-","".
',.'25'6,""::?
i'i":,'",'c,
'",'"""",'.'.';
""..",'c."",.:.'
"'h>.'""',,'.,
'l:iwc,IM?.hh5h ATTACHMENT 2DATAPOINTSFORHEATUPANDCOOLDOWNCURVES(WithMarginsof10'Fand60psigforInstrumentation Errors)Thedatapointsusedinthedevelopment oftheheatupandcooldowncurvesshowninFigures2and4arecontained ontheattachedcomputerprintoutsheets.C-33 AMP60DEG-F/HRHEATUPREG.GUIDE1.99.REV.2WITHMARGINS10/12/92THEFOLLOWING DATAWERECALCULATEDFOR THEINSERVICE HYDROSTATIC LEAKTEST.MINIMUMINSERVICE LEAKTESTTEMPERATURE (32.000EFPY)PRESSURE(PSI)TEMPERATURE (DEG.F)3262485347PRESSURE(PSI)PRESSURESTRESS1.5K1M(PSI)(PSISO.RT.IN.)2208892529248527288115366 AMP60DEG-F/HRHEATUPREG.GUIDE1.99,REV.2WITHMARGINS10/12/92COMPOSITE CURVEPLOTTEDFORHEATUPPROFILE2HEATUPRATE(S)(DEG.F/HR)
IRRADIATION PERIOD=32.000EFPYEARSFLAWDEPTH>(1"AOWIN)Ti>0.0INDIGATEDINDICATED TEMPERATURE PRESSURE(DEG.F)(PSI)INDICATED INDICATED TEMPERATURE PRESSURE(DEG.F)(PSI)INDICATED INDICATED TEMPERATURE PRESSURE(DEG.F)(PSI)123456789101112131415161718192085.00090.00095.000100.000105.000110.000115.000120.000125.000130.000135.000140.000145.000'150.000155.000160.000165.000170.000175.000180.000~f669373.80374.12375.53377.77380.85384.72389.38394.73400.84407.63415.18423.4537$gO21,22232425262728293031323334353637383940185.000190.000195.000200.000205.000210.000215.000220.000225.000230.000235.000240.000245.000250.000255.000260.000265.000270.000275.000280.000432.53442.30453.04464.65477.13490.71505.38521.19538.11556.45576.06597.31620.15644.60670.85699.27729.61762.35797.45835.104142434445464748495051525354555657585960285.000290.000295.000300.000305.000310.000315.000320.000325.000330.000335.000340.000345.000350.000355.000360.000365.000370.000375.000380.000875.52918.92965.521015.561069.281126.801188.531254.701325.561401.551482.871569.851663.051762.901869.461979.872082.952193.342311.052436.53 OOLDDWNCURVESREG.GUIDE1.99.REV.2WITHMARGINS10/12/92THEFOLLOWING DATAWEREPLOTTEDFORCOOLDOWNPROFILE1IRRADIATION PERIOD<32.000EFPYEARSFLAWDEPTH%AOWINT(STEADY-STATE COOLDOWN)INDICATED TEMPERATURE (DEG.F)INDICATED PRESSURE(PSI)INDICATED INDICATED TEMPERATURE PRESSURE(DEG.F)(PSI)INDICATED TEMPERATURE (DEG.F)INDICATED PRESSURE(PSI)23456789101112131415161718192085.OOQ90.00095.000100.000105.000110.000115.OOQ120.000125.000130.000135.000140.000145.000150.000155.000160.000165.000170.000175.000180.000428.34430.89433.55436.50439.67443.08446.75450.69454.93459.49464.39469.65475.32481.30487.85494.89502.45510.59519.34528.622122232425262728293031.32'33343536373839185.QQO190.000195.000200.000205.000210.000215.000220.000225.000230.000235.000240.000245.000250.000255.000260.000265.000270.000275.000538.72549.59561.28573.70587.20601.72617.30633.95651.99671.20692.05714.40738.34764.15791.84821.50853.59887.92924.794041424344454647484950'1.52535455565758280.000'85.000290.000295.000300.000305.000310.000315.000320.000325.000330.000335.000340.000345.000350.000355.000360.000365.000370.000964.381006.911052.621101.741154.52121'I.181271.921336.951407.011481.901562.301648.491740.741839.561945.082058.162178.952308.092445.60 AMPCOOLDDWNCURVESREG.GUIDE1.99,REV.2WITHMARGINSTHEFOLLOWING DATAWEREPLOTTEDFORCODLDDWNPROFILE2(20DEG-F/HRCODLDOWN)IRRADIATION PERIOD~32.000EFPYEARSFLAWDEPTH%ADWINT10/12/92INDICATED INDICATED TEMPERATURE PRESSURE(DEG.F)(PSI)INDICATED TEMPERATURE (OEG.F)INDICATED PRESSURE(PSI)INDICATED INDICATED TEMPERATURE PRESSURE.
(DEG.F)(PSI)23456789101112131485.00090.00095.000100.000105.000110.000115.000120.000125.000130.000135.000140.000145.000150.000384.45386.97389.72392.68395.89399.33403.08407.10411.46416.14421.21426.65432.55438.79151617181920-21~'-'2232425262728155.000160.000165.000170.000175.000~180.000185.000190.000195.000200.000205.000210.000215.000220.000445.63452.99460.94469.47478.59488.50499.19510.68523.07536.28550.64566.08582.58600.472930313233343536373839404142225.000230.000235.000240.000245.000250.000255.000260.000265.000270.000275.000280.000285F000290.000619.71640.29662.57686.41712.18'?39.80769.45801.54835.91872.80912.49955.141001.021050.33ICa)
CODLODWNCURVESREG.GUIDE1.99,REV.2WITHMARGINSTHEFOLLOWING DATAWEREPLOTTEDFORCOOLDOWNPROFILE3(40DEG-F/HRC(i::LDOWN
)IRRADIATION PERIOD=32.000EFPYEARSFLAWDEPTH~AOWINT10/12/92INDICATED INDICATED TEMPERATURE PRESSURE(DEG.F)(PSI)INDICATED INDICATED TEMPERATURE PRESSURE(DEG.F)(PSI)INDICATED INDICATED TEMPIRATUREPRESSUR1'ILG.F)
(PSI)23456789101112131485.00090.00095.000100.000105.000110.000115.000120.000125.000130.000135.000140.000145.000150.000339.64342,16.--
344.92347.84351.09354.60358.43362.55367.04371.88377.14382.73388.88395.501516171819202122232425262728155.000160.000165.000170.000175.000180.000185.000190.000195.000200.000205.000210.000215.000220.000402.68410.40418.77427.77437.43447.91459.25471.45484.53498.71514.02530.37548.16567.272930313233343536373839404142225.000230.000235.000240.000245.000250.000255.000260.000265.000270.000275.000280.000285.000290.000587.78609.98633.75659.48687.07716.71748.86783.24820.25860.04903.09949.17998.741051.84ICO AMPCOOLDDWNCURVESREG.GUIDE1.99,REV.2WITHMARGINSTHEFOLLOWING DATAWEREPLOTTEDFORCOOLODWNPROFILE4(60DEG-F/HRCOOLODWN)IRRADIATION PERIOD=32.000EFPYEARSFLAWDEPTH~AOWINT10/12/92INDICATED TEMPERATURE (DEG.F)INDICATED PRESSURE(PSI)INDICATEO INDICATED TEMPERATURE PRESSURE(DEG.F)(PSI)INDICATED TEMPERATURE (DEG.F)INDICATED PRESSURE(PSI)123456789101112131485,00090~00095.000100.000105.000110.000115.000120.000125.000130.000135.000140.000145.000150.000293.63296.15298.93301.94305.21308.80312.73316.99321.64326.66332.14338.05344.50351.381516171819202122232425262728155.000160.000165.000170.000175.000180.000185.000190.000195.000200.000205.000210.000215.000220.000358.94367.08375.92385.38395.72406.85418.91431.91445.88461.02477.29494.93513.98534.3729303132333435363738394041225.000230.000235.000240.000245.000250.000255.000260~000265.000270.000275.000280.000285.000556.53580.24605.99633.53663.40695.43729.92767.02807.21850.25896.63946.47'1000.17ICALD COOLDDWNCURVESREG.GUIDE1.99,REV.2WITHMARGINSTHEFOLLOWING DATAWEREPLOTTEDFORCOOLDOWNPROFILE5(100DEG-F/HRCOOLI.iN)IRRADIATION PERIOD=32.000EFPYEARSFLAWDEPTH%ADWINT10/12/92INDICATED TEMPERATURE (DEG.F)INDICATED PRESSURE(PSI)INDICATED INDICATED TEMPERATURE PRESSURE(DEG.F)(PSI)INDICATED INDICATED TEMPERATURE PRESSURE(DEG.F)(PSI)123456789101112131485.00090.000S5.000100.000105.000110.000115.000120.000125.000130.000135.000140.000145.000150.000197.87200.43203.30206.44209.94213.76217.98222.64227.61233.10239.14245.69252.86260.6215161718192021222324252627155.000160.000165.000170.000.175.000180.000185.000190.000195.000200.000205.000210.000215.000269.06278.24288.24299.05310.76323.47337.28352.12368.29385.67404.59424.99447.0028293031323334353637383940220.00~225.0Cii230.000235.000240.000246.000250.000265.000260.000265.000270.000276.000280.000470.82496.49524.26554.18586.40621.20658.85699.35742.94789.96840.55895.10953.54nIlD ATTACHMENT 3DATAPOINTSFORHEATUPANDCOOLDOWNCURVES(WithoutMarginsforInstrumentation Errors)Thedatapointsusedinthedevelopment oftheheatupandcooldowncurvesshowninFigures5and7arecontained ontheattachedcomputerprintoutsheets.
~THFOLLOWING DATAWEREPLOTTEDFORCOOLOOWNPROFILE1(STEADY-STATE COOLOOWN)IRRADIATION PERIOD~15.000,EFP,YEARS, INDICATED INDICATEO INDICATED INDICATED INDICATED INDICATED TEMPERATURE PRESSURETEMPERATURE PRESSURETEMPERATURE PRESSURE(DEGF)(PSI)(OEGF)(PSI)395.000517.6220180.000670.9637265.0001193.0621185.000687.0938270.0001248.065,.105.000,,527.5022,,190,000.,704,6239275.0001307,039125.000552.0125210.000788.4943295.0001589.4810130.000559.3627215.000813.6144300.0001673.05135.000567.2628220.000840.4645305.0001763.0615155.000605.1532240.000969.6049325.0002189.5716160.000616.5033245.0001008.2750330.0002315.4217,165.000.628,.7034,250,000
,.1049.65,51335.000 2449.49 THEFOLLOWING DATAMEREPLOTTEDFORCOOLDOWNPROFILE2(20DEG-F/HRCOOLDOWN),xIRRADIATION PERIOD~h15,000EFPYEARSINDICATED INDICATED INDICATED INDICATED.
INDICATED INDICATED TEMPERATURE PRESSURETEMPERATURE PRESSURETEMPERATURE PRESSURE395.000475.1015155.000566.7827215.000789.014100.000479'.9916160.000578.7928220.000817.935...105,0003,485,30,17165,000,591,6129225,000,848,869125.000510.8321185.000653.8733245.000998.1910130.000518.5222190.000672.5334250.0001042.7411135.000,,526.82,9....23.,
,195.000 692,4935.,255,000 1090.58,nI\bCYXvh982h h(4vX'M0hv wh4Xh2'X05080XNY(kX'4e/XkkvXh49khXNW hfNN)hvXX N2(X'hh.0kX4077hXXXkvX' v774Xv THEFOLLOWING DATAWEREPLOTTEDFORCOOLOOWNPROFILE3(40DEG-F/HRCOOLDOWN),.,IRRADIATION PERIOD,15,.000,EFPYEARS,,INDICATED INDICATED INDICATED INDICATED, INDICATEO INDIGATEDTEMPERATURE PRESSURETEMPERATURE PRESSURETEMPERATURE PRESSURE(DEG.F,),
,(PSI),...,(OEG,F),
(PSI},,(.)(395.000431.6815155.000528.0627215.000765.794100.000436.7416160.000540.69...,5105.000,,442,17,.
,17,,165,000 554.46,29 225,000,830.059125.000468.9521185.000620.8733245.000990.9210130.000477.0322190.000640.6934250.0001038.9111,135.000,,
485.77,.23,195,000 662.2235255.0001090.58 THEFOLLOWING DATAWEREPLOTTEDFORCOOLOOWNPROFILE4(60DEG-F/HRCOOLDOWN),,IRRADIATION PERIOD=15.000EFPYEARS..INDICATED INDICATED INDICATEO INDICATED INDICATED INOICATEO TEMPERATURE PRESSURETEMPERATURE PRESSURETEMPERATURE PRESSURE(DEG.F),
...(PSI)...
,,.,(OEG.F)
,(PSI},...(OEG.F,)(PSI)395.000387.3015155.000489.0026210.000712.864100.000392.5616160.000502.4727215.000743.835105.000398~3017165~000517~1428220.000777.159125.000426.3421185.000588.0732240.000938.5010130.000434.8622190.000609.4733245.000986.8011135.000,,444.03.,23.,,195,.000 632,5434,250.0001038.71 THEFOLLOWING GATEWEREPLOTTEDFOROOOLOOWNPROFILEE(IOOOEG-F/HROOOLPOWN)
,IRRADIATION, PERIOD,>...15,000 EFPYEARS...,INDICATED INDICATED INDICATED INDICATED INDICATED INDICATED TEMPERATURE PRESSURETEMPERATURE PRESSURETEMPERATURE PRESSURE,,(DEG,F),L(PSI),,,...(DEG,F)
(PSI,}(DEG.F)(PSI)395.000295.4614150.000395.6425205.000635.734100.000301.2215"155.000.409.9726210.000669.415105.000307.55,16,,160.000425.5027215.000705.629125.000338.8520180.000501.3231235.000880.9110130.000,348.4321185.000524.3232240.000933.5511135.000358.88,,22,...,L190,000 549.0233.245.000990.30, COMPOSITE CURVEPLOTTEDFORHEATUPPROFILE2HEATUPRATE(S)(DEG.F/HR)
~60.0IRRADIATION PERIODm15.000EFP,,YEARS INDICATED INDICATED INDICATED INDICATED INDICATED INDICATED TEMPERATURE PRESSURETEMPERATURE PRESSURETEMPERATURE PRESSURE395.000464.7421185.000572.8639275.0001147.474100.000460.1722190.000588.7140280.0001206.005,105,000457,67.23.,195,000.605,98419125.000462~0227215.000689~2745305.0001569.4410130.000466.0028220.000714.3246310.0001658.28,135,.000.47,1,04
,,29,,.,225;000
..741;08..47,3,15,.0001753,,2715155.000500.2433245.000870.1351335.0002203.3716160.000509.8434250.000908.5752340.0002325.8217,165.000,,520.,41, 35,,255.,000 949,.85,
,53...,.345.000,,
2448.35nI ATTACHMENT 4DATAPOINTSFORHEATUPANDCOOLDOWNCURVES(WithMarginsof10'Fand60psigforInstrumentation Errors)Thedatapointsusedinthedevelopment oftheheatupandcooldowncurvesshowninFigures6and8arecontained ontheattachedcomputerprintoutsheets.C-48
~THEFOLLOWING DATAWEREPLOTTEDFORCOOLDOWNPROFILE.1 (STEADY-STATE COOLDOWN),IRRADIATIONPERIOD
=415,000EFPYEARSINDICATED INDIGATEDINDICATED INDICATED INDICATED INDICATEO TEMPERATURE PRESSURETEMPERATURE PRESSURETEMPERATURE PRESSURE(PEG.F)(PSI),,(OEG,F),(PSI).,,(OEG.F)(PSI,)39500044908211850005957939275000113306*4100.000453.2022190.000610.9640280.0001188.065105.000,,
457162,,23
,,195,000,,,,
627..0941285.000 1247,.03 9125.000478.8127215.000705.2845305.0001529.4810130.000485.1728220.000728.4946310.0001613.0511135.000.492.0129225.000..753.6147315.0001703.0615155.000524.8933245.000873.8251335.0002129.5716160.000534.5934250.000909.6052340.0002255.4217,.165.000,,545.15,,35...255.000
,,948,.27, 53345,.0002389.,49 THEFOLLOWING DATAWEREPLOTTEDFORCOOLDOWNPROFILE2(20DEG-F/HRCOOLDOWN)IRRADIATION PERIOD,>,,15,.000,EFP,YEARS INDICATED INDICATED INDICATED INDICATED INDICATED INDICATED TEMPERATURE PRESSURETEMPERATURE PRESSURETEMPERATURE PRESSURE..(OEG,.F,),
(PSI)...(DEG.,F),
(PSI)(DEG.F)(PSI)395.000406.3416160.000495.6228220.000702.274100.000410.5417165.000506.7829225.000729.015105.000415.1018170.000518.7930230.000757.93~9125.000437.0622190.000576.4934250.000896.7410130.000443.6823195.000593.8735255.000938.1911135.000~450.8324200.000612.5336260.000982.74OI THEFOLLOWING DATAWEREPLOTTEDFORCOOLDOWNPROFILE3(40DEG-F/HRCOOLDOWN),.IRRADIATION,PERIOD,=.,15,000,EFP YEARSINDICATED INDICATED INDICATED INDICATED INDICATED INDICATED TEMPERATURE PRESSURETEMPERATURE PRESSURETEMPERATURE PRESSURE(OEG.F)(PSI),.(OEG.~F,(PSI)2.616160.000456.2228220.000676.8617165.000468.0629225.000705.795,105,000...,,,371;68.....,
18,.170.000, 480...,69 30230.000, 736.739125.000394.5322190.000542.3234250.000886.2010130.000401.4523195.000560.8735255.000930.9211,135.000.,408,,95,,
24200,.000,,580,.69.
..36,260,.000
,978.91PlIVl8 THEFOLLOWING DATAWEREPLOTTEDFORCOOLDOWNPROFILE4(60DEG-F/HRCOOLOOWN)IRRADIATION, PERIOD~,15,000EFPYEARS'.;yg':,'":.':':'~."":"'";","
,;;-'~"."':"""-""":,"~'"
$":-'."'~"":..':".g:.".""'rS~i4'NDICATED INDICATED INDICATED INDICATED INDICATED INDICATED TEMPERATURE PRESSURETEMPERATURE PRESSURETEMPERATURE PRESSURE,,,(DEG,F)
...(PSI,),,...,,...,..
.,(DEG.F),
,(PSI).(DEG,F)....(PSI),395.000317.9615155.000404.7827215.000623.974100.000322.4316160.000416.4128220.000652.865105.000327.3017165.000429.0029225.000683.839125.000351.1821185.000489.9333245.000833.6610130.000358.4522'I90.000508.3234250.000878.50135.000,,366.34,,23195,000528.0735255.000926.80IQl
~THEFOLLOWING DATAWEREPLOTTEDFORCOOLDOWNPROFILE5(100DEG-F/HRCOOLDOWN)
~IRRADIATION PERIOD,,~
,15,,000EFP
- YEARS, INDICATED INDICATED INDICATED INDICATED INDICATED INDICATED TEMPERATURE PRESSURETEMPERATURE PRESSURETEMPERATURE PRESSURE~(PEG.F)(PSI),,,(OEG,.,F)
(PSI)<OEG.F395.000225.3215155.000322.3827215.000575.734100.000230.1416160.000335.6428220.000609.415...105.,000.235.46,,,17,.,165,.000 349,97299125.000261.9121185.000420.1633245.000820.9110130.000269.9922190.000441.3234250.000873.5511135.,000,.278.8523195.000464.32,35255,000930.30 COMPOSITE CURVEPLOTTEDFORHEATUPPROFILE2HEATUPRATE(S)(OEG.F/HR) 2260.0~IRRADIATION, PERIOD<15,0009EFP,YEARS,INDICATEO INDIGATEDINDICATED INDICATED INDIGATEDINDICATED TEMPERATURE PRESSURETEMPERATURE PRESSURETEMPERATURE PRESSURE,(DEG.F)(PSI)....(DEG.F)(PSI)(DEG.F)(PSI)395.000420.9822190.000498.0640280.0001032.734100.000411.4223195.000512.8641285.0001087.475105.000,,404,74,,24,,200,000v528,,71v42290,.000,,1 146.009125.000397.2728220.000606.1546310.0001426.2210130.000399.0329225.000629.2747315.0001509.44vv"4r;.~-:;"..m"5~-vry"4..w"".v.3.y40yr2v4r V.5vrr444yv4va
""y4"*44vr"~~""...~.:.v,%~~~.v.::.awerr15155.000423.5634250.000774.2452340.0002019.6016'l60.000'31.6235255.000810.1353345.0002143.3717,,,165.000,440124,0..6.,36,,260.,000.,.
.4848...57v
,.,7544,350,000 9,2265.
82,Vl
9304220175 Attachment 1toAEP:NRC:1181 Reasonsand10CFR50.92Significant HazardsEvaluations forChangestotheTechnical Specifications forDonaldC.CookNuclearPlantUnit:2
,f Attachment 1toAEP:NRC:1181 Page1Asdiscussed inthecoverletter,thepurposeofthisproposedamendment istopreventasurveillance outagebeforeournextrefueling outage,currently scheduled tobeginAugust6,1994.Thissubmittal requestsextensions forsurveillances thatmustbeperformed duringshutdownorthatpresentsuchoperational difficulty thatperforming thesurveillance isnotpractical atpower.Weproposetoaddthefollowing Technical Specification (T/S)toSection4.0oftheT/Ss.4.0.8Byspecificreference tothis.section, thosesurveillances whichmustbeperformed onorbeforeAugust13,1994,andaredesignated as18-monthor36-monthsurveillances (orrequiredasoutage-related surveillances undertheprovisions ofSpecification 4.0.5)maybedelayeduntiltheendofthecycle9-10refueling outage.Forthesespecificsurveillances underthissection,thespecified timeintervals requiredbySpecificati'on
4.0. 2willbedetermined
withthenewinitiation dateestablished bythesurveillance dateduringtheUnit21994refueling outage.DescritionofChaneDueDateWereference thisSpecification byfootnoteinallsurveillances thatrequirethisextension.
Thisfootnotewillbeapplicable tothefollowing T/Sswiththeindicated surveillance duedate.DatesgivenincludethegraceperiodallowedbyT/S4.0.2.(1)4.3.1.1.3 4.3.2.1.3 Delaytime-response testingforreactortripandengineered safetyfeaturesinstrumentation 01/02/94limitingduedate(2)4.5.1.d4.5.2.e4.6.2.1.c 4.6.2.2.c 4.6.3.1.2 4.7.1.2.e 4.7.1.2.f 4.7.3.l.b 4.7.4.l.b 4.7.5.1.e.2 4.7.6.l.d.3 Delaytestingforequipment responsetoESFsignals(safetyinjection, containment pressurehigh-high, containment isolation phaseAandBandpurgeexhaust)04/15/94limitingduedate(3)Table4.3-2<,Item6.d4.7'.2.e4.7.1.2.f Delayauxiliary feedwater systemtestingincluding channelfunctional testingoflossofmainfeedwater pumpsignal05/05/94.
Attachment 1toAEP:NRC:1181 Page2(4)(5)(6)4.8.1.1.2.e 4.8.1.24.4.11.34.7.4.1.b Table4.3-1>,Items7&84.3.2.1.2 (P-12)Table4.3-2>,Item4.dTable4.3-6AItems5,6,7&8Table4.3-10,Items2,3,11Table4.3-1>,Items7,9,10&llTable4.3-2>,Iteml.d4.3.2.1.2 (P-11)4.4.11.1.b DescritionofChaneDelaydieselgenerator testingincluding reliefvalvetestingandessential servicewatervalvetestingDelayRTDcalibrations Delaypressurizer pressure&levelcalibrations, interlock functiontesting,andPORVcalibrations DueDate03/25/94.
limitingduedate04/28/9401/29/94(8)4.1.3.3(9)(10)4.5.2.d.14.5.3.14.7.7.l.a Table4.3-1<,Item54.3.1.1.2 (P-6)(12)4.6.5.9(7)Table4.3-10,Item16DelayReactorVesselLevelIndication Syst:emCalibration Delayanalogrodpositionindication functional testingDelayRHRauto-closure interlock testingDelayvisualinspection ofinaccessible snubbersDelayintermediate rangecalibration andinterlock functional testingDelaydividerbarriersealinspection 04/20/9405/03/9403/07/94.
03/19/9401/17/9403/08/94(13)(14)4.7.9.2.b.l Table4.3-10,Item184.5.2.d.2 4.5.3.1Delaycontainment waterlevelcalibrations and"sumpvisualinspection 01/31/94limitingduedateDelayRCPfireprotection testing03/30/94(15)4.2.5.2Table4.3-1>,Items12&13Delayreactorcoolantflowcalibrations 01/28/94 Attachment 1toAEP:NRC:1181 Page3(16)Table4.3-2>,Items9.a,9.b,9.c&9.dDescritionofChaneDelayESFManualTripActuating DeviceOperational TestDueDate04/15/94limitingduedate>Tables4.3-1and4.3-2refertoT/S4.3.1.1.1 andT/S4.3.2.1.1, respectively.
Adescription oftheproposedchanges,thereasonsforthechanges,andouranalysesconcerning significant hazardsconsiderations foreachgroupofextension requestsaregivenintheremainder ofthisattachment.
Itisworthnotingthattwosimilarextension requestsfortheUnit2Cycle6-7outagewereapprovedbytheNRConDecember28,1987andFebruary29,1988viaAmendments 97and99,respectively.
Thesetwoamendments grant:edextensions fortheT/Ssdescribed ingroups1through9and16,above.1and2'eact:orTriandESFResonseTestinWearerequesting extensions forthetime-response testingrequiredbyT/Ss4.3.1.1.3 and4.3.2.1.3 forthereactortripandEngineered Safet:yFeatures(ESF)instrumentation inT/STables3.3-1and3.3-3.Inaddition, wearerequesting extensions forsurveillance requirements involving equipment thatactuatesonanESFsignal(seetablebelow).Thesesurveillances inmanycasesinvolvethesameequipment andareperformed inparttosatisfytheresponsetimetestingofT/Ss4.3.1.1.3 and4.3.2.1.3.
Theseadditional surveillances, theaffectedcomponents, andtherespective ESFactuation signalsareasfollows:It:em~TS2~4.5.l.d4.5.2.e4.6.2.1.c Comonentsaccumulator isolation valvesECCSautomatic valvescentrifugal chargingpumpsafetyinjection pumpresidualheatremovalpumpcontainment sprayautomatic valvesandpumps~ESPSinalSISISISISIcontainment pressurehigh-high 4,6.4.6.2.2.c 4.6.3.1.2 4.7.1.2.e,f spray,additivesystemautomatic valvescontainment isolation valvescontainment purgeandexhaustvalvesauxiliary feedwater automatic valvesandpumpstartingcontainment=pressure high-high PhaseAisolation PhaseBisolation containment purgeandexhaustisolation variousSeeT/SGroup(3)
Attachment 1toAEP:NRC:1181 Page4Item~TS7.4.7.3.1.b 8.4.7.4.1.b
~Gomonentscomponent coolingwaterautomatic valvesessential servicewaterautomatic valvesESFSialSISISeeT/SGroup(4)9.4.7.5.l.e.2 controlroomventilation 10.4.7.6.1.d.3 ESFventilation SIPhaseAisolation containment pressurehigh-high Theextensions areneededfromJanuary2,1994(mostlimitingsurveillance duedate),untiltheUnit2refueling outage.AttheCookPlant,responsetimetestingisperformed inseveralparts.Theportionsofcircuitry fromthetransmitter tothebistable, fromthebistabletothemasterrelaycontact,andfromthemasterrelaycontacttoequipment operation aretestedseparately.
Testingofthecompleteportionfromthetransmitter tothemasterrelaycontactcannotbeperformed atpowerwithoutviolating theT/Ssoradversely impacting plantoperation, i.e.,reactortrip.T/Ss3.3.1.1,3.3.2.1and3.0.3requiretheplanttobeshutdownifsufficient reactortriporESFinstrumentation isnotoperable.
Bothtrains(allchannels) ofthefunctionbeingtestedmustbetakenoutofserviceduringthistestbecausethesametestsignalgoesintobothtrains,whichgenerates areactortripsignalorESFactuation.
Shouldtheynotbeintest,eachsignalwouldinitiateprotective functions suchassafetyinjection andcontainment spray.Therefore, theportionofthetime-response testsfromthebistableuptothemasterrelaymustbedoneduringshutdown.
However,testingfromthetransmitter tothebistablecanbeperformed atpowerandwillbepriortoitssurveillance duedate.Thebalanceoftheequipment, i.e.,fromthemasterrelaycontacttoequipment operation, istestedaspartofthesurveillances listedinthetableabove.Ofthesesurveillances, Items2through8arespecifically requiredbyT/Sstobeperformed duringshutdown.
Items1,9and10arenotspecifically prohibited byT/Ssfrombeingperformed atpower.However,todothistesting(aswellastheothertestinglistedinthetable)wouldrequireustoremoveanentiretrainofsafetyequipment fromoperation (withtheexception ofthespecificequipment beingtested).Becausethisremovesalayerofprotection builtintotheplant,andbecauseitinvolvesoperating theplantinanabnormalconfiguration, itisnotconsidered prudenttoperformthistestingatpower.Thesurveillance historyoftheseESFsystemsshowsthatwehavenoreasontobelievethattheremaybeanyfailuresinmeetingtheT/Srequirements duetoequipment degradation duringtheextension period.Additionally, wenotethattheESFandreactorprotection systemchannelsaresubjected toaT/Srequiredsurveillance programofchannelchecksandchannelfunctional tests.Allrequiredchannelchecksandchannelfunctional testswillcontinuetobeperformed.
Webelievetheseadditional testsprovide'ndication oftheoperability ofthesystems,andwouldprovideindication ofsignificant degradation.
Attachment 1toAEP:NRC:1181 10CFR50.92CriteriaPage5Per10CFR50.92,aproposedamendment willnotinvolveasignificant hazardsconsideration iftheproposedamendment, doesnot:(1)involveasignificant increaseintheprobability orconsequences ofanaccidentpreviously
- analyzed, (2)createthepossibility ofanewordifferent kindofaccidentfromanyaccidentpreviously analyzedorevaluated, or(3)involveasignificant reduction inamarginofsafety.Ourevaluation oftheproposedchangewithrespecttothesecriteriaisprovidedbelow.Criterion 1Basedonourreviewofpasttestdata,andthefactthattheequipment issubjecttoasurveillance programwhichincludeschannelchecksandchannelfunctional tests,webelievetheextensions wearerequesting willnotresultinasignificant increaseintheprobability orconsequences ofapreviously evaluated
- accident, norwillitresultinasignificant reduction inamarginofsafety.Criterion 2Thisextension willnotresultinachangeinplantconfiguration oroperation.
Therefore, theextension shouldnotcreatethepossibility ofanewordifferent kindofaccidentfromanypreviously evaluated oranalyzed.
Criterion 3SeeCriterion 1,aboveLastly,wenotethattheCommission hasprovidedguidanceconcerning thedetermination ofsignificant hazardsbyproviding certainexamples(48FR14870)ofamendments considered notlikelytoinvolvesignificant hazardsconsideration.
Thesixthoftheseexamplesreferstochangeswhichmayresultinsomeincreasetotheprobability ofoccurrence orconsequences ofapreviously analyzedaccident, buttheresults,ofwhicharewithinlimitsestablished asacceptable.
Forthereasonsdetailedabove,webeliev'ethischangefallswithinthescopeofthisexample.Therefore, webelievethischangedoesnotinvolvesignificant hazardsconsideration asdefinedin10CFR50.92.
Attachment 1toAEP:NRC:1181 Page63AuxiliaFeedwater PumTestinT/STable4.3-2Item6.drequiresachannelfunctional testofthemotordrivenauxiliary feedwater pumpstartonlossofmainfeedwater pumpsignaltobeperformed onan18monthbasis.Toperformthi'stestingduringpoweroperations wouldinvolvetrippingatleastonemainfeedpump,whichwouldresultinareduction ofpowerandcauseathermaltransient tobeimposedontheplant.T/Ss4.7.1.2.e
&4.7.1.2.f requiretestingtodemonstrate thatthemotor-andturbine-driven auxiliary feedwater pumpsstartandthattheassociated automatic valvesactuatetotheircorrectpositionuponreceiptoftheappropriate signalaslistedinT/STable4.3-2.PerT/Ss4.7.1.2.e
&4.7.1.2.f, thistestingmustbeperformed duringshutdown.
Theseextensions areneededfromMay5,1994,untiltheUnit2refueling outage.Basedontheabove,wecannotperformthesesurveillances whileatpower.However,inpractice, theessential portionsoftheseT/Ss(thatis,startupoftheauxiliary feedwater pumpswhenrequiredandmovementofthevalvestotheircorrectposition) occurwhentheunittrips.ThelastreactortripoccurredonJuly2,1992.Priortestingexperience withregardtothesesurveillances hasindicated nosignificant problemswhenthesurveillance,was performed.
Althoughwerecognize thatnotalltheactuation circuitry hasbeenchallenged asaresultofthereactortrip,wefeelthatourrecentexperience, inconjunction withtheexcellent testhistoryinthisarea,justifies ourrequesttoextendthesurveillance interval.
10CFR5092CriteriaPer10CFR50.92,aproposedamendment willnotinvolveasignificant hazardsconsideration iftheproposedamendment doesnot:(1)involveasignificant increaseintheprobability orconsequences ofanaccidentpreviously evaluated, (2)(3)createthepossibility ofanewordifferent kindofaccidentfromanyaccidentpreviously analyzedorevaluated, orinvolveasignificant reduction inamarginofsafety.Ourevaluation oftheproposedchangewithrespecttothesecriteriaisprovidedbelow.
Attachment 1toAEP:NRC:1181 Criterion 1Page7Asdiscussed above,portionsofthesystemhaveundergone achallenge duetoarecentactuation (duringaunittrip).Thisfact,coupledwithourexcellent testhistoryforthesesurveillances, leadsustobelievetheextension wearerequesting willnotresultinasignificant increaseintheprobability orconsequences ofapreviously evaluated
- accident, norwillitresultinasignificant reduction inamarginofsafety.Criterion 2Thisextension willnotresultinachangeinplantconfiguration oroperation.
Therefore, theextension shouldnotcreatethepossibility ofanewordifferent kindofaccidentfromanypreviously evaluated oranalyzed.
Criterion 3SeeCriterion 1,above.Lastly,wenotethattheCommission hasprovidedguidanceconcerning thedetermination ofsignificant hazardsbyproviding certainexamples(48FR14870)ofamendments considered notlikelytoinvolvesignificant hazardsconsideration.
Thesixthoftheseexamplesreferstochangeswhichmayresultinsomeincreasetotheprobability orconsequences ofapreviously evaluated
- accident, buttheresultsofwhicharewithinlimitsestablished asacceptable.
Vebelievethischangefallswithinthescopeofthisexample,forthereasonscitedabove.Thus,webelievethischangedoesnotinvolvesignificant hazardsconsideration asdefinedin10CFR50.92.
Attachment 1toAEP:NRC:1181 4DieselGenerator TestinPage8Anextension ofthesurveillance intervalisrequested for=thesurveillance requirements ofT/S4.8.1.1.2.e.
Thesesurveillances arerequiredbyT/Sstobeperformed duringshutdown.
Therequirements includesubjecting thedieseltoaninspection inaccordance withmanufacturer's recommendations, aswellastestingtoverifythatthedieselgenerator anditsassociated circuitry arecapableofenergizing, sequencing andsheddingtheemergency loadsuponreceiptoftheappropriate signal.Anextension ofthesurveillance intervalisalsonecessary forpartoftherequirements ofT/S4.8.1.2,since4.8.1.1.2 isreferenced there.Theextension isneededfromMarch25,1994(limiting duedate),throughtheUnit2refueling outage.DuringthefourandahalfmonthperiodfromMarch25untilthestartoftheoutage,eachdieselgenerator shouldaccumulate 5additional startsand5-7additional runninghours.Theaffectthattheseadditional startswouldhaveonthedieselgenerators isbelievedtobeinsignificant basedonthewearhistoryofeachmachine.Thus,webelievetheadditional startsdonotconstitute sufficient needtoperformthesubjectsurveillances priortotheproposedextendeddate.Thehistoryofdieselgenerator repairsfromthepastfewyearsdonotindicateanyproblemareaswhich,inourjudgement, wouldbesignificantly affectedbytheproposedsurveillance intervalextension.
Furthermore, conditions whichhaverequiredmaintenance onthedieselgenerators havebeencorrected atthetimeofdiscovery andhavenotrequireddeferraluntilanoutage(i.e,,weshouldnotbedeferring anysignificant maintenance itemsthroughtheextension period).Currently, wehaveatrendingprogramfortheparameters measuredduringourT/Srequiredmonthlytesting.Thesetrendsarereviewedbyourdieselgenerator systemengineer.
Ifanadversetrendbegantodevelop,thepreventive/corrective measureswouldbetakentopreventasignificant problemfromoccurring.
Also,areviewofprevioustestresultsdidnotindicateanyreasonstosuspectthatthedieselgenerator associated circuitry (i.e.,energizing, sequencing, andsheddingthevariousemergency loads)wouldnotpassrequiredsurveillance testswiththesurveillance intervalextended.
Basedontheabove,webelievethatthereisnoreasontosuspectthatthedieselgenerators wouldnotbecapableofperforming theirsafetyfunctions asrequiredbytheT/Ss.Twootherextensions relatedtothedieselgenerators arealsonecessary toavoidashutdown.
Thesearefortherequirements ofT/Ss4.4.11.3and4.7.4.l.b.
T/S4.4.11.3requirestestingoftheemergency powersupplyforthepoweroperatedreliefvalves(PORVs)andtheirassociated blockvalves.SincethistestinginvolvescyclingthePORVsandblockvalves,.itisgenerally performed duringshutdownandinconjunction withthedieselgenerator testingrequirements ofT/S4.8.1.1.2.e, assuggested byT/S4.4.11.3.
T/S4.7.4.1.b involvestestingautomatic valvesintheessential servicewater(ESW)system.PerT/Ss,thissurveillance testingmustbeperformed duringshutdown.
SincesomeoftheESWvalveswhicharerequiredtobetestedinvolvecoolingwaterforthedieselgenerator anditsassociated equipment, thistestingisgenerally conducted inconjunction withthedieselgenerator testingofT/S4.8.1.1.2.
Theextension forboththeESWvalvesandthePORVemergency powersupplyareneededfortheperiodofApril15,1994throughtheUnit2refueling outage.Previoustest Attachment 1toAEP:NRC:1181 Page9resultsdonotindicateanyreasontosuspectthatthevalvesandtheirassociated circuitry wouldnotpasstherequiredsurveillance withtheextendedinterval.
10CFR5092CriteriaPer10CFR50.92,aproposedamendment willnotinvolveasignificant hazardsconsideration iftheproposedamendment doesnot:(1)involveasignificant increaseintheprobability orconsequences ofanaccidentpreviously
- analyzed, (2)createthepossibility ofanewordifferent kindofaccidentfromanyaccidentpreviously analyzedorevaluated, or(3)involveasignificant reduction inamarginofsafety.Ourevaluation oftheproposedchangewithrespecttothesecriteriaisprovidedbelow.Criterion 1Forthediesel-generator machinery, theextension willresultonlyinapproximately 5additional startsand5to7additional runhours.Thisisconsidered insignificant withregardtothewearhistoryofeachmachine.Forthediesel-associated circuitry, theESWautomatic valves,andthePORVemergency powersupply,ourreviewofprevioustestdatahasnotindicated anyreasontobelievetheequipment wouldnotpasstherequiredsurveillance testswiththeextendedinterval.
Forthesereasons,webelievetheextension wearerequesting willnotresultinasignificant increaseintheprobability orconsequences ofapreviously evaluated
- accident, norwillitresultinasignificant reduction inamarginofsafety.Criterion 2Thisextension willnotresult.inachangeinplantconfiguration oroperation.
Therefore, theextension shouldnotcreatethepossibility ofanewordifferent kindofaccidentfromanypreviously evaluated oranalyzed.
Criterion 3SeeCriterion 1,above.Lastly,wenotethattheCommission hasprovidedguidanceconcerning thedetermination ofsignificant hazardsbyproviding certainexamples(48FR14870)ofamendments considered notlikelytoinvolvesignificant hazardsconsideration.
Thesixthoftheseexamplesreferstochangeswhichmayresultinsomeincreasetotheprobability ofoccurrence orconsequences ofapreviously analyzedaccident, buttheresultsofwhichareclearlywithinthelimitsestablished asacceptable.
Webelievethesechangesfallwithinthescopeofthisexample.Therefore webelievethischangedoesnotinvolvesignificant hazardsconsideration asdefinedin10CFR50.92.
Attachment 1toAEP:NRC:1181 Page105RTDCalibrations Extensions arerequested forthecalibration ofresistance temperature detectors (RTDs).Theextensions areneededfromApril28,1994,untiltheUnit2refueling outage.TheT/Ssurveillances involving theRTDcalibration arelistedbelow.Re'irement 4.3.1.1.1, Table4.3-1,Item74.3.1.1.1, Table4.3-1,Item84.3.2.1.2 (P-12)4.3.2.1.1, Table4.3-2,Item4.dOTATChannelCalibration OPATChannelCalibration TotalInterlock FunctionTestingSteamFlowinTwoSteamLines--HighCoincident withT,~--Low-LowChannelCalibration 4.3.3.5.1 Table4'-6A,Items5&7Calibration ofAppendixRRemoteShutdownMonitoring Instrumentat ionReactorCoolantLoops(2&4)Temperature (Cold)4.3.3.5.1 Table4.3-6A,Items6&8Calibration ofAppendixRRemoteShutdownMonitoring Instrumentation ReactorCoolantLoops(2&4)Temperature (Hot)4.3.3.6Table4.3-10,Item2Calibration ofPost-Accident Monitoring ReactorCoolantOutletTemperature
-Tao>Channel4.3.3.6Table4.3-10,Item3Calibration ofPost-Accident:
Monitoring ReactorCoolantInletTemperature
-Tco<zChannel4.3.3.6Table4.3-10,Item11Calibration ofPost-Accident Monitoring ReactorCoolantSystemSubcooling MarginMonitorChannel
Attachment 1toAEP:NRC:1181 Page11Theextensions requested inthiscategoryareforthecalibration ofthesensorsonly.Thecalibration procedure requiresdatatobetakenatRCStemperatures rangingfromapproximately 250'Fthroughoperating temperatures.
Thisprocedure cannotbeperformed atpowerbecauseofthelowtemperatures necessary forthecalibration andbecauseisothermal conditions throughout theRCSarerequired.
ThechannelsinvolvedwiththeRTDsaresubjecttoT/Srequiredchannelchecksand/orchannelfunctional tests.Thistesting,whichwillcontinueduringtheextension period,wouldbeexpectedtoprovideindication ofRTDdrift.Also,sincenarrowrangeRTDsfeedthehTcircuits, comparisons ofhT~tothecalorimetric calculated powerorpowerrangedetectors shouldshowdriftinthenarrowrangeRTDs.WehavefoundRTDsattheCookNuclearPlanttobeverystable,andhavenotexperienced significant driftingproblems.
Forallofthesereasons,wehavenoreasontobelievethattheRTDswillnotremainoperableduringtheextension period.10CFR50.92CriteriaPer10CFR50.92,aproposedamendment willnotinvolveasignificant hazardsconsideration iftheproposedamendment doesnot:(1),involveasignificant increaseintheprobability orconsequences ofanaccidentpreviously
- analyzed, (2)createthepossibility ofanewordifferent kindofaccidentfromanyaccidentpreviously analyzedorevaluated, or(3)involveasignificant reduction inamarginofsafety.Ourevaluation oftheproposedchangewithrespecttothesecriteriaisprovidedbelow.Criterion 1TheRTDsattheCookNuclearPlanthavetraditionally beenverystable.Severalindependent instruments areavailable whichwouldallowustonoticedriftoftheRTDs.Also,channelsinvolving theRTDsaresubjecttoT/Srequiredchannelchecksand/orchannelfunctional tests,whichwillcontinue, tobeperformed duringtheextension period.Forthesereasons,webelievetheextension wearerequesting willnotresultinasignificant increaseintheprobability orconsequences ofapreviously evaluated
- accident, norwillitresultinasignificant reduction inamarginofsafety.Criterion 2Thisextension willnotresultinachangeinplantconfiguration oroperation.
Therefore, theextension shouldnotcreatethepossibility ofanewordifferent kindofaccidentfromanypreviously evaluated oranalyzed.
Attachment 1toAEP:NRC:1181 Page12Criterion 3SeeCriterion 1,above.Lastly,wenotethattheCommission hasprovidedguidanceconcerning thedetermination ofsignificant hazardsbyproviding certainexamples(48FR14870)ofamendments considered notlikelytoinvolvesignificant hazardsconsideration.
Thesixthoftheseexamplesreferstochangeswhichmayresultinsomeincreasetotheprobability orconsequences ofapreviously evaluated
- accident, buttheresultsofwhicharewithinlimitsestablished asacceptable.
Webelievethischangefallswithinthescope'fthisexample,forthereasonscitedabove.Thus,webelievethischangedoesnotinvolveasignificant hazardsconsideration asdefinedin10CFR50.92.
Attachment 1toAEP:NRC:1181 6Pressurizer Pressure&LevelCalibrations andPORVCalibrations Page13Wearerequesting anextension fortheperformance ofsomeofthepressurizer channelcalibrations (pressurizer pressureinstruments NPS-153&NPP-153,andpressurizer levelinstrument NLP-153)andinterlock testinginvolving thepressurizer pressureinstrumentation.
Wearealsorequesting reliefforthecalibration ofthePORVs.Theextensions areneededfromJanuary29,1994,untiltheUnit2refueling outage.TheaffectedT/Ssareasfollows:Reuirement4.3.1.1.1, Table4.3-1,Item7Calibration forOTATReactorTrip.4.3.1.1~1,Table4.3-1,Item9Calibration forPressurizer Pressure-Low ReactorTrip4.3.1.1.1, Table4.3-1,Item10Calibration forPressurizer Pressure-High ReactorTrip4.3.1.1.1, Table4.3-1,Item11Calibration forPressurizer WaterLevel-High ReactorTrip4.3.2.1.1, Table4.3-2,Iteml.d~~~~~Calibration forPressurizer Pressure-Low ESFActuation 4.3.2.1.2 (P-11)Interlock TotalFunctionTesting4.4.ll.l.b Calibration ofPowerOperatedReliefValvesPerformance ofthiscalibration isnotconsidered tobeprudentatpowerduetotheconfiguration ofthepressurizer pressureandlevelinstrumentation.
Twoofthepressurizer pressureinstruments (NPS-153andNPP-153)shareacommonsensinglinewithoneofthepressurizer levelinstruments (NLP-153).
Calibrating eitherNPS-153orNPP-153posestheriskofperturbing the,inputtotheothertransmitter, whichcouldresultinatrip.Calibrating NLP-153posestheriskofperturbing theinputtoNPS-153andNPP-153transmitters,'hich alsocouldresultinatrip.Theexemption
'forthePORVsisalsoneededbecausethecalibrations makeallthreePORVsinoperable atthesametime,whichiscontrarytotherequirements ofT/S3.4.11.Asdiscussed inthepreviousparagraph, certainchannelsofpressurizer pressureandlevelinstrumentation poseathreattotrippingthereactor.However,therearethreechannelsofpressurizer levelinstrumentation andfourchannelsofpressurizer pressureinstrumentation ofwhichtwolevelandtwopressurechannelsofinstrumentation can,andwill,becalibrated asrequiredbytheTechnical Specifications.
Thus,twoofthethreepressurizer levelandtwoofthefour Attachment 1toAEP:NRC:1181 Page14pressurizer pressurechannelswillsatisfytheT/Ssurveillance requirements.
Also,theinstrumentation channelsforwhichwearerequesting surveillance intervalextensions aresubjecttoT/Srequiredchannelfunctional testingand/orchannelchecks.Thechannelfunctional testsweperformarefarmorestringent thanrequired.
Thesetestsnotonlydemonstrate channelfunctionality, butalsoverifycalibration oftripsetpoints, actuations andalarms.Theonlyportionofthechannelthatisnottestedisthesensor,whichisqualitatively verifiedduringchannelchecks.Thus,thetestingwewillcontinuetoperformwouldbeexpectedtoprovideindication oftheoperability ofthesystems,andwouldprovideindication ofsignificant degradation.
Lastly,wenotethatbasedonourreviewofthesurveillance history,webelievethisequipment willremainoperableduringtheextension period.10CFR5092CriteriaPer10CFR50.92,aproposedamendment willnotinvolveasignificant hazardsconsideration iftheproposedamendment doesnot:li(1)involveasignificant increaseintheprobability orconsequences ofanaccidentpreviously
- analyzed, (2)createthepossibility ofanewordifferent kindofaccidentfromanyaccidentpreviously analyzedorevaluated, or(3)involveasignificant reduction inamarginofsafety.Ourevaluation oftheproposedchangewithrespecttothesecriteriaisprovidedbelow.Criterion 1Completing therequiredT/Ssurveillances ontwoofthethreepressurizer levelchannelsandtwoofthefourpressurizer pressurechannelswillensurethatthemajorityoftheequipment iscalibrated asrequired.
Also,theapplicable channelfunctional testsandchannelchecksshouldensurethatthesesystemswillperformasdesigned.
Additionally, basedonthesurveillance historyoftheequipment, webelievethattheequipment willremainoperableduring-theextension period.Wetherefore believetheextension wearerequesting willnotresultindeterioration totheextentthattheequipment cannotperformitsintendedfunction.
Forthesereasons,webelievetheextension wearerequesting willnotresultinasignificant increaseintheprobability orconsequences ofapreviously evaluated
- accident, norwillitresultinasignificant reduction inamarginof.safety.Criterion 2Thisextension willnotresultinachangeinplantconfiguration oroperation.
Therefore, t'eextension shouldnotcreatethepossibility ofanewordifferent kindofaccidentfromanypreviously evaluated oranalyzed.
Attachment 1toAEP:NRC:1181 Page15Criterion 3SeeCriterion 1,above.Lastly,wenotethattheCommission hasprovidedguidanceconcerning thedetermination ofsignificant hazardsbyproviding certainexamples.(48 FR14870)ofamendments considered notlikelytoinvolvesignificant hazardsconsideration.
Thesixthoftheseexamplesreferstochangesthatmayresultinsomeincreasetotheprobability orconsequences ofapreviously evaluated
- accident, buttheresultsofwhicharewithinlimitsestablished asacceptable.
Webelievethischangefallswithinthescopeofthisexampleforthereasonscitedabove.Thus,webelievethischangedoesnotinvolveasignificant hazardsconsideration asdefinedin10CFR50.92.
Attachment 1toAEP:NRC:1181 Page167ReactorVesselLevelIndication SstemAnextension isrequested forthechannelcalibration oftheReactorVesselLevelIndication System(RVLIS)requiredbyT/STable4.3-10,Item16.Therequiredcalibration cannotbeperformed atpowerbecauseworkmustbeperformed inthelowervolumeofcontainment andreactorheadarea,whichareonlyaccessible whentheunitisshutdown.Theextension isneededfromApril20,1994,untiltheUnit2refueling outage.RVLIShastwotrainsofindication thataresubjected toT/Srequiredmonthlychannelcheckswhichwewillcontinuetoperformduringtheextension period.Thesechannelchecksprovideindication oftheoperability ofthesystem,andwouldbeexpectedtoprovideindication ofsignificant degradation ofthesystem.Ourreviewofthemaintenance historyofthesystemgivesusnoreasontobelievethesystemwouldbeinoperable duringtheextension period.Additionally, indication ofinadequate corecoolingcanbeobtainedbyobserving coreexitthermocouple readingsorbycheckingthesubcooling marginmonitor.Thesearethemethodstheoperators wouldhaveusedtoassessinadequate corecoolingpriortohavingRVLIS.Wealsonotethatthereareannunciators whichindicatefailureofRVLIS.Forthesereasons,webelievethattheextensions wearerequesting willnotadversely impacttheabilityofthisequipment toperformitssafetyfunction.
~~10CFR5092CriteriaPer10CFR50.92,aproposedamendment willnotinvolveasignificant hazardsconsideration iftheproposedamendment doesnot:(1)involveasignificant increaseintheprobability orconsequences ofanaccidentpreviously
- analyzed, (2)createthepossibility ofanewordifferent kindofaccidentfromanyaccidentpreviously analyzedorevaluated, or(3)involveasignificant reduction inamarginofsafety.Ourevaluation oftheproposedchangewithrespecttothesecriteriaisprovidedbelow.Criterion 1Theequipment issubject.tonormalsurveillances whichwouldbeexpected'toprovideindication ofsignificant degradation.
Also,otherinstrumentation isavailable whichalsoprovidesindication ofinadequate corecooling.Lastly,thepastmaintenance historyoftheequipment givesusnoreasontobelievethattheequipment wouldbeinoperable duringtheextension period.Forthesereasons,webelievetheextension wearerequesting willnotresultinasignificant increaseintheprobability orconsequences ofapreviously evaluated
- accident, norwillitresultinasignificant reduction inamarginofsafety.
F Attachment 1toAEP:NRC:1181 Page17Criterion 2Thisextension willnotresultinachangeinplantconfiguration oroperation.
Therefore, theextension shouldnotcreatethepossibility ofanewordifferent kindofaccidentfromanypreviously evaluated oranalyzed.
Criterion 3SeeCriterion 1,above.Lastly,wenotethattheCommission hasprovidedguidanceconcerning thedetermination ofsignificant hazardsbyproviding certainexamples(48FR14870)ofamendments considered notlikelytoinvolvesignificant hazardsconsideration.
Thesixthoftheseexamplesreferstochangeswhichmayresultinsomeincreasetotheprobability ofoccurrence orconsequences ofapreviously analyzedaccident, buttheresultsofwhicharewithinlimitsestablished asacceptable.
Forthereasonsdetailedabove,webelieve'this changefallswithinthescopeofthisexample.Therefore, webelievethischangedoesnotinvolvesignificant hazardsconsideration asdefinedin10CFR50.92.
Attachment 1toAEP:NRC:1181 Page188RodPositionIndication Sstem,Thischangewoulddelayfunctional testingoftherodpositionindicator (RPI)channelsrequiredevery18monthsbyT/S4.1.3.3.Theextension isneededfromMay3,1994,untiltheUnit2refueling outage.AlthoughT/S4.1.3.3isonlyapplicable inModes3,4,and5,webelievereliefisneededfromthisT/Stocontinueoperation inModes1and2sinceT/S3/4.1.3.2 requirestheRPIchannels,tobeoperableinthesemodes.Thesurveillance weperformtosatisfyT/S4.1.3.3isactuallyacalibration oftheRPIchannelsovertherodinsertion range.Sincerodsmustbeinsertedtoperformthecalibration, itcannotbeperformed atpowerbecausetodosowouldviolatetherodinsertion limitsofT/Ss3.1.3.5and3.1'.3.6.
Theoperability oftheRPIchannelsisfunctionally verifiedonceper12hoursperT/S4.1.3.2bycomparison tothedemandpositionindication system.Also,duringthe31daysurveillance tosatisfyT/S4.1.3.1.2, therodsaremovedatleasteightstepsandtheRPImetersareverifiedtotrackwiththedemandposition.
Thesecomparisons wouldbeexpectedtoindicatesignificant degradation intheRPIchannels.
Surveillances thatindicatethecoreisperforming asdesignedareprovidedbytheincorefluxmaps,'which aretakenatleastonceevery31effective fullpowerdaystosatisfytherequirements ofT/Ss4.2.2.2(Fo(Z)),4.2.3(F~H)and4.2.1.4(AxialFluxDifference TargetBand).Coreperformance isalsoindicated bytheexcoredetectors, whichareusedtomeasurethequadrantpowertiltratioperT/S4.2.4andaxialfluxdifference perT/S4.2.1.1.a.
Thesesurveillances wouldbeexpectedtoindicatesignificant discrepancies betweenindicated andactualrodposition.
Lastly,sincetheT/Srequiredsurveillances usedtoverifyoperability oftheRPIswillcontinuetobeperformed duringtheextension period,thereisnoreasontobelievethatwewouldbeoperating outsidetheboundsofT/S3.1.3.2.10CFR5092CriteriaPer10CFR50.92,aproposedamendment willnotinvolveasignificant hazardsconsideration iftheproposedamendment doesnot:(1)involveasignificant increaseintheprobability orconsequences ofanaccidentpreviously
- analyzed, (2)createthepossibility ofanewordifferent kindofaccidentfromanyaccidentpreviously analyzedorevaluated, or(3)involveasignificant reduction inamarginofsafety.Ourevaluation oftheproposedchangewithrespecttothesecriteriaisprovidedbelow.
Attachment 1toAEP:NRC:1181 Page19Criterion 1T/Srequiredcomparison oftheRPIchannelstothedemandpositionindication systemwouldbeexpectedtoindicatesignificant degradation intheRPIchannels.
Inaddition, othersurveillances suchasthedetermination ofthequadrantpowertiltratio,axialfluxdifference andincorefluxmappingsurveillances, provide...acomparison ofcoreperformance todesignandwouldbeexpectedtoindicatesignificant deviations oftherodsfromtheirindicated position.
Sinceoperability oftheRPIswillcontinuetobedetermined withourT/Srequiredsurveillances duringtheextension period,thereisnoreasontobelievethatwewouldbeoperating outsidetheboundsofT/S3.1.3.2.Forthesereasons,webelievetheextension wearerequesting w'illnotresultinasignificant increaseintheprobability orconsequences ofapreviously evaluated
- accident, norwillitresultinasignificant reduction inamarginofsafety.Criterion 2Thisextension willnotresultinachangeinplantconfiguration oroperation.
Therefore, theextension shouldnotcreatethepossibility ofanewordifferent kindofaccidentfromanypreviously evaluated oranalyzed.
Criterion 3SeeCriterion 1,above.Lastly,wenotethattheCommission hasprovidedguidanceconcerning thedetermination ofsignificant hazardsbyproviding examples(48FR14870)ofamendments considered notlikelytoinvolvesignificant hazardsconsideration.
Thesixthoftheseexamplesreferstochangeswhichmayresultinsomeincreasetotheprobability orconsequences ofapreviously evaluated
- accident, buttheresultsofwhicharewithinlimitsestablished asacceptable.
Webelievethischangefallswithinthescopeofthisexample,forthereasonscitedabove.Thus,webelievethischangedoesnotinvolveasignificant hazardsconsideration asdefinedin10CFR50.92.
Attachment 1toAEP:NRC:1181 Page209RHRAuto-Closure Interlock Wearerequesting anextension fortheresidualheatremoval(RHR)auto-closure interlock testrequiredbyT/S4.5.2.d.l.
Anextension isalsorequested forT/S4.5.3.1sinceitreferences T/S4.5.2.Theextensions areneededfromMarch7,1994,untiltheUnit2refueling outage.TheRHRauto-closure interlock automatically isolatestheRHRsystemfromtheRCSifRCSpressureisabove600psig.Inordertodemonstrate operability oftheautoclosureinterlock, itisnecessary toopentheRHRisolation valvesinthecooldownlinefromthehotleginordertoverifythatthevalveswouldautomatically closewiththeRCSpressureabove600psig.Thiscannotbeaccomplished withtheunitoperating (i.e.,withtheRCSfullypressurized) becauseitwouldresultinexposingtheRHRsystemtopressures higherthantheRHRsafetyvalves'etpoints; Previoussurveillance testinghasdemonstrated thattheauto-closure interlock isveryreliable.
Theprevioustestresultsgiveusnoreasontobelievetheauto-closure interlock wouldbeinoperable duringtheextension period.Thecalibration fortheRCSwide-range pressuretransmitters, whichprovideinputintotheinterlock, canbedoneatpowerandwillbeperformed byitsSeptember 9,1993duedate.Thus,theonlyportionoftheinterlock forwhichthesurveillances willnotbecurrentistheportionfromthebistableoftheRHRsuctionvalvesthroughvalveoperation.
Additionally, wenotethatwhentheunitisoperating (i.e.,notonRHR),theRHRsuctionvalvesareclosedandprocedures requirepowertoberemovedfromthevalveoperators.
Thisprecludes inadvertent valveopeningandthusalleviates theneedfortheauto-closure interlock tofunction.
10CFR50.92CriteriaPer10CFR50.92,aproposedamendment willnotinvolveasignificant hazardsconsideration iftheproposedamendment doesnot:(1)involveasignificant increaseintheprobability orconsequences ofanaccidentpreviously
- analyzed, (2)createthepossibility ofanewordifferent kindofaccidentfromanyaccidentpreviously analyzedorevaluated, or(3)involveasignificant reduction inamarginofsafety.Ourevaluation oftheproposedchangewithrespecttothesecriteriaisprovidedbelow.
Attachment 1toAEP:NRC:1181 Page21Criterion 1Thesurveillance testhistoryoftheauto-closure interlock hasshownthatthesystemishighlyreliable, andgivesusnoreasontobelievetheequipment wouldbeinoperable duringtheextension period.Thewide-range pressuretransmitters, whichprovideinputintotheauto-closure interlock, willhaveacurrentcalibration.
Additionally, wenotethatwhentheRHRsystemisnotinservice,powerisremovedfromthesuctionvalveoperators, thuspreventing inadvertent valveopeningandeliminating theneedfortheauto-closure interlock.
Forthesereasons,webelievetheextension wearerequesting willnotresultinasignificant increaseintheprobability orconsequences ofapreviously evaluated
- accident, norwillitresultinasignificant reduction inamarginofsafety.Criterion 2Thisextension willnotresultinachangeinplantconfiguration oroperation.
Therefore, theextension shouldnotcreatethepossibility ofanewordifferent kindofaccidentfromanypreviously evaluated oranalyzed.
Criterion 3SeeCriterion 1,above.Lastly,wenotethattheCommission hasprovidedguidanceconcerning thedetermination ofsignificant hazardsbyproviding certainexamples(48FR14870)ofamendments considered notlikelytoinvolvesignificant hazardsconsideration.
Thesixthoftheseexamplesreferstochangeswhichmayresultinsomeincreasetotheprobability orconsequences ofapreviously evaluated
- accident, buttheresultsofwhicharewithinlimitsestablished asacceptable.
Vebelievethischangefallswithinthescopeofthisexample,forthereasonscitedabove.Thus,webelievethischangedoesnotinvolveasignificant hazardsconsideration asdefinedin10CFR50.92.
Attachment 1toAEP:NRC:1181 Page2210VisualInsectionofInaccessible SnubbersThischangewoulddelayvisualinspections of,inaccessible snubbersrequiredbyT/S4.7.7.1.a.
Theextension isneededfromMarch19,1994,throughtheUnit2refueling outage.Theextension isrequiredbecause,bydefinition inT/S4.7.7.l.a andTable3.7-9,thesesnubbersareinaccessible duringreactoroperation, thusrequiring theinspections tobeperformed duringshutdown.
Notethatfunctional testingofsnubbersperT/S4.7.7.1.c isnotrequireduntilafterthescheduled refueling outagestartdate.Inthepasttenyearsofvisualinspections onUnit2inaccessible
- snubbers, wehavefoundonlyoneinoperable snubber.Theinoperable snubberwasdiscovered duringthesteamgenerator outagein1988.Sincethen,fourvisualinspections havebeenperformed ontheinaccessible
- snubbers, inwhichnonehavebeenfoundtobeinoperable.
Basedontheseinspection results,weareallowedtoperformtheinspections atthemaximumallowedT/Sfrequency of18months(125X).Itshouldbenotedthatwesubmitted arequestinourletterAEP:NRC:1143, datedMay1,1992topermanently changethesurveillance intervals forsnubbervisualinspections.
Thesubmittal isbasedonguidancefromGenericLetter90-09,"Alternate Requirements forSnubberVisualInspections Intervals andCorrective Actions."
IfwecouldapplytheguidanceofGenericLetter90-09orourproposednewSpecifications onourcurrentvisualinspection resultsofinaccessible
'nubbers, wewouldhaveuptothemaximum48monthintervalallowedforournextinspection.
Thiswouldputourinspection duedatebeyondthescheduled refueling outagestartdate,thuseliminating theneedforthisextension.
Basedonthehistoryofourinaccessible snubbersandontheguidanceofGenericLetter90-09,webelievetheinaccessible snubberswillremainoperableduringtheextension period.10CFR50.92CriteriaPer10CFR50.92,aproposedamendment willnotinvolveasignificant hazardsconsideration iftheproposedamendment doesnot:(1)involveasignificant increaseintheprobability orconsequences ofanaccidentpreviously
- analyzed, (2)createthepossibility ofanewordifferent kindofaccidentfromanyaccidentpreviously analyzedorevaluated, or(3)involveasignificant reduction inamarginofsafety.Ourevaluation oftheproposedchangewithrespecttothesecriteriaisprovidedbelow.
Attachment 1toAEP:NRC:1181 Page23Criterion 1Oursurveillance historyofvisualinspections oninaccessible snubbershasfoundonlyoneinoperable snubberinthepasttenyears.Also,ifGenericLetter90-09guidanceisapplied,oursurveillance intervalwouldbe48months.Basedontheabove,wehavenoreasontobelievetheinaccessible snubberswillbeinoperable duringtheextension period.Forthesereasons,webelievetheextension wearerequesting willnotresultinasignificant increaseintheprobability orconsequences ofapreviously evaluated
- accident, norwillitresultinasignificant reduction inamarginofsafety.Criterion 2Thisextension willnotresultinachangeinplantconfiguration oroperation.
Therefore, theextension shouldnotcreatethepossibility ofanewordifferent kindofaccidentfromanypreviously evaluated oranalyzed.
Criterion 3SeeCriterion 1,above.Lastly,wenotethattheCommission hasprovidedguidanceconcerning thedetermination ofsignificant hazardsbyproviding certainexamples(48FR14870)ofamendments considered notlikelytoinvolvesignificant hazardsconsideration.
Thesixthoftheseexamplesreferstochangeswhichmayresultinsomeincreasetotheprobability ofoccurrence orconsequences ofapreviously analyzedaccident, butwheretheresultsarewithinthelimitsestablished asacceptable.
Webelievethischangefallswithinthescopeofthisexample,forthereasonscitedabove.Therefore, webelievethischangedoesnotinvolveasignificant hazardsconsideration asdefinedin10CFR50.92.
Attachment 1toAEP:NRC:1181 Page2411Intermediate RaneDetectorCalibrations Thischangewoulddelaythecalibration oftheintermediate range(IR)detectors requiredbyT/S4.3.1.1.1, Table4.3-1,Item5.Also,itwoulddelayinterlock functional testingofP-6requiredbyT/S4.3.1.1.2.
Theseextensions areneededfromJanuary17,1994,untiltheUnit2refueling outage.Theneedforthisextension isbecausetheIRdetectors cannotbecalibrated whileatpower.Thecalibration requiresthatatestsignalcoveringtherangeof10to10ampsbesuperimposed overtheexistingcurrent.SincethecurrentoftheIRdetectors isinthe104ampsrangeduringpoweroperation, asuperimposed signallessthanthatcouldnotbeobserved.
Therefore, theIRdetectors couldnotbecalibrated belowtheactualcurrentatwhichweareoperating.
Pastoperating historyinUnit2hasshownthattheIRdetectors haveperformed withoutseriousdegradation.
Thereisnoreasontobelievethatthedetectors wouldbeinoperable duringtheextension period.TheIRissubjected toaT/Srequiredchannelcheckevery12hours.TheIRcurrentsaretrendeddailyandnormalized to25Xpowertoensurethatthehighfluxatlowpowertripsetpointsdonotbecomenonconservative.
Throughthechannelchecksandtrendingprogram,itisexpectedthatanydegradation inanIRdetectorwouldbenoticed.Lastly,theprotection providedbythesedetectors isrequiredwhileshutdown,oratlowpower(approximately lessthan10X)andnotatournormaloperating power.10CFR5092CriteriaPer10CFR50.92,aproposedamendment willnotinvolveasignificant hazardsconsideration iftheproposedamendment doesnot:(1)involveasignificant increaseintheprobability orconsequences ofanaccidentpreviously
- analyzed, (2)createthepossibility ofanewordifferent kindofaccidentfromanyaccidentpreviously analyzedorevaluated, or(3)involveasignificant reduction inamarginofsafety.Ourevaluati'on oftheproposedchangewithrespecttothesecriteriaisprovidedbelow.
Attachment 1toAEP:NRC:1181 Page25Criterion 1Ouroperating historyoftheUnit2IRdetectors haveshownthattheyarehighlyreliable, andgiveusnoreasontobelievetheywouldbeinoperable duringtheextension period.Ourchannelchecksandtrendingprogramwoulddetectdegradation inanIRdetector.
Forthesereasons,webelievetheextension we.arerequesting willnotresultinasignificant increaseinthe,probability orconsequences of"'apreviously evaluated
- accident, norwillitresultinasignificant reduction inamarginofsafety.Criterion 2Thisextension willnotresultinachangeinplantconfiguration oroperation.
Therefore, theextension shouldnotcreatethepossibility ofanewordifferent kindofaccidentfromanypreviously evaluated oranalyzed.
Criterion 3SeeCriterion 1,above.Lastly,wenotethattheCommission hasprovidedguidanceconcerning thedetermination ofsignificant hazardsbyproviding certainexamples(48FR14870)ofamendments considered notlikelytoinvolvesignificant hazardsconsideration.
Thesixthoftheseexamplesreferstochangeswhichmayresultinsomeincreasetotheprobability orconsequences ofapreviously evaluated
- accident, buttheresultsofwhicharewithinlimitsestablished asacceptable.
Webelievethischangefallswithinthescopeofthisexample,forthereasonscitedabove.Thus,webelievethischangedoesnotinvolveasignificant hazardsconsideration asdefinedin10CFR50.92.
Attachment 1toAEP:NRC:1181 Page2612DividerBarrierSealInsectionT/S4.6.5.9requiresavisualinspection ofatleast95Xof-theseal'sentirelength.Also,itrequiresthattwotestcouponsberemovedfromthesealfortestingtoensurethephysicalproperties arewithinspecified limits.PerthisSpecification, theinspection istobeperformed whileshutdown.Theextensions areneededfromMarch8,1994,untiltheUnit2refueling outage.Thedividerbarriersealisapassivedesignfeature,thusitisnotsubjected toanyoutsideforcesotherthantheenvironment.
Duringthecycle7-8refueling outage,wereplaced100Xofthedividerbarrierseal.Oursubsequent inspection, duringthelastoutage,revealednodegradation oftheseal.Also,whenthetestcouponsweresubjectedtothetensilestrengthandelongation tests,theysatisfied theacceptable physicalpropertyrequirements.
Basedonthefactsthatthedividerbarriersealispassive,new,andhasshownnodegradation, webelievethereisnoreasontosuspectthatitwouldnotbeoperableduringtheextension period.10CFR5092CriteriaPer10CFR50.92,aproposedamendment willnotinvolveasignificant hazardsconsideration iftheproposedamendment doesnot:(1)involveasignificant increaseintheprobability orconsequences ofanaccidentpreviously
- analyzed, (2)createthepossibility ofanewordifferent kindofaccidentfromanyaccidentpreviously analyzedorevaluated, or(3)involveasignificant reduction inamarginofsafety.Ourevaluation oftheproposedchangewithrespecttothesecriteriaisprovidedbelow.Criterion 1Thedividerbarriersealisapassivedesignfeaturewhichwasentirelyreplacedin1990.Oursubsequent inspection revealednodegradation tothesealandthephysicalproperties ofthetestcouponswereacceptable.
Forthesereasons,webelievetheextension wearerequesting willnotresultinasignificant increaseintheprobability orconsequences ofapreviously evaluated
- accident, norwillitresultinasignificant reduction inamarginofsafety.Criterion 2Thisextension willnotresultinachangeinplantconfiguration oroperation.
Therefore, theextension shouldnotcreatethepossibility ofanewordifferent kindofaccidentfromanypreviously evaluated oranalyzed.
Attachment 1toAEP:NRC:1181 Page27Criterion 3SeeCriterion 1,above.Lastly,wenotethattheCommission hasprovidedguidanceconcerning thedetermination ofsignificant hazardsbyproviding certainexamples(48FR14870)ofamendments considered notlikelytoinvolvesignificant hazardsconsideration.
Thesixthoftheseexamplesreferstochangeswhichmayresultinsomeincreasetotheprobability orconsequences ofapreviously evaluated
- accident, buttheresultsofwhicharewithinlimitsestablished asacceptable.
Webelievethischangefallswithinthescopeofthisexample,forthereasonscitedabove.Thus,webelievethischangedoesnotinvolveasignificant hazardsconsideration asdefinedin10CFR50.92.
Attachment 1toAEP:NRC:1181 Page2813ReactorCoolantPumRCPFireProtection T/S4.7.9.2.b requiresthattheRCPsfireprotection systembefunctionally testedevery18months.Inordertoperformthetest,theRCPfiredetection instrumentation requiredperT/STable3.3-11andthefiresuppression systemrequiredbyT/S3.7.9.2mustbemadeinoperable, whichisnotconsidered prudentduringoperation oftheRCPs.Itisalsonotedthat,sincetheRCPsarelocatedinahighradiation area,afirewatch cannotbeestablished perActionStatement BofT/S3.7.9.2.Therefore, wewouldbeforcedtorelyonclosed'circuittelevision coverageasasubstitute forthecontinuous firewatch.
Intheeventthatacamerafailed,wewouldbeinnon-compliance withtherequirements ofT/S3.7.9.2.Theextension isneedfromMarch30,1994,untiltheUnit2refueling outage.BasedonthepastRCPsprinkler systemsurveillance history,thereisnoreasontobelievethatitwouldnotbecapableofperforming it'sintendedsafetyfunctionduringtheextension period.Also,wehaveseismically qualified oilcollection systemsontheRCPs,installed inaccordance with10CFR50,AppendixR.ThesesystemsaredesignedtomitigatetheeffectsofaRCPlubeoilleak.10CFR5092CriteriaPer10CFR50.92,aproposedamendment willnotinvolveasignificant hazardsconsideration iftheproposedamendment doesnot:(1)involveasignificant increaseintheprobability orconsequences ofanaccidentpreviously
- analyzed, (2)createthepossibility ofanewordifferent kindofaccidentfromanyaccidentpreviously analyzedorevaluated, or(3)involveasignificant reduction inamarginofsafety.Ourevaluation oftheproposedchangewithrespecttothesecriteriaisprovidedbelow.Criterion 1BasedontheRCPfireprotection systemsurveillance recordthereisnoreasontobelievethatitwouldnotbecapableofperforming it'sintendedsafetyfunction.
Additionally, itisnotedthattheRCPoilcollection systemisdesignedtomitigatetheeffectsof'RCPlubeoilleak.Forthesereasons,webelievetheextension wearerequesting willnotresultinasignificant increaseintheprobability orconsequences ofapreviously evaluated
- accident, norwillitresultinasignificant reduction inamarginofsafety.Criterion 2Thisextension willnotresultinachangeinplantconfiguration oroperation.
Therefore, theextension shouldnotcreatethepossibility ofanewordifferent kindofaccidentfromanypreviously evaluated oranalyzed.
Attachment 1toAEP:NRC:1181 Page29Criterion 3SeeCriterion 1,above.Lastly,wenotethattheCommission hasprovidedguidanceconcerning thedetermination ofsignificant hazardsbyproviding certainexamples(48FR14870)ofamendments considered notlikelytoinvolvesignificant hazardsconsideration.
Thesixthoftheseexamplesreferstochangeswhichmayresultinsomeincreasetotheprobability orconsequences ofapreviously evaluated
- accident, buttheresultsofwhicharewithinlimitsestablished asacceptable.
Webelievethischangefallswithinthescopeofthisexample,forthereasonscitedabove.Thus,webelieve'his changedoesnotinvolveasignificant hazardsconsideration asdefinedin10CFR50.92.
Attachment 1toAEP:NRC:1181 Page3014Containment WaterLevelInstrumentation andSumVisualInsectionT/S4.3.3.6,Item18requiresthatthecontainment waterlevelinstrumentation becalibrated every18months.T/S4.5.2.d.2 requiresthatthesumpanditsinletsbesubjected toan18monthvisualinspection.
Anextension isalso"neededforT/S4.5.3.1sinceitreferences T/S4.5.2.Thesesurveillances cannotbeperformed duringreactoroperation sincetheyrequireentryintothelowervolumeofcontainment.
Theextensions areneededfromJanuary31,1994(calibrations) andMarch21,1994(visual),
untiltheUnit2refueling outage.Ourpasthistoryoncontainment waterlevelinstrumentation hasnotshownanysignificant degradation.
Thiswaterlevelinstrumentation isusedtomeasuretheamountofwateronthecontainment floorabovethesump.Normally, thereisnowateronthefloor.Theinstrumentation consistsofRTDs,whichhaveshownstableoperation inthepast.Sincetheinstruments havea"live"zeropointonthescale,areadingofzeroorgreaterindicates thattheinstruments areperforming correctly.
Inaddition, therearetworedundant channelsthataresubjected toT/Srequiredmonthlychannelchecksandthechannelscanbecomparedtoshowifdriftexists.Thereisnoreasontobelievethatthecontainment waterlevelinstrumentation wouldbeinoperable duringtheextension period.Thevisualinspection isperformed toensurethatwehaveacleansystempriortostartup.Duringreactoroperation, entryintothecontainment sumpareaisrestricted.
Also,wehaveverystrictmaterialcontrolrequirements forentryintocontainment andattheendofanoutage,a"containment closeouttour"isperformed toensurethatnomaterialisleftwithincontainment.
Inaddition, performance ofvisualinspections following reactoroperation hasshownthatverylittledebris,everaccumulates inthesump.Thereisnoreasontobelievethatthesumporit'sinletswouldbecomeblocked.10CFR50.92CriteriaPer10CFR50.92,aproposedamendment willnotinvolveasignificant hazardsconsideration iftheproposedamendment doesnot:(1)involveasignificant increaseintheprobability orconsequences ofanaccidentpreviously
- analyzed, (2)createthepossibility ofanewordifferent kindofaccidentfromanyaccidentpreviously analyzedorevaluated, or(3)involveasignificant reduction inamarginofsafety.Ourevaluation oftheproposedchangewithrespecttothesecriteriaisprovidedbelow.
Attachment 1toAEP:NRC:1181 Page31Criterion 1Ourpasthistoryoncontainment waterlevelinstrumentation hasnotshownanysignificant degradation oftheseinstruments.
Typically, thereisnowateronthecontainment floorfortheinstruments tomeasure;however,theinstrumentation iscalibrated toreada"live"zerolevel.Also,wehavetworedundant channelsthataresubjected tomonthlychannelchecks,whichwouldshowifdriftexists.Therefore, thereisnoreasontobelievethatthecontainment'ater levelinstrumentation wouldnotperformitsintendedfunctionduringtheextension period.Thelikelihood ofasignificant amountofdebrisenteringthesumpisverylowbecausewehaveverystrictrequirements formaterialcontrolinsidecontainment, restricted accessintothecontainment sumparea,andaninspection ofcontainment isperformed attheendofanoutage.Thereisnoreasontobelievethatthesumporitsinletscouldbecomeblockedduringtheextension period.Forthesereasons,webelievetheextension wearerequesting willnotresultinasignificant increaseintheprobability orconsequences ofapreviously evaluated
- accident, norwillitresultinasignificant reduction
,inamarginofsafety.Criterion 2Thisextension willnotresultinachangeinplantconfiguration oroperation.
Therefore, theextension shouldnotcreatethepossibility ofanewordifferent kindofaccidentfromanypreviously evaluated oranalyzed.
Criterion 3SeeCriterion 1,above.Lastly,wenotethattheCommission hasprovidedguidanceconcerning thedetermination ofsignificant hazardsby.providing certainexamples(48FR14870)ofamendments considered notlikelytoinvolvesignificant hazardsconsideration.
Thesixthoftheseexamplesreferstochangeswhichmayresultinsomeincreasetotheprobability orconsequences ofapreviously evaluated
- accident, buttheresultsofwhicharewithinlimitsestablished asacceptable.
Webelievethischangefallswithinthescopeofthisexample,forthereasonscitedabove.Thus,webelievethischangedoesnotinvolveasignificant hazardsconsideration asdefinedin10CFR50.92.
Attachment 1toAEP:NRC:1181 Page3215ReactorCoolantFlowTransmitter Calibrations T/S4.2.5.2andT/S4.3.1.1.1, Table4.3-1,Items12&13requirethereactorcoolant(RC)flowinstrumentation foreachlooptobecalibrated every18months.Thesecalibrations shouldnotbeperformed atpowerbecauseofthepossibility ofareactortrip.Eachsetoftransmitters (3perloop)hasacommonsensingline,whichwhenvalvingin(orout)oneofthetransmitters couldcauseareduceddifferential pressureinthe.othertwotransmitters.
Thiscouldcauseareactortriponlowflowinoneloopsincethetwooutofthreetrip-logicwouldbesatisfied.
Theextension forthesesurveillance requirements areneededfromJanuary28,1994,untiltheUnit2refueling outage.Pastsurveillance historyhasshownthattheRCflowchannelsareverystable;verylittleornodriftisfoundduringcalibration andtheyhavealwaysbeenwithintheirallowable range.Also,sincetherearethreechannelsperloop,driftwouldbeexpectedtobediscovered duringtheT/Srequiredshiftlychannelchecksormonthlyfunctional checks.Sincethechannelshavebeenverystableandwehavethreechannelsperlooptoindicatedrift,thereisnoreasontobelievethatcontinued operation duringtheextension periodwouldcausetheinstrumentation tobecomeinoperable.
10CFR5092CriteriaPer10CFR50.92,aproposedamendment willnotinvolveasignificant hazardsconsideration iftheproposedamendment doesnot:(1)'involveasignificant increaseintheprobability orconsequences ofanaccidentpreviously
- analyzed, (2)createthepossibility ofanewordifferent kindof'ccident fromanyaccidentpreviously analyzedorevaluated, or(3)involveasignificant reduction inamarginofsafety.Ourevaluation oftheproposedchangewithrespecttothesecriteriaisprovidedbelow.Criterion 1Ourreactorcoolantflowchannelshavebeenverystableinthepast.VehavethreechannelsperloopandperformT/Srequiredchannelchecksandfunctional testswhichshouldshowanyindication ofdrift.Therefore, thereisnoreasontobelievethatthereactorcoolantflowchannelswouldnotbeoperableduringtheextension period.Forthesereasons,webelievetheextension wearerequesting willnotresultinasignificant increaseintheprobability orconsequences ofapreviously evaluated
- accident, norwillitresultinasignificant reduction inamarginofsafety.
Attachment 1toAEP:NRC:1181 Page33Criterion 2Thisextension willnotresultinachangeinplantconfiguration oroperation.
Therefore, theextension shouldnotcreatethepossibility ofanewordifferent kindofaccidentfromanypreviously evaluated oranalyzed.
Criterion 3SeeCriterion 1,above.Lastly,wenotethattheCommission hasprovidedguidanceconcerning thedetermination ofsignificant hazardsbyproviding certainexamples(48FR14870)ofamendments considered notlikelytoinvolvesignificant hazardsconsideration.
Thesixthoftheseexamplesreferstochangeswhichmayresultinsomeincreasetotheprobability orconsequences ofapreviously evaluated
- accident, buttheresultsofwhicharewithinlimitsestablished asacceptable.
Webelievethischangefallswithinthescopeofthisexample,forthereasonscitedabove.Thus,webelievethischangedoesnotinvolveasignificant hazardsconsideration asdefinedin10CFR50.92.
Attachment 1toAEP:NRC:1181 Page3416TriActuatinDevice0erational TestinESFmanualactuation Extensions arerequested fortheTripActuating DeviceOperational Testing(ESFmanualactuation switches) specified inT/S4.3.2.1.1, Table4.3-2,Items9.a,9.b,9.c,and9.d.Thesetestscannotbeperformed atpowersincetheywouldactuatetheESFfunctions associated withtheswitches(seetablebelow).Theextensions areneededfromApril15,1994,throughtheUnit2refueling outage.Table4.3-2ItemNoDescrition9.aSafetyinjection (ECCS)Feedwater Isolation ReactorTrip(SI)Containment Isolation PhaseAContainment PurgeandExhaustIsolation Auxiliary Feedwater PumpsEssential ServiceWaterSystem9.bContainment SprayContainment Isolation PhaseBContainment AirRecirculation Fan9.cContainment Isolation PhaseAContainment PurgeandExhaustIsolation 9.dSteamLineIsolation Thecircuitry associated withmanualactuation ofESFfunctions issubjected toT/Srequiredchannelfunctional tests,monthlyorbi-monthly.
Theonlyportionofthechannelnottestedisthemanualactuation switches.
Previoussurveillance testingoftheswitcheshaveshownthemtobehighlyreliable; infact,therehasneverbeenafailureofanyoftheESFmanualswitchesdetectedduringsurveillance testingoftheswitchesineitherunit.Additionally, wenotethatthemanualcircuitry servesasabackuptoautomatic actuation
- channels, whichinitiatethesameESFfunctions.
Theautomatic channelsaresubjected toT/Srequiredchannelchecksandchannelfunctional teststoverifyoperability.
Attachment 1toAEP:NRC:1181 Page3510CFR50.92CriteriaPer10CFR50.92,aproposedamendment willnotinvolveasignificant hazardsconsideration iftheproposedamendment doesnot:(1)involveasignificant increaseintheprobability orconsequences ofanaccidentpreviously
- analyzed, (2)createthepossibility ofanewordifferent kindofaccidentfromanyaccidentpreviously analyzedorevaluated, or(3)involveasignificant reduction inamarginofsafety.Ourevaluation oftheproposedchangewithrespecttothesecriteriaisprovidedbelow.Criterion 1Thesurveillance testhistoryoftheESFmanualswitchesisexcellent, indicating nofailuresoftheswitchesineitherunit.Themajorityofthemanualcircuitry issubjecttoachannelfunctional testonamonthlyorbi-monthly basis.Thechannelfunctional testingwillcontinuetobeperformed duringthesurveillance extension period.Additionally, wenotethatthemanualcircuitry servesasabackuptoautomatic circuitry, whichinitiates thesameESFfunctions.
Forthesereasons,webelievetheextension wearerequesting willnotresultinasignificant increaseintheprobability orconsequences ofapreviously evaluated
- accident, norwillitresultinasignificant reduction inamarginofsafety.Criterion 2Thisextension willnotresultinachangeinplantconfiguration oroperation.
Therefore, theextension shouldnotcreatethepossibility ofanewordifferent kindofaccidentfromanypreviously evaluated oranalyzed.
Criterion 3SeeCriterion 1,above.Lastly,wenotethattheCommission hasprovidedguidanceconcerning thedetermination ofsignificant hazardsby,providing certainexamples(48FR14870)ofamendments considered notlikelytoinvolvesignificant hazardsconsideration.
Thesixthoftheseexamplesreferstochangeswhichmayresultinsomeincreasetotheprobability orconsequences ofapreviously evaluated
- accident, buttheresultsofwhicharewithinlimitsestablished asacceptable.
Webelievethischangefallswithinthescopeofthisexample,forthereasonscitedabove.Thus,webelievethischangedoesnotinvolveasignificant hazardsconsideration asdefinedin10CFR50.92.