ML18018A878
ML18018A878 | |
Person / Time | |
---|---|
Site: | Nine Mile Point |
Issue date: | 06/30/1972 |
From: | Niagara Mohawk Power Corp |
To: | US Atomic Energy Commission (AEC) |
References | |
Download: ML18018A878 (914) | |
Text
File+:RegulatoFf.Riieelvedav/Ltroatid~7+U.S.AtomicEnergyCommissionDocket50-220APPLICANT'SENVIRONMENTALREPORTOPERATINGLICENSESTAGECONVERSIONTOFULL-TERMOPERATINGLICENSEincieoinUcearaion4nlJuneI972NIAGARAMOHAWKPOWERCORPORATIONSyracuse,NewYork13202 0
FOREWORDOnAugust22,1969,'iagaraMohawkPowerCorporation(NiagaraMohawk)receiveditsprovisionaloperatinglicense(DPRNo.17)fromtheUnitedStatesAtomicEnergyCommission(Commission)tooperateNineMilePointNuclearStationUnit1at1,538MWt(500MWe).OnApril14,1971thepowerratingforthislicensewasincreasedbytheCommissionto1,850MWt(610MWe).PursuanttoSectionAofrevisedAppendixDto10CFRPart50,thisenvironmentalreportaccompaniesNiagraraMohawk'sapplica-tiontoconverttheprovisionaloperatinglicenseforNineMilePointUnit1toafull-termlicense.Thecontentsofthisreportgenerallyconformtothe<<DraftGuidetothePreparationofEnvironmentalReportsforNuclearPowerPlants"issuedbytheCommissionFebruary1971,asamended,includingthesubstanceoftheinformationrequiredbytheMay1972<<GuidetothePreparationofBenefit-CostAnalyses<<,ThoseotherpointsatwhichthisreportdeviatesfromtheaboveguidelinesarenotedinthisForeword.SinceUnit1isanoperatingfacility,thereportdescribingitsenvironmentalimpactmustnecessarilydifferinbothscopeandcontentfromthatappropriatetotheconstructionpermitstage.Theprimaryconcernattheoperatinglicensestageiswhethertherehasbeenanyadverseimpacttodatefromtheoperationofthefacilityorwhetheranyadverseimpactcanbepredictedfromitscontinuedoperation.Considerationofalternativesmustofnecessitybelimitedtothosewhichhaveabearingoneitherofthesetwoimpacts.ThebenefitofthepossibleadoptionofanyofthesealternativesmustbebalancedagainstthecosttoNiagaraMohawkoftheirimplementationandtothepublicfrom.theinterruptionofservice.Afurtherdifferenceisthatthisreportfocusessolelyontheinteractionofanoperatingfacilityuponitsenvironment.Accordingly,analysisofthefacilitysimpactontheenvironmentbeginswithstart-upin1969untilthepresent.Referencestopreconstructionsiteenvironmentaremadeonlyforcomparisontothesiteatpresent.Thediscussionofconstructioneffectsislimitedtocontemplatedmodificationsofthefacility.ThisreportdescribesindetailthestepstakenbyNiagaraMohawkinthedesignandoperationofthestationtoavoidadverseenvironmentaleffects.AlsodiscussedaretheeffortsbyNiagaraMohawktoenhancethesiteandthenearbyenvironment.Someoftheinterpretationschoseninpreparingthisdocument,whicharesupportedbythelegislativehistoryoftheNationalEnvironmentalPolicyAct,(83Stat.852,January1,1970)aswell
asbytheGuidelinesissuedonApril23,1971bytheCouncilonEnvironmentalQuality,aresummarizedbelow:(a)(b)Thehumanenvironmentincludesthatcreatedbymanforhissubsistence,safety,andcomfortaswellasthatprovidedbynature.ThegeographicalareaconsiderednotonlyincludestheimmediateNiagaraMohawkservicearea,butalsotheareaservicedbytheNewYorkPowerPoolofwhichNiagaraMohawkisamember.Thus,thebenefittoresidentsinthemajorpopulationcentersintheNewYorkPowerPoolareafromusingthissourceofpowerforlighting,heating,andcoolingtheurbanenvironmenthasbeencon-sideredappropriateforthecost-benefitanalysisinvolvedinthisreport.(c)<<Long-termproductivity<<ispresumedtomeanproduc-tivityoveranextendedperiodtowardaneconomicorotherpurposegenerallyacceptedasaconstructiveuseofsomepartofthenationalenvironment.XnJune1972,NiagaraMohawkfiledanapplicationwiththeCommissiontoconstructanew1,100MWenuclearpowergeneratingfacilityonitsNineMilePointsite.Thisproposedfacility(tobecalledNineMilePointStationUnit2),ifapproved,willbeconstructedadjacenttoUnit1andscheduledforoperationin1978.ThedescriptionoftheproposedUnit2anditsenvironmentalimpactarepresentedinareportentitled<<NineMilePointNuclearStationUnit2Applicant'sEnvironmentalReport-ConstructionPermitStage,<<whichaccompaniesitsconstructionpermitapplication.
Jv1"~yHvrbk(iWLr~J4~'Ir'i'lvvt.I~i~~~'vrpgvQ~1rvijJf~J
TABLEOFCONTENTSSection.TitlePacae.1oFOREWORD~.oooo.~oo.oo~INTRODUCTIONo~oooooooo~oii1o1111DESCRIPTXONOFOPERATINGSTATIONANDSITE12NEEDFORLOCATINGTHEPOWERSTATXONATTHESITEooo~ooooo~ooo1~111~212oTHESITEooooo~~ooooo~o2.1LOCATXONOFSTATXON2.1.1ProjectSite.2.1.2Transportation..22HUMANACTIVITIESINTHEENVIRONS.2.2.1HistoryofLandandWaterUse2.2.2Population23HXSTORICSIGNIFXCANCE2o11~2o112o112o112.2-12o2122-42o3124GEOLOGY2.41Topography2.4.2Geology2.Q.3Seismicity25HYDROLOGY26CLIMATOLOGYANDMETEOROLOGY2.6.1DataSources.2.6.2GeneralClimatology2.6.3Winds2.6.4TornadoesandHurricanes.2.6.5TurbulenceClasses.2.6.6LapseRatesooo'o24-124-12.4-12.4-22.5 2.6-12.6-12.6-12.6-12.6-22.6-32.6-327272.7.2.7.2.72.7.2727BIOTAo1TerrestrialEcologyofSurroundingStationSite1.1Abandonedpastureandorchard1.2Overgrownland1.3Northernhardwoodforest,.1.4Clearedland..15AnimalAssociations.2AquaticEcology.oAreaand2o712o72o722o722o722o732o732.7-42-8PRESENTRADIOLOGXCALCONDITIONSATTHESXTEANDINITSENVXRONMENT2.8-1
TABLEOFCONTENTS(CONT'D)Section-TitlePacae.3.THESTATION~31EXTERNALAPPEARANCE3&113&1132TRANSMISSIONLINES..32-133REACTORANDSTEAMELECTRICSYSTEM..3.3-13.4WATERUSE34-135DESCRIPTIONOFCOOLINGWATERSYSTEMDESIGN3.5.1IntakeSystem3.5.2DischargeSystem36RADWASTESYSTEM3.6.1WasteProcessingSystem.3.6.2GaseousRadioact=iveWasteSystem.3.6.2.1SourcesofRadioactiveGas3.6.2.1.1ProcessOffgas.3.6.2.1.2MechanicalVacuumPumpOffgas.3.6.2.1.3DrywellVentilation.3.6.2.1.4TurbineGlandSeal3.6.2.1.5MiscellaneousBuildingServiceReleases.~3.6.2.2DescriptionoftheOriginalOffgasSystem3.6.2.2.130-.MinuteDelayPipe.3.6.2.2.2OffgasFilter(Aftercooler)3.6.2.2.3RadiationMonitors3.6.2.24St.ack.3.6.2.3DescriptionofUpgradedOffgasSystem.3.6.2.3.1CatalyticRecombiner.3.6.2.3.2Condenser3.6.2.3.3DelayPipe.3.6.2.3.4DehumidificationSystem.3.6.2.3.5Pre-absorber3.6.2.3.6CharcoalAbsorbers3.6.2.3.7VacuumPump.3.6.3LiquidRadioactiveWasteSystem3.6.3.1DescriptionoftheOriginalLiquidRadwastSystem.3.6.3.1.1WasteCollectorSubsystem36.3.1.2FloorDrainSubsystem3.6.3.1.3RegenerantChemicalSubsystem.3.6.3.2DescriptionoftheUpgradedLiquidRadwastSyst:em010~00000003.6.3.3OriginalandUpgradedSystemOperationalAnalysisO00000000003.6.3.4OriginalandUpgradedSystemOperationalEvaluation3.6.3.4.1RegenerantChemicalsSubsystem3.6.3.4.2WasteCollectorSubsystem-3.5-135-13.5-23.6-13.6-13.6-23.6-23.6-23.6-23.6-33.6-336-43.6-43.6-43.6-43.6-53.6-53.6-53 636-63.6-63.6-63.6-63.6-63.6-73 736-73.6-73.6-83.6-83.6-83.6-936-143.6-143.6-15
TABLEOFCONTENTS(CONTEND)Section-TitlePa<ac.3.6.3.4.3FloorDrainSubsystem3.6.3.5ControlofWasteActivityMovement.3.6.3.5.1ReleaseofProcessedWaste.3.6.4SolidRadioactiveWasteSystem.3.6.4.1SourcesofSolidWaste.3.6.4.2ProcessingandHandling3.6.4.3PerformanceAnalysis3.6.5TransportationofFuelandRadioactive3.6.5.1PackagingCriteria3.6.5.2NewFuelShipping3.6.5.3SpentFuelShipping.3.6.5.4RadioactiveWasteShipping37CHEMICALANDSANITARXDISCHARGES3.7.1LiquidChemicalDischarge3.7.2SanitaryWasteSystem.38OTHERWASTESWastese.3.6-153.6-163.6-173.6-173.6-193.6-203.6-203.6-213.6-213.6-2236-2336-243&713&713&7338-14-5ENVIRONMENTALEFFECTSOFCONSTRUCTIONENVIRONMENTALEFFECTSOFSTATIONOPERATION~.40-151-15.1EFFECTSOFOPERATIONOFCOOLINGWATERINTAKEANDDISCHARGEFACILITIES5.1.1IntakeStructureandOperation.5.12DischargeStructureandOperation.5.1.3EffectsonAquaticBiota.52EFFECTSOFRELEASEDRADIOACTIVEMATERIALS5.2.1General5.2.2AqueousReleases5.2.2.1ExternalRadiationExposurefromWaterRelatedActivities.5.2.2.1.1IndividualExposure.5.2.2.1.2PopulationExposure-Recreational.,5.2.2.2InternalRadiationExposurefromIngestionofFoodandWater5.2.2.2.1IndividualExposure.5.2.2.2.2PopulationExposure.5.2.2.3RadiationExposureofPrimaryProducerandConsumerSpeciesfromDischargedRadionuclides5.2.2.3.1External-5.2.2.3.2Internal.5.2.2.4RadiationExposureofFishfromDischargedRadionuclides.5.2.2.4.1External.51 5.1-251-25.1-55.2-152-152-25.2-35.2-35.2-55.2-652-652-752-105.2-105.2-105.2-115.2-11Vi
TABLEOFCONTENTS(CONT'D)Section.5.2.2.5.2.35.2.3.5.2.35245.2-55.2.5.5.2.5.Title4.2Internal.RadionuclidesDischargedtoAmbientAir.1Individual.2PlantsandAnimalsRadionuclideContaminationofGroundWater.IndividualExposureEstimate1LiquidReleases2GaseousReleasesPacae.5.2-125.2-125.2-125.2-135.2-135.2-135.2-155.2-1553EFFECTSOFCHEMICALANDSANITARYWASTETREATMENTEFFLUENTS5.3-15-4OTHERENVIRONMENTALEFFECTS5.4.1TransmissionLineEffects5.4.2RadioactiveMaterialTransportEffects5.4.3NoiseEffects5.4.3.1PlantEnvironment5.4.3.2PlantNoiseSources.5.4.3.3AcousticalImpact5.4.4MeasuresWhichWillBeTakenToPreserveExistingEnvironmentorEnhanceitsUse5.4.5InteractionwithNeighboringNewYorkStatePowerAuthorityFacilities.5.4.6DisposalofMiscellaneousSolidWaste5.4.7ChangesinSiteLandandWaterUse5.4.7.1LandUse5.4.7.2WaterUse5.4.8EffectsofReleasedCombustionproducts.The54-15.4-15.4-25.4-35.4-35.4-35.4-45.4-85.4-105.4-55.4-55.4-55.4-654-755ASSESSMENTOFENVIRONMENTALEFFECTSOFSTATIONOPERATION5.5-15.5.1FishDistribution.5.5.1.1FathometricSurveys.5.5.1.2FishNetting.5.5.1.3FoodpreferenceSurveys5.5.2BenthicStudies.5.5.3NutrientDistributionStudies5.5.4PlanktonDistributionandEntrainment5.5.5Three-DimensionalThermalSurveys.5.5.6FutureField,Laboratory,andMonitoriPx'ogramsooooooeooo5.5.6.1EffectsofEntrainmentonFishEggsandLarvae.FishPopulationStudy.BenthosandCladophoraSurveyPhysical-ChemicalAnalysisMeteorologyRadiationEnvironment.556.25.5.6.35.5.645.5.6.55.5.6.6ng55-155-25.5-35.5-45.5-45.5-65.5-755-855-85.5-855-95.5-1055-1055-1055-11
TABLEOFCONTENTS(CONT'D)SectionTitle.6.ENVXRONMENTALEFFECTSOFACCIDENTS6~1SCOPEeee~e~eee~ee6.1.1ProbabilityinPerspective.6.1.2ProbabilityCategories6.1.2.1.NormalCondition.6.1.2.2UpsetCondition.6.1.2.3EmergencyCondition.6.1.2.4FaultCondition.6.1.3BasisforProbabilityEstimation.6.1.4TransientandAccidentOccurrencesReactorFacility.e~00~0~~e~e0e~0Pacae6.1-161-161-161-261-26.1-26.1-261-261-361-362CLASS2-MISCELLANEOUSSMALLRELEASESOUTSIDECONTAINMENT6.2.1EventXdentification6.2.2CalculationofSourcesandDoses..6.2.3RadiologicalResults.6.2.4EventProbabilityConsiderations6.3CLASS3-RADWASTESYSTEMFAILURES6.3.1LiquidRadwaste6.3.1.1CalculationofSourcesandDoses6.3.1.2RadiologicalResults6.3.13EventProbabilityConsiderations6.3.2GaseousRadwaste6.3.2.1CalculationofSourcesandDoses6.3.2.2RadiologicalResults6.3.2.3EventProbabilityConsiderations6.2-162-162-16.2-162-26.3-I63-16.3-163-16.3-26.3-263-363-26. 36.4CLASS4-EVENTSTHATRELEASEACTXVXTYINTOPRIMARYSYSTEM.;,......-.64-165CLASS5-EVENTSTHATRELEASEACTXVXTYINTOSECONDARYSYSTEM65-166CLASS6-REFUELXNGACCIDENTSXNSXDE.CONTAINMENT6.6.1HeavyObjectDroppedontoCore6.6.1.1CalculationofSourcesandDoses6.6.1.2RadiologicalResults6.6.1.3EventProbabilityConsiderations6.6.2SpentFuelCaskDrop.6.6.2.1CalculationofSourcesandDoses6.6.2.2RadiologicalResults6.6.2.3EventProbabilityConsiderations67CLASS7-SPENTFUELACCIDENTOUTSIDECONTAINMENT00e~eeee00~~~~0e00\00'SECONDARY0*~66-16.6-16.6-16.6-26.6-26.6-36.6-36.6-46.6-46.7-1viii
TABLEOFCONTENTS(CONT'D)Section.TitlePacae.6.8CLASS8-ACCIDENTINITIATIONEVENTSCONSIDEREDINDESIGN-BASXSEVALUATXONINTHEPRELIMINARYSAFETYANALYSISREPORT6.8.1Loss-of-CoolantAccident(LOCA)6.8.1.1CalculationofSourcesandDoses68.1.2RadiologicalResults6.8.1.3EventProbabilityConsiderations6.8.2SteamLineBreakAccident(SLBA)6.8.2.1CalculationofSourcesandDoses6.8.2.2RadiologicalResults6.8.2.3EventProbabilityConsiderations6.8.3ControlRodDropAccident(CRDA)6.8.3.1CalculationofSourcesandDoses6.8.3.2RadiologicalResults6.8.3.3EventProbabilityConsiderations6.8.4RadioactiveLiquidStorageTankAccident(LSTA)6.8.4.1CalculationofSourcesandDoses6.8.4.2RadiologicalResults6.8.4.3EventProbability,Considerations6.8.5OffgasSystemAccident(OGSA)6.8.5.1CalculationofSourcesandDoses6.8.52RadiologicalResults6.8.5.3EventProbabilityConsiderations69RADIATXONBACKGROUNDANDRADIOLOGICALIMPACT6.9.1NaturalRadiationBackground6.9.1.1TotalRadiationfromNature6.9.1.2Man-RemfromNaturalRadiationBackground6.9.2Man-MadeRadiationBackground.6.9.2.1Man-RemfromMan-MadeRadiation6.9.3TotalAverageRadiationBackground6.9.4Man-RemfromNuclearPowerStations.6.9.5RadiologicalImpactConclusion6.8-168-168-16.8-26.8-36.8-36.8-368-46.8-46.8-46.8-468-56.8-56.8-56.8-56.8-66.8-66.8-66.8-668-76.8-76.9-16.9-16.9-16.9-16.9-16.9-26.9-26.9-36.9-470UNAVOIDABLEADVERSEENVIRONMENTALEFFECTSOFOPERATION7.0-189'ALTERNATIVESTOTHEEXISTINGPOWERSTATIONBENEFXTCOSTANALYSIS91NOTPROVIDINGTHEPOWER92PURCHASXNGTHEPOWER93ALTERNATIVESITES9.4REPLACINGTHEPOWER80-19.0-19.1-1,9.2-19.1-1i92-193-194-1
TABLEOFCONTENTS(CONTtD)SectionTitle.Pacae95ALTERNATIVECOOLINGSYSTEMS9.5.1ExistingOnce-ThroughCoolingSystem9.5.1.1EconomicsoftheExistingSystem9.5.1.2EnvironmentalConsiderationsoftheExistiSystmooo~ooooo9.5.1.2.1HeatDischargetoWaterBody.9.5.1.2.2EffectsofIntakeStructureonWaterBod9.5.1.2.3ChemicalDischargetoWaterBody9.5.1.2.4ComsumptionofWater9.5.1.2.5ChemicalDischargestoAmbientAir.9.5.1.2.6SaltsDischargedfromCoolingTower9.5.1.2.7ChemicalContaminationofGroundWater(ExcludingSalts)9.5-1.2.8RadiologicalEffects.9.5.1.2.9FoggingandIcing.9.5.1.2.10Raising/LoweringofGroundWaterLevels9.5.1.2.11AmbientNoise.9.5.1.2.12Aesthetics.9.5.1.2.13PermanentResidualsofConstructionACtlVltyoooooooo~o~9.5.1.2.14CombinedorInteractiveEffects..9.5.2Once-ThroughCoolingSystemwithDiffuserDischarge9.5.2.1Economic'softhisSystem.9.5.2.2EnvironmentalConsiderationsofthisSyStemoooooososooooo9.5.2.2.1HeatDischargetoWaterBody.9.5.2.2.2EffectsofIntakeStructureonWaterBodyoo~oooo-~9.5.2.2.3ChemicalDischargetoWaterBody.,9.5.2.2.4ConsumptionofWater.9.5.2.2.5ChemicalDischargetoAmbientAir9.5.2.2.6SaltsDischargedfromCoolingTower..9.5.2.2.7ChemicalContaminationofGroundWater(ExcludingSalts)9.5.2.2.8RadiologicalEffects.9.5.2.2.9FoggingandIcing.9.5.2.210Raising/LoweringofGroundWaterLevels9.5.2.2.11AmbientNoise.9.5.2.2.12Aesthetics.9.5.2.2.13PermanentResidualsofConstructiono~ActlVltyo,oo~~ooooo9.5.2.2.14Combined,orInteractiveEffects.,9.5.3Wet,CoolingTowerSystems9.5.3.1EconomicsofWetCoolingTowerSystems9.5.3.2EnvironmentalConsiderationsofWetCoolingTowerSystems.9.5.3.2.1HeatDischargedtoWaterBody..9.5.3.2.2EffectsofIntakeStructureonWaterBodng9.5-19.5-19.5-19.5-29.5-29.5-49.5-69.5-69 69.5-69.5-69.5-795-79.5-795-79.5-89.5-895-89 89.5-99.5-99.5-995-1095-1095-1095-119.5-119.5-119.5-119.5-119.5-119.5-119.5-1195-119.5-129.5-1295-149.5-149.5-159.5-15
TABLEOFCONTENTS(CONTEND)SectionTitlePacae.ChemicalDischargetoWaterBody.ConsumptionofWater.ChemicalDischargestoAmbientAirSaltsDischargedfromCoolingTower.ChemicalContaminationofGroundHater(ExcludingSalts)9.5.3.28RadiologicalEffects.9.5.3.2.9FoggingandIcing.9.5.3.2.10Raising/LoweringofGroundWaterLevels9.5.3.2.11AmbientNoise.9.5.3.2.12Aesthetics.9.5.3.2.13PermanentResidualsofConstruction~~Actlvltyoooeeeoooe.$.j.21$,Coa@inego~InteractiveEffects..'5;5't8ofingPdsystem9.5.5.1EconomicsoftheCoolingPond9.5.5.2EnvironmentalConsiderationsoftheCoolinPonde00Q009.5.5.2.1EffectsonWaterBody9.5.5.2.2ConsumptionofWater9.5.5.2.3ChemicalDischargetotheAmbientAir9.5.5.2.4SaltsDischargedfromaCoolingTower9.5.5.2.5ChemicalContaminationofGroundWater(ExcludingSalt).9.5.5.2.6FoggingandIcing.9.5.5.2.7Raising/LoweringofGroundWater.9.5.5.2.8AmbientNoise9.5.5.2.9Aesthetics9.5.5.2.10PermanentResidualsofConstruction~~Actlvltyeoo9.5.5.2.11CombinedorInteractiveEffects.9.5.6SprayPondSystem.9.5.7SupplementalCoolingSystem.9.5.3.2.39.5.3.2.495.3.2.59.53.2.69.5.3.2.796ALTERNATIVECHEMICALEFFLUENTSYSTEMS9.6.1ExistingChemicalEffluentSystem.9.6.1.1EconomicsofExistingSystem-96.1.2EnvironmentalConsiderationsofExistingSystem.9.6.2EvaporativeChemicalEffluentSystem.9.6.2.1EconomicsofEvaporativeChemicalEffluentSystems0.0..I0QQ0009.6.2.2EnvironmentalConsiderationsofthisSystem.9.6.2.2.1ChemicalDischargetoHaterBody.9.6.2.2.2ConsumptionofWater.9.6.2.2.3ChemicalContaminationofGroundWater(ExcludingSalts)FoggingandIcing.AmbientNoiseAesthetics9.5-169.5-169.5-179.5-1795-189.5-189.5-199.5-209.5-209.5-219.5-239.5-239.5-249.5-249.5-249.5-249.5-249.5-249.5-259.5-259.5-259.5-259.5-259.5-269.5-269.6-19.6-19.6-19.6-19.6-39.6-39.6-39.6-49.6-496-49.6-49.6-49.6-4X3.
TABLEOFCONTENTS(CONT'D)Section-Title.Pacae.9.6.2.2.7PermanentResidualsofConstructionActivity................9.6-49.6.2.2.8CombinedorInteractiveEffects.....9.6-597ALTERNATIVERADWASTESYSTEMS....97-198ALTERNATIVESTATIONDESIGNS9.8.1ExistingPowerStationDesign.98.1.1BenefitsofExistingDesign.9.8.1.2EconomicsoftheExistingPowerStation9.8.1.3EnvironmentalConsiderationsofExistingDeslgnO~0.0~0ii~~=009.8.1.3.1HeatDischargetoWaterBody..9.8.1.3.2EffectsofIntakeStructureonWaterBod9.8.1.3.3ChemicalDischargetoWaterBody.,9.8.1.3.4ConsumptionofWater.9.8.1.3.5ChemicalDischargetoAmbientAir9.8.1.3.6SaltsDischargedfromCoolingTowers9.8.1.3.7ChemicalContaminationofGroundWater.9.8.1.3.8RadiologicalEffects.9.8.1.3.9FoggingandIcing.9.8.1.3.10Raising/LowerofGroundWaterLevels9.8.1.3.11AmbientNoise.9.8.1.3.12PermanentResidualsofConstruction~eActlvltyoiooeoooo~~9.8.1.3.12Aesthetics.9 1.3..13PermanentResidualsofConstructionActivity.9.8.1.3.14CombinedorInteractiveEffects..9.8.2StationDesignConsideredtoproduceMinimumWaterImpact.9.8.3StationDesignConsideredtoProduceMinimumLand/AirImpact.9.8.4StationDesignConsideredtoProduceMinimumOverallEnvironmentalEffect98-19.8-19.8-19.8-39.8-39.8-39.8-39.8-39.8-49.8-49.8-59.8-59.8-59.8-59.8-598-59.8-59.8-59.8-698-69.8-698-798-710LONG-TERMEFFECTSOFSTATIONOPERATION10.0-111IRREVERSIBLEANDIRREZRIEVABLECOMMITMENTS12ENVIRONMENTALAPPROVALSANDCONSULTATIONSLISTOFREFERENCES11.0-1120-1APPENDICESA-IndustrialFirmsinOswegoCounty.B-InventoryofGameSpeciesinOswegoCounty.XllA-1B-1
TABLEOFCONTENTS(CONT~D)SectionTitlePacae.C-InventoryofHistoric,Natural,andScenicSitesinOswegoCounty00.0.0~I0000C1D-MeteorologicalDataSummariesatNineMilePointNuclearStation~oo~eiooooE-PlantandAnimalSpeciesObservedatNineMilePointNuclearStationF-StudiesConductedasPartofNineMilePointLakeSurveillanceG-RegulatoryandReviewProceduresDocumentsG-1H-ThermalEffectsofHeatedDischargesonLakeOntario.H-1I-MeteorologicalCalculationsforAssessingEnvironmentalEffectsofAccidents
LISTOFFIGURES~FiureFrontispiece1e11e~~~ePlotPlan.Title.AfterPacae..lli1e122e112e122e13LocationMap.SiteVicinityMap.TransportationMap.~~e2e112e112e122e212e222e2322-422-52.2-6EconomicViabilityofFarmAreasFutureLandUseStudyArea'apAerialViewofNineMilePoint1970Populationwithin50MilesPopulationDistribution-5MileeeeRadius2e222e222e222e232.2-42.2-524-12.5-12.5-22.5-32.5-42.6-12e7128-12.8-23e213e223e233.2-43e313.4-13.5-13.5-235-33.5-4RegionalGeologicMapShowingPhysiographicprovincesAverageMonthlyTemperatureofLakeLakeOntarioDominantCirculationPatterns.PublicWaterSuppliesinVicinityofSitePrivateWaterWellsNearSiteAverageWindRose.VegetationCategories.LakeSamplingTransectsandOn-SiteRadio-logicalMonitoringStations.Off-SiteRadiologicalMonitoringStationLocationsTransmissionFacilityMapPhotographsofTransmissionLineRightOfWayeeeeeeeee~~PhotographsofTransmissionLineRightofWayeeeee~eeeeeTransmissionLineStructuresNorthofClayandTypicalVegetationGrowtSimplifiedDiagram,NuclearBoilingWaterReactorStation.WaterUsageFlowDiagram.IPlan-CirculatingWaterSystem.Profile-CirculatingWaterSystemIntakeandDischargeStructuresDetails.SchematicDigramofScreenwell.2.4-12.5-22.5-42.5-42.5-42.6-12e712.8-42.8-43'213e213e213e223e313.4-13.5-135-13.5-13.5-2
LISTOFFIGURES(CONTEND)~PiereTitleAfterPacae3.6-13.6-236-336-4GaseousRadwasteSystemFlowSystemDesignGaseousRadwasteSystemFlowSystemDesignLiquid/SolidRadwasteSystemOriginalSystemDesign.Liquid/SolidRadwasteSystemUpgradedSystemDesigneFlowDiagram,36-73.6-7Diagram,Originaleeeee3e64Diagram,Upgradedeeceo3e65FlowDiagram,3e715 151-25.1-3BasicMechanismofDilutionandFlowPatterns.NineMilePointUnit1Three-DimensionalThermalSurveySurfaceTemperaturesC,7/13/71NineMilePointUnitThree-DimensionalThermalSurveySurfaceTemperaturesC,7/23/715.1-35.1-45.1-4MakeupWaterTreatmentSystem.....3.7-15.4-15.4-25.4-35.4-4SoundLevelMeasurementLocations.SoundPressureLevels.TravelTimevsLakeCurrent.DilutionFactorvsLakeCurrent5.4-35.4-35.4-75.4-755-19519.5-29.5-39.5-49.5-595-69.5-79.6-1LakeSamplingTransectsandOn-SiteRadio-logicalMonitoringLocationsSeparateDiffuserDischarge.MechanicalDraftCoolingTowerSchemeNaturalDraftCoolingTowerSchemeMechanicalDraftCoolingTowerPlume.NaturalDraftCoolingTowerPlume.310-FootElevationCoolingLakeSite.SupplementaryCoolingTowerEffectonCirculatingWaterDischargeTemperaturesSchemeforEvaporativeTreatmentofRegenerationWastes5.5-19.5-89.5-89.8-139.5-199.5-199.5-27.9.5-279.6-3xv
LISTOFTABLESTable.TitlePacae-1e2122NiagaraMohawkPowerCorporationWinter1971MaximumPowerCapabilities,(MW)NiagaraMohawkPowerCorporationPredictedPowerSupplyCapabilitiesforWinter1972-1973,Mw1 11.2-22e212o222e23PopulationofOswegoandNeighboringCounties(Thousands);OswegoCountyPopulation.LocationandEnrollmentofSchoolsinOswegoCounty.2.2-42.2-52.2-72.5-125-22.5-3LakeOntarioWaterQualityData.....2.5-3PublicWaterSupplies........,2.5-4PrivateWaterSupplies.........2.5-526-12.6-22.6-3AverageTemperature,Humidity,andPrecipitationatNineMilePointAnnualStabilityFrequencyofOccurrencewithrespecttoWindDirection,PercentPercentOccurrenceofTotalObservations2.6-22.6-42.6-52e71ProvisionalMaximumasCompatiblewithVariousSpeciesofAssociatedBiotaTemperaturesRecommendedtheWell-BeingofFishandTheir\eee~eoee2e7628-128-228-32.8-42.8-52.8-6PreoperationalEnvironmentalMonitoringProgramSamples.andAnalysesSampleCollectionAnalysisNineMilePointAquaticSampleRadloanalysesRadiationDoseMeasuredatEnvironmentalSamplingDiagrams.GrossBetaActivityofPrecipitationSampleseeeee~e~eeeeEnvironmentalAirSampleGrossBetaACtlVltleSeeeeeeeeee28-12.8-228-S2.8-928-928-103.6-13.6-2EstimatedQuantitiesofFission-ProductIsotopesReleasedtotheEnvironsfromtheOffgasProcessingSystem......3.6-3FundamentalLiquidandSolidRadwasteXVl
LISTOFTABLES(CONT'D)Table-36-3TitleSystemConcentrationforintheDischargePointUnit1forUpgradedSystem00SignificantIsotopesTunnelfromNineMileboththeOriginalandthePa<ac3.6-113.6-1936-43&715.1-1SolidRadioactiveWasteShippingInformationChemicalDischargesfromMakeupHaterTreatmentEffectofEntrainmentonFishLarvaePopulationforNineMilePointNuclearStationee~1...0000~3.6-263.7-45.1-95.2-15.2-25.2-35.2-45.2-552-65.2-752-85.3-1SummaryofDoseCalculationsforanIndividual(mremperyear).RecreationalPopulationExposures,mrem/yr.EquilibriumLevelsinLakeOntariofortheContinuousDischargeofRadionuclidesPopulationExposurefromNineMilePoint-Unit1LiquidReleasesSummaryofDosestoBiotaintheMa.xzngZoneTritiumReleaseData.GasReleaseRatesfromNineMilePointUnit1andCalculatedWholeBodyDoseRateatOneMilesEastofStack.IndividualExposureEstimates(mrem/year)fromSiteEffluentReleasesforUpgradedUnit1.ChemicalDischargefromMakeupWaterDemineralizerRegeneration.5.2-45.2-65.2-85.2-95.2-105.2-125.2-145.2-165.3-25.4-1ComparisonofAmbientandMaximumTransformerNoiseatMeasurementSitesforUnit1,Decibels,AScale,Re0.0002.5.4-462-195-19.6-1SummaryofPopulationExposurefromNaturalandMan-MadeBackgroundComparedwithNuclearRadiologicalEffectsCostDescriptionofAlternativeCoolingSystemsCostDescriptionofAlternativeChemicalEffluentSystems6.2-39.5-289.6-6
LISTOFTABLES(CONTEND)TitleBenefitDescriptionofAlternativeStationDesignsCostDescriptionofAlternativeStationDesiqnsRegulatoryandReviewProcedures.IPacae9.8-99.8-1012.0-2
SECTION1INTRODUCTIONNineMilePointNuclearStationUnit1isownedandoperatedbyNiagaraMohawkPowerCorporat,ionofSyracuse,NewYork.-ThestationislocatedonthesouthshoreofLakeOntariointheTownofScriba,OswegoCounty,NewYork.Thestationsiteisapproximately7milesnortheastofthecityofOswego,NewYork,36milesnorthwestofSyracuse,NewYorkand135mileseastofBuffalo,NewYork.Unit1isaboilingwaterreactor(BWR)licensedforoperationat1,850thermalmegawatts(MWt)andapproximately610megawattsnetelectric(MWe)outputfromthestation.ThestationhasbeeninoperationsinceDecember1969andhasgeneratedapproximately4,858,000,000kilowattsofelectricitythroughDecember31,1971,for1.24millionelectricitycustomersintheNiagaraMohawkelectricserviceareacomprising24,000squaremilesofupstateNewYork..AsofDecember31,1971constructioncostsincludingconstructionmodificationshavetotalled$164,492,000..Todate,environmentalsurveysoftheNineMilePointsitehavecostabout$400,000..NineMilePointUnit1sitesharesacommonsiteboundarywiththePowerAuthorityoftheStateofNewYork(PASNY)whoseJamesA.FitzPatrickNuclearPowerPlantispresentlyunderconstructionabout3,300feettotheeastofUnit1,andwillgenerate821MWeofelectricity(Ref.1+).Itwillutilizeonce-throughcoolingdischargingintoasubmergedhighvelocitydiffuser.Anadditionalnuclear-fueledunit,knownas"NineMilePointUnit2,"hasbeenproposedbyNiagaraMohawkforlocationontheNineMilePointsiteadjacenttoUnit1.ProposedUnit2wouldhaveanelectricalgeneratingcapacityof1,100MWeandaratedthermaloutputfromthereactorof3,300MWt.ThetwoNiagaraMohawkunitsandthePowerAuthority'sFitzPatrickPlantwillbeoperatedbyNiagaraMohawk.11DESCRIPTIONOFOPERATINGSTATIONANDSITEUnit1consistsofaGeneralElectricdirect-cycleboilingwaterreactorwhichproducessteamat1,000psigforuseinasteam-driventurbinegenerator.Thestationrejectsheatfromthesteamcondenserbyemployingaonce-throughcirculatingwatersystem.WateriswithdrawnfromLakeOntario,passedthroughthecondenser,anddischargedtothelakethroughasubmerged~ReferencesaregiveninthebibliographyfollowingSection12attheendofthisreport.
dischargesystem.WiththeconstructionofproposedUnit,2thecirculatingwatersystemforUnit1wouldbemodifiedtoacombineddischargeforbothunits.TheUnit1sitecomprisesabout900acresofpartiallywoodedland.Ofthese900acres,about45areoccupiedbytheunitanditsauxiliarysystems.Thesuccessfulblendingofthesestructuresintothesurroundingareacanbeseeninthefrontispiece.Figure1.1-1showsaplotplanofthesite.Thesiteisgenerallyaflatfeaturelessplainwith.amaximumelevationof310feetat.the,southernextremity.Unoccupiedportionsofthesiteconsistofnaturalgrowthprovidingavariegatedhabitatfordiversespeciesofwildlife.Thesurroundingareahasapermanentpopulationoffewerthan200personslivingwithinatwo-mileradiusofthesite.
"II 12NEEDFORLOCATINGTHEPOWERSTATIONATTHESITEDuring1971,NiagaraMohawk'speakloadwas4,551megawatts(MW)andwasmetbyanelectricsupplysystemconsistingofinstalledcapacityandpowerpurchasesasdescribedbelow:Table1.2-1NiagaraMohawkPowerCorporationWinter.1971MaximumPowerCaabilities.MWConventionalThermalPlantsGasTurbineandDieselPlantsNuclearPlantHydroPlantsPurchasefromPowerAuthorityPurchasefromOthers2,3953716106271,352316Total5,6711971WinterPeakLoadInstalledReserveCapability,MWInstalledReserveCapability,percent4,5511~12024.6TheusageofenergysuppliedtocustomersofNiagaraMohawkinitsfranchisedterritorywasasfollows:residential-27percent,commercialplusindustrial-61percent,andothers,includingmunicipalities,streetlighting,townsandschools12percent.In1972,NiagaraMohawk'speakloadisexpectedtoincreaseto4,910MW,aloadgrowthof359MWfrom1971.Thisprojectionisconservativeinthatitdoesnotincludespeculativeadditionswhichmightappearthroughdemandsforservicebynew,largeindustries.NiagaraMohawk'sgeneratingresourcesin1972,includingfirmpowerpurchasesandnewgeneratingcapacitywilltotal6,110MWwithNineMilePointUnit1inservice,and5,484MWwithNineMilePointUnit1notinservice.ThenewgenerationisNiagaraMohawk~s240MWportionoftheRosetonStation.Anadditionalcapacitypurchaseof275MWisexpectedfromtheBlenheim-GilboapumpedstoragestationwhichisnowbeingdevelopedbythePowerAuthorityoftheStateofNewYork.Noretirementsofanysubstantialgeneratingfacilitiesarecontemplatedinthenearfuture.TheloadandcapacitydatadescribedaboveareincludedinTable1.2-2.
I~lf~'IJ Table1.2-2NiagaraMohawkPowerCorporationPredictedPower.SulCaabilitiesfoiWinter1972-73MW.WithNineMile-Unit.4WithoutNineMile.Unit1..ConventionalThermalPlantsGasTurbines8DieselPlantsNuclearPlantsHydroPlantsPurchasefromPowerAuthorityPurchasefromOthers1972WinterPeakLoadInstalledReserveCapability,MWInstalledReserveCapability,percent2i635(1)371(2)6106271i601(3)256.6~1004,9101i1902422,635(1)365(2)06271i601(3)2565i0864~91057411.7(1)IncludesNiagaraMohawk5sshare(240MW)ofRosetonPlant(2)Includes6MWNMPUnit1Diesel(3)Includes275MWshareofBlenheim-GilboaPumpedStoragePlantTheaimoftheNewYorkPowerPoolmembercompaniesisforeachmembertoattainaninstalledgeneratingcapacityreserveofatleast18percenttoallowpropermarginforreductionsincapabilitycausedbyforcedoutages,maintenance,ordailypartialderatings.AsindicatedinTable1.2-2,NiagaraMohawksresourceswithoutNineMilePointUnit1areclearlyinadequatebecausetheywouldprovideaninstalledreserveofonly574MW,amarginof11.7percent.WithNineMilePointUnit1inservice,NiagaraMohawklsinstalledreservein1972wouldbe24.4percentenablingittoprovidereliableelectricservice.Lossofthisunitwouldhave8seriouseffectonNiagaraMohawk'sabilitytomeetitsobligationsin1972andbeyond.NiagaraMohawkchosetoconstructandoperateanucleargeneratingunitattheNineMilePointlocationforseveralreasonsAmongtheseweretheexcellentenvironmentalcharacteristicsof'thesite,includingabsenceofseismicactivity;superiormeteorologicalventilation;scarcityofpopulationandlanduseactivities;andtheabundanceofcoolingwater.Surveillanceprogramsatthesite,bothbeforeandafteroperationofthegeneratingunit,haveverifiedthesefactorsandconfirmedtheminimumimpactontheenvironmentcausedbythesefactors.Thesitealsohasreadyaccesstothehigh-voltagecross-statetransmissionsystemItisatthemid-pointofthecompanysfranchiseterritory,thusprovidingacentrallocationfromwhichtransmittaloftheunitoutputcanbedirectedtothe1w22
threemajormetropolitanloadcentersservedbythecompany:Buffalo,SyracuseandAlbany.NiagaraMohawkandtheothermembersoftheNewYorkPowerPool(CentralHudsonElectricandGasCorporation,ConsolidatedEdisonCompanyofNewYork,Inc.,LongIslandLightingCompany,NewYorkStateElectricandGasCorporation,NiagaraMohawkPowerCorporation,OrangeandRocklandUtilities,Inc.,RochesterGasandElectricCorporation,andthePowerAuthorityoftheStateofNewYork)coordinatep3.ansforexpansionofpowersupplyfacilitiesbasedontheNortheastPowerCoordinatingCouncil"BASICCRITERIAFORDESIGNANDOPERATIONOFINTERCONNECTEDPOWERSYSTEMS."Underthiscriterion,newgeneratingcapacityisplannedsuchthattheprobabilityoflossof.loadundercontingencyconditionswouldnotexceedoneweekdayintenyears.TheNineMilePointUnit1isanintegralpartoftheNewYorkPowerPools~planformeetingthiscriteriononatotalPoolbasis.TheforegoingdemonstratesthattheNineMilePointUnit1isvitaltoNiagaraMohawk~sabilitytomeetconservativeprojectionsofitspowerdemandsin1972andbeyondandisalsoanintegralpartoftheNewYorkPowerPool'splantomeetgeneratingsupplyreliabilitycriteriainusebythePoolandotherareasoftheNortheastPowerCoordinatingCouncil.Retirementofthisunitwouldthereforehaveanadverseimpactonthepcwersupplysituationthroughoutthisregion.1&23
SECTION2THESITE2~1LOCATIONOFSTATION2.1.1ProjectSiteTheprojectsitecomprisesabout900acresandislocatedonthesouthshoreofLakeOntariointhetownofScriba~Oswegocounty,NewYork,onlandownedbytheNiagaraMohawkpowercorporation.TheNineMilePointNuclearStation-Unit1,includingallUnit1buildings,switchyards,ProgressCenter,parkingareas,accessroads,andassociatedfacilities,occupiesabout45acresofthetotalsiteacreage.TheJamesA.FitzPatrickNuclearPowerPlant,whichiscurrentlyunderconstructionforthePowerAuthorityoftheStateofNewYork,islocatedona700-acreplotimmediatelyeastoftheprojectsite.Centerline-to-centerlinedistancebetweenUnit1andtheFitzPatrickplantisabout3,300feet..Mostofthelandimmediatelytothesouthandwestofthesiteispastureorinactivefarmland.TheOntarioBibleConferenceoperatesasummercamponthelake'rontadjacenttothewesternboundaryofthesite.ThegeneralandspecificlocationsareshowninFigures2.1-1and2.1-2.Thenearest.populationsouthwestofthesite.Syracuseand135milesofinterestareshownoncenteristhecityofOswego,7milesThesiteis36milesnorthwestofeastofBuffalo.OthertownsandpointsthemapinFigure2.1-2.ThenearestsignificantmanufacturingfacilitytotheNineMilePointsiteistheAlcanAluminumCorporationwithabout750employees;itislocatedabout31/4milessouthwestinScriba.ThelargestmanufacturingplantsarethoseoftheNestleCo.andSealrightCo.,bothlocatedinFultonabout15milessouthofthesite;neitherhasmorethan2,500employees.2.1.2TransportationThelocationofthestationonthesouthshoreofLakeontarioplacesitoutsideanynormalshiptrafficlanesassociatedwithvesselstravelingonLakeOntario.VesselstravelingtotheOswego,NewYorkarea,thenear'estcommercialport,passaboutsixmilesfromthesite.Thestationislocatedaboutonemilefromthenearestpublicroad,CountyRouteNo.29,whichformstheeasternboundaryoftheFitzPatrickplantsite.Aprivatehard-surfaceeast-westroadbisectsthesiteconnectingwithRoute29whichextendstoOswegotothewestandwhichconnectsontheeastwithU.S.Highway104,33/4milessouthofthesite.AspurofthePenn-CentralRailroadprovidesrailservicetothestation.
e'11<I
(~;iaafyr1PfiP.,'rr,'/rr(,)rAe)/I4Pr/2,y///'ONTARIOCO/J,/.;~,~),!(I<4~)~H)I~I'per/irr'\m+iIi-j.P~rr.~'e/-":,I)(e>(e(r(/n)~I(W>Et<RSONCOgIr~a/PULASKIsaeeeoee.IR>>eIRSiNINEMILEPOINTNUCLEARPOWERSTATIONif~FR(:I'(',:-'GEEI/SrOSCEOALTQiARe8NVILlE,',KAYUTAlAKE,r'C'Ir'EMSEN)rrP)(QI',(',IIIrPIGgwreel'~+I;<CREEKI')'g'/"igr,~'IHINCKlEY.RESERVOIR-OElTARESERVOIR,((.Qi'RENTON-Q,Ke'1MEX)CO~v~a+OSWEGOa'4~.',",'.'i'ioRE.~>.-le'ej~MI)'eri'VGri)ARAROS,TO)er)/i~j,IICOVEY)f)~lSSJI~COUNTTj'/)'-=gg)AeRPGRTIrre,I/'4STATEPARK(2NESTECO.,/Ij,)')E3(SEARIGHTC.()i,',ANNO,COUNG)r/))ICHENW)',i)i'p',10>,IIII)~,i",))'r~)'II)i)I','),/ijl)eerr/iP\re/I)l,P-~)r,,SCAM'I)errESiR)rirr,erie,'l'(~,,'~ga~g~S/ri'//ek'-'ig.2.1-1 P
gE0yT'ARg0PROGRESSCENTERUNITININEMILEPOINTNUCLEARSTATIONJAMESA.FITZPATRICKI'UCLEARPOWERPLANT(UNDERCONSTRUCTiON)(PRIVATEROAO)LakevlewIANIAGARAMOHAWKPOWERCORPORATIONPOWERAUTHORITYSTATEOFNEWYORKoDOMINORROADLycomingGEARpEHHUNITI-CLAYTRANSMISSIONRIGHTOFWAYSEEFIGURE3.2-ISCALE-MILESFIGURE2.I-2SITEVICINITYMAP
ThenearestmajorcommercialairportislocatedatSyracuse,about35milesfromthestation.AsmallprivateairportislocatedatFulton,approximately15milessouthofthesite.SeeFigure2.1-3forroadsandraillinesinthevicinityofthesite.2'12
~~'t LyE0/0UNITIPROGRESSCENTERLakeview~1IIIIRRITATEII<<IIPLANT\III\IIi\ROADIIIIIILAMBROADTITCCRFXZPTII~4~Ozs+0+OO+qoNIAGARAMOHAWKPOWERCORPPROPERTYLINENINEMILEPOINTSITEBURTJAMESA.FITZPATRICKSITEIIINOROOOzROADPOWERAUTHORlTYOFTHESTATEOFNEWYORKPROPERTYLINEL'ycomlngRIOOOOIIIOOLBIIIIloIcIHTIIIIIRFoONorthScribaROADIOOO\\IIOII04SCALE-MILESFIGURE2.I-STRANSPORTATIONMAP
22HUMANACTIVITESINTHEENVIRONS2.2.1HistoryofLandandWaterUseThefirstEuropeanstovisitOswegoCountywereapartyledbySamueldeChamplainin1616,andFrenchmissionarieswhoarrivedinthe1650s..FortswerebuiltbytheBritishin1727(Ft.Oswego)andin1755(Ft.Ontario).FortOntario,inOswego,wasdestroyedandrebuiltseveraltimes.Itwasrebuilt'ostrecentlybetween1839and1842.ItremainedanArmypostuntil1945andisnowastate-ownedhistoricsiteandmuseum.Thefirstciviliansettlementwasbegunin1796..In1799theportofOswegowasestablished,andin1816theareabecameaCounty(Chapter16,Lawsof1816).Thefirst,incorporatedvillageswereOswego(1828)whichbecameacityin1848andPulaski(1832).ThenewestvillageisCentralSquare,incorporatedin1889.Inthe19thcenturytheareawasprimarilyagricultural.Theprincipalproductswere,andstillare,dairyproducts,poultryandlivestock,buttherelativeimportanceofagriculturehassteadilydecreased.Thetrendinthecountysince1880hasbeenasteadydeclineinlanduseforfarmsandinagriculturalemploymentandacorrespondingincreaseinmanufacturingemployment.Totalpopulationhasremainedconstantuntilrecently.In1880,therewere7,500farmscoveringover500,000acres,whichwas80percentofthearea.In1964,which'wasthemostrecentcensusofagriculture,therewere1,592farmscovering210,555acres,whichis34percentofthecounty.In1880,improvedlandtotaled356,564acres.In1964,only153,532acreswereusedforcropsorpasture.Thenumberofdairycattledeclinedfrom37,752in1880to17,314in1964.Inthe30-yearperiodfrom1935to1964,thepopulationlivingonfarmsdecreasedfrom22,390to6,470.The1960censusindicatedthatonly1,643personswereemployedinagriculture,whichwas8.4percentoftotalemployment.Thesize,value,andefficiencyofremainingfarms,however,hasincreased.Theaveragefarmsizeincreasedfrom67acresin1880to101in1949andto132in1964;thevalueofanaveragefarmincreasedfrom$6,550in1949to$18,697in1964.Milkyieldperpersonemployedindairyingincreasedmorethan50percentbetween1959and1966..-Landuseforagricultureinthecountyisexpectedtodeclinefurtherinthefuture.TheStateOfficeofPlanningCoordinationina1969reportonfarminginNewYorkStatemadethefollowingcommentaboutthearea:<<Poor,s'oilconditionsandexpandingurbanizationfromSyracusehavediscouragednewinvestmentsinfarming,2&21
particularlyindairying.Landinfarmswillcontinuetodeclinemorerapidlyinthi'sregionthaninthestateasawhole.~~Thereportnoted,however,thattherearelimitedareasofresponsivemineralsoilsandscatteredareasofmucklandwhichcouldbeintensivelydeveloped.Theseareasareshownonthemapentitled"EconomicViabilityofFarmAreasinNewYorkState,"alsopublishedbytheOfficeofPlanningCoordination,partofwhichisreproducedhereasFigure2.2-1.Thereisnosuchareaonornearthesite.Thereisagoodsupplyoflandforindustrial,commercial,andresidentialuse..SeeMapofFutureLandUse,Figure2.2-2.MuchofthelandinOswegoCountywhichwasformerlyfarmedisnowcoveredwithsecond-growthtreesorbrush.Suchareasnowconstituteabouthalfthelandinthecounty.About37,000acresareusedforcommercialforestry.AninventoryofindustrialfirmsinOswegoCountywasprovidedbyOperationOswegoCounty,Inc.,andisreproducedasAppendixAtothisreport.ThemajorconcentrationofindustrialfacilitiesliesalongtheOswegoRiverinFultonandOswego,althoughotherplantsarescatteredthroughoutthecounty.Manufacturingemploymentin1960was11,231,whichwas57.5percentoftotalemploymentinthecounty.Othernuclearfacilitieswithin50milesoftheNineMilePointUnit1sitearetheJamesA.FitzPatrickPlantownedbythePowerAuthorityoftheStateofNewYorkcurrentlybeingconstructedadjacenttotheprojectsite,andtheRobertE.GinnaNuclearStationownedbyRochesterGasandElectricCorp.andlocatedabout50milessouthwestofNineMilePointStation.Therearenonuclearfuelmanufacturingorreprocessingfacilitieswithinthe50-mileradius.OswegoCountyhas'widevarietyofrecreationalandwildliferesources..SeeStudyAreaMap,Figure2.2-3.LakeOntarioonthenorth,theOswegoRiver,OneidaLakeandtheNewYorkStateBargeCanalinthesouth,theSalmonRiveronthenorth,SalmonReservoirintheeastandthemanycoldwaterstreamsinbetween,provideareasforwater-basedrecreation.StateparksatBattleIslandnearFultonandatSelkirkShorestenmilesnortheastoftheplantsiteattractover250,000visitorsayear.Inland,theabundanceofwetlands,forestedareasandabandonedfarmlandareas,manyofthempubliclyowned,supplementthecounty<ssupply.ofrecreationorientedlandsandprovidesubstantialwildlifebenefits.Thereisanabundanceofruffedgrouse,varyinghare,cottontailrabbit,muskratandmigratorywaterfowl.ThesespeciesandothersfoundinthecountyandtheirlocationswithinthecountyarelistedinAppendixB.2%22
\,~1'ktC1'IrIIIJ'E,IEfCA ECONOMICVIABILITYOFFARMAREASNISHNEOIUNT~LOWC3NOTCONNEACIALLYTANNED0$wtooIOSWEIijSCI5ISA>>NCOVNTYJEYYEASOoswESocduNTYIISOYLETONNEoncl.oIIIIIIIIIIIIII~AIIOYCKEEEIII--JII0NINEMILEPOINTNUCLEARSTATIONl~ALS~>>.INEWHAVEN'IIWsc<IINClo..<Jt4<'i)I~AllI5H6,5~IVWILLIANSTOWNISA~lresIW/SCI0<<0lo~oN~/4I./TLOAENCECOON~)~TY~/ANSOY~~Q'~'/'-"-"HANNI'"II)III4III)009)'>>(TL,IgIi)II(iIIINIAYWNIg(@II)'i(AL"1<I'PPAV5Iiywng/HASTINS'5TR5PLONONDAOACOVNTYi.,~~1!/'CONSTANTIA~//8/VIENNA-p:~.IONEIDAISHEII~tFIGURE2.2-IECONOMICVIABILITYOFFARMAREAS
rsttseSON[OSR4nKOIIr~"CANNYCOCA.<<'l>"rrrr///YIII"II.ICNLANOI'r"~riLlfsrrLANDUSE-1990.rr'/r//r~KGNCOIVNINTCNSITYVNSANLOWINTCNSITYVASANSCTTLCOIIVSALK3SAANSKLYSCTTLCOAVAAL'~/X'r//////r:';>FVLA~SIC/rrrr:::..':'.'.'.:~4:::!<.'.'.:'r.!.r.'.'.'......'.'.jWILiIANST'OWN~::rr~CQNISHYIASILITYYANNINSNINEIIILEPOINTNUCLEARSTATION/NCOIVNYIASILITYYAANINO/r~~;""f',NATvAALotcNstAcKgcgljlvclI~r//rpLv~srrre/rSILILITI~~/CCNTAAL~i~~~~~~rrj:~~:~"~:~tAMSN~~'r/r.<r~~~~~~~1.rAfW/rrrr//rwcsE.~~NOPAOC~M....r../~~~"/r'/'CIOA~OOAITYOVATEDNSYDACANEFIGURE2.2-2FUTURELANDUSE
NINEMILEPOINTNUCLEARSTATIONSAVOYCNCCXJEFFERSONfOSWEOOCOUNTYiSOYLSTONLACONAlI~JONNCLLCOUNTYTlRCOFICLOCIPI,g~lg5CL<<lk<<5<<OATSSTA'lCAAA<<OSWCOOSCIVSANtWHAYCNlvtxleoVCXICOtHANINSALloAANSYIHANNI4ALFVLTON/SkTTLCISLA<<4STAIC444<<Lo//SCHAOCFFCLST's/HASTINOS///CCNTllLSOVAACIOSWEGOCOUNTYONONOAOACOUNTY~HOtNIT/X/I,QIHNCTTO(j~JYOLNCYFlLCANOWlk5<<IjI/ALSIONIglk'l~/sl-lLTVARf~~I/WILLIAVSTOWN4~FARISH/Ir-/VONA~OC//CONSTANTIl//g(]~N(gOk<<riOAO/RFy~//CANOCN5IVOYlktk4STOA>>VIC/FANSIATC444<<gggsskstkt<<OATSIAIIONkktkC35TATCW>>OII<<tkktkFIGURE2.2"3STUDYAREAMAP 1C Mostcommercialfishingtakesplaceintheextremenortheastsectionofthelake.UnitedStatesfishlandingsaregenerallydominatedbywhi,teperch.Eels,bullheads,andcarpmakeup.mostoftherestofthecatch.Canadianfishlandingsaredominatedbythefollowingspecies,listedindecreasingorderofabundance:carp,yellowperch,whiteperch,sunfish,eel,smelt,andbullheads..Thefollowingstatisticsfor1968through1970fishlandingsinpoundsanddollarvaluederivefromtheFisheryStatisticsoftheUnitedStatesfor1968,1969,and1970,publishedbytheU.S.DepartmentofCommerce,NationalMarineFisheriesService:Year.~-Pounds-ThousUaSa~Canada-TotalValueThous..of-SU.S..CanadaTotal1968342',0092~3517128435519692932~2722~5654433638019703302~9053~23579429508InthetownsofScriba,wherethestationislocated,andNewHaven,whichisadjacent,slightlymorethanhalfthelandiscoveredwithbrushortrees.Aboutone-eighthisusedforpasture.Aboutone-fifthisfarmland,mostofwhichisinactive.Residential,commercial,andindustrialusesaccountforlessthanone-thirtiethoflandusage.NiagaraMohawkpurchasedthe1,600acreNineMilePointsiteforpowergenerationpurposesin1963andlatersoldabout700acrestothePowerAuthorityoftheStateofNewYork.Figure2.2-4showsaerialphotographsoftheareain1963andwithUnit1nearlycompleted.TheonlyothermajoruseinrecentyearswasasanArmyartillerypost,whichoccupiedaportionofthelanduntil1957.Inadditiontherewereafewcottages,farmhouses,andarestaurantwhichwereremovedafterthesitewaspurchased.Thesiteshorelineprovidesaccessforsportfishing..Small-mouthbass,yellowbirch,whiteperch,walleye,bullhead,andnorthernpikearetheprincipalsportfishes.Sincethelakebottomislargelybedrock,andsincetherearenoavailablebeaches,thesiteisnotsuitableforswimming.StrongwindsandsummerthunderstormsmaketheareaneartheNineMilePointpromontoryfrequentlyhazardousforsmallcraft.Mostofthelandarea,exceptforthatintheimmediatevicinityofthegeneratingstation,hasrecreationpossibilities.TheNiagaraMohawk<<ProgressCenter,<<whichsharespartofthesitewestofUnit1,providesvisitorfacilities,includingeducationalexhibits,picnicandplaygroundareas,andnaturestudytrails.TheCenterofficiallyopenedin1967andhasaveraged50,000visitorsannually.2a23 P
NINEMILEPOINTl963cA$3flWHIr*NINEMILEPOINTSHOWINGUNITIFIGURE2.2-4AERIALVIEWNINEMILEPOINT
22.2PopulationTheareawithin,a50-mileradiusofthestationsitewasinvestigatedandfoundtoinclude.allorpartoftencountiesinNewYorkStateandthreecountiesintheProvince'ofOntario.Thenearest.largesettlementisthecityofOswego,centeredabout7milessouthwestofthesite,witha1970populationof23,744.Populationdistributionbasedonthe1970censusisshownonFigure2.2-5.ThepopulationofOswegoCountyremainedfairlyconstantforthefirsthalfofthe20thcentury.Whilesometownsintheeasternpartofthecountyhaveshownadecreaseinpopulationsince1910,thepopulationincreaseinthetownsnearthemanufacturingcentersofSyracuse(OnondagaCo.,),Fulton,andOswegohasmorethanoffsetthedeclineinthemoreruralsectionsofthearea.Thecountypopulationof77,181in1950increased11.6percentto86,118in1960,andincreasedanother17.2percentto100,897in1970..Projectedpopulationsfortheareawithina50-mileradiusoftheNineMilePointsiteduringtheanticipatedlifeoftheplantaregiveninTable2.2-1.Table2.2-1PopulationofOswegoandNeighboring'ounties(Thousands)--Actual-'~~Pro-ected-Count.196019701980~199".200020102020.Cayuga73.9Jefferson87.8Lewis23.2Madison54.6Oneida264.4Onondaga423.0Ontario68.1Oswego86.1Seneca32.0Wayne68.077488523.662.927304722788100.935.179482.691423375.12899525.894.9118.637097.385893.522.985.1301-2597.4111.4134440.5117-189696.622910233372684.71228157.1424139.7944100.223.1124.03782779.513571851441167.2993104.523.315024259889.3149.8218.446.0200.9Thepopulationfor1960and1970arefromU.S.CensusBureaudata.The1980and1990statisticsarefromprovisionalpopulationestimatesmadebytheStateofNewYorkOfficeofPlanningCoordination.Thestatisticsfortheyears2000,2010,and2020arecomputedfromprovisionalestimatesandpercentageincreasesobtainedfrom"DemographicprojectionsforNewYorkStateCountiesto2020A.D.,~~publishedbytheOfficeofplanningCoordination.Populationfiguresfrom1910to1970forcitiesandtownsinOswegoCountyaregiveninTable2.2-2.ThelandareawithinfivemilesofthestationlieswithinthetownsofScribaandNewHavenandthecityofOswego.Boththesite-andtheadjacentlandeastofthesite,whichisownedby2.2-4
NARANEEKINOSTON/4728SELLEVILLETRENTONLAHESOMI.')H7'HIC)ROCHESTER(29(L255)ss.llr2047)10MII/Od/S0Ml./209/I798)9,247rrrWATERTOWNIr',,(50,78r)8942lr)29,1965745II68914)4//158/t0ML/////CNrARlo/'NEWYORK//00/+0r~00IO0LI+Or0I0L~0I0ISIr~rr40Ml,50MlIOMI.000,5587IT04752I29)5.r/lgrrr(40Sig~gggttS~r0~/29840tssNssQMr20050r'489rfA0SCSruLTCN,/8559I'sti4((4,005)IStrS402r~IS27552520ONEIDA,/IiROIIE59,555.SI4,562sYRAcusEIl,599(l97,208+I5546l5,275r27,759S0,546O'TICA(slrsll)CANANOAISVAI.AKCrs,ssrAVSVKN~ISLSSSI~Ss.sst0YIscoiJMAICATCLCSLAKCOWASCOLAKEKCVKALAKCSCNCCALAKECAYuoALAKE20,75~FIGURE2.2-5I970POPULATIONWITHIN50MILES
thePowerAuthorityoftheStateofNewYork,areuninhabited.ThenearestdwellingsareonLakeviewRoadapproximatelyonemilesouthwestofthestation.ThepopulationdistributionwithinfivemilesofthestationisshowninFigure2.2-6onapolargridwith1-.mileradialincrements.,Thenumberofpeoplelivingwithineachgridsegmentwasdeterminedbysurveyingthenumberofdwellings,in1971.TheaveragenumberofpeopleperdwellingwascalculatedforthetownofNewHavenfromthe1970censuspopulationcountandthetotalnumberofdwellingsinthetownasgivenbytheOswegoCountyPlanningBoardmapofresidentiallanduseofNovember1970..Thisinformationgave3.57peopleperdwelling,whichgenerallyagreeswiththeOswegoSchoolDistrictestimateof3.5.Becausethedwellingtypesoftheentireareawithinthe5-milecircleareverysimilar,thisvalueof3.57wasusedthroughoutthearea.Table2.2-2OswegoCountyPopulationTown-AlbionAmboyBoylstonConstantiaFultonCityGranbyHannibalHastingsMexicoMinettoNewHavenOrwellOswegoTownOswegoCityPalermoParishRedfieldRichland.SandyCreekSchroeppelScribaVolneyWestMonroeWilliamstown1,4727366672i02310i4802i0222i1482,3152i9821,4619292i67123,3681,2551s3118033i7912~1062i7072i1992,407915~~89619401i0944933651,53813i3632~2202,0102,3612~7101i0521,194806Ig97222i0621i1481r1995173,8481~8213i2192i1842,659731~7101960~1,1255242932,73014'613~7042,6734~4573,4351i2901i4786632,79622'551i6631i4393884,5542i5065i5542e4893,7851i417739~1970~1,4525572763,54714,00347183,1656i0424~174-1i6881i8458363i58323'442S3211,7823865i3242i6447i1533i6194i5202i535~883=Annual5Increase1910-1970-DecreaseDecreaseDecrease1.751~342331.472611.401.26Decrease1.970.031.851.36Decrease1401.252.641.651.88277DecreaseTotal71i66471,27586~118100~8972.2-5
(000loIgILE2'SIIS3gILES4MILE575glLES6I0,3//0,0~rII25IlIso0oIIIII(SITI;IllllSlllalI8l39II50892le/10w+2861291l:lll'Vf'III11I40775l07asIIIIII1///I.4.80ITK1a1/386/OSWEGOCITYBOUNDARY/////I263FIGURE2.2-6SCALE-MILESPOPULATIONDISTRIBUTION-5Izl93I~)NOTE:NUMBERSREPRESENTTOTALNUMBEROFIIINHABITANTSINEACHAREASEGMENTIIIMllERADIUS
Inadditiontotheyear-roundpopulationdisplayedinFigure2.2-6,thereisaweekendandvacationpopulati.onthatoccupiesthefewcottagesalongthelake-shoreinthewarmermonths.Asunmercampisoperatedona12-acreplotknownasLakeviewlocatedoutsidethestationsiteandabout4,500feettothesouthwestofthestation.Groupsofupto500personsusethiscampandasmanyas1,500peoplemaygatherthereforshortperiodsonSundays.ThefacilityisunusedtherestoftheyearexceptforanoccasionalweekendinthespringandfallTherearetwohospitalsinOswegoCounty.TheOswegoHospital,locatedseven-milessouthwestoftheplantsiteat110WestSixthStreet,Oswego,presentlyhas176bedsandwillsoonopena38-bedextendedcareunit.TheLeeMemorialHospital,with60beds,islocated143/4milessouthoftheplantonSouthFourthStreet,Fulton.OswegoCountyformerlymaintainedasanitariuminOrwell,butthisfacilityisnowaprivateinstitutionforalcoholics.OswegoCountyisdividedintoninepublicschooldistricts.TherearealsotwoparochialschoolsinFultonandfourinOswego,andtheStateUniversityCollegeatOswegomaintainsanurserythrougheighthgradeschoolonitscampuswhereitseducationstudentsmaypracticeteaching.TheStateCollegeitselfhas8,650students,ofwhich6,000arefull-timeand4,000areresidents.StudentenrollmentofOswegoCountyschoolsfor1971-72andschoollocationrelativetotheNineMilePointsite(approximate30-mileradius)aregiveninTable2.2-3.Totalenrollmentis37,817students.2.2-6 H4Hs'17 Table2%23LocationandEnrollmentofSchoolsinOswegoCountySchool-Distance(Miles)andDirection*from-Station.Enrollment.Altmar..-~Parish-~Williamstown-District.AltmarElementaryParishElementaryWilliamstownElementaryA.P.W.MiddleHighCentral-Suare-District-PaulV.MooreHighMillardW.HawkJuniorHighCentralSquareElementaryBrewertonElementaryHastings-MallonyElementaryAnnaA.ColeElementaryMainStreetFultonDistrict-G.RayBodleyHighErieStreetJamesR.FairgrieveFourthStreetJamesE.LaniganOakStreetPhillipsStreetStateStreetVolneyElementaryWalradtStreetFultonJuniorHighHannibalDistrict.FairleyElementaryCayugaStreetHannibalHighMexicoDistrict-MexicoAcademyJuniorandSeniorHighFravorRoadElementaryMexicoElementaryPalermoElementaryNewHavenElementary21E16ESE27ESE19ESE20SE21SE21SE23SSE19SE32SE21SE15S14S13S14S15S14S14S13S13S13S13S16SSW16SSW16SSW9.5ESE85ESE95ESE13SSE50SE3223771338691,255806544568'865993871~460217655/52311'70475154543898105554037481,2126874742453252%27
~q Table2.2-3~Cont;Schoo3.-Oswe0-DistrictDistance(Miles)andDirection-from.Station.Enrollment.OswegoHighOswegoMiddleFitzhughParkKingsfordParkMinettoCharlesE.RileyFredrickLeightonPhoenix-District-JohnC.BirdleboughHighEmersonJ.DillonCherryStreetElmStreetPennellville7.5SW75SE60SW75SW10SSW6.5sw7.5SW20SSE20SSE20SSE21SSE18SSE1,7958667046084507435038391i042267893192Pulaski.District-PulaskiAcademyandCentralJunior-SeniorHighSand-Creek.District-SandyCreekHighSandyCreekElementary'ArwellElementaryParochialSchools-OswegoCatholicHighSt.Paul~s(Oswego)St.Mary'(Oswego)St.John~s(Oswego)FultonCatholicElementaryFultonCatholicMiddle18ENE14ENE19NE29E21ENE6.5SW65SW72SW7.2SW13S13S89857050860899326312308139199171State-UniversitColleeatOsweoCampusSchoolCollege8SW8SW4708i65022-8 l\"p 23HISTORICSIGNIFICANCETheOswegoCityLibrary,locatedonEastSecondStreet,wasdesignatedaNationalHistoricSiteintheFederalRegisterofNovember2,1971.Thelibrary,giventothecitybyabolitionistGerritSmithin1855,isofarchitecturalinterestandisoneoftheoldestbuildingsincontinuoususeasapubliclibraryinthecountry.Atpresent,therearenootherNationalHistoricSitesinOswegoCounty,althoughtheOswegoMarketHouse,FortOntario,andseveralothersitesarebeingconsideredfordesignation.Aninventoryofnatural,scenic,state,andlocalhistoricsitesfurnishedbytheNewYorkStateHistoricTrustandtheOswegoCountyPlanningBoardandamapshowingtheirlocationsaregiveninAppendixCtothisreport.ThisinventoryindicatesthattherearenodesignatedRegisteredNationalHistoric.Landmarksinthevicinityofthestationsite.TheNineMilePointsiteisofnomajorarcheologicalinterest.Thelake-shorebeachesandstream-mouthstotheeasthaveyieldedmanyrelicsofprehistoricIndianfishingencampmentsandvillages,buttherockybluffsoftheshoreatNineMilePointseemtohavebeeninhospitabletosettlement(Ref.2).2%31 iI~
24GEOLOGY2.4.1TopographyTheNineMilePointsiteisagenerallyflatfeaturelessplainlocatedonthesouthshorelineofLakeOntario..(SeeFigures2.1-1and2.1-2.)Thesitearealandelevationrangesfrom260feetat-thestationareato310feetatthesouthernextremityofthesiteaboutonemiledistant.Thesurfacesoilsconsistoffill,recentsediments,andglacialtill..Soildepthinthevicinityoftheplantareavariesfrom0to23feetbutisgenerallyoftheorderof10to13feet.Thesitetopographyisareflectionoftheirregularbedrocksurface.Noperennialstreamscrossthestationsite.Naturaldrainageisrelativelypoor.Watercollectsinlocalswalesandlowareasandthepermeabilityofsoilandrockissufficientlylowtopreventrapid'ercolationofwaterintotheground.Localizedbogsandswampyconditionsexistinthedepressedareas.2.4.2GeologyThestationsitearealieswithintheErie-OntarioLowlandsPhysiographicProvince.ThisprovinceisboundedonthesouthbytheAppalachianUpland,ontheeastbytheTugHillUplandandAdirondackHighlands,andonthenorthbytheCanadianShield.ThisisshowninFigure2.4-1.StrataoftheErie-OntarioLowlandarePaleozoicsedimentswhichareessentiallyundeformed.Regionaldipistothesouthorsouthwestatanaverageslopeoflessthan2degrees.Nofoldsorfaultsofanyconsequenceareknowninthegeneralsitearea.ThenearestsignificantfaultistheClarenden-LindenFault,90milestothewest.Thisfaulthasanorth-southtrendwithamaximumdisplacementofapproximately200feet.Thesurfaceofthesiteismostlylevel,withgenerallyathinsoilveneerconsistingoffill,recentsediments,andglacialtill.Thesesoilsarecomposedofamixtureofsilts,sand,gravels,cobblesandboulders.Theunderlyingrockisflat-lyingsandstonewithsomeinterbeddedshale.ItisofOrdovicianAgeandknownastheOswegoSandstone.(SeeFigure2.4-1.)Itisnotcommerciallyvaluable,andtherearenomineraldepositsofcommercialvalueinorunderlyingthearea.Theshalecontentincreaseswithdepth,andatapproximately125feetbelowthesurface,theOswegosandstonegradesintotheunderlyingLorraineGroup,whichispredominantlyshalewithsomesandstonemembers.TheOswegosandstoneisahard,competentmaterial,wellsuitedforfoundingoftheplant.Itismoderatelyjointed,thejointsbeingthemostcommonintheuppersurficialzone.Belowthatdepth,thejointsaremuchmorewidelyspacedandtight.IdentifiablejointsetsstrikeNorth69degto80degEastandNorth25degto50degWest.24-1 I
CANADIANSHIELD~N/0IQP('a~it""~n,orERIE-ONTARIOLOWLANS'/yD0DC441I~sQOATKRTOIGDS<<a~<<<<LAKEDNTAR(D<<<<~<<a~<<<<DSDEDDCSI4'i,I',IVF6'Ck<<00Otoeoao<<04PPoapoepePOOooopoO1O4OOOPeOaOoooOooo~oooooooooooooooo04oOooooooooooooooo4o~OOOOOoOOOOOOOOOO0OO0000oyooo01OO'0yeo~0000~40000~~0po01411"OOyOOaOeOe041OO0~~0OO~00~OOO010Oo~0ooo101041~0ayyo0Oo~0oo~oapoeooa1oOoooopopoea~ooOO~41yoyOOOOaO44OaOOO~4yy1040yo0ypop4000000~01O14OOOeppaDOO~~o0~00~oooo8oocta~~114ooooo0o~o~110o0000~010000~Op10001~1~0401~1440000~yeyt~~00~10400040~0~~44aay~114P0~0000~1y10~~10001400000yy1~~00010~a4~10~00Ooeot10~1o~410OeOOOO04000~0100~0~00000~~OO4O00~~1OoOOp1ppHIDIfpg401yp00000~11~acta00001000001104~014~ee40010oate0000,~01~~~0gf~~~1~p~10~00~01~44~~~~~4~~~~0~1~0~~4~al'~~>0eeee~0~~~~I~~01~~y~~4~4~0ye104~4tet4Tpo.ONAkagRO~00yap1yoo04Py0O,1'AeOO40OOrO'teO~OOOOOaOy14O'OOOOOo~1a~~oooo8000001~ea~~~~-100010opye4~4~0~ate~OI~40yy~4~~~~~1~~00eoo~~10~~~00~~001~00040yo4~4a~0~~4~~eo~0>~~4Oy~~0~~~~0~1~~~4o04o4~~~~4o,a41o~,4~.11~'at0yy00+041y10yeaa<(et40o04OOOOo0~010114y010000~1~1Pa000000400000140101oeoo000~~010~0pyaeoty00000oo,000'00~00pepI0ootoeeaoOa0op~0000~10100p00OO00000101yp0pa0~0ObetOOOOOooq00OOOO00OoOOOeoop000000001~oOO1OOOpoOOe~oooo004<oo~at'4opt~000~01041~1000~000000004ooeoooayattyOOOO00400~0aoooooo1000~~0eyooPe010001110oo~10ooe~~~~11ooOo~0Iae1~14001~0%0001yoe'Oooo00~~yOyy0~~100400041~y0~10~~0141~0~~~010011~~~0~tatty400,~0~O~01~1~~~0Oae~4'~1~~1~ey~04ay~1~~0~~004~0e~0,1~O~~0~4O4Oa,~1a~~4~0~~~1~to~04141040O0~140~144~0~~10a~~Oeat~~1~yaaote~~~00~~1~~'1~~t~~1'0~~ya~~~1~000e~~~404~0~ei~0ate~4~~~~Oeeo~00~00~~tI~~tjo~1'ooay~40~Oeea~440'0~~~~Oe~~04ty~1100~~~~00',o1~eOoa0o4~~~4oeataao~yp0000OOO4~000ita~4000y0~0~011'0~0~yOo~ay~404O4<~~~otoe~4~~ooyetn,~~~4aaeplO~0o0~oa41haeeo,cove~a404o~1~00~~4o4~Oayaogtaat1010~~0~00144400~010~4~~~4~4~00yy~01~o~~4~0040~~ye~~~404~140~af+OhgM44~~~~4o00+~~0y00~0~0~~~~~Vay~11~~~~~4~4~~Op0'40~~~1~~~~~11~~4aa~~~~~1~40~1~11'4404~~y~~~aet4~pey~01~~OeOeo~0~1~0ao041~Oa0~~o,ao~~~~~4to~~~4~4~~~~~~ay~~40~~~01~01'1~11~~oe401~~t~~~1~01~1~0~~TIg4~4~~NEWYO.<FlicSAYRCPENNSYLVANIA<<0~Oy0'ooy0~ceoEi~F0r~1ratTo2SCRANTON1111014~~1110~~O~~414-oKILToooa,o.o0e001ooo~~~14~101001~100~40~001~0~~100ooyanet<opoPooooataeae041001014~104010011~00001000'01ooeooea~1ePO~OO1aept4'to~~00001000~1~~10noeacOooaa1~011taFt<QQDDL'DONREGIONALGEOLOGICMAPNEWJERSTYSHOWINGPHYSIOGRAPHICPROVINCESREFERENCE:STATUTEMILESIO0IO20SO4050BASEMAPPRCPAREDFROMPORTIONSDt'DRLDAERONAUTICALCHARTS'AKEERIC(309)l967yHVDSCNRIVER(3IO)l967ANDST~LAWRENCERIVCR(263)l967.COLORDESCRIPTIONBEDLDSYANDPHYSIDQRAPHYPRCoAREDFROMAMAPBYTHEVNIVCRSITYOFTHESTATCCFNCWYORKTHCSTATCEDVCATIDNDEPTyENTITLEDLANDFDRMSANDBFDRDCKBKCLCDYDFN~YSTATFl99i~ORDOVICIAN:SHALEStSANDSTCNESANDLIMESTDNESCAMBRIAN:SANDS'ICNLANDCVARTZDSEDDLDSTDNEPRECAMBRIAN:VNDIFFERENTIATCD'0<<1~~1DEVONIANVNDIFFERENTIATED44440~SH'ALIBISSILTS'IDNI'S~SANDS'INEANDLIMCSTONEI/////gSILVRIANILIMCSTDNCgSHALEeSANDSTCNEeSALTBEDSKIEYTHRVSTFAVLTNORMALFAVLTVNCL*SSIFIEDFAVLT~maQa26%a'QhnlRICXGUl<E2.4-1
2.4.3SeismicityThesiteislocatedinaregionconsideredseismicallyinactive.Earthquakeactivitywithin50milesofthesitehasbeeninfrequentandminorandnoearthquakedamagehasresulted.There"hasbeennoknownearthquakeepicenterwithin50milesofthesite.,Mostofthereportedearthquakesintheareaareassociatedwithwelldefinedstructuralzones.TheSt.LawrenceRiverValley,welltothenortheast,beyondtheMontreal/Quebecarea,andabout135milesfromthesite,isextensivelyfaultedandhasexperiencedconsiderableearthquakeactivity.Thelarger,St.LawrenceValleyshockswerefeltinNewYorkState,includingthesitearea.TherehasbeensomeearthquakeactivitynearAttica,NewYork,about110milessouthwestofthesite.ThisisbelievedtobeassociatedwiththeClarendon-LindenFault.Theearthquakeof1929(IntensityVII-VIII-ModifiedMercalliScale)damagedsomestructuresattheepicenter,nearAttica,andmayhavebeenperceptibleinthevicinityofthesite.Someminorearthquakeactivity,whichhasnotbeenrelatedtoknerngeologicstructure,hasoccurredinthevicinityofBuffalo,NewYork,tothewestof,thesite.Itislikelythattheseearthquakesresultfromcrustalreadjustmentintheareasoflocalstressconcentrationsassociatedwithreboundofthegeneralareafollowingretreatofthecontinentalglaciers.Theclosestearthquake(IntensityVI-ModifiedMercalliScale)whichcausedanydamageatitsepicenteroccurredin1853nearLowville,NewYork,approximately50mileseast-northeastofthesite.Severalminorshocks(IntensitygenerallylessthanIII-ModifiedMercalliScale)havebeenreportedwithinabout30milesofthesite.Theseshockswererelativelyinsignificant.2.4-2 I'l 25HYDROLOGYLakeOntario,theeasternmostoftheGreatLakes,isaninternationalbodyofwaterformingpartoftheborderbetweentheUnitedStatesandCanada.Thelakeis193mileslongand53mileswideatitswidestpoint,andhasasurfaceareaof7,340squaremiles(4.7millionacres).Ithasamaximumdepthof802feet,anaveragedepthofapproximately283feet,andavolumeof393cubicmilesor1.34billionacre-feet.InflowintothewesternendofLakeOntarioaveragesapproximately205,000cubicfeetpersecond(cfs).RunoffdirectlyintoLakeOntariofrom27,300squaremilesofwatershedinNewYorkStateandtheprovinceofOntarioamountstoanadditional36,000cfs.ThemainfeederistheNiagaraRiver;theotherlargestriversdrainingintothelakearetheGeneseeandtheOswegofromthesouthshore,theBlackRiverfromtheeastshore,andtheTrentRiverfromthenorthshore.ThecombinedoutflowfromthelakeviatheSt.LawrenceRiveraveragesabout241,000cfs.Theaverageannualprecipitationinthesiteareaisabout36inches.Itisestimatedthatapproximately18inchesisdirectlyattributedtorun-offasstreamflow.Oftheremaining18inches,approximately16inchesislosttoevaporationfromlandandwatersurfacesandtranspirationbyplants.Thesetwoprocessesaregenerallyreferredtotogetherasevapotranspiration.Theremainingtwoinchesareavailableforgroundwaterrecharge.Therelativelyhighrun-offcanbeattributedtothelowpermeabilityoftheglacialsoilsandrockformalions.Duringwinter,icecoverformsintheslackwaterbaysbutthelakeitselfisseldommorethan25percentice-coveredandmostlyintheeasternendofthelakeonly.LakeOntario'soutflowriver,thest.Lawrence,isice-coveredfromlateDecemberuntiltheendofMarch,allthewayfromthelaketotheInternationalBoundaryatMassena,NewYork.Priortothebeginningofflowregulation,theelevationofthelakesurfacewascontrolledbyanaturalrockweirlocatedabout4milesdownstreamfromOgdensburg,NewYorkintheGalopRapidsreachoftheSt.LawrenceRiver.The111-yearrecordoftheU.S.LakeSurveyfrom1860to1970,indicatesameanlakesurfaceelevationof246.00feetabovemeantideatNewYorkCity,1935datum.+Overthisperiod,themaximummonthlylakesurfaceelevationwas249.29feetandtheminimumwas242.68feet,arangeof6.61feet.Theannualrangeofelevationsvariesbetween3.58and0.69feet.~AllelevationsinthisreportarereferredtotheU.S.LakeSurvey1935DatumToconvertelevationsto1955InternationalGreatLakesData,subtract1.23feet2.5-1
DamsontheSt.LawrenceRiver,underthesupervisoryauthorityoftheInternationalSt.LawrenceRiverBoardofControl,arenowusedtoregulatethelakelevel.ThelowerlimitissetforE1..244onApril1andismaintainedatoraboveE1..244forthenavigationseason(April1toNovember30).TheupperlimitofthelakelevelisEl.248.TheNineMilePointsiteisatgroundelevation260withthemaximumfloodlevelatelevation263.Thislevelistheresultofaddingthewaverun-upandthewindset-upthatwouldoccurduringastormhavingareturnintervalofoncein10,000yearstothemaximumcontrolledstillwaterlevel.Theexistingdikeonthelakeshorewouldprotecttheunitfromthisflood.ThemaximumfloodlevelinthescreenwellwasdeterminedtobeEl.252.5fromaddingthemaximumshort-termriskoccurringin10,000yearstothemaximumcontrolledstill-waterlevel.Waveswillnotaffectthescreenwellwaterlevelduetotheslurresponsetimeoftheintakeanddischargetunnels.Essentialstationequipmentwillbelocatedsothatextremewaterlevelswillnotaffectitsoperation.Theminimumwaterlevelatthesiteiselevation236.5.ThiswasdeterminedbysuperposingthehypotheticalminimumstillwaterleveloccurringintheabsenceofthepowerandseawayprojectsexistingontheSt.LawrenceRiverandtheonce-in-10,000yrinstantaneousloweringofthestill-waterlevelduetothemaximumprobableseicheonthelake.'hesemaximumandminimumelevationsweredeterminedbyanalyticandstatisticalmethods.Watersurfaceset-upandseicheareproducedbywindsandatmosphericpressuregradients.Theseshort-termlakefluctuationsaregenerallyoflessthantwofeetamplitudefor10-to16-yearreturnperiods.Windsaredirectlyrelatedtotheformationofsurfacewaves,themagnitudeofwhichtypicallyvariesbetween0and15feetintotalheightduringagivenyear.Astronomicaltidemagnitudesamounttolessthanoneinch.TheNewYorkStateDepartmentofEnvironmentalConservationmonitorsthewaterqualityofLakeOntarioasdrawnintotheOswegoCitywatersupplyintake6,500feetoffshoreatadepthof40feet.The6-yearcumulativerecordofthismonitoris.showninTable2.5-1.TheaveragemonthlywatersurfacetemperatureofLakeOntarioisshowninFigure2.5-1.Asnotedina1970InternationalJointCommissionReport,thelakeiscategorizedasbeinginastageofeutrophicationbetweenoligotrophicandmesotrophic.Theinshorewatersaremoreeutrophicthantheoffshorewaters.Thisconditionreflectstheshallowerdepthsinvolvedandtnefactthatmostnutrientinputs,bothnaturalandman-derived,enteralongtheshores.2.5-2 Ve),,tIVi1/'II4'IIIII 80~700LU+60XUJ50I-XO>40+30AVERAGEWATERSURFACETEMPERATURE20JANFEBMARAPRMAYJUNJULAUGSEPOCTNOVDECFIGURE2'.5-IAVERAGEMONTHLYTEMPERATUREOFLAKEONTARIO e*
Table2.5-1LakeOntarioWaterQualityDataRecordedatOswego,NewYork,CityWaterIntake6,000FtIntoLakeat40FtBelowLakeLevel*ParameterUnitsNoof~SamlesRecordofData~Concentrations.--MaxMeanM'aximumConcentrations,USPHS.or-NYS=Hardness(CaCO)Alkalinity(CaCO)Ammonia,Nitrogen(N)Calcium(Ca)Chlorides(Cl)Iron(Fe)Manganese(Mn)Magnesium(Mg)Nitrates(N)Nitrates(N)Phosphates(PO)Potassium(K)Sodium(Na)Sulfates(SO)pHTurbidityTemperatureDissolvedOxygen5-DayBODColorConductivityColiformBacteriaCODDichromateRes.onEvap.(Total)Res.onEvap.(Fixed)Suspendedsolid(Total)SuspendedSolid(Fixed)mg/1mg/1mg/1mg/1mg/1mg/1mg/1mg/1mg/1mg/1mg/1mg/1mg/1mg/1ftFppmppmmmhosNo/100ppmppmppmppmppm54~16545454545451545454545454717170706668537051545151266/64-1/713/65-11/666/64-1/716/64-1/716/64-1/716/64-1/716/64-1/719/65-1/716/64-1/716/64-1/716/64-1/716/64-1/716/64-1/716/64-1/715/64-1/715/64-1/715/64-1/715/64-1/715/64-1/716/64-1/716/64-1/715/64-1/716/64-1/716/64-1/719/65-1/719/65-1/718/66-1/71112850.032.03.80.0.004.90.00.00.0.51.013.0721.0346.80.2213102.20.21287310146940.4744030306018.90.140.0050.191.616.63017.98449.31091.2585306567-92431351055.524010113154.055.5.9.1329.00.510.0291.6511445.05009025.07341443.020437024028153336744172500.30.31025015*DatarecordedbyNewYorkStateDepartmentofEnvironmentalConservation
WindsaretheprimarycauseoflakecurrentsinLakeOntario.Temperaturegradientsinthelakeproducecurrentsofconsiderablysmallermagnitudes.CurrentsareaffectedlocallybylakegeometryandCoriolisforces.Ingeneral,thecurrentsareonlyafewtenthsofafootpersecond.Thedirectionofcurrentisvariable,dependingprimarilyonthedirection,magnitude,anddurationofwinds.Dominantcirculationpatternsinthelakearecounterclockwise,westtoeast,pastthesiteasshowninFigure2.5-2.Onthebasisoftheannualinflowandoutflowofthelake,watershouldbereplacedeveryeightyears.However,becauseofcurrent,circulation,mixing,andstratification,actualreplacementtimefor90percentofthelakewaterisestimatedtobethreetimesaslong.Thereare16publicwatersupplieswithin30milesofthestationsite,asshowninFigure2.5-3andlistedinTable2.5-2.ThecityofOswegoandtheOnondagaCountyWaterDistrict(OCWD)drawwaterfromLakeOntariothroughacommonintake.Thereisonewellwithin10miles,threebetween10and20miles,andtenbetween20and30miles.Mostpublicsuppliesbeyonda10-mileradiusobtaintheirwaterfromwellsdrilledintoalluviumadjacenttolargerstreams.Allareupgradientfromtheproposedplantsite.Table2.5-2PublicWaterSupplies1OnondagaCountyWaterDistrict,OCWD2Oswego3Mexico4Pulaski5Fulton6SandyCreek7CentralSquare8Orwell9Phoenix10Baldwinsville11Fairhaven12Cato13Wolcott14Adams15BedCreek16ConstantiaManyoftheresidents'inthesitevicinityobtaintheirwatersupplyfromdugwellscompletedintheglacialoverburden.Thesewellsnormallydonotyieldmorethan5to8gallonsperminute.Somewaterisobtainedfromdrilledwellsthatarecompletedintheupper5-to10-footfracturedzoneoftheOswegosandstone.Yieldsinthismaterialaverageabout.10gallonsperminute.Thenearestknownprivatewellisonemilefromthesite.Allprivatewellswithintwomilesofthesiteareupgradientfromtheproposedsite.ThelocationsanddepthsofprivatewatersuppliesarelistedinTable2.5-3andshownonFigure2.5-4.2.5-4
}IJt'IEe~l$*
SURFACETREJVTRIVERKINGSTONIIIVIII6IIG6g.I.BLACK'IVERTORONTOE(~AiVIAGARARIVERNIAGARAFALLSo\4'-APNINEMILEPOINTOSWEGOOSIVEGORIVERROCHESTERGEAESEERlVERLOWERLEVELSBOTTOMFIGURE2.5-2LAKEONTARIODOMINANTCIRCULATIONPATTERNS
'elaeevlfvIJaalu@OiyraaIOStonyPLHeHarTIr0sao$4eo*~pSmltli~0HeersonConteFndyCreep'tsBeevil!4skIv~4tIisbuManIleERodmaok4.SmartvlllePortOntarvrgxrcoBAYoo4PulseRichlandrgLycomingAltmaMapleViewNewHaveI,ogeweLansing~sar0VarmgioSe'nIIOMILECilffordoOColosseG0assrSouthwestgooarlshoaaIngsPalermooSterllVsIeyFaiavettl~FranceFultnIHasnnlballICreekannlbalntsrIlettoa0OBowensComeILEgHIn~a.ioThroeRiverslgluEuclid0aldwlnPrIdSp20olcottProWostburyIVictoryyloLysandef<ere~JAerldlsnIIllsCrossEako30MILESyCicero0roCenteroRoseSButler0NSyracuseefpoolmerlg4r0Conrluest<tMaikwyGayvlllennellvgrICentralSquaroWMonCsghdeHvANIConstanti0SalmonReserverIcaasoag4IWiiamstoWnAer/stanti/PanrkerLake~CentsBehsnSBay1Cleveia/4BridgeportNManausKtstrengoshVoMsumsoemphlsarn4rsJordanElIdgeCamlllusCa0FslrmountaLotMarcousOnodsga0EastMlno<0SACSEKlrkvllloMy~nasoFayettevllleanliusrhoeusTyrooHalacyCpp0nacaFallsIThrvlllq0onett(Skanea4uburnSks44'telos~IlsMsfc41lusMoII~CedewaleoIesQBQS~rl4tteIIIIIOber0NsdrowD'AG~gssmesvtgoAlgFoyers0CsrI.t4rvalPopeyCener0CasenovlOra0LakeIPUBLICWATERSUPPLIESINVICINITYOFSITERr'FERENCETHISMAPwasPREPAREDFROMAPORTIONOr'S0~5~STATEOrNEWVowerPATEMAPl957STATuTEMILES5IO1520NoteIRELLDATADcscnrocDINTA4LC252DAMaksgkMoogacsFIGURE2.5-3
LyE0nrT>RPROGRESSCENTERLakeviewUNITIIIR2.1\1YiIII1IlIIIRRIVATeI1I"IPLANT\I'1III'I1\ROpy)44CIIIIIROAD4647c+48I57271~75II'1IAO3NliQEMILEPOINTSITEMILE~5528URTOO6qO~NIAGARAMOHAWKIPOWERCORPPROPERTYLINEJAMESA.FITZPATRICKSITE~l6449774~76VIROR2382POg50<70Ox~79~676268I~668069I24/27881IT~222lh1I~60(OA6257~lieIO20~ol2335~33O55Lycoming~32$~303I~29~27264I42OI28I3ERAUTHORITYOFTHETATEOFNEWYORKPROPERTYNE42539~40tforthScrlba122InInIIIIIIODLeROADIOIOASCALE-MILESNOTEDATADESCRIBEDINTABLE2.5-3FIGURE2.5-4PRIVATEWATERWELLSNEARSITE
Table2.5-3PrivateWaterSupplies~MaMo.WellDeth.Feet~MaNO.Well.Deth.Feet12346789101112131415161718192021222324252627282930313233343536373839401860501430401818221422126816291/2Shallow2515-3025402433104131261112245715358055823720(3201/2NoDatawells)Available414243454647484950515253545556575859606162636465,666768697071727374to82Data182242401863426703032303030153015-20683718201229(3wells)15-1832590241031NotAvailable2.5-5 PP1F 2~6CLIMATOLOGYANDMETEOROLOGY2.6.1DataSourcesAverageandextremevaluesofstandardmeteorologicalparameterswereobtainedfromtheU.S.WeatherBureauStationinOswego,whichceasedoperationsin1960,andfromtheU.S.CoastGuardStationatOswego(windobservations1936to1945).Dataonthemicrometeorologyofthesitewasobtainedfromaninstrumented204-foottoweroperatingduringatwo-yearstudy(1963-1964)atNineMilePoint.Theinstrumentsmeasuredtemperatureat30-,64.5-,106.5-,and204-footlevels,windspeedanddirectionat30and204feetandwindfluctuationat31feet.Tenyearsofhourlywind,temperature,andhumidityobservationstakenatRochester(1955-64),63milestothewestsouthwestofNineMilePoint,aswellastheOswegoWeatherBureaudata,wereusedtodeveloptheclimatologyofthesite.RochesterisconsideredmorerepresentativeofNineMilePointclimatologythanSyracusebecauseRochesterislocatedneartheshoreofLakeOntariowhichhasaprofoundinfluenceontheclimate.2.6.2GeneralClimatologyTheNineMilePointareahasrelativelyshortcoolsummers,withaveragetemperaturesnear70F,andratherseverewinters,withaveragetemperaturesnear25Fandheavysnowfall.Extremetemperaturesof100Fand-23Fwereobservedduringthe90yearsendingin1960.TheexposureoftheareatoLakeOntarioandtheflatnessofthesurroundingterraincauseswindspeedstobehigheratthesitethanthoseexperiencedinmostinlandareas.Precipitationismoderateandratheruniformlydistributedthroughtheyear.Itconsistsmainlyofthundershowersduringthesummerandsnowduringthewinter.Wintersnowfallaverages1to2feetpermonthduringDecemberthroughMarch.Themaximum3-daysnowfallonrecordwas75to90inchesduringthewinterof1965-1966.Table2.6-1showsmeantemperatures,humiditygprecipitationandsnowfallatNineMilePoint.2.6.3WindsThesiteisnearthemeanpathofmanycyclonicwindsystemswhichcrossNorthAmericaattherateofapproximately10permonth.Therefore,substantialtroposphericmixingoccursduringmostoftheyear.Stagnantconditionsoccurinfrequently.Prevailingwindsrangefromwesttosouthtosoutheast.Theannualwind<rose~~showingpercentagesofwindsfromeachdirectionatthesiteisshowninFigure2.6-1.Nonortherlycompasspointhasafrequencyashighas10percent,exceptfornorthwestduringDecember.2.6-1
NNWNWNEWNWIO%ENE'OTALWIND20%WSWSESWSSWSSSESESRI-10MPHI1-20MPH21-IOOMPHl965-l964NINEMILEPOINTFIGURE2.6-IAVERAGEWINDROSES
Table2.6-1AverageTemperature,HumidityandPrecipitationatNineMilePointRELATIVEPRECIPI-SNOW-TEMPERATURE~F+HUMIDITY~5TATION~IN.4+FALL~INMONTHMAX..MINMAX.MINJanFebMarAprMayJunJulAugSepOctNovDec32.732.541~854.767.878.282780373.061.147.435416715.524134.245.054.959757550.940.432021.08181817981848486878481817369645754525052555766702.702.622802.722.972.282.742.512.783.263.013.1723.621.412.72.3000000.473204Annual57.337.7836033.568814U.S.WeatherBureau,Rochester,N.Y.,1931-1960.+~U.S.WeatherBureau,Oswego,N.Y.,1884-1960.Themostprominentpeakinthedistributioniswest-southwest,whichbecomesespeciallymarkedinMayandJunewhentheoverallfrequencyreachesmorethan20percentfromthisdirection.Anabsolute3-minutepeakwindspeedof73milesperhourwasobservedduringtwoyearsofobservationatthesite.MonthlywindrosesandatmosphericstabilityfrequencyandprecipitationfrequencyasafunctionofwindspeedanddirectionareshowninAppendixD.2.6.4TornadoesandHurricanesIHighwindsintheLakeOntarioarearesultfromintensewinterstorms,remnantsoftropicalstorms,andseverethunderstorms.Thenearesttornadoesshownonatornadosummarymapoftheareacompletedin1960occurredinJamestown(1945)andAlleganyCounty(1920),bothapproximately150milessouthwestofNineMilePoint.AtornadoinSinclairville,NewYork,onMay17/1969,about150milessouthwestofthesite,didsubstantialdamagetoresidentialstructuresbutcausednofatalities.RemnantsofhurricanesandMilePointvicinity,butmovingtowardthesitesubstantiallyweakenedbytropicalstormshaveaffectedtheNinesuchoccurrencesarerare..StormsfromtheNorthAtlanticOceanaretraveloverlandsothatwindsare2.6-2 0C~
reducedbelowhurricaneforce(75milesperhour)beforetheyreachthesite(Ref.3).2.6.5TurbulenceClassesTheclassificationsystemusedtodifferentiatestackeffluentdispersionregimeswasbasedonthedirectionalfluctuationsofanaerovanewindinstrument(Brookhaventype)mounted204feetabovegroundontheNineMilepointmeteorologicaltower.Thefourturbulenceclassificationsarerelatedtootherdescriptionsofturbulenceinthefollowingway:NiagaraMohawkClass.-PasquillClassyBrookhaven~Class.~-QualitativeIIIIIIIVABDFB2B1CDVeryUnstableUnstableNeutralStableTheBrookhavenclassificationisbasedonturbulencemeasurementsfromstripchartsofthewindspeedanddirection.Intheabsenceofonsitewindmeasurement,thePasquillclassificationiswidelyusedasanapproximationofturbulentconditions.ThePasquillclassificationisbasedonwindspeedandcloudcoverparametersthatareroutinelymeasuredatmostairports.Ofthesevenpasquillclassifications(AthroughG)thefourlistedabovemostcloselycorrespondtothefourBrookhaventypes,exceptthatBrookhavenClassB2andB1,actuallycorrespondtoPasquillClassesAandB.TheNiagaraMohawkclassificationsaredefinedtobethesameasthecorrespondingPasquillandBrookhavenclassesaslistedabove.StabilityfrequencyasafunctionofwinddirectionisshowninTable2.6-2.Table2.6-3liststhefrequencyofwindspeedsobserve'dforeachwinddirectionasapercentageoftotalobservationsmadel'oreachofthefourturbulenceclassifications.2.6.6LapseRatesAnothermeasureofstabilityisthelapseratemeasurementstakenbetweenthe30-and204-footlevelsonthetower.ThesearesummarizedasmeandiurnallapseratesforeachmonthinAppendixD.Thesefiguresreflecttheimportanceofthelake-landrelationship.Inthewintermonths(December,January,andFebruary)themeandiurnallapserateneverpassesintotheinversionregime.However,inMayandJunethemeandiurnallapserateliesintheinversionregimecloseto75percentoftheday.2.6-3
Table2.6-2AnnualStabilityFrequencyofOccurrencewithrespecttoWindDirection,PercentBrookhavenStabilitClass.TotalsWindDirectionNNNENEENEB214.09.08.0203B1~2.793.562.35.78.90.05.31;17.0009D- 04.84.76.50.724.024.803.361.301.74ESESESSESSWSWWSWNWNNWCalmTotal.15.44.891.13.3620.22.19.06I.06~11014182.054.663.044.333.366.107.968.094.764.492.79.0162.02.713.251.911.971743413.871.7933.19.04.0019.83.721.25.95.67.51.563.639.606.798.105.9710.27162.65.62.690313.0911.695.805.363.6305-.96~130126-4
PercentTable2.6-3OccurrenceofTotalObservationsBrookhavenTurbulenceClassB2:Very641ObservationsUnstableWindDirec-tion1-34-7WindSpeed(Knots)8-1112-1920-29>30AllSp-NNNENEENEEESESESSESSSWSWWSWWWNWNWNNWCalmAll07.06.03.010105.03.05.12.08.0502.06.0303.03.0174.0502.03.01.0204.15.28~4416.09.1007.01.03031.53000201.00.01.01.00.00.00.00.0303~13.132231.25.32.07.05.04.02.070300.05.01.01.00.00.02-0186.99.00.00.00.0000.00.000300.00.00.00.01.00.000004.00.00.00.00.00.00.00.0000.00.00.00.00.00.00.00.00.14.09.08.02.03.1544.891.1336.20.22.19.06.06.11.014.18BrookhavenTurbulenceClassB1:Unstable9567ObservationsWindDirec-tion1-34-7WindSpeed(Knots)8-1112-1920-29>30AllSp.NNNENEENEEESESESSESSSWSWWSWWWNWNWNNWCalmAll22.1619.1809~1310.11.3921.30.1819122318.01.51.60'9.36.40.45.82.691.911.061.7412111856.63.582.9913.2938.52.60.17.29.621.24.981321.341.821931.2961.65.501301.40.75.06.12822.391.1971.751.782.742771.912.061.16142621.9137.8021.01.00.0311.07.00.00.411.411-951.19.82.367.74.01.0801.00.00.00.00.00.00.00.05497137.10.011.832.793.562.35.78.902.054.663044.333.366.107.968094.764.492~79.0162.022.6-5
Table-2.6-3Cont.BrookhavenTurbulenceClassC-3057ObservationsNeutralWindDirec-tion1-34-7WindSpeed8-1112-19(Knots)20-29>30AllSpNNNENEENEEESESESSESSSWSWWSWWWNWNWNNWCalmAll00.00.00.00.00~00.0100.00.00.01.01.00000000.00.03.0200.00.00.01.03.02043213.29.0502.0001.01.01.01.05.12.021300.00.03.05.10.53302.42.231.56.73.92.60101821.78.351.95.06.59.01.1604.08.01.01.953.3611.32.00.12.02.00.00.054908.00.00.451.14.87.15.0601344.0102.0000.00.0001.00..00.00.06.37.25.01.0000.73.05.31.17.00.09.713.251911.971743.413.871.7933.1904.001983BrookhavenTurbulenceClassD1998ObservationsStableWindDirec-tion1-34-7WindSpeed8-1112-19(Knots)26-29>30AllSpNNNENEENEEESESESSESSSWSWWSWWWNWNWNNHCalmAll26.13.08.02.03.14.47.1701.06.00.16.40.12.12.1416.12.12.11.22.25.40.36.06.08.03.31.42.0508.10.383233.23'4.2630~34.36.27.34.35.55~2330.23.191813.1413.07.11.08241219.13.1822.10.22.032465.132.872.31.05.0900.00.00.00.00.00.00.00.00.01.0703.02.00.27.00.00.00.00.00.00.01.00.00.00.00.00.00.0000.00.01104.84.76.5072.721.25.95.67.51.56.961.62.65.62690313.092.6-6
'I~P 27BIOTA2.7.1TerrestrialEcologyofSurroundingAreaandStationSiteThephysiographicregionsofOswegoCountycanbecategorizedintothreebroadlandgroupings:(1)theTugHillPlateauinthenortheast,(2)thelowOneidaPlainextendingsouthofLakeOntario,and(3)anintermediateregionreferredtoastheTugHillTransitionzone.ThisisshowninFigure2.4-1.Duetothedifferencesintopographyandelevationamongtheseregions,theplantandanimalspeciesineachregionarevariable.TheOneidaPlainarea,whichincludestheNineMilePointStationsite,islowundulatingland,muchofwhichhasbeenclearedinthepastforfarmingbutoverhalfofthefarmlandinthecountyhasbeenabandoned.ThewildlifespeciesfoundinthisregionconsistofthetypicalfaunaassociatedwithmuchofthenortheasternUnitedStates.Thisareaisgoalrangeforwoodcock(Philchela~minorand'I""abundanceislow.Furbearers,includingraccoon(Proc~onlotor),mink(Mustelavenison,redfox(Vuulesfulva),greyfox(UUroron.cinereoarenteus)andskunk(~Mehitism~ehitis)alsooccurontheOneidaPlain.ThesouthshoreofLakeOntarioisanimportantconcentrationareafordivingducksinthewinterwithlesserscaup(~Atheaaffinis)beingthemostabundantspecies.Dabblingduckssuchaswoodduck(Aix~sonsa).,blackduck(Anasr~ubries),mallard(Anas.1strhchas),green-wingedteal(Anascarolinensis)canbefoundonthemarshesandpondsoftheregion.TheDepartmentoftheInterior,BureauofSportFisheriesandWildlife,hascompiledalistof101speciesandsubspeciesofwildlifeintheUnitedStatesthatarenowthreatenedwithextinction.TwoavianspeciesonthelistwhichhavebeenpreviouslyrecordedinNewYorkStateincludetheAmericanww'agle(Haliaeetusleucocehalusleucocehalus)butneitheriscommontothesite.Thevegetationonthe.sitemaybedividedintofourcategories:abandonedpastureandorchard,overgrownland,Northernhardwoodforestandclearedland.Thedivisionisbasedonthevarioussuccessionalstagesinaplantcommunityasclearedlandrevertsbacktothenormalforestconditionwhichistheclimaxstageforthearea.ThisisshowninFigure2.7-1.AlistofidentifiedplantandanimalspeciesassociatedwiththesehabitatareasispresentedinAppendixE.2~71
$,'i'w+P'~.~M;P~+gal~)i~j~+j<Qf..!f!gp'(*NORTHERNHARDWOODFORESTABANDONEDPASTURE6ORCHARDrI~jqyv<JOVERGROWNLANDPOWERLINECUTCLEAREDFIGURE2.7-IVEGETATI0NCATEGORIES
2.7.1.1AbandonedpastureandorchardAbandonedpastureandorchardisthefirststageinlandsuccessionafterabandonment.Itischaracterizedbylowgrassyandherbaceousvegetationwiththeaverageheightbelowthreefeet.Extensiveareasofthisvegetativestageappeareastandsouthoftheexistingpowerstation.Thereisalargeabandonedappleandpearorchardinthenorthwesternportionofthesite.thetallestvegetationinthissuccessionalstage.Also,some(Rhus~thing)andpoplar(~Polussp.)arefoundinhedgerowsandothersmallpatchesofbrushthathadnotbeenclearedwhentherestoftheareawasusedforcommercialorchardorpasture.Thedominantvegetationinthissuccessionalstageisorchards(~~.(~QAnne'lace(Daucus.carota).Asmallplantingofscotchpine('""'Sareasouthwestofthestation.2.7.1.2OvergrownlandThereisnodistinctdivisionbetweenthissuccessionalstageandtheabandonedpastureandorchardstage,butitcangenerallybeidentifiedwherelowwoodyvegetationhasreplacedthegrassesandherbs.Woody'vegetationbecomesdominantshadingtheherbsandgrassescausingmanytodieoutduetolackofsunlight.Thevegetationintheovergrownlandisdense,providinggoodcoverforwildlifewhichinhabitsthearea.Manysmalltransitionaltreespecies,includingpincherry(Prunusennslvanica),overgrownland.Someyoungforesttreessuchasredmaple(Acer.r~~e)andblackcherry(Prunusserotina)alsooccurinthisareaAl.der(Ainus.sp.)andwillow(Salixsp.)canbefoundinthewetterareas,especiallyalongthewesternboundaryoffLakeviewRoad.Thelowwoodyshrub,arrowwood(Viburnumsp.)andgrape(Vitis.sp.)areprevalentonovergrownland.Thisseraistageisprevalentalongtheperipheryofthesite.2 1.3NorthernhardwoodforestThenorthernhardwoodforestistheclimaxcommunityinthisarea.Thisischaracterizedbyfourdominant+species:sugarmaple(Acer.saccharum),yellowbizch(setula~lutea,beech(Fa(aus-speciesthatarecommonareredmaple(Acer.rubrum),whiteashcherry.Groundcoverinthematureforestislowandsparse.Canadamayflower(Maianthemumcanadense),five-leafedivy9RHI2m72 aI partridgeberry(Mitchella~reens)andferns(polypodiaceae)aresomeofthemorecommongroundcoverplants.Morethanonethirdofthesiteisinforest,primarilyinthecentralandeasternsection.2.7.1e4ClearedlandSectionsofthesitewereclearedfortheNineMilePoint,Station.Anareaapproximately500feetwideextendsfromnorthtosouththroughthesiteandservesasatransmissionlinerightofway.Thetransmissionlinerightofwayhasagreatdiversityofvegetation.Thetimberhasbeencutandremovedgivingabrushyeffect.Somespeciesfromeachofthepreviouslydescribedsectionsoccurherewithsomeadditionalspeciesnotassociatedwiththeotherareas.Themostcommonplantonthisareaisblackberry(Rebuselleheniensis)whichformsthickcoverandprovidesabundantfruitforanimalsandbirds.Mullein(Verbascum~thasus)~thistle(cirsium.sp.)~andchicory(Cichorium~intbus)arethreecommonspeciesinthisareanotoftenencounteredintheotherareas.Severaldepressionsontheright-of-waycontainstandingwaterandsomespeciesofwaterlovingplants,includingcattail(~Tphalatifolia),smartweed2.71.5AnimalassociationsTheNineMilePointStationsite,duetothediversityofvegetation,provideshabitatsformanyofthetypicalwildlifespeciesfoundthroughouttheNortheast.Alargenumberofpredatorybirdsappeartobeassociatedwiththemoreopenareasofthesite,atleastduringcertaintimesoftheyear.SparrowmHbeenobservedinthevicinityofthesite.Extensivetunnelinginthegrassindicatesthattheareasupportsalarge'populationofvoles(Microtusennslvanicus).Thevoleisanimportantfooditeminthedietofmanyhawksaswellassomepredatorymammals.Twospeciesofgamebirds,ruffedgrouse(Bonasathesite.Severalspeciesofsmallbirdsarealsofoundthroughoutthearea,includingblackcappedchickadees(ParusI!alsoabundantinthearea.ManyotherspeciesofbirdsoftheNortheastarefoundonthesiteduringdifferenttimesoftheyear.floridanus),redfox(~Vulsfulva),raccoons(~proconlotor),2e73
(~Mehitis~mehitis)andmink(Mustelavison).Thevegetationonthesiteappearstobecapableofsupportingwhite-taileddeera-"'"'~.12.7.2AquaticEcologyTheGreatLakessupportawideranginganddiversifiedpopulationoffishspeciesasreportedbyHubbsandLagler(Ref.0),Beeton(Refs.5and6),andDambach(Ref.7).LakeOntariosupportsavaluablecommercialandsportfisheryasmentionedinSection2.2.Thecommerciallandingsaredominatedbywhite(Ictalurus.nebulosus),yellowperch(Perca.flavescens),whitefish(~'"I!-(~Americaneel(AcCuillarostrate),sunfish(I~amisspp.),andwalleye(Stizostedion-vitreumvitreum).Theprincipalsportfishesarevariouspanfishesaswellassmallmouthbass""4"lucius),cohosalmon(Oncorhnchuskisutch),andyellowperch.Thebluepike(Stizostedionvitreum~laucumislistedontheendangeredspecieslistoftheUnitedStatesDepartmentofInteriorandwasoncequiteabundantinLakeOntario.Thisspecies,however,hasnotbeenobservedinthevicinityofNineMilePointduringtheecologicalfieldsurveys.Acomprehensiveresearchprogram,designedtomonitorvariousparametersoftheaquaticenvironmentinthevicinityofNineMilePointwasinitiatedbytheNiagaraMohawkPowerCorporationin1963.Since1969thisprogramhasbeencloselycoordinatedwithstudiesinitiatedbythePowerAuthorityoftheStateofNewYorkfortheJamesA.FitzPatrickNuclearPowerPlant.Thesecontinuinglakesurveillancestudieshaveprovidedmuchinformationregardingtheaquaticecologyoftheregion.ThedetailedresultsofthesestudiesarepresentedinSection5.5.ThroughouttheecologicalfieldstudiesatNineMilePoint,eighttotwelvespeciesoffishweregenerallyencounteredduringthenettingoperations.Themajorspeciestakenindescendingorderofnumbersare:AlewivesYellowperch$8iteperchNorthernredhorsesuckerRockbassSmallmouthbassBluegillBrownbullhead(Aloes-seudoharens)(Percaflavescens)(~H!(~reomismacrochirus)(Ictalurusnebulosus)Alsotakeninthenetshavebeenvariousminnows(~Notroisspp)andanoccasionalcarp,cohosalmon,walleye,smelt,gizzardshad2.7-4 CII'I Otherspeciesoffishbesidesthosecollectedduringthefieldsurveysmayfrequenttheinshorewatersnearthesiteduringcertaintimesoftheyear.Someofthespecieswhichmayperiodicallybefoundinthevicinityofthesitecouldincludethefollowing:otherspeciesofsunfishes(familyCentrarchidae),speciesofpike(familyEsocidae),largemouth(f'troutperches(familyPercopsidae),sticklebacks(familyGasterosteidae),killfishes(familyCyprinodontidae),aswellasoccasionalcoldwatersalmonidsduringthecoldermonths.Ingeneral,'hemostabundantspeciesoffishcollectedinthevicinityofthesiteareprincipallyspeciesindicativeoftheshallowwaterregionsofLakeOntariowherenaturalsummer'watertemperaturesaresuitableforwarm-waterfishpopulations.Naturalmaximumwatertemperaturesinthisregionduringthesummerapproachtheupperseventies(77F)whichisgenerallyabovetheoptimumtemperaturesforcold-waterspeciesoffish,suchasthesalmonids(Refs.8,9,10,and11).Undernaturalsummerconditions,itwouldbeexpectedthatthecold-waterspeciesoffishinLakeOntariowouldretreattomoreoptimumthermalstratainthedeeperoff-shorewatersinpreferencetothewarmerin-shoreregionsoftheepilimnion.Table2.7-1presentsthemaximumtemperaturesrecommendedbytheNationalTechnicalAdvisoryCommitteetotheSecretaryoftheInteriorascompatiblewiththewell-beingofvariousspeciesoffish,someofwhichhavebeenobservedinthevicinityoftheNineMilePointNuclearStation.Fishlarvalabundanceappearstobequitelow.TheonlyfishwhichappearstospawnactivelyinthevicinityofNineMiletotheshoreduringthespring.Foodpreferencestudiesoffishintheareaindicatedthatsmallalewives,darters,minnowsandalewifeeggsaretheprimaryfoodsupplyinthespringoftheyear.Astheseasonprogressesthefreshwateramphipod(Gammarus)assumesgreaterimportanceasafoodsource.Forsomeofthelessabundantfishspecies,crayfishandsmallforagefishcomprisedamajorportionoftheirdietduringtheautumnmonths.ManyresearchershavestudiedthebenthiccommunitiesofLakeOntario.Henson(Ref.12)reviewedthevariousresearchprogramsassociatedwithbenthosstudiesontheGreatLakes.NeilandOwen(Ref.13)andHerbst(Ref.14)describedthedistributionofregioninthevicinityofNineMilePoint.Brinkhurst(Ref.15)discussedthechangesinthebenthiccommunitiesofLakeErieandOntarioinrecenttimes.TheGreatLakesLaboratoryoftheState2.7-5
UniversityCollegeatBuffalo(Ref.16)discussedinteractionsoflightandtemperatureonthegrowth~'StheandTheFederalWaterPollutionControlAdministrationstatedin1966(Ref.17)thattherearesevenprincipaltypesofbenthicinvertebratespresentinLakeOntario.TheAmphipoda-andOligochaetaaccountforabout95percentoftheorganisms.TheremainingfivepercentareSphaeriidae(fingernailclams),Tendipedidae(bloodworms),Isopoda(aquaticsowbugs),Mysidacea(opossumshrimp),andHirudinea(leeches).Theamphipodsarethepredominantinvertebratesthroughoutthelake.Theabundanceinnumberoforganismspersquaremeterduringa1965surveyrangedfrom0to5,400indeepwatersamplingstations.Table2.7-1ProvisionalMaximumTemperaturesRecommendedasCompatiblewiththeWell-BeingofVariousSpeciesofFishandTheirAssociatedBiota93F:Growthofcatfish,gar,whiteoryellowbass,spottedbass,buffalo,carpsucker,threadfinshad,andgizzardshad.90F:Growthoflargemouthbass,drum,bluegill,andcrappie.84FGrowthofpike,perch,walleye,smallmouthbass,andsauger.80F75F:Spawningandeggdevelopmentofcatfish,buffalo,threadfinshad,andgizzardshad.Spawningandeggdevelopmentoflargemouthbass,white,yellow,andspottedbass.68FGrowthormigrationroutesofsalmonidsandforeggdevelopmentofperchandsmallmouthbass.55F:Spawningandeggdevelopmentofsalmonandtrout(otherthanlaketrout).48F:Spawningandeggdevelopmentoflaketrout,walleye,northernpike,sauger,andAtlanticsalmon.From:TableIII-1,WaterQualityCriteria,ReportoftheNationalTechnicalAdvisoryCommitteetotheSecretaryoftheInterior,April1,1968,Washington,D.C.gFederalWaterPollutionControlAdministration.ThebenthicstudiesconductedatNineMilePointaspartoftheUnit1preoperationalandpostoperationalstudiesindicatethat2.7-6 NIt1 themaximumbiomassoccurringalongthe10-footcontouranddecreasingrapidlydowntothe20-foot.depthcontour.Beyondthe20-footdepthcontourgrowthwassosparsethatadequatesamplesforanalysiscouldnotbeobtained.ThebenthicanimalcommunityisdominatedbythefreshwateramphipodofthegenusGammarus.ThelargestbiomassofGammarusappearedtobeassociatedwithmaximalalgalgrowthalongthe10-footdepthcontour.Otherbenthicanimalsincludedthreespeciesofgastropodsandthechircncmidlarva,~Tendis.Ingeneral,thequantityofplantandanimalmaterialfoundalongtheNineMilePointpromontoryislessthanotherareasinthelake.Waveactivityandbottomcompositionalongthepromontoryprobablyplayaroleinreducingthetotalbiomass.AsdiscussedbyBeeton(Ref.5),LakeOntariohascharacteristicsassociatedwithbotholigotrophicandeutrophicconditions.ThewaterqualitystudiesatNineMilePointindicatethatingeneral,concentrationsofnitratesandphosphatesarelowandevenlydistributedoffshorefromthepromontory.Dissolvedoxygenconcentrationswerefoundtobehigh,evenduringthewarmestperiodoftheyear.TheUnitedStatesDepartmentofInterior(Ref.18)statedthatrecentsamplingshaverevealedachangeinphytoplanktoncomposition,indicativeofnutrientenrichment..Surveysin1965indicatedthatthephytoplanktonpopulationofLakeOntariovariedfrom50to3,600organismspermilliliter.ThedominantspeciesduringthespringwasScenedesmus,whileinJulyandSeptemberthepopulationwasdominatedbyChlamdomonas.AnextensivebloomofAnabaenawasrecordedinmid-July.Otherspeciesofplanktonidentifiedduringfieldstudiesin1964and1971includedthefollowing:Copepoda'""K!-"'ES-"Cladocera~Dahnia.dnbia.D.ga1eata.Bosmina.ionirostris.aOstracodaRotatoriaKeratella-adrata.K..cochlearis~Prachionussp.2e77 l'
ProtozoaTraechelolum.Amoeba-GastrotrichaChlorophytaPandorina-Volvox-AdetaileddiscussionofeffectsofstationoperationisgiveninSection5.EcologicalstudiesandpreliminaryresuitsaredescribedinSection5.5.2.7-8
2.8PRESENTRADIOLOGICALCONDITIONSATTHESITEANDITSENVIRONMENTTheradiologicalconditionsatthesiteandinitsenvironmenthavebeenmonitoredinanextensiveprograminitiatedbytheNiagaraMohawkPowerCorporationin1967,twoyearspriortostartupoftheNineMilePointStation-Unit1.TheresultsofthisphaseoftheprogramwerereportedtotheAECinadocumententitled"EnvironmentalpreoperationalSurvey,NineMilepoint,<<datedDecember1969.ThescopeofthemeasurementsmadeissummarizedinTable2.8-1..PresentlytheprogramyieldsoperationalphasedatafortheNineMilePointStation-Unit1.Table2.8-1PreoperationalEnvironmentalMonitoringProgramSamplesandAnalysesAirFilters-GrossbetaGammapulseheightanalysisonrepresentativesamplesPreciitation.GrossbetaGammapulseheight'analysisonrepresentativesamplesMilk-GrossbetaRoutineandspikedtestsamplestoberunforSr-90andI-131Theobjectiveofthepreoperationalenvironmentalmonitoringprogramwastoassurethattherewerenoradiologicalanomaliesinthesitearea.ThepresentradiologicalmonitoringprogramisdividedintotwopartsaslistedinTable2.8-2.1.Aquaticsurveillance-ofLakeOntariointhevicinityofthesite.2.Landsurveillanceinareassurroundingthestationsite.Inthelakesurveillance,afterdeterminationoftypes,abundance,anddistributionofaquaticorganisms,samplesaretakenatrepresentativeandrepeatablelocationsandanalyzedforthefollowingactivities:28-1
Table2.8-2SampleCollectionAnalysisNineMilepointStation-EnvironmentalMonitorin~Proram.A.LakeProram(DescribedinAppendixD-4ofRef.19)TypeofSampleTypeofAnalysisCollectionFrequencyNumberofLocations1.Fish2ClamsGBandSr-90GB,GSA,Sr-90SpringandFallSpringandFallTwoTwo3.Gammarus(FreshWaterShrimp)4.LakeWaterGB,GSA,Sr-90GBiGSASpringandFallWeeklyTwoDownstreamofEffluentDischargeCoding:GB-GrossbetaGSA-GammaspectralanalysisNotesonGradedProgram:A.Noenvironmentallakeprogramforeffluentdischargedatlessthan1x10-~uCi/mlaverageconcentration.B.Standardenvironmentallakeprogramasshownforitems1thru3foreffluentdischargedbetween1x10-~to1x10-~uCi/mlaverageconcentrations.C.Standardenvironmentallakeprogramasshownforitems1thru4foreffluentdischargedabove1x10-~uCi/mlbutlessthanMpCinaccordancewithAppendixB,TableII,Column2,ofCFR20andnote1thereto.D.Anappropriatenumberofsamplesshallbetakenateachlocation.
Table2.8-2ContinuedB.LandProram(Fiveon-siteandsixoff-sitesamplingstationsareemployedasdescribedinAppendixD-4ofRef.19.)TypeofSample1.AirParticulatesTypeofAnalysisCollectionFrequencyGSA(monthly)WeeklyGB-all(24hrs.decay)NumberofStationsElevenLocation5on-site6off-site2.PrecipitationGB8GSAMonthlyEleven5on-site6off-site3.FilmBadgesorTLD~sRadiationMonitorsGrossGammaGrossGammaMonthlyContinuousElevenSix5on-site6off-site5on-site1off-site5FarmMilk6.AirborneHalogensGrossBeta,SR-90,I-131GSAMonthlyWeeklyAdjacentDairyHerdsElevenPlantVicinity5on-site6off-siteCoding:GSA-GammaspectralanalysisGB-GrossbetaGB8GSA-GrossbetaandgammaspectralanalysisNotesongradedProgram:A.Noenvironmentallandprogramforstackreleaseslessthanapproximately3percentofmaximumreleaserate.B.Standardenvironmentallandprogramasshownforitems1thru5forstackreleasesbetweenapproximately3to10percentofmaximumreleaserate.C.Standardenvironmentallandprogramasshownforitems1thru6plusweeklyforfarmmilksamplesforstackreleasesbetween10to30percentofmaximumreleaserate.D.Environmentallandprogramupgradedtotwiceweeklyonsiteforitem1,weeklyonsiteforitem2,bi-monthlyon-siteforitem3andweeklyforitem5forstackreleasesgreaterthanapproximately30percentofmaximumreleaserate.E.Aftersubstantiatingdataisanalyzedforanyofthereleaseratelevels,theenvironmentallandprogramisdegradedbyonelevel,i.e.,B.toA.,C.toB.andD.toC.
~~
GrossBetaGrossGammaCs-137Sr-90Zn-65Co-60Theresultsofradioanalysesofaquaticsamplescollectedthrough1971,arepresentedinTable2.8-3.Fiveon-siteandsixoff-siteenvironmentalmonitoringstationswereoriginallyprovided;fouradditionalon-sitestationshaverecentlybeeninstalledattheFitzPatrickPlantsiteforfutureuse.Theirlocationsareshownon~Figures2.8-1and2.8-2.Locationshavebeenselectedwherenoradiologicalanomaliesexistandwherethestationsareaccessibleunderallweatherconditions.Theyhavealsobeenlocatedineachsignificantsectorrelativetothesite.Allmonitoring'stationsareequippedwithconstantflowparticulateairsamplers,rainandsnowfalloutcollectors,andintegratinggammadosimeters.On-sitestationsandtheoff-siteSectorCstationalsoincludearecordinggammaradiationmonitor.Thisequipmenthasbeenoperatedintermittentlyoveratwo-yearperiodsinceunitstartup.Table2'-4showstheradiationexposuremeasuredwiththermo-luminescentdosimeters(TLD)fortheperiodfromJuly1970throughDecember1971,atthefiveNineNilePointNuclearStationenvironmentalsamplingstationsandthesixoff-sitesamplingstations.(Nodataisavailableasyet.fromthefoursamplingstationsrecentlyinstalledattheFitzPatrickPlantsite)Thegrossbetaactivityofprecipitationsamplescollectedfromthreeon-siteandtwooff-sitestationsinJuly,September,October,andNovemberof1970,andforfiveon-siteand'ixoff-sitestationsinOctober,November,andDecember,1971arepresentedinTable2.8-5.Theradioactivityofairisdeterminedbypassingitthrougha2-inchfiberglassfilteratanominal.flowrateof2cfm,changingthefiltersweekly,andmeasuringtheradioactivityafter24hoursdecaytime.Resultsobtainedduringthesecondhalfof1970arelistedinTable2.8-6.ResultsobtainedduringtheperiodfromSeptemberthroughDecember1971arelistedinTable2.8-7.Theresultsofthedatacollectedfromtheenvironmentalmonitoringprogramindicatethatnoanomaliesexistatthemonitoringlocations.RadiationlevelshavebeenobservedtobegenerallyconsistentwithdatacollectedinNewYorkStatebytheDepartmentofEnvironmentalConservation.2.8-4
LAA'EONTA8'lOWI)II)IIIE2EIIIIININEMILEPOINTNUCLEARSTATIONE3E4IIIIIE5E6E7IPROPERTYLINE3451IARDJAMESA.FITZPATRICKNUCLEARPOWERPLANTESIIIIIEeITOMEXICO1AYPROPERTYLAKEVIEWLINEAPPROXIMATELAKEDEPTHSDISTANCEFROMSHORE50400600900I'I005000DEPTH(BELOWL.W.DATUM)612182450'000001COOSCALE-FEETFIGURE2.8"ILAKESAMPLINGTRANSECTSANDON-SITERADIOLOGICAL'ONITORINGLOCATIONS
r-.~iiMEXICOa,gDp\/8///\C/i0/l//r0ADiSITEr~I/OSWEGO)/(//Ir,L8>gI////E/Fl/\1PULASKIMILESglMONITORFIGURE2.8-2OFF-SITERADIOLOGICALMONITORINGSTATIONLOCATIONS
- 4 Table2.8-3NineMilePointAquaticSampleRadioanalysesPicocurieserramCi/m-d*weihtSampleTypeLoca-tionDateWeight(gms)wetdryGrossBetaGrossGamma('s137Zn<<('o60NorthernPike(Esoxlucius)6/692170482197%006102%0.110.15%002091%0050.34%0020.0%002BrownBullhead(Ictalarusnebulosus)WhitePerch(Moroneamericana)YellowPerch(Percaflavescens)N.RedhorseSucker(Moxostomamacroiepidotum)Alewife(Pomolobuspseudoharengus)E-1E-1E-3E-1E-3E-3E-1E-1E-3E-0E-1E-3E-1E-1E-1E-3E-3E-1E-1E-3E-3E-16/696/706/718/716/696/706/716/716/716/718/716/6911/706/716/716/716/716/718/7111/716/696/7011/706/716/716/7111/716/696/706/716/718/7111/71481915115512731673636906628783802001501151535275491596307323973158019621588662146012643926111653414105241481696652101366287441150493514975119159242841012253685121386141845168.5821.517.572414%0.110.0%0.588.64%0.486.1%0~4204%0.094.1%0.3112i0.66.9%0.4311.6%0.610.1%0.513%12.94%0.13.88%0.21133%0714.7%0.79.35%0.56.37%0.411.3%0.610%1-5.0%0.31.58%0.087.0%0.45.7%0.1513.5%0.712.5%0.710.8%0.53.8%0.24.0%0.230.0%0.5813.5%0.8.12.2%0~712%112i20.93%0.090.30%0.08NDND189%0211.9%0.2ND.NDNDNDND2.04%0.22NDNDNDNDNDNDND0.81%0.090.46%0.03NDNDNDND2.57%0.231.8%0.1NDNDNDND0.04%0.0200%021.92%0.310.8%0.10.54%0.010.0%0.20.61%0.140.87%0181.5%0.230.64%0.150.2%0.1016%0.021.80%0.090.24%0.070.32%0.07142%0.230.98%0.210.73%0.230.8%0.10.4%0.10.0%0.020-0%0.22.01%0.090.5%0.090.21%0.040.53%01506%0.10.19%0.010.0%0.20.54%0.150.14%0.050.8%0.20.0%0.10.73%0060.26%0.031.46%0.340.3%0.10.7%0.041.6%1.11.48%0~180.24%0.051.33%0.261.18%0.210.3%0.1208%0.10.39%0-040.6310.14249%0.220.3110.08111%0.210.97%0.170.2%0.10.5%0.10.33%0.030.99%0.220.51%0.050.52%0.074.95%0.660.32%0.0610%0.22.0%0.47022i0.057.54%0.5911.3%1.91.3%0.34.6%1.00.09%0.020.0%0.580.0%0.50.0%0.50.03io020.0%0580.0%0.50.0%0.50.0%0.50.0%0.50.0%0.50.03%0.020.0%0.580.0%0-50.0%0.50.0%0.50.0%0.50.0%0-50.0i0.50.0%0.50.03%0020.0%0.580.0%0.580.0%0.50.0%0.50.0%0.50.0%0.50.23%0.10.0%0.580.0%0.50.0%0.50.0%0.50.0%0.50.0%0.020.0%0.580.62%0.080.'6%0.10.06%0.020.0%0.58067%0.00.0%0.50.6%0.080.0%0.50.0%0.50.0%0.020.0%0.580.0%0.580.84%0.140.0%0.50.0%0.50.0%0.5++0.0%0.020.0%0.580.51%0.080.44%0.070.0%0.52.3%0.4*+0.0%0.020.0%0.580.0%0-50.56%0.100.0%0.50.0%0-50.0%0.50.0%0.500%05++*measuredasMn~~whichwasthemajorgammacomponentinthealgaesample.**co<<includesco<<ND-Nodetectableactivityabovebackgroundandsystemsensitivityonentirewetsamplegammascan.
Table2.8-3(Cont)PicocurieserramCi/m-dweihtSampleTypeLoca-tionDateWeight(gms)wetdryGrossBetaGrossGammaCs137SrvoZnd5CodaSmallmouthBass(Micropterusdolomieui)RockBass(Ambloplitesrupestris)LampreyEel(Petromyzonmarinus)Smelt(Osmerusmordax)MinnowSculpin(Cottussp.)E-1E-3E-3E-1E-1E-1E-3E-3E-1E-1E-1E-3E-3E-1E-1E-3E-1E-3E-3E-1E-1E-3W-26/696/706/716/716/718/716/716/716/718/7111/7111/716/7011/706/716/706/716/716/7111/7111/706/716/716/716/718/7111/716/706/716/717/7138527034975526281617511726441947019581542415295119.5592656.574.085.538187515.512.03905415230913029549379414615259231145.510.55.514613.517014.0104112.50.513.6i0.17.0i0.4105i0.58.74i0.494.94io.3611i14.75i0.367.39i0.446.53i0.4213il3.8i0.24.9i0.3O.oi0.58114i111628i330.59i0.05153i1624.5i1.517.6i1.511il11.4i1.111.2i1018.1ii015.5i10236i1.310i214i31.4i0.416.6i2333.8i6122i51.68io.190.72i0.02NDNDNDNDNDNDNDNDNDND29i1ND73+0.2NDNDNDNDNDNDNDNDNDND110i10NDNDND0.42i0.020.43i0.020.87io.180.49i0.140.74i0.180.7i0.10.41i0.12223iO280~6io160.6i0.104i0.106io2'.29i0.073.44i0.09162i130.48i0.033.28i0.81.41io.330.10i0.041.4io.46.19io400.11io041.19i0.280.54i0.150.90io.241.0i0.34.1i1.4O.oio.22.44i0.5411.0i3.67.2i1.912io-319io2107i0.220.22i0.050.78io.100.2io.1112io210.88io.1712io220.3io.10.6io.10.9io.1O.oio.070.09io.026.29i1.95'.11io.020.81io.280.59io.170.98io.3207io13.16io.701.49io.361.05io.220.65io.190.65io.142.3i0.516i40.27io062.24i0.766.41i2.4019i4O.oio.02O.oio.58O.oio.50.Oio.50.Oio.50.Oio.50.Oio.50.Oio.5O.oio.5O.oio.5O.oio.5O.oio.5O.oio.58O.oio.58O.oio.5O.oio.58O.oio.5O.oio.50.Oio.50.Oio.5O.oio.58O.oio.5O.oio.5O.oio.50.Oio.5O.oio.50.9io.2O.oio.581.14io.240.Oio.53.3i0.5O.oio.02O.oio.580.52i0.07O.oio.5O.oio.5O.oi0.5O.oio.5'.oio.50-Oio-5O.oio.5O.oio.5++O.oio.5++O.oio.58O.oio.580.8i0.19O.oio.580.95i0.180.67io.12O.oio.50.6io.1*e0.63io.12O.oi0.50.16io110.78io.12O.oio.5O.oio.52.5i0.4++O.oio.580.74io~16O.oio.5O.oio.5Eel(Anguillabostoniensis)6/718393614.94io.36ND1.3i0.230.21i0.07O.oio.5O.oio.5Carp(CyprinusCarpio)6/718/713780293412627.31io.4415803.4i0.3NDND0.22io070.7io.10.15io.0401io.11.12io21O.oio-5O.oio.5O.oio.5*measuredasMnsdwhichwasthemajorgammacomponentinthealgaesample.Co<<includesCosdND-Nodetectableactivityabovebackgroundandsystemsensitivityonentirewetsamplegammascan.
Table2.8-3(Cont)Picocurieser.ramCi/m~d-weihtSampleTypeWhiteBass(Roccuschrysops)Loca-tionDate6/71Weight(gms)wetdryGrossBeta3711935.55i0.38Gros'sGammaNDCsx3>0.43i0-130-43io.10Znss0.0i0.5Co<<0.0i0.5CalicoBass(Pomoxisnigromaculatus)E-18/7140114878io4ND0.5io.10.110.10.0i0.50.0i0.5Sunfish(Lepomis-)GizzardShad(Dorosomacepedianum)FreshwaterShrimp(Gammarussp.)E-1E-1E-1E-1E-1E-36/718/7111/708/7111/716/696/706/716/7168283209061886700831111612.4iO.97110i17395.75i0.532746.6i0.45423.6i0.26.4i2.60.55.9i0.80.56.12i0.870.59.28i1.13NDNDND.0.95i0.240.5i0.12.03iO090.8i0.10.1i0.12.51i0.370.2io.10.47i0.050.1io10.3i0.10.Oi0.50.OiO.50.Oi0.580.Oi0.50.OiO.50.Oi0.50.0i0.50.0i0.580.0i0.50.0i0.5~+Walleye(Yellow)E-1Pike(Stizostedionvitreum)8/7111025328.2i0.50.5i0.10.Oi0.10.Oi0.50.0i0.5CrayfishW-2E-18/718/71453188i19ND511i10ND19io91.9i0.719i432il31i0.50.0i0.51.2i0.21-710.5ClamsAlgaeW-2E-1W-2E-1E-1E-3E-1W-2E-1W-26/696/707/717/718/716/696/7011/706/716/718/718/7111/7111/71689380244142210182070843116223847920114363298168241286191411465230.15i0.05301i0.460.4iO.11.0i0.10.7i0.113.5i0.21.71107118.111.257.7i7.9112i1271i317i151i419i20.46i0.053.1io.1NDNDND35.6i5.935i185i2.5NDNDNDND(Allco60)ND0.16i0.020.0i0.570.2i0.102i0.10.1*0.10.2i0.010.0i0.571.14i01210.310.88.97iO.7617.9i2.52.1io.61.88i0.630.0i0.030.46i0.042.14io~131.7i0.10.4i0.13.2iO.12.4110.12054i0.010.15iO.0334.3i7.643.2i9.51.7io.41Oio2495i1092.02i0.450.29i0.020.0i0.580.0i0.50.0i0.50.0i0.50.07i0.020.0i0.580.0i0.5812.7i3.41.33i0.322.1io30.610.10.0i0.50.0i0.50.05i0.020.0i0.580.0i0.50.0i0.5.0.010.5*0.03i0.021.1810.0815-4io.915.1i2.5133i941i2441.8iO.2~*5.4i0.50.0i0.5~measuredasMns~whichwasthemajorgammacomponentinthealgaesample.Co<<includesCo<<ND-Nodetectableactivityabovebackgroundandsystemsensitivityonentirewetsamplegammascan.
Table2.8-3(Cont)PicocurieserramCi/m-d-weiht.SampleTypeLoca-tionDateWeight(gms)wetdryGrossBetaGrossGammaCsi37Sr90ZnasCo<<MiscellaneousAnalsesBottomSedimentE-1(15ftdepth)E-1(Dischargearea)E-4(20ftdepth)6/7037029719i2981305510.020.010.070.010.588.5%0.66/7060239013X169130-4810.290.0810-010.ORO.585.510.56/704233501.610.34.310.30.010.290.010.07O.OX0.580.010.58YellowpercheggsE-36/7129415.811.6ND2.14%0.430.66RO220.6510.13068%0.14MCOICO*measuredasMn~~whichwasthemajorgammacomponentinthealgaesample.**Co<<includesCo~~ND-Nodetectableactivityabovebackgroundandsystemsensitivityonentirewetsamplegammascan.
Table2.8-4RadiationDoseMeasuredatEnvironmentalSamplingStationsExosure-mremDurin-Period.of-Location7/70to9/70'0/70to12/701/71to3/714/717/71toto6/74-9/7110/71to12/71~D1on-siteD2on-siteEon-siteFon-siteGon-siteCoff-siteD1off-siteD2off-siteEoff-siteFoff-siteGoff-site2119141627182318161615201823172122262020'424121316161012161110122320.2020192022212219237.64.65.64.88.66.011.23.4526.08.012'615213.616.017.413.811.020013.612.4124Table2.8-5GrossBetaActivityofPrecipitationSamplesinUnitsof10-~uCi/ft~/monthPeriod*SAMPLELOCATIONS~.-..On-SiteStations.D1D2EFJuly,1970September,1970October,1970November,1970October,1971November,1971December,197126.93310.923383.840.622.83.011.03.18.3522.55.228.2451917172861195.934-96362323Off-SiteStations.July,1970September,1970October,1970November,1970October,1971November,1971December,197123.0686.54.89537.128-0D130.33410.2363.6435.5D2123.2.1E27.7222G5.8110.5.81581412.8-9
Table2.8-6EnvironmentalAirSampleGrossBetaActivities(10->>uCi/cm~)Date7-14-707-21-707-27-708 708-11-708-18-708-24-709 709-15-709-21-7010 7010-12-7010-21-7010-26-7011 7011 7011-16-7011-24-7011 7012 7012-14-70~On-Site.-D 0.328"39193.63.5201.2121.10.7100.70.6111.8110.80.60.60.6D~2~0.43.34.5224~2402.61.6151.6091.21.00.9152.71.31.30.70.908~Off-Site.3.7334.22.34.24.2251.512130.60.50.5040.81.46.9070.50.40.63.52.93.72.13.93.5241.31.10.60.8070.6111.60.90.70.50.60.53.83939224.33.924141.51.30.81.00.90.8142.4111.00.60.70.72~8-10
Table2.8-7EnvironmentalAirSampleGrossBetaActivitiesinunitsof10->>uCi/ccCollectionPeriod-Weekof:D1-D2ED1D2SAMPLE~LOCATIONSON-SITESTATIONS-OFF-SITE.STATIONS-9/11/719/24/7110/1/71m10/8/71I10/19/7111/3/7111/10/7111/17/7111/24/7112/1/7112/8/7112/15/7112/22/710.700.960.860.700.200.611.492301.613.500.321.000-510480.690-490.150-350970500770331.641.371.660.800.730.730.590.371-060.981.351020.350.890.971.301.461.350.661151.421.090.430.891.091.331.541.090.701.171.051.441141.311.261.511.751-781.301.060.600.500.790.660.690.470.68-0.830.930.640.490320410.390360.300230.340.390.370340.240.440.450.390.390360.340.360.530.550.340.28068,.0720.570.740.690490.480.770.840.460.390420550.460480490410.420.530.650350.380.530.660.770.670.460.400.600.720.650.550.500-350530.450.420.460.280.400.500.560.350.32
't SECTION3THESTATION31EXTERNALAPPEARANCEOFTHESTATIONTheNineMilePointUnit1(seeFrontispiece)stationconsistsofseveralstructuresofvarioussizes.TheseincludetheProgresscenter,theadministration,reactor,turbine,andradwastebuildings,thescreenwellpumphouse,thesanitarywastetreatmentplant,andthe350-footstackwhichrisesfromtheradwastebuilding.Thetallestofthebuildingsisthereactorbuilding,whichisapproximately140feethigh..Allthebuildings,exceptfortheProgressCenterandsanitarywastetreatmentplant,areinterconnectedtoformacomplexofbuildings.AplotplanofthestationsitewhichshowsthearrangementofthestationfacilitiesispresentedinFigure1.1-1.Thearchitectureofthestation'emphasizesthesimplerectangularformsofthecontainmentstructure,turbine,andauxiliarybuildings.Themassesaredefinedinacompositionofpanelswhichrelatethebuildingstoeachotherintreatmentandscale.Particularconsiderationwasgiventomaterialsandcolor.Aroundtheentirebase,precastconcreteunitsformastron'ghorizontalmotifwhichlendsanappearanceofsolidityandunitytothecomplexofstructures.Thedominantrussetcolorofthebasecontrastswellwiththelightgraysandgreensoftheflutedmetalsiding.Anindependentlandscapearchitectwasresponsible,fortheexternalappearanceofthestationgrounds.Initially,amasterlandscapingplanfortheentiresitewasdeveloped.Thevariousstructureshavebeenlocatedforfunctionalefficiency,andplantinghasbeenusedextensivelytocreatevistas,establishhorizons,andeffectapleasingrelationbetweenbuildingandnaturalsurroundings.~TheProgressCenter,locatedinthenorthwestportionofthesite,isacontemporarystoneandglass'anch-stylestructurewhichisusedforpubliceducationandasatouristattraction.Athree-partshowisofferedonnuclear-electricpower,thegrowthofenergyinupstateNewYork,thestoryofNiagaraMohawk,andtheoperationofNineMilePointNuclearStation.TheexhibitsincludeaworkingscalemodelofUnit1,andanatomicfissiondisplay.Therearealsoexhibitsoflivegamefishcommontothearea.naturetrailsthroughthewoods,andpicnic'reasonbluffsoverlookingLakeOntario.Over50,000personsayearvisitandenjoytheProgressCenter'spresentations.
~fIIf1f) 32TRANSMISSIONIZNESInconjunctionwiththeconstructionofNineMilePointUnit1NiagaraMohawkconstructedtwosinglecircuit345kVtransmissionlinesin.1965toconnectthegeneratingstationoutputintoNewYork'scross-statetransmissionsystem.Figure3.2-1presentsamapofthetransmissionroute.Followingareviewofsuitableterminationpointsoftheselines,atie-intoNiagaraMohawkPowerCorporation'sexistingsubstationinthetownofClay,NewYork,whichisabout27milessoutheastofthesite,wasselected.Thislocationprovidedreadyaccesstothecrossstate345kVgrid.Therouteselectedrunsduesouthofthesiteforadistanceofabout4miles,andthenabout23milessoutheasttotheClaysubstation.Thisroutecausedminimumdisruptiontoexistingprivate,homes,farms,andbusinessesandalsoofferedaccessibilityandeaseofconstruction.Theprobableneedforfuturetransmissionlinesfromthisgeneratingarealedtothedecisiontopurchasearight-of-way500feetwidewhichwassufficienttoaccommodateNineMileUnit1needsandprovidespaceforfuture345kVlinerequirements.Thetwo345kVlinesassociatedwithNineMilePointUnit1werepositionedinthecenterof'heright-'of-way.Twosingle-circuit115kVlinesarealsolocatedalongtheinitialreachoftheNineMilePointtoClayroute.Theselinesparallelthewestsideofthe345kVlinestoapointapproximatelyfourmilessouthofthesiteinthetownofScriba.Atthatpointthe115kVlinesjoinNiagaraMohawk'sLighthouseHill-Oswego115kVlineswhilethetwo345kVlinescontinuesoutheasterlytoClay.PhotographsofportionsoftherouteareshowninFigures3.2-2and3.2-3.The27-milelong345kVtransmissionlinetraversesterrainranginginelevatiohfrom250feetattheplantsiteto400feetattheClaystation.Itpassesthrough10milesofrelativelyopenfarmareasoftheTownsofScriba,Volney,.Palermo,Schroeppel,andClay.Approximatelyfourmilesofwetlandsandfivemilesofwoodedareas'ereencountered,particularlyintheVolney-Palermo-Schroeppelareas..SeeFigure3.2-1.Right-of-wayroutepreparationsconsistedofselectivelycuttingawidthofapproximately400feettoremoveundesirablewoodspeciesandmaintainornamentaltypetreesandshrubs.Groundfoliagewasclearedthroughapplicationofstateapprovedherbicides.Several,pinetreeplantationstotalingabout10acresinthetownofSchroeppelwereleftundisturbedandcontinuetobefarmedasmultipleuseoftheright-of-way.3~21
LA/I'0N7AR/0NINEMILEPOINTNUCLEAR'OWERSTATIONSCRIBAJAMESA.FITZPATRICKNUCLEARPOWERPLANT~le:IIIIIINEWIHAVENIIIIIIII/II/V0ILNEYII.IIIIII//IPALERM0I/II//I/III/III/iSCHIIIREPPLCLAYSUBSTATIONFIGURE3.2-ITRANSMISSIONFACILITYMAP I~4 FIGURE3~2-2TRANSMISSIONLINERIGHTOFWAY
F(GURE3.2-3TRANSMISSIONLINERIGHTOFWAY
Woodpole,H-framestructuresshowninFigure3.2-4wereselectedtocarrythemajorportion(about25miles)ofthe345kVtransmissioncables,whilelatticesteeltowerstructuressupporttheinitial1.7mileoflinefromNineMilePointandthefinal0.3mileintotheClaysubstation.Figure3.2-4alsoillustratesthetypicalvegetationgrowthintheright-of-wayarea.3~2-2 1
FIGURE3~2-4TRANSMISSlONLlNESTRUCTURESNORTHOFCLAYANDTYPIGALVEGETATIONGROWTH
3.3REACTORANDSTFAMELECTRICSYSTEMNineMilePointUnit1isasingleunitnuclearsteamgeneratingsystemusingaGeneralElectricCompanyboilingwaterreactorwithathermalratingof1,850Mwandanetelectricaloutputfromthestationofapproximately610MW.TheunitwasdesignedbyNiagaraMohawkpowerCorporationandconstructedforNiagaraMohawkbyStone6WebsterEngineeringCorporation,Boston,Massachusetts.ThisunithasbeenincommercialoperationsinceDecember,1969.Theprincipalcomponentsaretheturbine-generatorandnuclearsteamgeneratingsystemwiththelatterpresentlyusingnuclearfuelmanufacturedbyGeneralElectric.ThemajorcomponentsanddiagramaticoperationofaBoilingWaterReactorareshowninFigure3.3-1.Thereactorfeedwaterisheatedtosteamasitpassesthroughthereactorcoreofuraniumfuelelements.HeatisdevelopedbycontrolledfissionofUranium-235,producingfissionproductswithslightlylesstotalmassthantheoriginaluranium.Thismassdifferenceisconvertedtoenergy.Thetrillionsofatomfissionstakingplaceeveryseconddeveloptheheattoconvertlargequantitiesofwaterintosteam.Thissteamproduceselectricityintheconventionalway,byspinningaturbinewhichdrivesanelectricgenerator.Thispartoftheplantisinprinciplethesameasanyothersteam-electricstation.Thesteam,afterspinningtheturbine,iscondensedintowaterandrecycledtothesteamgenerators.-Thenuclearreactortakestheplaceofaconventionalboiler,andtheenergysourceisfissionofatomicfuelratherthancombustionoffossilfuel.Theturbine-generator,alsomanufacturedbyGeneralElectricCompany,isatandemcompound6-flowunitconsistingofahigh-pressureturbinesectiononthesameshaftwiththreelow-pressureturbinesectionsandtheelectricgenerator.Theturbinecycleincludesfivestagesofregenerativefeedwaterheating,utilizing'extractionsteamfromtheturbine.Steamexhaustingfromtheturbineflowstothemainsurfacecondenserandiscondensedbycoolingwater.Theresultingcondensateispumpedtotheregenerativefeedwaterheaters.Theturbine-generatorplantiscompletewithauxiliarysystems,controls,instrumentation,electricalswitchgearandfireprotectionequipment.Water'forcondensercooling,thefireprotectionsystemandforauxiliarywaterserviceisdrawnfromLakeOntariothroughanintakestructureandtunnelleadingfromthelaketothescreenwellandpumphousebuildingwherelargepumpingequipmentislocated.Condensercoolingrequires250,000gpmandservicewaterrequires18,000gpm.Duringshutdowns,aservicewater-flowofabout6,000gpmisusedforreactorcooldown.3M31
TRANSFORMERREACTORCORETURBINEREACTORINTAKEr)fSTRUCTURECONTROLRODSFEEDPUMPDEMINERALIZERCONDENSERDISCHARGETUNNELDISCHARGESTRUCTUREFEEDWATERHEATERFIGURE3.3-ISIMPLIFIEDDIAGRAMNUCLEARBOILINGWATERREACTORSTATION
34WATERUSECoolingwaterforthemaincondenser,auxiliarysystems,reactorshutdownheatremoval,andforwatersystemmakeupiswithdrawnfromLakeOntarioviathesubmergedintaketunnel.Thiswateriscirculatedbythemaincondensercirculatingwaterpumpsand/ortheservicewaterpumps.TheflowandheatdissipationratesareindicatedontheWaterUsageFlowDiagram,Figure3.4-1.Duringnormalstationoperations,theclosedloopcoolingsystemheatexchangersareinuse.However,whenthestationisshutdown,thiswateruseisreduced.AtthistimetheShutdownCoolingSystemutilizesthebalanceoftheflerfromtheservicewaterpumps.Nochemicalsorinhibitorsareaddedtothecirculatingwaterorservicewatersystems.ChemicalsinthequantitiesdescribedinSection3.7areaddedinthemakeupwatertreatmentsystem,analyticalsamplingsystem,anddecontaminationsystem.Maximumflowsindicatedforauxiliaryheatexchangersandreactorshutdownarebasedonthemostsevereusageexpected,i.e.,~designheatloadsonexchangersand77Flaketemperature.ThreepumpsandexhangersarerunatthistimeratherthantwowhichareusedduringnormaloperationThewaterflowratesfromwasteregeneration,residualheatremoval,makeupwater,domesticwater,laundry,andfloordrainwaterusagesarevariableandaredependentuponsuchthingsasthephaseofdemineralizerregeneration,timeofyear,andstationoperatingstatusConsumptionofwaterfurnishedbytheCityofOswegowatersystemhasaveraged3300gpd.Allsystemswhichusewaterdischargetothelake,andanexactdeterminationofwaterconsumptioncannotbemade.However,itisestimatedthatwaterconsumptionduemainlytoevaporationwouldnotexceed0.02cfsor10gpm.Thisdoesnotincludeevaporationfromthelakesurfaceduetothermaldissipationofthecirculatingwaterdischarge.3.4-1 PI'!l"tltPt INTAKETUNNELFROMLAKEONTARIO268,000GPM(NORMAL)TTFMAX272s000GPM(MAX)250,0000PM(CONSTANT)(WHENOPERATING)6000GPM(NORM)9000GPM(MAX)IBOOOGPM(NORM)22,000GPM(REGMAX)CONDENSER4.0xI09BTU/HRSHUTDOWNHEATREMOVALSYSTEM3?.5xIOOBTU/HR(MAX)CLOSEDLOOPCOOLINGSYSTEMHEATEXCHANGERSCLARIFIERWASTEREGENERANTWASTESETTLINGBASINOVERFLOWWASTENEUTRALIZINGSYSTEM100GPMMAX~20GPHLAA'E0A'AR10DISCHARGESTRUCTUREMAKE-UPDEMINERALIZER.WASTEPRE-TREATMENTSYSTEMPOLISHINGREGENERATIONCLARIFIER%FORSYSTEMNOTINCONTINUOUSOPERATIONCONDENSATEMAKE-UPAUXILIARYSYSTEMSMAKE-UPRADWASTESYSTEMDECONTAMINATEDWASTES(FLOORDRAINS>LAUNDRY)RADWASTESHIPPINGCONTAINERS.IOOGPMMAXCITYOFOSWEGOFLOWDOMESTICMETER~~WATERUSAGE3300GPDAVGSUPPLYSANITARYWASTETREATMENTSYSTEMTOLAKEONTARIO2400GPD(NORMAL)3800GPD(MAX)FIGURE3.4-IWATERUSAGEFLOWDlAGRAM
3.5DESCRIPTIONOFCOOLINGWATERSYSTEMDESIGNCirculatingwaterforNineMilePointUnit1isdrawnfromLakeOntariointoasubmergedinlet,circulatedthroughthecondensers,andreturnedtothelakethroughasubmergedhexagonal-shapeddischargestructure.Figure3.5-1showsthelocationsoftheexistingstructuresforUnit1inLakeOntario.3.5.1IntakeSystemCoolingwaterforUnit1iswithdrawnfromLakeOntario,atarateof600cfs(268,000gpm)intoahexagonalintakestructurelocatedinawaterdepthofapproximately18feetbelowthemeanlakesurfaceelevationof246.0feet(USLS'935Datum)-ItisdesignedandlocatedtominimizethepossibilityoffishenteringitasdiscussedinSection5.1.Thestructureliesabout850feetfromtheexistingshorelineandisconnectedtothescreenwellbyatunnelbeneaththelakebedasshowninFigure3.5-1.StructuraldetailsoftheintakedesignareshowninFigures3.5-2and3.5-3.Thestructureiscoveredbyaroofofsheetpilingsupportedonsteelbeamsandeachofthesixsideshasawaterinletaboutfivefeethighbytenfeetwide,withtheinletopeningsguardedbygalvanizedsteelracks.Thisdesignprovidesforwatertobedrawnequallyfromalldirectionswithaminimumofdisturbanceandwithnovortexatthelakesurface,andalsopreventstheentranceofunmanageableflotsamtothecirculatingwatersystem.Thevelocityattheintakeopeningsisapproximately2fpswhenthestationoperatesatmaximumoutput.Thereisabouta16-footclearancebetweenthetopofthestructureandthelakesurfaceatmeanlowwaterlevel(assumedtobe244.0feet,USLS1935datum).Theintaketunnelrunsunderthelakefromtheintakestructuretothescreenwellandpumphouselocatedonshore,adjacenttotheturbinebuilding.Thewaterdropsthroughaverticalconcrete-linedshafttoaconcrete-linedtunnelthroughwhichitflowstothefootofaconcrete-linedverticalshaftundertheforebayinthescreenhouse.Thefootofthisshaftcontainsasandtraptocatchandstoreanylake-bottomsandwhichmaywashoverthesillsoftheinletstructure.Thetunnel'hasacross-sectionalareaofapproximately74sqft,whichyieldsatunnelvelocityofapproximately8.0fps.Therearetwomaincondensercirculatingwaterpumpsinthepumphouse,withatotalcapacityof250,000gpm.Theytakesuctionfromthreeseparateinterconnectedbaysinthescreenwell.Beforereachingthepumps,thecirculatingwaterpassesthroughtrashracksandtravelingwaterscreens.Thesystemdesignisflexibleandpartialflowcanbemaintainedduringsystem3.5-1 N
g$5INTAKEgggOIIIIIIIIIIII2.'EIIIIIIIIIDISCHARGE~IoII00>IIII00II~g50g,OIIIihIISTONEDIKEEL.263.0BUILDINGNORTH~SCREENANDPUMPHOUSEIO-57-07NOTE:ALLELEVATIONSAREREFERENCEDTOUSLSI935DATUM0IOO200300400SCALEI=200FIGURE3.5-IPLAN-CIRCULATINGWATERSYSTEM
EL.228.5E.INTAKEEI..222.5LOWW.S.EL.244.0~STONEDIKEKAK.W.S.EL.242,0'CREENHOUSEIII00INTAKETUNNEL(LOOKINGEAST)0EL.234.0'LDISCHARGEGAEL.230.0EL.263.0'TONEDIKEaaaoaSCREENHOUSEETS44I565DISCHARGETUNNEL(LOOKINGEAST)SECTIONI-I05IOSCALE-FEETSECTION2-20SIOSCALE-FEETNOTESIALLELEVATIONSAREREFERENCEDTOUSLSI935DATUM400HORIZONTALSCALE-FEETI00VERTICALSCALE-FEETEXCEPTWHERESHOWN200FIGURESS-2PROFILE-CIRCULATINGWATERSYSTEM L
OhlONlOOITUNNELIIII0ITUNNELIgIOCVII27 2PLANIll22 PLANEL2226'LWEL244.0OEL2286EL2196LWEL244.00OEL250.0OIstlCV1't77lfEL227.0ELEVATIONELEVATIONINTAKEDISCHARGE0I0-020.0SCALE-FEETALLELEVATIONSAREREFERENCEDTOUSLS1955DATUMFIGURE5.5-3INTAKEBIDISCHARGESTRUCTUREDETAILS 1'
maintenanceandservicing..Figure3.5-4isa.schematicdiagramofthescreenwell.Therearealsotwoservicewaterpumpsinthescreenwellpump,housewhich..operateseparately,eachratedat22,000gpmbut.generallythrottledto18,000gpmsingle-pumpoperation..'lsolocatedinthispumphousearetwo2,500gpm,125psigverticalturbinefirepumps.Onepump,isdrivenbyanelectricmotorandtheotherbyaseparatedieselengine..Thesepumpsaretestedonceaweekfor.atleast30minutes.3.52DischargeSystemStructuraldetailsofthedischargedesignareshowninFigures3.5-2and-3.5-3.,Waterisreturnedtothe.lakeatapointabout0.1,mile,off-shorethroughabell-mouthedoutletsurmountedby.ahexagonal-shapedconcretedischargestructure.Thetopofthisstructure,isabout4feetabove.lakebottomand81/2feetbelowthe.lowestanticipatedlakelevel..Thegeometryofthestructurecloselyresemblestheinletstructure,althoughreducedinsize..Thesixexitportsareabout3feethighby7feet4inches,feetwide.Unit1operatesatratedoutputwithamaincondenserflowof557cfs'250,000gpm)andamaximumtemperatureriseof32F,andaservicewaterflowof40cfs(18,000gpm)with.amaximumtemperatureriseof20:F..To&1flowforUnit1.isthusapproximately600cfs(268,000gpm),withatemperature.riseof31.2F.Thesewaterflowsandtemperatureincreasesremainessentiallythesamethroughouttheyear.Theseasonaltemperaturevariationofthecoolingwatertemperatureattheintakeisapproximately33to77F.Adischargetunnel,approximately78sqftincross-section,runsunderthe.lakefromthescreenwelltothedischargestructureasshowninFigure3.5-1.Thedesignvelocityinthetunnelisapproximately8fps.Thedischargestructureislocatedatapointabout535feetnorthofthescreenwell,inadepthofapproximately12feetbelowthemeanlakelevelof246.0feet(USLS1935Datum).Thetotaltimeoftravelofwaterthroughthecoolingsystemisabout6minutesofwhichpassagethroughthecondenseraloneisabout14secondsandtraveltimefromthecondensertotheexitfromthedischargestructureis3minutes.CirculatingwateralgicidetreatmenthasnotbeenrequiredduringtheoperationofNineMilePointUnit1.Thesilt(fineglacialtill)contentintherawlakewaterhasprovensufficienttopreventattachmentofbiologicalgrowthonexposedsurfaces(condensertubes)ofthecoolingsystem.35-2
DISCHARGESHAFTINTAKESHAFTIIIIIIIIIISCREENBACKWASH(lilTRASHRACKSCOLLECTIONRECEPTACLESDISCHARGEFLUMEQTRAVELLINGWATERSCREEN00SERVICEWATERAREA+fCWPUMPSFIGURE3.5-4SCHEMATICDIAGRAMOFSCREENWELL
Thetravelingscreensarebackwashedwithabout2,400gpmofservicewateronanautomatictimecycleof3minutesdurationevery30minutes.Screenwashingsaresluicedintothedischargetunnel.Trashracksaheadofthescreensdeposittheircollectedmaterialsintoreceptacles.Thisdebrisistruckedawayanddisposedofatastate-approveddisposalsite.WiththeconstructionofthepropesedUnit2,thecirculatingwatersystemforUnit1wouldbemodifiedtoacombineddischargesystemforbothunits,asdescribedintheNineMilePointUnit2EnvironmentalReport(Ref.27).3.5-3 0
3~6RAINASTESYSTEMSTheradioactivewastesystemscollect,treat,anddisposeofanticipatedandpotentialradioactivewastesinacontrolledandsafemanner.Theoriginalradioactivewaste(radwaste)systemasdescribedintheFinalSafetyAnalysisReport(FSAR)wasdesignedtocomplywiththelimitssetforthin10CFRPart20oftheAECregulations,whichwereineffectwhenUnit1wasconstructed.ModificationsareplannedtoupgradetheoriginalradwastesystemtoconformwiththelimitsestablishedintheproposedAppendixItothe10CFRPM50guidelines.Theradwastesystemsconsistofagaseous,aliquid,andasolidradwastesystem.EachofthesesystemsisdiscussedinthissectionbothasitisdescribedintheFSAR(originalsystemdesign)andasitisplannedtobeupgraded.Theradioactiveinputtotheradioactivewastesystemsisdueto:a.Activationproductsresultingfromirradiationofreactorwaterimpurities.b.Fissionproductsresultingfromuse-relatedperforationsinthefuelcladdingoruraniumcontaminationwithinthereactorcoolantsystem.3.6.1WasteProcessingSystemsRadioactivewastesresultingfromstationoperationareclassifiedasgaseous,liquid,andsolid.Thesethreemajorcategoriesofradioactivewastesaredefinedasfollows:a.GaseousRadioactiveWastes-Gasesorairborneparticulatesventedfromreactororturbine.equipmentcontainingradioactivematerial.b.LiquidRadioactiveWastes-Liquidreceiveddirectlyfromportionsofthereactorcoolantsystemorliquidswhichcanbecomecontaminatedfromcontactwithradioactivematerialwithinthestationc.SolidRadioactiveWastes-Solidsfromthereactorcoolantsystem,solidsincontactwithreactorcoolantsystemliquidsorgases,solidificationofliquidwaste,andsolidsusedinreactorcoolantandsteamandpowerconversionsystemoperationormaintenance.FlowdiagramsforthegaseousradwastesystemareshowninFigure.3.6-1fortheoriginalsystemdesignandinFigure3.6-2fortheupgradedsystemdesign.FlowdiagramsfortheoriginalandupgradedliquidandsolidradwastesystemdesignsareshowninFigures3.6-3and3.6-4,respectively.3.6-1
3.6.2GaseousRadioactiveWasteSystem3.6.2.1SourcesofRadioactiveGasTheprincipalsourcesofpotentiallyradioactivegaswhichexistintheunitarelistedbelowanddescribedinthesectionsthatfollow:ProcessoffgasMechanicalvacuumpumpoffgasDrywellventilationTurbineglandsealMiscellaenousbuildingservicereleases3.6.2.1.1ProcessOffgasNoncondensibleradioactiveprocessoffgasarecontinouslyremovedfromthemaincondensersbythesteamjetairejectors.Thisisthemajorsourceofradioactivegasandisgreaterthanallothersourcescombined.Thecondenseroffgasnormallycontainsactivationgases,principallyN-16,0-19,andN-13.ThegasesN-16and0-19haveshorthalf-livesanddecayreadily.N-13withahalf-lifeof10minutesispresentinsmallamounts.TheprocessoffgasalsocontainstheradioactivenoblegasparentsofthebiologicallysignificantSr-89,Sr-90,Ba-140,andCs-137.Theconcentrationofthesenoblegasesdependsontheamountoftrampuraniuminthecoolantaridonthecladdingsurfaces(usuallyextremelysmall)andonthenumberandsizeoffuelcladdingperformations.Table3.6-1givestheestimatedactivityflowratesafter30minutesofholdupfortheoriginalsystemandafter20daysofholdupforxenonand33hoursforkryptonfortheupgradedsystem.3.6.2.1.2MechanicalVacuumPumpOffgasDuringunitstart-up,airisremovedfromthemaincondenserbyamechanicalvacuumpump.Thisvacuumpumpdischargestothestackthroughsuitablepipingandisinserviceduringunitstart-upwhenlittleornoradioactivegasispresent.3.6-2
3.6.2.1.3DrywellVentilationExposureofthedrywellairtoneutronleakagefluxesaroundthereactorvesselresultsinsomeactivationproducts.Activitymayalsobeintroducedintothedrywellatmospherebytheventingoftheprimarysystemreliefvalvesintothesuppressionchamber.Thedrywellformsaclosedsystemthatmaybepurgedwithnormalreactorbuildingair,ifnecessary,whenaccessisrequired.Thedrywellcanalsobeventedduringstart-uptoaccommodatetheexpansionofairasthetemperatureincreases.Thisgasisdischargedtothemainstack.Table3.6-1EstimatedQuantitiesofFission-ProductIsotopesReleasedtotheEnvironsfromtheOffgasProcessingSystem~IsotoesHalfLifeActivityFlowRateofOriginalSystemAfter30MinutesHolduuCi/secActivityPlowRateofUpgradedSystemAfter20DaysHoldupforXenonand33HoursforKryptonuCl./secKr-83mKr-85mKr-85Kr-87Kr-88Kr-89Xe-131mXe-133mXe-133Xe-135mXe-135Xe-137Xe-138186hr4.4hr10.76yr76min2.8hr3e2ml.n12days2.3days527days16min9.2hr4.2min17min7501i45043,7504~500454702f0501,7255,5001f67552500.028.06402.001170.16144.8625~0004158.27~Forconservatism,avalueof50,000uCi/secwasusedasabasisforcalculatingoff-siteradiationexposures.3.6.2.1.4TurbineGlandSealMainsteamisusedfortheturbineglandsealsofNineMilePointUnit1.Althoughalargervolumeofgasesishandledbythissystemthanbytheprocessoffgassystem,thetotalactivitydischargedisconsiderablylessbecauseoftherelativelysmallamountofsteamleakingthroughtheglandseals.Thelargervolumeresultsfromdilutionofthesteamwiththeairthatleaksintotheglandseals.Sincetheactivitiesarelow,thesteampackingexhaustgasesareheldupforonlyabout1.75minutes3.6-3
-I (essentiallytoallowN-16and0-19todecay)andthenexhaustedtothestack.(SeeFigure3.6-1.)3.6.2.1.5MiscellaneousBuildingServiceReleasesVentilationsystemexhaustsfortheturbinebuilding,reactorbuilding,andthewastebuildingareindividuallymonitoredbyradiationdetectorstolocateareasofactivitybeforebeingdischargedtothestack.Highefficiencyparticulateabsolute(HEPA)filtersareinstalledintheexhaustductoftheradwastebuilding,inradiochemicallaboratoryhoods,andinmiscellaneoustankventsanddecontaminationareaexhausts.TheseHEPAfiltersremoveairborneparticulateactivitybeforedischargetothemainstack,asseeninFigure3.6-1.3.6.2.2DescriptionoftheOriginalOffgasSystemTheprocessoffgasisamajorsourceofgaseousradioactivewaste.Intheoriginalsystem,processoffgasisremovedfromthemaincondenserbyasteamjetairejectorwhichprovidessufficientpressuretomovetheoffgasthroughthesystem.Theestimatedvolumeflowratesofoffgashandledbytheoriginalsystemare:DryairH202WatervaporNoblegases22scfm79scfm39scfmSaturatedNegligibleTotal140scfmThesequantitieswereusedasthedesignbasisfortheoffgassystem.ThesystemwasalsodesignedtoaccommodatevariationsinflewrateswithoutcompromisingthesystemIscleansingabilities.Thesystemincludes~theequipmentdescribedbelowandisshowninFigure3.6-1.3.6.2.2.130-MinuteDelayPipeThe30-minutedelaypipeallowsforthehodupanddecayofshort-livedradioisotopesintheprocessoffgas.It~alsoallowsfortheagglomerationofparticulatedaughterssothattheymayberemovedbyfiltration.3.6.222OffgasFilter(AfterFilter)Theoriginalprocessoffgasfiltersarehighefficiency~'absolutetype"(HEPA)filterswhichremovesoliddecayproductsbeforethegasisreleasedtothestack.BasedonaDioctyl-Phthalte(DOP)3.6-4
test,thistypeoffilterhasa99.97percentefficiencyforparticulateslargerthan0.3micron.3.6.2.2.3RadiationMonitorsTwoflow-throughoffgasradiationmonitorsareprovidedtomonitortheprocessoffgasinthegaseouswastesystemasseeninFigure3.6-1.Oneradiationmonitorislocatedattheentrancetothe30-minuteholduppiping.Thismonitorwouldautomaticallyclosevalvesatthepipingexitiftheoffgasactivityisinexcessoftheallowablereleaselimit.Asecondmonitorcontinuouslymeasuresthegaseousactivitydischargedfromthestack.3.6.2.2.4StackThebuildingserviceventilationexhausts,togetherwiththatoftheoffgassystem,theglandsealvent,themechanicalvacuumpumpsystem,andtheemergencyventilationsystem,arereleasedthroughthemainstack.Thestackisapproximately350feethighandabout21/2timestheheightofsurroundingbuildings,andhasanormaleffluentreleasevolumeofabout,130,000scfm.Thestackisareinforcedconcretestructurewhichisdesignedtoensurethebestmixinganddilutionofthestationoffgases.Thisisaccomplishedbyintroducinghigheractivitywastegas(i.e.,processoffgasandglandsealexhaust)intothestackatapoint20feetabovetheentranceofthemaingasstreamcontainingnegligibleactivity(i.e.,buildingventilationexhausts).3.6.2.3DescriptionoftheUpgradedOffgasSystemTheproposedupgradedwastegassystemisshowninFigure3.6-2andwillincludetheadditionalequipmentdescribedbelow.Theupgradedsystemprovidesaminimumof20daysdecayperiodforxenonisotopesand33hoursforKryptonisotopes.Thedesignbasesareanassumedcondenserairinleakageof22scfmanda820,000uCi/seccontinuousactivityflowratefornoblegasesmeasuredaftera30-minutedecayperiod.Thisdesignbasisvalueisrecognizedtobeaconservativeonewhichisnotexpectedtobeapproachedorexceededinstationoperation.Thus,theactivityflewrateusedasadesignbasisishigherthantheactivityflowrateof25,000uCi/secgiveninTable3.6-1,whichisavalueconsideredmorerepresentativefornormalstationoperation(seeSection5.2.1).3.6.2.3.1CatalyticRecombinerTheprocessoffgasfromthemaincondenserairejectorswillbedilutedwithsteamtoamaximumhydrogenconcentrationof4percentbyvolumeatallpowerlevels.Radiolytichydrogenand3.6-5
oxygenwillcatalyticallyreactintherecombinertoformwater,thuseliminatingthehydrogenhazardandreducingthevolumeofgastobehandledintherest,oftheoffgassystem.Thehydrogenconcentrationdownstreamoftherecombinerwillbelessthan0.1percentatalowairflowconditionof4scfmatallpowerlevels.3.6.2.3.2CondenserThegaseouswastesystemcondenserwillbedesignedtoprovidethefollowingfunctions:a.Condenseouttheexcesssteamprovidedinthesteamjetairejectorsforhydrogendilutionb.Condenseoutthewaterofreactionformedinthecatalyticrecombinerc.Removetheexothermicheatofreactionwhichtakesplaceintherecombiner3.6.2.3.3DelayPipeIntheupgradedsystem,thefirsttwo-thirdsoftheoriginaldelaypipewillbeusedtoprovide21/2hoursdelayaftertherecombiners.Thefinalone-thirdoftheoriginalpipewillbeusedafterthecharcoaladsorberstoprovideanadditionaldelayof11/2hours.3.6.2.3.4DehumidificationSystemThedischargefromthe21/2-hourdelaypipewillflowthroughfreeze-outchillers.Inpassingthroughthisdehumidificationsystem,themoisturecontentofthegasstreamwillbereducedsothatessentiallya<<dry<<gasisproducedbeforeitreachesthecharcoaladsorbers.3.6.2.3.5Pre-AdsorberThedischargefromthefreeze-outchillerswillflowthroughpre-adsorberswhichremovesoliddecayproducts.3.6.2.3.6CharcoalAdsorbersThedischargefromthepre-adsorberwillflowthroughthecharcoaladsorberswhichwillprovideforselectiveadsorptionofthexenonandkryptonisotopesfromthebulkcarriergas(essentiallyair).ThisadsorptionwilldelaygasflowandpermitthexenonandkryptonisotopestodecayinplacetherebyreducingactivityreleasestothoseindicatedinthelastcolumnofTable3.6-1.Aholduptimeof20daysforxenonand33hoursforkryptonwillbeprovided.3.6-6
3.6.2.3.7VacuumPumpTheliquidringtypevacuumpumpwillbeinstalledtopulltheoffgasthroughtherecombinercharcoaladsorbersystem.Thisallowsthesystemtooperateatanegativepressurewhichpreventstheleakageofanyradioactivegasesintothebuilding.Theoriginaloffgasfilters(Section3.6.2.2.2)willserveasafterfilterstoremoveanysolidparticulatesorcharcoalfinescarriedoutofthecharcoaladsorbersbeforetheyreachthevacuumpumps.Theeffluentfromthevacuumpumpswilldischargetothestack.3.6.3LiquidRadioactiveWasteSystemTheliquidradioactivewastesystemcollects,monitors,andprocessesforreuseordisposalallpotentiallyradioactiveliquidwastesinacontrolledmanner.Theoriginalsystemhasthecapacityandcapabilityofprocessingthequantitiesandactivitiesofliquidwastesresultingfromnormaloperationandmaintenance.Dischargesfromtheoriginalsystemmeettherequirementsof10CFRPart20andarewellbelowtheMPC.(1.64percentofallowable,averagevalueforperiodJulythroughDecember,1971.)TheproposedupgradedsystemwillhavethecapabilityofprocessingtheliquidwastesuchthatmostoftheliquidcanbereusedandsuchthatwastedischargescomplywiththeproposedAppendixItothe10CFRPart50guidelines.Theliquidradwastesystemisdividedintoseveralsubsystemssothattheliquidwastesfromvarioussourcescanbesegregatedandprocessedseparately.Cross-connectionsbetweenthesubsystemsprovideadditionalflexibilityforprocessingofthewastesbyalternativemethods.Thewastesarecollected,treated,anddisposedofaccordingtotheirconductivity,suspended'olidscontent,and/orradioactivity.Operationofequipmentisprimarilybymanualvalvesetupandstart,withautomaticstop.SimplifiedflowdiagramsareshowninFigure3.6-3fortheoriginalsystemandinFigure3.6-4fortheupgradedsystem.3.6.3.1DescriptionoftheOriginalLiquidRadwasteSystem3.6.3.1.1WasteCollectorSubsystemWastesenteringthewastecollectorsubsystemhavevariableactivitylevels,dependentontheirsource,andrelativelylowconductivity(generallylessthan50umho/cm).Radioactivematerialsareremovedfromthesewastesbyfiltration(insolublesremoval)andionexchange(solubleandcolloidalremoval).Followingbatchsamplingandanalysis,theprocessedliquidsareeitherreturnedtothecondensatestoragetanksforreuseintheplant,orreprocessed.3.6-7
Wastecollectorsubsysteminfluentsincludedrainsfrompipingandequipmentcontaininghighqualitywaterwastesfromthereactorcoolantsystem,condensatesystem,feedwatersystem,offgassystemdrains,andassociatedauxiliaries.Influentsalsoincludereactorexpansiondrainageviathereactorwatercleanupsystem,selectedequipmentdrains,lowconductivitywastesfromthecondensatedemineralizerregenerationsystem(resintransferandbackwashwater),andregenerantevaporatordistillate.Nonroutineprocesseffluents,suchaswaterofrelativelyhighradioactivityconcentration(e.g.,greaterand10-~uCi/cc)arerecycledtothewastecollectortankorotherappropriatesubsystemsforreprocessing.Sampleanalysisindicateswhichmethodismostappropriate.(RefertoSection3.6.3.5.)3.6.3.1.2FloorDrainSubsystemPotentiallyhighconductivitywastesarecollectedinthefloordraincollectortankfromradwastebuildingsumps,reactorbuildingfloordrainsumps,turbinebuildingfloordrainsumps,laboratorydrains,centrifugeliquideffluent,anddecontaminationareadrains.Floordrainsareasourceofrecoverablewater,ifnotcontaminatedwithchemicalspriortocollection.Floordrainwastesareprocessedthroughafiltertoproducefiltratessuitableforeitherrecoveryordischarge.ThefiltersludgeispackagedforoffsitedisposalasdescribedinSection3'.6.4.1.Liquidswhicharetobedischargedarecollectedinthefloordrainsampletanks,sampled,and,aftersuitablemonitoring,pumpedtothecirculatingwaterdischargetunnelataflowratecontrolledtoobtainsubstantialdilution.Laundrywastesarecollectedinlaundrydraintanks,sampled,and,aftersuitablemonitoring,arepumpedtothecirculatingwaterdischargetunnelatacontrolledrate.3.6.3.1.3RegenerantChemicalSubsystemChemicalsresultingfromtheregenerationofcondensatedemineralizersarecollected,neutralized,andsampledinthewasteneutralizertank.Theneutralizedchemicalsolutionisthenprocessedthroughthewasteconcentrator(evaporator).Concentratorbottomsarecollectedintheconcentratewastetankandthenpumpedtothemixerintheradioactivesolidwastesystem(Section3.6.4).Concentratordistillateisroutedto.thewastebuildingequipmentdraintankfortransfertothewastecollectorsubsystem(Section3.6.3.1.1).3.6.3.2DescriptionoftheUpgradedLiquidRadwasteSystemThefollowingproposedmodificationstotheoriginalsystemwillbemadetolowerthereleaseofactivityintheliquidwasteeffluentfromthestation{seeFigure3.6-4).3.6-8 0
Additionalpipinghasbeenaddedtoallowincreasedflexibilityinprocessing.Thewastecollectorsubsystemhasbeenmodifiedsothatthefloordrainsfromthedrywell,whichhaveproventobeofhighquality,willflowdirectlytothewastecollectortank.Anewwasteconcentratorwillbeinstalledforthefloordrainsubsystemorhighconductivitywastesystem.Floordrainsmaybeprocessedeitherthroughthefilterorconcentratedinthewasteevaporatorasrequiredtoproducedistillatessuitableforrecovery.Inaddition,atravelingbeltfilterhasbeeninstalled.Thisfilterwillreducethebackwashwaterfromthefloordrainandwastecollectorfilters.Itshouldalsoreducetheoperationofthewastecentrifugeinthesolidwastehandlingsectionwhich,inturn,willresultinareductionofliquidradioactivewastefromthefloordrainwasteprocessingsystem.Anultrasonicresincleanerwillalsobeinstalledtocleanthecondensatedemineralizerresinstoreducethefrequencyofchemicalregeneration.Itwillreducethe'mountofresinregenerantliquidspresentlyprocessedbythewasteconcentrator.3.6.3.3OriginalandUpgradedSystemOperationalAnalysisTable3.6-2suppliesthefollowinginformationforboththeoriginalandupgradeddesignforeachmajorflowpathoftheliquidandsolidradwastesystems:Normaltimeperiodindaysper,batchVolumepernormalbatchAveragedailyvolumeMaximumactivityconcentration.Onlysignificantcontributionstovolumeandactivityareconsidered.ThefollowingbaseswereusedtodevelopthequantitiesestimatedinTable3.6-2.1.Forconservatism,avalueof820,000uCi/sec(at30-minutesdecay)hasbeenusedasthedesignbasis,andavalueof50,000uCi/sechasbeenusedincalculatingradiationexposuresinthestationenvironment.2Areactorwaterfissionproductconcentrationexclusiveoftritiumofabout3.0uCi/ganda<carryover"inreactorsteamequivalentto1.0percentforhalogensand0.1percentforallotherisotopesbyweight.3.A20-hourminimumdecayforallstreamsbasedonrecycleofwatercontentofmostliquids,sumpandtanksizes,anddailyvolume.3.6-9
4.Creditfordecontaminationduetoconcentratoranddemineralizerprocessingcapabilityofabout5,000and1,000,respectively.Theactualdesigncapabilityisasfollows:Adesigndecontaminationfactor(DF)forthenewwasteconcentratorofabout2,250calculatedinthefollowingmanner:DFVaordisenainXde-entrainmentXsearationFeedconcentrationratioWherenumericalvaluesare:900X1000X2DF=800Adesigndecontaminationfactorfortheexistingwasteconcentratorof2,250basedonasimilaranalysis.Adesigndecontaminationfactorforthemixedbedwastedemineralizerof20forCs,Y,Nb,andZr,andof100forotherisotopes,basedoncontrolofintermediateactivityandflushbed(nonregenerative)typeunits.36-10 0
Table3.6-2FundamentalLiquidandSolidRadwasteSystemA.OriinalStationDesinItem(~)234561'7Normaltime2.8periodperbatch,days1051.051.051.050830.83to1.60.83to1.6160.44Volumeper35,000normalbatch,gal24,00024,00024,00024,0009,6009,600to9,600to14,6009,60014i60014600Averagedaily12,500volumeggal/day10e40022e90022m90031e60031r6008e50011F50020,80020,8009,30021,800Maximum0-020.0450.0250.0232.3x10-<2.3x10-s2x10-*1.95x10-~0.4activity,concentration,uCi/cc1.7x10->0.41x10-~Normaltime2.8periodperbatch,days0.461111Volumeper24,360normalbatch,galAveragedaily8,700volume,gal/day10,50010,5002,5502,5509s6009,60020,0003,000-1,000500F0001~00050050505050Maximum04activity,concentration,uCi/cc0395.8x10-40.120.12<1x10-<1.7x10-~771x10->>1x10-s1x10-401 i
Table3.6-2(Contend)B..radedStationDesign.Item~<)23456~9Normaltime14periodperbatch,days0330330.330.33Volumeper35,000normalbatch,gal24~00024~00024~00024,000T,000Averagedaily2,50063,00071,97571,97571,97571,9751,000volume,gal/dayMaximum0025011activity,.concentration,uCi/cc0.0390.0393.9x10-~5x10-~2x10-~It.em-1012345Normaltime5.6periodperbatch,days18353~538383.8Volumeper8,400normalbatch,gal9~6009~6009~600'~6009,6009~200900Averagedaily1,5004,0005,3002,7752,7002,5252,5252,425volume,gal/day100~Maximumactivity,concentration,uCi/cc0.0452.6x10-~2.6x10-~2.6x10-~2.3x10-~2~6x10->2.6X10-~8.8x10-412 0-0 Table,3.6-2Cont~dB.UpgradedStationDesign(Cont'd)Item~>>01240Normaltime3.2periodperbatch,days.2446.66.66.8511736Volumepernormalhatch,gal9,60024i36010s50010'0010i5002e5502e5509c6009,600.Maximumactivity,concentration,uCi/cc58x10->202.9Averagedaily3,0001,0001,6001,6001,55050volume,gal/day:1x10>302.915015.42,700<1x10-~2.3x10---Item.Normaltimeperiodperbatch,daysVolumepernormalbatch,gal3331,3001i0005005050Averagedaily5volume,gal/day1,3003005005050Maximumactivity,concentration,uCi/cc770.1x10-~<1x10-~1x10=~Q.1 00 5.6.Activityconcentrationsincondensatedemineralizerregenerantsresultfromatwo-weekintervalbetweenchemicalregenerationsfortheoriginalsystem,andathree-monthintervalfortheupgradedsystemduetoultrasoniccleaningoftheionexchangeresins.Fortheupgradedsystem,activityconcentrationsinultrasonic-resincleanerwasteduetocollectionofcorrosion/activationproductsoveratwo-weekperiodandsubsequentcompleteremovalfromthecondensatedemineralizerresin.7.Filterdecontaminationfactorofabout5.0forcorrosion/activationproducts.Inaddition,thefollowingprocessingassumptionshavebeenmadewithregardtoFigure3.6-4andTable3.6-2fortheupgradedsystem:Alldrywellandturbineequipmentdrainshavebeenroutedtothewastecollectortank.2Upto92percentofallnormalwastecollectorinfluentliquidwillberecycledtothecondensatestoragetanks.About3percentofthecondensatedemineralizerchemicalregenerantwillbepackagedandabout3percentofcondensatewhichcouldotherwiseberecoveredisassumedtobediscardedfromtheplantduetomismatchbetweenprocessingandplantinventoryrequirements.Asaconservativeestimateoftheeffectsofstart-upandinventorymismatch,about10percenttheinfluentvolumeshowninTable3.6-2isconsidereddischarged.3Exceptforinitiallargequantitiesoffloordrainsresultingfromshutdownorinitialstart-up,mostfloordrainscanberecovered.Occasionally,conductivityandradioactivitywillbesufficienttowarrantevaporation.43.6.3.4Themajorityofradioactivityenteringthesystemwillbecontainedinthecondensatedemineralizerregenerantchemicals.Useofultrasonicresincleaningwillresult'inlongintervalsbetweenchemicalregenerations,thussubstantiallyreducingradioactivityenteringthesystembecauseradioisotopeswilldecayonthecondensatedemineralizerresin,ratherthanintheradwastesystem.OriginalandUpgradedSystemOperationalEvaluation3.6.3.4.1RegenerantChemicalsSubsystemThebulkof*radioactivityprocessinghasbeenidentifiedasregenerationchemicalsfromtheccndensatedemineralizersystem.Thesechemicalwastesareevaporatedinboththeoriginaland3.6-14 I
upgradedsystemsTheconcentratedliquidsremovedasbottomsfromthewasteconcentrator(evaporator)arepackagedforoffsiteshipmentasdescribedinSection3.6.4.Distillateproducedfromtheevaporatorisroutedtothewastecollectortankforrecoveryascondensate,hence,littleornoreleasesresultfromthetreatmentofregenerationchemicals.Whenreleasesofcondensatearedeemednecessarytomaintainawaterbalancewithinthestation,preferencewillbegiventoreleaseofcondensatewhichhasaminimumactivity.Intheupgradedsystemtheuseoftheultrasonicresincleanerforthecondensatedemineralizerresinswillresultinlongerintervalsbetweenregenerationsandhenceadecreasedliquidcontributiontotheregenerantwastesubsystem.3.6.3.4.2WasteCollectorSubsystemThemajorsourceofwastecollectorvolumeisfromtheequipmentdrains.Condensatedemineralizerbackwashequipmentdrainageandphase-separatortankdecantareintermittentinnormaloperation.Withtheupgradedsystem,theultrasonicresincleaningwillsupplementresinregeneration.Someequipmentdrainagewillberoutedtothecondenserhotwellonconductivitycontrol,andcleanupfilter/demineralizerswillrequireinfrequentreplacementofresinsafterstart-up.Theupgradedsystemincludesanewtravelingbeltfilterwhichhasbeeninstalledtoreducethebackwashwaterfromboththeexistingfloordrainandwastecollectorfilters,aswellassupplementtheoperationoftheexistingcentrifugeinthesolidwastesystem.Thisfilterisdesignedtodischargedampsolidwasteasacake,therebyreducingtherecirculatingwaterflowinthesystemthatwouldotherwiseresultfromnormalbackwash.3.6.3.4.3FloorDrainSubsystemThissubsystemhasinfluentactivity,conductivity,andvolumethatvarieswidelywithapointinreactorcycle.Duringstart-up,floordrainagecontainshighconductivityfromthegeneralcleanupofthestation,leaksfromequipment,orwashdownfromstart-upmaintenance.Thesewastesdonotcontainsignificantradioactivity.Theyarefilteredandheldfor-dischargependingtheoutcomeofsamplingandanalysis.Intheupgradedsystem,ifactivityissufficienttowarrantevaporation,anewwasteconcentratorisemployedasneeded.Filtrationandsubsequentdemineralizationinthewastecollectorsubsystemisprovidedtoallowrecoveryascondensate.Withtheupgradedsystem,theoperationoftheultrasonicresincleaneronaregularbasiswillallowcrudfromthecondensatedemineralizerresinstobecollectedataconcentrationtoohightoallowefficientfiltrationinthewastecollectorsubsystem.Itisanticipatedthatthelowflowperunitareaandprecoatstabilitycharacteristicofthetravelingbeltfilterwillbemoreamenabletocycleinterruptionandgreatercrudremovalperpoundof36-15
precoat.However,unlessfissionpxoductsorsolublesareadsorbedonthecrud,thequalityofthefiltrateforrecoveryascondensateshouldremainhigh.Anestimateoftheconditionswhichwouldguidethedispositionofbatchesoffloordrainsareasfollows:1.Greaterthan1,000umho/cmconductivity:evaporateandrecoverdistillate.2.Lessthan10-4uCi/ccfissionproductactivityandgreaterthan50umho/cmconductivity:.filteranddischarge.3.Greaterthan10-~uCi/ccfissionproductactivityandlessthan50umho/cmconductivity:filter,demineralize,andrecoverordischarge.0.Greaterthan10-4uCi/ccfissionproductactivityandgreaterthan50to100umho/cmconductivity:evaporate,demineralize,andrecover.3.6.3.5ControlofWasteActivityMovementIntheupgradedsystem,theprimarymethodofrestrictingthemovementofwasteactivitywillbetominimizethegenerationofwastevolumepriortoandwithintheradioactivewastesystem.Themajorreductioninregenerantchemicalvolumeandactivitywhichwillbeaffordedbyuseofultrasonicresincleaningofcondensatedemineralizerresinisthebestexampleofhowthesystemdesigncapabilitywillbeimproved.'notherwillbetheroutingofhighquality(lowconductivity)equipmentdrainstothehotwellofthecondenserinsteadoftothewastecollectorsubsystem.However,capacitywillberetainedinthewastecollectorsubsystemincaseconductivityofequipmentdrainsishigherthannormal.Theuseofadrycakedischargetravelingbeltfilterwillreducetheneedforprocessingoffilterbackwash.Whereverpossible,condensate,usedforflushingortransportofsolids,suchascleanresinbeadsorspentfilter/demineralizerprecoat,willbereused.Directpackagingofdecontaminationsolutionswherepossiblewillfreeequipmentfromexcessiveflushingtoremovematerialswhichwouldmakesubsequent,recoveryofinfluentwaterdifficult.Insummary,wasteswillbecombinedtomakethemosteffectiveuseofprocessingequipmentavailableandtominimizethenumberoftimesthatabatchofwastemustbehandledpriortofinaldisposition.Therecirculatingloadofwaterwithintheradioactiveliquidwastesystemwillberestrictedtotheminimumpossible.3.6-16 00 3.6.3.5.1ReleaseofProcessedWasteLiquidwastesarereleasedinthedischargetunnelfromoneoftwowastedischargesampletanksonabatchbasis.Eachbatchisanalyzedpriortoreleaseforgrossbetagammaactivityandtheresultingactivityusedtodeterminethedischargeflowrate.Theintegratedtotalactivitydischargedtothelakeisrecorded.CompleteisotopicanalysesofcompositesorretainedsamplesisdoneinaccordancewiththeproceduresoutlinedinAECSafetyGuideNo.21.Detailedadministrativerecordsofallradioactiveliquidreleasesaremaintained.Table3.6-3presentsthedischargetunnelconcentrationsforsignificantisotopesfromUnit1forboththeoriginalandupgradedsystems.About20Ciperyear.oftritiumwillbereleasedfromthestation.Initiallytritiumreleasesfortheupgradedsystemdesignwillbelowerthanfortheoriginalsystembecauselesswastewaterwillbedischarged.However,reactorwatertritiumlevelswillbuilduptoanewhigherequilibriumconcentrationwhichisexpectedtooffsetthereducedwastewaterflow.Therefore,itisassumedthatthetotalcuriesoftritiumreleasedisthesameforboththeoriginalandtheupgradedstationdesigns.Anaveragereleaserateofabout21,750gallonsofwaterperdayfortheoriginalsystemandabout3,000gallonsofwaterperdayfortheupgradedsystemisfinallyreleasedfromthestationafterbeingprocessedinitsrespectiveliquidradwastesystem.ThefiguresinTable3.6-3forfissionproductconcentrationarebasedonanoffgasactivityflowrateof25,000uCi/secat30-minutesdelay.However,forconservatism,anoffgasactivityflowrateof50,000uCi/secwasusedforcalculatingradiationexposuresinthestationenvironment,andavalueof820,000uCi/secwasusedasadesignbasis.3.6.4SolidRadioactiveWasteSystemThesolidradioactivewastesystemisdesignedtocollect,process,package,andprovidetemporarystoragefacilitiesforsolidwas'tespriortoshipmentforoffsitedisposalasdiscussedinSection3.6.5.4.Thesystemisdesignedtoprovidecollection,processing,packaging,andstorageofsolidwastesresultingfromnormalstationoperationssuchthatoperationandavailabilityofthestationisnotlimited.Inaddition,boththeoriginalandtheupgradedsystemdesign:1.Includesequipmentandadministrativecontrolswastescollectedandnotresultinradiationinexcessofthelimitsinstrumentation,andutilizessuchthatthesolidradioactivepreparedforoffsiteshipmentdoexposurestostationpersonnelsetforthin10CFRPart20.3.6-17
2.Utilizes,wherenecessary,shieldedcaskswhichconformto10CFRPart71-PackagingofRadioactiveMaterialforTransport.36-18
Table3.6-3ConcentrationofSignificantIsotopesintheDischargeTunnelofNineMilePointUnit1forBoththeOriginalandtheUpgradedSystemACorrosionProducts~zsotoeDischargeConc.DCuCi/mlOricrinal~UradedDischareConc./MPCOricrinal~UradedMn-56Ni-65Na-24Zn-69mP-32Cr-51Fe-59Co-58Zn-65Ag-110mCo-600.238E-090366E-070123E-070.136E-070.228E-070.205E-1340.112E-150.818E-120111E-130.266E-120.792E-110.136E-110886E-100.313E-110.113E-110.995E-110.791E-050.184E-040.245E-030151E-030.758E-030-205E-90.112E-110.272E-70-188E-90133E-70.395E-80271E-70.980E-60191E-90.374E-70.316E-6B.FissionProductsI-134Sr-90Cs-137I-132I-135I-133Np-239Mo-99I-131H-30.994E-100.569E-80.77E-090.897E-090.465E-080.432E-070.160E-180.352E-110370E-110.323E-090.763E-110.880E-100.107E-090.128E-100.243E-090432E-070.329E-30284E-30.770E-030.224E-040.155E-020.142E-040.441E-140.117E-040.185E-060.397E-050190E-050.880E-040.109E-050.320E-060.810E-030.142E-04+SymbolEwithsignednumeralmeansexponent.of10;e.g.,0.205E-13isequalto0.205x10-~3.3.6.4.1SourcesofSolidWasteRadioactivesolidwastesresultingfromstationoperationusingeithertheoriginalortheupgradedsystemareasfollows:a.Absorbedconcentratedliquidwastesfromtheradwasteevaporator(s).Mediumtohighlyradioactive(1to12uCi/cc).b.Spentresinsandfiltersludgefromthespentresintank.Mediumtohighlyradioactive(1to12uCi/cc)..3.6-19
c.Solidwastes,suchaspaper,airfilters,rags,etc.Lowradioactivelevel(<0.1uCi/ccor<100mr/hr).d.Solidwastes,suchascontrolrods,fuelchannels,etc.Highradioactivelevel()100mr/hr).3.6.4.2ProcessingandHandlingProcessliquidswhicharenotsuitablefordisposaltotheenvironmenteitherbecauseofioniccontentorradioactivityareconcentratedintheradwasteevaporator(s).Theconcentratesarecooledpriortotransfertothepackagingfacilities,mixedwithanadsorbent,loadedincontainers,andstoredforshipment.Spentresinsfromthemixedbeddemineralizersareflushedtothepackagingfacilities,dewatered,loadedintocontainers,andstoredforshipment.Filtersludgefromtheexistingfloordrainandwastecollectorfiltersisdewatered,transferredintocontainers,andshippedoffsitefordisposal.Xntheupgradedsystem,theadditionofthetravelingbeltfilterisdesignedtoreducethebackwashwaterfromboththeexistingfloordrainandwastecollectorfilters,aswellastosupplementtheoperationoftheexistingcentrifugeinthesolidradioactivewastesystem.Thisfilterisdesignedtodischargedampsolidwasteasacakedirectlytothepackagingfacilitiestherebyreducingtheamountofbackwashwaterwhichmuststillbeprocessedbytheexistingcentrifuge.Backwashfromthereactorcleanupfilterdemineralizerisdecantedinthephaseseparatortankswherethesludgeisheldforradioactivedecayandthentransferredtothespentresinstoragetank.Fromthere,thesludgeistransferredtoashieldedshippingcontainerandstoredforshipment.-Lowactivitysolidwastesareloadedintocontainersandstoredforshipment.Highactivitysolidwastesarepackagedinapprovedshippingcontainersandstoredforshipment.3.6.4.3PerformanceAnalysisThegeneralplanforhandlingofsolidwastesistopackageallsolidwastesincontainersforeventualoffsitedisposal.Thecontainersareshieldedasnecessary.Processwastecontainingmediumtohighlyradioactivesolidsarepackagedwithsemi-remotehandlingequipment.Thesewastesconsistofconcentratedprocessfluids,filtersludges,andspentionexchangeresins.36-20
Theactivityofmostothercategories,ofsolidwastesislowenoughtopermithandlingofthepackagesbycontact.Thesewastesarecollectedincontainerslocatedinappropriatezonesaroundthestationasdictatedbythevolumesofwastesgeneratedduringoperationandmaintenance.Thecontainersaremonitoredperiodicallyduringfillingtoensurethatthedoseratedoesnot,exceedamaximumof200mremperhouronthesurfacebeforefinalpacking.Thecontainersarethensealedandmovedtoacontrolledaccessenclosedstorageareafortemporarystorage.Packagedwastesareshippedtoanapprovedoffsitefacilityforstorageorburial.Contaminatedequipmenttoolargetobehandledinthenormalmanneristreatedasaspecialcaseatthetime.Handlingofsuchequipmentdependsupontheradiationlevel,transportationfacilities,andavailablestoragesites.Suitableoperatingproceduresfordecontamination,shielding,storage,andshipmentofsuchitemsaredevelopedandfollowedforthesespecialcases.3.6.5TransportationofFuelandRadioactiveWastes3.6.5.1PackagingCriteriaRefertoSection5.4.2forpossibleenvironmentaleffectsofradioactivematerialtransport.TheshipmentofallradioactivematerialstoandfromnuclearpowerstationsiscoveredindetailbyAtomicEnergyCommission(AEC)Regulation10CFRPart71andbyDepartmentofTransportation(DOT)regulation49CFRParts170-178.TheseregulationsestablishdefiniteperformancestandardswhichmustbemetifradioactiveshippingcontainerdesignsaretoreceiveapprovaloftheAECandDOT.Thestandardsareintendedtoensurethataradioactivematerialpackagehassufficientintegritytoprovidedefinitesafeguardagainstradiationhazardsduringtransportation.Thepackagedesigncriteriatakeintoconsiderationthetype,concentration,andamountofradioactivematerialtobetransportedinthegivencontainer.Allpackagingmustmeetspecifiedshieldingrequirementsduringnormalshipment.Theshieldingrequirementsfor>>exclusiveuse>>vehicles,thenormalshipmentmodeusedbyanuclearpowerstation,includemaximumallowableradiationlevelsduringnormalshippingof(1)1,000milliremperhourat3feetfromtheexternalsurfaceofthecontainer,(2)200milliremperhourattheexternalsurfaceofthevehicle,and(3)10milliremperhourat6feetfromthevehicle.Inadditiontotheseshieldingrequirements,thedesignofmanyofthecontainersmustprovethecontainer~sabilitytowithstandavarietyofpostulatednormaluseandaccidentconditions;Theverystringentaccidentconditionsapplytopackagesdesignedtotransportlargequantitiesofradioactivematerialsand>>fissile>>3.6-21
materials.Aseriesoftestswereformulatedtosimulatepostulatedaccidentconditions.Thesetestconditionsinclude,insequence,a30-footfreefallontoacompletelyunyieldingsurface,a40-inchdropontotheendofa6-inchdiameter'steelbar,30minutesina1,475Ffire,and,finally,immersionunder3feetofwaterfor8hours.Atthecompletionofthesetests,thedesignpackagemusthavemaintainedsufficientshieldingtolimitradiationlevelsto1,000milliremperhourat3feetfromthepackagesurface.Itisalsostipulatedthatduringandaftertheaccidenttests,themaximumreleaseofradioactivematerialswillbelimitedtoslightlycontaminatedpackagecoolantand1,000curiesofnoblegases.Maintenanceofsubcriticality,duringbothnormalshippingandthepostulatedaccidenttests,isalsoaveryimportantcriterionplaceduponcasksdesignedtotransport<<fissile<<materials.Thissectionisnotintendedtobecomprehensiveofallstandardsapplicabletothetransportationofradioactivematerials.Instead,thesection~spurposeistopointoutthatthesestringentregulationsdoexist.PackagesconservativelydesignedinaccordancewiththeseregulationsmustthenbeapprovedforusebytheAECandDOT.Thesecontainersmustprovidesufficientsafeguardsfortheenvironmentagainstradiationhazardsduringbothnuclearfuelandradioactivewasteshipment.3.65.2NewFuelShippingThereactorcoreofNineMilepointNuclearStationUnit1contains532fuelassemblies.Thereactorisrefueledannuallyandapproximately25percentofthecoreor133fuelassembliesarereplacedduringeachrefuelingperiod.Thenewfuelshipping,containershavebeendesignedandconstructedtomeetapplicableAECandDOTrequirements.ThesepackagesareGeneralElectriccontainers,modelsRA-1,EQ2,andRA-3,knowncollectivelyastheRApackagingseries.AuthorizationtousethesecontainersfornuclearfueliscontainedinGeneralElectriclicenseSNM-1097(Wilmington,NorthCarolina)Amendment71-16.ThislicenseauthorizesuseoftheRApackagingseriesundergenerallicensingSection71.7(b)of10CFRPart71.Thesecontainersaredesignedtoholdtwonewfuelassembliesandweigh2,800poundsinaloadedcondition.Itisconsideredthattheloadedcontainersaieshippedtothestationbylegalweighttruck.Duetoweightlimitations,eachtruckhasthecapacityfor16containersloadedwith32newfuelassemblies.Eachannualrefuelingrequiresapproximatelyfivetruckshipmentsofnewfuel.Theseshipmentsareroutedbythemostdirectandfastestroutetominimizetheprobabilityofaccidents.Thenewfuelcontainersarefurnishedbythenuclearfuelsupplierand,afterthefreshfuelhasbeenunloaded,theemptycontainersarereturnedtothefuelfabricationplantforreuse.3.6-22
Itshouldbeemphasizedthatthenewfuelshippingcontainer,whichisbasicallyacushionedmetalcontainersupportedwithinanouterwoodenbox,isprimarilydesignedtoprotectthenewassembliesfromphysicaldamageduetonormalhandlingandshippingvibrations.Becausethenewfuel,uraniumoxide,containsnofissionproductsorradioactivegases,theexternalradiationwillbeinsignificant.Theresultsofanaccident,evenifthefuelshouldbedamaged,wouldbeonlyaneconomicloss3.6.5.3SpentFuelShippingDuetotherefuelingrequirementsdiscussedintheprevioussection,thereisanannualrequirementtoshipapproximately133spentfuelassemblies.Theseassembliesareshippedbyafuelreprocessor,undercontract,tooneofthereprocessingfacilitiespresentlylocatedinWestValley,NewYork;Morris,Illinois;andBarnwell,SouthCarolina.AvarietyofspentfuelshippingcasksarebeingdesignedandconstructedtoaccommodatefuelassembliesofthetypeusedinUnit1.Allofthesecasksaremassiveandtheirpayload-to-caskweightratioisextremelylow(1to4percent).About90percentofthecaskweightistheradiationshielding,withsupplementalweightintheauxiliarycoolingequipmentandadditionalstructuralmaterialnecessarytomeetthestringentshippingrequirementsThereareseveralfeatureswhicharecommontoallspentfuelcontainers.Theyconsistofheavystainlesssteelshellsontheinsideandoutsideseparatedbydenseshieldingmaterial,suchasleadordepleteduranium.Thecasksareequippedwithenergyabsorbingimpactstructures,suchasfins,toabsorbenergyequivalenttothe30-footdroptestandtolimittheforcesimposedonthecasksandtheircontentsThecasksalsocontainabasketusedtosupportthefuelassembliesduringtransport.Specialprovisionsaremadeforhighexposurefuelthroughtheuseofaneutroncaptureshieldingmaterialtolimitradiationfromthefastneutronsgeneratedthroughspontaneousfissionandalpha-neutronreactionsofthetransuraniumisotopes.Inthedesignofthespentfuelshippingcask,specialattentionwasgiventotheremovalofdecayheat.Theshippingcaskhasextendedsurfaceareasforthedissipationof'ecayheatandifnecessary,auxiliarycoolingequipmentcanbeconnectedtothelargercaskstoassistinheatremoval.Inaddition,thefuelisallowedtodecayintheplant,underwater,inashieldedspentfuelstoragepoolforatleast100dayspriortobeingplacedinthecaskforshipment.Thisdecaytimegreatlyreducesthelevelofdecayheatproducedby3.6-23
theassemblyandalsoreducestheradioactivefissionproducts,includingKrypton-88andIodine-131,tolowlevels.Thenumberofannualshipmentsofspentfuelassembliesisafunctionofthetypeofcaskandthemodeoftransportationselectedbythefuelreprocessor.Onepossibilityistheuseofalegalweighttruckcask(grossvehicle.weightnotexceeding70,000pounds)iscapableofholdingonlytwoBWRfuelassemblies.Thecaskinafullyloadedconditionweighsabout23tons.Useofsucha.caskwouldrequireabout67individualtruckshipmentsperyear.Asecondtransportationpossibilityistheuseofoverweighttrucks(grossvehicleweightupto110,000pounds).Acaskforthistypeoftruckcarries4to7BWRfuelassembliesandweighsbetween30and40tons.Theuseofanoverweighttruckwouldrequire19annualshipments.Disadvantagesincludeobtainingindividualstatepermitsforeachshipmentandprobablerestrictionofshippingtoperiodsoflighttrafficandgoodweather.Theuseoflargerrailcasksisathirdpossibilityandisconsideredtobethemostappropriatetransportationmode,particularlyforlongershippingdistances.RailfacilitiesareavailableattheNineMilePointsite.Thereareseverallargerailcasksinthedesignandlicensingstages,includingtheGeneralElectricIF300.Thisparticularcaskwillbecapableoftransporting18BWRspentfuelassembliesandwillweighabout70tonsinafullyloadedcondition.Useofthiscaskcouldreducetheshippingfrequencytoabouteightcasksperyear.Evenlargercasks,intheconceptualstagesofdesign,wouldholdupto32BWRfuelassembliesandweighabout115tons.Withsuchacask,annualshipmentscouldbereducedtoaboutfive.TheenvironmentaleffectsofspentfueltransportarediscussedinSection5.4.2.3.6.5.4RadioactiveWasteShippingSolidradioactivewastematerialispackagedandshippedoffsiteforproperdisposalatAEClicensedradioactivewastedisposalfacilities.TypicaldisposalfacilitiescurrentlyavailabletotheNineMilePointNuclearStationarelocatedinWestValley,NewYork;Aiken,SouthCarolina;andMoorehead,Kentucky.Containers(drums)whichmeetappropriateAECandDOTrequirementsareusedforthepackagingofradioactivewastes.Thesecontainers.providetherequiredcontainmentofthewastesduringnormalandaccidenttransportconditionsandalsoprovidesufficientshieldingforlowlevelradioactivewasteshipmentstomeetAECandDOTexternalradiationlevelrequirements.Additionalshielding,intheformofconcreteor'leadoverpacks,36-24
areusedifrequiredfortheshipmentofhighlevelradioactivewastes.MostsolidwastesproducedatNineMilePointNuclearStationUnit1havearelativelylowradioactiveconcentration.Thislimitedconcentrationplusthesolidifiednatureofthewasteensuresminimalenvironmentaleffectsduringtransportation.Solidwastesgeneratedwithhighradioactiveconcentrationsareshippedinspecialcontainers(identifiedbyDOTas"TypeBpackaging").ThesecontainersaredesignedtowithstandthevariousaccidentconditionsasdescribedinSection5.4.2.Thecontainersaredesignedtominimizetheenvironmentalimpactofanaccidentduringthetransportationofhighlevelradioactivewastes.LegalweighttrucksarethemodeoftransportationforsolidradioactivewastesfromNineMilePointNuclearStationUnit1.Overweighttrucksandrailcarsarepossiblealternativemodesofshipmentofradioactivewastes.Thenumberofyearlyshipmentsofsolidradioactivewasteduringperiodsofnormaloperationhasbeenfrom20to40.Duringperiodsofunusualmaintenanceoroperation,thenumberofannualshipmentscouldpossiblyapproach60.Table3.6-4presentsasummaryofthesolidradioactivewasteshipmenthistoryfortheperiodJanuary1,1971,throughDecember31,1971,attheNineMilePointNuclearStation.3.6-25 0
Table3.6-4~SolidRadioactivewasteshippingInformationTimePeriodvolumeTotalNumberofDrumsNumberofShip-CuriesNumberof~-~Per-Shiment<>>--~~------~-~-Curies/Ft~---~-~-~~-Shipments<<~ped(Ft~)<<>Shippedc~>Drums<>>AverageMaximumMinimumAverageMaximumMinimumJan.1,1971-June30,1971206,79267.2692446.2131149.9x10->168x10~2.1x10-sJuly1,1971Dec.31,19716,118133.9583234.775142.2x10-~1.2x10-~2.5x10"~Jan1,1971-Dec31,197112,910201211i75640131141.6x10-~1.68x10-~2.1x10-s(1)Numberofshipments,volumes,andtotalcuriesfromNineMilePointsemiannualreports(2)Numberofdrumsbasedon7.35ft~/55galdrum(3)Average,maximumandminimumnumberofdrumspershipmentarebasedontheactualwastevolumes(ft~)pershipmentasgiveninthesemiannualreports(4)Average,maximum,andminimumcuries/ft~figuresarebasedonactualwastevolumes(ft~)andcuriecontentofeachshipmentasgiveninthesemiannualreports.Itshouldbenotedthatthemaximumallowablecuries/ft~tomeetlowspecificactivityrequirementsis8.946Ci/ft~(0.3uCi/gram) 0'I 3.7CHEMICALANDSANITARYDISCHARGESThissectiondescribesliquideffluentsdischargedfromthechemicalandsewagewastetreatmentfacilitiesservingtheNineMilePointNuclearStationUnit1.TheeffectsoftheseeffluentsuponLakeOntarioarediscussedinsection5.3.Allradioactiveandpotentiallyradioactiveliquidwastes,suchasdecontaminationsolutions,laboratorychemicals,condensatedemineralizerregenerationwastes,andreactorandturbinebuildingfloordrainageareconveyedtotheradwastebuildingforprocessingandtreatment.TheradwastesystemisdiscussedinSection3.6.3.7.1LiquidChemicalDischargeCirculatingwaterchlorinationhasnotbeenrequiredsincethesiltcontentintherawlakewaterispresentinsufficientquantitytopreventattachmentofbiologicalgrowthsonexposedsurfacesofthecoolingsystem.Thechemicalwastetreatmentsystemhandlestheliquidwasteassociatedwiththeoperationofthemakeupwatertreatmentsystem.Duringnormaloperationthemakeupwatertreatmentsystempxovides100gpmofhighqualitydemineralizedwaterforthenuclearsteamsystemandotherstationfacilities.RawwaterfromLakeOntarioistakenfromthedischargesideoftheservicewaterpumpsandconveyedtothemakeupwatertreatmentsystem.Thistreatmentsystemconsistsofasludgerecirculatingclarifier,clearwell,pressurefiltercontaininganthracite,activatedcharcoalfilter,and.cation,anionandmixedbedionexchangeunits.Thedemineralizedwaterfromthemakeupwatertreatmentsystemisstoredina36,000gallontankpriortouseinthereactorcondensatecycle.AschematicdiagramofthemakeupwatertreatmentsystemandassociatedchemicalwastetreatmentfacilitiesisshowninFigure3.7-1.Inthesludgerecirculatingclarifier,chemicalsareaddedtothelakewatertopromoteflocculationandprecipitationofsuspendedmaterial.Inaddition,partialsofteningoftherawlakewaterisachieved.Chemicalflocculantandsofteningdosesinclude50ppmofironsulfate(Ferrifloc)and150ppmoflime.Effluentfromtheclarifierisconveyedtotheclearwellwhichaffordssufficientheadtosupplythedemineralizerfeedpump.Fromtheclearwell,thewaterispumpedthroughapressurefiltercontaininggradedanthracitewhichremovesremainingsmallquantitiesofresidualsuspendedsolids.Thewaterthenpassesthroughanactivatedcarbonfilterwhichadsorbsthesmallquantitiesofdissolvedorganicmaterialspresentinthelakewater.Effluentfromtheactivatedcarbonfilterpassesthroughademineralizersystemconsistingofonecation,oneanion,andonemixedbedunitarrangedinseries.Thecationandanionunitsremoveessentiallyalldissolvedsolidsinitiallypresentinthe3~71 P
lakewater.Themixedbedunit,orpolishingdemineralizer,removesremainingtracequantitiesofdissolvedsolidswhichpassthroughthecationandanionunits.Highqualitydemineralizedwaterisconveyedtothedemineralizedwaterstoragetank..Thisstoragetankhasacapacityof36,000gallonspriortoutilizationinthenuclearsteamsystem.Chemicalwastesassociatedwiththemakeupwatertreatmentsystemconsistofintermittentblowdownofsolidsfromtheclarifier,backwashingsfromthepressurefilterandactivatedcharcoalfilterandneutralizedspentacidandcausticsolutionsresultingfromionexchangeresinregenerationcycles.Table3.7-1presentsthechemicalcharacteristicsofneutralizedregenerantwastesfromthemakeupwatertreatmentfacility,andpresentstheassociatedchemicalwastedischarges.Theclarifierblowdownofabout20gphisconveyedtoa13,500gallonsettlingbasinforsolidsthickening.Approximatelyonetonofsolidsisdredgedfromthebasineverythreemonthsanddisposedofinaspoilareaonsite.Atsteadystate,about20gphofclearoverflowfromthewasteretentionbasinisconveyedtoLakeOntarioviaadrainageditch.Duringstationshutdown,about80gpmofclarifiedwaterisallowedtooverflowfromtheclearwellandthenconveyedtoastormdrainpriortodischargeinLakeOntario.Theanthracitepressurefilterandtheactivatedcharcoalfilterarebackwashed3to4timesamonthtomaintainacceptablepressuredropthroughthefiltersbyremovalofaccumulatedsolids.WastewaterresultingfromthesebackwashingcyclesisconveyedtothestormdrainpriortodischargeinLakeOntario.Regenerationofthemakeupdemineralizersystemincludesbackwashing,introductionofdiluteacidorcausticsolution,andslowandfastrinsingofexchangeunits.Spentacidandcausticsolutionsandassociatedrinsewateraredrainedtoa20,000gallonneutralizationtankforpHadjustmenttowithin6.5to8.5beforebeingdischargedatarateof100gpmtothelakeviathecirculatingwaterasseeninFigure3.7-1.Cationandanionunitsrequireregenerationapproximatelythreetofourtimesamonth.Themixedbedunitrequiresregenerationonceortwiceamonth.priortodischargetothecirculatingwater,thedissolvedsolidslevel(mainlysodiumsulfate)intheeffluentfromtheneutralizationtankisabout9,000ppm.Themaximumaccumulationofwastesresultingfromdemineralizerregenerationisabout16,000gallonswhichisroutedtotheregenerationwasteneutralizationtank.Afterplantadjustmenttobetween6.5and8.5byeitheracidorcausticasrequired,theeffluentisdischargedatarateof100gpmtothecirculatingwaterdischargeflowofabout268,000gpmwhereitisdilutedbyafactorofabout3,000.Aftercompletemixing,theincremental3&72
increaseofdissolvedsolidsinthecirculatingwaterisabout3ppmasseeninTable3.7-1.NiagaraMohawkobtainedapermitin1965todischargethesechemicalwastestothewatersofN'ewYorkState.AcopyofthepermitisincludedinAppendixG.Chemicalregenerationradioactivewastesfromthecondensatedemineralizersarenotdischargedtothecirculatingwaterbutareprocessedintheradwastesystembyevaporatorconcentrationandsolidificationforoff-sitedisposalasdiscussedinSection3.6.Drainagefromroof,floor,andequipmentdrainswhichhasnopotentialforradioactivecontaminationisconveyedtoLakeontarioviaastormdrain.WastesfromthelaunderingofprotectiveclothingareprocessedintheradwastesystempriortodisposalbymixingwiththecirculatingwaterdischargeasdiscussedinSection3.6.Alowfoamingdetergentisusedcontainingabout50percentbyweightofsodiumhexametaphosphate.Duringnormaloperation,about100poundspermonthofthisdetergentisutilizedtoproducealaundrywasteofabout130gpd.Aftercompletemixingwiththecirculatingwater,theincrementalincreaseinthelevelofphosphatesinthelakewatermeasuredasphosphorusisabout0.2partsperbillion(ppb).Duringscheduledoutagesabout450poundspermonthofthisdetergentisutilizedtoproducealaundrywasteofabout1,700gpd.Aftercompletemixingwiththecirculatingwater,theincrementalincreaseinthelevelofphosphatesinthelakewatermeasuredasphosphorusisabout07ppb.3.7.2SanitaryWasteSystemThesanitarysewagesystemcollectssanitarywastefromallnonradioactivesanitaryfixtureswithinthestation.Thissanitarywasteisconveyedtoanactivatedsludgepackageplantoftheextendedaeration-type,followedbychlorinationandoxygenation.Thesanitarysewagepassesthroughacommunitorwhichreducesthesolidstofineparticlespriortoenteringtheactivatedsludgeaerationtank.Digestedsewagefromthesludgetankisconveyedtoaclariferwhereinertsolidsareremovedandtheclearoverflowflowsintoachlorinationtankfordisinfectionbytheadditionofchlorine.Thedisinfectedliquidispumpedtoa2,800squarefootoxygenationpondwhichhassufficientsurfaceareatorestoredissolvedoxygentotheeffluentbeforeitcascadesoveraweirintoadrainageditch.Theditchcarriestheeffluenttoarivuletwhichflowsintothelake.3~73
Table3.7-1ChemicalDischargesfromMakeupWaterTreatmentIonAnionsRemovedDuringOneRegen.Cycle*(Lb/Regen.)CationsRemovedDuringOneRegen.Cycle(Lb/Regen.)ChemicalsAddedDuringOneRegen.Cycle(Lb/Regen.)TotalChemicalsAddedtoCirc.WaterDuringOneRegen.Cycle(Lb/Regen.)ResultingCircWaterAnalysis***atDischargeDuringRegen.Cycle(Ppm)AnalysisofLakeOntarioWater(Ppm)IncrementalChangeinCirc..WaterAnalysisDuringRegen.Cycle(Ppm)HCO3ClSO+=Ca++Mg++Na+K+513351411867632451337274134294.11303832.1144.1089217551.6094.0030.3030.1044.0089016.601600110082.010100.020.95TotalDissolvedSolids228.77225.50327+Regenerationcycleoccursfor3hourswithresultanteffluentfromtheneutralizationtankdischargedtocirculatingwaterat100gpm.*+IncludesSO+associatedwithferricironsulfateadditioninclarifier.+*~Priortodischargeofchemicalsassociatedwithregeneration,thecirculatingwateranalysisisidenticaltothatofLakeOntariowater.Theresultingchemicalcompositionofthecirculatingwateriscomputedbymaterialbalance.
o Settledsludgefromtheclarifierisrecycledtankwhereitismixedwithincomingsewage.indicatedthattheexcesssludgeisremovedonafromthestationbyalicenseddisposalfirmtoadisposalarea.totheaerationExperiencehasquarterlybasisstate-approvedThesanitarywastetreatmentfacilityhasacapacityof15,000gpd.ThenumberofemployeesrequiredduringnormaloperationofUnit1isabout68.Inaddition,refuelingandannualoverhauloperationsmayrequirethepresenceofanadditional40employees.Basedonasanitaryflowofabout35gpdpercapita,themaximumanticipatedflowwouldbeabout3,800gpd.BaseduponthenumberofemployeesrequiredduringnormaloperationofUnit1,thenormalanticipatedflowwouldbeabout2~400gpd.Sampleanalysishasshownthatthesewagetreatmentfacilityhasthecapabilityofmeetingtheoperationrequirementslistedbelow:0ratinEfficienSettleableSolidsSuspendedSolidsBOD(5Day)ChlorineResidual100%95%95%1.0ppmThedesignofthesewagetreatmentfacilityandassociatedequipmentconformstotheNewYorkStateDepartmentofHealthRequirementsforWasteTreatmentWorks,Bulletin1,Part1,aswellastotherulesandregulationsoftheTownofScriba,OswegoCounty.In1965NiagaraMohawkobtainedapermittooperatethewastetreatmentfacilityanddischargewastestothewatersofNewYorkState.AcopyofthepermitisinAppendixG.3.7-5 SIlIN)0 3.8OTHERWASTESTwostandbydieselgeneratorsandonediesel-drivenfirepumpareavailableforuseduringemergencyconditions.Thegeneratorsprovide.electricalpowerforessentialneedswhennormalreserveandoffsitepowerareunavailable.Thedieselgeneratorsaretestedonamonthlybasisandthefirepumponaweeklybasis.Thedieselsburnfueloilcontaining0.4to0.7percentsulfurandanegligibleamountofash.Thegeneratordieselenginesexhausttoatmospherethroughtheroofofthedieselgeneratorroom.Exhaustfromthedieselfirepumpenginepassesthroughtheupperportionofthescreenhousesidewall.Overallcombustionproductsreleasedfromthetwostandbydieselgeneratorsandthediesel-drivenfirepumpareinsignificantbecausethisequipmentisnormallydrivenonlyafewhoursamonthfortestpurposes.Anelectricallyheatedauxiliaryboilerisusedforspaceheatingpurposes.Therearenoemissionsfromthissource.38-1
SECTION4ENVIRONMENTALEFFECTSOFCONSTRUCTIONTheconstructionphaseofNineMilePointUnit1wascompletedSeptember1,1969.TheunithasbeenincommercialoperationsinceDecember,1969.However,certainmodificationsareplannedtoupgradetheoriginalradwastesystemtoconformtoproposedAppendixIto10CFRPart50oftheCommission~sregulations.Thesemodificationswillbetoconstructanew.radwastebuildingandinstalladditionalliquidandgaseousradwastecontrolequipmenttoupgradetheradwastetreatmentsystemasdescribedinSection3.6.Plannedmodificationstothestationarescheduledtobegin'ubsequenttoAECapprovalandwillbecompletedinaccordancewiththerequirementsofproposedAppendixI.Constructionwillrequireabouttwoyearstimeandabout75people..Thenewradwastebuildingwillbeabout80feetby60feetby30feetabovegradeand30feetbelowgrade.Excavationforthe'buildingfoundationwillbedonewithconventionalearth-movingequipmentandrockblastingwherenecessaryandpossible.AnyblastingwillbecarefullyplannedandexecutedtomaintainthestructuralintegrityofthestationDustanddebrisfromblastingoperationswillbecontrolledbyprotectivematsovertheblastingzone.Thematerialexcavatedwillbeusedforonsitegradingorforlandfillatoff-siteareasownedbyNiagaraMohawk.Duringtheconstructionofthisbuilding,heavyequipmentandtruckingnoiseswillbeproducedmainlytotheeastofthestation.Materialdeliveriestothesitewillbemadebytrucksusingtheexistingroadsinthearea,andnonewaccessroadstothestationarea,willberequired.SinceconstructionispresentlyunderwayontheJamesA.FitzPatrickPowerStationtotheeast,themodificationstoNineMilePointUnit1willresultinonlymodestincrementaldisturbancetothearea.ThelimitednatureofthisconstructionactivityisnotexpectedtohaveanyimpactonLakeOntarioortheterrestrialecologyofthesiteorthesurroundingarea.Maintenanceofthepresentsitegradewilleliminatethepossibilityoflanderosiontothelake.Thenewbuildingwillhaveexternaltreatmentandlandscapingthatwillblendwiththeaestheticappearanceofthepresentstation.TheeffectsoftheradioactivereleasesfromthemodifiedradwastesystemarediscussedinSection5.2.4.0-1 1
SECTION5ENVXRONMENTALEFFECTSOFSTATIONOPERATION5.1EFFECTSOFOPERATIONOFCOOLINGWATERINTAKEANDDISCHARGEFACILITIESTheareaofthelakeinthevicinityofNineMilePointisdesignatedwaterqualityClass<<A<<byNewYorkState.TheOfficialCompilationoftheCodes,Rules,andRegulationsofthestateofNewYork,part701.3,Title6,definesthebestusageforthisclassasasourceofwaterfordrinking,culinary,orfoodprocessingpurposes.ThestandardsforClass<<A<<watersincludethefollowingspecificationsregardingheatedliquiddischarges:Nonealoneorincombinationwithothersubstancesorwastesinsufficientamountsoratsuchtemperaturesastobeinjurioustofishlife,makethe,watersunsafe,orunsuitableasasourceofwatersupplyfordrinking,culinary,orfoodprocessingpurposesorimpairthewatersforanyotherbestusageasdeterminedforthespecificwaterswhichareassignedtothisclass.(6NYCRR,701.3)TheNewYorkStateDepartmentofHealthissuedthecoolingwaterdischargepermitforNineMilePointUnit1,inApril1965(RefertoAppendixG).FouryearsafterthisapprovalNewYorkStateimplementedthewaterqualitystandardquotedabovewiththermaldischargecriteria~.Thesecriteriaspecificallystatethatthenumericallimitations<<...areintendedonlytobeaframeofreference<<forexistingdischarges.(6NYCRR704.4).Therefore,whileUnit1isnotsubjecttothestrictapplicationofthespecificnumericallimitationscontainedinthe1969criteria,NiagaraMohawkbelievesthattheexistingcoolingwater'esignforUnit1conformstothe1967waterqualitystandardsquotedabove.ThestudiesdiscussedinSection'5.5formthebasisforthisbelief.Thesestudies(Ref.20)indicatethatthethermaleffluenthasnotbeeninjurioustofishlifeandhasnotmadethewatersunsafeorotherwiseunsuitableforanyusagewhichthestandardsassigntothisclassofwaters.+ThesecriteriaaretheapplicablewaterqualitystandardsunderSection21(b)oftheFederalWaterPollutionControlAct(33U.S.C.A.Section1171)See"NoticeofProposedRuleMaking"to40C.F.R.Part115,36Fed.Reg.23398,December9,1971.5.1-1
5.1.1IntakeStructureandOperationThecirculatingwaterintakeforUnit1islocatedinabout20feetofwaterandhasanintakeapproachvelocityofabout2.0fps.Operatingexperienceatthisstationsince1969indicatesthatvelocitiesofthismagnitudehaveresultedintheentrapmentofonlyaveryfewfish,primarilyalewives,intheonshorescreenwell.Theintakewasdesignedandisoperatedsothatwateriswithdrawnfromthelakeinthehorizontalplane.RefertoSection3.5.Asdiscussedbyseveralauthors(References21through26),flowinahorizontalplaneintothestructurehasadvantagesforhelpingfishsenseapositivevelocitygradient.Itisalsobelievedthatthesteelbarracksatthefaceoftheintakestructurescreateturbulenceandanup-currentpressurewavewhichapprisesfishofanincreasingvelocity.Theconfigurationandrelativelocationoftheintakeanddischargestructuresminimizerecirculationofheatedwaterwhichmayattractfishtotheintake.Locationoftheintakestructurerelativetothedischargestructurehasadirecteffectonplantefficiency.Ifheateddischar'gewaterrecirculatestotheintakestructureandtheintakewaterissignificantlywarmed,theresultcouldbeadecreaseinplantefficiencyaswellasattractionoffishtotheintakearea.Itwasconsequentlynecessarytolocatetheintakeanddischargestructuressome550feetrelativetoeachothertominimizerecirculation.5.1.2DischargeStructureandOperationTheeffectsoftheplantdischargeonthetemperaturedistributioninLakeOntarioareminimizedbytheuseofthedesigndescribedinSection3.5.ThepublishedanalyticalandexperimentalinvestigationsonthemechanismsofwarmVateidischargeintoalargebodyofreceivingwaterformthebasisforageneralunderstandingofthehydrothermalmechanismofheatdispersioninthevicinityofthedischargestructure.Comprehensivethermalfieldsurveys,asdiscussedindetailinsection5.5,wereconductedinthesummerof1970and1971afterthestationwasinoperation.Theresultsofthesestudiesandinvestigationshavebeenincorporatedinthefollowingdescriptionofthehydrothermalmechanismprevailinginthenearfieldandfarfieldareas.(Intheterminologyofthehydraulicsfield,"nearfieldarea~~referstothatareainthevicinityofthedischargestructurewhereturbulenceisthepredominantfactorinthetemperaturereductionofthethermaleffluent.Theterm~>farfieldarea~~referstothatareasomedistanceawayfromthedischargestructurewhereheatlosstotheatmosphereisthepredominantfactorinthetemperaturereductionofthethermaleffluent).5.1-2
AsmentionedinSection3.5,thestationcirculatingwaterflowis600cfswithamaximumtemperatureriseofapproximately32F.Thetotalwasteheat,amaximumof4.0x10~Btu/hratfullload,isdissipatedintwoways.First,bythemixingofthewarmdischargewaterwiththeccolersurroundingambientwaterandsecondly,bythetransferofheatfromthewatersurfacetotheatmospherebyradiation,evaporation,andconduction.Eachoftheseheattransferphenomenacontributestothetotalcoolingeffectinvaryingdegreesdependinguponthecoincidentmeteorologicalandlakeconditions.Theheatedwaterdischargesintothelakethroughahexagonalshapeddischargeoutletwhichhasatotalopeningareaof152squarefeet..Theeffluenthasaninitialvelocityofapproximately4fpswhichisgraduallyreducedbyshearforcesasitencounterstherelativelyquiescentreceivingwaterbody.Inconsequence,considerableturbulencedevelopswhichcausesentrainmentofthecoolerambientwater.Theentrainedflowmixeswiththestationdischargeand,lowerstheoveralleffluenttemperaturewhileconsumingtheenergyofthedischargebyturbulentmixing.Duetothebuoyancyoftheheateddischarge,theeffluentrisesto'hewatersurfaceandestablishesastratifiedflowsystem.FieldmeasurementsandhydrothermaldatacollectedduringstationoperationwereemployedinamathematicalmodelofthedischargeareaaspartoftheFitzPatrickPlanthydraulicmodelstudy.Theresultsofthisundistortedhydraulicsectormodelwereusedtodeterminethethermaleffectsofthenearfieldarea.Basedontheseresults,astratifiedflowsystemwasfoundtobewellestablishedatabout75feetfromtheNineMilePointUnit1dischargeoutlet.Fieldmeasurementshavedemonstratedthataconsistentdilutionfactorofaboutthreeisachievedandthatatemperatureriseofabout11Faboveambientexistsatthewatersurfacewithaflowdepthofabout9feetatthe75-footdistance.Thisagreesfavorablywiththeresultsofthemathematicalmodelanalysis.Figure5.1-1showsthebasicmechanismofdilutionandflowpatternoftheNineMilePointNuclearStationdischargeinthenearfieldarea.Thethermalfieldsurveyshaveconfirmedthataftermixingwithambientlakewater,theheateddischargeplumeformsalighter,upperlayerwhichflowsinthedirectionoftheprevailinglakecurrent(predominantlywesttoeast-northeast)butvarieswithwinddirection.Atthesametime,thecoldwatercurrentinducedtowardthedischargeplumeunderridesthelighter,upperlayerandisthereforeavailableasdilutionwater.Asthesurfaceplumetravelsawayfromthedischargestructure,itexpandsinsizebutdecreasesintemperatureanddepth.The5.1-3
OFDISCHARGESTRUCTUREHEATTRANSFERTOATMOSPHERERE-ENTRAINMENTENTRAINMENTDIFFUSIONANDMIXINGINDUCEDAMBIENTCOLDWATERDILUTEDWARMWATERSHEARINGSTRESSPFIGURE5.I-IBASICMECHANISMOFDILUTIONANDFLONPATTERNINNEARFIELDAREA A1~~,C stratificationweakensasthetemperaturedifferencebetweentheupperwarmlayerandbottomcoldlayerlessens.Sincetwooftheopeningsofthedischargestructurearedirectedtowardtheshoreline,atemperatureriseofabout6Faboveambientlakewaterwasexpectedalonga4500-foottotallengthofshorelineduetothepoordilutionexperiencedwiththeshallowbottomtopography.Thetemperatureinfactdecreaseswiththeincreaseofthewaterdepthandthereisdistinctthermoclineatabout5feetbelowthesurface.Theresultsofthissurveyindicatethatthesurfaceareaandvolumeofthelakewithinthe3Fisothermareapproximately300acresand3,000acre-ft,respectively.Theseresultsagreewiththedescriptions.ofthehydrothermalmechanismprevailinginthefarfieldarea.NiagaraMohawkhasconductedacontinuingprogramofLakeOntarioecologicalstudiestodetermineeffectsofstationoperationupontheaquaticbiotaofthearea,includinganumberofthermalfieldsurveys.Twelveofthese~~triaxialtemperaturesurveys~~wereperformedduringaperiodfromMaytoNovemberofboth1970and1971.ThesestudiesaswellasotherpertinentinvestigationsandsurveyslistedinAppendixF,wereconductedbyDr.JohnF.Storr,aconsultantinLimnologyandAssociateProfessorofBiologyattheStateUniversityofNewYorkatBuffalo.AdescriptionofthemethodsemployedinconductingthethermalsurveysisdiscussedinSection5.5.5.Theresultsofthesesurveysindicatethatthesurfaceareaofthelakewithinthe3Fisothermcouldrangefromabout60to460acres,dependinguponthemeteorologicalandlakeconditionsasshowninFigures5.1-2and5.1-3.Inconclusion,thethermalconditionsprevailingattheNineMilePointsitewiththeNineMilePointNuclearStationinoperationcanbesummarizedasfollows:1.Intheneak-fieldarea,inthevicinityofthedischargestructure,thepredominanteffectisthatofturbulentmixingofthebuoyantdischargewiththesurroundingwater.Attheendofthisnear-fieldarea,astratifiedflowsystemisdeveloped,withthewarmer,dilutedwaterflowingatthesurfaceinthedirectionofthepredominantlakecurrent.2.Inthefar-fieldarea,whichextendstoadistancewherethetemperatureriseaboveambientisinsignificant,thestratifiedflowsystempersists.ThecoldwaterisinducedfromoffshoreinthelowerlayertoreplacethewarmerdilutedwaterflowingawayintheupperlayerInthisfax'-fieldarea,thepredominanteffectsareheattransfertotheatmosphereandinterfacialentrainment5.1-4 rIII betweenthedischargeplumeandtheunderlyingcoldwater.3.Inthevicinityoftheintakearea,afairlystrongstratifieddischargeflowsystemprevails.Thecenterlineofthe,intakeopeningsarelocatedabout'18feetbelowthemeanwaterdatum,andtheyareapproximately'550feetfromthedischargestructure.Thevelocityattheintakeopeningsisatmostapproximately2fps.Withthecombinationofthestrongstratificationandlowinducedintakeflowvelocity,therecirculationofwarmwaterisnegligibleundernormallakeconditions.5.1.3EffectsonAquaticBiotaNoadverseeffecthasbeenobservedonaquaticbiotaintheNineMilePointareaduetothermal,chemical,orradioactivereleasesfromthestation.TheeffectsofchemicalandradioactivereleasesonthebiotaofthereceivingwatersarediscussedinSections5.2and5.3,respectively.Thermaleffectsaredescribedbelow.AsdiscussedinSection2.7.2thespeciesoffishcollectedinthevicinityofthesiteduringthewarmestmonthsoftheyeararetypicalofwarm-waterfishpopulations.Naturalsummertemperaturessometimesreach77F,asreportedbyDr.J..F.Storr(Ref.20),soitwouldbeexpectedthatthecold-waterspeciesoffish,suchassalmonids,wouldinhabitthedeeperoff-shorewatersratherthanthenaturallywarmerin-shoreregionsoftheepilimnion.AsdiscussedinSection5.1.2thethermalplumeisconfinedtothesurfacewatersinthevicinityofthepromontory..Sincethedischargeislocatedinanopenareaofthelake,thethermaleffluentdoesnotcreateabarriertofishthatmayutilizetheadjacenttributaries,whichincludetheOswegoRivereight'mileswestofthesite,thelittleSalmonRivereightmileseastofthesite,andtheSalmonRiverafewmilesfurthereast.Sincethedischargedoesnotaffectthesetributaries,andsincethereisampleroomforfishtotravelaroundtheplumeinthelakeproper,nointerruptionoffishmigrationhasorwilloccur.Fishareabletoselectoravoidareasofthethermalplumeinresponsetopreferredtemperatures.Studiesatthestationsince1969haveverifiedthisphenomenon.Duringthecoldermonths,thethermalplumeattractscertainspeciesoffish,includingcarp,smallmouthbass,sunfish,andalewives.,Smeltandtroutperchdonotappeartobeattractedtothevicinityofthethermalplume.Asambienttemperaturesincreas'e,thereappearstobenoattractionoffishtotheplumeandsomespecies,alewivesandwhiteperch,appeartoavoidthewarmestportionsoftheplume.5.1-5
Itisalsorecognizedthatsuddenplantshutdownsduringthecoldermonthsmaystressfishwhichareacclimatedtowarmertemperatures(Ref.28).Intheadventofanunplannedshutdown,itwouldbeexpectedthatfishwhichareacclimatedtoelevatedtemperatureswouldfollowthedissipatingplumetominimizethermalstress.Whenascheduledplantshutdownoccurs,thermalstressesareminimizedbythecontinuingoperationofthecirculatingwatersystem.Thisallowsagradualreductioninthetemperatureofthedischargedwater.Spawningofthespeciesoffishencounteredinthevicinityofthesitegenerallyoccursinthespringwhennaturalwatertemperaturesarelow.However,theonlyfishwhoseeggshavebeenobservedinthevicinityofthesiteisthealewife.Asdiscussedinsections2.7.2and5.5,thefieldstudiesindicatethatthealewifespawnsanddepositsitseggsinthealgalmatclosetotheshore.Asdiscussedinsection5.1.2alimitedareaoftheshorelineiselevatedbythethermalplume.Whethertheincreasedtemperaturesadverselyaffectthedevelopmentoftheseeggsisunknownatthissite.However,consideringtheabundanCeandfecundityofalewivesinLakeontariothereisexpectedtobenoadverseeffectonthepopulationofalewivesasawhole.Resultsoftheecologicalsurveysperformedatthissitesince1963indicatethatmostofthebenthicplantandanimallifeisfoundbetweentheshoreandthe20-footdepthcontour.Comparisonofpre-andpostoperationalresultsindicatesthatproceedearlierinareaswithintheinfluenceoftheplume.However,growthintheseregionstendstobesuppressedduringthesummer.~Theneteffectisthatthebiomassofalgaeproducedisessentiallythesameinsideandoutsideoftheinfluenceofthethermaldischarge.ThepredominantbenthicinvertebratesareamphipodsofthegenusGammaruswhichareanextremelyimportantfoodsourceforfish.ThereappearstobeadirectrelationshipbetweentheabundanceGammarusappearstobehigherinareaswithinthethermaldischarge;however,morestudieswillbenecessarytodetermineifacause-effectrelationshipexists.Abundanceanddistributionofotherspeciesofbenthicinvertebratesdonotappeartobeaffectedinareaswithinthethermalplume.NutrientstudiesconductedbyDr.J.F.Storr(Section5.5)during1969and1970indicatedthatthereisnosignificantdifferenceinnutrientconcentrationswithdepth.Theinducedbottomflowduetotheintakestructuretherefore,hasnoeffectonverticalnutrientredistribution.Preliminaryplanktondistributionstudiesinthevicinityofthesite,conductedbyDr.J.F.Storrin1964,(Section5.5)indicatedthatplanktonconcentrationsweregenerallyhigherin5.1-6 V
thesurfacewatersthaninthedeeperbottomwaters.Sincetheintakestructuredrawswaterfromthedeeperdepths,theproportionofplanktonicspeciesinthecirculatingwaterflowwillbelowerthaninthesurfacewaters.Additionalplanktonstudieswereconductedin1971atNineMilePointNuclearStationUnit1toassesstheeffectsofentrainmentontheplanktonicspeciesinLakeOntario(section5.5).ThestudieswerecarriedoutfromJunethroughautumnunderdifferenttemperatureandlakeconditionsBothzooplanktonandmotilephytoplanktonwerecollectedintheintakeanddischargeandheldforvaryingperiodsoftime.Theplanktonwereexaminedimmediatelyandagain6hoursand20hoursaftercollection.Estimatesofthepercentkilledinpassingthroughthesystemwereestablishedforeachgroupoforganisms.Resultsofthestudiesvarieddependingontimeoftheyear,waveconditions,temperaturerise,anddurationofexposuretotheelevatedtemperatures.Planktonentrainedinthecoolingwatersystemforthestationaresubjectedtomechanicalandthermalstressforabout6minutesfromthetimeofenteringtheintaketothetimeofreachingtheboundaryofthemixingzone.Thepreliminaryresultsofthisstudy,however,conservativelyindicatethattheoveralllevelofmortalityofplanktonpassingthroughtheplantranges'from19tolessthan30percent.Thishighervalueincludesnoallowanceforsamplingerrors.AdetaileddiscussionofthemethodsofestimatingplanktonmortalityisinSection9.5.1.2.2.Asmentionedpreviously,thecirculatingwaterflowforthestationisapproximately600cfs.Theintakeislocatedoff-shoreinanopenexpanseofthelake'herenaturalprevailingcurrentswillpreventthedepletionoflocalplanktonpopulations.Sincetheproportionofthecirculatingwaterflowissmallcomparedtothefreeflowingvolumeofwateratthesiteand,sincethepreliminaryplanktonstudiesindicaterelativelylowmortalityratesonentrainedorg'anisms,thereisbelievedtobenosignificanteffectontheplanktoncommunityinthevicinityoftheNineMilePointNuclearPowerStation.AlthoughthestudiesconductedtodatehaverevealednofisheggsorlarvaeintheintakeofUnit1,itisrecognizedthatsomefisheggsandlarvaemaybeentrainedinthecirculatingwatersystem.Littlequantitativedataisavailable,butthereisgeneralagreementthatconcentrationsoffisheggsandlarvaemightbefoundasfarastenmilesfromshorebecauseoftheupwellingsinthisarea.Basedonlimiteddata,theeffectofentrainmentonthefishpopulationhasbeenevaluated.TheresultsofthisanalysisaresummarizedinTable5.1-1.Threedifferentmethodswereusedtoccmputemortalityforaonce-5.1-7 If,a/~IIf~IVI,I/'I'\f throughcoolingsystem.Theassumptionsofthevariousmethodsareasfollows:1.ModelofEntireLake:Fishandlarvaeareequallydistributedthroughouttheentirelake.Watercontainingthesestagesoffishlifewillpassthroughthecondensersystemduringtheapproximately90-dayspawningseason.2.TenMileInnerLakeFisheggsandlarvaearefoundequallydistributedinthewaterwithina10-milelimitfromshoreallaroundthelake,andnonearefoundintherestofthelake.Allwaterpassingthroughtheplantiswithdrawnfromthis10-mileinnerlake.Watercontainingthesestagesoffishlifewillpassthroughthecondensersystemduringtheapproximately90-dayspawningseason.3.OneMileInnerLakeSimilartosecondmodel,exceptthelarvalformsarefoundonlywithina1-mileinnerlake.Foreachofthemodels,threecaseswereinvestigated,asrecordedinthecolumnslabeled<<100percentmortality,"<<30percentmortality<<and<<30percentmortalitywithselectivewithdrawal.<<Theresultsinthefirstcolumnareforthecasewhereitisassumedthatallformsoffishlifepassingthroughthecoolingwatersystemwillbedestroyed.Preliminarydataindicatethatapproximately10tolessthan30percentmortalityoflarvalformsoccursasaresultofpassagethroughthecoolingwatersystemsofsimilarunits.Thismortalityratemaybehighsinceitisnotpossibletodeterminethemortalitywhichoccurredasadirectresultofthesamplingtechnique.WhiletheseresultsarenotdirectlyapplicabletotheNineMilePointStation,theydoprovideabasisforestimatinganactualmortalityrate.Similarly,preliminarydataindicatethatsurfacewatercontainshigherconcentrationsoffisheggsandlarvaethandolowerdepths.Theintakestructureisdesignedtodrawwaterselectivelyfromthedeeperwaterandtheresultslistedincolumn3inTable5.1-1reflectthisfactor.Evenonthebasisofthemostconservativemodelinvestigated,lessthan0.2percentoffisheggsorlarvaecouldpotentiallybedamagedbypassagethroughtheNineMilePointStation.5.1-8
Althoughmechanicalandthermaleffectsareusuallyconsideredthemajorcauseofplanktonmortalityincirculatingwatersystems,recentstudies(Ref.29)indicatethatchlorineisresponsibleforincreasedmortalitiesofzooplankton.However,biocidesarenotusedinthecoolingwatersystemforcondensercleaningsothatthisincrementofplanktonmortalityisnotafactor.RefertoSection3.7foradiscussionoftreatmenttopreventbiologicalgrowthinmakeupwater.Table5.1-1EffectofEntrainmentonFishLarvaePopulationforNineMilePointNuclearStationCasePercentofReductionofPoulationNineMilePoint23Direct100%Mortalit30%Mortalit30%MortalitywithSelectiveWithdrawal-~1.EntireLake0.00740.00220.00072.TenMileInnerLake0.01330.00400.00123.OneMileInnerLake0.1478004440.01335.1-9 48II~Jk~'l'lL10r 52EFFECTSOFRELEASEDRADIOACTIVEMATERIAL5.2.1GeneralNineMilePointUnit1isanoperatingstationwhichwaslicensedpriortothepublicationoftheproposedguidelineAppendixIto10CFRPart50.,ThissectionwilldiscussboththelicensedUnit1stati'onasitwasoriginallydesignedanddescribedintheFSARaswellasthefutureUnit1stationaftertheradwastesystemisupgraded.Theupgradedradwastesystemisdesignedandwillbeoperatedtominimizedischargeofradionuclidestotheenvironment.TheconcentrationsofthereleasestothewaterandairwillcomplywiththelimitsspecifiedinTitle10,CodeofFederalReglulations(CFR)Part20,andwiththedesignobjectivesspecifiedintheproposedAppendixIto10CFRPart50..ThisreleasedradioactivityaddsonlyveryslightlytothenaturalbackgroundradiationToestimatethedosefromthesereleases,thefollowingfactorsareconsidered:1.Theisotopiccompositionandconcentrationsreleased2.Dilutionofthedischargeintheairandwaterandremovalmechanisms,suchassedimentationandadsorption3.Concentrationinaquaticandterrestialfoodchains4.Localenvironmen'talcharacteristics,such.asmeteorology,hydrology,andlanduse5.Thedailyhabitsandactivitiesofthepotentiallyexposedpopulation.Allprincipalexposurepathwayshavebeenconsidered.Theseare:1.Externalexposuretopeoplefromradionuclidesinwaterandair2.Internalexposuretopeoplefromingestionoffoodcon-tainingradionuclidesandfromdrinkingwaterandmilk30Exposureoffishandprimaryproducerandconsumerspeciesinwaterfromradionuclidesinwaterandinternallydeposited4.Exposureofplantsandanimalsdirectlyfromradio-nuclidesdischargedtoairandindirectlyfromdeposition5.2-1
Eachofthesemodesofexposureisconsideredindetailinthefollowingsectionsastheyapplytotheaqueousandairborneradionuclidereleases.Itisappropriateheretoexplainthebasisforthediscussionofreleaseratesofradioactivematerialsandfortheevaluation,oftheresultingradiationexposures.TheNineMilePointUnit1offgassystemdesignwasbasedonanobleradiogasactivityflowrate(sourceterm)of820,000uCi/secafter30-minuteretention.Thisdesignbasisvalueisrecognizedtobeaconservativeonewhichisnotexpectedtobeapproachedorexceededinstationoperation.Sincethegoalinfuelperformanceistoachieveasourcetermbelowthedesignbasis,alowervalueisappropriateasabasisforthediscussionofradioactivereleaseratesasaveragedovertheyearsofstationoperation.BasedonBWRoperatingexperiencetodate(abouttenplants),anaverageactivityflowrateoftheorderof25,000uCi/secasmeasuredafter30-minutedelayishigherthantheaveragerateofflowexperiencedattheoperatingplants.Inestimatingtheexposuresfromradioactivereleases,andinconformancewithAppendixDof10CFRPart50,aconservativeassumptionoffuelfailureisthatthegaseousactivityflowrateat30-minutedelayis50,000uCi/sec,withthereactoroperatingatsteady-statefullpowerandthecleanupsystematnormaloperation.Radiation,exposurestothepublichavebeencalculatedonthebasisofagaseousactivityflowrateof50,000uCi/secat30-minutedelayforallprincipalradiologicalpathways.Duetodesignfeaturesandsiteandenvironscharacteristics,theresultingdoseestimatetoanymemberofthepublicislowcomparedtotheusefulbenchmarkofdosefromnaturalbackgroundradiation.5.2.2AqueousReleasesDuringroutineoperation,NineMilePointUnit1releasesminuteamountsofradionuclidestoLakeOntario.TheimportantisotopesandtheirdischargeconcentrationsforboththeoriginalandupgradedstationdesignsareaspresentedinTable3.6-3.Thesumoftheratiosofthedischargeconcentrationtothemaximumpermissibleconcentration(MPC)foreachisotopeisalsopresentedinthistableforbothstationdesigns.Theresultingmagnitudeofexposure,whichisextremelysmallforallexposurepathways,dependsontheradionuclides~released,theconcentrationofeach,dilutioninLakeOntariotothepointofuse,theconcentrationoftheradionuclidesinbiota,andtherecreationalanddietaryhabitsofpeopleinthevicinityoftheNineMilePointStation.5.2-2
Inestimatingthedoseratetoindividualsandthegeneralpopulation,themodesorpathwaysofexposurethatmustbeconsideredare:1.Directexternalbetaandgammaexposurereceivedwhileengagedinsuchwater-orientedrecreationalactivitiesasswimming,waterskiing,boating,andfishing.Commercialfishingmustalsobeconsidered.2.Ingestionoffishinwhichradionuclidesmayaccumulateatconcentrationsinexcessoftheconcentrationsinwater.3.DrinkingwaterfromLakeOntarioorfromwellsinthevicinityoftheplant.4.ThefoodeatenfromcropsirrigatedwithLakeOntariowater.Aquaticbiotawouldbeexposedasaresultof:1-Submersioninwatercontainingradionuclides2.Concentrationofradionuclidesinbodytissue.5.2.2.1ExternalRadiationExposurefromWaterRelatedActivities5.2.2.1.1IndividualExposureSincethedischargefromboththeoriginalUnit1stationdesignandtheupgradedUnit1stationdesignutilizesthesamesubmergeddischargesystem,dilutionreducesthesurfaceradionuclideconcentrationbyatleastafactorof3..Assumptionsusedtocalculateindividualradiationexposuresfromrecreationalactivitiesare:(1)theswimmingseasonlastsonlyafewmonths,roughlyfromJulytoSeptember,and(2)-thedoseratetoawaterskierisabouthalfthedoseratetoaswimmer.Consequently,apersonwhospent200hoursperyearswimminginthemixingzonewouldreceiveroughlythesamedoseasanindividualwhowaterskisfor400hoursperyearintheareaof-thedischarge.Thesedoseestimatesaresummarized.inTable52-1Theexposureofindividualsboatingorfishinginthedischargeareawouldbeduetothepresenceofthegammaemittersinthewater.Arecreationalfishermanorboatercouldbeexposedfor300hoursayear,orroughly16hourseachweekendfromAprilthroughSeptember.Similarly,acommercialfishermancouldbeexposedforabout1,000hoursperyearwhilefishinginthemixingzone.ThesedoseestimatesaresummarizedinTable5.2-1.5.2-3 0
Table5.2-1SummaryofDoseCalculationsForAnIndividual(mrem/yr)DueToAqueousReleasesA.UradedUnit1StationDesin<<iExsureMode.Dose~ThroidAdult-InfantBone-External.Swimming(200hr/yr,MZC>>)WaterSkiing(400hr/yr,MZ)Boating(300hr/yr,MZ)CommercialFishermen(1000hr/yr,MZ)Internal~0.00070.0007000030001NANANANANANANANANANANANANANA0000900020.060.26External.DrinkingWater(2.2l/day<+i)EatingFish(200gm/day<ii)0.010.350.01B.OriinalUnit1Station.Desi0.002002Swimming(200hr/yr,MZ~>>)WaterSkiing(400hr/yr,MZ)Boating(300hr/yr,MZ)CommercialFishermen(1000hr/yr,MZ)Internal0.010.010.0080.02NANANANANANANANANANANANANANADrinkingWater(2.21/day<ii)EatingFish(200gm/day~+>)0.0182.00.061280.271.10.0460.03033<<iBases:50,000uCi/secoffgasactivityflowrateafter30-minuitedelayandanaqueousreleaserate(excludingtritium)of2Ci/yrfortheupgradedstationdesignand32.2Ci/yrbasedontheidentifiedradionuclidesreleased(excludingtritium)obtainedfromactual1971operatingdatafortheoriginalstationdesign.<<>Gastro-IntestinalTract~~iSeeSection5.2.2.2.1<<>>MixingZoneNA-NotApplicable5.2-4
Atotherreactorlocations,thecontaminationoffishinggearhasbeenapotentialexposurepathwayforfishermen.Sedimenthasbeenshowntobeonesourceofsuchcontamination.Experiencehasshown,however,thatthelevelofcontaminationofgearislikelytobeatleastoneorderofmagnitudelessthanthatinsediments(Ref.30).Thenatureofthelakeissuchthattherearenodepositsofsedimentintheimmediatevicinityofthedischarge.Hence,thisparticularexposurepathwayisofnoconcern.ExperienceattheDounreayinstallationinBritainindicatesthathempnetshaveactedasion-exchangeresinsinsaltwaterwiththeresultthattheradionuclidecontentofthenetexceededtheconcentrationinthewater.DischargeratesatDounreaywerefrom600to2,000curiespermonthin1965-66.Betaradiationdoseratesmeasuredatexperimentalnetswerelessthan0.15mrad/hr.BecauseoftheseveralordersofmagnitudelowerreleasesfromNineMilePoint,thisexposurepathwayisofnoconsequence(Ref.31).Anotherpossiblemodeofexposureisfromthepresenceofradio-nuclidesonbeaches.Sincebeachesintheareaconsistofrelativelylargegrainedandcoarsematerials,theabsorptionofradioactivematerialsisminorcomparedtobeachesconsistingofsmallerparticlesizematerials,suchasmuds(Ref.32).Nosignificantbuildupisexpected.5.2.21.2PopulationExposure-RecreationalTheLakeviewSummerCamp,adjacenttothenorthwestcornerofthesite,providesaccesstothebathingbeachnearestthedischarge.About500peopleusethecampdailyfromJunethroughSeptember,andabout1,500onweekends.TheclosestpublicbeachatSelkirkShoresisabout10mileseastofthesiteandhasroughly1,000swimmersperweekthroughthesummer.Thefactor-of-threedilutionofthedischargehasalreadybeenmentioned.Transportandmixingoftheeffluentprovideadditionaldilution,whichisafunctionofthedirectionandthedistancefromthedischarge.Sincetheprevailingcurrentsarefromwesttoeast(Section5.4-7.2),theproximityoftheLakeviewcampjustwestofthesiteisnotindicative.ofthedilutionwhichcanbeexpected.Assumingthateachpersonatthecampswimstwohoursperday,andthatthereisonlyathreefoldeffluentdilution,thetotaldosetothepopulationisaspresentedinTable5.2-2.5.2-5
Table5.2-2RecreationalPopulationExposures,Man-rem/yr.~OradedOricrinal.2Swimming+LakeviewCampSelkirkShoresFishing+MixingZone0.00050.000030.00070.0080.00050.017~Basis:SeeNote<<>ofTable5.2-1AtSelkirkShorestotheeastofthestation,dilutionisincreasedbyafactorof235(Section5.4.7.2).Typically,itwouldtakeover35hoursforthecurrent-carrieddischargetoreachthebeach.Neglectingradioactivedecayinthistraveltime,andassumingadilutionof235andtwohoursperdayspentinthewater,thepopulationexposureatSelkirkShoresisaspresentedinTable5.2-2.Asmanyas40fishingboatshavebeenobservedneartheNineMilePointUnit1dischargeatthesametime.Ifitisassumedthatdilutionbyafactorof3.0occursandthattherearetwomenperboatfishingsixhoursadayfor20weeksayear,thedosetothepopulationfromrecreationalfishingisaspresentedinTable5.2-2.5.2.2.2InternalRadiationExposurefromIngestionofFishandWater5.2.2.2.1IndividualExposureFishtendtoconcentrateradionuclidesintheirbodiesandthismustbetakenintoaccountindeterminingthedosetomanduetotheconcentrationsofvariousisotopesinthewater.Themaximumpermissibleconcentrationconsideringreconcentration(MPCC)istheconcentrationofaradionuclideinwaterthatwouldresultinanintakebymanfromeatingfishequaltothatwhichhewouldgetfromdrinkingwatercontainingthemaximumpermissibleconcentrationinwater(MPCW)ofthatnuclide.TheMPCCisdirectlyproportionaltotheMPCW,andinverselyproportionaltotheproductofthequantityoffishingestedandaconcentrationfactor(K).TheconcentrationfactorKistheratiooftheradionuclideconcentrationinbiotatothatinwater.TherepresentativevaluesofKcompiledbyChapmanetal(Ref.33)forelementsinfreshwaterfishhavebeenusedfordosecalculations.Anindividualwhoobtained100percentofhisminimumdailyproteinrequirementof200gramsfromeatingfishwouldreceivedosestothegastro-intestinal(GI)tract,tothewholebody,tothebone,andtothethyroid,aspresentedinTable5.2-1.Duetoseasonalconditions,itisassumedthathalfofthe5.2-6 1=,'<<ItI*<<ILCIIr~'1hJItl.~r'II-~<<Ir.,thJIh~Ih<<hrrIrli<<'IrrN-gtI<<llr<<J~Jhtr-Wtlgr'<<V"r'h*gP~t'<<1,,<<~<<'tlhrJ<<
individual'yearlyintakeisobtainedfromnearthestationdischarge,whilethebalancecomesfromsourcesoriginatingrandomlythroughoutthelake.Thosefishobtainednearthestationdischargeareassumedtohavespenthalfoftheirlifeinthemixingzoneandhalfthroughoutthelake.Duetotheseasonalresidencyintheimmediatesitearea,thedosefromdrinkingwaterisbasedonanindividualdrinkinghisdailyintake(infant1liter/day,adult2.2liters/day)fromthewateratthesiteboundaryduringonehalfoftheyearandfromtheOsewgowatersupplyduringtheotherhalfoftheyear.Basedonthesedailyintakes,adultsandinfantswouldreceivedosestotheGItract,tothewholebody,tothebone,andtothethyroidfaspresentedinTable5.2-1.Eventhoughaninfantingestsasmallerdailywaterintakethananadult,itwouldreceiveasomewhatlargerthyroiddosebecauseofitssmallerthyroidmass.TheinfantthyroiddoseiscalculatedusingtheMPCWfrom10CFRPart20.Theuseoflakewaterfortheirrigationoffoodcropscouldresultinanuptakeofradionuclidesbytheplantswhichcouldresultinanexposuretomanwhentheplantswereconsumed.InOswegoCountyin1964,only1,660acreswereirrigatedoutofatotalof210,555acresfarmed(Ref-34).Oneortwoorchards,somefivemileseastofthesite,uselakewaterforirrigation(Section5.4.7.2).Becauseofthelimitedacreageirrigatedandthedistancetothenearestuser,itisnotexpectedthatexposuresaresignificantincomparisontothedosesreceivedviaotherpathways.5.2.2.2.2PopulationExposureTheradionuclidesdischargedtothelakeataconstantratereachesanequilibriumvaluegovernedbytheradiologicalhalf-lifeofeachnuclideandthemeanresidencetimeofwaterinthelake.ThenormaldischargeofwaterfromLakeOntariodowntheSt.LawrenceRiverisabout240,000cfs.Assumingthelakevolumetobe393cubicmiles,theeffectofwaterexchangewasexaminedwithanassumedturnoverrateof90percentin24years.Forallisotopes,exceptCo-60,Cs-137,andSr-90,theequilibriumlevelofactivityinthelakeisgovernedbytheradiologicalhalf-lifeoftheradionuclides.Expectedequilibriumlevelsforselectedisotopesfortheexchangeandno-exchangeconditionsarecomparedinTable5.2-3.Ifitisassumedthattheseradionuclidesareuniformlydistributedthroughoutthelakeandareconcentratedinfishtothedegreepredictedbytheconcentrationfactor,apopulationexposureestimatecanbemade.Thisexposureestimateisbasedonavalueof3,235,000poundsforthecombinedU.S.andCanadianfishcatchin1970(Section2.2).Thepopulationdosestothewholebody,GItract,thyroidandbonearegiveninTable5.2-4.5.2-7
Table5.2-3EquilibriumLevelsinLakeOntariofortheContinuousDischargeofRadionuclides<>>EuilibriumActivit-Ci~Isotoe.AnnualDischarge~Ci/YrA.UradedUnit1Station-Desin.Co-58Co-60Sr-89Sr-90I-131Cs-134Cs-137Ba-140Np-239H-300840.0090.050000604600.0040.0060.05001002000230.0650.0100.13440.0140.0120.148400020.00093000.0230.0330.0050.0420.0140.0100.04400020.0009130B.OriinalUnit1StationDesin.Co-58Co-60Sr-89Sr-90I-131Cs-137Ba-140H-36310.60.240.0462.22.60070201.7870.0480.94~0.06964*0.0033007440.0240.290.069190.003130+Activityafter30yearsofdischarge<<~35-yearstationlifeandsamebasisasgiveninNote<>>ofTable5.2-1SincetheOswegoMetropolitanWaterBoardandtheOnondagaCountyHaterDistrictprovidepotablewaterfromLakeOntariotathegeneralpublic,ingestionofwatermustbeconsideredasapassiblemodeofexposure.Thewatersupplyintakeisabouteightmileswestofthesiteboundary.TheprevailinglakecurrentsflowfromtheOCWDintaketowardtheunit'sdischarge.Thesewatersuppliesserveasmanyas190,000personsperday(Ref.35).Anannualaveragedilutionfactorof4.9x10~isexpectedattheOswegointakefromdischargesforNineMilePointUnit1(ExhibitD-2ofRef.19).Instantaneousdilutionisbyafactorof156tothewatersupplyinlet.Ifthisdilutionfactorof156isassumedandthe30ormorehoursofdecayfromthedischargetotheinlet,aswellastheremovalofradionuclides5.2-8
bywatertreatmentandsubsequentdecayinthedistributionsystemareneglected,thedosetothepopulationisaspresentedinTable5.2-4.Thetotalprojectedpopulationfortheyear2000within50milesofthestationisabout1,430,000.,TheLakeOntario-CityofOswegowatersupplyintakeservesOswegoCountyandpartsofOnondagaCounty.Thesecountiesareexpectedtohaveabout930,000people,about65percentoftheirprojectedyear2000population,within50milesofthestation.Forestimatingtheprojectedyear2000populationman-remdosesinTable5.2-4,afactorof4.9hasbeenused.Table5.2-4PopulationExposure(man-remperyear)fromNineMilePointUnit1LiquidReleases<<>Mode.ofEosure.~Theid.Bone.A.Uraded-Unit.1Station-Desin.Year-1970~Ingestiona.WaterbFish0-0870.0120.1700022120.16000002001Year.2000-Ingestiona.Waterb.Fish~>>0.430.0490.8300088580.800.00008004B.OriinalUnit1-Station.Desin.Year1970~Ingestiona.WaterbeFish1.60445.60.0385232.760.000011.0<>>Bases:.SameasgiveninNote<>>ofTable5.2-1.<<>Itisconservativelyestimatedthatfishcatchesincreasebyafactoroffoureventhoughthepast30-yeartrendhasbeeninthedirectionofdecreasingfishcatches.AreportbytheU.S.FishandWildlifeServicein1969estimatesthatprojecteddemandforfisheryproductsfromU.S.landingsinLakeOntariowillincreasetoabout1.25to1.5millionpoundsannuallybytheyear2020(Ref.18).5.2-9
'
5.2.2.3RadiationExposureofPrimaryProducerandConsumerSpeciesfromDischargedRadionuclides5.2.2.3.1ExternalBenthicandplanktonstudieshavebeenconductedinLakeOntarioattheNineMilePointsite.Mostofthebenthicplantmaterialdepth.Oftheanimalspresent,thefreshwateramphipodGammarus.wasmostabundant.Limitednumbersofsnailsandinsectandfishinthevicinityofthedischargedemonstratedseasonalvariationsinnumbers(Ref.1,page52).Thesubmersiondosetotheseorganismsfromtheradionuclidesinthemixingzonecanbeassumedtobethesameasthedosetowaterseveralgammamean-freepathsbelowthesurface.Usingamixingzonedilutionfactorof3andassumingyear-roundresidenceinthisregion,thedosestobiotaareaspresentedinTable5.2-5.Table5.2-5SummaryofDosestoBiotaintheMixingZone<<~A.UradedUnit1StationDesin.'osemradserearExternalInternalFishPrimaryproducersandconsumers0.01500311.012.0B.OriinalUnit1StationDesinFishPrimaryproducersandconsumers0.270.53400120~>>Bases:SameasgiveninNote~>>ofTable5.2-15.2.2.3.2InternalRadionuclidescanconcentrateinbiotatolevelsexceedingtheirconcentrationsinwater.Theinternaldosetotheprimaryproducerandconsumerspecies.canbecalculatedusingtheradionuclideconcentrationinthemixingzoneandthelargerofChapman'svalues(Ref.33)ofconcentrationfactorsforeitherfreshwaterplantsorinvertebrates.Becauseofthenear-microscopicsizeoftheorganismsinvolved,theinternalgammadoseisassumedtobezero.Theinternaldose,assumingdepositionofallthebetaradiationenergyintheorganism(Ref.36),isaspresentedinTable5.2-5.5.2-10
5.2.2.4RadiationExposureofPishfromDischargedRadionuclides5.2.2.4.1ExternalSurveysoffishspeciesimportanttosportfishinginLakeOntariointhevicinityofNineMilePointindicatethatfisharerandomlydistributedintheareaduringthedaytime.Atnighttheytendtoconcentrateatdepthsof20feetormore,withamaximumat30to40-footdepths.Thelargestfishconcentrationswereencounteredinthespringoftheyearwhenalewiveswereactivelyspawninginthewarmerinshorewaterofthelake..Atthistimeofyear,alewivesandalewifeeggsaretheprimaryfoodsupplyforotherfish.Astheseasonprogresses,fishpopulationsdeclinesharplyasthealewivesdisperseandmovefurtheroffshore.Gammarus.thenassumeagreaterimportanceasafoodsupply.ByOctober,theinshorefoodsupplyhasgreatlydiminishedandmostfishhavemovedoffshore(Section2.7.2).Takingintoaccountthesediurnalandseasonalpatternsofmovement,andassumingthatafishspendshalfofitslifetimeinthemixingzone,thedoseratecanbeassumedtobeabouthalfthatofthemixingzonewateroraspresentedinTable5.2-5.5.2.2.4.2InternalByassumingthatradionuclidesconcentrateinfishasindicatedbytheconcentrationfactordiscussedinSection5.2.2.2.1,thetotalactivityinafishofknownmasscanbecalculated.Essentiallyalloftheenergyofthebetaparticlesemittedfromauniformactivitydistributionisabsorbedinafish.Becauseofthelongmean-freepathofgammaradiation,onlyaportionofthegammaenergyisabsorbedbythefish.Thefractionoftheenergyabsorbeddependsontheshape,mass,anddensityofthefish,aswellasthedistributionofactivityandtheenergyofthegammarays.Ifitisassumedthatafishisapproximatedbyaflatellipsoidwithaxesintheratioof1:0.5:2.0,andthattheradionuclidesareuniformlydistributedthroughouta2-kgmassofunitdensity,thentheabsorbedfractiondoesnotexceed0.2forgammaenergiesfrom0.05to2.75Mev(Ref.37).Employingtheseassumptionsthen,andassumingalsothatthefishliveinthemixingzoneforhalftheyear,thedoserateisaspresentedinTable5.2-5.Tritiumoccursnaturallyfrominteractionsofcosmicrayswithgasesintheupperatmosphere.Itwasalsoproducedinabundanceasaresultofnuclearweaponstestingandenteredthebiaspherethroughprecipitation.ThetritiumconcentrationsofLakeOntarioasmeasuredatthe.NineMileUnit1coolingwaterintakehasaveragedabout330pCi/1.Assumingthisconcentrationisrepresentativeoftritiumactivitythroughoutthelake,thereareaboutonehalfmillioncuriesoftritiumpresentinthelake.5.2-11
Thereleaserateoftritiumintothelake,thedischargeconcentrationoftritiuminthemixingzone,andthepercentageofthe10CFR20MCPWforthisconcentrationaregiveninTable5.2-6forbothstationdesigns.Initiallytritiumreleasesvillbelowerfortheupgradedstationdesignthanfortheoriginalstationdesignbecauselesswastewaterwillbedischarged.However,tritiumlevelsinthereactorwaterwillbuilduptoanevequilibriumconcentrationwhichisexpectedtooffsetthereducedwastewaterflow.Therefore,itisassumedthatthetotalcuriesoftritiumreleasedwillbethesameforboththeoriginalandupgradedstationdesign.Therearenoknovnmechanismsbywhichtritiumwouldconcentrateinbiotatolevelshigherthanthoseinwater.Hencethedosesfromdrinkingvaterandfromeatingfishfromthesamelocationwouldbeidentical.Thetritiumcontributiontothewhole-bodydosetoanindividualfromdrinkingwateratOswegoisalsopresentedinTable5.2-6.Table5.2-6TritiumReleaseData<<>>1.Releaserate,Ci/day2.DischargeConcentration,uCi/cc3.Percentof10CFRPart20MPCWUpgradedStation-~Desin0.064.3x10-~0.002OriginalStationDesicen.0.064.3x10-80.0024.Contributiontowholebodydose<<>,mrem/yr0.000020.00002<>>Basis:SeeSection5.2.2.4.2~>>FromdrinkingwateratOswego5.2.3RadionuclidesDischargedtoAmbientAir5.2.3.1IndividualTheexternalradiationdosetoanindividualduetoreleasesofradioactivitytotheambientatmospherewilldependonthereleaseratesofthevariousradionuclides,theheightabovegroundofthereleases,andthemeteorologicalconditionsgoverningthelong-termaveragemovementofair-borneradioactivityacrossthesiteboundary.Partofthemodificationsto-bemadetoNMP1toconformtotheintentoftheproposedAppendixIto10CFRPart50istoincreasetheholdupwithintheoffgassystem.52-12
Table5.2-7givesthereleaseratesforfissionandactivationgasesfromthestackoftheoriginalstationdesign.Table5.2-7alsogivestheexpectedreleaseratesforfissionandactivationgasesfromthestackoftheupgradedstationdesignafteraholduptimeof33hoursforthekryptons,480hoursforthexenons,and5hoursfornitrogen,argon,andtritium.Radionuclides,otherthanhalogens,whoseemissionsarelessthan0.01uCi/sec,areconsiderednegligibleandareexcludedfromthistable.Thecalculationsarebasedonafailedfuelbasiscorrespondingtoanoffgasactivityflowrateof50,000uCi/secafter30minutesdelay.ThesegasesarereleasedfromthemainstackandresultindosesaspresentedinTable5.2-7attheeasternboundaryoftheFitzPatrickPlantsite1.2mileseastoftheNineMilePointUnit1stack.Thisdeterminationisbasedonannualmeteorologyandthesizeandshapeofthesiteitself.Theaverageannualground-levelconcentrationatthispointmaybecalculatedfromtheknownreleaseratesandtheannualaveragenormalizedconcentration,whichforthissiteis4.74x10-~sec/m~atthatsiteboundary.Thecalculatedground-levelconcentrationsatthislocationcanbeusedtoobtaintheannualaveragedosetoahypotheticalmancontinuouslylocatedthere.TheimmersiondosemethodofCommitteeIIoftheInternationalCommissiononRadiologicalProtection(Ref.38)wasusedtocalculatewholebodydosefromtheground-levelconcentrations..Fortheseactivityreleases,nosignificantingestiondoseisexpected.5.2.3.2PlantsandAnimalsTheexternalexposureofplantsandanimalsatthesiteboundaryisessentiallythesameasthatcalculatedforman.SeeTable5.2-7.Asistrueforhumans,nosignificant.ingestiondoseisexpectedforanimals.5.2.4RadionuclideContaminationofGroundWaterWhiletherearenumerousprivatewaterwellsinthevicinityofNineMilePointUnit1,therearenoanticipatedreleasesthatcouldcausegroundwatercontamination.SincethewatertableslopestowardLakeOntario,anychangesinthegroundwateratthesitedonotaffectwellslocatedup-gradient;Noexpectedincreaseinradiationlevelsingroundwaterisanticipated,therefore,thereisnoexposuretopeople,plants,oranimalsfromthispathway.5.2.5IndividualExposureEstimateThevaluesforindividualradiationexposuresinTable5.2-8representaconservativeestimateofstationoperation(i.e.,50,000uCi/secoffgasactivityflowrateafter30-minutedelayandanaqueousreleaserateof20Ci/yr)whichishigherthanexpectedwiththeupgradedstationdes'ignpreviouslydescribedinSection3.6.Itisobviousfromthevaluespresentedinthetablethatevenwithreleas'edquantitiesof5.2-13
Table5.2-7GasReleaseRates<>>fromtheNineMilePointUnit1StationandCalculatedWholeBodyExternalDoseRate<>>at1.2MilesEastofStackA.UradedUnit1StationDesin.Kr-88Kr-85mXe-133Xe-131mKr-85Total2.8hr4.4hr5.3days11.8days10.7yr2.816.8312.0247.60.0020.0030.022Negligible0001~0028B.OriinalUnit1StationDesin.Radionuclide-Half-life.ExternalWholeEmissionRateBodyDoseRateKr-83mKr-85mKr-85Kr-87Kr-88Kr-89Xe-133mXe-133Xe-135mXe-135Xe-137Xe-138N-13Ar-41H-31.86hr4.4hr10.76yr1.3hr2.8hr3a2min2.3days5.27days16min9.2hr4.2min17min9.96min1.83hr12m3yx'2502900800085001501002500400090004506751622.6040.0200.4619107.560-30900090.1740.8101.9703719.750.1400.002Total306C~)Basis:50,000uCi/secoffgasactivityflowrateat30minutesdelay~>>Assumedtobecontinuous<fence-post~~exposureBesidestheoffgassystem,Unit1releasessomeradioactivitytotheambientatmospherethroughturbineglandseals.Thedosecalculatedfromthisreleaseis0.20mremperyear.5.2-14
radioactivityseveraltimesinexcessofthatexpectedduringfacilityoperation,theradiationexposurestoindividualsandthepopulationasawholemeettherequirementsofParagraphBoftheproposedAppendixIto10CFRPart50andisnegligibleascomparedtonaturalbackground.5.2.5.1LiquidReleasesModificationstotheUnit1liquidradwastesystemarebeingdesignedwiththeobjectivethataftermodificationthereleasedradioactivityconcentrationswillbeinaccordancewiththeproposedAppendixIto10CFRPart50,SectionIIA.However,forconservatism,effluentreleasesemployedinTable5.2-8arearbitrarilybasedonaqueousreleasesof20Ci/year.TherelativeisotopiccompositionwasassumedtobeasshowninTable36-3withappropriateadjustmentstoaccountfortheassumedreleaserate.Theindividualexposureestimatesfromswimming,waterskiingandboatingarebasedonanindividual'sexposureof200hr/yr,000hr/yr,and300hr/yr,respectivelyinthemixingzone.Duetotheseasonalresidencyintheimmediatesitearea,thedosefromdrinkingwaterisbasedonanindividualdrinkinghisdailyintake(infant1liter/day,adult2.2liter/day)fromthewateratthesiteboundaryduringonehalfoftheyearandfromtheOswegowatersupplyduringtheotherhalfoftheyear.Thedosesduetofishconsumptionwerecalculatedassumingthatanindividualeats200gramsoffishperday.Duetoseasonalconditions,itisassumedthathalfoftheindividualsyearlyintakeisobtainedfromnearthestationdischarge,whilethebalancecomesfromsourcesoriginatingrandomlythroughoutthelakeThosefishobtainednearthestationdischargeareassumedtohavespenthalfoftheirlifeinthemixingzoneandhalfthroughoutthelake.5.2.5.2GaseousreleasesTheoffgassystemof-theupgraded.Unit1stationdesignisdesignedforaholdupof20daysforxenons,33hoursforkryptons,and5hoursforactivationgases.Theexternalexposuresfromgaseouseffluentsarecalculatedtooccurattheeasternsiteboundaryduetotheprevailingwinds.Theinhalationdosetothethyroidiscalculatedtooccuratthesamepoint.Thethyroiddosefrommilkconsumptionassumesthataninfantdrinksoneliteradayofundilutedmilkfromthenearestdairyfarm.Incalculatingexposuresassociatedwiththeturbinebuildingventilationsystem,a7-gpmleakrateintothebuilding,aniodinepartitionfactorof10,andabuildingexhaustrateof2buildingvolumesperhourareassumed.Theturbinebuildingventilationsystemexhauststhroughthe350-footmainstack.52-15
Table5.2-8IndividualExposureEstimates(mrem/year)FromSiteEffluentReleasesForUpgradedUnit1<<>ExternalExsuresA.GaseousEffluents<<~WholeBodBetaSkin-OffgasTurbineBldg.VentilationTurbineSteamSeals0.0130.0140.130-015000690.06B.LiquidEffluents~>>SwimmingWaterSkiingBoating0.0070.0070003NaturalBackground75(wholebody)and30(betaskin)ExternalExposureInternalExosuresA.GaseousEffluentsInhalation(infantthyroid)MilkConsumption(infantthyroid)B.LiquidEffluents0.013017DrinkingWater(infantthyroid)FishConsumptionG.I.TractWholeBody2.63.50.1NaturalBackground20(K-40)InternalExposure<<>Exposureslistedhereareestimatesandinnoeventshalltotalexposuresexceedthe(aslowaspracticable)operatingrequirementsoftheproposedAppendixIto10CFRPart50.SeeSection5.2.2.2.1and5.2.5forbasesofthistable.C>>Exposureslistedarebasedonaconservativeoffgasactivityflowrateof50,000uCi/secat30-minutedelay.~~)Assumesadilutionfactorof3atthesurfacefromthedischargestructureandanaqueousreleaserateof20Ci/yr.5.2-16
5.3EFFECTOFCHEMICALANDSANITARYWASTETREATMENTEFFLVENTSThemostfrequentchemicaldischargesconsistofneutralizedspentacidandcausticsolutionsresultingfromintermittentregenerationofmakeupdemineralizers.Themaximumquantityofwastesaccumulatedduringdemineralizerregenerationisabout16,000gallonswhichcontain,afterneutralization,approximately9,000ppnofdissolvedsolids,mainlysodiumsulfate.Thesewastes,neutralizedtoapHvaluebetween6.5and8.5,aredischargedtothecirculatingwaterat100gpmwheretheywillbedilutedbyafactorofabout3,000.Thedischargenormallyoccursforabout3hoursonceevery8days.Inadditiontodilutionofthewastesin'thecirculatingwater,rapiddilutionwiththereceivinglakewaterisachievedatthecirculatingwaterdischarge.Table5.3-1presentstheresultingwaterqualityanalysisoftheNineMilePointUnit1circulatingwateraftercompletemixingwiththeneutralizeddemineralizerregenerationwastes.Table5.3-1alsopresentsthetotalincrementalchange(i.e.,about3ppm)inthedissolvedsolidscontentofLakeOntariowaterresultingfromtheadditionoftheneutralizeddemineralizerregenerationwastesfromUnit1.ThisslightincreaseindissolvedsolidscontentoftheneutralizedeffluentisexpectedtohavenoadverseeffectonLakeOntario.Effluentfromtheclarifiersludgesettlingbasin,describedinSection3.7,isdischargedtoLakeOntarioviaadrainageditchandhasawaterqualitycomparabletothatofLakeOntarioduetopriorclarificationandsofteningoperations.AsdiscussedinSection3.7,thechemicalregenerationradioactivewastesfromthecondensatedemineralizersarenotdischargedtothecirculatingwaterandconsequentlyhavenoeffectonLakeOntario.Aftertheeffluentfromthelaunderingofprotectiveclothinghasbeencompletelymixedwiththecirculatingwater,itisnotexpectedtoincreasethelevelofphosphatesinthelakewaterbymorethan0.7ppbmeasuredasphosphorus.ThisslightincreaseisexpectedtohavenoadverseeffectonLakeOntario.EffluentfromthesanitarywastetreatmentfacilityservingUnit1,asdescribedinSection3.7.2,meetstherequirementspromulgatedbytheNewYorkStateDepartmentofEnvironmentalConservationandtheTownofScriba.ThedisinfectedandaeratedtreatmenteffluentassociatedwithUnit1operationisconveyedtoLakeOntarioviaadrainageditchwhere,undercertainconditions,itreceivesintermediatedilutionfromnaturalrunoffpriortoenteringthelake.EffluentfromtheUnit1sanitarywastetreatmentfacilityisbelievedtohavenoadverseeffectuponLakeOntario5.3-1
Table5.3-1ChemicalDischargefromMakeupDemineralizerRegenerationIonTotalChemicalsAddedtoCirc.WaterDuringOneRegenerationCycle~Lb/ReenerationIncrementalChangeInCirc,WaterAnalysisDuringRegenerationResultingCirc.Water++AnalysisDis-ChargedDuringRegenerationCcle-mAnalysisofDrinkingWaterLakeOntarioStandardsofWaterUSPHSandNYSmHC035101194.1194.00Cl-SO4=Ca++Mg++Na++K+33727413420.082.010.10002095303832.1144.108.9217.551.6030.3030-1044.0089016-601.60250250TotalDissolvedSolids3i27228.77225.50500~Regenerationcycleoccursfor3hourswithresultanteffluentsfromtheneutralizationtankdischargedtothecirculatingwaterat100gpm.*~ComputedbyaddingtheincrementalchangesduringregenerationtotheconcentrationsoftherespectiveionspresentinLakeOntariowater.
k 54QZHERENVIRONMENTALEFFECTS5.4.1TransmissionLineEffectsThe27-milerouteforelectricalenergytransmissionfromNineMilePointUnit1totheClaysubstationinthetownofClay,NewYork,wasacquiredduringstationconstruction(1965)andhasatotalright-of-waywidthof500feet.Thecenterofthisright-of-wayispresentlyoccupiedbytwosingle-circuit345kVlinessupportedbylatticesteeltowersforadistanceof1.7milesfromNineMilePoint.Woodpole,H-frametowers(Figure3.2-4)supportthelinestheremainderofthedistancewiththeexceptionofsteeltowersforthefinal0.3mileintotheClaysubstation.TheNineMilePointUnit1transmissionrouteis.consideredaruralcorridorwhichresultsinminimaldisturbancetoprivatehomesandfarmlands.Therouteavoidsestablishedorproposedrecreationareas,wildliferefugesanddesignatedhistoricalorscenicareas.Thelandmassbeneaththelinesisacombinationofopenfarmland,wetlandandwoodedareas.Portions(about10acres)oftheright-of-waycorridorcontinuetobecultivatedaspinetreeplantationsandfarmlandinkeepingwithNiagaraMohawk'spolicyofmultiplelandusefortransmissionlines.Right-of-waymaintenancealongthetransmissionlineisperformedundersupervisionofNiagaraMohawkpersonnelinsuchareasandatsuchtimesasisnecessarytomaintainsufficientclearancebetweenexistingtreegrowthandtheconductors.Approximately30milesofunpaved,dirtroadsplacedadjacenttothetransmissionlinerouteduringlineconstructioncontinuetobeused.Theseroadsprovideaccessforlineinspectionandserviceandaremaintainedforyear-roundaccessbyNiagaraMohawkpersonnel.Periodicremovalofgrowthalongportionsoftheright-of-wayisaccomplishedonascheduledbasisandthroughnecessityincludesthoseareaswheregrowthwasinitiallyretainedorselectivelyclearedMaintenanceoperationinallareasisaccomplishedbyselectiveuseofherbicidesapprovedforsuchusebyappropriategovernmentalagencies,supplementedbymechanicalclearing.Theprincipalobjectiveoftheright-of-waymaintenanceprogramistopromoteservicereliability.NiagaraMohawkhasendeavoredtoencouragenaturalgrowthofdesirablespeciesoftrees,shrubs,andgroundcovers,whichinturn,shouldpreserveandenhancetheecologicalvalueoftheright-of-wayandfosterandsustainwildlifehabitat.Environmentaldisruptionswhichmayhaveoccurredduringlineconstructionhavesincebeenneutralizedandthebalanceofterrestrialecologyhasbeenrestored.5.4-1 sJJ1'ft 5.4.2RadioactiveMaterialTransportEffectsAdherencetotheAECandDOTregulationsandvariouscontainmentrequirementsdiscussedinSection3.6.5increaseassuranceofminimizationofadverseenvironmentaleffectsduringtheshipmentofreactorfuelsandradioactivewastestoandfromtheNineMilePointNuclearStation.Duringnormalshippingconditions,thereisnoreleaseofanyradioactivematerialsfromnewfuel,spentfuel,andsolidradioactivewasteshippingcontainers.Theonlyeffectanticipatedwouldbetheinsignificantdirectradiationexposureofthepopulationlocatedalongtheshippingroute.Atthemaximumpermittedlevelof10mremperhourat6feetfromthenearestaccessiblesurface,anindividualstandingascloseas100feetfromtheshippingvehiclecouldbeexposedtoagammaradiationdoserateof0.2mremperhour.Thisradiationdosewoulddecreasefurtherto0.01mremperhouratabout300feet.Consideringrealisticexposuretimesforindividualmembersofthegeneralpublic,theresultingdosesareverysmallandwouldbeentirelynegligibleatgreaterdistances.Radioactivematerialshipmentsarelabeledassuchinaccordancewithgoverningregulations,toalertshippersandotherindividualsinthevicinityoftheshipmentoftheirproximitytotheradioactivematerial,therebyfurtherminimizingexposuretoradiation.ActualUnit1shippingexperiencehasshownexternaldoseratesbelowthemaximumlevelsspecifiedbytheregulations.Radioactivematerialshippingcontainersandpackagingproceduresaredesignedtorestrictthereleaseofradioactivematerialtoaminimumunderthemostsevereaccidentconditions.Inaddition,themechanicalpropertiesofthereactorfuelandfuelassemblyreducetheconsequencesofanaccidentbytheirtendencytobindthefissionproductswithinthebasicfuelassembly.Ifaradioactivewasteshipmentwereinvolvedinanaccident,thereleaseofradioactivenuclideswouldbeminimizedbythe"solidified"natureofthematerialsandtheshippingcontainerintegrity.Anotherimportantconsiderationindiscussingthetransportationofradioactivematerialistheoutstandingsafetyrecordachievedbythenuclearshippingindustry.ComprehensiverecordsofshippingincidentsinvolvingradioactivematerialshavebeenmaintainedandreportedbytheAEC(AECU/3613,TID-16764includingSupplements1and2).Overthepast20years,therehavebeenveryfewincidents,mostofwhichresultedinlittleornoradioactivereleases.Itisanticipatedthatthesafetyrecordoffutureradioactivematerialshipmentswillequal,andprobablysurpass,thepresentsafetyrecord.ThisfuturerecordwillreflectthemorerigorousAECandDOTregulationssummarizedinSection3.6.Thecontinuingeffortsoffuelreprocessors,fuelsuppliers,andwastedisposalcontractorstorouteshipmentsbytheshortestand5.4-2 I,Cf'l04E'II 1quickestroutesandtominimizetherequirednumberofshipmentsreducetheprobabilityofshippingincidents.Insummary,whenallaspectsofshippingradioactivematerialareconsidered,itmustbeconcludedthatnoadverseenvironmentaleffectsresultfromthenormalshipmenttoandfromNineMilePointNuclearStation-Unit1.Itmustalsobeconcludedthatbecauseofpackagedesignonlyinsignificantenvironmentaleffectscouldresultfromashippingaccident.5.4.3NoiseEffectsThere"arenumeroussourcesofnoisewithintheNineMilePointstation,butthisnoiseisconfinedtothestructuresinteriorbythedouble-walledinsulatedsidingonthestation.Theonlynoisesignificantenoughtobeconsideredisthemainpowertransformers.Thissectiondiscussesnoisefromthetransformerandcomparesitwiththepresentbackgroundlevel.5.4.3.1PlantEnvironmentDayandnightambientsoundlevelsurveyswereconductedinthevicinityoftheplantin1971bythenoiseservicesgroupofBolt,BeranekandNewman,Inc.,Cambridge,Massachusetts.Figure5.4-1showsthelocationofeachofthemeasurementsites.Theentireareaisruralorsemirural,butwithsomeresidencesalongthecountryroads.TheambientoctavebandsoundlevelmeasurementsfromeachofthesitesareshowninFigure5.4-2Thesemeasurementsweretakenbetweenmidnightand2:00a.m.onacalm,clearmorningandrepresenttheminimumlevelsatthattime.TheNineMilePointUnit1Stationwasnotonline,buttheplantventilationfanswereoperating.Therewasalsoadieselenginerunningatlowspeed3,200feeteastofthesite.Thelevelsatsite1arehighestbecauseofthecloseproximityofthestationandminorconstructionnoise.ThestationandconstructionnoisewasfirstbarelyaudibleatmeasurementsitesNos.2,3,5,and6ofFigure5.4-1sothelevelsshowninFigure5.4-2areessentiallybackgroundlevels.Thepeakinthedataat4,000Hzisfromthechirpingofcricketswhichraisedtheambientmeasurementsapproximately10decibels,Ascale(dBA),Re0.0002microbaratsomeofthelocations.5.4.3.2PlantNoiseSourcesAsecondnoisesurveywasconductedinthevicinityofUnit1withUnit1inoperation.DetailedmeasurementsindicatedthatthemaintransformeristheonlysignificantnoisesourceandthatthemaximumUnit1transformernoiseexpectedatthepropertylineisasshowninTable5.4-1.ThetransformernoisefromUnit1isthuslessthanorequaltotheexistingambient5.4-3
C.APt'ONTAR'0i2pO,rpOgs!I!PROPERTYLINE!!I'K1IIBURTMINORROADUJILIhCNORTHBANKERROADFIGURE5.4-1SOUNDLEVELMEASUREMENTLOCATtONS
IL<<CLQOKOFNOOO0WKClKIIJUJhJMCOUJ0Cl'zDOCODtQUJI-OO6050403020IO031.563I25250600IOOO200040008000OCTAVEBANDCENTERFREQUENCIESINHZSITEISITE2SITE3SITE4SITE5SITE6FIGURE5.4-2SOUNDPRESSURELEVELS
levelafterit.hasbeencorrectedtocompensateforcricketnoise.Mostneighbors,however,actuallyreceivesignificantly.lessnoisebecauseofinterveningtreesandterrain.Table5.4-1ComparisonofAmbientandMaximumTransformerNoiseatMeasurementSitesforUnit1Decibels,AScale,Re0.0002SitesMeasuredambientCorrectedambientMaximumtransformer3829393828333723272926343722242228305.4.3.3Acoustical,ImpactThepeaktransformernoisefromthestationisequivalenttoorlessthanthebackgroundlevelat,themeasurementlocationsandthestationisusuallyinaudibleatthepropertyline.5.4.4MeasuresTakenToPreserveTheExistingEnvironmentOrEnhanceItsUseNiagaraMohawk'sProgressCentersharespartofthesitewestofUnit1andhasaveraged50,000visitorsayearsinceitofficiallyopenedin1967.Sightandsoundexhibitscombinerealisticsoundeffectsandaudio-visualtechniquestodemonstratethehistoricevolutionofenergyfromwaterwheelstonuclearpower.Theexhibitsincludeanexact-scalemodeloftheNineMilePointStation,thelargestsuchmodelintheU.S.,andexhibitsoflivegamefish.TheCenter'swallsarebuiltofstonefromoneoftheworld'srichestfossildepositsnearAlbanyandclearlyshowwell-preservedspecimensofmarinelifedatingback400millionyears,when'muchofNewYorkStatelaybeneathaninlandsea.Afullyequippedclassroomisavailableforvisitingschoolandcollegeclasses.AlongthebluffandwoodswestoftheCenterarenature-studytrails,andpicnicfacilitieswithasweepingviewofLakeOntario.Partofthesitewasestablishedasanaturalwildliferefugein1969bypostingthenorthwestcornerofthesite.Theremainderofthesite,includingtheshorelinesportfishingaccessarea,isopenforpublicuseexceptduringconstructionperiods.Offshoresportsfishermenarealsoundisturbed.5.4-4 S
5.4.5InteractionwithNeighboringNewYorkStatePowerAuthorityFacilitiesTheJamesA.FitzpatrickNuclearpowerplantownedbythePowerAuthorityoftheStateofNewYorkisbeingconstructedonlandimmediatelyadjacenttoNiagaraMohawk'scaste~propertyboundary.NiagaraMohawkpersonnelwilloperatetheFitzPatrickPlantundercontracttothePowerAuthority.Plantoperationisscheduledtobeginin1973.TheNiagaraMohawkUnitandthePowerAuthorityPlantarelocatedontwodistinct,butadjacentsites.Theywouldbeoperatedasacommonsite,multiple-unitstation.5.4.6DisposalofMiscellaneousSolidWasteSolidwaste,suchasfloatingdebrisandtrashcollectedonthecoolingwaterinlettrashracks,lunchroomwaste,officewastepaper,andmachineshopscraps,aretruckedoff-sitefordisposalataState-approvedwastedisposalsite.5.4.7ChangesinSiteLandandWaterUse5.4.7.1LandUseAsdescribedinSection2.1.1,NiagaraMohawkpurchasedthe1,600-acreNineMilePointsitein1963andlatersoldabout700acrestothePowerAuthorityoftheStateofNewYork.Themostrecentlandusehadbeenasanartilleryrangeuntil1957.Therewereonlyeightfarmhousesandafewsummercottagesandasmallrestaurantonthesite;thesewereremovedwhenNiagaraboughtthesite.Useofthesiteasanartilleryrangepreventeduseofthelakeshoreforotherpurposes.AsdescribedinSection2.2,theshorefronthasneverbeensuitableforyear-roundresidenceorforsummerhomes.Onlyabout5percent,or45acres,oftheremaining900acresareactuallyusedforpowergenerationortransmissionforUnit1,includingtheProgressCenter.Plansforuseofportionsofthesiteasawildliferefuge,andforeffectsonshorelineandoff-shoresportsfishing,arediscussedinSection5.4.4.5.4-5
5.4.7.2WaterUseTheonlywaterresourcewhichcanbeaffectedbyoperationofthestationisLakeOntario.ThelakeisborderedonthesouthandeastbyNewYorkStateandonthenorth,west,andsouthwestbytheProvinceofOntarioinCanadaTheoperationofthestationdoesnotaffectCanadianwatersorthewatersofotherstates.Therearenostreamsonthesite,andsincethegroundwatergradientslopestowardthelake,groundwaterusersarenotaffected.ThehydrologyofLakeOntarioisdescribedinSection2.5andbrieflysummarizedbelowAsshowninFigure2.5-1,LakeOntariowatertemperatureatthesurfacesometimesreaches77Fduringlatesummeranddropstoawinterminimumofslightlyabove32F.Thereisverylittlediurnalchangeinwatertemperature.Thelakeisstratifiedduringthesummerandearlyfall.Icecoverformsintheslackwaterbaysinwinter,butthelakeitselfisseldommorethan25percentcoveredwithice,whichisusuallyconcentratedintheeasternendofthelake.LakeOntario~soutflowriver,theSt.Lawrence,isice-coveredfromlateDecemberuntiltheendofMarch,allthewayfromthelaketotheInternationalBoundaryatMassena,NewYork.ThesupplytoLakeOntarioismadeupofabout85percentfromtheupperGreatLakesand15percentfromtheLakeOntarioBasin.Precipitationonthelakeexceedsevaporationbyabout6inchesannually:30inchesvs.24inches.Recordsdatingbackto1860indicatethatthelong-termaveragesupplytoLakeOntariofromtheupperGreatLakeshasbeenabout200,000cfs,andthattheaverageoutflowfromLakeOntariointotheSt.LawrenceRiverhasbeen240,000cfs.Unit1utilizesabout600cfs,ofwhichapproximately0.02cfsmightbeconsideredtorepresentconsumptiveuse,asdiscussedinSection3.4.Lakecurrentsintheareaaregenerallylessthan0.5fps.DominantcirculationpatternsareshowninFigure2.5-1.Currentsneartheshoreinthevicinityofthestationsitearegenerallyfromthewest.Thetidaleffectisminimalandismeasuredininchesonly.A1970reportbytheInternationalJointCommission,whichisresponsibleforsettlingquestionsinvolvinguseofboundarywatersbetweentheU.S.andCanadaforwaterpower,navigation,sanitation,andirrigation,notesthatthelakeisinastateofeutrophicationbetweenoligotrophicandmesotrophic.TheCommissionalsonotesthatthein-shorewatersaremoreeutrophicthantheoff-shorewatersduetotheshallowerdepthsandthefactthatmostnutrientinputsenteralongtheshores.5.4-6 I~V~iph LakeshorerecreationalareasareshownonStudyAreaMap(Figure2.2-3).ThenearestisSelkirkShoresStatePark,tenmileseastofthesite.ThenearestpublicwatersupplyintakeusinglakewaterisforthecityofOswegoandtheOnondagaCountyWaterDistrictandislocatedabout8mileswestofthesiteata40-footdepth,6,000feetoff-shore.Oneortwoorchards,5mileseastofthesite,uselakewaterforirrigation.TraveltimesforthedilutedstationdischargetotheOswegointakeandSelkirkShoresStateParkareshowninFigure5.4-3.DilutionfactorstotheOswegointakeandSelkirkShoresStateParkareshowninFigure5.4-4.ThetypeofdischargeusedforUnit1anditscloseproximitytotheirregularshorelinemaketheresultsofadeterminationofthefarfielddilutionfactorsextremelyquestionableusingpresentlyavailablemethods.Consequently,ajetdiffusertypedischarge,withdoubletheheatloadtoaccountfortheexistingboundary(shoreline)effects,wasusedfordilutionfactoranalysis.Thisanalysisisassumedtoberepresentativeofactualdilutionfactorsresultingfromstationoperation.Foracurrentof0.4footpersecond,thetraveltimesare29hourstotheOswegointakeand35hourstotheStatePark.Withthiscurrent,theunitdischargeisdilutedbyafactorofapproximately156bythetimesitreachestheOswegointakeandafactorof235bythetimeitreachestheStatePark.5.4.8EffectsofReleasedCombustionProductsOverallcombustionproductsreleasedfromthetwostandbydieselgeneratorsandonediesel-drivenfirepumpdiscussedinSection3.8areinsignificantbecausethisequipmentisnormallyoperatedonlyafewhoursamonthfortestpurposes.ConsequentlythesedischargesdonotaltertheairqualityoftheregionasestablishedbytheEnvironmentalProtectionAgencyandtheNewYorkStateDepartmentofEnvironmentalConservation.5.4-7 C
IOSELKIRKSHORESSTATEPARKOSWEGO/OCWDPUBLICWATERINTAKElO00.20.40.60.8I.OLAKECURRENTSPEED-FT.PERSEC,FIGURE5.4"3TRAVELTIMEVS.LAKECURRENT
XXOOOIKOI-OU.K0I-DOIOXRSELKIRKSHORESSTATEPARKOSWEGO/OCWDPUBLICWATERINTAKE000.2040.60.8I.OLAKECURRENTSPEED-FT.PERSEC.FIGURE5.4-4DILUTIONFACTORVS.LAKECURRENT
5.5ASSESSMENTOFENVIRONMENTALEFFECTSOFSTATIONOPERATIONEcologicalandaquaticsurveillancestudieshavebeenconductedalongthetwo-milestretchoftheNineMilePointpromontorysince1963toobtaindataregardingtheeffectsofheateddischargesuponthelakeecology.ThesestudiesarebeingcloselycoordinatedbetweenthePowerAuthorityoftheStateofNewYorkfortheJamesA.FitzPatrickNuclearPlantandNiagaraMohawkforNineMilePointUnit1.In,1970and1971,thestudiesprovidedpostoperationalinformationreflectingtheoperationandactualheatdischargedfromNineMilepointNuclearstation-Unit1.ThesestudiesarebeingconductedbyDr..JohnF.Storr,ConsultantinLimnologyandOceanographyandAssociateProfessorofBiologyatthe.StateUniversityofNewYorkatBuffalo.TheoriginalprogramofstudieswasplannedwiththecooperationoftheDepartmentofEnvironmentalConservation.Asthestudiesprogressed,variousrefinementsandextensionshavebeenadoptedtoprovideamorecompletedescriptionofthestudyarea.NiagaraMohawkwillcontinuetocooperatewiththeU.S.BureauofSportFisheriesandWildlifeandotherinterestedStateand-Federalagenciesonecologicalstudiesuntilithasdemonstratedconclusivelythatnosignificantadverseconditionsexist.Thefieldprogramhascoveredfishdistributionandfoodpreferencestudies,benthicstudiesincludingattachedalgaeandinvertebrates,nutrientdistributionstudies,andstudiesofplanktondistributionandentrainment.-ThevariousstudiesconductedaspartoftheNineMilePointsurveillanceprogramarelistedinAppendixF.Twelvenorth-southtransectsextendingoffshoreofthesitewereestablishedforsamplingpurposes(seeFigure5.5-1).Thetransectsfarthesteastandwestofthesite(E-9andW-3)arelocatedfarenoughfromthestationtomonitorconditionsoutside;ofitsinfluence.Samplingofaquaticorganismsisconducted,alongeachtransecttoprovidebaselineinformationwhichwillbe.usedasacomparisonwithstudiesconductedduringUnit2operation.55.1FishDistributionTwotypesoffishdistributionstudieswere-conductedfrom1968to1971todeterminethetotalnumber,locationandspeciesdistributionoffishatthesite:(1)fathometricsurveysand(2)fishnetting.Inadditiontothesestudies,aprogramwasinitiatedin1970todeterminethebasicfoodhabitsofthedominantfishspeciesinthevicinityoftheplant.Thesestud'iesareperformedfourtimesperyear,oneeachspringandfall,andtwoinsummer.5.5-1 lll/
LA/t'ONTA8'OWl)III)I)E2EIIIIIIIE3r-345<l<IE4IIIIE5E6ETIIPROPERTYLINEEdEtITOMEXICOSAYggl\NINEMILEPOINTNUCLEARSTATIONJAMESA.FITZPATRICKNUCLEARPOWERPLANTPROPERTYLAKEVIEWLINEAPPROXIMATELAKEDEPTHSDISTANCEFROMSHORE50400600900II003000DEPTH(BELOWL.W.DATUM)6I2182430600e001%N)SCALE-FEETFIGURE5.5-ILAKESAMPLINGTRANSECTSANDON-SITERADIOLOGICALMON)TORINGLOCATIONS 0f 5.5.1.1FathometricSurveysFathometricsurveysweremadeduringthedaytimealongallthetransectsusingafine-linerecordingecho-sounder.Tracingswerealsomadealongtwoofthetransectseveryfour,hoursduringa24-hourperiodtoobtainboththemaximumconcentrationandthediurnalpatternoffishmovement.Eachfishwasrecordedintermsofbothverticallocationandrelativesize.Interpretationofthetracingswasbasedonthefishnetstudiesandgeneralsizedistributionoffish.Theecho-soundingsurveydataindicatedthatfishweredistributedrandomlyintheareaduringthedaytimewithsomegeneraltendencyforthefishtoconcentratealongthe25-footdepthcontourorinslightlydeeperwater.Pocketsofconcentrationwerefoundatmanylocationsotherthanthe25-footcontourandattimessuchconcentrationscouldbeassociatedwithbottomstructuralfeatures.Z,argerconcentrationsoffishwererecordedinMayandJuneoverthe1969-71periodthanatanyothertimeintheyear.Alewivesandsmallforagefishweremostabundantatthistimeofyearandthealewiveswereactivelyspawninginthealgalgrowthonthebottom.Activefeedingonboththealewivesandalewifeeggsbyotherspeciesoffishoccurredatthistime.InJunethroughAugustof1969to1971,thenumbersoffishsharplydeclinedandveryfewwererecordedinOctober(1971datanotcompletelyanalyzed).Thisappearsto'etheresultofbothmovementoffshoreandlackofactivityasthefoodsupplydiminishesintheinshorewaters.The24-hourfathometricstudiesindicatedmajorfishconcentrationsinthe20-footdepthandbeyond,withmaximumconcentrationsbetweenthe30-to40-footdepthsdevelopinginthemiddleportionofthenightbetween10p.m.and3am.Fishconcentrationswerelowerandactivityreducedintheareaduringthedaylightperiod.Theecho-soundingtracesindicatedthatthepercentageoffishofasizelargerthanaboutsixinchesvariedconsiderably.InMay1970,onlyabouteightpercentofthefishcountedwerelargerthansixinches.Thisnumberincreasedtoover40percentinAugustanddeclinedagaintobelow30percentinOctober.Theaveragenumberoffishlargerthansixinchesforthefourstudiesmadein1970wasabout18percent.Anothermethodofcalculatingfishdistributionusingtheecho-sounderwasdevelopedin1970.Thismethodentailsmountingthetransduceroftheecho-sounderonasubmergedpolesothatscanningcanbedonehorizontallyaswellasvertically.Circularscansoutasfaras100feetweremadeinthearea.Althoughtheirregularnatureofthebottommakesinterpretationdifficult,thismethodgivesanaccuratecountoffishina.definedareaandisusefulinshallowerwaterof7to15feetforcomparativevalues.5.5-2
SurveysusingthistechniquewereconductedinJulyandAugust,1970and1971..Theresultsin1970showedagradualincreaseinnumbersoffishfromshallowwater(lessthan10feet)todeeperwater(morethan20feet)byafactorofabouttwo.DuringAugustintheareaoftheNineMilePointUnit1discharge,thenumberoffishintheshallowwaterwasslightlygreaterthanatthe15-footdepthcontour.5.5.1.2FishNettingThefishnettingprogramgenerallyconsistedofsamplingwithfiveexperimentalgillnetstodeterminethespeciesdistributionoffshorefromthesite.Onenetwassetonthebottomasclosetotheshoreaspractical;twonetsweresetatthe15-footdepthzonewithonenetsuspendedatthesurfaceandtheotherplacedonthebottom,andtwonetsweresimilarylocatedatthe30-footdepthzone.Netsweresetintheafternoonandremovedthenextmorningforfourtofiveconsecutivedays.Foreachnet,thefishwereidentified,countedbyspecies,andeachfishweighedandmeasured.(RefertoSection2forlistofspecies.)In1971,thenettingpxogramwaschangedand6netsarenowsetineach24-hourperiod.Fortwodaysnetsweresetatshoreandinthe15-footdepthclosetothelocationoftheNineMilePointandFitzPatrickdischargestructures,andfortwomoredaysatshoreandinthe30-footdepthsonbothtransects.Whiletheactualnetplacementsareunchanged,thenewprogramhasmadepossibleabettercomparisonbetweentheareas,sincesame-daycatchesarecomparedineachcase.Alewivesweretakeninthegreatestnumber,withyellowandwhiteperchnextinorderofoccurrence.Relativelyfewalewiveswerecaughtinthenetssetonthebottom,asthesefisharewiderangingandnormallystayfairlyclosetothe'lakesurface.In1969,thenumberofalewivescaughtinAugustwerefewcomparedtothosecaughtinJune.InAugust,thegreatestnumberswerefoundinthetopnetsfarthestfromshore,whileinJunethealewivestendedtobealongtheshore.Perchalongwithminnowswereprimarilytakenintheshorenets.ThereappearedtobesomereductioninthenumberofthosefishcaughtintheshorenetsinAugustascomparedtoJune.Exceptforalewives,veryfewfishwerefoundnearthesurface.Thefishnettingprogramin1970and1971indicatedsomechangesfromthestudiesin1968and1969.ThecatchesofalewivesinMay1970wereonly5to10percentofthenumbercaughtduringthesameperiodin1969.Comparablylownumbersremainedthroughout1970.Thesetrendsareprobablyattributabletothenaturalmortalityofalewivesthatoccurredovertheentirelakethroughoutthespringof1970.%herewasanincreaseofgizzardshadinthefallofthesameyear.Thereductionofthealewifepopulation,whichformspartofthefoodsupplyforlargerfish,alsoappearedtobringaboutalesseningoffishactivityinthe5.5-3
latterpartoftheyearandadispersalofthefishthroughoutthelake.Preliminaryresultsin1970and1971indicatethatthethermalplumefromNineMilePointUnit1tendstoattractcertainspeciesoffish,includingcarp,sunfish,smallmouthbassandalewives,duringthecoolermonths.Shenambienttemperaturesarehigh,thereappearstobenoattractionoffishtotheplumeandsomespecies,suchaswhiteperch,appeartoavoidwarmerportionsoftheplume.In1971,thenumberofsmallmouthbassobservedinthevicinityofthedischargeincreasedsignificantly.Observationsbydiversindicatethatsmallmouthbassmadeupasignificantportionofthefishpopulationover6inchesinlength.Theonlyfishwhichappearstospawnintheareaisthealewifematisconcentratedprimarilyinwaterlessthan10feetdeepandisessentiallyabsentbeyondthe20-footdepth.Hence,spawningtakesplacewellinshoreofthedischargeandnoeffectonthereproductivepotentialofthisspeciesisanticipated.5.5.1.3PoodPreferenceSurveysAprogramwasinitiatedin1970todeterminethefeedinghabitsofthemajorfishesintheareaandtoascertainanyrelationshipbetweenthesefishspeciesandtheirfoodsupplies.Theyellowperchwasselectedastheprimaryspeciesofinvestigationsinceitwasoneofthefewfishespresentintheareainsufficientlylargenumberstoobtainsignificantresultsonfeedingbehaviorthroughouttheyear.Otherspeciesoffishwerealsoexaminedduringthelatterpartoftheyear.Lengthfrequencydistributionsweretabulatedandthevariousfooditemsnotedforthedifferentsizegroups.Anumberofspeciesoforganismsareusedasforagebythefishpopulation.Thestudiesindicatethatsmallalewives,sculpins,dartersandalewifeeggsaretheprimaryfoodsourcesinthespringoftheyear.Astheseasonprogresses,thefreshwateramphipod.(Gammarus-sp)assumesgreaterimportanceinthefoodchainCrayfishappeartobeanimportantcomponentofthedietforsomefishspeciesintheautumn,suchassmallmouthbass.AsGammarusabundancedeclinesintheautumn,smallforagefishbecomeamajorfoodsource.5-5.2BenthicStudiesDuringAugustof1968,andJuneandAugustof1969,1970and1971,samplesofbottomorganismswerecollectedbydiversat5,10,15and20-footdepthsalongthesame12transectsusedforthefathometricfishcountstudies.Threesamplesofbenthicorganismswerescrapedfromrocksateachdepth.Inthelaboratory,eachsamplewasseparatedintoplantandanimal5.5-4
material.Plantmaterialwasdried,ashedandweighed..Animalspecieswereseparatedandcounted.wstructure(i.e.flatrocks)supportaheaviergrowthofthesealgaethanothersandtheplantisthereforeveryirregularlydistributedoverthebottom.Waveactivitytendstodiminishthebiomassinwater5feetdeeporless,anddecreasinglightpenetrationatthe15and20-footdepthsproducesacorrespondingdecreaseingrowth.At20feet,growthwassoshortandscatteredthatasamplelargeenoughforanalysiscouldseldombecollected.Generally,theheaviestgrowthisatthe10-footdepth.ByAugust,changesinlightandintemperaturereducedthealgalgrowthconsiderablyascomparedtoJune.Theamountofgrowthobservedatanytimewasnotheavy,butrathersparseandscattered,andtherockbottomwasvisibleatalltimes.In1970,thesurveyresultsindicatedthattheNineMilePointUnit1effluenttendedtoeliminatetheirregularitiesingrowthalongthepromontory.AlgalgrowthgenerallydeclinedmoresharplyinAugust,1970,ascomparedto1969.Intheareaimmediatelyinshoreofthethermaldischarge(400feetoffshore)algalgrowthinthe5-footdepthwasfoundtobesomewhat65F(Ref.16).Withnaturallaketemperaturesinthemid70'sandthewatertemperatureatshoresomewhatmoreelevatedbythethermaldischarge,thegrowthforadistanceofseveralhundredfeetalongtheshorewasbelowthatfoundelsewhere.Themajor15and20-footdepths,whichisbelowanyinfluenceofthethermaldischarge.SeveralfactorsusuallytendtoreducethealgalgrowthinAugust.ThelongfilamentsdevelopedinJunetendtobecomefragileandbreakoffbecausethelightpenetrateslessdeeplyinlatesummer.Also,therearefewer'oursofsunlightandwatertemperaturesareconsiderablyaboveoptimumforgrowth.closelywiththeearly1970survey.Thebiomassofalgaein1971,however,wasgenerallyhigheralongthesamplingtransectsthanpreviousyears.Totalbenthicanimalabundanceremainedaboutthesameduring1969and1970.Oftheanimalspresent,Gammaruswasfoundinabundant.Thegreatestconcentrationsappearatthe10-footdepthalongwiththemaximalalgalgrowth.ConsiderablymoreGammaruswerefoundduringtheAugustsurveysthaninJune.Snailsofthreespecieswerefoundonlyinsmallnumbers,tendingtoconcentrateatthe15-footdepth.Themidgeflylarvae~Tendisoccurredinanentirelyirregularpatternandwerelessabundantinlatesummer.5.5-5
Resultsoftheearlybenthicsurveyin1971indicatethatGammarusabundancewasgreatlyincreasedintheareaofthethermalplume.~Tendiesahundancewasalsohigherin1971thanpreviousyears;however,thenumberalsoincreasedonthetransectsoutsideoftheareaofinfluencefromthedischarge,suggestingthatthatincreasewasprobablyassociatedwithsomefactornotrelatedtotheoperationofUnit1.Themajoreffectofthethermaldischargeonthebenthos,therefore,istodepressalgalgrowthinlatesummer.Inaddition,thepopulationofGammarusappearstohaveincreasedinthezoneofthethermaldischarge.Thesearepreliminaryresults/whichwillhavetobeverifiedbycontinuingstudiesinordertobeconclusive.5.5.-3NutrientDistributionStudiesToassessthemagnitudeofapossiblechangeinthedistributionofnutrientsatthesiteduetoflowpatternsestablishedbythecoolingwaterflowoftheNineMilePointUnit1,surveysofthenutrientdistributionweremadeinAugust1969,andMay1970..AseriesofwatersampleswerecollectedoffshorefromtheFitzPatrickpowerplantinwaterdepthsof30and100feet.Atthe30-footdepthlocation,watersamplesweretakenfromthesurfaceandateach10-footdepthto30feet.Atthe100-footdepthlocation,watersamplesweretakenfromthesurfaceandat25-footintervalsto100feet.Thewatersampleswereanalyzedfornitrateandtotalphosphoruscontent.TheresultsoftheAugust1969,surveyindicatedthatatthe30-footdepthsamplingstation,theconcentrationofnutrientswasquitelowandfairlyuniformlydistributedindepth.Thesurfaceconcentrationofnitratewas0.275milligramperliter(mg/l)withconcentrationsat10to30feetvaryingbetween0.102and0.115mg.Somedecreaseinnitratewasevidentwithincreasingdepth.Theconcentrationoftotalphosphorusfromtoptobottomrangedfrom0.015to0.024mg/l.Atthe100-footdepthsamplingstation,theconcentrationoftotalnitratesintheupperwatercolumnwaslessthanattheshallowerstationandrangedfrom0.080mg/latthesurfaceto0.047mg/lat75feet.At100feettheconcentrationwashigher,risingto0.920mg/l.Thismaybeattributabletoareleaseofammoniafromdecayingorganismsinthebottomsediments.Concentrationsofphosphorusweresimilartothosefoundinshallowerwaterrangingfrom0.019to0.011mg/l.Thenutrientlevelsfoundduringthespring1970surveysweregenerallyhigherthanthosefortheprevioussummer.Atthe30-footdepthsamplingstation,surfaceandbottomnitrateconcentrationshadincreasedtwo-andsix-fold,respectively,overthefall1969values.Theconcentrationsofphosphoruswereslightlyhigherthanthoseofthepreviousfall,rangingfrom0.020to0.022mg/lfromsurfacetobottom.Thenitrate5.5-6
concentrationatthe100-footdepthsamplingstationrangedfrom0.60-0.89mg/1fromsurfacetobottom.'Phosphorusconcentrationsat100feetwereslightlyhigherthanthefallsamplingperiod.Theincreaseinnutrientconcentrationsinspringistobeexpectedfollowingbreakdownofthethermoclineinlatefall.Xngeneral,theconcentrationsofnitratesandphosphatesarelowandevenlydistributedoffshorefromthesite.Therefore,flowpatternsinducedbypumpingfromthe30-footdepthzoneshouldhavenoeffectontheredistributionofnutrientsinthisregion.Dissolvedoxygenmeasurementshavebeenmadeinthedischargeareaduringthefishnettingsurvey.Asthesummerprogresses,oxygensothatevenduringthewarmestperiodoftheyearlevelsofdissolvedoxygenof11to12ppmarenotuncommon,with'odiminutionatnight.NosignificantlossinoxygenhasbeenobservedbetweentheintakeanddischargeofUnit1.5.5.4PlanktonDistributionandEntrainmentApreliminarysamplingprogramwasconductedfromearlyJunetolateOctober1964.Planktonsampleswerecollectedatthreelocationsdirectlyoffshore(500feetout-30feetdeep;7,500feetout100feetdeep;and10,000feetout-200feetdeep)fromthesiteandweregenerallydominatedby~Co)~eoda-andCladoceraPreliminaryresultsindicatedthatpopulationsdrifttowardshorewithonshorewindsandbecomelessabundantnearshorewithoffshorewindsandcurrents.Thepatternofmovementwillbeaffectedbytheoperationoftheplants,becausetheintakeswilldrawinwaterradially,whilethedischargewillmaintainasteadyoffshoremovement.Itisanticipatedthatsincemorebottomwaterthansurfacewaterwillbedrawntowardshoreandintotheintake,fewerplanktonwillbeentrainedthanwouldnormallybeexpected,sincestudiesindicatedhigherplanktonconcentrationsinthesurfacewaters.Veryfewfishlarvaeweretakeninthe1964planktonstudy.Itisnotanticipatedthatmanyfishlarvaewillbeentrained,withthepossibleexceptionofsomealewivelarvae.AdditionalplanktonstudieswereconductedatNineMilePointUnit1fromspringthroughautumn1971toassesstheeffectsofstationoperationonplanktonpassingthroughthecirculatingwatersystem.Waterfromtheintakeanddischargelineswassampledinthescreenhouseandthepercentmortalityofplanktonicorganismsdeterminedforvariousgroupsofzooplanktonandmotilephytoplankton.Samplesofplanktonfromthedischargewerealsoheldfor6to24hourstodeterminethetime-temperaturerelationshiponplanktonmortality..Therotifersgenerallydominatedtheplanktoncommunityduringtheseinvestigations.5.5-7
'L Resultsofthestudieswerevariable,dependingontimeoftheyear,waveconditions,temperaturerise,anddurationofexposuretotheelevatedtemperatures.Thepreliminaryresultsofthisstudy,however,indicatethattheoveralllevelofmortalityofplanktonpassingthroughtheplantisconservativelyestimatedtobebetween10and30percent.5.5.5Three-DimensionalThermalSurveysThree-dimensionalthermalsurveyswereconductedbyDr.JohnF.StorrinconjunctionwithhisecologicalstudiesinLakeOntario.(RefertoSection5.5).Thesesurveysconsistedoftowingalineoffoursubmergedthermistorsalongpreselectedcourses.Temperaturesweremeasuredatdepthsof0.3,3.7,7.1and10.5feetalongthesame12transectswhichwereusedintheecologicalsurveys.Temperaturemeasurementrunswerealsomadeonindividualpassesoverthedischargestructure.Atotalof12thermalstudiesaslistedinAppendixF,weremadein1970and1971.In1970,fourthree-dimensionalthermalstudieswereconductedinmid-Julyafterthestationwasreturnedtoanon-lineconditionafterashutdownformaintenance.In1971,eightstudieswereconductedbeginningonJune19andcontinuingtoNovember16.Thesetemperaturemeasurementswerecombinedtoformcontourplotsoflaketemperaturesatvariousdepths.Areaswerefairlywelldefinedintermsofphysicaldimensionsinwhichthethermaleffectscouldbeevaluated.Theresultsofthesesurveysandthe,environmentaleffectsarediscussedinSection5.1.5.5.6FutureField,Laboratory,andMonitoringProgramsTheenvironmentalstudydatathathasbeencollectedandevaluatedtodatedemonstratesthattheenvironmentalimpactofNineMileUnit1operationhasbeeninsignificant.Futureprogramswillcontinueeffortsintheareatocorroboratetheinformationpreviouslygatheredandtogainfurtherknowledge.Specificstudiesplannedfor1972arediscussedinthesectionsthatfollow;theseprogramsmaybemodifiedasinformationisobtained.5.5.6.1EffectsofEntrainmentonFishEggsandLarvaeThepurposeofthesestudiesistodeterminetheamountoffisheggsandlarvaethatentertheintakeandthemortalityrateoftheseorganismsattributedtotheirpassagethroughthestation'scirculatingwatersystem.Inaddition,themortalityrateresultingfrompassagethroughthesystemwouldberelatedtotheavailablepopulationinthelake.Thefirstobjectivewillbeaccomplishedbydetailedfieldandlaboratoryexperiments,whilethesecondwillrequiretheuseofmathematicalmodelsandstatisticalanalysis.5.5-8 4
Oneofthemajordifficultieswithentrainmentstudiesisdevisingasamplingprocedurethatwillnotcauseasignificantmortalityoftheorganismsbeingcollected.Unlessthemortalityduetosamplingiskepttoaminimum,itmaynotbepossibletoassociateanystatisticalconfidencetotheestimatedmortalityratesoftheeggsandlarvae.Collectionmethodsforfishlarvaehavebeendevelopedoverthepastfewyearsthatdoensureasatisfactorysamplingerror;however,thesetechniquesmustbeinvestigatedtodeterminetheirapplicabilityattheNineMilePointStation.FisheggsandlarvaewillbecollectedattheintakeanddischargeofNineMileUnit1andinLakeOntariooffshoreofthesite.Differentialmortalityratesbetweenintakeanddischargewillbedeterminedand,ifsignificant,anattemptwillbemadetodeterminewhetherdamagetotheseorganismsresultsfromthermal,mechanicalorpressurestress.Aprogramofdetailedobservationwillbeconductedduring1972tomeasurefishcollectedontrashracksandtravellingscreens.5.5.6.2FishPopulationStudyFishsurveyswillbeconductedatthesitefromAprilthroughNovemberat1-monthintervals,resultinginatotalofeightsurveysduringtheyear.Fishwillbecollectedbytrawlingalongtransectsinthelake.Trawlswillbemadeoffshoreofthesiteandwestofthesite.Thewesttrawlwillbeusedasacontrol,i.e.,thistransectwillbelocatedatapointwherethedischargedoesnotsignificantlyaffectthelakeambienttemperature.Thus,theconditionandrelativeabundanceoffishalongthecontroltransectcanbecomparedwiththefishinthepresence'fthethermaldischargeinordertodeterminewhethertheplantdischargehasanysignificanteffectsonthefish.Fishtrawlswillbemadeatthesurfaceandnearthebottomofeachtransectduringthemorning,mid-afternoon,andevening.Fathometricfishtraceswillbemadealongeachtransect,simultaneouslywiththetrawlrun,inordertodetermineareasofunusualfishconcentrations.Fieldanalysisofthefishwillincludetaxonomicidentificationandlength,andweightanalysis.Asubsampleofthefishfromeachsurveywillbepreservedforfoodpreference,fecundityandageclassification.Length-weightrelationships,age,specificreproductiveratesandfoodpreferencecanbederivedfromtheabovedatabase.Differencesamongvariousregionsandamoungsubsequentyearsdatawillprovideabasisforevaluatingecologicalimpactsofthestation~sdischarge.Changesingrowthrates,reproductive5.5-9 II rates,etc.,canbeusedasanindicatorofstressonfishpopulations.5.5.6.3BenthosandCladophoraSurveyPrevious'fishsurveysatotherLakeOntariositesindicatethatcrayfishappeartobeasignificantfoodsourceforthefishinthearea.Therefore,apopulationestimatewillbemadebasedondiveroperationsorcatchperunitefforttechniques.Thecrayfishinvestigationwouldbeconductedwitheachfishtrawlingsurvey.Inadditiontothecrayfish,theotherbenthicorganismswouldbesampledthreetimesduringanyoneyear.Sampleswillbecollectedbydiversatvariousdepthsalongthesametransectsusedforthefishsurveys.Thesampleswillbepreservedandsenttoalaboratorywheretheywillbesorted,identifiedandanalyzed.Simultaneouslywiththebenthicsurveys,qualifieddiverswillsite.Sampleswillbecollectedinordertomeasurethegrowthofthisalgawithdepth.5.5.6.4physical-ChemicalAnalysisWatersampleswillbecollectedandanalyzedattwostationsinthedischargestructureareaatthelakesurfaceandbottominordertodeterminevariabilityofwaterqualitywithdepth.WatersampleswillalsobecollectedinthescreenwellareafromtheintakeanddischargeofUnit1andfromthesanitarywastetreatmentfacilityeffluentoutfall.Thesampleswillbeanalyzedinalaboratorytodeterminebiochemicaloxygendemand(BOD),chemicaloxygendemand(COD),totalnitrogen,totalphosphrous,nitrates,ammonia,solids,phenols,sulfates,chlorides,andtracemetals(chromiumandzinc).Dissolvedoxygen,temperatureandpHmeasurementswillbemadeinthefield.5.5.6.5MeteorologyMeteorologicaldatawascollectedatNineMilePointduring1963-64insufficientguantityanddetailtopermittheevaluationofUnit1environmentalimpact.Additionalmeteorologicaldatawillbecollectedforatleastonemoreyear.A204-footmeteorologicaltowerisinuseatthesiteandisinstrumentedformeasurementofwindvelocityanddirection,anddrybulbanddewpointtemperaturesatthe30-,100-,,and200-footlevels.Additionaldrybulbanddewpointtemperaturemeasurementswillbemadeatthe248-and340-.footlevelsontheUnit1stack.Precipitationwillalsobemeasuredatthesiteandcorrelatedtowinddirectionandvelocity.5.5-10
5.5.6.6RadiationEnvironmentTheprogramofradiologicalsamplingandmonitoringdiscussedinSection2.8hasbeenexpandedtoaddfourmonitoringstations(toatotalof15)andincreasethesurveillanceareatomonitortheoperationoftheJamesA.FitzPatrickPowerPlantscheduledforstartupin1973aswellasNineMilePointUnit1.5.5-11 y,4 SECTION6ENVIRONMENTALEFFECTSOFACCIDENTS6~1SCOPEThissectionconsiderstheradiologicalenvironmentalrisksduetoabnormaltransientsandpostulatedaccidentsasrequiredby10CFRPart50,AppendixD,(Ref.39),andasdirectedbytherecentlyissuedSupplement(Ref.40)tothedraftAECguideforthepreparationofenvircnmentalreports(Ref.41),hereinreferredtoastheguide.Thisinformationispresentedinthefollowingmanner:a.Adescription,andinterpretationoftheprobabilisticconsiderationsoftheradiologicaleffects.b.AnexaminationofcharacteristicsofthestationwithrespecttothesuggestedAEC-environmentalreporteventclassification.c.AdeterminationoftheradiologicaleffectsandtheirsignificanceforeachAECclassificationcategoryasitappliestoaboilingwaterreactor(BWR).andd.Anevaluationofenvironmentalimpactsoftheradiologicaleffects.DatasupportingmeterologicaldiffusioncalculationsandradiologicaldosecalculationsareincludedasExhibitsAandBinAppendixI.Asummaryofradiationexposurefromnaturalbackgroundandman-madesourcesofradiationispresentedinSection6.9.6.1.1ProbabilityinPerspectiveConsiderationoftheyearlyprobabilitiesofabnormalconditionsis,ofcourse,entirelynecessarytoanassessmentofenvironmentalriskforthecbviousreasonthatsuchconditionsarenotexpectedtooccurasoftenasonceayearorevenonceinaunitlifetime.Comparisonofaccidentexposureswiththeman-'remsperyearfullyexpectedfromnaturalsourcesandnormaloperationoftheunitrequiresthattheformerbeweightedbytheirannualfrequenciesinordertopredictanaverageannualeffect.Itwillbenoted,however,thattheanalyseshaveconcentratedprincipallyonpredictionofpopulationexposuresgiventhe.occurrenceoftheaccident;probabilities.ofoccurrenceofeachincidenthavebeencalculatedandgroupedintobroadcategoriesexplainedbelow,butnoattempthasbeenmadetocalculate6.1-1
~,
man-remsperyearforeachclassnortosumthesefigurestoaunittotal.Thereasonforthistreatmentistwo-fold:(1)It,emphasizesthefactthatradiologicalexposuresduetotheaccidentsare,infact,acceptablylowinthemselves,withoutadditionallycomplicatingtheissuewithprobabilities;(2)The"classes~~ofaccidentstendtobelesshomogeneousintheirprobabilitiesthanintheirreleases;thus,toproposeatoo-significantfigureprobabilityas"typical"ofaclasswouldbenotonlyinaccuratebutmisleadingaswell.6.1.2ProbabilityCategoriesToalleviatetheproblemofinhomogeneitymentionedabove,theprobabilityofoccurrenceofeach<<class~~ofaccidentsandincidentshasbeenplacedinabroadprobabilitycategoryabouttwodecadeswide.ThesystemchosenforthiscategorizationisderivedfromSectionIIIoftheASMEBoilerandPressureVesselCode(Ref.42).TheseclassesareusedbytheGeneralElectricCompanyindesignsafetyanalysesandhaveappearedinsafetyanalysisreportsforseveralstations.Abriefdescriptionofeachclassisgivenbelow.Ineachcase,Prepresentstheexpectedfrequencyofoccurrenceperreactoryear.6.1.2.1NormalCondition(P=1)Anormalconditionisanyplannedandscheduledeventthatistheresultofdeliberateunitoperationaccordingtoprescribedprocedures.6.1.2.2UpsetConditions(1>P>2.5x10-~)Anupsetconditionisadeviationfromnormalconditionsthathasamoderateprobabilityofoccurringduringa40-yearunitlifetime.Theseconditionstypicallydonotprecludesubsequentunitoperation.6.1.2.3EmergencyCondition(2.5x10->>P>2.5x10-~)Anemergencyconditionisadeviationfromnormalunitoperationthathasalowprobabilityofoccurringduringa40-yearunitlifetime.Emergencyconditioneventsaretypifiedbytransientscausedbyamultiple-valveblowdownofthereactorvesselorapiperuptureofanauxiliarysystem.6.1.2.4FaultCondition(2.5x10-~>P>2.5x10-8)Afaultconditionisadeviationfromnormalconditionsthathasanextremelylowprobabilityofoccurringduringa40-yearunitlifetime.Thesepostulatedeventsincludebutarenotlimited6.1-2
,H'4 to,themostdrasticthatmustbedesignedagainst(thelimitingdesignbasis).6.1.3BasisfarProbabilityEstimationTheoccurrencesdescribedinthisanalysisareofsuchanaturethattheirfrequenciescannotbederivedfromhistoricaldata.Asaresult,probabilitiesonmosteventsmustbeinferredfromknowledgeofotherevents.'IThebroadclassificationofprobabilityrangesandtheassignmentofeacheventtoacategorydoesquantifythebestthatisknownabouttherelativefrequencyofoccurrenceofmanyeventsandisinformativeandusefulonacomparativebasis.Following10CFRPart50,AppendixDAnnex(Ref.40)guidanceoftheninedifferentaccidentclasses,twoarenotcoveredhere.TheyareClass1,normaloperationtrivialaccidents,andClass9,hypotheticalsequenceoffailuresmoreseverethanwhatisassumed~forClass8accidentsandsufficientlyremoteinprobabilitythattheenvironmentalriskisextremelylow.6.1.4TransientandAccidentOccurrencesintheReactorFacilityThissectionfollowstheguidewhichpointsoutthatitisnotpracticaltoconsiderallpossibleaccidents,soaspectrumofaccidentsissuggestedwhicharedividedintoclasses.Eachclassischaracterizedbyanoccurrencerateandasetofconsequences.Assuggestedbytheguide,typicaloraveragecharacteristicsforeachclassareused.ThecalculationmethodsandassumptionsutilizedinthisreportutilizetheavailabletechnicalinformationandanalyticaltechniquesthatareappropriateforaBWRstation.Insomeinstances,suchasmeteorology,thedetailedassumptionsdifferfromtheDecember1,1971annexto10CFRPart50,AppendixD,sincemoresuitabledataareavailableforassessingonarealisticbasis,theenvironmentalimpactofthevariouseventsinClasses2through8.Thenatureoftheoccurrence,theoperatingconditionsatthetimeoftheoccurrence,andajustificationofitsuseastypicalofitsclassispresented.Afewclassesencompasseventsofsuchwidelydifferentconsequencesandfrequenciesofoccurrencethattwoormoreeventsarestudied,nosingleonebeingqualifiedtobecalledtrulytypicaloftheentireclass.Inparticular,eachofthedesignbasisaccidentsdescribedinthePreliminarySafetyAnalysesReportistreatedindividuallybothinClasses6and8.Subsequentpartsofthissectionwilldescribethesourceanddosecalculationtechniques,theresultingpopulationexposuresexpressedinman-rem,andastatementoftheprobabilitywithwhichtheparticulareventcouldoccur.6.1-3 4l,11I Theexposureswerecomputedforthepopulationto50milesasextractedfromthe1970census,andextrapolatedtotheyear2000..Furthermore,theexposurecalculationsarebasedonacoolantradioactivityinventoryconsistentwithanoffgasactivityflowrateof50,000gCi/secaftera30minutedelay.61-4 il8 62CLASS2-MISCELLANEOUSSMALLRELEASESOUTSIDECONTAINMENT62.1EventIdentificationAvarietyofleakagepaths,andhencetypeofleaks,couldexistinanoperatingunit.Suchreleasesarevariableandcouldrangefromtrivialleakstoasteamorwaterleakofseveralgpm.Forthissectionacontinuous7gpmleaklocatedintheupperturbinebuildingfloorhasbeenassumedtogetherwithareactorcoolantinventoryconsistentwitha30-minuteold50,000uCi/secoff~asreleaserate.Sincethisclassofeventsmustoccurwithintheturbinebuildingtheymustmanifestthemselveseitherinthebuildingdrains(inwhichcasenoreleasetotheenvironmentoccurs)orinthebuildingventilation.Thischaracterizationoftheclassofeventsissimplystatedintermsofbuildingventilationcontent.Thereleasetotheenvironmentoccursfromthemainstack.6.2.2CalculationofSourcesandDosesAleakrateof7gpmanda10percentiodinereleasetotheenvironswouldresultinanenvironmentalreleaserateof0.013uCi/secofI-131forthisunitaftercondensation-plateout,withcorrespondingreleasesofI-132toI-135.Duetothelimitedmobilityoftheparticulatefissionproducts,theseproductsexistinlesserquantitiesineffluentsandsotheircontributiontotheoverallenvironmentaleffectsisnegligibleandthereforeneglectedinthisanalysis.Dependingonthetypeofleak(i.e.,steamorliquid),thepotentialfornoblegasreleasemayormaynotexist.Iftheleakwerebetweenthemainsteamlineisolationvalveandmainsteamturbine,onecouldexpectareleaseofnoblegasactivity;whereasiftheleakwereliquid,duetotherelativeinsolubilityofnoblegasesinwater,onewouldexpectnogaseouscontributionfromthissource.Fortheiodineactivitytheenvironmentaleffectsweredeterminedbycomparingtheaverageannualconcentrationsatvariousradialdistancesin16sectors(22.5degreespersector)totheMaximumPermissibleConcentrationinAir(MPCA)assetforthin10CFRPart20AppendixB,TableII,column2.SeeExhibitAofAppendixIforthemathematicalmodelwhichwasusedinthecalculations.6.2.3RadiologicalResultsAsshowninTable6.2-1thecumulative50-milethyroidexposureis8.9thyroidman-rem.Forthepurposeofthisevaluationthethyroidexposureiscomparedonthesamelevelasthewholebodyexposures.AsillustratedinTable6.2-1,evenusingthisconservativeapproachthecumulativethyroidman-remexposuresareordersofmagnitudebelowthewholebodyexposuresreceivedfromnormalbackground.6.2-1
Thewholebodyexposureforthiseventis5to6ordersofmagnitudebelownormalbackground.Itcan,therefore,beconcludedthattheenvironmentaleffectsfromasmallleakexternaltotheprimarycontainmentareofnoimportancewithrespecttothegeneralpopulationexposure.6.2.4EventProbabilityConsiderationsExperiencewithmechanicalequipmentshowsthatsmall,sometimesevenundetectable,steamleaksdooccurfromtimetotime.Thus,thisclassisjudgedtofallintothe<<upset"category.6.2-2 tA Table6.2-1SummaryofPopulationExposurefromNaturalandMan-MadeBackgroundComparedwithNuclearRadiologicalEffectsCumulativeWhole-BodyMan-Rem<<>~~~Versus~DistanceIntegratedAnnularDistance,MilesPopulation,Thousands(year2000RadiationBackgroundNaturalMan-MadePostulatedAccidentsandOccurrencesClass2Class3Liquid<<>GaseousClass4Class5Class6RefuelingCaskDropCI,ass7Class8LOCASLBACRDALSTAC2>OGSA10203040505052.3133.93159901424142400470.0620.06700720.074890-025Negl.NANA0.058Negl.Negl.Negl.Negl.Negl.Negl.0.011NA0.011NANA0.12Neg1.Neg1.Negl.Negl.Neg1.NA0.018NA0.012NANA0.18Negl.Negl.Negl.Negl.Negl.NA0.021NA0.013NANA0.31Neg1.Negl.0.012Negl..Negl..NA0.027NA0013NANA0.36Negl.Negl.0014Negl.Negl.NA0.029Negl.0053Negl.NANegl.Negl.Negl.Negl.5.0NeglNegl.Negl.7,32018,80044,100139,000199,000(199,000)5,23013~39031,50099,000142~400(142~400)<<~Man-rem/yearforradiationbackground;man-rem/eventforpostulatedaccidentsandoccurrences<<>>PopulationaffectedisthatpopulationdrinkingwaterobtainedfromLakeOntariointheyear2000(about930,000people)NOTE;"NA'~meansnotapplicable;<<Negl.~~meansnegligible,i.e.,lessthan0.01man-rem6.2-3
6'CLASS3RADWASTESYSTEMFAXLURESpincethemechanismsleadingtosignificantaccidentaldischargesofliquidandgaseousradwastearedifferent,twoeventswereselectedtorepresentthisclass.6.3.1LiquidRadwasteAradwastetankcontainingaconcentrationof0.002uCi/ccisassumedinadvertentlypumpedtothedischarge.tunnelatapumpingrateof170gpmfor20minutes,atwhichtimetheerrorisdetectedandthesituationcorrected.Thisoccurrencecouldarisethroughanyofthreesingleoperatorerrors:(1)theoperatorcommencespumpingwithouttakingabatchsample,aproceduralerror;(2)abatchsampleisincorrectlyanalyzedortheresultsoftheanalysisareincorrectlycommunicatedtotheoperator:or(3)theoperator,havingbeennotifiedofanacceptablebatchsample,pumpsthewrongtankbymistake.Thisaccidenthasbeenselectedastypicalofitsclassprincipallyonthebasisofitsprobabilityofoccurrence..Sinceradwasteequipmentismanuallyoperated,itisnottypicallysubjecttooperationaltransientswheremalfunctionscouldleadtoinadvertantreleaseofsystemcontents.Thechanceandconsequencesofhumanerroroverwhelmsthatofmechanicalfailure.6.3.1.1CalculationofSourcesandDosesTheradiologicaleffectsforthiseventarebasedontheassumption'hat.theradwastetankisinadvertentlypumpeddirectlytothecirculatingwaterdischarge.Annualaveragedischargeflowratesandthemostunfavorableshort-termlakedilutionfactorareused.ConsideringthenearestpointofpublicwatersupplyfortheCityofOswego-OnondagaCountyWaterDistrict(OCWD),whoseintakeislocatedabout6,000feetoutandSOfeetbelowthelakesurface,andacumulativereductionfactorof10fortheeffectsoffissionproductdecay,settling,andwatertreatmentpl'antfiltration,theresultantradiologicalexposuresareaspresentedinTable6.2-1.Additionally,theprevailinglakecurrentsflowfromtheOCWDintaketowardtheunit'sdischarge.Thedrinkingwaterpopulationwithinthisareaisassumedtogrowtoabout930,000bytheyear2000.6.3.1.2RadiologicalResultsTheradiologicalexposuresresultingfromthiseventarepresentedinTable6.2-1.AsshowninTable6.2-1,theseexposuresarenegligibleincomparison'tothoseexistingeffectsfromnormalbackground.6.3-1 OI'l~gIE'1rIIA%'~
6.3.1.3EventProbabilityConsiderationsRecentdataonoperatorerrorsofthetypespostulatedfortheliquidradwasterelease(Ref.43)suggesttheassignmentofthe<<emergency<<categoryofprobabilityasdefinedin6.1.2.3above..6.3.2GaseousRadwasteExaminationoftheequipmentcontainedintheoffgassystemrevealsthattheonlysourceofpotentialrelease,otherthanthenormaleffluentpath,isviathedrainlines.Drainlinesfortheremovalofcondensedsteamarelocatedincloseproximitytotheinletandoutletoftheholduppipeandnormallyhaveawatersealtopreventgaseousleakage.6.3.2.1CalculationofSourcesandDosesForthisevent,itisassumedthatthewatersealtotheinletdrainlineislostanda2-minute-oldgaseousdiffusionmixtureisavailableforrelease.Consideringthediametersofthedrainlineandtheholduppipeandassumingthattheflowinthedrainlineisproportionaltothearearatios,approximately0.2percentofthe2-minute-oldmixisreleasedviathedrainline.Sincegaseouseffluentsfromthedrainlinearenotpositivelycontainedinanystoragetanks,thegaseouseffluentisreleasedtotheenvironmentfromthemainstack.Itisassumedthattheoffgasactivityflowrateis50,000uCi/secdiffusionmixasmeasuredat30minuteswhichisapproximatelyequalto212,000uCi/secat2minutes.6.3.2.2RadiologicalResultsConsideringthat0.2percentoftheoffgasactivityflowratemeasuredattwominutes,i.e.,424uCi/sec,isreleasedtotheenvironmentunderthesameenvironmentalconditionsasthenormalstackeffluent,theresultantoff-siteexposureisaveryinsignificantincreaseintheexposuresreceivedfromthemainstackeffluentundernormalnon-accidentconditions.Inadditiontothe424uCi/secoffissionproductgases,approximately13uCi/secofN-13,1.4uCi/secofN-16,and118uCi/secof0-19willbereleasedtotheenvironment.Considerati'onoftheenergyspectrum,abundance,andtransporttimetoanyreceptoroffsite,resultsintheconclusionthatthesesourcesareminor.Whiletheradiologicalexposuresforthiseventarebasedona15dayreleaseperiod,whenconsiderationisgiventotherelativelysmallamountoftimethatthisconditionwouldprobablyexistbeforebeingdetected,theactualdoseeffectswillbeevenlowerthanthosepresentedinTable6.2-1.6.3.2.3EventProbabilityConsiderationsAnassignmentofthe<<emergency<<categoryofprobabilityasdefinedin6.1.2.3aboveisgivenforthisevent.6.3-2 t,~PV'I 6.4CLASS4-EVENTSTHATRELEASEACTIVITYINTOPRIMARYSYSTEMEventswhichleadtoreleaseofradioactivematerial(activity)intotheprimarysystemmustbeassociatedwithfuelcladdingdefectsorperforationswhichinturnpermitsescapeoftheactivity.Claddingdefectsorperforationscanoccurasarandomdefectduetomanufactureorasaresultoftransitorystresswhichexceedsthecladdingmaterialmechanicalproperties.Thefuelcladdingisdesignedtoeliminaterandomdefects;however,thepossibilityofdefectsisconsideredundernormalfacilityoperations.Unitdesignbases,asdescribedintheSafetyAnalysisReport,includetherecyxirementthatanyanticipatedtransienteventconcomitantwithasingleequipmentmalfunctionorsingleoperatorerrormustnotresultinaminimumcriticalheatfluxratiolessthan1.0foranynormalunitoperatingmode.Sincethedesignbasescorrelation(Ref.44)usedindeterminationofthecriticalheatfluxisconservativelyselectedwithalargemarginbetweenpredictedandobservedcriticalheatflux;fuelwhichexperiencesaminimumcriticalheatfluxratioof1.0isnot,likelytohavecladdingfailure.Unitdesignassuresthatsucheventsdonotreleaseactivityintotheprimarysystem.Thus,therearenoeventsidentifiedintheSafetyAnalysisReportwhichfitintoClass4.64-1 I
65CLASS5-EVENTSTHATRELEASEACTIVITYINTOSECONDARY,SYSTEMInthedirect-cycleBWR,~~SecondarySystem~~isinterpretedtomeanthesecondarysidesofheatexchangerswhoseprimarysides'ontainprimarysystemcoolant:inparticular,themaincondensershellandtheservicewatersideofthe.residualheatremovalheatexchangers.Themaincondenserisprotectedagainstoutleakageduringunitoperationbynormalvacuum.Theresidualheatremovalexchangers;with.thesystemoperatingintheshutdownmode,isprotectedagainstoutleakagebya20psigservicewaterpressuredifferential.Eitherofthetwoservicewaterpumpsiscapableofdeliveringthefulldifferentialpressureindependentlyoftheother.Differentialpressureslessthan15psigarealarmedinthecontxolroom,asareabnormalsignalsfromradiationmonitorsonthesecondarysystemdischargelineandinthedischargecanal.Theunit'sstandbydieselgeneratorspowertheservicewaterpumpsintheeventoflossofoff-sitepower.Failureofonedieselgeneratorwouldnotonlydisabletheservicewaterpumps,butwouldalsodisabletheresidualheatremovalpumponthatloop,therebypreventingoutleakage.DuetothepreventionofoutleakageitisconcludedthattherearenoeventsidentifiedinClass5whichareapplicableforthisunit.65-1 I
66CLASS6.-REFUELINGACCIDENTSINSIDESECONDARYCONTAINMENTRefuelingaccidentsareoftwoessentialtypes:droppingaheavyobjectontothecoreanddroppingaspentfuelcask.Theseeventswillbetreatedinthissection.6.6.1HeavyObjectDroppedOntoCoreTheaccident.chosenastypicalofthiscategoryisthedesignbasisrefuelingaccident,whereinanequipmentfailureallowsafuelbundletodropontothecorefromthemaximumpermissibleheight,resultinginperforationofamaximumof49rods.Thiseventischosenbecausethefuelassemblyistheonlyheavyobjectwhichisroutinelysuspendedoverthecoreand,ifdropped,couldcausedamagetothecore.6.6.1.1CalculationofSourcesandDosesTheenvironmentalconsequencesofthisaccidentaredependentuponmanyinterrelatedparameters,suchas:.decaytimebetweenshutdownandfueltransfer,numberofrodsexperiencingdamagesufficienttoreleasestoredactivity,typeandquantityofactivityreleased,safetysystems(passiveandactive)inoperation,meteorologicalconditionsexistingduringthesubsequentreleaseperiod,andthelike.Theassociatedvaluesassumedapplicablefortheaboveparametersare,definedasfollows:1.Decaytime-4daysbetweenshutdownandcommencementoffueltransfer2.Rodsexperiencingfueldamage-493.Safetysystems4a..Passive-Waterintherefuelingcavity,plateout.inthe'secondarycontainment,andthesecondarycontainmentasaneffectiveholdupbarrier.b.Active-EmergencyVentilationSystem(initiatedonhighradiation)Parametricvaluesapplicabletoabovesafetysystems:a.Water-PartitionFactorof10+(Ref.45)b.Plateout-c.EmergencyVentilationSystemFilterEfficiency-99.9percentforiodine,0percentfornoblegas(Ref.45)66-1 0I'~F 5.TypeandRef.,45.fractionalactivityreleasedasspecifiedin6.Methodforanalysisofthemeteorology,-asspecifiedinAppendixIwhichisbasedondatacollectedatthesitein1963and1964.7.BreathingRates-232cclsec8.Volumetricleakratefromreactorbuildingtoenvironment100percent/day.9.ReleaseHeight-106metersThecalculationmodelsusedtodefinetheenvironmentaldoseeffectsforthiseventarethesameasthoseusedforNormalReactorFacilitiesOperationoff-gaseffluentcalculationspresentedinExhibitAandBofAppendixI.6.6.1.2RadiologicalResultsAsnotedinTable6.2-1,theintegratedman-remexposureforthisaccidentisbetween5and6ordersofmagnitudebelowthoseexposuresreceivedfromnormalradiationbackground.Itcan,therefore,beconcludedthatthiseventisofnosignificancewithregardtotheenvironmentaleffects.6.6.1.3EventProbabilityConsiderationsSpentfuelistransferredfromthereactortothefuelpoolbymeansoftherefuelinghoist.Eachfuelbundletoberemovedisgrappledinthereactor,liftedverticallyuntilthebottomofthefueltransferchanneliscleared,andthentransportedacrossthefuelpool,stillunderwater.Abrakeisprovidedtopreventexcessivedropvelocity.Alimitswitchisprovidedtopreventexcessiveliftingvelocity.Theaccidentpostulatedassumesthataspentfuelbundledropsfromthemaximumheightabovethecore,fallsthroughthewater,anddamagesnotonlysomeofitsownrodsuponimpactbutalsosomeofthoseofbundlesstillinthecore.Fortheaccidenttooccur,eitherthehoistmustmalfunctionoroneofthesupportingequipmentcomponentsmustfail.Forthehoisttomalfunction,thelimitswitchmustfailtodeceleratethebundle'sfallingrate.Theprobabilityofeitheroftheseeventsoccurringwouldconstituteafaultcondition.Arandomfailureofthecable,grapple,handle,ortierodwouldbenomorelikelythananemergencyconditionandprobablyclosertoafaultcondition.Sincethereislessthanonechanceinfourthatsuchafailurecouldoccurwhilethefuelisatthemaximumheightabovethecore,thecombinedeventwouldbenomorelikelythanafaultconditionforeachbundletransferred.Assumingthatone-fourth6.6-2 4%1v4w\>
ofthecoreistransferredeachyear,thelikelihoodoftheeventbecomesthatofanemergencycondition.6.6.2SpentFuelCaskDropItisrecognizedthatthepresentplanshavethespentfuelcaskcompletelytransportedfromthereactorspentfuelpooltothereprocessingplantinamotortransportcask.However,ifrailtransportationcouldbeundertaken,thecasksizewouldbegreatlyincreasedtohandleasmanyas16timesthefuelassembliespercask.Consequently,thedropofarailcaskcouldbeamoresignificantconsideration.Therefore,forthisevaluationthemoreseriousaccidentistherailcaskdroppage.Afullyloadedspentfuelcaskisassumeddroppedwhilebeingloweredtoawaitingflatcar.Thiseventischosentorepresentitscategorybecauseithasthepotentialfordroppingthefuelcaskfromthemaximumheightandbecausethefuelcouldloseitscontainmentifthecaskintegrityislost.Ifthecaskweredroppedinsidethefuelpool,therewouldbenodamagetothereactorbuildingandthecaskintegritywouldstillbeassuredwithnoreleasefromthecaskoccurring.Thereactor,ifoperating,isassumedshutdownviathemainturbineheatsink.Thecaskisconsideredasdroppingfromaheightofabout99feettoayieldingsurface(theflatcarandpointsbelow)resultinginareleasewithinthelimitsof10CFRPart71.6.6.2.1CalculationofSourcesandDosesTheradiologicalconsequencesofthecaskdropaccidentarebasedonthefollowingconsiderations:a.Therailcarfortransportaionwillbeinpositionunderthecaskbeinglowered,thusprovidingayieldingtypeofimpactsurface.(The10CFR,Part71,30-footcaskdropdesigncriteriaisonanonyieldingimpactsurface.)b.Thecaskwillbeloadedwithamaximumof32fuelelementswhichhavebeenoutofthereactorforaminimumperiodof90days.c.Thefuelisdesignedtowithstandanimpactof500Gandthecask270G.d.Themaximumdecelerationofthecaskafterfalling99feetisapproximately148G.e.Uponimpactwiththeyieldingsurfaceoftherailcar,thecaskclosureheadwillremainintact,thuspreventingthespillingoffuel.6.6-3
f.Basedonthecaskdesignandfuelcapability,nofueldamagewillresultasaconsequenceofthisevent.Whileitisexpectedthatnoreleaseoffissionproductswilloccurasaresultoftheaccident,theassumptionis1,000curiesofnoblegasactivity,asper10CFRPart71criteria,areassumedtobereleasedtotheenvironmentviatheunit'sstack.6.6.2.2RadiologicalResultsAsnotedinTable6.2-1,theintegratedman-remexposureforthisaccidentisnegligible.incomparisontothoseexposuresreceivedfromnormalradiationbackground.Itcanthereforebeconcludedthatthisaccidentwillhavenosignificantinfluenceontheenvironment..6.6.2.3EventProbabilityConsiderationsFuelistransferredfromthereactorfuelpooltoarailroadflatcarbymeansofthereactorbuildingcrane.Thecraneliftsthe.loadedcaskfromthereactorbuildingfuelpool,andafterdecontaminationlowersitthroughahatchtotheflatcar99feetbelow.Alltransfercomponentsaretestedunderweightedconditionsjustpriortotheactualtransfer.Itisanticipatedthatanaverageoftencasktransfersareperformedeachyear.Inorderforthepostulatedaccidenttooccur,thehoistbrake,cablecranehook,liftingyoke,casktrunnion,orsupportringmustfailwhilethecaskissuspendedfromthemaximumheight,andthecaskmustrupturewhenitimpactsupontherelativelyyieldingflatcarbelow.Theprobabilitythatadropcouldoccurfromanyheightaftersuchcarefulplanningandtestingof.equipmentisexpectedtobelow.Thecaskdesignissuchthat,evenintheeventofadrop,ruptureisnotlikely.'hiseventis,therefore,assignedtothefaultcategoryofprobability.6~6-4
- l 6.7CLASS7-SPENTFUELACCIDENTOUTSIDESECONDARYCONTAINMENTThisclassappliestothemovementofaspentfuelcaskonarailroadflatcarfromthetimeitleavesthereactorbuildinguntilitreachesthesiteboundary.Inaddition,accidentalreleasesatoff-siteareasarealsoconsideredbutarediscussedinSection5.4.2.Spentfuelmovementoutsidethesecondarycontainmentisalwaysperformedwiththefuelinsidethecask.Theengineeringandproceduralprecautionstakenduringthemovementofspentfuelon-site,essentiallyprecludethepossibilityofthecaskdroppingon-siteduetoinstability,improperattachementtothebedoftheflatcar,orderailment;further,evenifsuchadropweretooccur,itwouldbefromsuchaheightthattheshippingcaskwouldeasilysustainit..Thecaskcouldconceivablybedamagedbyfire,butthesitearrangementprecludesmovementofthecarinareasofappreciablefirehazard.Thoughfiresaboardrailroadcarsduetooverheatedbearingshaveoccurred,itisextremelyunlikelyinthiscase,consideringthevelocityatwhichsuchmovementwilloccur.Firesaboardtheswitchingengineorotherform.oflocomotion,themselveshighlyunlikely,posenohazardtothecask.'Thus,exposuretothepublicduetoon-sitemovementofspentfueloutsidethecontainmentisnotexpected.67-1 r0 68CLASS8-ACCIDENTINITIATIONEVENTSCONSIDEREDINDESIGNBASISEVALUATIONINTHESAFETYANALYSISREPORTTheseeventsareasdescribedinSection14oftheSAR,andarebrieflydetailedinthefollowingparagraphs.Theseincludetheinsidecontainmentloss-of-coolantaccident(recirculationpipebreak),theoutsidecontainmentloss-of-coolantaccident(steamlinebreak),andthereactivityexcursionaccident(controlroddrop).ThedesignbasisrefuelingaccidentfallsinClass6andhasbeentreatedinSection6.6..Twonondesignbasisaccidents(catastrophicfailuresofaliquidradwastetankandoftheoffgasholdupsystem)arealsotreatedhere,inorderthatClass8containsoneeventofeachtypewhichcouldresultinsignificantreleasestotheenvironment.6.8.1Loss-of-CoolantAccident(LOCA)Asuddencircumferentialbreakisassumedtooccurinarecirculationline,permittingthedischargeofcoolantintotheprimarycontainmentfrombothsidesofthebreak.Concurrentwiththisfailure,theworstsingleactivecomponentfailureproducingthemaximumdamagetothecore,isalsoassumedtooccur.Thisisfailureofthelowpressurecoresprayinjectionvalveistheunaffectedrecirculationlooptoopen.6.8.1.1CalculationofSourcesandDosesThecalculationofcoreheatupfollowingthedouble-endedrecirculationlinebreakwaspredictedonarealisticbasis,assuggestedbytheguide,byapplyingtheresultsofparametricstudiestothestandardcoreheatupmodelscurrentlyinuse(Ref.46)Theapproachinthethermal-hydraulicanalysiswastoselectrealisticvaluesforthosekeyassumptionsnormallyusedintheSafetyAnalysisReport(SAR)inwhichveryconservativ'eestimatesaremade.OtherassumptionswhichareoflessersignificanceusevaluesasdescribedintheSARorinAECsafetyguides.Whereparametersarenotspecificallymentioned,AECassumptions,whoseinherentconservatismhasbeenwelldocumented,havebeenemployedThevaluesassumedforuseinthethermal-hydrauliccalculationsforLOCAareidentifiedasfollows:68-1
~4rII/J BestEstimateAEC=Assumtions1023045.6.Metal-WaterReactionSteamCoolingBlowdownFlowRateCoreSprayWettingTimeDurationofNucleateBoilingLowerPlenumFlashingHeat.TransferBakerx0.5IncludedMoodyx0.7TransientDataRewettingDataBakerNoCreditMoodyt+60secSteady-StateDataGroeneveldCorrelationPeakcladtemperatureswerecalculatedforaspectrumofbreaksizesutilizingtheassumptionslisted.Therealisticcoreheatupanalysisshowsnoheatupoffuelintotheperforationrangeexceptforthatcausedbythedouble-endedrecirculationpipebreak.Perforationeveninthiscasewillbelimitedto2.5percentorless.Theresultantradiologicaleffectsareafunctionofthequantityandtypeofactivityreleased,naturalfissionproductremovaleffects,containmentleakrate,etc.Theseeffectsarebasedonreleaseoftheprimarycoolantactivitytotheprimarycontainmentandsubsequentreleaseviaprimarycontainmentleakagetothesecondarycontainment.Thosevaluesassumedapplicablefortheradiologicaldoseeffectsareidentifiedasfollows:1.Fuelrodsdamaged-2.5percentcore2.FissionproductsavailableforreleaseasspecifiedinReference45[13.Primaryc'ontainmentleakrate-0.5percent/dayinitial,with.average30-dayreleaserateof0.2percent/day.4.Plateout-condensationeffects-10(Ref.45)5.Partitionfactorsuppressionpool-10~(Ref.45)6.Mixingsecondarycontainment-100percent7.EmergencyVentilationSystemefficiency-99.9percentforIodine(Ref.45).8.Methodforanalysisofthemeteorology-asspecifiedinExhibitAinAppendixIwhichisbasedondatacollectedatthesitein1963and1964.9.Breathingrate-232cc/sec10.Releaseheight-106meters6.8-2
>)0 Thecalculationmethodsforthe8hourand30-daywholebodydosesandthyroiddosesarepresentedinExhibitsA6BofAppendixIofthisreport.6.8.1.2RadiologicalResultsTheresultingpopulationradiationexposuresforthisaccidentarepresentedinTable6.2-1.Asnoted,theexposuresarenegligible.Itcanthereforebeconcludedthattheenvironmentaleffeets,asaconsequenceofthisaccident,areofnosignificance.6.8.1.3EventProbabilityConsiderationsTheprobabilityofalargebreakseveranceshouldfallwithintherangeofanemergencyconditionbasedonestimatesofpipefailureratesandonthenumberofpipesthatsatisfytheconditionsforalargebreakdesignbasisaccident.Theprobabilitythatthelowpressurecoresprayinjectionvalvewillfailwhencalleduponshouldalsofallwithintherangeofanemergencyconditionbasedonananalysisusingfailurerates,(Ref.47,48,and49),consideringanticipateddowntimeandtheintervalbetweeninjectionvalvetests.Sinceeachprobabilityislowandtheoutcomesarenotcriticallyinterdependent,thejointprobabilityofpipebreakandinjectionvalvefailureisexpectedtobe~verlow,placingthiseventinthefaultcondition.6.8.2SteamLineBreakAccident(SLBA)Thepostulatedaccidentisasudden,completeseveranceofonemainsteamlineoutsidethedrywellwithsubsequentreleaseofsteamandwatercontainingproductstothepipetunnelandtheturbinebuilding.Sincethisaccidentdoesnotresultinanyfueldamage,theenvironmentaleffectsarelimitedtothoseradiolgoicaldoseswhichmaybereceivedasaconsequenceofexposuretotheactivityassociatedwiththeprimarycoolant.6.8.2.1CalculationofSourcesandDosesThemassofcoolantreleasedduringthe4-secondisolationvalveclosuretimeis47,400pounds.Asaconsequenceofdepressurization,approximately30percentofthereleasedliquidwillbeflashedtosteam.Duetotheaffinityofiodineforwater,itisnotexpectedthatanyadditionaliodinewillbereleasedfro'm'heremainingcoolant.Therefore,theiodinereleasedtotheturbinebuilding,asaconsequenceoftheaccident,willbeproportionaltothatquantityofwaterflashedtosteam.Duetothecondensation,plateoutwilloccuronsurfaceswithwhichthesteamwillcomeincontactpriortoreleasetothegeneralenvironment.Itisassumedthataniodine6.8-3 P'
removalfactoroftwoisapplicabletotheseeffects.Theiodineactivityassociatedwiththecoolantflashedtosteamisbasedonanoblegasreleaserateof50,000uCilsecofadiffusionmix,asmeasuredat30minutesdecay.6.8.2.2RadiologicalResultsThepopulationradiationexposuresforthisaccidentarepresentedinTable6.2-1.Duetothetypeofactivityreleased,theprimarydose'ffectfromthisaccidentisinhalationthyroidexposure.AsnotedinTable6.2-1,thecumulativethyroidexposureis5ordersofmagnitudebelowthenormalbackgroundwholebodyexposure.Itcanthereforebeconcludedthatthisaccidentdoesnotresultinanyenvironmentaleffectsofsignificantconcerntothegeneralpopulation.6.8.2.3EventProbabilityConsiderationsThedesignbasismainsteamlineruptureaccidentpostulatescompleteseveranceofoneofthemainsteamlineswhilethereactorisatpowerfollowedbytotalisolationofthebreakfromthereactorwithin4seconds.Theprobabilityofthiseventisessentiallytheprobabilityoftheseverance.Baseduponestimatesofpipefailureratescontainedintheliterature(Ref.50),andconsideringthenumberoflocationswheretherupturecouldoccurinthemainsteamsystem,theprobabilityofpipeseverenceshouldbewellwithinthe'~emergencycategory."6.83ControlRodDropAccident(CRDA)Thepostulatedaccidentisareactivityexcursioncausedbyaccidentalremovalofacontrolrodfromthecoreataratemorerapidthancanbeachievedbytheuseofthecontrolroddrivemechanism.Inthecontrolroddropaccident,afullyinsertedcontrolrodisassumedtofalloutofthecoreafterbecomingdisconnectedfromitsdriveandafterthedrivehasbeenremovedtothefullywithdrawnposition.Thedesignofthecontrolrodvelocitylimiterlimitsthefreefallvelocityto3ft/sec.Basedonthisvelocityandassumingthereactorisatfullpower,themaximumrodworthisapproximately1percent,andthepostulationassumesperforationof10fuelrods.Itisexpectedthatnonewillactuallyfail.6.8.3.1CalculationofSourcesandDosesInadditiontotheassumedfailureof10rods,theradiologicaleffectsarealsobasedonratedsteamandrecirculationflow,aniodinecarryoverfractionof1percent,andamainsteamlineisolationvalveclosuretimeof4seconds.Inadditiontoisolatingthemainsteamline,themainsteamlineradiationmonitorsalsoisolatethenormaloffgassystem,therebycontainingtheactivitybetweenthemainsteamlineisolation6.8-4
valvesandtheoffgasisolationvalves.Theprimarysourceofleakagefromthesystemwillthereforebeviatheturbineglandsealsandwillbeduetochangesinenvironmentalpressurewithrespecttotheturbinecondenser.Theactivityair-borneinthecondenserisafunctionofthepartitionfactor,volumeofairandwater,andchemicalspeciesofthefissionproductactivity.Thevaluesassociatedwiththeseparametersare:apartitionfactorof10~foriodine,acondenserplusturbinefreevolumeof99,200ft3,andacondensatevolumeof7850ft~.6.8.3.2RadiologicalResultsAsnotedinTable6.2-1,thepopulationradiologicalexposuresforthisaccidentareordersofmagnitudebelowthoseeffectsreceivedfromnormalbackground.Itcanthereforebeconcludedthatenvironmentaleffectsfromthisaccidentareofnosignificantconcerntothegeneralpopulation.6-8.3-3EventProbabilityConsiderationsInorderforarodtodropfromthecore,itmustfirstbecomedetachedfromthedrive,remainlodgedinpositionwhilethedriveiswithdrawnfromthecore,andthen,whilethedriveisstillwithdrawn,becomedislodgedandfallfreely.Thisisacomplexseriesofevents,therebeingmanypossibleactions(orinactions)thatareinterrelated,butthisisoffsetbythemanyannunciatorsandproceduresthataremeanttoindicatetheoccurrenceandavoidsuchanevent.Conservativejudgmentandactualoperatingexperienceindicatethatthiseventshouldbeassignedtotheemergencyconditioncategory.6.8.4RadioactiveLiquidStorageTankAccident(LSTA)Thecondensatestorageandhighlevelwastetanksaretwopotentialsourcesofradioactivewaterspillagepresentinthestationdesign.The200,000galloncondensatestoragetank(containing5x10-5uCi/cc)ispartiallyabovegradelevel,which,posesapotentialproblemoftheliquidspillreachingoutsidethefacilities..Thehighlevelradioactivewastetanks,however,arelocatedbelowgradeintheradwastebuildingbasement,thusassuringcompletecontainmentofanyspill.6.8.4.1CalculationofSourcesandDosesTheactivityreleasedfromthefailureofthecondensatestoragetankisassumedtobeemptiedintoLakeOntariooveraperiodof10minutes.Theshort;termlakedilutionfactorof156betweenthepointofdischargeandthedrinkingwaterintakeatOswegoisconsideredapplicableduringthiseventtogetherwiththe6.8-5
populationservedasindicatedinSection6.5.2.Thenearestpointofpublicwatersupplyisabout8milesfromtheunit.Consideringfiltrationbytheprocessingfacilitiesofthepublicwaterworksaswellasradioactivedecayandsettling,afactorof10isappliedtotheseeffectsinevaluatingthepopulationradiologicalexposureswhichcouldresultfromtheconsumptionofthiswater.6.8.4.2RadiologicalResultsTheradiologicaleffectsresultingfromthiseventarepresentedinTable6.2-1.Asnoted,theseeffectsareordersofmagnitudebelowthoseexistingfromnormalbackgroundeffectsandarethereforeofnosignificantconcernwithregardtotheeffectsonthegeneralenvironment.6.8.4.3EventProbability.ConsiderationsThecondensatestoragetanksareunpressurizedaccumulators.Therearenovalvesorpartsotherthanpipingattachedtothetank.Althoughthetankisnotapressurevessel,itisdesignedingeneralaccordancewithappropriateAmericanPetroleumInstituteCode650.Sincetheprobabilityofoccurrenceofareleasetotheenvironmentfromacondensatestoragetankfailureissoverylow,itisplacedinthefaultcategory.6.8.5Off-GasSystemAccident(OGSA)Thepostulatedaccidentforthiscategoryisanignitionofradiolytichydrogenandoxygenintheoffgasholdupvolume,followedbyadetonationofsufficientimpulsetorupturetheholduppipe.Theactivityreleasedtotheenvironmentwouldthereforebethatactivitycontainedwithintheholdupvolume.6.8.5.1CalculationofSourcesandDoses\Thesourcetermsapplicabletothebaseinputtothesystemaswellastheparametersappropriatetoreleaseanddispersionareasfollows:1.BaseInput212,000uCi/secofa2minuteolddiffusionmixwhichat30minutesisequivalentto50,000uCi/sec.2.Releaseof100percentnoblegasactivitycontainedinpipeand10percentoftheIodine.3.Heightofreleases-106meters.4Meteorology-themethodforanalysisofthemeteorologyisasspecifiedinAppendixIandisbasedondatacollectedatthesitein1963and1964.6.8-6
6.8.5.2RadiologicalResultsTheradiologicalexposuresreceivedasaconsequenceofthishypotheticalaccidentarepresentedinTable6.2-1.Asnoted,theenvironmentalexposuresareordersofmagnitudebelowthoseexposuresreceivedfromnormalbackground.Itcanthereforebeconcludedthattheenvironmentalexposurewhichcouldtheoreticallybereceivedasaconsequenceofthisaccidentareofneglibibleimportanceincomparisontotheactualexposuresreceivedfromnormalbackground.6.8.5.3EventProbabilityConsiderationsThenoblegasesgeneratedinthenuclearprocessareallowedtodecayforapproximately30minutesbeforedischargingupthestack.Thesmallamountofnoblegasesareaccompaniedbyamixofhydrogenandoxygen,alsogeneratedinthenuclearprocess.Thishydrogen-oxygenmixtureissubjecttoignitionandtheoreticallycoulddetonateunderproperconditions.Ifthemixtureignites,itburnsrapidlyandforcesasubstantialportionofthenoblegasinventoryoutthestackwithlessthannormaldecaytime.IgnitionhasoccurredinoperatingreactorswithoutH-0recombinersataratethatshouldbeclassifiedasanupsetcondition.Detonationisfarlesslikelybecauseitcanoccuronlyunderratheridealconditionsofpressure,mixture,andpipinggeometry.Arupturediscisinstalledintheholduppipetoprotectthepipefromrupture.Xgnitionsandmostdetonationswouldnotcreateahighenoughpressuretorupturethedisc.Adetonationofsuchforceastorupturethediscorthepipeisexpectedtohavealowprobability,probablyatthelowendoftheemergencycategoryinplantswithoutH-0recombiners.6.8-7
6~9RADIATIONBACKGROUNDANDRADIOLOGICALIMPACT6.9.1NaturalRadiationBackgroundEverydaywereceiveradiationfromthesky,theground,theairaroundus,andthefoodweeat.Themagnitudeofthisradiationlevelisstronglyinfluencedbywherewelive,whatwedo,andeveninwhatkindofhouseweliveFormostlocationsaroundtheUnitedStates,thisnaturalradiationlevelaveragesabout140mrem/year.Thevariouscomponentcontributionsofthistypicalvaluearediscussedbelow.DataispresentedinTable6.2-1.6.9.1.1TotalRadiationFromNatureThefollowingtablesummarizesthevariouscontributionsinarrivingatanaveragenaturalradiationbackgroundof140mrem/yearforpeoplelivingintheUnitedStates.CosmicRays50Ground(1/4time)15Buildings(3/4time)45AirFoodandWater24~140mrem/year6.9.1.2Man-RemFromNaturalRadiationBackgroundCalculationsofthetotalexposuretothepopulationasaresultofnaturalradiationbackgroundhavebeenmade.CertainlyitisobviousthatifitisassumedthateverypersonintheUnitedStatesreceivesanaverageof140mrem/yearthenthetotalpopulationexposurewouldbeabout30millionman-rem/yearHowever,itisnotappropriatetocomparethe'adiologicaleffectsoftheoperationofanyonenuclearpowerstation,asnegligibleastheyare,withthetotalman-rem/yeartotheentireUnitedStatespopulation.Therefore,theman-remcomparisonsaremadeforthepopulationwithina50mileradius.Ifthereareonemillionpeoplelivingwithina50mileradius,thenaturalradiationbackgroundwillresultinabout140,000man-rem/year.Table6.2-1listsman-rem/yearfromnaturalbackgroundforthepopulationdistributionattheNineMilePointSite.6.9.2Man-MadeRadiationBackgroundManhasaddedtohisradiationexposurefromnatureinanumberofways.Thelargestcontributionbyfarhasbeenfrommedical6.9-1
exposure.Ithasbeenestimated(Ref.51)that94percentofman-madeexposureisfromthisradiationandofthis,90percentisattributedtodiagnosticX-rays.Typically,anaverageof55mrem/yearisreceivedbytheaverageUnitedStatescitizen.However,recentreports(Ref.52)indicatethat100mrem/yearisamoreappropriateaverage.Additionalsmalllevelsofradiationcanbereceivedfromluminouswatchdials(about2mrem/year)andtelevisionviewing(1to10mrem/year)..Therefore,theresultantman-maderadiationreceivedbytheaveragecitizenrangesbetween50to100mrem/year.6.9.2.1Man-RemFromMan-MadeRadiationTotalpopulationexposurefromman-madesourcesismoredifficulttoevaluatesincetherecanbeanindividualchoicemadeastowhethersuchradiationisreceived.However,reasonableassumptionscanbemadeinordertomakeestimatesofman-rem/yearsinceitisnotfeasibletomonitorthepopulationdosebymeasuringthedosetoindividuals.Thepopulationdoseasaresultofviewingtelevisiontoasamplemillionpeoplecanbeestimated.Typicallyanindividualwouldreceiveabout1to10mrem/yearfromwatchingTV.Saytheaveragedosereceivedis5mrem/year,thenthisresultsin5,000man-rem/year.Lookingatthissamepopulationonecandeterminetheman-remasaresultofexposurefromluminous-dialwatches.~Ifonly10percentofthissamplepopulationareexposedto2mrem/year,thentheresultantpopulationdoseis200man-rem/year.TheuseofmedicalX-raysisbyfarthelargestcontributortopopulationexposurefromaman-madesource.Againconsideringthesamplemillion-personpopulation,diagnosticX-rayswouldresultinabout100,000man-rem/yearassumingthateachpersonreceivedanaverageof100mrem/year.However,ifonly10percentofthispopulationreceivedan'nnualchestX-rayof200mremperexamination,theresultwould,be20,000man-rem/year.Insummary,medicalexposureresultsinthelargestman-rem/yearcontributionfromman-madesources.However,theexamplesoftelevisionviewingandwearingluminouswatchesdocontributetopopulationexposureandshouldbeincludedwhencomparingtheimpactonmanfromtheseandotherman-madesources.Table6.2-1liststheman-rem/yearforthesesourcesappropriateforthestationlocation.6.9.3TotalAverageRadiationBackgroundThetotalbackgroundradiationexposurereceivedbytheaveragecitizenisthesumofthecontributionsreceivedfromnatural6.9-2 l1tI*hl6IV0 backgroundandmanmadesources.Theresultanttotalisthe140mrem/yearfromnaturalsourcesand50to100mrem/year.fromman-madesourcesgivingabout200to250mrem/yeartotheaverageresidentoftheUnitedStates.6.9.4Man-RemFromNuclearPowerStationsTheradiologicalimpactofnuclearpowerstationsiscomparedwiththealreadyradioactiveenvironmentinwhichwelive.Thereisabasicdifferencebetweentheman-remreceivedfromnaturalandman-maderadiationbackgroundandthatfromthenuclearpowerstations.Thatis,everyonewithina50mileradiusisassumedtoreceivetheaveragebackgroundexposure,whereaseveryonedoesnotreceivethesamecontributionfromthepowerstation.Thereasonisthatthenaturalatmosphericdispersioneffectsreducetheradiationsourcethefartheroneisfromthestation.Asimpleanalogyshouldhelpinexplainingthis.Letussaythatabottleofperfumeisopenedandissprayedintotheairwhileonestandstenfeetdownwind,thenchancesarethattheodorfromtheperfumewouldbedetectedatthatdistance.At100feetawaythereisonlyahintofperfumeintheairandat1,000feet,itisimpossibletodetectanyeffect.Overtheyear,thewinddirections,windspeedsandatmosphericstabilitychangetodisperseanairbornesourcesothatoutto50milesfromthereleaselocation,theradiologicaleffectisnotmeasureablebutonlyestimatedbymeansofacalculation.Liquidsourcesaretreatedsimilarlytothegaseousoneinthatonly,aportionofthetotalpopulationoutto50milesactuallycouldbeinfluencedfromsmallamountsofradioactivitydischargedfromtheunit.Consideringdrinkingwaterastheprimarymodeofexposuretoman,severalfactorsaffecttheresult.Forexample,someoftheseareeffectsofwaterdilutionanddispersioninthelake,distancebetweenstationandlocationswherewaterisdrawnfordrinking,watertreatmentpriortotransportintothedomesticwatersupply,andthenumberofpeopleusingthiswaterfordrinkingwaterpurposes.Thetotalman-remtothepopulationoutto50milesfromthestationforthevariousaccidentconditionsevaluatedinSection6aresummarizedonTable6.2-1.Thislistincludestheman-remresultsfornormalstationoperationconsiderations,transportationconsiderations,variousabnormalconditionsandpostulateddesignbasisaccidentconditions.Oneshouldnotaddtheman-remfromeachconditionsincetheprobabilityofoccurrencewasnotappliedtoallconditions.Thereasonisthatitisnotcorrecttoaddman-rem/yearwithman-rem/eventwithoutfirstconsideringthefrequencyofoccurrence(suchasone-millionthofanoccurrenceperyear).6.9-3
6.9.5RadiologicalImpactConclusionThegeneralconclusionthatisdrawnfromthe'totalpopulationexposure(Table6.2-1)foreachconditionisthatthereisanegligiblecontributionfromthenuclearpowerunitwhencomparedtothenaturalandothermanmadeexposuresreceivedbythepopulation.Thehighestdosetoanindividualneartheunitislessthanafewpercentofnaturalbackground.Thisdosewouldapproachnegligibleproportionsatadistanceof50miles(twotothreeordersofmagnitudeless).Asmentionedabove,thenaturalbackgroundandcertainman-madesourcesofradiationovershadowtheradiationexposurecontribu-tionfromnormaloperationandthepostulatedaccidentsdiscussedinthissection.6.9-4
SECTION7UNADVOIDABLEADVERSEENVIRONMENTALEFFECTSOFOPERATIONAlthoughitisinescapablethatoperationofUnit1affectstheenvironment,NiagaraMohawkbelievestheseeffectsarenotadverse.Identificationofthesechangesisimportantsincemanyoftheirpossibleenvironmentalproblemsareonlyrecentlybeginningtobeunderstood.Theseareasofalterationmaybecategorizedasfollows:a.Physicalpresence-aestheticeffects,noise,trafficb.Landuse-recreational,historicalc.Waterquality-liquidreleases-chemicalwasted.Airquality-gaseousreleases-radioactive,otherExceptforthereleaseofverysmallquantitiesofradioactiveeffluents,alloftheaboveeffectsarecommon,invaryingdegrees,toanylargethermalgeneratingplant,largemanufacturingfacility,largecommercialbuilding,andevenlargeapartmentbuildingorcomplex.Thissectionofthereportdiscussesthenatureofeachofthesealterations.Publicawarenessofnuclearpowerstationshasnaturallyincreasedasthenumberofstationsincreases.Alongwiththisawarenesshasbeenanincreasingconcernoverthequalitiesofthehumanenvironment.Fornuclearpowerstations,thisconcernhasfocusedprimarilyontheirlccationandtheeffectoftheirphysicalpresenceontheirimmediateenvironments.Everyefforttominimizetheintrusionofthisfacilityanditscomponentpartsuponitsenvironmenthasbeenmadebydesigningthestructurestobeasaestheticallypleasingasiseconomicallypossibleandbycontainingmajornoise-producingmechanismswithintheplantbuildings.Twooftheprincipalquestionsoftenaskedaboutnuclearpowerstationsconcernwasteheatrejectionandradioactivereleases.AspreviouslyindicatedinSections5.1.2and5.5,thelastingtemperatureincreaseoverambientlakeconditionsofthecoolingwaterreturnedtothelakewillbeslight,basedonLakeOntariostudiesintheNineMilePointareathathavebeenconductedsince1963,andonUnit1operationtodate.TheenvironmentaleffectsofliquidandgaseousradioactivereleasesfromUnit1andtheirinteractionwithotherfacilities7.0-1
intheareahavebeendiscussedinSections5.4.5and5.4.6.Theresultingambientlevelsofcontaminantsareexpectedtobewellbelowthoselevelsconsideredharmfulbylocal,state,andfederalstandards.PreliminarydataresultingfromwatersamplescollectedfromNineMileUnit1(Section5.5.4)indicatedthatasmallpercentageoffishlarvaearelostinpassingthroughthecirculatingwatersystem.Becauseoftherelativelyfewfishinthevicinityoftheexistingintakestructure,andtheprecautionstakeninthedesignofthelakestructures,nosignificantlossofmorematurefishisanticipatedinproportiontothefishpopulationasawhole.Onlyabout45acresofthe900-acresitehavebeenunavoidablyremovedfromexistinglandusesforUnit1.Theremainderofthesiteservesprincipallyasahabitatfornativewildlife.Powerunits,suchasNineMilePointUnit1,aredesignedassupplierstogeographicallyextensivesystems.SuchpowerstationsdonotofferanygreaterincentivetodevelopmentintheimmediatevicinityofthestationthaninanyotherlocationwithinNiagaraMohawkisservicearea.7.0-2
~1 SECTION8ALTERNATIVESTOTHEEXISTINGPOWERSTATIONTheNineMilepointUnit1NuclearpowerStation-isanexistingfacilitywhichstartedcommercialoperationinDecemberof1969.,Therefore,itisevidentthatnotasmanyfeasiblealternativesexistforthisfacilityaswouldbeavailableifanewunitwereunderconsideration.However,everyefforthasbeenmadetoevaluatealternativestotheextentthattheycanbeproperlyassessed.TheenvironmentalconsiderationsofthevariousfeasiblealternativesarediscussedindetailalongwithasummaryofenvironmentalcosttabulationsintheBenefitCostAnalysis,Section9..Alternativestotheexistingpowerstationincludenotprovidingthepowerordecommissioningthestationandreplacingthepowerbypurchasingthepowerfromothersystems,rebuildingthestationatothersites,orprovidingthepowerbyanalternativemeansofgeneration..Section9considersthebenefitsandcosts,bothenvironmentalandeconomic,ofthesealternatives.Fortheexistinggeneratingsystem,therearealsoseveralalternativesavailable,forhandlingthecoolingwater,chemical,andradioactivewastes.ThesesubsystemalternativesfortheexistingfacilityarealsoevaluatedinSection9fromthestandpointofbotheconomicandenvironmentalcosts.8.0-1
SECTION9BENEFITCOSTANALYSISThedecisiontoplaceaboilingwaterreactorattheNineMilePointsiteandtocontinueitsoperationinvolvestrade-offsamongvariousenvironmentaleffectsandeconomiccosts.NiagaraMohawkchosetoconstructandoperateanucleargeneratingunitattheNineMilePointlocationforseveralreasons.Amongtheseweretheexcellentenvironmentalcharacteristicsofthesite,includingabsenceofseismicactivity;superiormeterologicalventilation;scarcityofpopulationandlanduseactivities;andtheabundanceofcoolingwater.ThesiteconsistsmostlyofscrubforestandrockyshorelinemakingitlesssuitableforrecreationalorfarmusesthantheothersitesinvestigatedThecommitmenttobuildanuclearstationatNineMilePointwasmadeinlate1963.Morethanayeaxpriortothatcommitment,environmentalstudieswereinitiatedtoprovidedataonthemeteorological,aquatic,seismic,geologicalandhydrologicalcharacteristicsatthesite.Theloadgrowthestimatesatthetimeofthecommitmentindicatedtheneedforanewlargebase-loadunit.Thedecisiontobuildanuclearunitratherthanafossil-fuelunitwasmadebasedonabalanceofenvironmentalandeconomicconsiderations.Operationofthestationsince1969hasprovidedampleevidencethattheeconomicsofnucleargenerationhavebeenachievedwithminimalenvironmentalimpact.DuringthedesignoftheNineMilePointNuclearStation-Unit1manytrade-offsweremadetominimizeenvironmentalimpacts.Stackheightwasdeterminedbybalancingthemeteorologicaldispersioncharacteristicsandtheaestheticsofatallerstack.Theflutedmetalsidingonthebuildingwallswascolortreatedtoharmonizewiththesurroundings.Alternativecoolingwatersystems,suchassurfacedischargeandvarioussubmergeddiffuserschemeswerealsocarefullyinvestigatedtoarriveatadesignwhichwouldavoidunacceptablethermaleffects.Thissectionpresentsabenefitcostdiscussionofthealternativestotheexistingpowerstation.ThosealternativeswhicharefeasibleattheNineMilePointsiteandarewithinavailabletechnologyaretabulatedwithrespecttobenefitsandcosts.ThesebenefitsandcostsaredevelopedwithinthetextofSection9.Inusingthetables,referenceshouldbemadetotheappropriatepartofthetextforthefullexplanationoftheenvironmentalcosts.Thesetabulationsaresimilartothosesuggestedin<<ProposedAECGuidetothePreparationofBenefit-CostAnalysistobeIncludedinApplicant'sEnvironmentalReports(ForDefinedClasses*ofCompletedandPartiallyCompletedNuclear9.0-1
Facilities),"issuedinJanuary1972.AssuggestedbytheGuide,thetabulationsareoftwotypes.Thefirstcomparesincrementalgeneratingcostsandenvironmentalcostsofvariouspracticalsubsystemswhilethesecondcomparesbenefitsandcostsofalternativestationdesigns.Theincrementalgeneratingcostsandenvironmentalcostsofvariouspracticalsubsystemsaretabu3,atedfollowingthediscussionofthesesubsystems.Thesetabulationsareusedtoderivethealternativestationdesignswhichresultinminimumwater,air,andlandeffects.ThesealternativestationdesignsaresummarizedintabulationsattheendofSection9.8.DuringthefinalstagesofpreparationforthisreporttheAtomicEnergyCommissionissue'dafinalguideinMay1972.-Thisreviseddocument,"GuideforSubmissionofInformationonCostsandBenefitsofEnvironmentallyRelatedAlternativeDesignsforDefinedClassesofcompletedandpartiallycompletedNuclearFacilities,~~hascertaindifferencesfromthepreviouslyproposedJanuary1972guideinbothcontentandformatpresentation'.TheadditionalinformationrequestedinthisfinalAECguideisdiscussedandincorporatedinappropriatesectionsoftheBenefit-CostAnalysisbutisnottabulatedinbenefitcosttables.Thereasonisthattheformatusedthroughoutthebenefit-costtablescloselyfollowsthetextpresentationandtheearlierJanuary1972guide,anditisnotconsideredfeasibletosubstantiallychangethisformatatthislatedate.9.0-2
91NOTPROVIDINGTHEPOHERTheNiagaraMohawkPowerCorporation(NMPC)isaregulatedpublicutilityoperatingunderthePublicServiceLawoftheStateofNewYork,whichobligatestheCompanytoprovidesafeandadequateelectricalservicetoitscustomers.-TheCompany~splanstomeetfuturerequirementsunderthisLawaxe.,descxibedi,nSection1.2.ThissectiondemonstratesthenecessityforthegeneratingcapacityofUnit1.92PURCHASINGTHEPOWERSection1.2demonstratesthattheNineMilePointUnit1isnotoddlynecessaryforNMPCtomeetserviceobligationsonitsownsystembutisalsoanintegralpartoftheNewYorkPowerpool'sgeneratingcapacity.Amongotherfunctions,thePoolcoordinatesplansfornewgenerationinsuchamannerthatamplereservesareprovidedwithintheState.Long-termpowerpurchasefromwithinNewYorkStateisnotanalternativetocontinuedoperationofthisunitintermsoftheNewYorkPowerPoolplan,asdescribedinSection1.2.EvenifnewgenerationweretobeconstructedelsewhereintheStatefromwhichNMPCmightconceivablypurchasepower,environmentalcostsspecifictothesealternatelocationscouldnotbeavoided.TheNewYorkPowerPoolanditsmembershavefoundthatpossibilitiesforaddi,tionallong-termpowerpurchasesdonot,realisticallyexistoutsidethePool,particularlyduringthewinterwhenNMPCexperiencesitspeakload.ThereisnoindicationthateitheroftheadjacentPowerpoolsintheUnitedStates,thatis,thePennsylvania-Jersey-Maryland.,(PJM)ortheNewEnglandPowerPool(NEPOOL),orOntarioHydroinCanada,willhavecapacityavailableforsaleforanextendedperiodonafirmbasis.Accordingly,itisconcludedthatpurchasingpoweronalong-termbasisfromeitherwithintheNewYorkPowerPoolorfromoutsidethePoolisnotafeasiblealternativetothecontinuedoperationofNineMilePointUnit1.9.1-1/9.2-1
'4 93ALTERNATIVESITESevaluationofalternativesitesforUnit1mustconsiderthatthisunithasbeenincommercialoperationatNineMilePointsinceDecember,1969.Thecostsofdecommissioningthisunit,abandoningtheNineMilePointsite,movingtoanewlocale,andrebuildingthestationwouldbeoverwhelming.Foramoredetaileddiscussionofthesecosts,seeSection9.'.The'nvironmentaleffectsassociatedwithlocatingUnit1atitspresentsiteonLakeOntariohavebeendiscussedinprevioussections.Therefoxe,thissectionislimitedtoadiscussionofreasonswhytheNineMilePointsiteispreferable'overothersitesforthelocationofageneratingplant.ProjecteddemandsoftheNiagaraMohawkPowerCorporatiOnsystemindicatethatincreasedloadrequirementsforthe'omingdecadearetobeinthecentralandwesternregionofthesystem.Alternativesites,therefore,mustbelimitedtoNiagaraMohawk~scentralandwestern'divisions.Theavailability'ofadequatesuppliesofcoolingwaterwhilestayingwithintheprojectedgrowthareafurthernarrowsthechoiceofalternativesitestothoseontheSt.LawrenceRiverorontheshoreofLake'ntario.ThethermaleffectsatanewsiteonLakeOntarioshouldbesimilartothoseoccurringattheNineMilePointsite.TheenvironmentaleffectsonariversuchastheSt.Lawrence,however,wouldbedi,fferentframthoseoccurringonthe.lake.Althoughitisnotfeasibletoquantifytherivereffectsbasedononlythepreliminaryinvestigationsthathavebeenmade,by'iagaraMohawk,itisestimatedthattheoveralleffectsofthermalandliquiddischargeswouldbeminimalbecauseofthelargevolumeflowoftheriver.Theeffectsofanuclearunitonairqualityshouldbeessentiallythesameatanyofthepossiblealternativesites.Radioactivereleasestotheairateachsitewouldbethesame,andaccordingly,itisestimatedthattheindividualdoseswouldbecomparable.Pxecisedoses,however,havenotbeencalculatedsincedetailedmeteorologicalstudieshavenotbeenconductedforthealtexnatesites.NineMilePointhasadefiniteadvantageoverothersitesintermsoflandusage.Inthefirstplace,thelandispresentlybeingusedforpowergeneration.RelocatingUnit1atanothersitewouldrequirethatnewlandbeobtainedanddedicatedtothegenerationofpower.Also,additionallandwouldhavetoberequiredfortheunit'stransmissionlineright-of-way.Secondly,constructionassociatedwithUnit1hasterminatedatitspresentlocation.MovingUnit1toone'ofthenewsiteswouldinitiateconstructionanewatthealternatelocalewithallofitsattendanteffects.Constructionatanalternativesitewouldrequirethedisturbanceofadditionallandandwouldfinallyresultintheutilizationofthesameamountofland93-1 tg1~
presentlyallocatedtopowergenerationattheNineMilePointsite.Clearly,goodlandusagedictatesthecontinuedoperationoftheexistingfacilityattheNineMilePointsite.TheNineMilePointsiteisseismicallystableandhasgoodmeteorologicaldispersioncharacteristicsasdiscussedinSection2.Itconsistsofmostlyscrubforest.androckyshoreline,makingitlesssuitableforrecreationalorfarmusesthantheothersitesconsidered.Itisrelativelylargeandremote,therebyminimizingoffsiteenvironmentalimpact.Noneofthealternativesitesoffersignificantimprovementinanyoftheaforementionedfactors.Inaddition,environmentaldataforNineMilePointhasbeencollectedand'valuatedsince1962..Tocollectsimilarpreoperationaldataforeachalternativesitewouldbeamajorundertakingcosting$750,000andwouldtakeuptotwoyears.Tocollectthedataandtooptionthelandwouldalsotakeabouttwoyears.Itwouldbeanothersevenyearsbeforetheunitwereconstructedandinoperation.=Astheunitwouldbedecommissionedduringthebeginningofthistimespantorecaptureasmuchofthehardwareaspossibleforlocationatthenewsite,the610MWeoutputfromthisstationwouldbelosttothepublicforaboutsevenyears.TheimpactofsuchalossisdiscussedinSection1.2andthepossibilitiesformakingupthatlossbypurchasingpoweronalong-termbasisarediscussedinSection9.2.ThepossibilitiesofreplacingthepowerarediscussedinSection9.4.Therefore,intermsoftheeconomicandenvironmentaladvantages,themostrealisticalternativeistocontinueoperationofUnit1atitspresentsite.9.3-2 E1II~sI 94REPLACINGTHEPOWERThereplacementofpowerfromNineMilePointUnit1wouldinvolvethefollowingfoursteps:ABCDDecommissioningoftheexisting610MWnuclearunitShort-termpurchaseofpowerInstallationandoperationofgasturbinesConstructionofafossilunitinadditiontoexpansionforloadgrowthVariousmodesofdecommissioningtheunit,rangingfromleavingthereactorsealedinplacetocompleteremovalofallstructuresandfoundations,canbeconsidered.Previouslydecommissioneddemonstrationreactorplants,suchasPiqua,Hallam,andBonushavebeenleftmoreintactwiththeUtilityplayingacaretakerroleforprotectionofthepublicfromresidualradioactivity.AtpresenttheAECisconsideringaproposalforthecompletedismantlingoftheElkRiverreactorinMinnesota.Amoredetaileddescriptionoftheproposeddismantlingplanmaybefoundinthei'DraftEnvironmentalStatement-ElkRiverReactorDismantling-Wash-1516<<,submittedbytheUnitedStatesAtomicEnergyCommissioninDecember1971.TheElkRiverreactorwasconstructedin1960bytheAECaspartofthepowerreactordemonstrationprogram,andhasathermalpowerratingof58.2MW.ThetechniquesandexperienceforcompletelydismantlingcommercialreactorsofthesizeofNineMilepointUnit1arenotpresentlyavailable.Therefore,noattempthasbeenmadetopreparedetailedglansandcostestimatesforthecompletedismantlingofNineMilePointUnit1.Itiscertain,however,thatcompletedismantlingoftheunitwouldbever'ycostly,probablybeseveraltimesmorethanthecostofpermanentlyshuttingdownthefacilityandmaintainingitinasafecondition.Thiswouldbeduetotheimmensecomplexitywhichwouldbeinvolvedincompletelydecontaminating,dismantling,andsafelydisposingofallreactorinducedradioactivityfromthemassiveconcretestructuresandequipmentwhichexistatNineMilePointUnit1.Forthepurposesofthisreport,decommissioningoftheexistingUnit1,willbeassumedtomeanthatthereactorandturbineunitswillbeshutdownpermanently,sealed,andmaintainedinasafecondition.UpondecommissioningNineMilePointUnit1boththeinstalledcapacityandenergyproducedwouldhavetobereplaced.Duringthefirstyearafterdecommissioningonly310MWcanbesuppliedbyolderfossilfuelunits,leavingadeficitof300MWeininstalledcapacity.Thisisbasedonanobjectiveof18percentinstalledgeneratingcapacityreservetomaintainadequatesystemreliabilityasdiscussedinSection1.2.Purchasingpoweronalong-termbasisisnotafeasiblealternativeasdiscussedinSection9.2.Newgeneraticnalternativesnecessaryentailconstructiontime.Therefore,ifNineMilePointUnit1wereto9.4-1 nI"I'IIPHI bedecommissionedatthistimeacapacitydeficiencywouldexist.LossoftheunitwouldhaveaseriouseffectonreliabilityandNiagaraMohawk'abilitytomeetitsobligationsin1972andbeyond.WithinayearafterdecommissioningitisassumedthatgasturbinescouldreplacethecapacitydeficiencycreatedbytheearlyretirementofNineMilePointUnit1.Thefull610MWecapacitywouldhavetobereplacedtoaccountforloadgrowthovertheinterveningyear.Anadditionalbaseload610MWeunitcouldbeinstalledasreplacementcapacityforthedecommissionednuclearunit.Forthepurposesofth5.sanalysisitisassumedthatanoil-firedbaseloadunitisinstalledby1976.Thiswouldbeinadditiontoplannedcapacityadditionsintendedfornormalloadgrowth.Theenergyexpectedtobegeneratedbythe610MWNineMilePointUnit1is.4.54x10~kWhrperyear.Itisassumedthatallofthisenergywillbereplacedbyenergyfromtheexistingfossilunitsnormallyheldinreserve.Thehighenergycostgasturbineswouldonlybeusedinemergencies.Infact,however,thesegasturbineswouldprobablyberequiredtogeneratesignificantamountsofenergyduringmaintenanceandforcedoutagesoftheseunits.Afterthereplacementbase.loadoilfiredunitisinoperationin1976,energywouldcomefromthatunit.TheestimatedcostofdecommissioningNineMilePointUnit1in1972isabout$2000,000.Theestimatedannualcostofmaintainingthefacilityinasafeconditionisabout$150,000..Sinceallalternativesincludedhereandinsubsequentsectionswillbecompleteby1976,thatyearhasbeenselec'tedasthebasisforpresentworthcalculations.Thepresentvalue(1976)ofdecommissioningandmaintainingtheunitinasafecondition,basedona9.6percentcostofcapital-andtheremaining21.75yeareconomiclife¹willbeabout$4,860,000..ItisassumedthattheenergythatwouldhavebeengeneratedbyNineMilePointUnit1isreplacedbyolderfossilunitsuntil1976whenanewoil-firedunitisplacedinoperation.Thisreplacementpowerwouldcostabout7.04mills/kWhrorabout$32,000,000annuallyforthekWhrstobereplaced.Thepresentvalue(1976)ofthisannualcostata9.6percentrateofreturnwillbeabout$182,300,000.Theestimatedcostofinstalling610MWeofgasturbinesin1973isabout$48,800,000basedonaninstallationcostof$80/KW.Sinceitisassumedthatallreplacementenergywillbesupplied¹NiagaraMohawk'semploymentofa25-yearservicelifefornucleargeneratingequipmentdepreciationcomputationhasbeenadoptedbytheNewYorkStatePublicServiceCommissioninratemakingprocedures.9.4-2
bythelowerenergycostexistingfossilstations,onlyannualcapitalrelatedchargesareincluded.Theestimatedannualcostofthegasturbines,includingcapitalinterest,depreciation,andotherfixedchargeswillbeabout$8,300,000..Thisannualcostwouldonlybechargedasacostofdecommissioninguntil1976whenthereplacementoil-firedunitisinoperation.Thepresentvalue(1976)oftheseannualcostsata9.6percentcost.ofcapitalwillbeabout$35,600,000.AcompletelynewfossilunitatadifferentlocationontheNineMilePointsitecouldbeconstructedby1976.Useofexistingequipmentwithanewfossil-firedboilerisimpractical.Theexistingturbinecouldnotaccommodatethehigh-pressure,high-temperaturesteamfromafossilboiler.Sincestructuressuchasthereactorbuildingcontaininducedradioactivityintheirstructuralmembers,itisnotfeasibletousesomebuildingsforanewfossilplant.Locationofthesebuildingswouldrequirethattheybetomdowntomakeroomfortheboilerroomandotherstructures.Tearingdowntheseunuseablestructures,buildingnewstructuresintheirplace,andtryingtoaccommodateanewfossilunitwithintheuseableexistingstructureswouldtakemoretimeandwouldcostmorethanbuildingacompletelynewfossilunit.Theestimatedtotalconstructioncostofa610MWfossilfuelunitatNineMilePointforDecember1976operationwouldbeabout$200,000,000.Capitalcostshavebeenescalatedfromthepresentdateatarateof5.5percentayear.Theestimatedannualizedcostofcapitalincludinginterest,depreciation,andotherfixedchargeswouldbeabout$36,800,000.Theestimatedannualfuel,operating,andmaintenancecostwouldbeabout$31,393,000..Thesecostsarebasedonafixedcharge'ateof18.4percent,afuelcostof5.6mils/kWhr,operatingandmaintenancecostof1.2mils/kWhr,andacapacityfactorof85percent.Thetotalestimatedannualizedcostofthefossilunitwouldbeabout.$67,700,000.Thepresentvalueofthisannualizedcost'ta9.6percentcostofcapitalandanamortizationovertheremaining18yeareconomiclifeofUnit1wouldbeabout$570,000,000.Therefore,thegrandtotalpresentvalue(1976)ofdecommissioningNineMilePointUnit1,maintainingthefacilityinasafecondition,andreplacingtheinstalledcapacityandenergyrequirement,wouldbeabout$793,000,000.Inconclusion,thealternativeofdecommissioningtheexistingstationandreplacingthepowerisnotrealisticforseveralreasons.First,itisnoteconomicallynorenvironmentallydesirabletodecommissionanexistingstationwhichissupplyingmuchneededpowerwithaminimumenvironmentalimpact.Also,sinceonly310MWeofinstalledcapacitycouldbereplacedduringthefirstyearafterdecommissioning,a300MWedeficiencyininstalledcapacitywouldexistbasedonanobjectiveofan9.4-3
installedgeneratingcapacityreserveof18percent.,Thisdeficiencywouldnotbeoffsetbypowerpurchasedfromothersourcesandthereforewouldresultinalostbenefit.Further,gasturbinesaregenerallyunsuitedforcontinuousoperationasbaseloadunits.Theyhavearelativelylowavailabilityduetomaintenancerequirementsandhighfuelcosts.Finally,ifafossilstationweretoreplacetheexistingnuclearstation,evenundertheCleanAirAmendmentsof1970,suchaplantcouldannuallyemit3.7x10~poundsofsulfurdioxides,1.3x10~poundsofnitrogenoxides,and0.44x10~poundsofparticulatematter.Theseemissionswouldbe.preventedbythecontinuedoperationoftheexistingnuclearstation.Hencethedecommissioningoftheexistingstationandsubsequentreplaceme'ntofthepowerisnotafeasiblealternativeandisnotconsideredfurtheringreaterdetail.94-4 JlII 95ALTERNATIVECOOLINGSYSTEMSTheexistingcoolingsystemfortheNineMilePoint1stationemploysonce-throughcoolingwhichtakeswaterfromLakeOntario,usesitforthemaincondenser,primaryandauxiliarycoolingwithinthestation,andreturnsittothelake,undiminishedinquantitybutincreasedintemperature.AdiffusersystemwouldbedesignedtocombinethecoolingwaterdischargesfrombothUnit1andtheproposedUnit2,plannedforoperationin1978.ApresentationofthisdiffusersystemisfoundintheNineMilePointNuclearStationUnit2EnvironmentalReport(Ref.27),UtilizationofthisdiffusersystemiscontingentuponconstructionofUnit2.However,forthepurposesofthisreportonlyalternativecoolingsystemsfortheUnit1dischargealoneareconsidered.Theseincludeaonce-throughsystemwithdiffuserdischarge,anaturaldraftcoolingtowersystem,amechanicaldraftcoolingtowersystem,andacoolingpondsystem.Adrycoolingtower,aspraypond,andsupplementarycoolingarediscussedbutarenotconsideredtobefeasiblealternatives.Alternativecondensersizesfortheonce-throughsystem(i.e.lowertemperaturerisesacrossthecondenserandhighercirculatingwaterflows)werenotconsidered,sinceentrainmentstudiestodateatUnit1indicatethatmechanicaleffectsarethemajorcauseofplanktonmortalityrate.OnlythosevariouscoolingsystemswhichareconsideredfeasiblearediscussedindetailinthefollowingsectionsandformthebasisforthecomparativetabulationofenvironmentalcostspresentedinTable9.5-1attheendofSection9.5.9.5.1ExistingOnce-ThroughCoolingSystemTheintakeanddischargestructuresassociatedwiththeexistingonce-throughcoolingsystemarediscussedindetailinSection3.5andareshowninFigures3.5-1through3.5-3.ThissystemwasdesignedsothattheeffluentwouldcomplywiththeNewYorkWaterQualityThermalStandardsof1967(6NYCRR701)asdiscussedinSection5.1.9.5.1.1EconomicsoftheExistingSystemTheNineMilePointNuclearPowerStationUnit1isanexistingfacilitywhichcommencedcommercialoperationinDecemberof1969.Therefore,thetotalcostsassociatedwiththeconstructionoftheexistingonce-throughsystemwillnotbequantified,butwillinsteadserveasabasecost.Thecostsforthealternativecoolingmethodswillbepresentedasanincrementalcosttothebasecostoftheexistingsystem.Thesecostswillthereforereflecttheamountnecessarytotransformtheexistingonce-throughcoolingsystemtothealternativecoolingwatersystem.9.5-1 II.~,P 9-5.1.2EnvironmentalConsiderationsoftheExistingSystem9.5.1.2.1HeatDischargetoWaterBodyTheexistingOnce-throughsystemdiscussedinSection3.5hasatotalcirculatingwaterflowofapproximately600cfs.Tpetotalheatrejectionrateisapproximately4x10~Btu/hr.StudiesoftheexistingsystemasdiscussedinSection5.1haveshownthata3,000acre-feetvolumeofwateriscreatedwithina3Ftemperatureincreaseisothermwithasurfaceareaoflessthan300acres.AspresentedinSection5.5,theecologicalstudiespreparedbyDr.StorrhaveshownthatthisdischargeconformstotheNewYorkStateWaterQualityThermalStandardsof1967(6NYCRR701)asdiscussedinSection5.1.ThesevaluesforthevolumeandareaaffectedbythethermaldischargearesmallincomparisontothevolumeandareaofLakeOntario,whichare1.3px10~acre-feetand4.7x10~acres,respectively.AsdiscussedinSection5.5.3,dissolvedoxygenmeasurementshavebeenmadeinthedischargeareaduringthefishnettingsurvey.Asthesummerprogresses,theamountsofphytoplanktonandf'warmestperiodoftheyearlevelsofdissolvedoxygenof11to12ppmarenotuncommon,withnodiminutionat,night.NosignificantlossinoxygenhasbeenobservedbetweentheintakeanddischargeofUnit1.SincetheheatreleasedtothelakeandthesurfaceareaandvolumeofthelakeaffectedbyUnit.1aresmallincomparisontothelake'snaturalcharacteristics,noadversethermalimpactonthewatersofLakeOntarioasawholehasorisexpectedtooccur.However,forthepurposesofthisreportanenvironmentalimpacthasbeenassumedbasedontheareaaffectedbytheexistingstationdesignandthedistributionofthefisheryresourcefortheU.S.portionofthelake.Theareaofthestation~simpactwasbasedontheNewYorkStatecriteriaforthermaldischargeswhichassumethatincreasesinambientlaketemperatureoflessthan3Fwillnotadverselyaffecttheaquaticbiota.Byusingthe300-acresurfaceareawithinthe3Fisothermastheareawhichcouldadverselyaffectcommercialfishproduction,itispossibletoassesstheimpactofthisfacilityonthecommercialfisheryof,LakeOntario.LakeOntariosupportsalimitedcommercialfisheryasdescribedinSection2ofthisreport.CommercialfishingintheUnitedStatesfromLakeOntarioforthethreeyears1968,1969and1970(Section2.2.1)amountedtoapproximately322,000poundsperyearforanaverageannualvalueof$65,000.AreportbytheU.S.FishandWildlifeServicein1969(Ref.18)estimatesthatprojecteddemandforfisheryproductsfromU.S.landingsinLakeOntariowillincreasefour-foldtoabout1.25to1.5mi3.lj.onpoundsannuallybytheyear2020.9.5-2
'f01'III
,ThemajorityofthecommerciallandingsintheU.S.portionofthelakearefromChaumontBayandthenearbyshoala'reasinthenortheasternportionofthelakeover30milesfromthesite.TheremainingfishingeffortisgenerallyinthelakeproperfromtheOswegoRivereastwardtotheSt.LawrenceRiver.However,forenvironmental'ostquantification,itisassumedthatthemajorityofthecommercialU.S.fishingis,wi4hinthe100footdepthcontour,ofthelakefromtheOswegoRivertothenortheasternU.S.boundaryincludingthebaysandshoalareasintheU.S.portion'ofthelakeTherearethenapproximately.350,000acresofwateravailableforcommercialfishing.ThepxojectedannualU.S.commerciallandingsforthe.year2020is1.5millionpoundsoffishperyear.Uniformlyspreadover.the350,000acresresultsinanaveragerateofexploitationof5poundsoffishperacreofwater.Actualstudiesof.thetemperaturedistributionandaquaticlifeinthevicinityoftheexistingNineMilePointUnit1havedemonstratedthattherearenodetrimentaleffectstofishlife.However,forpurposes.ofthis.evaluationitisassumed,perhapsunrealistically,thatallfishwithina3Fisotherm,areadverselyaffected.IfUnit1affects300surfaceacres,approximately1,500poundsoffishcouldbelosttothecommercialfisheryeachyear.InformationontheutilizationofLakeOntarioforsportfishingwasalsoderived.fromtheU.S.Fishand-WildlifeService~(Ref.18)Thereareapproximately2,000,000surfaceacresintheU.S.portionofthelakeplusthousandsofacresoftributaryareawhichofferfishermenavarietyofwarmandcoldwaterspeciesofsportfish.Theestimatedtotalfishermandaysexpendedin1960was3.2million;thisnumberisexpectedtodoublebytheyear2020.The1965NationalSurveyofFishingandHuntingestimatesthatthetangibleexpendituresperfreshwater-fishermanin1965averaged$88.71peryear.ThismakessportfishingavaluablesourceofrevenueintheLakeOntarioRegion.TheNewYorkStateDepartmentofEnvironmentalConservationandtheGreatLakesBas'inCommissionarepresentlydeterminingthedistributionofsportfishingeffortinLakeOntario.However,thisinformationisnotyetavailableandthesportfishingintensityinthevicinityofNineMilePointcannotbeassessed.Therefore,onlyaqualitativejudgmentcanbemadeoftheimpactoftheheateddischargeonsportfishing.SincetheareaofLakeOntarioaffectedbytheheateddischargefromUnit1,lessthan300acres,issmallincomparisontothe2,000,000acresavailableforsportfishing,Unit1isnotexpectedtohaveanadverseimpactonsportfishing.CTheinfluenceofthethermaldischargesfromtheexistingsystemonthemigratorypatternsofthefishinthelakeandadjacentriversystemswasalsoconsidered.TheadjacentriversarecomprisedoftheOswegoRiverapproximatelyeightmileswestof9.5-3
thesite,theLittleSalmonRivereightmileseast-,ofthesite,andtheSalmonRiverafewmilesfurthereast.'heNewYorkStateDepartmentofEnvironmentalConservator.onexpectstodevelopthefisheriesassociatedwiththesexivers.Temperatureincreasesintheareaoftheseriversduetothedischargefromthisunitwouldbeimmeasurablebecauseoftheirdistancefromthesite.Inthelakepropertheinfluenceofthedischargewillbelimitedtoalocalizedarea.Fishwillbe'bletomove'reelyaroundthewarmest.portionsoftheplume.ThethermalflowfromthesiteisdescribedinmoredetailinSection5.1ofthisreport.Sincethethermaldischargewillnotaffecttheadjacentriversandsincethereisampleroomforfishtotravelaroundtheplume,noimpaixmentoffishmigrationisanticipated.-AspreviouslydescribedinSection2.7-1,thesouthshoreofLakeontarioisanimportantconcentrationareafordivingducksin'hewinter.Itisnotanticipatedthat,thisduckpopulationwouldbeadverselyaffectedbythethermaldischargesincetheresultsofthepreoperationalandpost-operationalsurveys.indicatethattheeffectsonpotentialfoodsources,suchas-attachedmacrophytesandassociatedinvertebrates,aresmallandlocalized.Likewise,theeffectsonanytransientbiotawhichmayutilize:thelakearebelievedtobeminimal.9.5.1.2.2EffectsofIntakeStructureonWaterBodyStudies'avebeenconductedat-theNineMilePoint,NuclearStationUnit1toevaluatetheimpactofthecondenser'coolingwatersystemonentrainedplankton.ThesestudiesaredescribedinSection5.5.Thetotalweightoforganismspercubicfootofwaterwascomputedasthesumoftheaverageweightsofthespecifictaxonomicgroupsofthezooplanktonandphytoplankton,collectedfromelevensamplingperiodsfromJunetomid-November.Theaverageyeightof'planktonforthesamplingperiodwasestimatedtobe0.548gram/cubicfoot.Thisvalueistaken'.to",berepresentativeoftheentireyear.However,theaverageannualbiomassisactuallylowersincethebiomassconcentrationisprobablylessduringthewintermonths.These'estimatesarebelievedtoaccount,forapproximately90percentoftheplanktonbiomass.Smallunabundantformswerenotincludedin.thisanalysis.iTwoseparatemethodswereusedtocomputethemortalityofplanktonpassingthroughthecondensercoolingsystem.Thefirstmethoddependson-countingthedifferenceinnumberofdead,'rganismsinthedischarge'ndintake.structuresforeachtaxonomicgroup.Theresultsshowedthat0.047gramofplanktonwerekilledpercubicfootofwaterpassingthroughthecoolingsystem.However,deadorganismsmaydisintegrateorsettle.out9.5-4 l,lIa' inthesystemandcouldreducethenumberofdeadorganismscountedinthedischarge.Thismaybiasthesampleandlowerthecomputedmortalityrate.Thesecondmethodfordeterminingthemortalityisbasedonthenumberoflivingorganismspercubicfootmeasuredinthedischargeandintakestructures.Thedifferenceisassumedtobethenumberoforganismskilledinthecoolingsystem.Thismoreconservativemethodresultsinamortalityrateof0.161gramofplanktonpercubicfootofwaterpassingthroughthecoolingsystemhavingacondensertemperatureriseof32F.Basedonthismoreconservativemortalityrateandaflowof600cfsforUnit1,thetotalweightofplanktonkilledannuallyisestimatedtobe6.7x10~poundsperyear.Furtherstudiesarebeingcontinuedin1972.Theimpactofthismortalityontheplanktonpopulationcanbestbeassessedbyconsideringseveralfactors.Thefirst,andprobablymostimportantfactor,isthatplanktonpopulationsaregenerallyshortlived(daystoafewweeks)andhaverapidregenerationtimes.Furthermore,thesiteislocatedinanopenareaofthelakewherethereisacontinualrenewalofwatersso-localpopulationsshouldnotbecomedepleted.Theincreaseintemperatureinthevicinityofthedischargemightalsoaccelerateplanktonproductionduringthecoldermonths.Inadditiontothesefactors,thedeadplanktonwouldnotbelosttothefoodchain.ObservationsbydiversatUnit1indicatethatmanysmallfishesareattractedtothedischargeareaandappeartobefeedingonplanktondetritus.Forthesereasons,theimpactofthismortalityontheecosystemofthelakeisexpectedtobeminimal.The.effectoftheintakeandcondensercoolingsystemonthefisheriesofthelakecanbeevaluatedbydeterminingthenumberoffishthatenterthesystemandbecomeentrappedinthescreenwellandthenumberofjuvenileformswhichmayexperiencelethalconditionsinpassingthroughthesystem.FisheggsorlarvaewerenotcbservedintheplanktonsampleswhichwerecollectedatUnit1duringtheentrainmentstudiesconductedfrommid-Junetomid-Novemberin1971.AsdescribedinSection2,theonlyfishwhichhasbeenobservedtospawnintheareaisthealewife.Alewifeeggsaredepositedon-thebottomandadheretothebottomstrata.Assuch,theseeggswouldgenerallynotbeentrainedinthecondensercoolingsystem.ManyoftheotherfishspeciesfoundinLakeOntario,alsohavesinkingeggsandwouldnot,therefore,beentrainedinthecondensercoolingsystemduringthislifehistorystage.EstimatesoflarvalfishabundanceduringtheearlyspringinthevicinityofNineMilePointarenotpresentlyavailable.StudiesasdiscussedinSection5.5,wereinitiatedintheSpringof1972inordertoestablishthenumberandmortalityoflarvaewhich9.5-5 Dk maybeentrainedinthecondensercoolingsystem..However,duetotheprevi.ouslymentionedfactors,,itisanticipatedthatlarvalabundancewouldbe.lowandwouldbeprimarilycomposedofalewi.ves.TheeffectsofthecirculatingwaterintakesystemuponfishlifehavebeendiscussedinSection5.OccasionalobservationsatNineMilePointUnit1duringthefirsttwoyearsofoperation(1970-71)indicatethatonlyafewfishhavebeencollectedfromthetrashracks.Aprogramofdetailedobservations.inthisarea(i..e.,trashracksandtravelingscreens)willbeconductedduring1972tomeasurefishcollection.9.5.1.2.3ChemicalDischargetoWaterBodyNochemicaltreatmentisassociatedwiththeonce-throughcoolingsystemtocontrolorganicgrowthsinthecondenser..Thesiltentrainedinthewaterissufficienttocleanthecoolantpassageways.ThiscoolingsystemthereforedoesnotincreasechemicalconcentrationsinLakeOntarioanddoesnotproduceanyenvironmentalimpact.Anychemi.calconcentrationsthatarereleasedareduetomixing,ofthestationschemicaleffluentswiththecirculatingwater.However,thesereleasesareconsideredtobepartofthechemicaltreatmentsystempresentedinSections3.7and9.6andnotapartofthecoolingsystem.9.5.1.2.0ConsumptionofWaterThiscoolingsystemreturnsallthecooli.ngwatertothelake.Noconsumptionofwaterhasorisexpectedtooccurfromthecontinueduseofthiscoolingsystem.9.5.1.2.5ChemicalDischargetoAmbientAirTheexistingonce-throughcoolingsystemdoesnotproduceanyparticulatematterintheformofdrift,anddoesnotreleaseanygasesorodors.Thissystemthereforedoesnotadverselyaffectambientairquality.9.5.1.2.6SaltsDischargedfromCoolingTowersThisareaofenvironmentalconcernisnotapplicabletothiscoolingwatersystemalternative.9.5.1.2.7ChemicalContaminationofGroundWater(excludingSalts)Theexistingonce-throughcoolingsystemi.si.solatedfromthegroundanddoesnotcontaminategroundwater.9.5-6 0
9 1-2.8RadiologicalEffectsTheradiologicaleffectsthatareproducedfromthestationarepresentedindetail.inSection5.2.9.5.1.2.9FoggingandIcingTheexistingpowerstationusesaonce-throughcoolingsystemtorejectwasteheatfromthestation.Thiscoolingmethoddoesnotrelyonevaporationorthetransferofsensibleheattotheatmosphere,andtherefore,thisstationdoesnotcreateafoggingoricingproblem.95.1.2-10Raising/LoweringofGroundwaterLevelsAspreviouslydiscussed,allliquidsystemsareisolatedfromthegroundandnoalterationofgroundwaterlevelshasorisexpectedtooccur.9.5.1.2.11AmbientNoiseTheprimarysourcesofnoisefortheunitwiththeexistingonce-throughcoolingsystemarethemaintransformerandturbinehall.ThetransformersoundlevelsversusdistanceaxecalculatedfromthetransformerNEMArating.Turbinehallnoiseisestimatedfromthesoundlevelsanticipatedwithintheturbinehallcorrectedforthetxansmissionlossofthewalls.Thesoundfieldinthevicinityofthestationiscalculatedbyaspecialcomputerpxogram.Thisprogramdeterminesthesoundpowerlevelforeachsoundsource,thedistancefromeachsoundsourcetoreferencepointsonapolarcoordinategridsystem,andtheoctavebandsoundpressurelevelcontributionforeachsoundsourceateachreferencepoint.Correctionsaremadeforsourcedirectivity,molecularabsorption,andhemisphericalradiation.,AteachreferencepointtheindividualsourcecontributionsareconvertedtodBAvaluesandsummedtodeterminethetotalsoundlevelatthatpoint.'onstantsoundlevelcontourlinesmaybedrawnthroughthereferencegrid.Thesecontourswereusedinconjunctionwiththeproposed<<HUDCriteriaGuidelinesforNonaircraftNoise,<<DepartmentCircular1390.2toestimateareasofacousticacceptabilityintheregionsurroundingthesite.TheHUDcriteriagivesoundlevelswhichcorrespondtothecategories<<clearlyunacceptable,"<<normallyunacceptable,"and<<normallyacceptable.<<Basedontheseguidelinesandtheconstantstationsoundlevel,the"normallyacceptable<<levelwastakentocorrespondtoanareareceiving45to65dBAandthe<<normallyunacceptable<<levelwastakentocorrespondtoanareareceivingover65dBA.This.combinationofnoiseguidelinesandsoundcontoursweresuperimposedupon"topographicmapsoftheareatoestimatethe9.5-7 lg numberofresidences,schools,andhospitalsreceivinganacousticalimpactfromthesite.Theresultsoftheacousticalimpactstudyfortheonce-throughcoolingwatersystemhasdeterminedthatnoresidences,schools,orhospitalsarewithinanareareceivingasoundlevelgreaterthan65dBA..Inaddition,ithasbeendeterminedthatnoresidences,schools,orhospitalsarewithinanareareceivingasoundlevelbetween45and65dBA.Therefore,theacousticalimpactoftheexistingonce-throughcoolingwatersystemisassumedtobeneglible.9.5.1.2.12AestheticsThiscoolingsystempresentsnovisiblestructuresandthereforehasnoeffectontheaestheticsofthearea.9.5.1.2.13PermanentResidualsofConstructionActivityTheconstructionactivitypertainingtotheexistingonce-throughcoolingsystemhasalreadybeencompleted.Thequantitiesofexcavatedmaterialhavebeenusedasbackfillaroundstructuresorforsitegrading.Theintakeanddischargestructuresdonotinterferewithshippingorwatertransportationinthearea.Therefore,nopermanent.residualsofconstructionactivityisconsideredtoexistatthesite.9.5.1.2.14CombinedorInteractiveEffectsThereisnoevidencethatthecombinedeffectsofanumberofimpactsresultinatotaleffectwhichisnotadequatelyindicatedbymeasuresoftheseparateimpacts.9.5.2Once-ThroughCoolingSystemWithDiffuserDischargeAonce-throughcoolingsystemwithdiffuserdischargeisoneofseveralfeasiblealternativeswhichmaybeutilizedtodecreaseenvironmentalimpact.Withthissystemthewatercirculatedthroughthecondenserswouldbereturnedtothelakethroughsubmergedjetdiffusers.Thesystemusestheexistingintaketunnel,condenserandauxiliarysystems.However,thediffuserschemewouldrequiretheinstallationofanewdischargeshaftadjacenttothewestsideoftheexistingscreenwell,andanewdischargetunnelextendingabout1400feetoffshore.Atthispointthewaterdepthatmeanlakelevelisapproximately35feet,asshowninFigure9.5-1.Thenewdischargetunnelwoulddivideintotwoequalbranchtunnelsbymeansofateesection.Thecombinedtotallengthofthesebranchtunnelswouldbeabout,195feet.Eachbranchtunnelsectionwouldalsocontaintwodiffuserheadsspacedabout9.5-8
-~1>>I~'IL.40,I4~+
NEWDISCHARGESTRUCTURE(2.5DiaNOZ2LES4PAIRS)2IODIFFUSERHEAD>gOEXISTINGINTAKESTRUCTURENEWDISCHARGETUNNELEXISTINGDISCHARGESTRUCTURE*OOONEWDISCHARGESHAFTII0iiIIIUNITISCREENWELLFIGURE9.5-IONCE"THROUGHCOOLINGSYSTEMWITHDlFFUSERDlSCHARGE
I01.ARouPUMPWELL60tSERVICEWATERLINEPROGRESS-CENTERII4tINTAKELINE48tSLOWDOWNLINEI4"tDISCHARGELINEUNITIEXISTINGSCREENWELLSTRUCTUREOOO~~FFwNI,883,00084t84t84tBALANCELINETOWERDISC.STRUCTURE(TYP)NOTESFEQUIPMENTFORCHEMICALADDITIONSTOBELOCATEDINEXISTINGSCREENWELL.MECHANICALDRAFTCOOLINGTOWER288x55(TYP)SWITCHYARDMAKE-UPOBTAINEDFROMSERVICEWATERDISCHARGE.SLOWDOWNCONTROLLEDBYWEIRATTOWERBASIN,WITHDISCHARGEINTOEXISTINGDISCHARGESHAFTINSCREENWELL.OOOeIe~~wNI,883,000OOOel'IF0I00ZOOSEXI.EEEETFIGURE9.5-2MECHANICALDRAFTCOOLINGTOWERSCHEME 0
45feetoncenterandconnectedtothebranchtunnelbyverticalrisers.Inturn,eachdiffuserheadwouldconsistoftwin2.5footdiameternozzleswhichwouldenable,.thecoolingwatertobedischargedinahorizontaldirection.Thewallssurroundingtheexistingdischargeflumeat.thescreenwellwouldberaisedtoaccommodatetheincreaseddischargeheadcreatedbytheinstallationofthenozzles.Also,themotorsontheexistingcirculatingwaterpumpswouldbereplacedwithlargermotorstoefficientlyoperateagainstthisincreaseddischargehead;,Installationofthenewtunnelshaft,tunnel,diffuserandstructuralchangestothescreenwellcouldbeaccomplishedwithouthinderingthecontinuedoperationoftheunit.However,themotorreplacementandtheconnectionofthenewdischargeshafttotheexistingdischarge:flumewouldhavetobeaccomplishedduringastationoutage.9.5.2.1EconomicsofthisSystemForthepurposesofthisreportisisassumedthatthissy'temcouldbeplacedinoperationby1976.Theestimatedtotalconstructioncostoftransformingtheexistingcoolingwatersystemtotheonce-through"diffuserdischargesystemforoperationin1976'isabout$5,770,000..Capitalcostshavebeenescalatedfromthepresentdateatarateof5.5percentayear.Theestimatedannualizedcostofthisalternativeincludingcapital,interest,depreciation,andotherfixedchargesisabout$1,160,000.Theestimatedannualfuel,operatingandmaintenancecostofthealternativewouldbeabout"$55,000..Thesecostsarebasedonafixedchargerateof20.1percent,afuelcostof2.8mills/kWhr,anoperatingandmaintenancecostof0.3mill/kWhrandacapacityfactorof85percent.Thetotalestimatedannualizedcostisabout$1~215~000Totalestimatedpresentvalueofthisalternativeata9.6percentcostofcapitalandanamortizationovertheremaining18-year'conomiclifeofthestationisapproximately$10i230i0009.5.2.2EnvironmentalConsiderationsofthisSystem9.5.2.2.1HeatDischargetoWaterBodyTheheatrejectedfromUnit1throughitsonce-throughcoolingsystemisapproximately4x10~Btu/hr.Thisquantityofheatwouldbedischargedthroughthenewdiffuserdischargestructuretopromoterapiddilution,asseeninFigure9.5-1.Thesurfaceareawithinthe3Fisothermabovenaturallaketemperaturewould.beabout6.0acresandthevolumewithinthe3Fisothermwouldbelessthan150acre-feet..Sincethisquantityofheatedwater'ssmallincomparisontothelargevolumeofwaterinLake9.5-9
Ontario,nomeasurablethermalimpactonthewatersofLake.Ontario,asthewhole,areexpected.AsdiscussedinSection9.5.1.2.1,nosignificantlossofoxygenhasbeenobservedfromtheresultsofthedissolvedoxygenmeasurementswhichhavebeenmadeinthedischargeareaduringthefishnettingsurvey.Therefore,itisconsideredthatthedischargefromthissystemwouldhavenoadverseimpactontheoxygenavailabilityofLakeOntario.ActualstudiesofthetemperaturedistributionandaquaticlifeinthevicinityoftheexistingNineMilePointUnit1dischargesystemhavedemonstratedthattherearenodetrimentaleffectstofishlife.However,forpurposesofthisevaluationitisassumedthatallfishwithina3Fisothermareadverselyaffected.Itisestimatedthatthesurfaceareaaffected,6.0acres,couldresultinalossofapproximately30poundsoffishperyeartothecommercialfishery.Thisisbasedonarateofexploitationof5poundsoffishperacreofwaterasdiscussedinSection9.5.1.2.1.Inaddition,theimpactofthedischargeonthesportfisheryisalsoconsideredtobeneglible,andisjudgednottoimpairthemigrationoffishinLakeOntarioortheadjacentriversystems,asdiscussedinSection9.5.1.2.1.,AsdiscussedinSection9.5.1.2.1theresultsofthepreoperationalandpostoperationalfieldsurveysindicatethattheeffectsonpotentialfoodsourcesforwildlifeandtransient-biotaaresmallandverylocalized.Therefore,it.isconsideredthatthedischargefromthissystemwouldhavenoadverseimpactontransientbiotaandassociatedwildlife.9.5.2.2.2EffectsofIntakeStructureonWaterBodyThisareaofenvironmentalconcernfortheonce-throughcoolingsystemwiththediffuserdischargewouldbethesameasthatpresentedinSection9.5.1.2.2.9.5.2.2.3ChemicalDischargetoWaterBodyThisarea'fenvironmentalconcernfortheonce-throughcoolingsystemwiththediffuserdischargewouldbethesameasthatpresented,inSection9.5.1.2.3.9.5.2.2.4ConsumptionofWaterThiscoolingsystemreturnsallthecoolingwatertotheLake.Noconsumptionofwaterisexpectedfromthissystemandthereforenoimpactisexpectedtooccur.9 10 0
9.5.2.2.5ChemicalDischargetoAmbientAirThiscoolingsystemwouldnotproduceanyparticulatematterintheformofdrift,andwouldnotreleaseanygasesorodors.,.Thissystemwouldnotadverselyaffectambientairquality.9.5.2.2.6SaltsDischargedfromCoolingTowersThisareaofenvironmentalconcernisnotapplicabletothiscoolingwatersystemalternative.9.5.2.2.7ChemicalContaminationofGroundWater(excludingsalts)Thisonce-throughcoolingsystemwouldbeisolatedfromthegroundandwouldnotcontaminategroundwater.9.5-2.2.8RadiologicalEffectsTheradiologicaleffectsthatwouldbeproducedfromthestationwhenaonce-throughcoolingsystemwithdiffuserdischargeisemployedwouldbethesameasthosepresentedinSection5.2.9.5.2.2.9FoggingandIcingThisonce-throughcoolingsystemwouldnotrelyonevaporationofwatertoreleaseheattotheatmosphere.Therefore,thissystemwouldnotcreateafoggingoricingproblem.9.5.2.2.10RaisinglLoweringofGroundWaterLevelsSincethiscoolingsystemwouldbeisolatedfromthegroundnoalterationofgroundwaterlevelscouldoccur.9.5.2.2.11AmbientNoiseTheacousticimpactofUnit1usingtheonce-throughcoolingsystemwiththediffuserdischargewouldbethesameasthatinSection9.5.1.2.11.9.5.2.2.12AestheticsThiscoolingsystemwouldpresentnovisiblestructuresandthereforewouldhavenoadverseeffectontheaestheticsofthearea.9.5.2.2.13PermanentResidualsofConstructionActivityTherewouldbenopermanenteffectsofinstallingtheonce-throughcoolingsystemwithadiffuserdischarge.Constructionofthenewdischargesystemwouldrequireessentiallynodowntimebeyondthatrequiredduringnormalrefuelingoperations.Thequantitiesofexcavatedmaterialwould9.5-11
beusedasbackfillaroundstructuresorforsitegrading..Tunnelingactivitywouldhavenoeffectonlakewaterqualityalthough,theremaybesomedisturbanceofbenthicorganismswithinasmallareaduring.installationofthedischargediffusers.Thediffuserrisershaftswouldbedrilledratherthanblastedintothelakebottomandthesteellinersgroutedandthe,largediffusershaftlinersinserted.Thedrillingwouldbeconductedfromatemporarysurfaceplatformsimilartoa<<TexasTower<<.Thebenthosinthevicinityofthe.diffuserriserswouldberemovedasaresultofthedrillingactivity.However,theaffectedareaissmall(lessthan0.1acre)andis,therefore,notexpectedtoadverselyaffecttheoverallbenthiccommunitiesinthevicinityof,NineMilePoint.Followingplacementofthediffusershafts,theplatformwouldbedisassembledandremovedfromthelake.Theintakeanddischargestructureswouldnotinterferewithshippingorwatertransportationintheareasincethestructureswouldbemorethan12feetbelowthelowwaterdatum.9.5.2.2.14CombinedorInteractiveEffectsThereisnoevidencethatthecombinedeffectsofanumberofimpactsresultinatotaleffectwhichisnotadequatelyindicatedbymeasures'oftheseparateimpacts.9.5.3WetCoolingTowerSystemsWetcoolingtowersremoveheatbypassingambientairthroughthecoolingwater.Heatisreleasedtotheatmospherebyacombinationofsensibleandlatentheattransfer.Thecoolingtowerperformanceisthusdependentonmeteorologicalconditions.Wetcoolingtowerschemesarepresentedbelowthatareclosedloopsystemsandrejectallofthepowerstation'swasteheattotheatmosphere.Coolingtowerscouldalsobeusedasasupplementarycoolingsystemincombinationwithaonce-throughcoolingsystem.AdiscussionofthistypeofsystemispresentedinSection9.5.7.AmechanicallyinduceddraftcoolingtowerschemeforUnit1wouldconsistoftwoseparatetowerunitseachhavingninecells.Eachunitwouldhaveanapproximatelengthof288feetandawidthofapproximately55feet.Thetowerswouldbeapproximately65feethigh,whichincludesan18-footstackheightforeachcell.Thesedimensionsassumeadesignwetbulbtemperatureof74.Fwithadesigncoldwaterapproachof14F.This74Fwetbulbtemperatureisrepresentativeofdesignconditionsforthesummermonths,andthe14Fcoldwaterapproachisthevaluewhichhasbeenassumedtoberepresentativeofoptimumconditionsforaunitofthissizeinthisclimate.ThisschemeispresentedinFigure9.5-2.9.5-12
AnaturaldraftcoolingtowerschemeforUnit1wouldhaveasingletowerapproximately360feetindiameterand370feethighforanatmosphericdesignconditionof74Fwetbulbtemperatureand60percentrelativehumidity.Theseconditionsarerepresentativeofsummertimedesignconditions..Duringtheseconditions,thetowerisdesignedtooperateatan18Fapproachwhichisestimatedtobeoptimumforthistypeoftowerinthisclimate..ThiscoolingtowerdesignschemeispresentedinFigure9.5-3Forthewetcoolingtowerschemes,LakeOntariowouldbeusedforsupplyingreactorandturbineservicewaterandmakeupwatertothetowerforevaporationlossandblowdown.Thelakealsowouldserveasareceivingbodyfortowerblowdown.Additionalcirculatingwaterpumpswouldbeinstalledinpumpwellsforeachtowerschemeandwouldpumpwaterthroughaclosedlooppipingsystembetweentheccolingtowersandthecondenser.The40cfs-auxiliarysystemservicewaterwouldbeobtainedfromLakeOntariofromtheexistingintaketunnelasshowninFigure3.5-2andbereturnedtothe.lakebywayofthetowerblowdownline.Anadditionalscreenwellstructurewouldberequiredin.thevicinityoftheexistingscreenwellfortheauxiliaryservicewatersystem.Theauxiliarysystemservicewaterwouldbeintroducedasmakeuptothetowersbycombiningtheauxiliarysystemwaterandmaincondenserdischarge.linesdownstreamofthecondenser.Thedesignflowratesinthecoolingtowerswouldbeasfollows:,foracirculatingwaterflowof600cfs,therewouldbeabout20cfsforevaporativeanddrift1'ossesand20cfsforblowdown.Therequiredmakeupwatertothetowerswouldbe40cfs.Thesedesignconditionswouldproducea2timesreconcentrationoflakedissolvedsolidsinthecoolingtowers.Thepreliminarydesignsofthetowershavenotincludedadditivestocontrolscalingoralgalgrowth.Intheeventthatthiswouldbecomeaproblem,anontoxicnonphosphatescalinginhibitorwouldbeusedthatwouldconformtotheFoodandDrugAdministrationcriteria.AlgalgrowthswouldbecontrolledbytheadditionofanalgicideinquantitiesthatwouldconformtoNewYorkStateWaterQualityStandards.Theuseofcoolingtowerswouldrequiremodificationstotheproposedradwastetreatmentsystem(Section3.6)sincelesswaterwouldbeavailablefordilutingtheradwasteeffluentthanwiththeonce-throughcoolingsystem.Toachievetherequireddischargeconcentrations,thecuriesofradioactivityreleasedwouldbereducedbyaddingatraysectiontotheregenerantchemicalevaporatorandaddingasetofdemineralizerstotheradwasteeffluenttreatment.Thismodificationwouldproduceconcentrationsthatwouldbewithinthelimitssetforthin10CFRPart20andtheproposedAppendixIofthe10CFRPart50guidelines,whentheeffluentiscombinedwiththe20cfsblowdownflowfromthetowers.9.5-13 0
I0R60"$SERVICEWATERLINEll4$INTAKELINE~PUMPWELL484BLOWDOWNLINEII40DISCHARGELINEEXISTINGSCREENWELLSTRUCTUREOOOlOlalPROGRESSCENTER3604NATURALDRAFTCOOLINGTOWERTOWEROSC.STRUCTUREUNITINl,283,000CENTEROFCOOLINGTOWERISNl>283,000E545,000SWITCHYARDNOTES:I.EQUIPMENTFORCHEMICALADDITIONSTOBELOCATEDINEXISTINGSCREENWELL2.MAKE-UPOBTAINEOFROMSERVICEWATERDISCHARGE.SLOWDOWNCONTROLLEDBYWEIRATTOWERBASIN,WITHDISCHARGEINTOEXISTINGDISCHARGESHAFTINSCREENWELL.Nls282i000OOOIAIAUJOoOCOlOILI0l00E00SCALE~FEETFIGURE95-3NATURALDRAFTCOOLINGlQWERSCHEME
9.5.3.1EconomicsofWetCoolingTowerSystemsThefollowingmodificationsarenecessarytotransformtheexistingcoolingwatersystemofSection9.5.1.tothenaturaldraftcoolingtowersystem.Thesemodifications.includeanaturaldrafthyperbolictower;aseparatemakeupandservicewaterscreenwell;modificationstotheexistingcirculatingwaterscreenwell,circulatingwaterpumps,andmotors;acirculatingwaterpumpwell.andassociatedequipment;circulatingwaterpipingconnectingthecoolingtower,pumpwell,condenser,andvariousscreenwellsfortowermakeupandblowdown;andthemodificationstotheliquidradwastesystemasmentionedinSection95.3.Theestimatedtotalcapitalcostoftransformingtheexistingcoolingwatersystemtothenaturaldraftcoolingtowersystemwouldbeabout$16,960,000foroperationin1976..Capitalcostshavebeenescalatedfrompresentdateattherateof5.5percentayear.Theannualizedcostofthisalternativeincludingcapital,interest,depreciationandotherfixedchargeswouldbeabout$3,409,000.Theestimatedannualfuel,operatingandmaintenancecostwouldbeabout$568,000..Theannualcapabilitylosscomparedtotheexistingstation'sgeneratingcapabilitywouldbeabout$1,096,000duetoahighercondenserinlettemperature.Thesecostsarebasedonafixedchargerateof20.1percent,afuelcostof2.8mills/kWhr,anoperatingandmaintenancecostof0.3milVkWhr,andacapacityfactorof85percent.Totalannualizedcostwouldbeabout$5,073,000..Thetotalpresentvalueofthenaturaldraftcoolingtowerschemeata9.6percentcostofcapitalandanamortizationovertheremaining18-yeareconomiclifeofthestationwouldbeapproximately$42,700,000.Themechanicaldraftcoolingtowersystemwouldconsistofequipmentsimilartothatofthenaturaldraft-tower,withtheexceptionthattwomechanicaldrafttowerswith.fansandmotorswouldreplacethehyperboliccoolingtower.Theestimatedtotalcostoftransformingtheexistingcoolingwatersystemtothemechanicaldraftcoolingwatersystemwouldbeabout$11,850,000foroperationin1976.,Capitalcostshavebeenescalatedfrompresentdateatrateof5.5percentayear.Theannualizedcostofthemechanicaldraftcoolingtowersystem,includingcapital,interest,depreciation,andotherfixedchargeswouldbeabout$2,382,000.Theannualfuel,operatingandmaintenancecostwouldbeabout$690,000.Annualcapabilitylosscomparedtotheexistingstation~scapabilitywouldbeabout$854,000duetoahighercondenserinlettemperature.Thesecostsarebasedonafixedchargerateof20.1percent,afuelcostof2.8mills/kWhr,anoperatingandmaintenancecostof0.3mill/kWhr,andacapacityfactorof85percent.Totalannualizedcostwouldbeabout$3,926,000.Thetotalestimatedpresentvalueofthemechanicaldraftcoolingtowerschemeata9.5-14
9.6percentcostofcapitalandanamortizationoverthe18-yeareconomiclifeofthestationwouldbe$33,040,000..9.5.3.2EnvironmentalConsiderationsofWetCoolingTowerSystems9.5.3.2.1HeatDischargedtoWaterBodyItisestimatedthattheblowdownfromeitherthemechanicaldraftornaturaldraftcoolingtowerswouldcontainapproximately1.4x10~Btu/hr.Thisblowdownwouldbedischargedfromtheexistingdischargetunneltopromoterapiddilution..Thesurfaceareawithinthe3Fisothermabovenaturallaketemperaturewouldbeabout0.72acreandthevolumewithinthe3Fisothermwouldbelessthan2.2acre-feet..SincethisquantityofheatedwaterissmallincomparisontothelargevolumeofwaterinLakeOntario,noadverseeffectstothewaterqualityofthelakeareexpected.AsdiscussedinSection9.5.1.2.1,nosignificantlossofoxygenhasbeenobservedfromtheresultsofthedissolvedoxygenmeasurementswhichhavebeenmadeinthedischargeareafortheexistingonce-throughsystemduringthefish,nettingsurvey.Becauseoftheturbulentcontactbetweenthecoolingwaterandtheambientairwithinthewetcoolingtowersystem,significantaerationwouldoccur.Therefore,.itisconsideredthatthissystemwouldnotadverselyaffecttheoxygenavailabilityinthecoolingwaterbutcouldconceivablyincreasethedissolvedoxygencontent.Itisestimatedthatthesurfaceareaaffected,0.72acre,couldresultinalossofapproximately4poundsoffishperyeartothecommercialfishery.Thisisbasedonarateofexploitationof5poundsoffishperacreofwaterasdiscussedinSection9.5.1.2.1.Theimpactofthedischargeonthesportfisheryisalsoconsideredtobenegligible.Theheatedwaterisalsojudgednottoimpairthemigrationof,fishinLakeOntarioortheadjacentriversystems.AsdiscussedinSection9.5.1.2.1theresultsofthepreoperationalandpostoperationalfieldsurveysindicatethattheeffectsonpotentialfoodsourcesforwildlifeandtransientbiotaaresmallandverylocalized.Therefore,itisconsideredthatthedischargefromthissystemwouldhavenoadverseimpactontransientbiotaandassociatedwildlife.9.5.3.2.2EffectsofIntakeStructureonWaterBodyTheestimateofplanktonmortalityforthecoolingtowerschemesisbasedon'heassumptionthatallplanktonicformsinthemakeupwaterwouldbekilledinpassagethroughthetower.Ithasbeenestimatedthatthereare0.548gramofplanktonper95-15
cubicfootoflakewaterasexplainedinSection95.1.2.2.Combiningthisvaluewiththe40cfsmakeupwaterflowresultsintheapproximationthat1.5x10~poundsofplanktonwouldbekilledinthecoolingtowersannually.Theenvironmentalimpactofplanktonmortality'onlakepopulationsisbelievedtobeminimalasdiscussedinSection9.5.1.2.2.TheeffectsoftheintakeandcondensercoolingwatersystemonthefisheriesofLakeOntarioarebasedontheinformationavailablefromoccasionalobservationsmadeat.NineMilePointUnit1asdiscussedinSection9.5.1.2.2.Assumingthatthefishlostinthecoolingtowermakeupsupplysystemisproportionaltothetotalcirculatingwaterflowrate,thenevenfewerfishwillbelostinthescreenwelltothetowersystemthanwouldbelostintheexistingonce-throughsystem.ThissmallquantitywouldhavenoeffectonthefisheriesofLakeOntario.Completeinformationofthelossoflarvalfish.throughthecondensercoolingsystemisnotpresentlyavailableasdiscussedinSection9.5.1.2.2.However,preliminarystudiesconductedatNineMilePointUnit1indicatethatthemortalityoflarvalfishisexpectedtobeminimalwithacoolingtowerscheme.9.5.3.2.3ChemicalDischargetoWaterBodyThe20cfstowerblowdownwouldcontain2timestheconcentra-tionsofchemicalsfoundinthenaturallakewaterduetoevaporationandrecirculationofthecoolant.SeeTable2.5-1foralistingofambientwaterqualitydataforLakeOntario.Afterdischargeintothelaketheeffluentwouldbedilutedwiththeambientlakewater.Approximately10dilutionswouldoccurbeforetheeffluentwouldreachtheboundarydescribedbythe3FtemperatureincreaseisothermasdiscussedinSection9.5.3.2.1.Thechemicalconcentrationsintheblowdownwouldthenbevirtuallythesameasthoseinthenaturallakewater.Therefore,noadversechemicaleffectsonthepeopleusingthewater,aquaticbiota,waterqualityorwildlifeareexpected.TheeffectsofcombiningthechemicaleffluentsfromthestationwiththeblowdownisdiscussedinSection9.6.9.5.3.2.4ConsumptionofWaterWaterlossfromthepowerstationresultingmainlyfromevapora-tionfromthecoolingtowerswouldbenearly20cfsduringpeakmeteorologicalconditions.Additionalconsumptionfromnormalstationoperationswouldnotexceed0.02cfs,asdiscussedinSection3.4.Ifthepeakconditionswerecontinuousthroughouttheyear,thetotalconsumptionofwaterfromLakeOntariowouldbeabout4.8x10~gallonsperyear.9.5-16
Thisquantityisabout0.001percentofthewatercontainedinLakeOntariowhichisapproximately4.4x10~~gallons.ItisnotexpectedthatthissmallquantityofwaterremovedperyearfromLakeOntariowouldhaveanyeffectsonthepeople,property,orindustriesusingthelakewater.9.5.3.2.5ChemicalDischargetoAmbientAirDropletsofthecoolingwaterwouldbeentrainedintheairthatpassesthroughthecoolingtower.Thesedroplets,calleddrift,wouldcontainthechemicalsthatoccurinthelakewaterthathavebeenallowedtoconcentratetoamaximumof2times.Theamountoftheseparticulatesdischargedfromthetopofthecoolingtowercanbeestimatedbyassumingthatthedriftis0.005percentofthetotalcirculatingwaterflowinthetowers.Thiswouldproduceadriftof14gpmthathasadissolvedsolidsconcentrationofapproximately450ppm.Thetotalemissionrateofsolidswouldbeabout0.05poundperminute.Assumingthatthesesolidswouldbeuniformlydistributedinthe'airflowfromthecoolingtowers,therewouldbeaconcentrationofapproximately9microgramspercubicmeteratthetopofthecoolingtower.IfthisconcentrationwascontinuallyexperiencedatthegrounditwouldproduceaconcentrationwellbelowtheannualaverageNewYorkStateandFederalsecondaryambientairqualitystandardswhichare55and60microgramspercubicmeter,respectively.Furthermore,theactualconcentrationsexperiencedatthegroundwouldbemuchlessthantheconcentrationatthetopofthecoolingtowerduetoplumeriseandatmosphericdispersion.Therefore,ambientairqualitywouldnotbesignificantlyalteredbythesolidsconcentrationsproducedfromthecoolingtowers.Inaddition,noodorsareassociatedwiththeoperationofthecoolingtowers.9.5.3.2.6SaltsDischargedfromCoolingTowersThe0.05poundperminuteofsolidsreleasedtotheatmospherefromthecoolingtowersareassumedtobesalts.Apreliminarystudywasperformedtoestimatethedistributionofthesesaltsinthevicinityofthesite.Thisstudyindicatesthatsaltdepositionratesfromnaturaldrafttowerscouldbeapproximately1pound/acre/yearatadistanceof1,200feet,theapproximatedistancetotheclosestsiteboundary.Thedepositionratewoulddecreasetoabout0.4pound/acre/yearatadistanceofonemile.Saltdepositionfromamechanicaldrafttowerisexpectedtobeapproximately120pounds/acre/yearatadistanceof1,200feet,andapproximately11pounds/acre/yearatadistanceofonemile.Thehighersaltdepositionratesofthemechanicaldrafttowerareduetothelowerheightofthistowerascomparedtothenaturaldrafttower.TheeffectofthesaltdistributiononpeopleandpropertybeyondthesiteareaisexpectedtobeminorsincetheannualambientsaltconcentrationswouldbebelowtheannualaverageNewYork9.5-17
StateandFederalSecondaryAmbientAirQualityStandardsforsuspendedsolids.Theimpactofthisfalloutonsurroundingvegetationhasnotbeendetermined,sincespecificstudiesarenotavailableoneffectsoflong-termexposureofthespecificsalts.However,LakeOntarioisusedforirrigationandthechemicalconcentrationsinthewaterappeartobesuitableforterrestialvegetation.Itisconsideredthatsincethereconcentrationofchemicalconstituentsinthecoolingtowerdriftisonly2timesthatofambientlakewater,theeffectofdriftonterrestialvegetationwouldprobablybeminor.9.5.3.2.7ChemicalContaminationofGroundWater(ExcludingSalt)Thecoolingtowerwouldbecompletelyisolatedfromtheground,exceptforthereleasesduetodrift.Thisdriftwouldbedilutedbynaturalrainfallwhichamountstoapproximately35inchesayear.Thisrainfallcombinedwiththeestimatedmaximumsolidsdepositionof120pounds/acre/yearfromamechanicaldraftcoolingtowerwouldresultinagroundlevelsolidsconcentrationofapproximately15ppm..Similarly,themaximumgroundlevelsolidsconcentrationfromanaturaldraftcoolingtowerwouldbeapproximately0.1ppm.Itisanticipatedthatthesesolidsconcentrationspercolatingtothegroundwaterwouldnotadverselyaffecttheusesofthisresource.9.5.3.2.8RadiologicalEffectsTheeffectsoftheproposedradwastesystemmodifiedforuseinconjunctionwithcoolingtowershavebeeninvestigated.Gaseousreleasesandconsequentenvironmentaleffectswouldbethesameasfortheproposedradwastesystemdesign.ThesereleasesareexplainedinSection5.2.Withtheuseofcoolingtowers,lesswaterwouldbeavailablefordilutingtheradwasteeffluent.Therefore,themodificationstotheproposedradwastesystemasdiscussedintheintroductiontoSection9.5.3wouldberequiredtoreducethetotalactivityoftheliquidradioactivereleasesbyabout10percent.ThecombinationofthisreducedeffluentactivityanddecreasedcoolantflowwouldresultinessentiallythesameactivityconcentrationswhichresultfromtheproposedradwastesystemdesignpresentedinSection3.6.Asaresult,theindividualandpopulationdoseswouldcorrespondtothosepresentedinSection5.2withtheexceptionofthemanremperyearfromfishconsumption.Sincethe,annualreleaseratewouldbereducedbyafactorof10,theexpecteddosefromthispathwaywouldbe10percentofthetabulatedvalues.9.5-18
9.5.3.2.9FoggingandIcingThefrequencyandextentoffoggingcreatedbycoolingtowerswouldbedependentuponmeteorologicalconditionsattheNineMilePointsite.Generationofvisiblevaporplumesisenhancedunderconditionsofhighrelativehumidityandlowambientairtemperature.Theshapeandrangeofavisibleplumeishighlydependentonwindvelocity.Anumericalanalysiswasperformedwhichuseslocalweatherdatainconjunctionwithtowerperformancecurvestomodelthebehaviorofvisibletowervaporplumes.Figures9.5-4and9.5-5summarizetheresultsoftheanalysisforbothmechanicaldraftandnaturaldrafttowers.Thefigurespresentthefrequencythatvisiblevaporplumeswouldoccuratagivendistanceandaltitudefromthetower,assumingthatthewinddirectionisconstantthroughouttheyear.Variationsinwinddirectionwould,however,tendtoreducetheoccurrenceoffogineachdirectionbyafactorapproximatelyequaltotheannualfrequencyofthewindfromthatdirection.ThewinddirectionfrequenciesarepresentedinAppendixD.Vaporplumesproducedbyanaturaldrafttowerwouldnotbeexpectedtoreachtheground,dueprirrarilytotheheightatwhichtheplumeisdischarged.Mechanicaldrafttowers,however,couldproducegroundlevelplumesandforthepurposeofestimatingtheextentofsuchgroundlevelfogging,visiblevaporplumesataltitudesofapproximately100feetorless,wereconsideredtobeessentiallygroundlevel.DuringadverseweatherconditionsasseeninFigure9.5-5,groundlevelfogfromamechanicaldrafttowercouldextendtoasfaras1,200feetwithafrequencyof5percent.Asaresult,anareaofabout140acresaroundthetowersitecouldbesubjecttogroundlevelfogatvarioustimesoftheyear.Thisarealieswithinthe.NineMilePointpowersite,andextendsapproximately800feetontoLakeOntario.Driftandfogproducedbyacoolingtowerwhichimpingesuponthegroundcouldcontributetosurfaceicing.ZtisconsideredthattheonlyareaandroadwhichwouldbeaffectedbyicingduetocoolingtowerdriftinthecoldermonthslieswithintheboundariesoftheNineMilePointsite.Theplumesfromthecoolingtowerswouldnothamperair,ground,orwatertransportationsincetherangeoftheplumeswouldbelimited.Elevatedplumeswouldnotinterferewithcommercialairportssincetherearenonewithintherangeofthevisibleplume;groundtransportationwouldonlybeaffectedoccasionallywithinthesiteareabygroundlevelplumesfrommechanicaldraftcoolingtowers;watertransportationwouldnotexperiencethecoolingtowerplumesbeyond800feetfromtheshore.9.5-19
2000TOWERDESIGNDATAT4WB~14APPHEIGHTGSFT.I750NOTESTHEFIGURESDENOTEPERCENTOFTIMETHATVISIBLEPLUMEEXTENDSTOCONTOURONLTONEDIRECTIONISCONSIDEREDFORWINOSPEEDSI500I25010'/o15%I000UIII75025'/o20'Yo5'Yo50o/o250500750IGOO1250I500I75020002250250027503000325035003750HORIZONTALDISTANCE-FEETFIGURE9$-4MECHANICALDRAFTCOOLINGTOWERPLUME
,I 22502000TOWERDESIGNDATATiWB,l84APP.HEIGHTSTOFT.I750l0%NOTESTHEFIGURESDENOTEPERCENTOFTIMETHATVISIBLEPLUMEEXTENDSTOCONTOVRONLYONEDIRECTIONISCONSIDEREDFORWINDSPEEDSI50015'/ol250IVIIIIOOOX25%20%75050'/o)p%250FIGURE95-5NATURALDRAFTCOOLINGTOWERPLUME250500750IOOO1250l500I750HORIZONTALDISTANCE-FEET25002750325035003750
Itisalsoconsideredthatthecoolingtowerswouldnotproducemeasurableeffectsonvegetationduetofoggingandicinginthearea.Somesunlightattenuationbytheplumeswouldoccurbuttheeffectswouldbecomparabletothoseproducedbyclouds.Anyicingfromthecoolingtowerswouldbeproducedduringthecoldermonthswhenthevegetationwouldnotnormallybesusceptibletodamagefromfreezing.Icebuilduponplantsandtreesonthesitecouldoccurfromdriftfromanaturaldrafttowerand,fromdriftandfogfromamechanicaldrafttower.Thenaturaliceloadingsduetosnowfallandfreezingrainswouldbeslightlyaugmentedbytheoperationofthecoolingtowers.Themechanicaldrafttowerwouldhaveagreatereffectthanthenaturaldrafttowersinceitislowerinheightanditsfogwouldoccasionallyreachthegroundanditsdriftdepositionwouldbehigherclosertothetower.Nostudiesarepresentlyavailableontheeffectsoficebuilduponvegetationbutconsideringthesiteclimatologytheadditionaleffectsofthecoolingtowersisexpectedtobeinsignificant,.9.5.3.2.10Raising/LoweringofGroundWaterNowaterforthecoolingtowersisrequiredfromgroundwellsormunicipalsources,andblowdownfromthecoolingtowersisreturnedtoLakeOntario.Therefore,nochangeinthegroundwaterlevelsisexpected.9.5.3.2.11AmbientNoiseNoiseisgeneratedinnaturaldraftcoolingtowersbythecascadingwater.Inmechanicaldraftcoolingtowers,fannoiseisaddedtothenoiseofthefallingwater.Coolingtowersoundlevelsaredeterminedfrommanufacturers'ataorpublishedreferencesontowernoise.Inordertoassesstheacousticalimpactofthesecoolingwateralternativesonthesurroundingarea,contoursofconstantsoundlevelweredeterminedforbothnaturaldraftandmechanicaldraftcoolingtowersystemsutilizingthetechniquedescribedinSection9.5.1.2.11.BasedonthenoiseguidelinesdiscussedinSection9.5.1.2.11andtheconstantstationsoundlevel,the~~normallyacceptable"levelwastakentocorrespond'toanareareceiving45to65dbAandthe"normallyunacceptable"levelwastakentocorrespondtoanareareceivingover65dbA.Foreithercoolingtowersystemitwasdeterminedthatnoresidences,schools,orhospitalswouldreceiveasoundlevelgreaterthan65dbA.Tenresidenceswouldbewithinthe45to65dbArangewithanaturaldraftcoolingtowerandfortyresidenceswouldbewithinthisrangewithamechanicaldraftcoolingtower.Itshouldbenotedthattheestimatesusedtodeterminethesoundlevelcontoursareconservativeanddonotincludeattenuation9.5-20
fromtrees,terrain,ormeteorologicalconditionswhichwouldreducetheoffsiteareasaffectedbythenoisegenerated.9.5.3.2.12AestheticsOfthetwotypesofcoolingtowersconsideredinthisreportthenaturaldrafttowerwouldbethemoreaestheticallypleasingbecauseofitshyperbolicshape.Themechanicaldrafttowerswouldbemorenumerousandwouldcreateamoreindustrial-likeappearance,buttheywouldbelessnoticeablefrombeyondthesiteboundary.Plumesfromeitherofthetowerschemesmaybeunappealinginappearance.9.5.3.2.13PermanentResidualsofConstructionActivityCoolingtowerswouldrequireuseofadditionallandareaonthesite;about2.1acresforthemechanicaldrafttowersand2.3acresforthenaturaldraftcoolingtower.Theseusesoflandwouldnotaffectwildlifeoraffectanyhistoricalorarcheologicalsitesofinterest,sincetherearenoneinthesitearea.Valuesofsurroundingpropertyandusesofadjacentlandarealsonotexpectedtobeaffected.Constructionofthecoolingtowerswouldnotrequiremodificationoftheshorelineortopographyofthearea,andtherefore,wouldnotcontributetofloodinganderosionintheregion.9.5.3.2.14CombinedorInteractiveEffectsThereisnoevidencethatthecombinedeffectsofanumberofimpactsresultinatotaleffectwhichisnotadequatelyindicatedbymeasuresoftheseparateimpacts.9.5.4DryCoolingTowerSystemDrycoolingtowersrejectsensibleheatdirectlytotheatmosphereandthusdonotdependupontheevaporationofwaterfortheirperformance..Anindirectdrycoolingtowersystemwasexaminedwhichwouldbeusedinccmbinationwithadirectcontactspraycondensertocondensetheturbine'sexhauststeam.Cooledwaterfromthetowerwouldbebroughtintocontactwiththeturbine'sexhauststeam,andafractionofthecondensateformedwouldthenbereturnedtobecooledinthetower.Theremainderofthecondensatewouldrecirculatetothereactor.Anoptimumdrycoolingtowersystemoperateswithturbineback-pressuresintheorderof8to12inchesHgabs.However,U.S.manufacturersdonotplantomarketaturbinethatiscompatiblewiththistowerdesignuntil1978.Thestateoftheartfordrycoolingtowersislimited.Thelargestexistingplantwhichusesadrycoolingtowerofthistypeisonlya200MWeunit.Thelackofexperiencewithaunit9.5-21
thesizeofNineMilePointUnit1,haseliminatedthissystemfromfurtherconsideration.9.5.5CoolingPondSystemAcoolingpondisalargecoolingwaterstorageareausedtorejectheatdirectlytotheatmospherebythetransferofbothsensibleandlatentheat.ApondlargeenoughtoremovethewasteheatfromtheNineMilePointUnit1wouldhaveasurfaceareaofabout880acresandavolumeof19,000acre-feet.ApossiblelocationforthecoolingpondwouldbeonsiteslightlysouthofthestationbetweenLakeRoadonthenorthandthePennCentralRailroadonthesouthasshowninFigure9.5-6.TheeasternedgeofthepondwouldbeparalleltoandneartheboundarywiththepropertyofthePowerAuthorityoftheStateofNewYork(PASNY).Thewesterlyedgeofthepondwouldbeformedbyadikefollowingthehigherknollsandlyinginasouthwesterly-northeasterlydirectionandslightlywestofLakeviewRoad.Thesouthernboundaryofthispondwouldbeformedbythe310-footcontourwhichliesroughlyeastandwestindirectionandparalleltothePennCentralRailroad.Adikeapproximately40to50feethighwouldthereforeberequiredalongtheeast,north,andwesternboundariestoretainthecontentsofthecoolingpond.Anapproximatelythreemilelongcirculatingpathforthecoolingwaterwouldbeestablishedbyconstructingbaffledikestoseparatetheinletfromtheoutlet.Theearthworkrequiredforconstructingtheboundaryandbaffledikeswouldamounttoapproximately3,000,000cubicyardsofearthmaterial.Thecirculatingwaterwouldhavetobepumpedadistanceofapproximatelytwomiles.Twopipeswouldberequiredtocarrythewatertoandfromthepond.Rockexcavationwouldberequiredifthesepipesaretobeplacedbeneaththegroundsurfaceinordertominimizestressesduetotemperaturechangesanddrainageinterference.Themakeupwaterflowwouldbe40cfsandtheevaporationcouldrangeuptoapproximately30cfs.Thiscouldresultinablowdownintherangeof10to20cfs.Theproposedradwastesystemwouldbemodifiedtothesamedegreeaswouldberequiredinconjunctionwithcoolingtowersbecauseofthereducedcoolantdischarge.Dilutionpumpingmayalsoberequiredoccassionallyforperiodsoflowerblowdownflow.ThisalterationintheradwastesystemispresentedinSection9.5.3.9.5-22
C733IUNITISWITCHYARDIIV~l~0gLAKEVtEWRD.lqlg~gPROPERTYLINEINCLUDINGREQUIREDAQVISITION~V~PENHCEHTRALFIGURE9.5-6.COOLINGLAKEAT310FOOTELEVATION(880.ACRES)FROMSARGENT6LUNDYREPORTSL-2775
9.5.5.1EconomicsoftheCoolingPondThefollowingmodificationsarenecessarytotransformtheexistingcoolingwatersystemofSection9.5.1tothecoolingpondsystem:Pondstructures(dikesandspillways),circulatingwaterpumpsandmotorswithassociatedscreenhouseequipment,circulatingwatexpipingtoandfromthepondandthecondenser,makeupservicepumphouse,makeupandblowdownlines,chemicaltreatingequipmentformakeupwatertreatmentandthemodificationstotheradwastesystem.Theestimatedtotalconstructioncostforoperationin1976wouldbe$21,600,000.Capitalcostshavebeenescalatedfromthepresentdateattherateof5.5percentperyear.Theannualizedcostofthecoolingpondalternativeincludingcapital,interest,depreciation,andotherfixedchargeswouldbeabout$4,342,000.Theannualfuel,operating,andmaintenancecostwouldbeabout$312,000.Thisincludespumppower,chemicaltreatmentandpondmaintenance.Annualcapabilitylosscomparedtothegeneratingcapabilityoftheexistingstationwouldbe$1,241,000duetohighercondenserinlettemperatures.Thesecostsarebasedonafixedchargerateof20.1percent,afuelcostof2.8mills/kWhr,anoperatingandmaintenancecostof0.3mill/kWhrandacapacityfactorof85percent.Totalestimatedannualizedcostwouldbeabout$5,895,000.Thetotalestimatedpresentworthofthisalternativeata9.6percentcostofcapitalandamortizationovertheremaining18-yearlifewouldbeapproximately$49,620,000.9.5.5.2EnvironmentalConsiderationsoftheCoolingPondSystemManyoftheenvironmentalconsiderationsforacoolingpondaresimilartothoseforacoolingtowerexplainedinSection9.5.3.2.Thoseareasofenvironmentalconcernthatareapplicabletoacoolingpondarepresentedbelow.9.5.5.2.1EffectsontheWaterBodyAtthepresenttimeitisnotpossibletodeterminethedissolvedoxygencontentinthecoolingpondblowdown.However,sincethequantityofblowdownwhichwouldbedischargedfromthepondissmall,thereisexpectedtobenoadverseimpacton,theoxygenavailabilityofLakeOntario.Itisassumedthatthereisacompletemortalityoftheplanktondrawnintothecoolingpondfromthelake.Inactualityspecializedplanktoncommunitieswouldprobablydevelopinthepondandbereturnedtothelakeintheblowdown.However,forenvironmentalcostquantificationthemortalityofplanktoninthe40cfsmakeupwaterisconsideredtobe100percent.Thiswouldresultinapproximately1.5x10~poundsofplanktonbeingremovedannuallyfromthelakebasedonaplanktondensityof9.5-23
0.548gramofplanktonpercubicfootofwater.AnassessmentoftheenvironmentalimpactofthisplanktonmortalityisinSection9.5.1.2.2.Theeffectsofthissystemoncommercialandsportfishingandlarvaewouldbethesameasthoseofthecoolingtowers.TheseimpactsarepresentedinSection9.5.1.2.2.9.5.5.2.2ConsumptionofRaterThecoolingpondcouldhaveanevaporationrateofabout30cfs;thisnaturalevaporationwouldbehigherthantheforcedevaporationfromcoolingtowersTheremovalofwaterfromLakeOntariowouldbeabout7.1x10~gallonsperyear.Thisisabout0.0016percentoftheapproximately4.4x10~4gallonsofwaterinthelakeandnoadverseenvironmentalimpactisexpectedfromthiswaterconsumption.9.5.5.2.3ChemicalDischargetotheAmbientAirCoolingpondswouldnotproduceanydriftsinceairwouldnotbepassedthroughthecoolantTherewouldthusbenochemicaldischargeorodortotheambientair.9.5.5.24SaltsDischargedfromaCoolingTowerThisareaofenvironmentalconcernisnotapplicabletothecoolingpondalternative.9.5.5.2.5ChemicalContaminationofGroundwater(ExcludingSalt)Althoughstudieswereconductedandsomeboringshavebeenmade,insufficientinformationispresentlyavailablewithrespecttothesuitabilityoftheareafortheconstructionofthecoolingpond.Therefore,itisnotpossibletoproperlyassesstheenvironmentalimpactatthistime.However,itisconsideredthatchemicalconcentrationswouldbereducedbypassingthroughtheoverburden.9.5.5.2.6FoggingandIcingAnalyticalmodelsfortheproductionanddispersionoffogfromcoolingpondshavenotbeendevelopedandtestedtothesamedegreeashavethoseforcoolingtowers.Experienceindicates,however,thatcoolingpondsarearelativelydiffusesourceoffogandthatdownwindevaporationwouldbefairlyrapid.DriftfromthecoolingpondwouldbepracticallynonexistentTherefore,thecoolingpondswouldnotbeexpectedtocreateanyfoggingoricingproblems.9.5-24
9.5.5.2.7Raising/LoweringofGroundwaterAlthoughstudieswereconductedandsomeboringshavebeenmade,insufficientinformationispresentlyavailablewithrespecttothesuitabilityoftheareafortheconstructionofthecoolingpond.Therefore,itisnotpossibletoproperlyassesstheenvironmentalimpact.Assumingconditionsaresimilartothosearoundthestation,suchasrelativelyimperviousoverburdenonsandstone,itcanbeexpectedthatariseinthegroundwatertablewouldresultinthevicinityofthepond.However,atthistimeitisnotpossibletoestimatetheeffectsortheextentofthisrise.9.5.5.2.8AmbientNoiseSincenoiseisnotproducedbycoolingponds,thestationwouldgeneratenoiselevelsthatarecomparabletothoseproducedbytheexistingonce-throughcoolingsystemexplainedinSection9.5.1.2.11.Nohouses,schoolsorhospitalswouldreceiveasoundintensityofgreaterthan65dbA,aftertheconstructionofacoolingpond.9.5.5.2.9AestheticsThelargecoolingpondmightheanattractiveadditiontothecountryside.Carefullandscapingcouldminimizethevisualeffectofthedikes.9.5.5.2.10PermanentResidualsofConstructionActivityThecoolingpondwouldrequireapproximately880acresofonsitelandlocatedb'etweenone-halfandtwomilessouthofthestation.Sincethecoolingpondcontainsthecoolingwaterabovegroundthereisapotentialforfloodingofthesurroundingarea.Becauseofthis,allpartsofthepondsystemrelatedtoimpoundmentwouldbedesignedtomeettherequirementsofClass1seismicconditions.Inaddition,allembankmentsandareasofpossibleerosionwouldbeplantedandseeded.Inundating.thelandwouldaffectwildlifeinthearea.Thenumberandspecifictypesofwildlifeinthe880acresoflandhas,however,notbeendetermined.Carefulconsiderationwouldhavetobegiventotheimpactoffloodingthelandonpresentandpotentialwildlifeuses.Thecoolingpondmayhoweverprovideanareaforincreasedrecreationaluse.Fishingandboatingmaybepracticalonthepond.9.5.5.2.11CombinedorInteractiveEffectsWhereisnoevidencethatthecombinedeffectsofanumberofimpactsresultinatotaleffectwhichisnotadequatelyindicatedbymeasuresoftheseparateimpacts.9.5-25
9.5.6SprayPondSystemExperiencewithspraypondsforunitsof250MReandaboveisextremelylimited,andalthoughsomelargesystemsarebeingdeveloped,thereisnotenoughperformancedatapresentlyavailabletoadequatelydesignaspraypondforan610MWeunit.Thedesignsthathavebeenevaluatedindicatethatthelandarearequiredandtheeconomiccostofspraypondsisnearlythesameasforwetcoolingtowers.Thereareknownproblemswiththistypeofpond,however.Thespraymoduleshavetobecarefullyspacedtoensureadequatesuppliesofambientairforevaporativecoolingforefficientperformance.Furthermore,somestudiesofexistingsmallerspraypondsshowthatseveredriftingofthewatersprayoccurs.InwinterthiswouldresultinsevereicingconditionsonsiteandoffsiteFurtherconsiderationofthespraypondshasbeeneliminatedbecauseofthelimitedexperiencewithpondsoftherequiredsizeandthepossibleenvironmentalimpactsofthiscoolingsystem.9.5.7SupplementalCoolingSystemInprinciple,wetcoolingtowersandcoolingpondsmaybeusedasasupplementalcoolingsystem.Inthistypeofsystem,theonce-throughsystemwouldbe.supplementedbytowersorpondsduringthosetimeswhentheheatrejecticntothelakeneededtobereduced.Partofthestationwasteheatwouldberejectedtotheatmospherebythetowersorponds.However,sincetherearewidevariationsoftheatmosphericwetbulbtemperatures,ascomparedtowatertemperaturesattheNineMilePointsite,thereareinherentlimitationsintheperformanceofasupplementalcoolingsystem.Atcertaintimes,ambientatmosphericwetbulbtemperatureswouldbesuchthatonlyasmallfractionofthetotalheatcouldberejectedbythesupplementalcoolingmethodandtheremainingheatwouldbedischargedtoLakeOntario.Toclarifythis'point,astudywasmadebasedontheuseofasupplementalmechanicaldraftcoolingtowersystem.Thetowerwassizedsuchthatitscoldwaterdischargetemperaturewouldbe3Fabovetheambientlaketemperatureatthepointofdischargeduringaperiodwhentheatmosphericwetbulbwouldbe74F,andthelaketemperaturewouldbe77F.Thedesigntemperatureswereselectedonthefollowingbasis:1.The3Fdifferentialcorrespondstothe1969NewYorkStatethermalcriteriawhichassumethatanincreaseinambientlaketemperatureoflessthan3Fwillhavenoadverseeffectontheaquaticbiota.2.74Fwetbulbtemperatureisthattemperaturewhichisusedfordesignconditionsforthesummermonths.9.5-26 1,
3.77Flaketemperatureisthattemperature.whichisusedfordesignconditionsforthesummermonths.Oneyearofmeteorologicaldatathathadbeenrecordedinthevicinityofthesitewasusedinthisstudy.Theyear1950wasselectedasatypicalyearwithrespecttowetbulbtemperature.Averagemonthly.laketemperatureswereusedinthisstudybecauseoftherelativestabilityofthelake.Usingthesedesigncriteriaanddata,thedailyperformanceofthesystemwasdeterminedforaone-yearperiod.TheresultsofthisstudyaredepictedinFigure9.5-7.Thegraphshowsthatthe,3Frisewillbeexceededforextensiveperiodsduringtheyear,particularlyinthespringandfall.Therewereseveralperiodswhenlargethermaldischargestothelakewouldhaveoccurred;forexample,onApril4,1950,whenthelaketemperaturewas40F,andtheambientwetbulbtemperaturewas56F,thetemperaturedifferentialbetweenthetowerdischargeandthelakewouldhavebeen22.5F.Thissupplementalsystem,then,wouldnotmeetitsstatedobjectiveoflimitingthedischargetolessthan3F.Acoolingpondorawetcoolingtowerusedinasupplementalsystemwouldalsoresultinalargefractionofthetotalheatoccasionallybeingdischargedintothelake.Forthesereasons,supplementalcoolingsystemshavenotbeenconsideredinfurtherdetail.9.5-27 00 IIOIOONOTE-TOWERDESIGNDESIGNINLETWATERTEMP-I07DESIGNDISCHWATERTEMP"80DESIGNWETBULB-7490I4Iz8024JCGz4ITPIJJILIILJ4JGJepIJIIILSO4J4JI40OISCIIARGEWATERTEMPERATUREAMSIEJITLAKETEMPERATVREJAN.FEB.MAR.APR.MAYJUNEJULY1950AUG.SEPT.OCT>>NOV.DEC.FIGURE9.5-7SUPPLEMENTARYCOOLINGTOWEREFFECTONCIRCULATINGWATERDISCHARGE-TEMPERATURES
96ALTERNATIVECHEMICALEFFLUENTSYSTEMSTheexistingsystemfortheNineMilePointUnit'1releasesthechemicaleffluenttothecirculatingwateroftheexistingonce-throughcoolingsystem.Analternativetotheexistingsystemwouldemployevaporationtoeliminatethedischargeofchemicaleffluentsto,LakeOntario.ThesevariouschemicaleffluentsystemsarediscussedinthefollowingsectionsandformthebasisforthecomparativetabulationofenvironmentalcostsaspresentedinTable9.6-1attheendofSection9-6.9.6.1ExistingChemicalEffluentSystemEffluentfromtheexistingchemicaleffluentsystemasdescribedinSection3.7isreleasedtothecirculatingwateroftheexistingonce-throughcoolingsystem.Ifanalternatecoolingsystemweretobeemployed,thentheeffluentwouldbereleasedtotheblowdownofthecoolingtowerorcoolingpond.9.6.1.1EconomicsofExistingSystemTheNineMilePointNuclearPowerStationUnit1isanexistingfacilitywhichcommencedcommercialoperationinDecemberof1969.Therefore,thetotalcostsassociatedwiththeconstructionoftheexistingchemicaleffluentsystemwillnotbequantified,butwillinsteadserveasbasecost..Thecostsforthealternativechemicaleffluentsystemwillbepresentedasanincrementalcosttothebasecostoftheexistingsystem.Thesecostswillthereforereflectthetotalamountnecessarytotransformtheexistingchemicaleffluentsystemtothealternativechemicaleffluentsystem.9.6.1.2EnvironmentalConsiderationsofExistingSystemTheeffluentfromtheexistingsystemisdischargedtoLakeOntarioafterdilutionwiththecirculatingcoolingwater.Onlythoseenvironmentalimpactswhichdirectlyrelatetothissystemarepresentedbelow.ChemicaleffluentsassociatedwithoperationofthemakeupwatertreatmentsystemdescribedinSection3.7consistof(1)neutralizedspentacidandcausticwastesresultingfromdemineralizerregeneration;(2)clarifiedoverflowfromthesettlingbasin;and(3)clarifiedwaterfromtheclearwellduringshutdownoperation.Theeffectsofthechemicaleffluentaredependentupontheamountofwateravailablefordilutionpriortodischarge.Theexistingonce-throughcoolingsystemprovides600cfsofcirculatingwaterfordilution.Whenthechemicaleffluentismixedwiththisflow,theoutfallcontainsaconcentrationofdissolvedsolidsofapproximately230ppm.Combinationofthechemicaleffluentwiththe20cfsblowdownfromacoolingtower9.6-1 t~'4Vt orcoolingpondwouldresultinadissolvedsolidsconcentrationofabout544ppm.Thisisduetothecombinationofarelativelylowblowdownflowandaconcentrationofdissolvedsolidsinthecoolingtowerblowdownduringnormaltoweroperationofapproximatelytwicethatexistinginambientlakewater.AcomparisonofthechemicaleffluentsexpectedtobereleasedfromNineMilePointUnit1undertheexistingandalternatecoolingwaterdesignsarepresentedin,thefollowingtable,alongwithLakeOntarioconcentrationsandapplicabledrinkingwaterstandards:ExistingChemicalDischargeasAffectedbyAlternativeCoolingMethods~ExistinAlternative-DilutedwithCirculatingDilutedWi;thDrinkingTowerorPondWaterLake-Gntario.Waxer.Blowdown.Standards-Ca++HCO~Cl-44.0094.003030160Na+16.60SOW=3010Mg++8.9044.1094.11,30.388.9216017.5532.11ppm90.40190.1062.60183033060.60118.60ppm250250TotalDissolvedSolids225.522877543.90500Theseconcentrationsarefurtherdilutedwithambientlakewaterafterbeingdischarged.Whentheexistingonce-throughcoolingsystemisused,thechemicalconcentrationsaredilutedwithlakewaterapproximately10timesattheboundaryofa300acresurfacearea.Ifacoolingtowerorpondschemewereusedtheconcentrationswouldbedilutedabout10timesattheboundaryofa0.72acresurfacearea.Attheboundariesofthesesurfaceareastheintermittentchemicalconcentrationsfromeachcoolingsystemwouldbeclosetolakewaterconcentrations.Itis,,therefore,expectedthattheseconcentrationswouldnotadverselyaffectpeoplewhousethewater,aquaticbiota,orwaterquality.9.6-2
Sincethechemicalconcentrationsintheexistingcoolingwatersystemareessentiallythesameasambientlakewater,itisbelievedthatthereisnoadverseimpactontheutilizationof,thelakebyassociatedwildlife.Similarly,consideringthattheblowdownconcentrationsareclosetodrinkingwaterstandardsandwillbefurtherdilutedwithinaverysmallarea,thereisexpectedtobenoeffectonwildlifeutilizationoflakewaters.Thereisnoevidencethatthecombinedeffectsofanumberofimpactsresultinatotaleffectwhichisnotadequatelyindicatedbymeasuresoftheseparateimpact.9.6.2EvaporativeChemicalEffluentSystemAnalternativetotheexistingtreatmentwouldemployevaporationtoeliminatechemicaleffluentsresultingfromdemineralizer"regenerationcycles.Theevaporationprocesswouldrequireuseofafallingfilmevaporatorandanadequatelydesigned,lined,lagoontostoretheconcentratedbrinebottomsproducedintheevaporator.AlternatetreatmentofchemicaleffluentsresultingfromthesettlingbasinoverflowandclearwellbypasswouldnotberequiredsincetheirchemicalcompositionsubsequenttopHadjustmentwouldbecomparabletothatofLakeOntario.AsimplifiedsketchofthesystemisshowninFigure9.6-1.9.6.2.1EconomicsoftheEvaporativeChemicalEffluentSystemThefollowingmodificationsarenecessarytotransformtheexistingchemicaleffluentsystemtotheevaporativechemicaleffluentsystem.Theseincludeafallingfilmevaporatorforhandling750gallonsperhour,acondensingunit,andthelinedlagoonforstoringsolidsfromtheevaporator.Theestimatedcapitalizedcostoftheequipmentforoperationin1976wouldbeabout$857,000.Capitalcostshavebeenescalatedfromthepresentdateattherateof5.5percentayear.Theestimatedannualizedcostofthisalternativeincludingcapital,interest,depreciation,andotherfixedchargeswouldbeabout$172,000.Theestimatedannualcostoffuel,operatingandmaintenance,andchemicaltestingwouldbe$50,000.Thesecostsarebasedonafixedchargerateof20.1percent,apowercostof12mills/kwhr,andacapacityfactorof85percent.Totalestimatedannualizedcostwouldbe$222,000.Totalestimatedpresentvalueofthisalternative,at9.6percentcostofcapitalandamortizationovertheremaining18-yeareconomiclife,wouldbeabout$1,870,000.9.6.2.2EnvironmentalConsiderationsofthisSystemAreasofenvironmentalconcernaffectedbytheapplicationofanevaporativetreatmentfortheregenerativewastesarepresentedbelow.9.6-3 IJV7I NOTE:THEOPERATIONOFTHISSYSTEMISINTERMITTENTANDISREOUIREDONLYUPONACCUMULATIONOFLIOUIDSINTHEREGENERATIONWASTENEUTRALIZATIONTANKSFALLINGFILMEVAPORATORPRODUCTWATERITDS=5PPMDEMINERALIZERREGENERATIONWASTESI3)000PPMTDSWASTEBRINE200)000PPMELECTRICALENERGYLINEDONSITEPONDCLEARWELLIFIG.3.7I)I)IIIIIII\)MAKEUPWATERDElllNERALIZATIONSYSTEM(FIG.3.79)IREGENERATIONWASTENEUTRALIZATIONTANKS(FIG.3.7-I)FIGURE9.6-ISCMEMEFOREVAPORATIVETREATMENTOFREGENER'ATIONWASTES n1If' 9.6.22.1ChemicalDischargetoWaterBodyTheevaporativetreatmentwouldnotreleaseanychemicaleffluentsassociatedwithdemineralizerregenerationcyclestoLakeOntario.Overflowfromthesettlingbasinandbypassfromtheclearwellwouldhaveachemicalcomposition,afterpHadjustment,comparabletothethatofJakeOntario.Therefore,noadverseenvironmentalimpactisexpected.9.6.2.2.2ConsumptionofWaterIthasbeenestimatedthattheevaporativechemicaleffluenttreatmentwouldremoveabout16,000gallonsofwaterperyearfromLakeOntario.Thissmallquantitywouldhavenoeffectonpeople,propertyortheecosystemofthelake.9.6.2.2.3ChemicalContaminationofGroundWater(ExcludingSalts)Thebrinestorage,pondwouldbelinedtopreventthechemicalsfromreachingtheground.Thus,nocontaminationofgroundwaterwouldbeexpectedtooccur.9.6.2.2.4FoggingandIcingThe',onlypartofthissystemwhichwouldbeopentotheatmosphereandcouldproducefogoricingproblemswouldbethebrinestoragepond.However,thispondwouldbesmallandfogwouldbelocalized.Also,thebrinewouldhaveahighconcentrationandthiswouldretardevaporation.Therewould,therefore,benofoggingoricingproblemscreatedbythissystem.9.6.2.2.5AmbientNoiseTheevaporatorswouldbecompletelyenclosedandwouldnotproducenoiselevelsabovethatproducedbynormalstationoperation.9.6.2.2.6AestheticsTheevaporatorswouldbehousedinabuildingthatwouldblendinwiththeotherstationstructures,andnoadditionalvisualimpactwouldbeproduced.Thebrinestoragepondwouldcoverabout0.25acreandmightappearobjectionable.Plantingsaroundthepondcouldlessenthevisualimpact.9.6-4 l~A,MIP 9.6.2.2.7PermanentResidualsofConstructionActivityTheevaporatorwouldbehousedinabuildingthatwoulduseapproximately800squarefeetofland.Thebrinestoragepondwouldrequireanadditional10,000squarefeet.Thislandusageisminorandemploymentofthissystemwouldnotaffectwildlife,landvalues,orproductioninthearea.Erosionandfloodcontrolintheareawouldnotbeaffectedbythesmallamountoflandusedforthissystem.9.6.2.2.8CombinedorInteractiveEffectsThereisnoevidencethatthecombinedeffectsofanumberofimpactsresultin-atotaleffectwhichisnotadequatelyindicatedbymeasuresoftheseparateimpacts.96-5
TABLE9+6-1COSTDESCRIPTIONALTERNATIVEQ9MCALEFFLUENTSYSTEMSNINEMILEPO'ATNUCLEARSTATIONUIKZ1ReportDate:Juno1@72ExistingChemicalEffluentSystem(l)EvaporativeChemicalEffluentSystem(2)BaseCase$1,870,0009.6.2.1ENVIRONMElFZALCOSTSPrimaryImpact1.HeatdischargedtowaterbodyPopulationorResourceAffected1.1Coolingcapacity1.2Aquaticbiota1.3Migratoxyfishnoeffectnoeffectnoeffectnoeffectnoeffectnoeffect2.Effectsonwaterbodyofintakestructureandcondensercoolingsystem3.Chemicaldischargetowaterbody4.Consumptionofwater5.Chemica1dischargetoambientair2.1Primaryproducers8econsumers2.2Fisheries3.1People3,2Aquaticbiota3.3Waterquality-chemical4.1People4.2Property5.1Airquality-chemical5.2Airquality-odornoeffectnoeffectnoadverseeffect9.6.1.2noadverseeffect9.6.1.2noadverseaffect9.6.1.2noeffectnoeffectnoeffectnoeffectnoeffectnoeffectnoadverseeffect9.6.2.2.1noadverseeffect9.6.2.2.1noadverseeffect9.6.2.2.1noeffectnoeffectnoeffectnoeffect6.Salts'ischargedfromcoolingtowers6.1People6.2Plants'otapplicablenotapplicable6.3Propertyresourcesnotapplicablenotapplicablenotapplicablcnotapplicable7.Chemicalcontaminationofroundwaterexcludingsalt)8.Redionuclidesdischargedtowaterbody7,1People7.2Plants8.1People-cxtcrnalcontact8.2People-ingestionnoeffectnoeffectnotapplicablenotapplicablenoeffectnoeffectnotapplicablenotapplicable9.6.2.2.39.6.2.2.38.4Fishnotapplicable8.3Primaryconsumersnotapplicablenotapplicablenotapplicable9.6-6
TABLE.6"1CONT'DCOSTDESCRIPTIONALTEQGLTIVECHEMICALE1VLUENTSISTERNINEMILEPOINTNUCLEARSTATIONIHGT1ExistingChemicalEffluentSystem(1)EvaporativeChemicalEffluentSystem(2)PrimaryImpact9,Radionuclidesdischargedtoambientair10.Radionuclidescontaminationofgroundwater11.Fogging5icing12.Raising/loweringofgroundwaterlevels13.AmbientnoisePopulationorResourceAffected9.1People-externalcontact9.2People-ingestion9.3Plantssndanimals10.1People10.2Plantaandanimals11.1Groundtransporta-tion11.2Airtransportation11.3Watertransporta"tionI1.4PlantsI2.1People12.2Plants13.1Peoplenotapplicablenotapplicablenotapplicablenotapplicablenotapplicablenoeffectnoeffectnoeffectnoeffectnoeffectnoeffectnoeffectnotapplicablenotapplicablenotapplicablenotapplicablenotapplicablenoeffectnoeffectnoeffectnoeffectnoeffectnoeffectnoeffect9.6.2.2.49.6.2.2.49.6.2.2.49.6.2.2.49.6.2.2.514,Aesthetics14.1Appearancenoeffectbrinestoragearea9,6.2,2,615.Pezmanentresidu81$ofconstructionactivity15.1Accessibilityofhistoricalsites15.2Accessibilityofarcheologicalsitesnoeffectnoeffectnoimpact9.6.2.2.7noimpact,9.6.2.2,715.3Settingofhistoricalsites15.4Landuse15.5Property15.6Floodcontrol15.7Erosioncontrolnoeffectnoeffectnoeffectnoeffectnoeffectnoimpactlo,8OOft2negligiblenoeffectnoeffect9.6.2.2.79.6.2.2.79.6.2.2.79.6.2.2.79.6.2.2.7Refertothefollowingsectionsforadiscussionoftheenvironmentalcosts:1)Section9.6.12)Section9.6.29.6-7
9.7ALTERNATIVERADWASTESYSTEMSTheexistingradwastesystemforNineMilePointUnit1willbemodifiedasdiscussedinSection3.6andwillcomplywiththelimitssetforthin10CFRPart20andtheproposedAppendixIof10CFRPart50guidelines.InaccordancewiththeAEC's.mostrecentguideforthepreparationofbenefitcostanalysespublishedinMay1972,nootheralternativeradwastesystemsneedtobeconsiderediftheproposedsystemisincompliancewiththeseregulations.Anymodificationoftheproposedliquidradwastesystemwhichwouldberequiredinconjunctionwiththeuseofcoolingtowersorcoolingpondsduetothereducedquantityofcoolingwateravailablefordilution,areconsideredtobeintegralpartsofthecoolingsystemandaredescribedintheapplicableportionsofSection9.5.Therefore,forthepurposesofthebenefitcostanalysis,boththeexistingandproposedradwastesystemsareconsideredtobeintegralpartsofthestationdesignandarethuspresentedinTable9.8-2ofthe"AlternativeStationArrangements~~inSection9.8.DetaileddescriptionsandacomparisonoftheenvironmentaleffectsofboththeexistingandproposedradwastesystemsaredevelopedinSections3.6and5.2.9.7-1 0~,1IILf 98ALTERNATIVESTATIONDESIGNSThepurposeofthissectionistocomparethebenefitsandcostsofalternativestationdesigns.Includedforcomparativediscussioninthissectionaretheexistingpowerstationdesign,thestationdesignconsideredtoproducetheminimumwaterimpact,thestationdesignconsideredtoproducetheminimumland/airimpact,andtheproposedstationdesignforthelicenserequest.TheresultsofthesecomparisonsaresummarizedinTables9.8-1and9.8-2attheendofSection9.8.9.8.1ExistingPowerStationDesignThedescription,characteristics,andenvironmentaleffectsoftheexistingfacilityattheNineMilepointSitearepresentedinthepreceedingsectionsofthisreport.However,theeconomicbenefitsandenvironmentalconsiderationsarefurtherdevelopedhereinordertofacilitatecomparisonwithalternativesystemdesigns.9.8.1.1BenefitsoftheExistingDesignThemainbenefitoftheexistingNineMilePointNuclearStationUnit1isthegeneration'of610MWeofelectricalenergytoNMPCresidential,commercialandindustrialcustomers.Annualproductionofelectricitybasedonanannualcapacityfactorof85percentisabout4.54x10~kW-hours.Thetablebelowindicatesthedistributionofelectricalpoweramongthecustomers.Thebenefittocustomersin'termsofdollarsisestimatedbyassumingthateachcustomergainsadollarbenefitequaltothecostoftheelectricity.Customer.PercentofElectricityPowerUsed-Used'.kWhr/YrRate4/kWhr++BenefitinDollars-ResidentialCommercial-IndustrialOther27.3g1.24x10~2.62$3249x10~60.65*~~2.75x10~$44.00x10<12.1%0.55x10~$10.28x10+4.54x10>$86.77x10~+Basedon1971usage-Thishasnotbeenadjustedforgrowthofelectricaldemands.++BasedontheratesofJanuary10,1972-Noadjustmenthasbeenincludedforpossiblefutureratechanges.+++AscombinedinFPCAnnualReportForm1.9.8-1 fPII1I Theminimumestimateofpresentvalueofpowerbenefitsisdeterminedbymultiplyingthebenefitsof$86.77x10~bythepresentworthfactor,9.03,foraremainingeconomiclifeof22yearsandaninterestrateof9.6percent.Thisresultsinapresentvalueofpowerbenefitof$783,500,000.Theexistingstationbenefitsthelocalregionbycontributingapproximately$3,000,000intaxeseachyearbasedonthe1971taxrate.Thissubstantiallyincreasesthetaxbaseforarearesidents.Inaddition,thestationoperationcreates68jobsinallphasesofthestationactivities.Thepayrollofthefacilityisapproximately$1,020,000peryear,andfringebenefitsestimatedat$400,000areprovidedAdditionaljobsarecreatedawayfromthesiteareainactivitiesrelatedtotheproduction,shipmentanddisposalofradioactivematerials.Thestationfacilitiesalsoprovideeducationalbenefitstothegeneralpublic.TheProgressCenterhasanexcellentpresentationofthedevelopmentofelectricalenergywhichattractsabout50,000peopleperyear.Thebenefit'fthisProgressCentercanbeexpressedintermsofthe50,000peoplevisitingthecenterandenjoyingthepicnicareaperyear.Buildingandoperatingthepowerstationhaveresultedinmanyenvironmentalstudiesthatareofscientificinterest.Thefollowingstudiesarepartofacontinuingefforttoevaluatetheeffectsofnuclearpowerstationsandtoconfirmtheenvironmentalimpactonthesiteanditssurroundings:AquaticsurveillancestudiestoidentifythespeciesintheareaandtodeterminetheeffectofheatreleasesPlanktonstudiestoevaluatetheeffectsofplantoperationontheorganismspassingthroughthecoolingsystemMeteorologicalstudiestoevaluatethedispersioncharacteristicsinthesiteregionHydrologicalstudiesLakeOntariotodeterminethedispersalofheatinGeologicalstudiesoftheseismicityoftheareaTerrestrialecologystudiestoidentifythedominantfaunaandfloraoftheareaRadiologicalstudiestomeasurebackgroundradiation,thepotentialbuild-upofradionuclidesinaquaticandterrestrialorganismsandtomonitorstationemissions9.8-2
Thecostofthesestudiesisapproximately$400,000.However,someofthesestudieshaveprovidedinformationthatisdirectlyapplicableonlytothisproject.Therestofthestudieshaveprovidedinformationthatwillaidthegeneraldevelopmentofpowergenerationandpredictionofenvironmentaleffects.Thesestudieswhichhaveawiderrangeofscientificinterestcostapproximately$300,000,andarethebasisforestimatingthescientificbenefitofthepowerstation.Theultimatedollarbenefitfromthisincreasedscientificknowledgecannotbeassessed.However,forthepurposeofbenefitquantificationitisassumedthatthebenefitgainedequalsthecostofthestudies.Theoperationofanuclearpowerstationinsteadofafossilfuelunitprovidesabenefitofproducingpowerwithouttheemission.oflargequantitiesofaircontaminants.Forexample,ifanoilfiredstationweretoreplacetheexistingstation,theplantcouldemitannuallyabout3.7x10~poundsofsulfurdioxides,1.3x10~poundsofnitrogenoxides,and0.44x10~poundsofparticulatematterunderthecleanairamendmentsof1970.Theseemissionsarepreventedbytheuseofthenuclearpowerstationandthispreventioncanbeconsideredtobeasavingstotheenvironment.9.8.1.2EconomicsoftheExistingPowerStationTheNineMilePointNuclearStationUnit1isanexistingfacilitylicensedunderSection104oftheAtomicEnergyActof1954,asamended,andwhichcommencedcommercialoperationinDecember,1969.Thetotalcostsassociatedwiththeconstructionoftheexistingstationdesignareabout$164,492,000asofDec.31,1971andserveasabasecost.Thecostsforthea1ternativestationdesignswillbepresentedasanincrementalcosttothebasecostoftheexistingstationdesign.Thesecostswillthereforereflecttheamountnecessarytotransformtheexistingstationdesigntothealternativestationdesign.9.8.1.3EnvironmentalConsiderationsofExistingDesign9.8.1.3.1HeatDischargetoWaterBodyTheheatrejectedfromUnit1throughitsonce-throughcoolingsystemisapproximately4x10~Btu/hr.Effectsofthisdischargeontheoxygenavailability,commericalandsportfishing,fishmigration,andwildlifearediscussedindetailinSection9.5.1.2.1.9.8.1.3.2EffectsofIntakeStructureonWaterBodyThisareaofenvironmentalconcern-isdiscussedindetailinSection9.5.1.2.2.9.8-3
9.8.1.3.3ChemicalDi,schargetoWaterBodyDetaileddescriptionsofthechemicaltreatmentsystemsarecontainedinSection3.7.ThecirculatingwaterdischargedfromUnit1consistsoflakewaterandtheintermittentchemicaleffluentfromthemakeupdeminexalizerassociatedwiththemakeupwatertreatmentsystem.Nobiocidesareaddedtothecirculatingwaterforcondensertreatment.TheconcentrationsofchemicalsthatarereleasedfromthedischargesystemarelistedinTable5.3-1alongwiththenaturallakeconcentrationsandtheapplicabledrinkingwaterstahdards.Theseconcentrationsareonlyslightlyaboveambientlakeconcentrations,andaredilutedapproximately10timeswithlakewaterattheboundaryofa300-acreareasurroundingthedischargepoint.Furthermore,theseconcentrationscouldoccuronlyfor3hoursonceeveryeightdayswhenthedemineralizersareregenerated.Whennochemicaleffluentismixedinthecirculatingwater,thedischargeconcentrationsarethesameasthatofthelake.Forthesereasons,'oadverseeffectsareanticipatedonpeople,aquaticbiota,associatedwildlife,oronwaterquality.ThesanitarywastefromUnit1istreatedinasystem,describedinSection3.8,thathasbeendesignedtocomplywithNewYorkStateregulationsforsanitarywastes.Nodetrimentaleffectsareanticipatedonpeople,aquaticbiota,associatedwildlifeorwaterqualityfromthereleasesofthesanitarytreatmentfacility.9.8.1.3.4ConsumptionofWaterThesystemsoftheexistingstationdischargetothelakeandanexactdeterminationofwaterconsumptionhasnotbeenmade.Itisexpectedthatthewaterconsumptionprincipallyduetoevaporationwouldnotexceed0.02cfsorapproximately10gpm,asdiscussedin'Section3.4.Thisamountstoabout5.0x10~gallonsofwaterconsumedperyear.ThisisasmallamountcomparedtothevolumeofLakeOntariowhichisabout4.4x10i~gallons.Therefore,noimpactisexpectedonwaterqualityorwaterusers.9.8.1.3.5ChemicalDischargetoAmbientAirNineMilePointUnit1isnotapotentialsourceofaircontaminationsinceitdoesnotutilizethecombustionoffossilfuels.Theauxiliaryheatingboilerwillbeelectricallyfiredandwillnotproduceaircontaminants.Standbydieselgeneratorswillburndieselfuelwith0.7percentorlesssulfurcontentandanegligibleashcontent.Thesedieselsareusedinfrequentlyandarecontrolledsothatambientconcentrationsofcontaminantsareinsignificant.98-4
Theonce-throughcoolingsystemoftheexistingstationdoesnotreleaseanyparticulatematterintheformofdrift,andonlyasmallquantityofgaseousradwastesisreleasedfromthestack.TheseradioactivereleasesandtheirimpactarediscussedinSection5.2.Also,theexistingstationhasnosourceofodorthatwouldbenoticedbeyondthesiteboundaries..Inconclusion,thisstationhasanegligibleeffectonlocalairquality.9.8.1.3.6SaltsDischargedfromCoolingTowersThisareaofenvironmentalconcernisnotapplicabletotheexistingstationdesign.9.8.1.3.7ChemicalContaminationofGroundwaterTheexistingpowerstationhasnoreleasestothegroundfromthechemical,sanitary,radwasteorcoolingwatersystems.Therefore,contaminationofgroundwaterisnotexpectedtooccur>>9.8.1.3.8RadiologicalEffectsTheexistingliquidandgaseousradwastesystemsaredescribedinSection3.6.TheradiologicaleffectsandtheirdeterminationarepresentedindetailinSection5.2.ThereisnocontaminationofgroundwaterfromtheradioactivereleasesfromNineMilePointUnit1asdiscussedinSection5.2..9.8.1.3.9FoggingandIcingTheexistingpowerstationusesaonce-throughcoolingsystemtorejectwasteheatfromthestation.Thiscoolingmethoddoesnotrelyonevaporationorthetransferofsensibleheattotheatmosphere,andthereforethisstationdoesnotcreateafoggingoricingproblem.9.8.1.3.10Raising/LoweringofGroundWaterLevelsAspreviouslydiscussed,allliquidsystemsareisolatedfromtheground,andnoalterationofgroundwaterlevelshasorisexpectedtooccur.9.8.13.11AmbientNoiseTheacousticimpactofNineMilePointUnit1isdiscussedindetailinSection9.5.1.2.11.9.8-5
9.8.1.3.12AestheticsThearchitecturaldescriptionoftheexistingpowerstationispresentedinSection3.1ofthisEnvironmentalReport.Carefuldesignandlandscapetreatmenthasbeenappliedtoenhancetheaestheticappearanceofthestation.9.8.1.3.13PermanentResidualsofConstructionActivityConstructionactivitieshavebeencompletedsinceSeptember,1969.Theexistingfacilitiesutilizeapproximately45acresofthe900acresiteforbuildings,switchyard,andacessroads.Theseareasaredevotedtopowergenerationandarenotavailableforotheruses.AspreviouslydiscussedinSection2.2.1,thisareawasutilizedasanartillerytestingrangepriortostationconstructionandthereforewasoflimitedvalueasawildlifehabitat.Anyterrestrial-specieswhichwouldhavepreviouslyutilizedportionsofthesitenowoccupied,couldstillutilizetheremaining855acresofthesitewhichhavenotbeenalteredbyconstructionorstationoperation.Itisconsideredthatnopermanentresidualsofconstructionactivityexistoutsidetheareautilizedbythefacility.ThedetailsofanyfutureconstructionactivitiesastheymayaffecttheenvironmentduetoadditionalmodificationstotheexistingstationdesignarediscussedinSection4.Inaddition,sincetherearenoknownarchaeologicalsitesintheareaandthenearestNationalHistoricalsiteisintheCityofOswego,thereisnoimpactonsuchsites.9.8.1.3.14CombinedorInteractiveEffectsThereisnoevidencethatthecombinedeffectsofanumberofimpactsresultinatotaleffectwhichisnotadequatelyindicatedbymeasuresoftheseparateimpacts.9.8.2StationDesignConsideredtoProduceMinimumWaterImpactAnattempthasbeenmadetoidentifyanalternativenuclearstationdesignwhichwouldresultinaminimumdetrimentaleffectonthewaterbody.Thisalternativedesignwouldemploytheexistingstationasabasedesign.EitheranaturaldraftormechanicaldraftcoolingtoweroracoolingpondcouldbeusedtominimizeimpactstoLakeOntarioForthisanalysisanaturaldraftwetcoolingtowerwasselectedtocoolthecondensercoolingwatersinceitwouldalsolimitotherenvironmentaleffectsassociatedwiththealternativecoolingmethods.Thechemicaltreatmentsystemwoulduseanevaporativesystemtotreatwastesfromtheregenerationofthemakeupwaterdemineralizer.9.8-6 ll~t'E TheconcentratedbrinefromthistreatmentwouldbestoredinabrinepondandtherewouldbenodischargetoLakeOntarioofeffluentassociatedwith.thedemineralizerregenerationwastes.DischargesofradioactivitytoairandwaterareimprovedbyaddingtheproposedradwastesystemmodificationsmentionedinSections3.6and9.5.3toassurethatallsuchdischargesarewellwithinthelimitsof10CFRPart20andtheproposedAppendixIto10CFRPart50guidelines.ThebenefitsofthisalternatestationdesignareincludedinTable9.8-1.TheeconomicandenvironmentalcostsareshowninTable9.8-2.ThedataincludedinSections9.5and9.6,"AlternativeCoolingSystems"and"AlternativeChemicalEffluentSystems~~havebeenusedinderivingthealternativedesignwhichresultsinminimumdetrimentaleffectsonthenaturalwaterbody.98.3StationDesignConsideredtoProduceMinimumLand/AirImpactAnattempthasbeenmadetoidentifyanalternativenuclearstationdesignwhichresultsinminimumdetrimentaleffectstoambientairandland.ThisalternativedesignwouldbethesameasthestationdesignproposedforlicenserequestasdescribedinSection9.8.5.ThedataincludedinSections3.6,5.2,and9.8.1havebeenusedinderivingthealternatedesignwhichresultsintheminimumdetrimentaleffectsonlandandair.ThequantifiedresultsappearinTables9.8-1and9.8-2.9.84StationDesignConsideredtoProduceMinimumOverallEnvironmentalEffectThetwoprevioussectionshaveattemptedtoidentifystationdesignsconsideredtoproduceminimumeffectsonairandland,andminimumeffectsonthewaterbody.Thedesignwhichisconsideredtoproduceaminimumimpactontheaquaticenvironmentusescoolingtowersandanevaporativechemicaldischargesystem.Thesesystemsuseappreciablelandareaandhaveseveralimpactsonambientair.AsdiscussedinSection9.5.3.2.9coolingtowerdriftmayresultinfoggingandicingwithconsequenteffectsontransportationandvegetation.Driftalsocontainssaltswhichcontributetoambientairparticulateconcentrations.Thestationdesignwhichisconsideredtoproduceaminimumeffectonlandandairretainsboththeexistingonce-throughcoolingsystemandtheexistingchemicaleffluentsystem,butincorporatestheproposedmodificationstotheradwastesystem,asdescribedinSection3.6.Thestationdesignwhichwouldreduceenvironmentaleffectsinoneareaoftheenvironmentmay,inturn,produceeffectsonotherareasoftheenvironment.Itisbutasubjectivejudgment9.8-7
't astowhichareaoftheenvironmentismore.significant.Thereforenofurtherattempthasbeenmadetoidentifyadesignwhichresultsinminimaloverallenvironmentaleffects.9.8.5ProposedStationDesignforLicenseRequestTheproposedstationdesignforlicenserequestretainsboththeexistingonce-throughcoolingsystemandtheexistingchemicaleffluentsystem.TheproposedstationdesigntocontrolradioactivedischargestotheairandwaterconsistofthemodificationsdiscussedinSection3.6.Thesemodificationsassurethatallsuchdischargesarewithinthelimitssetforthin10CFRPart20andtheproposedAppendixItothe10CPRPart50guidelines.ThebenefitsoftheproposedstationdesignareincludedinTable9.8-1.TheeconomicandenvironmentalcostsareshowninTable9.8-2.-ThedevelopmentofthesebenefitsandcostsarefoundinSections3.6,5.2,and9.8.1.98-8
~~l'llIIIIIL~1 TABLE9eS-1BENEFITDESCRIPTIONALTERNATIVESTATIONDESIGNSNINEMILEPOINTNKIZARSTATXON)T)IT1ReportDate:June1972ExistingStationDesignStationDesignthatPzoducesHin)znzsWaterDzpactStationDesignthatProducesMin)nun~A)rlnpactProposedStatic>DesignforLicenseRequestELec.Po>>erPzoducedf>Sold:Industriald>Gccnezcial<<ResidentialOtherUsesReliabilityIndex2.75x109kvhr/yr9.8.1.11.24z109kvhr/yr9.8.1.10.55x109kvhr/yr9.8.1.19996)59.12.75x109kvhr/yz9.8.1.11.24z109)orhr/yr9.8.1.10.55x109kvhr/yr9.8.1.199.96159.12.75x109kvhr/yr9.S.1.11.24x109kvhr/yr9,S.1.10.55x109kvhr/yr9.8.1.19996159.12.75xlPkvhr/yr9.8.1.11.24z109kvhr/yr9.8.1.10.55x109kvhr/yr9.8.1.19996159.1ProcessSteanSoldEnv)ronnentalEnhances>cnt)Recreationnonepicnicareas9.8.1.1picnicareas9,8l,lnonepicnicareas9,8,1,1picnicareas9,8,1,1NavigationstackisavisualaidcoolingtoverisavisualaidstackisavisualaidstackisavisualaidAirQuality:Savingsas~dtoan610)tWOQ.FiredPoverStation:Particulates1.3x107lb/yr9.8.1,10.44z10lb/yr9.8.1.11.3x10lb/yr9.8.11Oi44z107lb/yr9,8,1,13.7z107lb/yr9.8.1.13.7z107lb/yr9.8.1,13.7x107lb/yr9.8.1.11.3z107lb/yr9.8.1.10.44xl07lb/yr9.S.1.13.7z107lb/yr9.8.1,11.3x107lb/yr9.8.1.1044z107lb/yr9.81.1EducationResearchRegionalGzossProductLocalTaxes~ntOtherBenefits25,000PeoPIe/yr9.8.1.125,000pecpl\>/yr9.8.1.1$3>000,0009811<<<<<<9.8,116Sonsite9.8.1.168onsite9>8,1,1Jobsoffsite9.8.1.1Jobsoffsite9.8.1.1$1>020>000/yr9.8.1.1$1>020>000/yr9.8.1.125,000people/yr9.8.1.1$300,000$1>020>000/yr9.Salmi9.8,1,168onsite9.8.1,1Jobsoffsite9,8,1,168onsite9.8,1,1Jobsoffsite9,8.1,125,000people/yr9.8.1.14300,000$1>020,000/yr9.8.1.198,1,1<<AsccobinedinFPGAnnualReport-Fuzz>1<<<<SeeSection9.8.4fordiscussionofstationdesignconsideredtopzodncethenin)nuuoverallenvironuentalistpact<<<<<<Anyincreaseintaxesisnot>B>sntifiablc
TABLE98-2COSTDESCRIPTIOHALTEIQIATIVESTATIOHDESIGHSHIRENIIZPOIHTHIXKZARSTATIOHIEIIT1ReportDate:Jane15rI2ExistingStationDesignStationDesignthatProducesNizdzzunWaterIzrpactStationDesignthatProducesNhdnrzzLangdAIrI~ProposedStationDesignforLicenseRequestSUBSYSTEMSzAlternativeCoolingSysteuRahrasteSystenAlternativeChenicalEffluentSystcnExistingOnce~(1)ExistingChenicalEffluentteaHaturalDraftCoolingTover(3)EvaporativeChcnicalEffluentten$51r320r000ExistingOnceThrough(2)ExistingChezdcalEffluentteaSgr330r0cxrr""EzistingOncethrough(2)ExistingChazicalEffluent,terap330rONZr~~PopulationorResourceAffectedl.Heatdischarged1.1Coolingcapacitytovaterbody4zIO9Btu/hr9.8.1.3.13,000acre-ft14x10Btu/hr9.5.3,2.12.2acre-ft4xIO9Btu/hr3,000acre-ft9,8,1,3,14zI09Btu/hr3,000acre-ft9.8.13ol1.2Aquaticbiotaccczzercialfish9.8.1.3.1lr500lb/yrsportfish-insignificant"ccenercialfish-9,53,214lb/yrsportfish-negiigible~~iaifish-9,8,1,3,11,500lb/yrsportfish-insignificantccanercialfish-9.8,1.3.1lr500lb/yrsportfishinsignificant1.3Nigratozyfishnoinyaiznent9.8.1.3.1noI~ant9.5,3.2.1noInyairnent9.8.1.3.1noinyaiznent9.8.1.3.12.Effectsonvater2.1PrinaryyzoduccrsbodyofintsIce4conscaersstructureaudcondenser2.2Fisheriescoolingsystenlazvae-"adultsfev9.8.1.3.26.7x10lb/yr9.8.1.3.21.5x10lb/yr9.5.3.2.1larvae-e9o5,3,21adults-veryfevIarvae-"adults-fev9.8,1,3,26.7x10lb/yr9.8.1.3.2larvae-eadults-fcv9.8.1.3.26+7xlb/yz'Bolo3o23.Cbenicel3.1Peopledischargetovaterbody3.2Aquaticbiota3,3Waterqualitychcnical4.Consusytionof4.1Peoplevater4.2Proyertynoadverseeffect9.8,1.3.3noadverseeffect9.8.1.3.3noadverseeffect9.8.1.3.350zlitgal/yr9Bele3e45.0zgal/yr9.8.1.3.448x109gal/yr953,2,45,0z10gal/yr9.8.1.3.44,8z109gal/yr9.5,3,2,45,0x10gal/yr9,8,1,3,45.0x106gal/yr9.8.1.3.45.0z106gal/yr9.8.1.3.4noadverseeffect9.6.2.2.1noadverseeffect9.8.1.3.3noadverseeffect9.8.1.3.3noadverseeffect9.6.2.2.1noadverseeffect9.8.1.3.3noadverseeffect9.8.1.3.3noadverseeffect9.6.2.2.1noalverseeffect9.8.1.3.3noadverseeffect9.8.1.3.35.Chcniceldischargetocabientair5.1Airqualitychcnical5.2Airqualityodorinsignificant9.S.1.3.59.8.1.3.5drift&.05lb/nin9.5.3.2.5ofsolids9,5,3,2,5none9.8.1.3.5none9.8.1.3.5insignificant9.8.1.3.5insignificant9.8.1.3.56.Saltsdischarged6.1PeoPlefzcncoolingtovers6.2Plants6.3Propertyresources7.Chenical7.1Peopleconteninationofgzcrundvater7.2Plantsexcludisaltnotapplicable9.8.1.3.6noeffect9.8.1.37noeffect9.8.1.3.7nctapplicable9.8.1.3.6notapplicable9.8.1.3.6ninereffect9.5.3.2.6notapylicable9.8.1.3.6notapplicable9.8.1.3.6noadverseeffect9.5.3.2.7noeffect9.8.1.3.7noeffect9.8.1.3.7noadverseeffect9.5.3.2.7noeffect9.8.1.3.7noeffect9.8.1.3.7zzinoreffect9,5,3,2,6notapplicable9.8.1i3.6notapylicable9i8,1,3,6ninoreffect9.5.3.2.6nctapplicable9.8.1.3.6notayylicahle9.8.1.3.6
/"
TABIZ9oS-2(COSY'D)COSTXESCRIPTIOHALTERHATIVESTATIOHDESIGHSHIREIGIZFOIEHOCIZARSIATIOHIIIX'ExistingStatfcaDesignStationDesfgnthatProducesMafmmWaterImpactStaticaDesignthatProducesMinie'AfrImpactPropose4StationDesigaRadfonuclidesdischargedtovaterbodyPopulationorResourceAffected8.1People-externalcontact8.2People-fngestfca2oOmcm/yrmaxfadfvfdualvbolebodydose28ares/yrmaxindividualGIT9.S.1.3.80.02mcs/yr9.8,1,3,8maxindividual0.008mern/yrmaxiadfvidualvholebodydose0+23mern/yrmaxindividualGIT9.5.3.2.80.0007nrem/yr9.5.3.2.8msxfndfvidual0.001mern/yrmaxiadividual0.01mcm/yrmaxfadfvfdualvholebo4ydose0.35mern/yrmaxfn4fvidualGIT9.8,1389.8.1.3.80.01mern/yrmaxin4ividualvbolebodydose0.35mern/yrmaxfndividualGIT9.8.1.3.80001mern/yl9~8'y38maxiadividual8.3Primaryconsumersexternal.53mrads/yrinteraal120mradk/yr9.8.1.3.8exteraal0.02mads/yrfnteznal8mads/yr9.5.3.2.8external0.03mads/yrinternal12mrads/yr9.8.1.3.8external0.03mradk/yrinternal12mrads/yr9.8.1,3,88.4Fishexternal.27mrads/yrinternal400mrads/yr9.8.1.3.8external0.01msds/yrintaraal7+3mads/yr9+5o3.2+8external9.8,1,3,80.015mads/yrfntemal11msds/yrexternal0.015mads/yrfnteruadllmra4s/yr9,8,1,3,811.Fogging4icing11.1Groundtransportation11.2Airtrsnsportatfonll3Hatertransportation11.4Plants9.Rcdionucfides9.1People-externaldischargedtocontactsuhfentair9.2People-ingestfon9.3PlantsandanLalsRcdfonucffdcsIOrlPeoplecontsmfnatfonofgroundvater10.2Plantssadanfnals30.6~hr9.8.1.3.8neglfgible9.8.1.3.830.6mern/yr9.8.1.3.8neglfgible9.8.1.3.8ncgligfble9.8.1.3.8noeffectnoeffectnoeffect9.8el+3,99,8,1,3,99o8,1,3,9noeffect9.8.1.3.90.028mads/hr9.5.3.2.80.028madk/yr9.8.1.3.80.028mads/yr~9.8.1.3.8neglfgfble9.5.3.2.8neglfgible9.8.1.3.8negligible9.8.1.3.80.028mern/yr9.5.3.2.80.028nrem/yr9.8.1.3.80.028ares/yr9.S.1.3.8negligible9.5.3.2.8negifgfble9.8.1.3.8negUgiblc9,S,1,3.8noeffectnoetfect9.8.1.3.9noeffect9.5.3.2.9noeffect9.8.13,9noeffect9.8.1.3.99e8,1,399.5.3.2.9noeffect9.8,1,3.9noeftect9.8.1.3.9iasfgnificantottsfte95329aoeffect9,8,1,3,9noeffect9.8.1.3.9negligible9.5.3.2.8negligible9.8.1.3.8negligible9.8.1.3.8noeffect95329noeffect12.Raising/12.1Peoplelowcrfngofgroundvatcr12,2Plantslevelsnoalteration9.8.1.3.10noalteratfoa9.S.1.3.10noalterationnoalteration9.5.3.2.10noalteration9.8.1.3.10noalteratioa9.81,3,109.5.3.2.10noalteration9.8.1.3.10aoalteratioa9.8.1.3.1013.JhbfcatnoiseI3.1People4H5dBA-0houses981.3.1145<5dBA-10houses95+321145%5dBA-0houses9,S,1,3,1145454BA-0houses98.1.31114.Aestheticslb.lAppearancenotsfgafffcatly9.8.1.3.12altersiteappearancevisiblecooling9.5.3.2.12notsfgnificantly9.8.1.3.12aotsignificantly9.8.1.3.12tokeraltersitealtersiteappcaraaccappearance
TARLE982(CORTrD)COSTDESCRIPTIORALTERRATIVESTATICSIKSIGRSExistingStationDesignStationDesignthatProducesMnimunWaterImpactStationDesignthatPzoduces)GnhzumLand/AirImpactIkeProposedStationDesignforLicenseRequest15.Permanentresidualsofconstructionactivity15.1Accessibilityofhistoricalsites15.2Accessibilityofazeheologicalsites15.3Settingofhistoricalsites15.4LanduseRoimpactnoimpactnoizrpsct45acres9,8,1,3.13nohrpact9.5.3.2.139.8.1.3.13noimpact9.5.3.2.139'8,1,313noimpact9.5.3.2139.8.1.3.1345acresplus9.5.3.2.132.3acresforthetowernoimpact45acres9.8ilo3,139.8.1.3.139,8olo3e139,8,1+3.139+8.lo3+13noimpact9a8.1.3+139.8e1.3o139.8.1.3.1315.5Pzoperty15.6Ploodcontzol15.7Erosioncontrolnot,aproblez9.8.1.3.13notapzobles9.53.2.13protecticaisprovided9.8.1.3.13protectionwillbe9.5.3.2.13pzovide4negligible9.8.1.3.13negligible95.3.2.13negligible9.8.1.3.13notaproblez9,81.3,13protectionwm.be9.8.1.3.13pzovidednegligible9,8.1.3.13notapzoblez9,8.1.3.13protectionwillbe9.8.1.3.13pzovide4(1)Originalradrrastesysteadesigndescribc4inSection3.6(2)Upgradedradwastesysteadesignwhichmeets10CPRPARl50,Appen4ixI,fortheonce~coolingsystesdescribe4inSection3.6(3)Radwastesystemdesignwhichmeets10CPR,PART50,AppendixI,foranaturaldraftcoolingtowersystezdescribedinSection9.5.3"Aqualitativediscussionofenvironmentalcostiscontainedinthea~topartofSection9.0~RefertoSection9.8.4foradiscussionofstationdesignconsidere4toproducetheminimumoverallenvtrozmentalimpacta~Totalpresentvalueofupgrade4radwastesyst<<abase4ona20.1'$fixedchargerate,a6.5I(annualescalationfactor,a9.6'ostofcapital,au4anamortizationoverthe~ining18yeareconomiclifeofthestation."~~DosesfortheExistingStationDesignonlyarebase4ontheidentifiedradionuclideszeleasedfzomtheRiceNilePointUnit1actual19(loperatingdata.
LONG-TERMEFFECTSOFSTATIONOPERATIONThelocal"short-term~~useoftheoverallprojectinvolvesthe'seofthestationareaoverthelifeofthestation.NiagaraMohawkbelievesthattherearenonegative,cumulative,long-termeffectsfromstationoperation.TheinvestigationsandstudiesoftheenvironmentaleffectsofstationoperationaredetailedinSection5.5.Itisbelieved,basedupontheresultsofthesestudies,thattherewillbenoinjuriouseffectstoaquaticspeciesdistributionorlakebottomproductivitynorwillthewaterqualitybeimpairedasaresultofcontinuedstationoperation.TheheatenergycontentinthedischargewaterdecayscontinuouslyastheenergytransferstotheatmosphereandanycumulativeheateffectsofNineMilePointUnit1effluentalonewillbeverysmall.InAppendixH,itiscomputedthatthetotalexistingandexpectedthermaldischargesintoLakeOntariofromallsourceswithinthenext10years,includingpowerstations,'ndustrialplants,andsewagetreatmentplants,willproduceanoveralllaketemperatureriseof0.08Fovertheoriginal'ndisturbedambient.Long-rangeprojectionsofheatdischargeindicatethattheoveralllaketemperaturerisewillincreaseto0.28Fbytheyear2000..Superimposedontheselong-rangeprojectionvalueswillbeanadditional0.1Friseduetoflowintothelakeatthewesternend.Ifonlytheeasternendofthelakeisconsidered,the'existingandproposeddischargeswillproduceatemperatureriseof0.17Foverthenext10years,andaprojectedtemperatureriseof0.60Fbytheyear2000..Inconsideringthermaldischargeeffects,thequestionoflong-terminfluenceonthefishandotheraquaticlifeisoftenraised.Itisnotexpectedthatchangesinfishpopulationorconditionaccruefromthethermaldischargesincethetemperatureincreasesaresmallandlocalized.Inconsideringlong-termeffectsuponwaterqualityLakeOntariowaterisreturnedtothelakeinessentiallythesameconditionasthatinwhichitiswithdrawn.The'seofthelandonwhichtheNineMilePointUnitislocatedmaybeconsideredashort-termuseforthenormallifeexpectancyofanucleargeneratingstation.,10.0-1
Concerningthemaintenanceandenhancementof.long-termproductivityofthe.landandadjacentwater,thepresentuseofthesiteforpowergenerationpurposesdoesnotprecludeitsuseforotherproductiveshort-orlong-termpurposesinthe,future..Amongtheseare:thepossibilitiesofdevelopmentforrecreationalor'residentialuse,bothofwhichare.impractical.orunsuitable.atpresent..Theresourcesofwaterandlandremainessentiallyunimpaired'egardlessof-theshort-termuseasapowergeneratingstation..Beneficialusesoftheareaforindustrialpurposeswillbe.reducedonlytotheextentthatthe,assimilative.capacityoftheenvironmentisreduced.NiagaraMohawkisoftheopinionthattherangeofbeneficialusesofthesurroundingenvironmentisnotnarrowedbytheproject.Littlechange,ifany,isanticipatedwithrespecttowildlifeinthevicinity,orthegeneralecosystem..100-2
SECTION11IRREVERSIBLEANDIRRETRIEVABLECOMMITMENTSTheoperationoftheNineMilePoint"NuclearStationUnit1hasbeenconductedtominimizetheirreversibleandirretrievable-commitmentsofresources,materials,land,andlakebottomAsdescribedinSection4,modificationstothestationwillhavenopermanentenvironmentaleffectsfromconstructionoftheradwastebuilding.Withrespecttolakebottom,theintakeanddischargestructures,occupyingafewthousandsquarefeet,wouldprobablyremainafterretirementofthestation.Althoughtheycouldberemoved,itwouldmostlikelybedecidedthattheworkrequiredtoremovethemwouldhavemoreofanimpactontheenvironmentthantoleavethemastheywereinstalled.Landusedforthestationcouldconceivablybereclaimedbyremovalofallbuildingsandotherrelatedstructures,suchastransmissiontowers.Thelandwouldthenreturntoitsnaturalstate.Thesmallarea(aboutthreeacres)occupiedby-thereactorfacilitiescouldbeplacedonpermanentrestrictionaccessand,therefore,wouldbeirretrievablylosttothecommunity.Mostofthematerialsusedtoconstructthestationwouldbeforallpracticalpurposesirretrievable.Exceptfortheconcrete,whichwouldbeconsideredlostforanythingbutsanitarylandfillorsimilaruse,mostofthematerialscouldbeusedelsewherefortheirintendedpurpose.However,thecostofretrievingthemwouldusuallyfarexceedthepurchasepriceofnewmaterials.Allstructuralcomponentsofthereactorfacilitieswillhavebecomeradioactivethroughactivationandcontaminationand,assuch,willbeirretrievablylost.ThesecomponentsandotherradioactivewastesproducedandaccumulatedthroughoutstationoperationwillbeburiedonapermanentlycommittedoffsitelandarealicensedandapprovedbytheAECfordisposalofradioactivewaste.Thestationpresentlyusesapproximately527kilogramsperyearofUranium-235.Thisincludesthedepletionof392kilogramsperyearofU-235,therecoveryof135kilogramsperyearofU-235,andtheproductionof112kilogramsperyearoffissileplutonium.Studiesproposedandmeasurestakeninthedesignofthefacilityfortheprotectionoftheterrestrialandaquaticecosystemswillassurethattheimpactonthesecommunitieswillnotbeirreversible.11.0-1 H
SECTION12ENVIRONMENTALAPPROVALSANDCONSULTATIONTheapplicanthascontinuedtomaintainbothformalandinformalcontactsanddisseminationofinformationwithconcerned-partiessincetheoutsetoftheNineMilePointNuclearStationproject.ParticularemphasishasbeenplaceduponconsultationwithregulatoryagenciesatFederal,Stateandlocallevelsregardingthevariouspermitsandapprovalsnecessarytotheconstructionandoperationoffacilitiesatthissite.ThemajorapprovalsobtainedastheresultoftheseconsultationsandapprovalsarelistedinTable12-1andattachedasAppendixG.Aspartofthecontinuingprogramofauditingfacilityoperationsspecificinformationregardingstationperformanceandenvironmentmonitoringisroutinelycollected.Thisdatahasbeenmadeavailabletointerestedgovernmentalagenciesfortheirinformationanduse.NiagaraMohawkiscurrentlyseekingtwoadditionalauthorizationsconnectedwiththeoperationofthisfacility:(1)N.Y.StateWaterQualitycertification(Section21(b)ofFederalWaterPollutionControlActasamended)Daterequestfiled:June29,1971andOctober15,1971(2)U.S.ArmyCorpsofEngineers"RefuseAct~'ischargepermits(Section13,1899RiverandHarborsAct)Dateapplicationfiled:June29,1971andSeptember30,1971Applicationnumberassigned:070/OX2/2/000/174July26,1971EPAandCorpsofEngineersreviewandapplicationreturned:November17,1971Applicationrevisedandresubmitted:June197212.0-1 r
Table12-1RegulatoryandReviewProceduresDocumentsTitleofAuthorization,PermitLicenseAroyaletc.Source.of-IssueDateofIssue-InstallationofTemperatureMeasuringDevicesinLakeOntarioU.S.CorpsofNovember1962Engineers-U.S.CoastGuardInstallationofSubmergedCurrentMetersinLakeOntarioU.S.CorpsofEngineers-U.S.CoastGuardAugust,1963ConstructionPermit-CirculatingWaterSyst:emIntakeandDischargeTunnelsU.S.ArmyCorpsOctober1964ofEngineersCorpsofEngineersCon-structionPermitIntake-DischargeStructures,Tunnels,ShorelinePro-tectionU.S.Coast.GuardNovember1964CoolingWaterDischargePermitNewYorkStateApril1965Dept.ofHealth-BureauofWaterResourcesConstructionPermit-NuclearStationandAssociatedFacilities(CPPR-16)U.S.AtomicEnergyCommis-sionApril1965ISanitary,SewageDisposalSystemNewYorkStateMay1965Dept.ofHealth-BureauofWaterResourcesStackEffluentDischargePermitNewYorkStateApril1966Dept.ofHealth-AirPollutionControlBoardApprovalsofStackConstructionFederalAviationOctober1966Administration,U.S.DeptofTransportationLicensetoPossessandUseBy-ProductMaterialU.S.AtomicEnergyCommis-sionJune196712.0-2
LicensetoPossessandUseSpecialNuclearMaterialU.S.AtomicEnergyCommis-sionAugust.1967ProvisionalNuclearStationOperatingLicense(DPRNo.17)U.S.AtomicEnergyCommis-sionAugust1969AmendmentNo.2toProvisionalOperatingLicenseNo.DPR-17U.S.AtomicApril14,1971EnergyCommis-sionTransmissionLineHighwayCrossingPermitTransmissionLineHargeCanalCrossingPermitNewYorkStateDecember6,1966DepartmentofPublicWorksNewYorkStateApril1,1965DepartmentofPublicWorks12.0-3
LIST.OFREFERENCESReference--NoPowerAuthorityoftheStateofNewYork,EnvironmentalReport,OperatingLicenseStage,JamesA.FitzPatrickNuclearPowerPlant,May.1971.24Personalcommunication,Mr.,GordonD'Angelo,NewYork.,StateDepartmentofTransportation,Syracuse,NewYork.,ReferralbyRobertFunk,StateArcheologist,NewYorkStateMuseum,Albany,NewYork.34Thorn,H..C.~S.,TornadoProbabilities,MonthlyWeatherReview(October-December1963)..4~~Hubbs,C..L.,andLagler,K..F.,FishesoftheGreatLakesRegion..CranbrookInstituteofScience,BulletinNo.26(1958)5.Beeton,A.M.,EutrophicationontheSt.LawrenceGreatLakes.,LimnologyandOceanography,10(2):.240-254(1965)6~70Beeton,A.M.,ChangesintheEnvironmentandBiotaoftheGreatLakes,in<<Eutrophication:Causes,Consequences,Correctives.'!NationalAcademyofSciences,Washington,DC.pp.150-187(1969)Dambach,C.A.,ChangesintheBiologyoftheLowerGreatLakes.,ProceedingsoftheConferenceon-ChangesintheBiotaofLakesErieandOntario.BuffaloSoc.Nat.Scipp1-17(1969)8FederalWaterPollutionControlAdministration,WatergualityCriteria,ReportoftheNationalTechnicalAdvisoryCommitteetotheSecretaryoftheInterior,April1,1968,Washington,D.C.(1968).9Ferguson,R.G.,ThePreferredTemperatureofFishandtheirMidsummerDistributioninTemperateLakesandStreams..J.FishRes.BoardCanada15:607-624(1958).10Fry,~F.E.J,In"HandbookofPhysiology,<<Edited'byDB.Bill,E.F.Adolph,andG.C.Wilbur.AmericanPhysiol.Soc.,Washington,D.C.715-728,(1964).Gibson,E.S.andFry,F.E.J,ThePerformanceofLakeandOxygenPressure.Can.J.drool.32:252-260,(1954).R-1
12-Henson,E.B.,AreviewoftheGreatLakesBenthosResearch.Publ..GreatLakesDiv.,Univ.ofMichigan,14:37-54(1966).13.Neil,J.H.andOwen,G.E.,Distribution,Environmental~.I!-Lakes.GreatLakesResearchDivision,Univ.ofMichigan,11:113-121(1964).14Herbst,R.P.,EcologicalFactorsandDistributionofs-'MidlandNaturalists.82(1):90-98(1969).15.Brinkhurst,R.O.,ChangesintheBenthosofLakesErieandOntario.ProceedingsoftheConferenceonChangesintheBiotaofLakesErieandOntario.BuffaloSoc.Nat.Sci.pp.45-71(1969).16.17.18.19.2021GreatLakesLaboratory,InteractionsofTemperatureands'uffalo,pp.1-29(1970).FederalWaterPollutionControlAdministration,StatementonWaterPollutionintheLakeOntarioBasin,preparedfortheNationalResourcesandPowerSubcommitteeonGovernmentOperations.Region5,Rochester,NewYork(1966).UnitedStatesDepartmentofInterior,FishandWildlifeasRelatedtoWaterQualityoftheLakeOntarioBasin,Aspecialreportonfishandwildliferesources,FishandWildlifeService(1969).FinalSafetyAnalysisReport(FSAR),NineMilePointNuclearStation,(June1967)Storr,J.F.,LimnologyStudy,NineMilePoint,LakeOntario,May1963.Kerr,J.E.,StudiesinFishPreservationattheContraCostaSteamPlantofthePacificGasandElectricCompany.FishBulletinNo.92,Calif.FishandGame,Sacramento(1953).22Weight,R.H.,OceanCoolingSystemfor.800MwPowerStation.ASCEJ.PowerDiv.PO6:84(1888):1-22.R-2 cIII~A>*P 23.24~Adams,J.R.,ThermalEffectsandOtherConsiderationsatSteamElectricPlants,Res.ReportNo.6934.2-68.PacificGasandElectricCompany,DepartmentofEngineeringResearch(1968).Zeller,R.W.andRulifson,R.L.,AsurveyofCaliforniaCoastalPlants,FWPCANorthwestRegionalOffice,Portland,Oregon(1970).25-26.27.Bainbridge,R.,TheSpeedofSwimmingofFishasRelatedtoSizeandtotheFrequencyandAmplitudeoftheTailbeat.J.Exp.Biol.35:109-133(1958)..Weaver,C.R.,InfluenceofWaterVelocityuponOrienta-tionandPerformanceofAdultMigratingSalmonids.FisheryBulletin63(1)97-122(1963).ExhibitE,NineMilePointNuclearStationUnit2-Applicant~sEnvironmentalReportConstructionPermitStage-NiagaraMohawkPowerCorporation,Syracuse,NewYork13202(June1972)28Alabaster,J..S.,EffectsofHeatedDischargeonFreshwaterFishesinBritain.In."BiologicalAspectsofThermalPollution"EditedbyP.A.KrenkelandF.L.Parker.VanderbiltUniv.Press,354-370(1969).29.30.Heinie,D.R.,TemperatureandZooplankton,ChesapeakeSci~,10(3/4):186-209(1969)InternationalAtomicEnergyAgency,RadioactiveWasteDisposalintotheSea,IAEA,Vienna,p.137(1961).3132PanelonRadioactivityintheMarineEnvironmentpublication,Radioactivitin.the.Environment,NationalAcademyofSciences,p.253(1971).Eisenbud,M.,<<EnvironmentalRadioactivity,<<McGraw-HillBookCo.,NewYork,(1963).33.Chapman,W.H.,etal.,ConcentrationFactorsofChemicalElementsinEdibleAquaticOrganisms,.UCRL-50564,(1968).3435.Bratton,C.A.,CensusofAgriculture,OswegoCounty:DepartmentofAgriculturalEconomics,CornellUniversity,Ithaca,N.Y.,October1967(A.E.Ext.475-33),(1964).DamesandMooreGeotechnicalStudiesReport,NineMilePointNuclearStation-Unit2fortheNiagaraMohawkPowerCorporation(February11,1972).R-3
/
36.Auerback,S.,Nelson,D.,Kaye,S.,Reichle,D.,andCoutant,C.,EcologicalConsiderationsinReactorPowerPlantSiting,IAEA-SM/146/53,(1970).37.Burnett,T.J.,HealthPhysics,18,p..73(1970).38~InternationalCommissiononRadiologicalProtection.ReportofCommitteeIIonPermissibleDoseforInternalRadiation,1CRPPub.No.2,Oxford,PergamonPress.(1959)39.CodeofFederalRegulations,Title10,Chapter1,AtomicEnergyCommissionPart50,LicensingofProductionandUtilizationFacilities,AppendixD-<<InterimStatementofGeneralPolicyandProcedure:ImplementationoftheNationalEnvironmentalPolicyActof1969(PL91-190)"(September9,1971).40.U.S.AtomicEnergyCommission,"ScopeofApplicants'nvironmentalReportswithRespecttoTransportation,TransmissionLines,andAccidents,<<(September1,1971).41.U.S.AtomicEnergyCommission,<<Draft-GuidetothePreparationofEnvironmentalReportsforNuclearPowerPlants,"issuedforcommentsandinterimuse,February,1971.42AmericanSocietyofMechanicalEngineers,BoilerandPressureVesselCode,SectionIII,(1971).43.Garrick,B.J.,Gekler,W.C.,Goldfisher,L.,Shimizu,B.,Wilson,J.H.,TheEffectofHumanErrorandStaticComponentFailureonEngineeredSafetySystemReliability,HN-194,HolmesandNarver,Inc.,LosAngeles,California,(November1967).44.DesignBasisforCriticalHeatFluxinBoilingWaterReactors,APED5286,GeneralElectricCompany,SanJose,California,(September1966)45.Horton,N.AnalyticalAspectsofAPED-5756,California,R.,Williams,W.A.,andHoltzclaw,J.W.,MethodsforEvaluatingtheRadiologicaltheGeneralElectricBoilingWaterReactor,GeneralElectricCompany,SanJose,(March1969).46.Slifer,B.C.,andHench,J.E.,Loss-of-CoolantAccidentandEmergencyCoreCoolingModelsforGeneralElectricBoilingWaterReactors;NEDO-10329,GeneralElectricCompany,SanJose,California,(April1971).
4748Garrick,B..J.,Shimizu,B.,GeklerW.C.,Wilson,J.H.,CollectionofReliabilityDataatNuclearPowerPlants,HN-199,HolmesandNarver,LosAngeles,California,(December1968).Garrick,B.J.,Gekler,N.C.,Baldonado,O.C.,Behrens,E.H.,Shimizu,B.,ClassificationandProcessingofReliabilityDatafromNuclearPowerPlants,HN-193,HolmesandNarver,Inc.,LosAngeles,California,(February1968).4950..FailureDataHandbookforNuclearPowerFacilities,Vol.1,FailureDataandApplicationsTechnology,Vol.II,FailureCategoryIdenitifcationandGlossary,LiquidMetalEngineeringCenter,Revised,(June,1970).Vandenberg,S.R.,ReactorPrimaryCoolantSystemRuptureStudy,QuarterlyReportNo.22,GEAP-10207-22,GeneralElectricCompany,SanJose,California,(July-September,1970).51.52.Morgan,K.Z.,IonizingRadiation:BenefitsVersusRisks.HealthPhysics17,p.539(1969).HearingsbeforetheJointCommitteeonAtomicEnergy,"EnvironmentalEffectsofProducingElectricPower,~~January27-30andFebruary24-26,1970.,R-5
- IW APPENDIXAINDUSTRIALFIRMSINOSWEGOCOUNTY1971
APPENDIXAINDUSTRIALFIRMSINOSWEGOCOUNTYMININGDaviesSand6GravelCo.GeneralCrushedStoneCo.FOODANDKINDREDPRODUCTSOswegoLaconaWashedsandandgravelSandandgravelMexicoMexicoBorden~sFarmProducts(Div.ofTheBordenCo.)B.W.B.Foods,Inc.(GrandmaBrown'sBakedBeans)CitrusFruitJuiceCo.FultonGeneralFoodsCorp.Fulton(BirdsEyeDiv.)McPhailCandyCo.Oswego(OswegoCandyCo.)TheNestleCo.,Inc.FultonMilkprocessorsBakedbeansFruitjuicesFrozenvegetablesConfectioneryproducts,peanutbutterChocolateproductsTEXTILEMILLPRODUCTSBreneman,Inc.ColumbiaMills,Inc.OswegoMinettoWindowshadecloth,windowshades,in-dustrialfabricsBookbindings,in-dustrialfabrics,artificialleathersAPPARELANDOTHERRELATEDPRODUCTSConnKnittingMills,Inc.AlmaFoundations,Inc.OstedManufacturingCo.LUMBERANDWOODPRODUCTSA.C.DuellKennethFishAlfredPierceRaydersMillOswegoOswegoOswegoMexicoSandyCreekHannibalWilliamstownKnitsportswearandunderwearWomen'sfoundationgarmentWomen'scottondressesWoodpalletsSawingandplanningmillSawmillLoggingA-1 I'i,HJI' WhitingHilton6SonsCliftonD.YerdenWebbLumberCo.FURNITUREANDFIXTURESBlountLumberCorp.Wm.P.Curtis6SonsWebb-WayWoodProductsOrwellRedfieldBernhard'sBayLaconaRichlandBernhard'sBayLadders,wooddowels,rollingpins,cratesLoggingSawmillInfant'sbathequip-mentWoodoffice,schoolandrestauranttablesandchairsHardwoodproductsin-cludingwall"Plankets,"bedslats,surveyorstakes,etc.PAPERANDALLIEDPRODUCTSArmstrongCork'Co.BurrowsTissueCorporationContainerCorporationofAmericaHammermillPaperCo.SchoellerTechnicalPapers,Inc.Papertronics,Inc.(Subsid.ofHammermill)RobertsonPaperCo.(Subsid.ofNorthEndPaperSealrightCo.,Inc.,Packaging(Subsid.ofPhillipsPetroleumCo.)FultonPhoenixFultonOswegoPulaskiOswegoFultonCo.)FultonFlooring,felts,fabricatedindustrialfeltsandgasketmaterialTissuepaperCorrugatedshippingcontainers,paperproductsFinepapersDuplicatingpapersConvertedrollpaperproductsWhiteandcoloredtis-suesSanitarysingleser-vicepaperboard,plastic-coatedpaper-boardandallplasticpackagingincludingthemanufactureofpackagingmachinerytoform,sterilizeandsealPRINTINGANDPUBLISHINGAcmePlateBowerPrintingCo.TheCorsePress,Inc.EconomyPrintingCo.TheFultonPatriot,Inc.OswegoOswegoSandyCreekOswegoFultonPrintingplatesLetterpressandoff-setprintingNewspaper,magazine,catalog,commercialprintingCommercialprintingNewspaper,commer-cialprintingA-2 0
Holstein-FriesanWorld,Inc.D.F.JamesPrintingCo.LincolnPrintingCo.MexicoIndependent,Inc.(OswegoCountyWeeklies)W.P.MitchellPrintingCo.TheMorrillPressOswegoPrintingCo.,Inc.OswegoValleyNewsPalladium-Times,Inc.ThePhoenixPressPoisonPress'ontiacPhotoEngravingCo.PulaskiDemocratPublishingCo.ToddBros.CHEMICALSANDALLIEDPRODUCTSSandyCreekOswegoFultonMexicoOswegoFultonOswegoFultonOswegoPhoenixFultonOswegoPulaskiOswegoPrintingandpubli-shingCommercialprintingCommercialprintingNewspapers,catalogsCommercialprintingFlexiblepackaging,printingandconver-tingCommercialprintingWeeklynewspaperDailynewspaper,letterpressandoff-setprintingLetterpressandoff-setprintingCommercialprintingPhotoengraving,flatandwrap-aroundWeeklynewspaper,commercialprintingCommercialprintingEverbritePaints,Inc.MinettoPaints,varnishes,industrialfinishesPETROLEUMANDCOALPRODUCTSAlliedChemicalCorp.LoganLongCo.Tri-StatePaintCo.FultonFultonFultonBituminousconcretepavingmaterialsAsphaltslateshing-les,roolroofing,plasticsandcoatings,asphaltpaintsAsphaltproductsforroofingandindustrialuseSTONEiCLAYANDGLASSPRODUCTSHuronPortlandCementCo.,Inc.MarsellusCasketCo.,Inc.(Subsid.MarsellusVault6SalesCo.)MassaroCo.,Inc.OswegoValleyCon-structors,Inc.OswegoMexicoFultonMinettoPortlandandmasonrycementConcretevaultsBlocks,sandandgravelPrecastmasonryformsA-3
PRIMARYMETALSAlcanAluminumCorp.ScribaAluminumrerollandplatestockFABRICATEDPRODUCTSAluminumProductsCorp.FultonCoppexweldSteelCo.(Flexo-WireDiv.)OswegoFosterBros.Cutlery,Inc.FultonBoilerWorks,Inc.FultonSheetMetalWorksFultonPulaskiFultonJSKBoilerCo.,Inc.OswegoOswegoCastingsCorp.(Subsid.OberdorferFoundriesInc.)OswegoSectionalStructures,Inc.WilliamstownIrrigationInc.OswegoWilliamstownMACHINERY(exceptelectrical)PulaskiMetalProducts,Inc.PulaskiMetalstampings,drawnaluminumcans,tubes,screwcapsandclo-sures,shieldcoversFlexiblecables,finesizesofcoppercoveredsteelwire,copper,bronzeandothermetalsButcherknivesandcleaversSteamboilersSheetmetalfabrica-tionBoilers,heatingandplumbingsupplies,sheetmetalfabri-cationAluminumpermanentmolds,aluminumdiecast-ingsHighspeedandcarbiderotaryfilesModularstructuresIrrigationsystems(p3.peqpumpsgfEt-tings),wheelchairs,walkers,canes,aluminumconveyorsBlack-ClawsonCo.,Inc.(DiltsDiv.)Bud-AirCo.,Inc.Car-WellCorp.FultonPulaskiPhoenixPaperandplasticsmachineryandstaticregenerativeelectricdrivesAirpoweredtreepruners,accessoriesandparts,compres-sors,airchainsaws,unloaders,greasegunsMachineshop,experi-mentalwork,specialequipmentA-4
OswegoPackageBoilerCo.,Inc.(CyclothermDiv.)D.K.Machine6ToolCo.,Inc.OswegoFultonFultonMachine6ToolCoFultonIndustrialPrecisionProducts,Inc.(KingsfordFoundry6MachineWorks)Lagoe-OswegoCorp.LeppertMachineToolCo.,Inc.MacCordyMachineTool8DieCorp.OswegoOswegoFultonFultonNorthernSteelCorp.FultonManufacturingDiv.(RMPCorp)OswegoFultonOswegoSheetMetalWorks,Inc.PhoenixGageCo.OswegoPhoenixSawyerFoundryandMachineWorksWestSideMachine8Tool,Inc.MinettoFultonBurtonG.Cross,Inc.PhoenixPorterCableMachineCo.Pulaski(Subsid.SpeedmaticResearch8EquipmentCorp.)ReydunKnife-MachineCo.FultonPackagedsteamgene-ratorsproductionmachining,specialmachineryandmachineshopPrecision,experimentaltools,jigs,fix-tures,diesMachineshop,cen-trifugalpumpsMachineshop,specialmachineryToolsanddies,specialmachineryTools~dies~gzgfixture,gages,specialmachinerySteelfabricationPapermillandlabo-ratoryproductionmachineryandcon-vertingequipmentConveyors,belts,screwfeeders,ven-tilationcomponentsMachineworksandgagesConcreteandmortarmixers,firingpinsandassembliesMachineknivesforpulpandpaper,agriculture,steelandwoodworkingvises,grayironcas-ting,snowplowshoesMachinedesign,de-'velopmentandpro-ductionPapermachinecylin-dersanddandyrollsPLASTICSANDRELATEDPRODUCTSElconPlastics,Inc.OswegoPlastics,Inc.EmpireSignCompany,Inc.OswegoOswegoFulton,PlasticsignsSiliconeandrubberwaxpadsandmiscel-laneoussiliconemouldedproductsplasticandmetalsignsA-5
MISCELLANEOUSMANUFACTURINGINDUSTRIESPearsonInstrumentCo.PollutionAbatementServicesofOswego,Inc.FultonInstrumentCo.,Inc.(DivofWillRoss)PulaskiOswegoFultonScientificinstrumentsIncinerationofliquidindustrialwasteClinicalthermometersINDUSTRIALSERVICESThereisawidevarietyofindustrialservicesavailabletoOswegoCountymanufacturersprovidedbyfirmslocatedwithintheCounty.Servicesincludeaccounting,architecture,contracting(generalandspecialized),industrialoilsandgases,businessandmanagementconsulting,truckingand.otherspecialities.Inaddition,Oswego~spositionontheperipheryoftheSyracus-OnondagaCountyindustrialcomplexprovidesrapidaccesstoitsmanyindustrialservicefirms.Preparedby:OperationOswegoCounty,Inc.22WestVanBurenStreetOswego,N.Y.13126A-6 A,1'C APPENDIXBINVENTORYOFGAMESPECIESINOSWEGOCOUNTY
APPENDIXBINVENTORYOFGAMESPECIESOSWEGOCOUNTY~seciesAbundanceManagementPotential.GameRangeZonesSee.Fire-B-1CottontailRabbitHigh-popu-GoodonextensivelylationsManagedclearlandfluctuateA,BandWesternCGreySquirrelRingneckPheasantRuffedGrouseGenerallylowlocallyhighGenerallylowlocallyhighHigh-popu-lationsfluctuateLimitedtowoodlotscontainingbeech,cherryandoaksGoodonintensivelycultivatedrowcroplandLimitedtoclearingedgesandnewhard-woodforestsonidlefarmlandA,BandWesternCA,moresparseinBCounty-wide,huntedmainlyinCandDWoodcockModeratelocallyhighLimited-Birdsaremigratory.PoorpasturemanagementattractsflightbirdsinfallCounty-wide-StreamvalleysandbrushyswampsVaryinghareWaterfowlHigh-popu-lationsfluctuateHighGood-ExtensiveconiferplantationsconcentrateharesinwinterGood-Populationandhabitatmana-gementtechniquesarewellestablishedC,D.AnareaofinterminglingwithcottontailrabbitsoccursalongWesternCHighestinA6B.SomewhatmorelimitedinCMuskratsHighGood-Registeredmarshprogrampro-vides,forlocalmanagementonpri-vatemarshesCounty-wide.BesthabitatinAandB I'
JCFFCNSONCOUNTYOS'NCOOCOUSANOTCNCCXJONNCLLNINEMILEPOINT.NUCLEARSTATIONINCNNAYCN)NCXICOSCINSAALSIONgl".<ah/Wu.IANSTONNQONSTSHANNISALLTULTON:ls~lgII1OSWCOOCOUIITYONCSIOAOACOUNTYci/hALCANO///SCNNCCSKLHASTSISS/////CCNTNAL///TLOSCNCC///r-/CONSTANTIA//jl~S////CANDCNFIGUREB-IGAMERANGEZONEOSWEGOCOUNTY
~secies.Abundance.ManagementPotential.'.GameRangeZonesSeeFire-B-)..MinkModerateLimited-PopulationmanagementpossibleonmarshesbutstreampopulationslimitedbyamountofgoodqualitystreamCounty-wide.BesthabitatinAandBWhite-tailedLowdeerLimited-DeepsnowmajorlimitingfactoronTugHill.Peopleanddogsmajorproblem,elsewhereincountyCounty-wide.BesthabitatCMostcommon,DBeaverModerateGood.Currentlyacounty-widenuisanceproblem.HighvaluefurbearerCounty-wideRedFoxModerateGood.Currentsocialattitudeprecludesgoodrecreationaluse.LowvaluefurbearerCounty-wide.BesthabitatinclearedlandsBobcatOtterLowLowGood.CurrentsocialattitudesnowpermitgoodrecreationaluseofthisfinegameanimalLimited.DependentupongoodqualitystreamsD.AsforestsdevelopinC,thisshouldalsobecomeoptimalCandDFisherLowLimitedtolargetractsofnatureforestC(increasing)RaccoonModerateLimited.PrefersswampforestsnearvegetableoperationsinOswegoCounty.LowvaluefurbearerCounty-wide.BesthabitatfoundinAandBB-2
~SeciesCoyoteAbundance-LowManagementPotentialLimited.Socialat-titudesgreatlypre-judiced.Easilytrappedbyskillfulpeoplebutdifficulttohunt.Mistakenlyidentifiedasdan-'erousdeerpredatorGameRangeZonesSeeFiureB-1CandDB-3
~p APPENDIXCINVENTORYOFHISTORIC'ATURAL,ANDSCENICSITESINOSWEGOCOUNTY I(4 APPENDIXCINVENTORYOFHISTORIC(H)gNATURAL(N)gANDSCENIC(S)SITESMapNoi~Nameor~XdenhihOswegoCityLibrary(H)Town.OswegoHicih~aDescriptionandPresent-Use-NationalHistoricSite.Notablearchitectureandoneofoldestcon-tinuallyusedcitylibrariesinthecountry.GiventoOswegobyGerritSmithin1855.FortOntario(H)OswegoMarketHouse(H)OswegoOswegoMainentranceviaEast7stSt.Builtin1755,firstEnglish.footholdinallGreatLakesregion.Statehistoricsite.JusttotheeastisoldmilitarycemeterydatingfromFrenchandIndianwar.Builtin1835,itisunderconsiderationasaNationalHistoricSite.FortOswego(H)OswegoCornerofWest1st6VanBurenStreetsBuiltbyBritishin1727anddestroyedbyFrenchin1756.Sitemarkedwithstonemarker.OswegoHarbor(H)OswegoEast1stStOswegoharboristhemostimportantportontheAmericansideofLakeOntario.Herethrivedatremendouswatercommerceandanextensivemillingindustryinthelatterhalfofthe19thcentury.
MapNameorwo.-~xodent~~.Town"HicihHwar.DescriptionandPresent.Use-6FortHastingsBrewerton(H)US-11atnorthsideofOneidaRiverFortwasbuiltbytheBritishtoguardthesupplyroutefromAlbanytoFortOntario.Reputedoutlineofthefortificationmaybeseen.BattleIslandGranbyStatePark(H)SpyIsland(H)MexicoNYS-48NYS-104BSiteofskirmishbetweenBritishsupplyforceandaFrenchandIndianscoutingforceattempt-ingtocutoffthefortsatOswegoin1756.IsnowaStateParkwith18-holegolfcourse.SpyIslandatthemouthoftheLittleSalmonRiveristhelocationofthegraveofSilasTowne,RevolutionaryWarspyforGeneralWashington.ArthurTavern(H)MexicoCo.Rt.16Builtabout1839byAlexDanby.,Stillinuseasatavern.10Allen-ConklinMexicoHouse(H)5284ChurchStMexicoNeo-classicalhousein1842byWarrenAllen,stillinuseasaresidence.11Chandler-Brown-Roop-House(H)MexicoNorthSideofMainSt.atChurchStMexicoGeorgianstonehousebuiltbyPeterChandlerin1838,stillusedasaresidence.12ShubalandMexicoLucindaAlfredHouse(H)WestMainSt.(exten-sion)MexicoOldesthouseinMexico.Builtabout1811,nowpartofalargerresidence.C-2 pg'j~P<v'V\Pg7l4IPI" MapNameorNo~Identit13Colosse(H)TownMexicoHicih~aUS-11DescriptionandPresentUse-.-Townhastheoldestchurch(stillstanding)inOswegoCounty.Townisnotedforitscheese.14FruitOswegoValleyCommunity(H)15SelkirkRichlandLighthouse(H)US-104WestNYS-3Communitycontainsgrave-yardwithburialplaceofDr.MaryWalker,notedfeministandwinnerofCongressionalMedalofHonorforservingasaCivilWarNurse;andahousereputedtohavebeenastationontheUndergroundRailroadaidingtheescapeoffugitiveslaves.Builtin1828inexpec-tationofdevelopmentofamajorlakeportatmouthofSalmonRiver.Despiteearlylumbertrade,permanentcom-.mercialgrowthneverfollowed.Nowafishing,boating,andcampingarea.16CountyCourtRichlandHouse(H)Court8Jefferson'Sts.iPulaskiBuiltin1819,rebuiltandenlarge'din1859.Stillinusetoday,itsharesCourtdutieswithOswegoCourtHouseinOswego,NewYork.OneofonlytwoexistingdualCourtHousearrangementsinNewYorkState.17VillageofSandyLacona(H)CreekCo.-Rts.48622BirthplaceofI.J.Case,inventorofthereaperwhichrevolutionizedgrainharvesting.C-3 JII MapNoeNameor~IdentitTown-Hicihwar.DescriptionandpresentUse-18GeorgeScribaConstantiaHouse(H)NYS-49BuiltinConstantiaduring1792byScriba,whohadpurchase499,999acresofpubliclandsfor$1.00anacrewhichlaterbecameOswegoCounty.Heiscreditedwithhavingdonemoretodeveloptheregionthananyothermanoftheearlydays.Frenchman'Island(H)ConstantiaOneidaLake1milenorthofSouthBaySettledbyDesVatinesFamilyfromPrancein1791.Atonetimearesortlinkedbysteam-boattoOneidaLakePort.s.20Cleveland(H)Constantia,NYS-49Villagewithathrivingglassindustryintheolddays.Clevelandglasswareisnowindemandbycollectors.21LittlePrance(H)HastingsCoRts.846'37AtinycommunitysettledbyacolonyofpeoplefromPrance.Interest-ingcemeterylocatedthere.22RailCity(H)SandyCreekNYS-3Oneofthenation'smostcompleterailroadmuseums.23VanBurenHouseandVanBurenTavern(H)VolneyNYS-57atVanBurenDr.JohnVanBuren,cousinofMartinVanBuren,hiswifeandfoursonsbuilttavernandbrickneo-classificalstruc-tureonOswegoRiverShoreatFulton,NewYorkin1796.SecondfamilytosettleinFulton.
I~~
MapNameorNo.~IdentatTownDescriptionandHiciHhwa~PresentUse24TugHill(N)Redfield,Boylston,OrwellandWilliams-townCo.Rt.17Heavilyforestedlowhillsandridgesover1,000ftinelevation.Thisistheultimateinwilder-nessformanypeopleandaboundswithnumerousspeciesofwildbirdsandanimals.25NorthandSouth(NiS)SandyCreekCtRt15Long,narrowstripofundevelopedsandbeachseparatesNorthPondfromLakeOntario.26KasoagLakesWilliams-townCo.Rt.30Scenicseriesofsmalllakes.27SalmonRiverOrwellFalls(S)FallsRoadPicturesquewaterfallsknowntobehigherthanNiagaraFalls.28MadRiverFalls(S)RedfieldPicturesquewaterfallsinundevelopedwilder-nessarea.29BeaverMeadowsMucklandRegion(S)SchxoeppelBarnardRoad400acresofdevelopedmuckland.Especiallyscenictopeoplewhohavenotseenlargeareasofthisrichblacksoil.30HappyValleyParish,GameAlbion,ManagementWilliams-Area(N)townandAmboyNYS-126The8,620acresare75%coveredwithhardwoodandconiferforest.Theremainingacreageismaintainedopenfields,greenstrips,managedwildlifemarshes,andponds.Manyspeciesofwildlifearepresent.C-5
MapNO431Nameor~1dentitLittleJohnGameManagementArea(N)RedfieldandBoylstonDescriptionandHicih~a.Present.Use.Ct.Rt.17The8,020acresare90$coveredwithhardwoodandconiferforest.Theremaining10$oftheacreageisbrushyfields,oldbeavermeadows,andswamps.Manyspeciesofwildlifearepresent.32ThreeMileWestMonroeToadBayGameandHarborManagementConstantiaRoadArea(N)Theareaconsistsof2,300acresofswampforest,oldfield,500acresofformerlyclearedmuck-landandopenmarsh..Theareawillsoonbemanagedintenselyforwaterfowlproduction.33PeterScottSchroeppel.Swamp(N)SwampRoadSeveralhundredacresofundevelopedmarshland.C-6 eNg 4ANOYCACCNhH..<<JKSFCRSONtOSTYCGO4OYLSTONLAOONAliNCOTICLO3IN28Sl5H04WCNINEMILEPOINTNUCLEARSTATION4NCWNAVCN)&XICOH(OHIIHI,)~g/AALCANOL7/NANNIAALLTIJLTONll.OSWEGOGOINTYONONOAGAGOLNITY/'f-2QSClCCNTNAI.4OOANT)i//7tNANNWAL~CRANNY7Hil7HJONWCLLI~IRASNI16JI27$/ALOIONtALTNAN/~~I42AIN//WILLIANSTOWNI~26$f/TLOACNCC//r-~/CONSTANTIA//Sl"VICNNA~CAATtIOAl9HLitt30NRANIWI~~J//NANISN/CANOCNFIGUREC-1OSWEGOCOUNTYSHOWINGHISTORICAL,NATURALORSCENICSITES
'\
APPENDIXDMETEOROLOGICALDATASUMMARIESATNINEMILEPOINTNUCLEARPOWERSTATION
NNWNNENWNEWNWENEI0%20'/o"30o/o707ALW/rVDJANUARYWSWESESWSESSWSSEMI-IOMPH'Il-20MPH2I-IOOMPH'NWNNENWNEWNWENE20%I0%30%TOTA/W//I/DFEBRUARYWSWESESWSESSWSSCNOTE:NINEMILEPOINTWEATHERDATAFIGURE0"IAVERAGEWINDROSESJANUARY6FEBRUARYl963-l964NIAGARAMOHAWKPOWERCORPORATI0N I
NNWNNENWNEWNWENEl0%20%30%TOTALJVINDMARCHWSWESESWSESSWSSEMI-IOMPHII-20MPH2I-IOOMPHNNWNNENWNEWNWENE20%l0%30'OTALWIA'DAPRILWSWESESWSESSWNOTE!NINEMILEPOINTWEATHERDATAFIGURED"2AVERAGEWINDROSES~MARCH6IAPRILl963-l960NIAGARAMOHAWKPOWERCORPORATION
~I NNWNNENWNEWNWENEWI0%20/o30o/oTOTALO'INDMAYWSWESESWSESSWSSEMI-IOMPH'll-20MPH2l-IOOMPHNNWNNENWNEWNWENEIO'/ZOo/o30%TOTALlVINDJUNEWSWESESESSENOTE:NINE'ILEPOINTWEATHER~AAFIGURED-3AVERAGEWINDROSESMAY6IJUNEl963-I964NIAGARAMOHAWKPOWERCORPORATION ICfl~k/~~14,14T~1CfI~V NNWNNENWWNWENEI0%20%30%TOTALJf'INDJULYWSWESESWSESSWSSEIOMPHII-20MPH2I-IOOMPHNNWNNENEWNWENEIO/20%30~/oTOTALiYINDAUGUSTWSWESESWSESSWSSE'OTE:NINEMILEPOINTWEATHEROATAFIGURED"4AVERAGEWINDROSESJULY6IAUGUSTI963-I964NIAGARAMOHAWKPOWERCORPORATION 1'4~Jl NNWNNENWNEWNWENEI0%50%20oTOTALWINDSEPTEMBER'SWESESWSESSWSSERIIOMPH'II-20MPH2I-IOOMPHNNWNNENWNEWNWENEI0%20o50%TOTALWINDOCTOBERWSWESESWSESSWSSENOTE:NINEMILEPOINTWEATHERDATA,FIGURED"5AVERAGEWINDROSESSEPTEMBER6OCTOBERl965"l964NIAGARAMOHAWKPOWERCORPORATION
'rIf'J(
NNWNNENWNEWNWENE104/,30oI20%TOTALWINDNOVEMBERWSWESE,SWSESSWSSEI-10MPHII20MPH21-100MPHNNWNNENWNEWNWENE20oIo10oI30oIoTOTALWINDDECEMBERWSWESESWSESSWSSENOTc..MILEPOINTWEATHERDATA.FIGURED-6AVERAGEWINDROSESNOVEMBER6DECEMBERl963"l964NIAGARAMOHAWKPOWERCORPORATION lt t2+I4.04Jcc:0Icu0ocv4JI-cl5cilCL4IX4JcJJCL-20246'IOI2I4I6I8202224HOURSJANUARY63-64t2+I404JolcJIcuocu4JI-CIzoCJJ4J4JcllCL-20246-8IOI2I4I6IS202224HOURSFEBRUARY63-64NOTE:NINEMILEPOINTWEATHERDATAFIGURE0"7AVERAGEDIURNALLAPSERATESNIAGARAMOHAWKPOWERCORPORATION
+2+ILL.0LUIL:0Nl<<CI0OCULUI-ChtLLUXLUEOLL.02468IOI2I4I6I8202224HOURSMARCH63-64+ILL.0LUoDI(vLU0cuLUICIOCOLLLURLUChLL.-202468IOI2I4I6I8202224HOURSAPRIL63-64'NOTE:NINEMILEPOINTWEATHERDATAFIGURE0-8AVERAGEDIURNALLAPSERATESNIAGARAMOHAWKPOWERCORPORATION
+ILJ.0wff0IOOlwI-<<IOElfffwX-2024'8IOI214HOURSMAY63-64I618202224t2+ILL0woI-CVW0O.ofwI-<<lzOCOLIJwV)0-202468LOI2l4l6IS202224HOURSJUNE63-64NOTE:NINEMILEPOINTWEATHERDATAFIGURED-9AVERAGEDIURNALLAPSERATESNIAGARAMOHAWKPOWERCORPORATION
+2+ILL4ICL:0IclILL.0NWI-CIILL:4JXLUcoLL.-2,"'2468IOI2l4l6IS202224HOURSJULY63-64+ILL0LLIOIcuwOcuUJI-<<7IIROco4JKIIJcilQ.<<C-202466I0I214I6IB202224HOURSAUGUST63-64NOTENINEMILEPOINTWEATHEROATAFIGURED-IOAVERAGEDIURNALLAPSERATESNIAGARAMOHAWKPOWERCORPORATION "C'I
+III.0LJJCL0IOILIJ(400C4LIJI-ROCOCLLIJIJJCOCJ.202468IOI2I4I6I8202224HOURSSEPTEMBER63-64t2+ILI0LJJoIOI-C4LIJ0LIJI-clROCOLIJR02468LOI2I4I6IS202224HOURSOCTOBER6'5-64NOTE:NINEMILEPOINTWEATHERDATAFIGURE0-IIAVERAGEDIURNALLAPSERATESNIAGARAMOHAWKPOWERCORPORATION
4'2+I4.04Jcc0IOIcuOCIILIJclVJIJ:4JX4JVJQ.-202,468IOI214I6I8202224HOURSNOVEMBER63-64+I40LIJCJ:IOICII4J04JI-CIOV)LLIz4JV)a.I6I820222402468IOI2I4HOURSDECEMBER62-63Decemberdatabasedon62plus63data(64dataunovaItabtebecauseofInstrumentmalfunction)NOTE:NINEMILEPOINTVjtEATHEROATAFIGURED-I2AVERAGEDIURNALLAPSERATESNIAGARAMOHAWKPOWERCORPORATION 0
APPENDIXEPLANTANDANIMALSPECIESOBSERVEDATNINEMILEPOINTNUCLEARPOWERSTATION
APPENDIXEPlantsandAnimalSpeciesObservedatNineMilePointNuclearPowerStationPLANTSAbandoned.PamilkweedchicorybuttercupdaisyQueenAnne~slacegoldenrodasterragweedthisselpokeweedpurplenightshadeblackberryraspberryyarrowlilachawthornpoplarapplepearredosierdogwoodscotchpineburdockredcloverfoxtailorchardgrassstaghornsumacstrawberrystures.adOrchard-(Ranunculussp.)(Chrsanthemum-3.eucanthenum(Dancescarota)(Aster-sp.)L(Cirsiumsp.)(Solanumdulcamara)(Rubus-sp)(Achilleamillefolium)~Serioavulcuaris)(~Poulussp.)~prusmalus)(~prus~cmmunis)(Comusstolonifera)(Arctium~laa)(Trifolium~ratens(Setaria-sp.)s(Rhus~thing)OverrownlandThepreviouslymentionedfollowingwoodyspeciesplantsarebeingdominatedbytheredcedaralderhawthornPoplarstaghornsumacapplepear(Alnussp.)(~Poulus.sp.)(Rhus~thing)(~prus~mlus)(~pruscommunis)E-1
willowarrowoodmeadowsweetgroundpinegrape(Salix.sp.)(Viburnumsp-)te' 'Vitis~sp)Northernhardwoodforest.TreeswhitebirchyellowbirchblackcherryhemlockwhiteashblackashbeechPoplarredmaplesugarmapleredoakmusclewoodIronwoodwallow(Setula~utes)(Prunus.serotina)(TTsuaacanadensis)(Fraxinusnina)(~poulus.sp.)(Acerrubrum)(Acersaccharum)(()nereusrubra)'"""')t-'um~(Salixsp.)Groundcoverfive-leafedivypartridgeberryfernspoisonivycanadamayflower(Nitchella~reens)(Polypodiaceae)(Rhustoxicodendron)(Maianthemumcanadense)PowerlinerihtfwaMulleingoldenrodQueenAnne'sL'aceredcloverthisselpincherrystaghornsumacredosierdogwoodraspberryblackberryhawthornmeadowsweetarrowoodrushsedgeswhitesnakerootbutter-and-eggssmartweed(Daucuscarota)(Trifolum~ratens)(Cirsiumsp.)(Prunusennslvanica)(Shun~thing)(comusstolonifera)(Rubussp.)(Rubusalleheniensis)(~Sirealatifolia)(~Viburnu~s.)(Juncuseffusus)(Cyperaceae)(Linaria~lqaris)E-2
brackenfernsensitivefermpurplenightshadepurpleloostrifepokeweedteaselcottailcardinalflowerjewelweed(Solanumdulcamera)(~~halatifolia)(Lcbeliacardinalis.KVERTEBRATEANIMALSBirdsred-tailedhawksparrowhawkkildeerkingbirdbaltimoreorioleyellowshaftedflickerrobinbluejaywhite-breastednuthatchmourningdovegoldfinchruffedgrousepurplegracklecrowred-wingedblackbirdEasternmeadowlark(zcterus)(albula.)~sinustristis>(Bonasa-umbellus)(Corvus.brachrhchos-Mammals.white-taileddeercottontailrabbitchipmunkvoleOdocoileusviriniana)Slvilasfloridanus-(Tamias~triatus)watersnakesnappingturtle~Retiles(Natrix~siedan)grassfroggreenfrog(Rang~iiens(Rangclamitans)E-3 Nf APPENDIXFSTUDIESCONDUCTEDASPARTOFNINEMILEPOINTIAKESURVEILLANCE 0
1964-1969~APPENDIXFSTUDIESCONDUCTEDASPARTOFNINEMILEPOINTLAKESURVEILLANCEEstimateoftheEffectsofWaterCurrentPatternsonthePlacementoftheIntakeandOutflowStructuresfortheProposedPowerPlantatNineMilePointSupple-mentalReport¹1TemperatureLakeWaterSamplesLimnologicalStudies1964LimnologicalStudies1964(Summary)DilutionFactorThermalEffectsonAquaticOrganismsPhysicalFactorsAffectingZooplanktonCompositionandDistributioninEasternLakeOntarioSummaryofVariousAspectsoftheDisper-sionofHigherTemperatureWaterandThermalEffectsonAquaticOrganismsDiscussionofDilutionFactoratOswegoWaterIntakeSeasonalFluctuationsofElementsoftheZooplanktonPopulationinLakeOntarioLimnologyReportLimnologyReport,DilutionofEffluentonRisefromDischargeStructureBiologicalProgramAnalysesofDr.Storr'sChapteronDilutionBiologicalStudiesCarriedonatNineMilePointAreaTemperatureVariationwithDepthJuly-September1963April1,1964May15,1964May28,1964May28,1964June-October1964December1,1964December10,1965January4,1966December22,1966December22,1965January7,1966June26,1968F-1
~ReortTemperatureProfile-NineMilePoint(ProfileoftheTemperaturefromMay1toNovember1usingdatafrom1964and1963combined)Date-ofStudOctober15,1968SummaryofReportsandStudiesSubmittedAugust4,1969toNiagaraMohawkPowerCorporationWhichContainMaterialRelatedtoThermalEffectsSummaryofEcologicalandEcologicallyRelatedStudiesinLakeOntarioOfftheNineMilePointNuclearPowerStationFishDistributionStudy,NineMilePoint,July27,1968EcologicalBenthicStudyoffNineMilePoint,LakeOntario,August12-16,1968December15,1969December15,1969December15,19691970-FishNetStudyYellowPerchFoodPreferenceAnalysisNitrateandTotalPhosphorusStudyFishDistributionStudyBenthicStudyFishDistributionStudyFishNetStudyYellowPerchFoodPreferenceAnalysisPreliminaryTemperatureSurveyFinalTemperatureSurveyFishNetStudyFishDistributionStudyYellowPerchFoodPreferenceAnalysisMay26-29,1970May26-29,1970May29,1970May28-29,1970June26-28,1970July9-10,1970July8-11,1970July8-11,1970July22,1970July22,1970August.18-22,1970August18-20~1970August19~1970
BenthicStudyTemperatureSurvey~ReortTemperatureSurveyTemperatureSurveyTemperatureSurveyFishDistributionStudyFishNetStudyYellowPerchFoodPreferenceAnalysisDate.ofStudAugust14-20,1970August141970August16~1970September23,1970October21,1970October21-23,1970October21-24,1970October21,19701971FishSunearyReportFishFoodPreferenceStudyFishNetStudyFishDistributionStudyFishNetCatchStudyFishFoodPreferenceStudyBenthicStudyMarch13,1971June1-2,611-12,1971June'1-12,1971June1-12,1971June29-July2,1971June29-July2,1971July7-12,1971PhysiologicalFactorsAffectingZooplanktonJune-October1964CompositionandDistributioninEasternLakeOntarioPlanktonStudies-NineMilePointNuclearStationFishNetCatchStudyNineMilePointBenthicStudy,NineMilePointFishDistributionStudyNineMilePointFishDistributionStudy,NineMilePointJune14-17August17-20August31toSeptember1June30-July1June30-July1PlanktonStudy,NineMilePointJuly1,1971F-3
~ReertPlanktonStudy,NineMilePointNuclearPowerStation$1DateofStudJuly14-15,1971PlanktonStudy,NineMilePointFishDistribution,NineMilePointPlanktonStudyFishFoodPreferenceStudyFishFoodPreferenceStudyPlanktonStudy,NineMilePointJuly29,1971August,17-19,1971August.16'971August,17-20'971November2,4,6,1971August24i1971PlanktonStudy,NineMilePointFishDistributionStudy,NineMilePointThreeDimensionalThermalStudiesOctober9,1971November1,2and5,1971February15,1972
POWERAUTHORITY.OFTHESTATEOFNEW.YORK.REPORTSLISTEDBYTITLEANDDATEDate.ofIssue-December,1969Title.LakeStructure,HydrothermalEffectsandEcologicalReportoftheJamesA.FitzPatrickNuclearPowerPlantDecember,1969November1,1969September2,1969August'.3,1970September2,1969July31,1969June,1970June15,1970May,1970August25,1969February,1970November10,1969FishDistributi.onStudiesUsingFathometricTracingRecordsNineMilePoint,Summer1969EcologicalBenthicSurveyoffNineMilePoint,August11-15,1969EcologicalBenthicSurveyoffNineMilePoint,June9-19,1969SummaryofFishNetStudiesfor1969forPASNYFishNetCatchReportforNineMilePoint,October7-10,1969FishNetCatchReportfromNineMilePoint,August12-15,1969FishNetStudiesoffNineMilePointJune1969forPASNYNitrateandTotalPhosphorusStudyoffNineMilePointArea,August13,1969PASNYSupportedCladophoraStudy:CommentsonPASNYSupportedCladophoraStudybyGreatLakesLaboratoryGreat.LakesLaboratory-InteractionsofTemperatureandLightontheGrowthandReproductionofCladophoraGlomerata(L.)KutzJune-August,1969NitrateandPhosphateStudyoffNineMilePointArea,August13,1969CladophoraStudyforPASNY.Supplemen-talReportonSecondTemperature-GrowthStudy,June-August1969CladophoraStudy-PreliminaryReport.F-5
February1,1969PermanentCurrentMeterStudyReportforPASNY,November5,1963toFebruary26,1964F-6
APPENDIXGREGULATORYANDREVIEWPROCEDURESDOCUMENTS
TABLE-QF-CONTENTS-1.Installation"ofTemperatureMeasuringDevicesinLakeOntario,CorpsofEngineers,U.S.CG.,November,19622.InstallationofSubmergedCurrentMetersinLakeOntario,CorpsofEngineers,U.S.C.G.,August,19633.CorpsofEngineersConstructionPermitIntake-DischargeStructures,Tunnels,ShorelineProtection,October,19644..U.S..CoastGuardIntakeandDischargeStructureApproval,November,1964..'5.NYSCoolingWaterDischarge,April,19656.AECConstructionPermit,April,19657.NYSSewageTreatmentPlantPermit,May,19658..NYSStockDischargePermit,April,19669.FederalAviationAgencyStackApproval,November,196610.AECByProductMaterialLicense,July,196711.AECSpecialNuclearMaterialLicense,August,196712..AECProvisionalOperatingLicense,August,196913.AmendmentNo.2toProvisionalOperatingLicense,April,197114.TransmissionLineHighwayCrossingPermit,December,196615.TransmissionLineBargeCanalCrossingPermit,April,1965.
X9.~U.S.ARMYENGINEERDISTRICT.BUFFALOCORPSOFENGINEERS.FOOTOFBRIDGESTREETBUFFALO7.NEWYORK26NOVlS62NCBODJ.H,Erart~ChiefSystemsProjectEngineerNiagaraMohawkPowerCorporationBuffalo3~NewYork
DearSir:
Inaccordance~rithyourrequestdated19Septerher1962,thereisinclosedDepartmentoftheArmypermittoinstallate~raturemeasuringdeviceinLakeOntario~atNine.H.lePoint~TownofScriba,OswegoCounty,NewYork.Yourattentionisparticularlyinvitedtocondition(i)con-tainedinthepermitwhichreauiresthatthisoffice'oeinormedofthecommencementand.completionofth'eauthorizedsrork.Formsforthispurposeareinclosed.Shouldanymat-~.".1chan~esinthelocationorplansoftheproposedworkbefoundnecessaryon'ccountofunforeseenoralteredconditionsorot¹r~zserevisedplansshouldbepror.ptlysubmittedtothisofficetotheendtnattheserevisedplans,iffounduno'o-jectionablefromthestandpointofnavigationmayrce'vetheapprovalrequiredbyla"rbeforeconstructionisbegun.Acknowledgmentoftheinclosedpetitis'requested.Verytrulyyours,4Incls1.Permit';r/printatchd2~Form63.Form94oCeo~NoticeLEONJ.HAMEBLYColonel,CorpsofEngfnoeeIIDestructEngineex
DEPARTMENTOFTHEARMY.NOTE.-Itistobeunderstoodthatthisinstrumentdocsnotgiveanypropertyrightseitherinrealestateormate-rial,oranyexclusiveprivileges;andthatitdoesnotauthorizeanyinjurytoprivatepropertyorinvasionofprivaterIghts,oranyinfringementofFederal,State,orlocallawsorregulations,nordoesitobviatethenecessityofobtainingSfotgeggcnttotheworkauthorized.ITMERELYExPREssEsTHEAssENT0FTHEFEDERALGovER.(MENTsoFARAscoN-cERNsTHEPUBLIcRIGHTs0FNAvIGATioN(SeeCummingsv.Chicago,188U.S.,410.)totgtcoNC30D.PERMITU.S.Armp'ngineerDistrictBuffaloCorpsofEngineers.Buffalo7s'tewYork21Novemberl962NiagarailohawkPowerCorporationBuffalo3,NewYorkGentlemen:IIReferringtolsrittenrequestdated19September1962,addressedtothe~~Di.strictmgineersU.S.~a.g~ineerDistrictsBufflo,Buffalo,NewYorksIhavetoinformyouthat,upontherecommendationoftheChiefofEngineers,andundertheprovisionsofSection10oftheActofCongressapprovedMarch5,1899,entitled"Anactmakingappropriationsfortheconstruction,repair,andpreservationofcertainpublicvorksonriversandharbors,andforotherpur-poses,'ouareherebyauthorizedbytheSecretaryoftheArmy.toinstallatemperaturemeasuringdevice(Heredescribethenronoecdstructureorwork.)inLakeOntario(Heretobenamedtheriver.harbor.orwaterwarconcerned.)ati;inealePoint,To;InofScriba,OswegoCounty,Ne;IYork(Heretobenamedthenearestwellknownlocantr-nreferablratownorcity-andthedistancelnreliesandtenthsfromsomedcanltenolntinthosame,statingwhetheraboveorbeloworgivingdirectionbrpointsofcomnass.)inaccordancewiththeplansshovmonthedrawingattachedheretomarked:HDetail(Ordrawings;givealennmbcrorotherdean(tofdenttecatlonmarks.)I@ptoAccompanyApo~wcationbyNiagara.'.ohawkPowerCorp.>>orProposed'nstallationofTemperature.'!easer~~Deviceati!inc~ePointwnofScibaNewYorkSeptember19,1952"Subjecttothefollowingconditions:
0 (a)ThattheworkshallbesubjecttothesupervisionandapprovaloftheDistrictEngineer,CorpsofEngineers,inchargeofthelocality,whomaytemporarilysuspendtheworkatanytime,ifinhisjudgmenttheinterestsofnavi-gationsorequire.(b)Thatanymaterialdredgedintheprosecutionoftheworkhereinauthorizedshallberemovedevenlyandnolargerefusepiles,ridgesacrossthebedofthewaterway,ordeepholesthatmayhaveatendencytocauseinjurytonavigablechannels'ortothebanksofthewaterw'ayshaHeleft.'fanypipe,'w'ire',"or'cable'herebyauthorizedislaid'natrench,theformationofpermanentridgesacrossthebedofthe.waterwayshallbeavoidedandthebackfillingshallbesodoneasnottoincreasethecostoffuturedredgingfornavigation.Anymaterialtobedepositedordumpedunderthisauthorization,eitherinthewaterwayoronshoreabovehigh-watermark,shallbedepositedordumpedatthelocalityshownonthedrawingheretoattached,and,ifsoprescribedthereon,withinorbehindagoodandsubstantialbulkheadorbulkheads,suchaswill'preventescapeofthematerialinthewaterway.Ifthemate-rialistobcdepositedintheharborofNewYork,orinitsadjacentortributarywaters,orinLongIslandSound,apermitthereformustbepreviouslyobtained.fromtheSupervisorofNewYorkHarbor,NewYorkCity.(o)Thatthereshallbenounreasonable'interferencewithnavigationbytheworkhereinauthorized.(d)Thatifinspectionsoranyotheroperationsby.theUnitedStatesarenecessaryintheinterestofnavigation,aHexperisesconnectedtherewithshallbebornebythepermittee.(e)ThatnoattemptshallbemadebythepermitteeortheownertoforbidthefullandfreeusebythepublicofaHnavigablewatersatoradjacenttotheworkorstructure.(f)ThatiffutureoperationsbytheUnitedStatesrequireanalteration,inthepositionofthestructureorworkhereinauthorized,orif,intheopinionoftheSecretaryoftheArmy,itshallcauseunreasonableobstructiontothefreenavigationofsaidwater,theownerwillberequireduponduenoticefromtheSecretaryoftheArmy,toremoveoralterthestructuralworkorobstructionscausedtherebywithoutexpensetotheUnitedStates,soastorendernaviga-,tionreasonablyfree,easy,andunobstructed;andii,upontheexpirationorrevocationofthispermit,thestructure,3tH,excavation,orothermodificationofthewatercourseherebyauthorizedshallnotbecompleted,theownersshall,withoutexpensetotheUnitedStates,andtosuchextentandinsuchtimeandmannerastheSecretaryoftheArmymayrequire,removeaHoranyportionoftheuncompletedstructureorfillandrestoretoitsformerconditionthenavi-gablecapacityoithewatercourse.NociaimshallbemadeagainsttheUnitedStatesonaccountofanysuchremovaloralteration.(g)ThattheUnitedStatesshaHinnocasebeliableforanydamageorinjurytothestructureorworkhereinauthorizedwhichmaybecausedbyorresultfromfutureoperationsundertakenbytheGovernmentfortheconserva;tionorimprovementofnavigation,orforotherpurposes,andnoclaimorrighttocompensationshaHaccruefromanysuchdamage.I(h)Thatifthedisplayoflightsandsignals,onanyworkherebyauthorizedisnototherwiseprovidedforbylaw,suchlightsandsignalsasmaybepres".'bedbytheU.S.,CoastGuard,shaHbeinstalledandmaintainedbyandattheexpenseoftheowner.(i)Thatthepermitteeshallnotifythesaiddistrictengineeratwhattimetheworkwillbecommenced,andas,farinadvanceofthetimeofcommencementasthesaiddistrictengineermayspecify,andshallalsonotifyhimpromptly,inwriting,ofthecommencementofwork,suspensionofwork,ifforaperiodofmorethanoneweek,resumptionofwork,anditscompletion.(j)Thtifthestructureorwogghereinauthorizedisnotcompletedonorbefore@~~Vs.=..:".;.'.:.ST....'...dayof.~.'=.",19.,thispermit,ifnotpreviouslyrevokedorspecificaHyextended,shallceaseandD<CF".R~R-),benullandvoid.C:-ByauthorityoftheSecretaryoftheArmy:QNJA'.~TvColonel,CorpsofengineerDistrict""n~ineer1sEp481721(Civil)T~~-~~s~Eoy~vs4atedzLvr48.~ldcbmszbouseduntGexhale<<LEbx1146-9408~,L<<HCEaaOITNlloa4OltlCCId1$lQI
RETURNToENG!NEER~NGDEPARTMENTUN)yEgSyA>ESCOALGUARD~SIACtLVta>~COMMANDER*~COASTOMAADDISTRICTMAINPOSTOFFICPGtDO.CLRVPLANDIS,OHIOKr.Z.N.EwartsneerChiefSystemProjectEn~inagexaII'ohavk'i'overCorporationBuffalo3,NewYorko<%1/~1Serialsoan10292JI,December1963
Dearhr.i:
vart:EnclosedisanapprovedPrivateAidtoNavimannanceoftheaidsdescribedthereinreinetoYourattentionisinvitedtthNitihoothefirthetoeRulesandHessheetoftheapplicationform,Pleaseinformthisofficevhentheaidshavehavebeenestablishedsothattheirconducted.eNoticestoMarinersandaninspectionSincerelyyours,cvin".Chief,Aidsto.'taviationBranchBgdirectionoftheDistrictColander>nels(1)FormCG-25@,i)<>p~zPy'(iif'I/4+<<~~""()"~~~'liyi>7('h(/7)7'~f/))(;~+~/i~'/7P(jjyj)g'j//)~//$(QocPsfg.l~/)Hy~)7))(gg,)J~;f)j~(,~~fhju(-&>A>~f~j~yrg'i'c's1)Ip/(.Q)7'/77/77((~
N 4<<RYDEPhRTMEN<PRIVATEAIDSTONAVIGATIONAPPLICATION'COhSTGUARD(SoufnstnrctionsonreversoofettechedcopyofCodeofFe<f.Reff.,554(Rev.3-62)Tltfo33,Chop.I,Sect.66.)L~.PormapprovedBudgetBureau:r,trNo.48R379,'oTIQNREQUESTEDfQRPRIVATEAIDSTONAVIGATIONA.QfSTABLISHANDMAINTAINB.+DISCONTINUEC.+CHANGEO.QCHANGEQSHFRSHIP2-DATEACtIONTOSTART6November19633.PERIODAIDSwlLLBCOPERATCQA.THROUGHOUTYEAR8.+TEMPORARILYUNTILC.QANNUALLYFROMTO4.NECESSITYFORAID(Continueinccotorka)StudiesforsteampowerplantCols.AondBforDistrictCommender'5use5CORPSOFENGINEERSAUTHORIZCOTHISSTRUCTUREORBUOYBy~PERIIITOR~LETTERDATEDAppllconlwillfillInopplfcubicremoinln9columns6.LIGHTSLIGHTI.I5I'UMBERORPAGEANAMEOfAIOrLASHt.CNCTHCCCI.IrSCICNCTH0CHARACTERISTICSCOLORI'OSITlONCANDLEPOWERILLUMINANTVOLTSANPCACSLENSJKEE'ILIGH'tLISTNUMBERORPAGEANAMEOFAIONINE1lILSPOINZOBSERVJL1IONBOvYA7.BUOYSNUMBERORLETTERCPOSITION(4608offshore)8.FOGSIGNALSDAlat,43o31'3"Wlong.6o24804"750.31'rom'eteorologicaltovertNlat,4331T26"wlongt624'llaDEPTHOFWATERETYPEI2"Maby10'g.buoyextend-ingap-proxe4abovevatertiber1COLORInter-nationalora~eandvtLLteEIoriz,bandedREFLECTORCOLORH3viclehorixesilverbandsat12"cent-'erEErLIGHTLISTNUMBERORPAGEANAMEOFAIONuu~ca5Teocc5oe~LASTCrcetoo~LASTLCNOTNECHARACTERISTICSPOSITIONTYPERANGEKETLIGHTLISTNUMBORgANAMEOFAIONUMBER<<QRLETTERC9.STRUCTURESNOSITIONWATERDEPTHIFMARINE5ITEEHCIOHTASOVCHCANHICHVATCAFTYPECOLOR5kaccIcoLoeJDAYMARKIOA.NAMEANDADDRESSQfPERSONINQIRfc'tCHARGEOfAID~leW.Morris,NiagaraMohawkPwrBox4188OswegopNY-13126Corp.IIA.NAMEANDADDRESSOFPERSONORCORPORATIONATWHOSEEXPENSEAIDISMAINTAINEDNiagaraHohavtcPoverCorp.300ErieBlvcl~WestSyracusepHY-13202JB.TELEPHONENUMBERPI32110>RRVIDB5L'OITIDHSARCDIISDlETC118.THEAPPLICANtAGRECSTOSAVETHCCOAStGUARDHARQLESSwlTHRESPECTTOANYCLAIMORCLAIMSTHATMAYRESULTARISINGFROMTHEALI,EGEOGLIGENCEOFTHEMAINTENANCEOROPERATIONSOFTHf.APPROVEDAlOISIII+5vlc+o3llo,SIQNAtUREAlluTIIe'.czeLQ~Ls<<NINGClLI.efSystenr~rogectin+neer
-
12FIRSTEHDORSEMEHTFORUSEBYDISTRICTCOMMANDER(SERIALNO.A.TotCommandant(OAN)YESc.Approvalisrecommendedo.NoticetoMarinerswillbeissuedE.LightListshouldbecorrected.13.FORUSEBYCOMMANDANT(OAH)RECD.NoRETD.s.FRDMICommanderF.CHARTSAFFECTEDH.DATEI~'SIGNATURECoastGuardDistrictG.CLASSIFICATIONOFAIDSClassTTP~,g@zMANCHARTACTIN>N'l4.SECONDENDORSEMENTI.~N~AIW.N~M~CARDIND.FILEA.TOICommander.C.ApprovedApprovedascorrectedE.DisapprovedREMARKSCoastGuardDistrictF.DATEDECI~1863sIFRourCommandant(OAN)G.SIGNATIIREBydirection~~@.~A'7'EilSZiUDForeaelec~a-generatingplantatT'XneI@i.ePaintverequirecertainXahostudiae,meofvhichinvolvesthemaatlramatofeatertexq;craturcDATEREFERENCEACTIONANDRBAARKSJForAIOIiIlIrMAM3JASONDLIGHTLISrNo~PAGE
.-"'.~a48.8,"o;rfOm>F-r&la~SUOyer~('-re"BaL:ar!@,Orange)e,5&'*-<'I'.o.~~.I!IJTempera.e..eouib'++yWire2ope~..Ig\~ON~~~p~a'O~Co..Co.".j+iake59-.'ame,.Ee~!ONCArII,-.CCATS2.19ir5ubp;arlnCab.'e'------jramifIS;rurcI'ouseL~~~~raIIC"4<~IA!rc"a~.j(a',larov&)D.."-.E~~~~~'>~e"=+~ON"(3+ra)ggO'Ip~~r~-ee!0YO-.e:~~.a'."ovo'n;esiwa!e~'evels-.'~errnre~'rA.~nlarerl~~.ogl'1ar(lieI~OatrLNQrjoI/PJ/D~~A~~Q+.5-06SSB3er!ro[GQ'\~6~alf"4"'~"'8earear~a~Vrt~C~I~0v.~0c!<~~'~0Q~irC~e4~AV,s'oinlii-oiL.04c~~~r~..LOg~gr+rr~WWrsaa~)p:CQ~~~ClUIP'NI'o'IAGARAMOHAWKNIAGARAMOHAWKPOWERCORPORATIONBUFFALO,N.Y.~~~I~~rArrAOVtoI.r:.~rr~CKI.IOaetArrAOVtoSCALt~,ro~ilottv~raOATtOVaitvltioieCK.Arr.arrrnvtoArrroVf0SVLLivAaeMCKttcaeeCo..Ieec.IIurrALOaeo.iooo.aeCLCAAiwiaevTAAciaaorarerlooa~I A9Id/!N
'P,'384Ucg9zgy()'PAUGl963U.S.ARMYENGINEERDISrRICT,BUFFALOCORPSOFENGINEERSFOOTOFSRIOOESTREETBUFFALO7.NEwYORR14297hKeltTo'CBODJ.H.Evart,ChiefSystemPro)ectEngineerNiagaraMohavkPowerCorporationBuffalo3,NevYork
DearSir:
Referenceismadetoyourletterdated16July1963andtheaccompanyingplans,relativetoyourtemporaryinstallationoftvosubmergedcurrentmetersinLakeOntarioatNineMilePoint,TownafScriba,OsvegoCounty,NewYork.ThisofficeviU.interposenoob)ectiontothefnstaPationofthetvocurrentmetersprovidedtheyare'nstalledinaccordancewithyourletterofapplicationandthea'cca'npanyingplans.Yourattentionisinvitedtothefactthatthetypeandchar-acteristicsofthemarkerbuoysmustbeapprovedbytheCanmanderNinthCoastGuardDistrict,MainPostOfficeBuilding,Cleveland13,Ohio.Itistobeunderstoodthattheaboveactiondoesnotgiveanypropertyrightseitherinres1estateormaterial,oranyexclusiveprivQ.eges;andthatitdoesnotauthorizeanyin)urytoprivatepropertyorinvasionofprivaterights,oranyinfringementofFederal,State,orlocallavsorregu1ations,nordoesitobviatethenecessityofobtainingStateassenttotheproposedvork.Itmerelyexpressestheassentofthisoffice"insofarastherightsofnavigationareconcerned.Itisrequestedthatthisofficebenotifiedofthecanmence-mentandcaapletionoftheabovevork.Verytru1yyours'TII'tUNTChief~Eaginseri~kivie10%
AOOREOIItCtLYlOs~COMMANDERSttICOASTOUAItQDISTRICTMAINPOSTOFFICESLQOoCtCVKLANQIS.OHIO'NlTEDSTATESCOASTGUARD'gt~'Jggl/05326~Serialsoan34.23January1964.Mr.J.N.EwartChiefSystemProjectEngineerNiagaraMohawkPowerCoroorationBuffalo3,'ewYorkD88rMroEwart~EnclosedisanapprovedPrivateAidtoNavigationApplicationauthorizingtheestablishmentandmaintenanceoftheaidsdescribedtherein,YourattentionisinvitedtotheRulesandRegulationsGoverningPrivateAidstoNavigationshownonthefirstsheetoftheapplicationform,PleaseinformthisofficewhentheaidshavebeenestablishedsothattheirexistencemaybepublishedintheNoticestoMarinersandaninspectionconducted.Sincere+yours,'Encl'1)FormCG-2554,M~JOcdMi>>LiutenantComrwnder,US.CoastGuardActingChief,AidstoNavigationBranchBydirectionoftheDistrictCommander
ASURYDEPARTME'NTS.COASTGUARD2SS4(Rev.3-62)PRIVATEAIDSTONAVIGATIONAPPLICATION(SeeInatntcttonaonreverseofattachedcopyofCodeofFed.ROII.,Tftle33,Chap.f,Sect.66.)FormepproredBudgetBureeuNo.OS-ICS79CTIOHREOUESTEDFORPRIVATEAIDSTONAVIGATIONA.tiESTABLISHANOMAINTAINB.QDISCONTINUEC.QCHANGK0.+CHANGEOWNERSHIP3.CRIODAIDSWILLBEOPERATKOA.+THROlIGHOU.TYEARBI+TEMPORARILYUNTIL,STgQggQ+,.ILPJP$5..C.+ANNUALLYPRES2.0~ATACTION<'TOSTARTffoveniber..5~1963TO4NECESSIWYFORAI0(ContinuoInrrmerkeJToueaeureXekeOntario'ecurrentCols.AondBforDistrictCommender'5use5CORPSOFENGINEERSAUTHORIZEDTHISSTRUCTUREORBUOYBY~PERMITORgjLETTERDATED........--...M............13.............-..'AppllcontwillfillInoppllcobl~romolnln9columns6.LIGHTSLIGHTLISTNUMBERORPAGEA,NAMEOFAID'0CHARACTERISTICSFLAsHccLIpseICNOTHLCNOTH0'COLORPOSITIONIF~a~HclourCANDLEPOWERLENSILLUMINANTAurcscstoLT5LIGHTLISTNUMBERORPAGEANAMEOFAIDHIlESQLEPOX?COBKRVATXOkiBUGYSNEcStNBSBBtrLETTER",C7.BUOYSPOSITION4331'0"M)'/624'04331'5"N;'l62Io'9"DEPTHOFWATERE52tTYPE32"Round.MarkerBuay'OLORXntexnationalorangeSEwhiteHorisbandedREFLECTORCOI.DRHLIGHTLISTNUMBERORPAGEANAMEOFAIOCHARACTERISTICSNuo~Ce5reoc55Oe~LAST~LA5rPCNIOOLCNOTH8.FOGSIGNALSPOSITIONTYPERANGESETLIGHTLISTNUM(ANAMEOFAIDNUMBER~rIIIILBTIIER'9.STRUCTURESIPOSITIONWATERDEPTHIFMARINESITEEHCIOHrASOVCIICANHIOHVergeFTYPEOAYMAIICOLORr~~~5HAPCI'I~COLONJIOA.NAMEANDADDREss0FPERsoNINDIREcTcHARGK0FAIDIIA.NAMEANDADDREss0FPERsoNoRcORPDRAtloNATNHosEExPENsEAIDIsMAINTAINEDHre~leMeISrrienagaraIfohavkPowerCorporationBoxJ+18Oswego,hewYork13126100.TELEPhONENUMBERFI-'3-2110Exte296P'SKVIOLI5KVITIONSArtK0050LKTKP'fagaraY~havkPowerCorporation300ZrieBlvd.M.Syracuee,HewYork$3202110.THEAPPLICANTAGREESTOSAVETHECOASTGUARDHAROLESSWlTHRESPECT.TOANY~CLAIMORCLAILISTHATMAYRESULTARISIIIGFROIiITHKALLEGEDNEGLIGENCEOFTHEMAINTENANCEOROPERATIONSOFINEAPPROVEDAIOlSl.11C.DATE110.SIIPIATUREANDtlTJEOgQFFICIALICN<gemoter13,196~
00 ToICommandant(OAN)s.FROM:CommanderItIRSTEHDORSEMEHTFORUSEBYDISTRICTCOMMANDERSERIALNo.CoastGuardDistrict~c,ApprovalisrecommendedD.NoticetohlarinerswillbeissuedE.LightListshouldbecorrected13.FORUSEBYCOMMAHDANT(OAN)RECO.CHARTACTION1*SECOHDENDORSEMENTyESNOF.CHARTSAFFECTEDUSLS22H.DATERETD.L~N~M.W.N~II.I~5IGNATURECARDIND~G.CLASSIFICATIONOFAIDSClassZPVeCOIZiiQLNBdirectionA.TotCommanderCoastGuardDistrictatFR0M:Commandant(OAN)c.ApprovedApprovedascorrectedE.DisapprovedREMARKSF.DATEG.SlGNATUREKLzwszugDATEREFERENCEACTIONANDREhIARKSJJAS0N0V>+IoLIGHTLISTNo~PAGE
U.S.ARMYENGINEERDISTRICT,BUFFALOCORPSOFENGINEERSFOOTOFBRIDGESTREETBUFFALo7.NKwYoRK.ZIPcode142+.JcsiIjg4.58RareTo)~NCBOD19October1964J.H.Ewart,ChiefSystemProjectEngineerNiagaraMohawkPowerCorporationBuffalo,NewYork14203
DearSir:
Inaccordancewithyourrequestdated21July1964thereisinclosedDepartmentoftheArmypermittoconstructsubmergedwaterintakeanddischargestructures,shoreconnectiontunnels,approximately975linearfeetofrubblemoundstonedikeandtodredgeinLakeOntario,atNinellilePoint,TownofScriba,OswegoCounty,NewYork,about6-1/8milesnortheasterlyofOswegoHarbor,NewYork,Yourattentionisparticularlyinvitedtoconditions(b)and(i)containedinthepermit.Incompliancewithcondition(b)norefusepilesorridresshallbeleftonthebedofthewaterway.AsweepsurveywilLbemadewhentheworkiscompletedandtheNiagaraHohawkPowerCorporationwillbereouiredtoremoveanyexcavatedmaterialthatextendsabovetheundisturbedexistinglakebottom.TheNiagaraHohawkPowerCorporationwillbechargedf'rthecostofthissurveyandanyfurthersurveysorinspectionstoinsurethattheconditionsofthepermitarecompliedwith.Caremustbeexercisedduringconstructiontoinsurethattheintake.anddischargestructuresprovidetheclearancebelowlowwaterdatumshownontheapprovedplans.Condition(i)requiresthatthisofficebeadvisedofthecommencementandcompletionoftheproposedwork.Formsforthispurposeareinclosed.Shouldanymaterialchangesinthelocationorplansoftheworkbefoundnecessaryonaccountofunforeseenoralteredcondi-tions,oroth'ermse,revisedplansshouldbepromptlysubmittedtothisofficetotheendthattheserevisedplans,iffoundunobjec-tionablefromthe,standpointofnavigation,mayreceivetheapprovalrequiredbylawbeforeconstructionisbegun.
NCBODJ.H.Ewart,ChiefSystemProspectEngineerAcknowledgmentofreceiptoftheinclosedpermitisrequested."Verytrulyyours,4Incls1.Permitw/prints(3)atchd2.Form83.Form94.C.G.NoticeRWILSONNEPPColonel,CozpsofEnglI1BBzsDlstzfctEngineez
~z('.-(DEPARTMENTOFTHEARMYNOTE-Itistobeunderstood,thatthisinstrumentdoesnotgiveanypropertyrightseitherinrealestate,ormate-rial,oranyexclusiveprivileges;andthatitdoesnotauthoriseanyinjury,toprivatepropertyorinvasionofprivaterights,oranyinfringementofFederal,State,orlocallawsorregulations,nordoesitobviatethenecessityofobtainingStatettesenttotheworkauthorised.ITbIEREIYEZPREssEsTHEAssENToFTHEFEDERAI.GovERNMENTsoFARAscoN-CERNRTHEPUBLICRlGHTsoPNAvIQATIQN.(SeeCtttttmittgev.Chicago,188U.S.,410.)IotslsoeContractNo.iR-30-023-CIVENG-65-18PERMITU.S.ArneEngineerDistrict,Buffalo.CorpsofEngineers.Buffalo,NewYork14207~1October,lg64.NCBODNiagaraIIohawkPower'CorporationBuffalo,NewYork14203Gentlemen:Referringtowrittenrequestdated21July1964,addressedtotheDistrictEngineer,U.S.ArmyEngineerDistrict,Buffalo,Buffalo,NewYorkIhavetoinformyouthat,upontherecommendationoftheChiefofEngineers,andundertheprovisionsofSection10oftheActofCongressapprovedMarch3e1899,entitled'Anactmakingappropriationsfortheconstruction,repair,and,.preservationofcertainpublicworksonriversandharbors,*andforotherpur<<poses,"youareherebyauthorizedbytheSecretaryoftheArmy.toconstructsubmergedwaterintakeandsubmergedwaterdischargestructures,(HeredescribetbeDroooecststructureotwork,)twoshoreconnectiontunnels,approximately975linearfeetofrubblemoundstonedikeandtodredgethedredgedmaterialtobedepositedshorewardoftheproposedstonedikeinLakeOntario(Heretobenames)tberiver.harbor,orwaterwayconcerned.)atNinelabilePoint,TownofScriba,OswesoCounty,NewYork,about6-1/8miles(Heretobenamedtbenearest<<ellknownlocality-pre(erablyatownorctty-andthedistancelnmllesandtenthskernsomedeanltePointlnthesame,stattnewhetheraboveorbeloworsiriusstlrectlonbyyolntaoIcomyass)northeasterlyofOswegoHarbor,NewYorkinaccordancewiththeplansshownonthedrawingattachedheretointhreesheets(Ordraw!nestSivaslenumberorotherdeenttetdenttttcatfonmarks.)marked"ApplicationbyNiagaraMohawkPowerCorp.ForProposedIntakeEcDischargeTunnels,Dike,andBargeS'IioatNinealePointJuly21,1964eusub)ecttothefollowingconditions:
(a)ThattheworkshallbesubjecttothesupervisionandapprovaloftheDistrictEngineer,CorpsofEngineers,inchargeofthelocality,whomaytemporarilysuspendtheworkatanytime,ifinhisjudgmenttheinterestsofnavi-gationsorequire.(b)Thatanymaterialdredgedintheprosecutionofthe'workhereinauthorizedshallberemovedevenlyandnolargerefusepiles,ridgesacrossthebedofthewaterway,ordeepholesthatmayhaveatendencytocauseinjurytonavigablechannelsortothebanksofthewaterwayshallbeleft.Ifanypipe,wire,orcableherebyauthorizedislaidinatrench,theformationofpermanentridgesacrossthebedofthewaterwayshallbeavoidedandthebackfillingshallbesodoneasnottoincreasethecostoffuturedredgingfornavigation.Anymaterialtobedepositedordumpedunderthisauthorization,eitherinthewatervrayoronshoreabovehigh-watermark,shallbedepositedordumpedatthelocalityshownonthedrawingheretoattached,and,ifsoprescribedthereon,withinorbehindagood"andsubstantialbulkheadorbulkheads,suchaswillpreventescapeofthematerialinthewatervray.Ifthemate-rialistobedepositedintheharborofNewYork,orinitsadjacentortributarywaters,orinLongIslandSound,apermitthereformustbepreviouslyobtainedfromtheSupervisorofNewYorkHarbor,NewYorkCity.(c)Thatthereshallbenounreasonableinterferencewithnavigationbytheworkhereinauthorized.(d)Thatifinspectionsoranyotheroperationsby.theUnitedStatesarenecessaryintheinterestofnavigation,allexpensesconnectedtherewithshallbebornebythepermittee.(e)Thatnoattemptshallbemadebythepermitteeortheownertoforbidthefullandfreeusebythepublicofallnavigablewatersatoradjacenttotheworkorstructure.(f)ThatiffutureoperationsbytheUnitedStatesrequireanalterationinthepositionofthestructureorworkhereinauthorized,orif,intheopinionoftheSecretaryoftheAnny,itshallcauseunreasonableobstructiontothefreenavigationofsaidwater,theownerwillberequireduponduenoticefromtheSecretaryoftheArmy,toremoveoralterthestructuralworkorobstructionscausedtherebywithoutexpensetotheUnitedStates,soastorendernaviga-tionreasonablyfree,easy,andunobstructed;andif,upontheexpirationorrevocationofthispermit,thestructure,fillrexcavation,orothermodificationofthewatercourseherebyauthorizedshallnotbecompleted,theownersshall,withoutexpensetotheUnitedStates,andtosuchextentandinsuchtimeandmannerastheSecretaryoftheArmymayrequire,removealloranyportionoftheuncompletedstructureorfillandrestoretoitsformerconditionthenavi-gablecapacityofthewatercourse.NoclaimshallbemadeagainsttheUnitedStatesonaccountofanysuchremovaloralteration.(g)ThattheUnitedStatesshallinnocasebeliableforanydamageorinjurytothestructureorworkhereinauthorizedwhichmaybecausedbyorresultfromfutureoperationsundertakenby.theGovernmentfortheconserva-tionorimprovementofnavigation,orforotherpurposes,andnoclaimorrightto'compensationshallaccruefromanysuchdamage.(h)Thatifthedisplayoflightsandsignalsonanyworkherebyauthorizedisnototherwiseprovidedforbylaw,suchlightsandsignalsasmaybepre-robebytheU.S.CoastGuard,shallbeinstalledandmaintainedbyandattheexpenseoftheowner.(i)Thatthepermitteeshallnotifythesaiddistrictengineeratwhattimetheworkwillbecommenced,andasfarinadvanceofthetimeofcommencementasthesaiddistrictengineermayspecify,andshallalsonotifyhimpromptly,inwriting,ofthecommencementofwork,suspensionofwork,ifforaperiodofmorethanoneweek,resumptionofwork,anditscompletion.(j)Thatifthestructureorworkhereinauthorizedisnotcompletedonorbefore..tl)iit'rX".QXQt'r.........dayofDCCallbeI'.............,19..67.,thispermit,ifnotpreviouslyrevokedorspecificallyextended,shallceaseandbenullandvoid.ByauthorityoftheSecretaryoftheArmy:R.':JILSOllNEF."Colonel,CornsofEngineersDistrictEngineerj7g)(Q~yjj)TbbtermsupersededEDperm95,dered1hyrdd.whichmsrbeuseduniaezhsurred.~.e.eorraasretre>sueaerricrididled.dEM1145-&403 l
lA~0~11L+P~QQQ/QlI~OPPgyfhIpgtUNITEDSTATESCOASTGUARDPi)4~IKHYTO>,COMMANDEROmCOASTOUA!%DDISTRICTMAINPOSTOFFICESLDCiI%%STTHIRDANDPIIOSPECTSTS.CLÃIIELAND13,OHIOb'264Serial:oin8903November1964Mr,K.C,SwansonChiefStructuralDesignEngineerNiagaraMohawkPowerCorporationBuffalo',NewYork14203
DearMr.Swenson:
.Yourletterof26October1964forwardedacopyo'faCorpsofEngineersPermitwhichauthorizedconstructionofasubmergedwaterintakeanddischargestructuresinLakeOntarionearNineMilePoint,NewYork.TheCoastGuardhasnoobjectiontoyourprojectandnavigationalmarkingwi11notberequired.However,shouldthestructuresbecomeobstructionstonavigationduringtheconstructionoruponcompletion,lightingwillbenecessary.latheeventyoudecidetoestablishnavigationalaidsforyourownpro-tectionagainstpossibleliabilityclaims,priorapprovalforsuchprivateaidstonavigationmustbeobtainedfromtheCOImandsnt,U.S.CoastGuardviathisoffice.Pleasecontactusifwemaybeoffurtherservice.Sincerelyyours,Mc.DBME,W.CONANCommander,U.S.CoastGuardChief,AidstoNavigationBranchBydirectionoftheDistrictCaanander I
SHORNToKNGfNEERfNQDEt'ARTMENfHOLLIS5IHGRAHAMyMeDoCOMMISSIONKRSTATEOFHEWYORKDEPARTMENTOFHEALTH84HOLLANDAVENUEALBANY,N.Y.12208April28,1965'PJv*DIVISIONOFENVIRONMENTALHEAL'THSERVICESMEREDITHHTHOMPSON~DKNO,ASSISTANTCOMMISSIONKRBUREAUOFTIATKRRESOURCESERVICESAHSELMOF.DAPPERT,MoS.S.E.DIRKCTORNiagaraMohawkPowerCorporation300ErieBoulevardVestSyrac'use,NewYork13202Attention.JohnV.Keib,AttorneyGentlemen:Re!ApprovalofFinalPlansCoolingWaterDischargeandIndustrialWasteTreatmentWorksNineMilePointNuclearStationScriba(T),On)egoCountyVeareenclosingapermitissuedthisday,andareforwardingunderseparatecoverapprovedplans,consistingof2B/tfsheets,fortheabovereferencedproject.Thepermittee'sattentionisdirectedtotheconditionswhicharepartoftheaccompanyingpermit.Alloftheconditionsareimportantandyouareaovisedthatthevalidityofthepermitiscontingentuponcompliance.Sincethisfacilityprocessesnosanitary'ewage,acertifiedoperatorundertheNewYorkStateSanitaryCodeisnotrequired.How-ever,thefacilitymustbeoperatedatalltimesinconformitytothePublicHealthLawandStateHealthDepartmentregulations.Aspectsoftheproposeddischargeareasfollows.'.Heat,fromthecondensorcoolingfacility,whichatfullloadisstatedtocausea32Ftemperatureriseinaflowof'50,000gallonsperminute;2.Salts,fromapproximately2,500gallonsperdayofacidic.andcausticionexchangeresinregenerationwhichreultwhentheset;:.omTIonentsareheldandmixedforneutraliza-tionbeforedischarge;and 1
NiagaraMohawkPowerCorporationApril28,19653,Dischargefromthe"hold-and-decaytankswhosefunctionistomonitorpossibleradioactivematerialaccidents,andwhoseoperationalprocedureshavebeenapprovedundertheNuclearSafetyHazardsAnalysissubnittedtotheAtomic-EnergyCommission.Thestormsewersarenotpartofthisapproval.Sincetheseshallreceiveonlytheresultantrunofffromnaturalprecipitation,andasmaU.quantityofscreenwashwatertowhichnocontaminantsorpollutantsareadded,thennopermitisrequiredfortheirinstallationanduse.Thetotalflowatfulloperationalcapacityis385milliongallonsperday,or275,000gallonsperminute.Verytrulyyours,I~ljy.JosephJ.Kosman,P.E.SeniorSanitaryEngineerMunicipal-IndustrialVastesSectionEnclosurecc:SyracuseRegionalOfficeSyracuseDistrictOff'JuliusA.Lind,P.E.
gllt'I Checktypeotworksanddischargettmttctpst'gSutfaceDischargeInstitutional+GroundtfatetPrivate(individual)Private(other)industrialWasteNineMilePointNuclearPowerStationScriba(T)g]Sewers+AddltlonsotAlterationsTteatmentworksggpumptogstationOtherountyOsageoNEWYORKSTATEDEPARTMENT,OFHEALTHPERMITTODISCHARGESEWAGEORWASTES'INTOTHEWATERSOFTHESTATEThispermitisissuedundertheprovisionsofhrticle12ofthePublicHealthLawinconnectionwithapprovalofplansfortcheprojectdescribedbelow:NamebLocationofStorks(city,villageortown)ChesNameendAddressofBoard,Corporation,individualorOflicemakingppllcstlonNiagaraMohawkPowerCorporation300ErieBoulevardIieetSyracuse,NewYork13202Nameofreceivingwatercourse.Ifsurfacewaters:ifsubsurface,namofwatercoursetowhichgroundwaterlstributaryLakeOntarioNameofCity,VillageorTownlnwhichpointofdischargelslocatedOswe.oNameofmajordrainagebasinlnhlchpointofdischargei~locateLakeOntario~scriptionofworkssuchasnumber,namesndcapacityofunitsCoolingMter250,000gpnService$1ater25,000gpn;includingionexchangeresinregenerationandholdingtankdischargehpprovalofplansandpermittodischargeisgrantedoncondition:Estimatedcostofworkss22400,000Designflowgals.perday385.)GDI.THhTchispermitshallberevocableacanytimeorsubjectcomodificationorchangewheninthejudgmentoftheDepartmentofHealthsuchrevocacion,modificationorchangeshallbecomenecessary..I.wastetreatmentII~THhT'heproposedKiQQQeigcworksshownontheplansapprovedthisdayshallbefullyconstructedincompleteconformitywithsuchplansorapprovedamendmentsthereforuncerthesupervisionofalicensedProfessional~npineer.)ct)ljaxc(mown&Qs(OGxdcx.~~LIV.TllhTthe~worksshallbeoperatedocmaintainedatalltimescothesatisfactionofcheDepartmentofHealth.V.THhTthisper'mitshallbedeemednulla:.dvoidunitsstheworksforwhichitisissuedshallhavebeenfullycompletedbyAnril28lc70andacertificateofconstructionccmplianceubnittedtoandapprovec'8p'theSyracueDistrictOffice,NetsYorkStateDepartmentofHealth,'ithinthirty(30)daysaftercompletionofconstruction.III,THATonlythetp~anavolumeofvastescoveredbytheEngineer'Report,entitledExhibitA,undated,andtheSafetyHazarcsAnalysisreport,andnosanitarycage,stormwater,orsurf'acevaterfrcmstreets,roofs,orotherareasshallbeac)nittedtothewastetreatment@or'ks.issuedfortheStateCommissionerofHealth:Date~,~Cd'~,z'/54/2s/BDirectors'ureauof+terResource~Scrvtc~eFOR:Sano2(Reved/d2)Dl~trlbutlontS/hiteApptlcentPinkCentralOffice(%PCS)YellowFHe(LHOorDHO)GreenOther1 t'~'0E,I UNITEDSTATESATOMICENERGYCOMMISSlONWASHINGTON,D.C.20545gl4rE0INIAGARAMOHAWKPOWERCORPORATIONDOCKETNO.50-220PROVISIONALCONSTRUCTIONPERMITConstructionPermitNo,'PPR-16?1.PursuanttoSection104boftheAtomicEnergyActof195II,asamended(theAct),andTitle10,Chapter1,CodeofFederalRegulations,Part50,LicensingofProductionandUtilizationFacilities,andpursuanttotheorderoftheAtonicSafetyandLicensing'Board,theAtomicEnergyCommission(theCommission)herebyissuesaprovisionalconstructionpermittoNiagaraMohawkPowerCorporation(theapplicant)forautiliza-tionfacility(thefacility),describedintheapplicationandamendmenttheretofiledinthismatterbytheapplicantandasmorefullydescribedinthe'evidencereceivedatthepublichearinguponthatapplication.Theutilizationfacilityisasinglecycleboiling,lightwatexreactorwhichispartofafacilitydesignedtooperateat1538megawatts(thermal)tobelocatedon'LakeOntariointheTownofScriba,NewYork.2.Thispermitshallbedeemedtocontainandbesubjectto'heconditionsspecifiedinSections50.5IIand50,55ofsaidregulations;issubjecttoallapplicableprovisionsoftheAct,andrules,'regulationsandordersoftheCommissionnoworhereaftexineffect;'andissubjecttothecon-ditionsspecifiedozincorporatedbelow:A,TheearliestdatefoxthecompletionofthefacilityisDecember1,1966,andthelatestdateforcompletionofthefacilityisDecember1,1967.B.Thefacilityshallbeconstructedandlocatedatthesiteasdescribedintheapplicationasamended,intheTownofScriba,NewYork.C.Thisconstructionpermitauthorizestheapplicanttoconstructthefacilitydescribedintheapplicationandthehearingrecordinaccordancewiththeprincipalarchitecturalandengineeringcriteriasetforththerein.3.Thispermit.isprovisionaltotheextentthatalicenseauthorizingoporationofthefacilitywillnotbeissuedbytheCommissionunless:(A)theapplicantsubmitstotheCommission,byamendmenttotheapplica-tion,thocompletefinalhazardssummaryreport,portionsofwhichmaybesubmittedandevaluatedfromtimetotime;(B)theCommissionfindsthatthefinaldesignprovidesreasonableassurancethatthehealthandsafetyofthepublicwillnotbeendangeredbytheoperationofthefacilityin
-~
accordancewithproceduresapprovedbyitinconnectionwiththeissuanceofsaidlicense;and(C)theapplicantsubmitsproofoffinancialprotec-tionandtheexecutionofanindemnityagreementasrequiredbySection170oftheAct.4.PursuanttoSection50,60oftheregulationsinTitle10,Chapterl,CFR,Part50,theCommissionhasallocatedtotheapplicantforuseintheoperationofthereactorl4321kilogramsofuranium235containedinuraniumintheisotopicratiosspecifiedintheapplication.EstimatedschedulesofspecialnuclearmaterialtransferstotheapplicantandreturnstotheCommissionarecontainedinAppendixAwhichisattachedhereto,TransfersbytheCommissiontotheapplicantinaccordancewithcolumn2inAppendixAwillbeconditionedupont'eapplicant'sreturntotheCcmmissionofmaterialsubstantiallyinaccordancewithcolumn3(includingthesub-columnsheadedScrapandDepletedFuel)ofAppendixA.FORTHEATOi~fICENERGYCOP>'HISSIONR.L.Doan,DirectorDivisionofReactorLicensing
Attachment:
AppendixADtofIanc:
~1 AD@URNTOP,'G!'"RING'.IDIPRRTMENTSTATEOFNEWYORKDEPARTMENTOFHEALTHMEREDITHH,THOMPSOII,DrENOIA55I5TANTCOMMI55IONERI7.y'QD-Z~~DIVISIONOFENVIRONMENTALHEALTHSERVICESHOLLISS.IHQRAHAM,M.D.C0MMI55I0NEI%84HOLLANDAVENUEAL8ANY,N.Y.12208May0,196'UREAUOFWATERRESOURCESERVICESANSELMOF.DAPPERT,M.S.S.E.DIRECTORNiagaraMohawkPowerCorporation300ErieBoulevard>TestSyracuse,NewYork13202Attention:Mr.JohnV.KeibAttorneyGentlemn:Re:ApprovalofFinalPlansSewageTreatmentWorksNineYd.lePointNuclearStationScriba(T),OswegoCounty':Teareenclosingapermitissued,thisday,andareforwardingunderseparatecoverapprovedplans,consistingof6B/Hsheets,fortheabovereferencedproject.Theperiod.ttee'sattentionisdirectedtotheconditionswhicharepartoftheaccompanyingpermit.Alloftheconditionsareimportant,andyouareadvisedthatthevalidityofthepermitiscontingentuponcompliance.AqualifiedGradeIX-AOperatorshallbecontinuouslyemployedtosuperviseoperationofthesewagetreatmentplantasoutlinedinPart11ofthet'.ewYorkStateSanitaryCode.Neadvisethattheoperatorbeengagedpriortoconstructionoffacilitiessothathe,willbefand.liarwiththetreatII.ntunitsandtheirproperoperation.Laboratoryanalysesanddeterminationsshallbemadetoindicatewastecharacteristics,treatmentefficiencies,andcom-pliancewithreceivingwaters'tandards.Analysesshouldincludedeterminationsforsettleable,total,andsusoendedsolids,(SS),biochemi.caloxygendemand,(BOD),dissolvedoxygen,(DO),and'pHoftherawandpartial+treatedwastesandfinaleffluent;chlorineresidualandcoliformofthetreatedwastes;blanketmeasurementofthesludge;anddissolvedoxygenandsettli.ngindexofthemixedliquor.Certainanalysesmaybecontractedoutuponapprovalofthelocalhealthofficeindicatedbelow.P<rr'a~pre,gg~rr/),srwp'~rpterr'0r'r'ICVrr/rr0C.r'.<Sg8r'gi-SS3-C'rL/L?-rrP' ~-".">>>7 4>.ih'I Niagara1hhawkPowerCorporationNay4,1965InformationandinquiriesshouldbedirectedtoNr.PeterGuala,F.E.,DistrictEngineer,SyracuseDistrictOffice,333EastWashingtonStreet,Syracuse,regardingthefollowing:1~Selection,.supervision,andtrainingofthetreatmentplantoperator.2.Certificateofconstructioncompliance.3~Detailsandfrequencyoflaboratoryana~esanddeterminations.Submissionofmonthlyoperationreports.Theplanthasbeendesignedtoreceiveanaverageflowof15,000gpdfromanexoectedpopulationof150persons.Approvalhasbeengrantedonthebasisthattheplantplusoxidationpondwillremove95percenteachoftheinfluentsuspendedsolidsandbiochemicaloxygendemand.Inordertoexpediteapprovaloftheseplans,wearemakingparthereofoneaspectofdesign.thatdidnotappearonsaidplans.Thatistheperipheralrailingfortheaerationtank.Asyouhaveagreedtoprovidethisitem,'wewillassumeitsomXssionfromtheplanswasanoversight.Itisthereforeincumbentupon'outoinstallsai"milinginthefinallyconstructedplant.Veryt~yours,IJosephJ.Kosman,P.E.SeniorSanitaryEngineerMunicipal-IndustrialWastesSectionEnclosurec/cSyracuseR.O.SyracuseD.O.JuliusA.Q.nd,P.E.
NEWYORKSTATEDEPARTMENT.OFHEALTHPERMITTODISCHARGESEWAGEORWASTES'I)4TOTHEWATERSOFTHESTATEChecktypeofworkssnddischargeItImklpat~*QgSmfsceDischargeInsTliuilonsl+GroundWaterPrivate(individual)Ptlve'ie(other)ilIndusitlalWasteNimeMilepoint-NuclearPowerStationScriba(T)PgSewersQAdditionsorAlietauons+XTreatmentWorks+PumpingStation+OtherountyOswecfoThispermitisissuedundertheprovisionsofArticle12ofthePublicHealthLawinconnectionwithapprovalofplansforttheprojeccdescribedbelow:NameSIIocattonoflforks(cuy,villageottown)CheckTO:frameendAddres~ofBoard,cofIIorstton,IndivfduatorofficemakingppllcailonNiagaraMohawkPowerCorporatioTj300ErieBoulevard>lestSyracuse,New,York13202gameofteceivlngwaistcourse,lf~'Uflac~waiefs'l~ubsutfsce~nsmofwatercoursetowhichgtound'wei@tlatributaryLakeOntarioframeofCityVillageorTown'inwhichpointofdischargelslocated)fameofmaJordrainagebasinlnhlchpointofdischargelalocateLakeOntarioesctlpilonofworkssuchssnumber>nameandcapacityorunitedSeeReverseSideEsuuIsiedcostofwofks5II8,000Designflowgals.petday15,000hpprovaiofplansandpermittodischargeisgrantedoncondition:ITHATthispermitshallberevocableatanytimeorsubjectcomodificationorchangewheninthejudgmentofcheDepartmencofHealthsuchrevocation,modificacionorchangeshallbecomenecessary.THhTtheproposedsewerageworksshownontheplansapprovedthisdayshallbefullyconscructedincompleteconformitywithsuchplansorapprovedamendmencsthereto.funderthesupervisienofali.censedP.ETHhTonlysewageandnoground'water,stormwater,coolingwater,orsurfacewaterfromscreets,foundations,roofsorotherareasshallbeadmiccedtotheproposedsewerageworks.iTllhTthesewageworksshallbeoperatedormaincainedacalltimescothesacisfactionoftheDepartmentofllealth.THhTthisperinitshallbedeemednullOI8voidunlesstheworksforwhichitisissuedshallhavebeenfullycompletedby1~&~,1970,andacert-'icateof.constructi.oncompliancesubmittedtoandapprovedUp"SyracuseDistrictOffi.ceoftheStateHealthDepartmentaithinthirty(30)daysaftercompletionofconstruction.VI.THATtheleakageoutwardortheinfiltrationshallnotexceed500gallonsperinchofsewerpipediameterpermileperdayforanysectionoftheseweragesystem.VII.TFAT'sufficientpersonnelmeetingtheaualificationsfor'sewagetreatmentworksoperatorsasreauiredbythellewYorkStateSanitaryCode,shallbeemployedtosatisfactorilyoperatethetreatmentfacilities.VIII.THATchlorineshallbeappliedcontinuouslytothesewageatapointindicatedontheapprovedplansataratesufficienttomaintainatalltimesaminimumresidualoffive-tenthspartspermillion(0.5p.p.m.)ofchlorineorgreaterinthefinaleffluenttoprovideforeffectivedisinfection.IX.THATmonthlyreportsonthedailyoperationofthesewagetreatmentworksshallberegularlysubmi.ttedtotheDepartmentqfHealthonformsfurnishedbyorsatisfactorytotheDepartmentofHealth.IssuedprtheStoleCommissionerofHealth:Date:5/4/65ty~DltectotoButtau0Walel'eeoCeaSetVIC~Slv~ssn.2(Rev.d/d2)Dl~ttlbutlonfWhiteAPPlkantPln'kCentralOffice('WPCS)Yellow-plf~(I.HOotDHO)Green-Other
%I 8.'StateOfNewYorkDepartmentOfHealthAIRPOLLUTIONCONTROLBOARDs4HOLoLAH0Avso~hleSAHY~NeY>>April25,l966Mr.J.N.EwartChiefSystemProjectEngineerNiagaraMohawkPowerCorporation535WashingtonStreetBuffalo,NewYork14203APPROVALOFCONSTRIJCTXONApplicationhavingbeenmade,asrequiredbytheRulestoPreventNewAir'ollution,theinstallationdescribedbelow,'PlanNo.HA"66O88Stackforventilationairandprocessgasesdischarged.toatmosphereNiagaraMohawkPowerCorporationNineMllePointNuclearStation(T)Scrlba,OswegoCounty,NewYorkisapprovedsubject'tothefollowingconditions:1.Theapprovalshallberevocableatanytimeorsubjecttomodificationorchangewhen,inthejudgmentoftheBoard,suchrevocation,modification,orchangeshallbecomenecessary.2~Theproposedconstructionshallbecompletedinconformitywiththedescrip-tioninthereportorasshownontheplansapprovedthisday,orinaccord-'ancewithanyapprovedamendments.3WheneverrequiredbytheBoard,additionalormoreeffectiveairpollutioncontroldevicesor.systemsshallbeinstalledandputintooperation,reportsorplansforwhichshallfirstbesubmittedtotheBoardforapproval.4~Thisapprovalshallnotbetransferableeitherfromonelocationtoanother,d'orfromonepieceofequipmenttoanother.5~TheBoardshallbe.notifiedinwritingwithin30daysafterthecompletionofthisinstallationthatitiscompletedandplacedorwillbeplacedinopera-tion,andofthetimeandplaceofanyteststobep'erformed.6~ThisapprovalshallbecomeinvalidiftheworkforthisapprovedinstallationisnotcomPletedbyNovemberI,19687~Thisapprovalinnowayprecludestherightofanygoverningbodyofanymunicipalitytoimposeadditionalrequirementsforthecontrolofairpollution.8,lfotherthantheaboveIsinstal'led,anewapplicationlsrequired.APCB3(rev.11/64)sit',/(q(OVER)
K pVlhty+trrsot+FEDERALAVIATIONAGENCYBOSTONhREh'FFICEBuilding¹3NorthwestIndustrialParkC0Burlinyon,Mauachuset(s0(80(.:,~"~'>2~~'7~Iir.0.K.BrotInChiefElectricalEn+neerMni,amYohn~ikPowerCorp.535)1nshingtonSt.buffalo~IIYNattLYareatoBQQ-520CaseNo.13O"-OR-66-365RHINO
DearNr.Brown:
Thisroforstoyour1"ormPAA-117,HoticoofFroposcdConstructionorAlterations,datedOctober14~1966,forthefo&owinCdescribedconstruction:TYPESidUCTUBZ:LOCATIONLntitudeLongitudeConcreteChimneyLycoming,N.Y.4331'7"76'4t36"ABOVBIKL610AnaeronauticalstudyconductedinaccordancewithFart77'ederalAviationRo~~tions,hasresultedinaQoteminationthntthoconstructionoralterationvrouldnotexceedanvstandardof'ubpartCand.wouldnotbenhazardtoairnavigation.SupplomontnlnoticetothisofficeisrequiredwithinfivedaysaftertheconstructionoralterationreachesitsGreatestheight.Hoticeformisenclosed,.ThestructureshouldbemnrIcodnndlightedinnccorQnncewiththestandardsinFAA'sIinnunl,"ObstructionIinrlcincand,L1~".tine.uUnlessother~riserevisedortered.nntcd,thi"determinationtrillemireonliny3,1963~oruponearlierabandonmentoftheconstructionproposalSincoro1yyours,SidneyL.,ChiofAirTrafficranch
9.Thatportionofwasteswhichinc1udesradioactivematerialsshallnotbedischargedinamountsorconcentrationswhichexceedthe1lmltsspecifiedlnSection10oftheCodeoftheFedera1Regulations,Part20.STATEOPNEWYORKAIRPOLLUTIONCONTROLBOARDWl111amL.0'onnor,P.E,SeniorSanitaEnineerjAlexanderRihm,Jr.,P.E.ForExecutiveSecretary 1gg Page1ofDPagesLicense'eU.S.ATOMICENERGYCOMMISSIONBYPRODUCTMATERIALLICENSE'j'":;.',PursuanttotheAtomicEnergyActof1954andTitle10,CodeofFederalRegulations,Chapter1,Paris30,32,33,34,and35,andinrelianceonstatementsandrepresentationsheretoforemadebythelicensee,alicenseisherebyissuedauthorizingthelicenseetoreceive,acquire,own,possess,transferandimportbyproductmale-riallistedbelow;andtousesuchbyproductmaterialforthepurpose(s)andattheplace(s)designaledbelow.ThisliceneshallbedeemedtocontaintheconditionsspecifiedinSection183ofthoAtomicEnergyAciof1954,andissubjecttoallapplicablerules,regulations,andordersoftheAtomicEnergyCommissionnoworhereafterineffectandtoanyconditionsspecifiedbelow.NiagaralhhawkPowerCorporation2.300ErieBoulevard,liestSyracuse,NewYorlc132023.Licensenumber31<<07489-024.ExpirationdateJuly31]9)8.ReferenceNo.6.Byproductmaterial(elementandmassnumber)7.Chemicaland/orphysicalform8.Maximumamountofradioac-tivitywhichlicenseemaypossessatanyonetimeA.Cobalt60BCobalt60C.Cobalt60D.Cobalt60E~Strontium90F~Iodine131G.Cesium137H.AnybyproductmaterialwithAtomicNos.be>>tween3and83,inclusiveI.Antimony122-124J.Americium241~~A.Sealedsource(AECLHodelC-163)B~Sealedsource(Nuclear-Chicagoliodel850213)C.SealedsourcesD.AnyE.AnyF.AnyG.AnyHAnyI.SealedsourcesJ~SealedsourceA.24curiesBE400millicuriesCD5sourcesnottoexceed100microcurieseachD.10lmillicuriesED3millicuriesF~101millicuri.esG~102millicuriesH.13millicuriesI.5sourcesnottoexceed2,500curieseachJ~6curiesAuthorizeduseA.andB.Tobeusedincalibrationwellstocalibrateinstruments.C,throughli.Instrumentcalibrationandcheclcing,sourcefabricationandtechniciantraining.I.andJ.Storageonly.
-~
FORMAKOi$7<8A(8~IIU.S.ATOMICENF<RGYCOMMISSIONBYPRODUCTMATERIALLICENSESupplementarySheetPage~of~PagesLicenseNumber31~Or<8902CONDITIONS10,Byproductmateri.almayonlybeusedatandi.nconnectionwi.ththeoperationofthelicensee'sfacilityattheNineMilePoi.ntNuclearStation,Oswego,NewYork.11.Theli.censeeshallcomplywiththeprovisionsofTitle10,Part20,CodeofFederalRegulations,Chapter1,"StandardsforProtectionAgainstRadiation."12.Byproductmaterialshallbeusedby,orunderthesupervi.sionof,P.AllisterBurt,MelvinA.Silliman,orRichardk.Bowers.13,A(1)Eachsealedsourcecontainingbyproductmaterial,otherthanHydrogen3,withahalf-lifegreaterthanthirtydaysandin'nyformotherthangasshallbetestedforleakageand/orcontaminationatintervalsnottoexceedsixmonths.IntheabsenceofacertziicatefromatransferorindicatingthatatesthasbeenmadewithinsixmonthspriorCothetransfer,thesealedsourceshaL,Lnotbeputintouseunti1.tested.(2)NotwithstandingtheperiodicleaKCestrequiredbyt1ieprec<'wpparagraph,anyl.icei.seuseaLeasou-cecontai.ning"byproductmaterialisexemptedfromperiodicleaktestsprovidedthequantityofbyproductmateri.alcontai.nedi.nChesourcedoesnotexceedtentimesthequantityspecifiedforthebyproductmaterial9.nColumnII,ScheduleA,Section'1'00,10CFR31'3)Theperiodi.cleaktesCrequiredbythiscondiCiondoesnoCapplytosealedsourcesthatarestoredandnotbeingusedThesourcesexceptedfromthistestshallbetestedforleakagepriortoanyuseortransfertoanotherpersonunlesstheyhavebeenleaktestedwithinsixmonthspri.ortothedateofuseortransfer.
,VJ' SrOIIIIAtCoSY4AIaasIU.S.ATOMICI;NERGYCOMMISSIONBYPRODUCTMATERIALLICENSESupplementarySheet.Page..of...Pages3...3LicenseNumbeP1-07489"0213.continuedCOi'EDITIONSBThetestshallbecapableofdetectingthepresenceof0.005microcurieofradioactivematerialonthetestsample.Thetestsampleshallbetal:enfromthesealedsourceorfromthesurfacesofthedeviceinwhicnthesealedsourceispermanentlymounted'rstoredonwhichonemightexpectcontaminationtoaccumulate..recordsoflealctestresultsshallbekeptinunitsoimicrocuriesandmaintainedforinspectionbytheComlaission.C,Ifthetestrevealsthepresenceof0.005microcurieormoreofremovablecontamination,thelicenseeshallimlaediatelywithdrawthesealedsourcefromuseandshaLlcauseittobedecontamina-tedandrepairedortobedisposedofinaccordance'withCo>nmissionreulations,Areportshallbefiledwithin5daysoftiletestwiththeDirector,Divisionof&IaterialsLicensing,U~S.AtomicEnergyCommission,'lashington,D.C~,20545,describingtheequipmentinvolved,thetestresults,andthecorrectiveactiontaken.Acopyofsuchreportsha1.1alsobesenttotheDirector,l<egionI,DivisionofCompliance,USAEC,376lludsonStreet,llewYork,NewYork,10014.D.Testsforleakageand/orcontaminationshallbeperformedbythelicenseeorbyotherpersonsspecificallyauthorizedbytheCommissionoranagreementStatetoperformsuchservices.14,Exceptasspecificallyprovidedotherwisebythislicense,thelicenseeshallpossessandusebyproductmaterialdescribedinItems6,7,and8ofthislicenseinaccordancewithstatements,representationsandprocedurescontainedin.applicationdatedJune6>1567andtelegramfromI."~J.SchneiderreceivedJune30,1967.DateJULForthe.P.S.AtomicEnergyCommission-j<::f'cz,",gi;.z.BrnhDtvtstonofMaterialsLlcenslngWashtnlfton.D.C.20SS5
'I rottsnAEC-401(u-ss)UNITEDSTATESATOMICENERGYCOMMISSIONSPECIiLLNUCLEARMiLTERIRLLICENSEPursuanttotheAtomicEnergyActof1954andTitle10,Codeof.FederalRegulations,Chapter1,Part70,"SpecialNuclearMaterialRegulations,"alicenseisherebyissuedauthorizingthelicenseetoreceiveandpossessthespecialnuclearmaterialdesignatedbelow;tousesuchspecialnuclearmaterialforthepurpose(s)andattheplace(s)designatedbelow;andtotransfersuchmaterialtopersonsauthorisedtoreceiveitinaccordancewiththeregulationsinsaidPart.ThislicenseshallbedeemedtocontaintheconditionsspecifiedinSection70.32(a)ofsaidregulations,andissubjecttoallapplicablerules,regulations,andordersoftheAtomicEnergyCommissionnoworhereafterineffectandtoanyconditionsspecifiedbelow.1.Name2.AddressLicenseeNiagaraMohawkPowerCorporation300ErieBoulevardWestSyracuse,NewYork132023,LicenseNo,SNM-10284.ExpirationDateDecember31,1968,oruponconversion+cont.nextageS.DocketNo.70-,10726.SpecialNuclearMaterialUraniumenrichedintheU-235isotope;and.plutonium.7.MaximumquantityofspecialnuclearmaterialwhichlicenseemaypossessatanyonetimeunderthislicenseU-235:2230.2kilogramscontainedin540fuelelements,and,5.54gramscontainedinin-coredetectors.+cont.nextae)8.AuthoriseduseFuele1ements:Forstorageand.inspectionon1yinaccordanceiththestatements,representations,andconditionsspecified.inthelicensee'spplicationdated.July7,1967,andsupplementsubmittedbythelicensee'st.oncesLeBceufLamband.Leibdated.Aust1016.econt.nex~tae9.QuantityofspecialnuclearmaterialallocatedtolicenseepursuanttoSection70.31(b)ofsaidpart~eAeICONDITIONS10.Unlessotherwisespecified,theauthorisedplaceofuseisthelicensee'saddressstatedinItem2above.Authorizedplaceofstorageforthefuelelements:Thefreshfuelvaultandthespentfuelpoolatthelicensee'sReactorBuilding,NineMilePointNuclearStation,Scriba,NewYork.Authorizedplaceforinspectionofthefuelelementsandforusingtheotherspecialnuc1earmateria1listedinItem7,above:TheNineMilePointNuc1earStation,Scriba,NewYork.
'4hI141 Ij'OI4Ah4401/410AU.S.ATOMICENERGY.COMMISSIONPage2of2PagesSPHClALNUCLEARMATERIALLICENSESupplementarySheetLicenseNumber11.Pursuantto10.CFR70.24(d)thelicenseeisexemptedfromtherequirementsof10CFH70.24(a)(1)inthespentfuelstorageareaduringtheperiodoftimethatthespentfuelpitisflooded,providedthattheproceduresdescribedinthelicensee'ssupplementaryapplicationsubmittedbythelicensee'sattorneys,LeBoeuf,Lamb,'Leiby,dated.August10,1967,arefollowed.J'12.Thelicenseeshallcomplywiththe'attachedleaktestconditionforthesealed.plutoniumsource.+4.ofConstructionPermitCPPR-16toanoperatinglicense,whicheverisearlier.Plutonium;1.0microgramcontainedinplateddiscsand,480milligramsencapsulatedasaPu-Beneutronsource.+8,Xn-coredetectors,plateddiscs,andthePu-Beneutronsource:Foruseinaccordancewiththeproceduresdescribedinthelicensee'sapplicationdatedJuly7,1967,andsupplementsubmittedbythelicensee'sattorneys,LeBoeuf,Lamb,hLeiby,datedAugust10,1967.FortheU.S.AtomicEnergyCommissionDateAugust16,1967b~RobertL.LettleldDlvlalonofMaterialsLlaanalnpWaahlnpton,D.C20545 II-CCCCIpp+~+~~+~EAtt$CIUNITEDSTATESATOMICENERGYCOMMISSIONWASHINGTON,D.C.20545NIAGARAMOHAWKPOWERCORPORATIONDOCKETNO.50-220PROVISIONALOPERATINGLICENSE'LicenseNo.DPR-17TheAtomicEnergyCommission(theCommission)havingfoundthat:a.Theapplicationforprovisionaloperatinglicense(applicationAmend-mentsNos.2through13,datedMay29,1967,July14,1967,September6,1967,May16,1968,September27,1968,October14,1968,November4,1968,January17,19lI9,January17,1969,March10,1969,March28,1969andApril10,1969,respectively)complieswiththerequirementsoftheAtomicEnergyActof1954,asamended,andtheCommission'sregulationssetforthinTitle10,Chapter1,CFR;b.Thefacilityhasbeenconstructedinaccordancewiththeapplication,asamended,andtheprovisionsofProvisionalConstructionPermitNo.CPPR-16;c.Thereareinvolvedfeatures,characteristicsandcomponentsastowhichitisdesirabletoobtainactualoperatingexperiencebeforetheissuanceofanoperatinglicenseforthefulltermrequestedirtheapplication;d.Thereisreasonableassurance(i)thatthefacilitycanbeoperatedatpowerlevelsnotinexcessof1538megawatts(thermal)inaccord-ancewiththislicensewithoutendangeringthehealthandsafetyofthepublic,and(ii)thatsuchactivitieswillbeconductedincom-pliancewiththerulesandregulationsoftheCommission;e.Theapplicantistechnicallyandfinanciallyqualifiedtoengageintheactivitiesauthorizedbythislicense,inaccordancewiththerulesandregulationsoftheCommission;f.Theapplicanthasfurnishedproofoffinancialprotectiontosatisfytherequirementsof10CFRPart140;g.Theissuanceofthislicensewillnotbeinimical.tothecommondefenseandsecurityortothehealthandsafetyofthepublic;ProvisionalOperatingLicenseNo.DPR-17ishereby'ssuedtoNiagaraMohawkPowerCorporation(NiagaraMohawk),asfollows:1.ThislicenseappliestotheNineMilePointNuclearStation,asinglecycle,forcedcirculation,boilinglightwaterreactor,andelectric
generatingequipment(thefacility).ThefacilityislocatedontheNineMilePointsiteonthesoutheastshoreofLakeOntarioinOswegoCounty,NewYork,approximatelysevenmilesnortheastoftheCityofOswegoandthirty-sixmilesnorthwestofSyracuse,andisdescribedinlicenseapplicationAmendmentNo.2,"FinalSafety.AnalysisReport,"assupplementedandamended(AmendmentsNos.3through13).2.Subgec'ttotheconditionsandrequirehentsincorporatedherein,theCommissionherebylicensesNiagaraMohawk:A.PursuanttoSection104boftheAtomicEnergyActof.1954,asamended(theAct),andTitle10,.CFR,Part50,,"LicensingofProductionandUtilizationFacilities,"topossess,use,andoperatethefacilityasautilizationfacilityatthedesignatedlocationontheNineMilePointsite;B.PursuanttotheActandTitle10,CFR,Part70,"SpecialNuclearMaterial,"toreceive,possessanduseatanyonetimeupto<3800kilogramsofcontaineduranium235inconnectionwithopera-tionofthefacility;C.PursuanttotheActandTitle10,CFR,Part30,"RulesofGeneralApplicabilitytoLicensingofByproduct.Materia1.,".toreceive,possess,anduseinconnection.withoperationof.the.facility~'24curiesofCobalt60asasealedsource;430.millicuriesofCobalt60astwosealedsourcesofnotmore.than400.millicuriesand30millicurieseach;~500microcuriesofCobalt60,asfivesealedsourcesnottoexceed100microcurieseach;X01millicuriesCobalt60,3millicuriesStrontium90,101millicuriesIodine131,3.02millicuriesCesium137,and3.3millicuriesofanybyproductmaterialwithAtomicNos.between3and83,inclusive,inanychemicaland/orphysicalform;12,500curiesAntimony122-124asfivesealedsourcesnottoexceed2,500curieseach;andsix'uriesAmericium241asasealedsource;andD.PursuanttotheActandParts30and70,topossess,butnottoseparate,suchbyproductandspecialnuclearmaterialasmaybeproducedbyoperationofthefacility.3~Thislicenseshallbedeemedtocontainandissubjecttothecondi-tionsspecifiedinthefollowingCommissionregulationsin10CFRPart20,Section30.34ofPart30,Section40.41ofPart40,Sections50'4and50.59ofPart50,andSection70.32ofPart70,andissub-jecttotheadditionalconditionsspecifiedbelow:A.MaximumPowerLevelNiagaraMohawkisauthorizedtooperatethefacilityatsteadystatepowerlevelsuptoamaximumof1538megawattsthermal.
B.TechnicalSecificationsTheTechnicalSpecificationscontainedinAppendixAattachedheretoareherebyincorporatedinthislicense.NiagaraMohawkshalloperatethefacilityatpowerlevelsnotinexcessof1538megawattsthermalinaccordancewiththeTechnicalSpecifi-cations,andmaymakechangesthereinonlywhenauthorizedbytheCommissioninaccordancewiththeprovisionsofSection50.59of10CFRPart50.C.~ReorrsInadditiontothereportsotherwiserequiredunderthislicenseandapplicableregulations:(1)NiagaraMohawkshallinformtheCommissionofanyincidentorconditionrelatingtotheoperationofthefacilitywhichpreventedorcouldhavepreventedanuclearsystemfromperformingitssafetyfunctionsasdescribedintheTechnicalSpecifications.Foreach'suchoccurrence,NiagaraMohawkshallpromptlynotifybytelephoneortelegramtheappropriateAtomicEnergyCommissionRegionalComplianceOfficelistedinAppendixDof10CFR20,andshallsubmitwithinten(10)daysareportinwritingtotheDirector,DivisionofReactorLicensing(Director,DRL),withacopytotheDivisionofCompliance.(2)NiagaraMohawkshallreporttotheDirector,DRL,inwriting,withinthirty(30)daysofitsobservedoccurrenceanysub-stantialvariancedisclosedbyoperationofthefacilityfromperformancespecificationscontainedintheFinalSafetyAnalysisReport(safetyanalysisreport)ortheTechnicalSpecifications.(3)NiagaraMohawkshallreporttotheDirector,DRL,inwritingwithinthirty(30)daysofitsoccurrenceanysignificantchangesintransientoraccidentanalysisasdescribedinthesafetyanalysisreport.(4)Assoonaspossibleafterthecompletionofsixmonthsofoperationofthefacility(calculatedfromthedateofinitialcriticality),NiagaraMohawkshallbeginsubmittingreportsinwritinginaccordancewiththerequirementsoftheTechnicalSpecifications.D.RecordsNiagaraMohawkshallkeepfacilityoperatingrecordsinaccord-ancewiththerequirementsoftheTechnicalSpecifications.
4~PursuanttoSection50.60,Title10,CFR,Part50,theCommissionhasallocatedtoNiagaraMohawkforuseintheoperationofthefacility14,321kilogramsofuranium235containedinuraniumintheisotopicratiosspecifiedintheapplication.-EstimatedschedulesofspecialnuclearmaterialtransferstoNiagara,Mohawk.andreturnstotheCommissionarecontainedinAppendixBwhich.isattachedhereto.TransfersbytheCommissiontoNiagaraMohawkin,accordancewithcolumn2inAppendixBwill'econditioneduponNiagaraMohawk'sreturntotheCommissionofmaterialsubstantiallyinaccordancewithcolumn3(includingthesubcolumnsheaded"Scrap"and"DepletedFuel")~5'Thislicenseiseffectiveasofthedateof.issuanceandshallexpireeighteen(18)monthsfromsaiddate,unlessextendedforgoodcauseshown,orupontheearlierissuanceofasupersedingoperatinglicense.FORTHEATOMICENERGYCOMMISSIONIhfalnaTsignalSyF,RchroederPeterA.Morris,DirectorDivisionofReactorLicensing
Enclosures:
.AppendixA-TechnicalSpecificationsw/AttachmentAAppendixB-SNMTransferScheduleDateofIssuance:gUg823969
'7 UNITED.STATES.ATOMICENERGYCOMMISSIONDOCKETNO.50-220NIAGARAMOHAWKPOWERCORPORATION.NOTICEOFISSUANCEOFPROVISIONALOPERATINGL'ICENSENoticeisherebygiventhatnorequestforahearingbytheappli-cantorpetitionforleavetointervenebyanyinterestedpersonhavingbeenfiledfollowingpublication.ofthe-noticeofproposedactionintheFEDERALREGISTER,theAtomicEnergyCommission(theCommission)hasissuedProvisionalOperatingLicenseNo.DPR-17toNiagaraMohawkPowerCorporation(NiagaraMohawk)authorizingthelicenseetopossess,use,andoperatetheNineMilePointNuclearStation,asinglecycle,forcedcirculation,boilingw'aternuclearreactor,locatedontheNineMilePointsiteonthesoutheastshoreofLakeOntariointheTownofScriba,OswegoCounty,NewYork.ThelicenseauthorizesNiagaraMohawktooperatethereactoratthermalpowerlevelsnottoexceed1538megawatts,inaccordancewiththeprovisionsofthelicenseandtheTechnicalSpecifications(AppendixA)appendedthereto..TheCommissionhasinspectedthefacilityandhasdeterminedthatithasbeenconstructedinaccordancewiththeapplication,asamended,andtheprovisionsofConstructionPermitNo.CPPR-16.TheprovisionaloperatinglicensewasissuedassetforthintheNoticeofProposedIssuanceofProvisionalOperatingLicensepublishedintheFEDERALREGISTERonJune5,1969,34F.R.8977,exceptformodi-ficationoftheTechnicalSpecificationsassetforthinAttachmentA
totheTechnicalSpecificationsasissuedwithProvisionalOperatingLicenseNo.DPR-17.Thesemodifications(1)deletetherequirementsforthenondestructivetestingofsafetyvalvessinceallofthesetestshavebeencompleted,and(2)modifythepressureforperformingaleakratetestonamainsteamlineisolationvalvetopermittestingatthesamepressurespecifiedforthecontainmenttest.AcopyofLicenseNo.DPR-17,completewithTechnicalSpecificationsandAttachmentAthereto,isavailableforpublicinspectionattheCommission'sPublicDocumentRoomat1717HStreet,N.W.,Washington,D.C.DatedatBethesda,Maryland,.thisR<dayofAugust,1969.FORTHEATOMICENERGYCOMMISSION~."!~':~"8CyF.ScF.-.aetnaPeterA.Morris,5irector,DivisionofReactorLicensing P'
C0y+>>14)[CUNITEDSTATESATOMICENERGYCOMMISSIONWASHlNGTON,D.C.20545NlAGARAMOHANPOHERCORPORATIONDOCKETNO.50-220AMEND".IENTTOPROUISIONALOPERATINGLICENSELicenseNo.DPR-17AmendmentNo.2TheAtomicEnergyCommission("theCommission")hasfoundthat:A.TheapplicationforamendmentdatedApril20,1970,assupplementedbyAmendments1through5theretoandletterdatedNovember23,1970,complieswiththerequirementsoftheAtomicEnergyActof1954,asamended("theAct"),andtheCommission'sregulationssetforthin10CFRChapterI;B.Thereisreasonableassurance(i)thatthefacilitycanbeoperatedatpowerlevelsupto1850megawatts(thermal)inaccordancewiththe'license,asamended,withoutendangeringthehealthandsafetyofthepublic,and(ii)thatsuchoperationwillbeconductedincompliancewiththeregulationsoftheCommission,andC,Theissuanceofthisamendmentwillnotbeinimicaltothecommondefenseandsecurityortothehealthandsafetyofthepublic.Accordingly,ProvisionalOperatingLicenseNo.DPR-17issuedtoNiagaraMohawkPowerCorporationforoperationoftheNineMilePointNuclearStationisherebyfurtheramendedtorestatesubparagraphs3.A.,3.B.,and3.C.intheirentiretytoreadasfollows:3.A.MaximumPowerLevelNiagaraMohawkisauthorisedtooperatethefacilityatsteady-statepowerlevelsuptoamaximumof1850megawatts(thermal)~3.B.TechnicalSecificationsTheTechnicalSpecificationscontainedlicense,asmodifiedbyChangesNos.1No,4appendedheretoasAttachmentA,inthislicense.NiagaraMohawkshallinAppendixAtothethrough3andChangeareherebyincorporatedoperatethefacility
inaccordancewiththeseTechnicalSpecifications.Nochangesshallbemadein'theTechnicalSpecificationsunlessauthorizedbytheCommissionasprovidedinSection50.59of10CFRPart50.3.C.'ReortsNiagaraMohawksha11makecertainreportsinaccordancewiththerequirementsoftheTechnicalSpecifications.Thisamendmentiseffective.asofthedateofissuance.FORTHEATOMlCENERGYCO>iMISSXONPeterA.Morris,DirectorDivisionofReactorLicensingAttachmentA-ChangeNo.4totheTechnicalSpecificationsDateofXssuance:April14,1971
LlNlTEDSTATESATOMIC"'NERGY',COMMISSIONWASHINGTON,D.C,ROSisDocketNo.50-220~April14,1971NiagaraMohawkPowerCorporationATTN:Hr.ThomasJ.Brosnan.300Erie'oulevardMestSyracuse,NevYork13202Gentlemen:XnresponsetoyourapplicationdatedApril20,1970,andamendmentsthereto,AmendsentNo.2toProvisionalOperatingLicenseNo.DPR-17isenclosed,'TheamendmentauthorizesoperationofyourNinedefilePointNuclearStationatpowerlevelsupto1850megawatts(thermal)andincorporateschangestotheTechnicalSpecificationstoprovideforsuch.operation.AcopyofarelatednoticethathasbeenforvardedtotheOfficeoftheFederalReg'isterforpublicationisalsoenclosed.Sincerely,PeterA.Horris,Director~DivisionofReactorLicensing
Enclosures:
l.AmendmentNo.2toLicenseNoDPR-17v/ChangeNo42.FederalRegisterNoticeccw/enclosures:ArvinE.Upton,EsquireLeBoeuf,La=b,Leiby&>fcRae1821JeffersonPlace,N.M.Mashington,'.C.20036
~~
olcl.cy~anyoitSN)TLO',SPATE8"ATOMICENERGYCOMMISSIONWASHINGTON,D.C.20545NIAGARA'OHAWKPOWERCORPORATIONDOCKET-NO.50-220A~KND~iIENTTOPROVISIONALOPERATINGLICENSELicenseNo.DPR-17AmendmentNo.2TheAtomicEnergyCommission("theCommission")hasfoundthat:A.TheapplicationforamendmentdatedApril20,1970,-assupplementedbyAmend,.ents1through5theretoandletterdatedNovember23,1970,complieswiththerequirementsoftheAtomicEnergyActof1954,asamended("theAct"),andtheCommission'sregulationssetforthin10CFRChapterI;'.Thereisxeasonableassurance(i)thatthefacilitycanbeoperatedatpowerlevelsupto1850megawatts(thermal)inaccordancewiththe'license,asamended,withoutendangeringthehealthandsafetyofthepublic,and(ii)thatsuchoperationwillbeconductedin.compliancewiththeregulationsoftheCori5iiission,andC.Theissuanceofthisamendmentwillnotbeinimicaltothecommon.defenseandsecurityortothehealthandsafetyofthepublic.Accordingly,'rovisionalOperatingLicenseNo.DPR-17issuedtoNiagaraNohawkPowerCorporationfor.operationoftheNine~H.lePointNuclearStationisherebyfurtheramendedtorestatesubparagxaphs3.A.,3.B.,and3,C.intheirentiretytoreadasfollows:3.A.XiaximumPowerLevelNiagarahhhawkisauthorizedtooperatethefacilityatsteady-statepowerlevelsuptoamaximumof1850megawatts(thermal).3.B.TechnicalSccificationsTheTcchnicalSpecificationscontainedinAppendixAtothelicense,asr::odifiedbyCh-ngesNos.1through3andChangeNo.4appendedheretoasAttachmentA,areherebyincorporatedinthislicense.Niagax'a~<<ohawkshalloperatethefacility n4Jvt<<f inaccordancewiththeseTechnicalSpecifications.NochangesshallbemadeintheTechnicalSpecificationsunl'essauthorizedbytheCommissionasprovidedinSection50.59of10CFRPart50.'3.C.~Reorrs'iagaraMohawkshallmakecertainreportsinaccordancewith'herequirementsoftheTechnicalSpecifications.Thisamendmentiseffectiveasofthedateofissuance.FORTHEATOMICENERGYCOiiQHSSIONpm',7=-DivisionofReactorLicensingAttachmentA-ChangeNo.4totheTechnicalSpecificationsDateofIssuance:April14,1971
~ansHdC27otelse64)PermitFee.Ins.FeIsTotalReceivedSTATEOFNEWYORK-,DEPARTMENTo~4sOFPUBLICWORKS~HWrermitNo.g8603DepositRec'dforCk.orM.O.~DatedI4.Ck.orM.O.~~DatedHIGHWAYWORKPERMITorchargeabletoIthmovnt)LiabilityIns.BondgPolicy~~evUndertokingonfile.ExpiringUndertheprovisionsoftheHighwayLaw,permissionisherebygrantedto(nameolPcrmsttee)whoseadd,ess.,-COrJ.R'.:.0:.1.Cr=ru';...4.-,.-,-.-0."..-.t,to(CQ.s~in('.09.Cs'@GING-:ggQ)Ol1XT19cl{:rOQSVsr<OssS!:s.r"...".~)briefsvmmoryotworkovshotiredincludingtypeofinstottotionondnumberotfees)Of'.m~~"irZ'~OozX~~CI11"OQ,~63.onSHNo.lt"~s~Countysmr'~cassetforthandrepresentedintheattachedopplica-tion;ottheparticularlocationororea,orovertheroutesasstatedtherein,ifrequired;andpursuanttothecon-ditionsandregulations,whethergeneralorspecial,andmethodsofperforn)ing.work,ifqnyfoilofwhicharesetforthintheopplicationandformpartofthispermit.ggfn!cCEstimatedDoteofCompletion~SuperintendentofPublicWorksDotedatDote,NewYorkByDistrictEngtneer,Dist,IMPORTANTTHISPERMIT,WITHAPPLICATIONANDDRAWING(ORCOPIESTHEREOF)ATTACHED,SHALLBEPLACEDINTHEHANDSOFTHECONTRACTORBEFOREANYWORKISSTARTED.NOTICE-Itisahsalatelynecessarythatthepermitteenayrfy~cssVZknn'~no.~t'n,ResidentEngineer,whoseaddressiss:0-Telbeforeworkisstartedanduponitscompletion.Theissuingauthorityreservestherighttosvspondorrevokethispermit,atitsdiscretionwithoutohearingorthenecessityofshowingcause,eitherbeforeorduringtheoperationsauthorized.Thepermitteewillcovseanapprovedcopyoftheapplicationtobeondremoinattachedheretountiloilworkunderthepermitissotisfoctorilycom-pleted,inoccordoncewiththetermsofIheottochedapplication.ISEEOTHERSIDE) 0 rona4iR,sate<iP~~No5~0STATEOFNEWYORKyq,.aDEPARTMENTOFPUBLICWORKS*39fbidioIIof8yeratioIIarrbNailltellaIICeREVOCABLEPERMITIssuedPursuanttoArticleXoftheCanalLawAlbrr>>yAprQ2sQC19.'iagaraNoh-;>kPowerCoaa.300ErieBlvd.hest,Syracuse,VewYork,'3202,thereinafterreferredtoasthe"lieensec,"hasmadeapplicationforpermissiontutainnnaerialcrossin~ofStateCanallandsoftwnc.lrictictrans..icsinclinncit-cuitsofapotential345KVcarriedinsixpowerwiresandfourst.",ticwiresa"sitcomonh"fpCdrawingC-7229-C,intheTownofClay,eastofLoclc23atCenterMneStatinns2930+29and2929+12,andhasfilcdinthisoffiecmaps,phnsandprofile,showingthestatelandatthelocationreferredtoandthedetailsoftheworkproposedtobedone.THEREFORE,permissionisherebygrantedtosaidlicenseet'""or"rcrossi~ofSta~rt'17".~nnf'>>>tr~".gi~Qdofaotential345KVcarriedinsixowerY"..csnrdfourstaticwfrennsnliotr.oF~~Cdrawinr'-72?9-CintheTctmofClnerstnfTnck'23ntCont2930+29nnd2929+12.asaskedforinsaidapplicationanddescribedabove,aconditionsandrestrictions:wn'ostandexpense,uponthefollowing1st.ThispermitshallnotbeassignedortransferredwithoutthewrittenpermissionofthcSuperintendentofPublicWorks.2nd.Allworkauthorizedbythispermitshallbedoneinaccordancewiththcmaps,plansandprofilcnowonfileinthisofifice,andinaccordancewiththespecialandgeneralconditionshereinaftersetforth,ordirectionswhichmaybcgivenbytheSuperintendenofPublicWorks.ArystructureserecteduponcanallandsbyrightofthispermitshallnotbechangedinanywaywithoutfirstrcceivirgwrittenperinissionoftheSuperintendentofPublicWorkstodoso.
I~"4IIt 3rd.AllworkauthorizedbythispermitshallbedoneunderthesupervisionoftheSupcrintcndcntofPublicWorksoranInspectortobeappointedbyhim.Theworkshallnotbecommcztccduntilsuchtimeastheoflieiallvsignedcopyofthepermitisreceivedbythelicensee.TheworkshallbedoneatsuchtimesasthcSuperintcndcntofPublicWorksshalldirect,soasnottointerferewiththefreeandperfectuscofthecanals,orendangerthclivesorpropertyofanypersons,andparticularlyofthoseengagedinrepaiv'ng,operatingornavigatingthccanal.4th.Inthceventthatanyvesselorfloatissubjectedtodelaybyreasonoftheworkauthorizedbythispcr-mit,thelicenseeshallpaytotheownerofsuchvesselorfloatsodelayed,suchamountaswillfairlycompcnsatcsuchownerforthedelayorlossoftimeoccasionedtobirnbythcoperationshcrcinauthorized;andinthccvcntthatthelicenseeandtheownerareunabletoagreeastothcamountofcompensationtobepaidforsuchdelaytheamountofsuchpaymentshallbedeterminedbytheSuperintendentofPublicWorks.Thcsumfixcdbyhimshallebindinguponandpaidbythelicenseetosuchowner.TheInspectorappointedbythcSupcrintcndcntofPublicWorkspursuanttothethirdparagraphofthispermit,shallascertainwhetherornotanyboatshavebeendelayedbythcworkhereinauthorized,andshalldeterminetheextentofthcdamagessuffered,andshallreportsuchfactstothcSuperintendentofPublicWorks,forhisfinaldetermination.5th.Anyandall'canalbanksorotherstructureswhichmaybedisturbed'orinterferedwithduringthcitsprogressoftheworkshallberestoredtoaperfectconditionbythclicenseeaowncostandexpense.6th.Exceptinsofarastheyarespecificallymodifiedherein,therulesandregulationsgoverningterminalsandtherulesandregulationsgoverningnavigationonthcNcwYorkStateCanals,archerebymadeapartofthisSPECIALSPECIFICATIONSANDCONDITIONS:(a)irctrarenisaionHreshaGbekplscedan"u.aintaincdontltestateproperty.inac-cordat:ccwitnDrawingC-722o~onfMcinthisofiiceordirectionswhichtnaybegivenbytheSurexintcndc".toCPubliclor'~orhisxpzsc:ntativc.(b)KointcrxerenccshQlbchadwithravigationinterestsorwithanyrepairor~rove>>tacnttrorkcnorcormectcdwit)tthccanal.(c)Zfdcc:.cdtobencccssa~>,suit"bleard*p:vipb"'afetydevicesshallbcprov:dedbythcliccnsccatitscnatcostandcxpcnse,inforatobcapprovedbytheSupcrintcndcntofPub3.ichoxltsorhisrepresentative.(d)TncSupcrintcndcntoCPub'tacloxk"rcservcstherightat'nytirteduringtheperiodinwhichtltispc+itvyrenninir.forcestoattaclttotxan=dsaicnlirao'r'alas"ts'angercab3.c,wires,crossaxns,fixtures>ctc.asr".gbcrcc,uircd.:irthcuscofthcdepart;.nt,I".hercw~benocltax'gctothcSt"0ofl<s:iYorkfortbcaboveattac.lt:.antesif."--.".arcrado<(e)neliccrsceshU~ccrc>lywitha31xti3es,3ai<sardxcgDationscCthcSt-"tc"philic"bletotii<<constctionorcvtcns.onoftrans:aissionlines.(f)Itistobeun".crstncdenclagreed<<!tatthistr;<nsrtissionlinecvcrst'a"epro~:!rt<iisnottnbexeconst;.ctcdinaryway,withetfirstreceivingthewrittenpenEsaionofthcSuac.ri"-:ender<tofPublici<or'."orni"rcprc"cntative.(")ThcStateslinkocprotectedagains<.clai".LssclKQcsctcsascoveredbyUndcrtahirgdartedJuly2Ss9SSssub'cabythe3.ic<'nso.eandcnfilewiththisdcpa&cnt<(h)ThelicenseeshQ1paytotheStateoC-?:cwYor?cthxouglttneSuperint'cndcntoC.PublicVoxt'sanissuancefecor"$28.00ardq2.6.00pcryearorfractionthcrcof,pay."..cntt'ober.:adeinadv"ncc.ttercw&lalsobearenewalCccoC.v5.00duceachyearonthear".'vcrsaryc.atcoCticepcx.".it.
~drhamndsSiadddS7th.TheuseofsaidlandshagbesubjectatalltimestotheinterestoftheStateinthcmakingofimprovementsandrepairstothccanalsystemorworkinconnectiontherewith.TheSuperintendentofPublicWorks,hisagents,<<mployecsandcontractors,shallatalltimeshavethcrightofentrythereon,ifin'hejudgincntofthe"SuperintcndcntofPublicWorkstheState'sinterestshallrequire.Sth.ThelicenseeundertakesandagreestoindemnifyandsaveharmlesstheState,itsofficers,oremployees,fromanyandallchims,demandsandrecoveriesarisingoutoftheuseormannerofusemadebythelicenseeofthepropertywhichisthcsubjectmatteroEthispernut.9th.Thcworkauthorizedbythispermitshallbecommencedpromptlyandprogressedtocompletionwithoutdelay;andintheeventthatsuchworkisnotsocommencedandprogressedtothesatisfactionoftheSuperintendentoEPublicWorks,thispermitshallbedeemedtoberevoked,andsaidworkshallnotbcresumedwithoutarenewalofthispermitinwritingbytheSuperintendentofPublicWorks.10th.TheSuperintendentoEPublicWorksreservestherightatanytimetorevokeandannulthispermit,heeuponhehattheeomethedutyoftheheentee,a~emotedeapente,fothtth\aremaeprothcpropertywhichisthesubjectmatterofthispermit,anyandallworksandstructurescrcctcdby1,t:thcrcon,andvacatdandsurrcndcrtothcStatepossessionthereof.Uponfailureoftheliccnscctorcmovesuchworksandstructures,thcSuperintendentofPublicWorksmaysummarilyenteruponandremovefromsaidprcmiscsanyandallcncroachmcntsandpr'opcrtyofthelicensee,atthelicensee'sowncostandcxpcnscssedt'NoNoticeofrevocationmaybcgiventothclicenseepersonally,orbymailingtctIcctenclosedinapostpaidwrapperaddreBlVad~lee~aeae'oticeothat11th.Thispermitshallnotbecomeeffective,norshallanyworkbecommencedunderthcsarnc,untilthclh~Ioriginalthereofhasbeenexecutedbytheapplicant,signedbythcSuperintendentofPublicWorks,thcofficialsealofthcStateofNewYorkattachedhereto,andanexecutedcopyoftheperinitreceivedbythcliccnsce.12th.InacceptingthispermitthcsaidlicenseehasinmindthepossibilityofthcsaleorotheiwiscdisposalbythcStateofthclandreferredto,withoutnotice,andinsucheventthepermissionhcrcbygrantedwillauto-maticallytcrminatc.13th.Norefundwillbcinadetothelicenseeorotherparty,ofanyportionofthefeepaidforthcuscoftheStatepropertyshouldthispermitbecancelledwithinthespecifiedtiineforwhichthefeehasbeenpaid.INTEsrtstoNYWttEREOFIhavehereuntosetmyhandandaffixcdthcofficialsealofsaidonce,thedayandyearfirstabovewritten.J.BURCHMcMORRANSpdprripitrxdrpitofPilieIYorks.dhaa4superintendentodOperationMhdnhnlananenACCEPTANCEOFPERMITThcundersignedherebyacceptstheforegoingrevocablepermitandagreesfaithfullytocon:plywithallthetermsandconditionsthereoE.SyracusoN.Y.,Auri.l20196+tlIAG~fta."Blitt'odMco<0"aTIo'tVopresident
sheetc(Acknowledgment,ifanindividuaL)STATEOFNEWYORKCOUNTYoFOnthime,thesubscriber,personallyappeareayof19beforetomeknowntobethepersondescribedin,andwhoexecutedthcforegoinginstrument,andhedulyacknowledgedtoInethatheexecutedthesame.NotaryPublic(Acknowledgment,ifacorporation.)STATEOFNEWYORKCoNTYOFOnthime,thesubscriberpersonallycam)-ayof19!6~beforetomcknown,whobeingbymcdulysworn,diddeposeandsaythathcresidesi;thatheisthVicePresidentNiagaraÃohattkPovorCorporationthecorporationdescribedinandwhichexecutedthcforegoinginstrument;thatheknowsthesealofsaidc'orpora-bylikeauthority.tion;thatthesealaffixedtosaidinstrumentissuchcorporateseal;thatitwassoafiLxcdbyauthorityofthcBoardrofDirectorsofsaidcorporation,andthathesignedhisnamether(Acknotvlcdgment,ifafirmorco-partnership.)STATEOFNEWYORK$$.1COUNTYOFt0RTJ.MNotaryPublicRTJ.McttAMARANOtitrVilleIOIltoSl~teotitveotlfleewoakMqo4IoooooCoHo541810551cootottiitooeeettoeu'iCI,50OnthiIne,thesubscriber,personallyappcareayof19before,toIneknownandknotvntometobctheindividualwhoexecutedthcforegoinginstrumentasametnberoftheco-partnershipofdiddeposeandsaythatheresidesitheabove-namedco-partnershipwhichiscomposedofhimselfan,who,beingbyIncdulysworn,'hathcisamcmbcroi;whoareallthepersonsinterestedtherein;thatheexecutedtheforegoinginstrumentonbehalfofthesaidco.partnershipandasametnberthereof;thathe'wasauthorizedtoexecutethesame;andheacknowledgedtomethatheexecutedthcsameonbehalfofthesaideo.partnershipforthepurposesthereinstated.NotaryPubhc 1P APPENDIXHTHEEQGQEFFECTOFHEATEDDISCHARGESONLAKEONTARIO
APPENDIXHTHERIACEFFECTOFHEATEDDISCHARGESONLAKEONTARIO1~THEENTIRELAKETheapproximateheatloadexpectedwithinthenext10yearsfromtheexistingandpresentlyproposedpower(includingtheoperatingNineMilePointUnit1andtheproposedUnit2),steel,andsewageplantslocatedonLakeOntariois1,800x10~BTU/day(seeTableH-1).Itispredictedthatthisloadwillproduceanoveralllaketemperatureriseof0.08Fabovetheambientlaketemperaturethatexistedbeforetheadditionofheatofartificialorigin.Along-rangeprojectionofheatdischargetothelake(Ref.H-1)givesafigureof6,350x10~BTU/daybytheyear2000.Itispredictedthatthisloadwillproduceanoveralltemperatureriseof0.28F.Inaddition,theresidualtemperatureriseinwaterenteringthelakeatitswesternendintheyear2000ispredictedtobeabout0.1F.Theseeffectswerecomputedbyuseofaratherconservativemodel(Ref.H-2)ofheattransportanddissipationinthelake,includingheatlosttotheatmosphere.Completemixinginthehorizontalplaneofthelake~ssurfaceandoversufficientdepthtosupportthelakethroughoutisassumedinthemodel.Themodelconsistsofasteadystateheatbalanceoverthelake.Thelaketemperatureriseduetolakeheatsources,isdesignated~Tandisreferencedtothelakeinlettemperature.SeeTableH-2fortherelationshipsinvolved.Anestimateof'heyearlyaverageoverallheattransfercoefficient,K,is100BTU/sqft/dayF.LakeOntariosurfacearea,Az,is7,500sqmiles.Yearlyaverageflow,Q,intheSt.LawrenceRiverattheoutletofLakeOntarioisapproximately240000cfs2THEEASTERNENDOFLAKEONTARIOAsimilarcomputationcanbeperformedfortheportionofLakeOntarioadjacenttoNineMilePoint.Onlytheplantsintheeasternendofthelakeareconsidered.TheyincludeNiagaraMohawk'sUnits1-4and5atOswego,andUnits1and2atNineMilePoint,PASNY'sFitzPatrickPlant,anassumedplantatSterlingandthesewageplantatOswego.H-1
Plant.TableH-1ThermalInputsIntoLakeOntarioHeat,Rejec-CapacityDischargeTAboveLaketiontoLake-.MW.--FlowCfsAmbient-F-10~.BTU/Hr.--NMPC-Oswego,Fossil,4units40776212.42..114NMPC-Oswego,Fossil,Unit589063528.6409NMPC-NineMilePoint,Nuclear,Unit1610NMPC-NineMilePoint,Nuclear,Unit,2',1005971~188'31.230.94.188.21PASNY-J.AFitzPatrick,Nuclear85082531.55~714RGSEC-Russell,Fossil28223919.61.051RGSEC-Ginna,Nuclear47077919.6(design)2.975OntarioHydro-RichardL.Hearn,Fossil1,2001i76016.06.325OntarioHydro-Lakeview,FossilOntarioHydro-Pickering,Nuclear2i4002~1602~8103,92117.020.0"10.72717.614SterlingSite(Assumed)Stelco,Hamilton,Ont.'(SteelCo.)SewagePlant,Oswego,N.Y.1,0001,00032.07.1871.25~H-2 0'I SewagePlant,Rochester,N.Y.SewagePlant,Somerset,N.Y.SewagePlane,Toronto,Ont.41980Projection.0~9+70.837TableH-2AModelofHeatTransportandDissipationinaLakeSteady-stateheatbalance:H-Wj)QQT-KAQT=0coo(1)where:H=Heatdischargedintothelake,BTU/dayfC=DensityxHeatcapacity,BTU/cf/FQ=Lakeoutflow,cfdQT=Surfacetemperaturerise,FK=Overallsurfaceheattransfercoefficient,BTU/sgft/day/FA<=Lakesurfacearea,sqftRearranging:bTH/(PCpQ+KAs)soo(2)Theapproximateheatloadtobedischargedbytheaboveplantsintothelakeis760x10~BTU/day.Thisloadwillproduceatemperatureriseforthisportionofthelakeof0.17F,whenitisassumedthatthereisnomixingwiththerestofthelake.Projectingtotheyear2000,aspreviously,theoveralltemperaturerisefortheeasternendofthelakeiscomputedtobe0.6F.Theabovetemperaturerisesarefortheplantsoperatingcontinuouslyat100percentofcapacity.H-3
3-THEEFFECTOFNMP1~NMP2~ANDFITZPATRICKONLAKEONTARIOInanalyzingtheeffectofallthreeplantsonthelake,itwasapparentthat.thedistancebetweentheplant'dischargefacilitiesistoogreattopermittheassumptionthattheirinputwasonelargedischargeflow.Therefore,theareainvolvedasbrokenupintotwosections,onefortheNMP1-NMP2complexandtheotherfor'heFitzpatrickplant.TheNMP1-NMP2complexwillhaveadischargeflow,of1,788cfswithaneffluenttemperatureof30.9Fabovetheambientwatertemperature.Theseconditions,alongwithanozzleheaderof57Sfeetwillproduceaheatedlayerwithamaximumsurfacetemperatureoflessthan3Fabovetheambientwatertemperature.Byutilizingmathematicalmodelsandanalysesmadeofexistinghydraulicmodelsofotherplants,thehydrothermalpatternsthatwillbeproducedoffshorefromtheNMP1-NMP2complexcanbedetermined.Amathematicalanalysis(Ref.H-3)preparedbyQLSMprovidesamethodforpredictingsurfacetemperaturecontourlinesfromdischarges.(SeeTableH-3).FortheNMP1-NMP2complex,thedistancealongthecenterlineofthedischargeplumetothe0.5Fsurfacetemperaturecontourisapproximately4,800feetunderzerolakecurrentconditions.Underzerolakecurrent,conditions,thevelocityofthejetsfromthesubmergedmultiportnozzleheaderisrapidlyreducedasthesurroundinglakewaterisentrained.whencurrentsoccurinthelake,theflowpatternsofthedischargefromtheNMP1-NMP2complexwillchangebecausethecoolingwaterdischargesaredeflectedinthedirectionoftheprevailingcurrent.Theseflowpatternsarestretchedoutinproportiontothecurrentvelocity.(Ref.H-4)Usingcurrentvelocitiesrangingfrom0.2fpsto0.8fps,mathematicalanalysisshowsthatthedistancetothe0.SF6Tcontourhasamaximumvalueof21,000feetdownstreamfromthedischargejet(seeFigureH-1).(Iftheboundarybetweenthe"near"thermalfieldandthe~~far~~fieldisthatlinewheretheinitialjetreachesthelakesurface,the0.5FQTcontourcanbesaidtobeboundarybetweenthe"far~~fieldandthe"remote<<field.)H-4
0.01.020x4.00O5.0OI-C7u.6.0l--z2FPSJl=.8FPSAI=.5FPS50<<Cv60OCP~70oI-Q80zO~901002OQ~825DISTANCEALONG0OFPLUME-IOFT308.09.010.0II.O0I2345678910II121314151617181920DISTANCEALONG%OFPLUME-10FTFIGUREH-IDILUTIONFACTORVS.DISTANCEALONGCENTERLINEOFPLUME-FEET
TableH-3dT[~]dimensionlesstemperaturerise=QTjrtemperatureriseatdistancerfromsourceModelforPredictingSurfaceTemperatureContourLinesg(En)=-KnY)(~)(nQ2.temperatureriseatsourcedimensionlessradialdistance=E(r)temperaturedissipationcoefficientradialdiffusioncoefficientQDintegerparameterobtainedby.roundingoff2.~DEplantcoolingwaterdischargeflowdepthofthedischargelayeranglebetweeneffluentoutletboundariesK(E)=modifiedBesselfunctionof2ndkind,ofargument4andordernAlso,foragivenpointdownstream,thewidthsoftheflowpatternsdecreaseasthecurrentspeedsincrease.SeeFigureH-2.AttheFitzPatrickplant,therewillbeadischargeflowof825cfswithaneffluent,temperatureof31.5Fabovetheambientwatertemperature.Also,thenozzleheaderwillbeapproximately800feetlong.TheFitzPatrickreport(Ref.H-5),describescertainflowpatternsthatwerepredictedonthebasisofhydraulictestingandmathematicalmodels.ThosedescribedherefortheNMP1-NMP2complexaresimilar.Themagnitudesoftheflowpatterndimensionsdifferbecausethemagnitudesofthedischargesdiffer.(Ref.H-5)TherangeofdistancesfromtheNMP1-NMP2dischargejetstothe0.5F6Tcontourisbetween4,000feetfornolakecurrentconditionsand35,000feetfora0.8fpscurrentintheeastwarddirection.Duetothecomplexityofthecurrentsintheeasternendofthelake,anextensivelimnologicalstudyprogramwasconductedbyJohnF.StorrinMay,1963(Ref.H-6).Theprogram'sobjectivesH-5
O0UOxIO2ll=02fpsM=0.5fpsN=0.8fps50I2345678910II121314151617181920OISTANCEALONG%OFPLUME(IOFT.)FIGUREH-2WIDTHOFFLOWFIELDVS.DISTANCEALONGCENTERLINEOFPLUME
wereasfollows:.(1)definetheoffshorecurrentsatNineMilePoint,(2)correlatethesecurrentswithvariouswindregimens,and(3)determinethedilutionfactorsapplicabletothewaterleavingtheNineMilePointsite.ThelimnologicalstudywasbasedonthedischargeofOswegoRiver(located7mileswestofNMP1-NMP2complex)intoaprimarilyeastwardlakecurrent.SincetheOswegoRiverhasagreatersalinitythanthelake,itwaspossibletomakemeasurementsdownstream,thus,determiningthepercentmixingpermile.Basedontheseexperimentalresults,mathematicalcomputationsindicatethatthe"remote"fieldbeginsbetween27,000and42,000feetdownstream.Thisrangeisofthesameorderofmagnitudeasthevalueof21,000feetobtainedbythemathematicalmodelofRef.H-4(FigureH-1),andsomewhatlargerthanthevaluesthatthemodelofRef.H-2(FigureH-2)wouldpredict.4INTERACTIONBETWEENADJACENTPLANTSANDRECIRCULATIONTheeffectofNMP1-NMP2complex'sthermal,dischargeonFitzPatrickdependsentirelyonthedirectionofflowandthetimeoftravelfromtheoutfall.Asthetraveltime(whichisbaseduponcurrentandwindvelocities)isreduced,higherwatertemperaturesappearatFitzPatrickwithsmallerdepthsofheatedlayersovertheintakeandthedischargestructures.ThermalstudieswereconductedbetweenJulyandOctober,1970intheNMP1area(Ref.H-7).Theplantwasoperatingwithradialflowdischargeat1/3ofthecapacityofthetotalproposedNMP1-NMP2complex.Also,thesurfacetemperaturecontoursintheimmediatevicinityofthedischargewereconsiderablyhigherthanfortheproposedcomplex.Thestudiesweremadeusingthermistorsthatwerelocated.indepthsupto10feetbelowthesurface.ThesemeasurementswereusedtoprovidetemperaturecontoursintheNMP1area.TheresultsofthestudiesindicatedthatNMP1'sradialdischargedidnotmateriallyaffectthelocalityoftheFitzPatrickintake.FitzPatrickwasnotconstructedatthetimeofthesethermalstudies,andtheinfluenceofitsintakeflowwasnotestablishedintheprevailingtemperaturecontours.TheproposedNMp1-NMp2complexisdesignedwithadiffusersystem,andhasajetvelocity.andadilutioneffectmuchgreaterthantheexistingNMP1discharge.Furthermore,fieldmeasurementsoftheexistingsystemindicatedinsignificantrecirculation.Therefore,itisassumedthatnorecirculationwilloccur.H-6 4Ilt UsingamathematicalmodeldevelopedbyBrooks(Ref.H-4),dilutionsof3.6,1.7,and1.3arefoundfordischargeflowsat3,200feetdownstream(distancebetweenNMP1-NMP2complexandFitzPatrick)undercurrentconditionsof0.2,0.5,and0.8fps,respectively.Thesedilutionsproducesurfacetemperaturerisecontoursrangingfromaminimumof0.8Ftoamaximumof2.3Fatthe3,200-footdistance.Accordingtoalimnologicalstudy(Ref.H-6)performedintheNineMilepointareaundertheinfluenceofaneastwardcurrentinthelake,itisfoundthatthepercentmixingpermileforadistanceof3,200feetdownstreamrangesbetween25and42.Thismixingestablisheddilutionfactorsbetween1.14and1.24producingsurfacetemperaturerisecontoursof2.63and2.42,respectively.Thecombined,dischargeofNineMilePointUnits1and2will,byvirtueofthejetvelocity,yieldasurfaceplumewithastonglakewardtrend.ItwouldrequireasoutheasterlycurrenttoovercomethistrendanddiverttheplumetothevicinityoftheFitzPatrickintake.Furthermore,asstatedabove,itwouldrequirea'urrentvelocityof0.8fpstoyieldasurfacetemperatureriseofapproximately2.5Fatadistanceof3,200feetdowncurrent.Lakemeasurements(PASNYreport)showthatsoutheasterlycurrentsofanystrengtharerare,andcurrentsoftherequiredintensityinthisdirectionextremelyso.Takingallthesefactorsintoaccount,theactualtemperaturerisesensedintheFitzPatrickplantintakewillbeonlyafractionofthisfigure,forafewhoursayear.UsingamathematicalanalysispreparedbyQLSM(Ref.H-8)describingthe'characteristicsofthedischargejet(suchasjetdiameter,velocity,flow,temperature,anddilutionalongthecenterlineoftheplume),oneobservesthattheresultingsurfacetemperaturerisecontourvaluesareincreasedbyapproximatelyonetenthoftheincreaseintemperatureattheintake.Hence,theareawithinacontourofgivenvalueisincreased.However,theNewYorkStatecriteriaapplicabletothedischargeofheatedliquidstoLakeOntarioarestillnotcontravened.AnalyzingFitzPatrick'effectontheNMP1-NMP2complex,onehaspracticallythesameconditionsasaboveexcepttheproposedintakeislocatedinabout23feetofwaterwhichisgreaterthantheintakedepthatFitzPatrick.Accordingly,theheatedlayerovertheintakehasamaximumtemperatureofabout2.5Finadepthapproximately1/3ofthetotaldepthattheintake.Themaximumtemperatureriseintheintakewouldbe0.8Fandthesurfacetemperaturerisecontourswouldincreasebyapproximately0.1F.Itshouldbenotedthattheincreaseinthesurfacetemperaturerisecontoursispartlyduetothefactthatthedilutedflowfromtheadjacentplantwillmixwiththeotherplant'sdischargejetsastheyreachthesurface.H-7
Also,themajorportionofthetotaljetdilutiontakesplacenearthejetnozzles,wheretherelativevelocitiesarehighest.Thisexaminationofin-situ-studies,mathematicalanalysesandhydraulicmodelsrevealsthatthecriteriaestablishedbytheStateofNewYorkwillbemetbytheproposedNMPI-NMP2complexwithoutanyproblem.5REFERENCESH-1.Acres,H.G.,Limited.,ThermalInputstotheGreatLakes,1968-2000.NiagaraFalls,Ontario(February,1970).H-2Lawler,J.P.,Leoprati,J.L.,andLawler,P.J.ReceivingWaterTemperatureDistributionsfromPowerPlantThermalDischarges-ALakeModel.Presentedatthe5thAnnualEnvironmentalHealthResearchSymposium,Albany,NewYork,May,1968.H-3LetterofMay10,1971toMr.,CharlesV.ManganofNiagaraMohawkPowerCorporationfromDr.JohnP.LawlerofQuirk,Lawler6MatuskyEngineers.
Subject:
<<NineMilePoint-CoolingWaterDischargeSchemes."H-4.Brooks,N.H."DiffusionofSewageEffluentinanOceanCurrent,"PreenIn.ternationalConferenceonWaste~DisosalintheMarine~Environment,Pergamon,Press,NewYork,(1960).H-5.PowerAuthorityoftheStateofNewYork.EngineeringandEcologicalStudiesforDesignofIntakeandDischargeStructures,(January1970)H-6.Storr,J.F."LimnologyStudy-NineMilePoint,LakeOntario,<<May,1963.H-7..Storr,J.F.<<ThreeDimensionalThermalStudies-NineMilePoint,<<July'-October,1970.H-8.Quirk,Lawlers;MatuskyEngineers.EffectofCirculatingWaterSystemsonLakeOntarioandOswegoHarborWaterTemperatureandAquatic~Biology,ReportpreparedforNiagaraMohawkCorporation,April1971.H-8 I0 APPENDIXIMeteorologicalCalculationsforAssessingEnvironmentalEffectsofAccidents
~~~r.01~c APPENDIXIEXHIBITARADIATIONEXPOSUREMODELS1.WHOLEBODYEXPOSUREThebasicmathematicalmodelusedtocalculatethewholebodyexposuresis.definedinReferenceI-1andmodifiedasfollows:413/$5c(c'pxG~Y~z~T(Eq-1)~where:9CgC.IGICloudgammadose(rem)Conversionfactor(3.7x10+Dis/sec-ACi)Fluxtodoseconversionfactorfortheiisotope(rem/sec-Y/cc)Numberofphotonsofthei'sotopeemittedperdisintegration($'s/dis).thDoseattenuationkernelfortheiisotope(dimensionless)(Eq-2)where:XAverageannualisotopicair-borneconcentrationoftheiisotope(pCi/cc)Accumulativefrequencyforwindspeed,stability,andsector(dimensionless)QiPlantreleaserateoftheiisotope(ACi/sec)
I'I
~y,~q=Horizontaland,verticaldiffusioncoefficients(cm)YZ=Windspeed(cm/sec)=Horizontalandverticaldistancesfromplumecenterline(cm)=Sectorangleoverwhichplumeisaveraged(radians)R=Distancefromreleasepointtodetectorpostion(cm)Equation1providestheyearlyoffsitedosetoadetectorlocatedadistanceofR-cmfromthereleasepointandwithinasectorangleofpradians.Theman-rem/yrisdeterminedbymultiplyingtheresultofEquation1bythepopulationdensitylocatedwiththesectorofconcern.ValuesofsectordoseatadistanceofR(cm)areassumedtobeapplicabletoallindividualslocatedinthatsectorfromadistanceofR~RtoR+bR.InTable6.2-1,thecumulativeman-remforanyradialdistanceisdeterminedbysummingthedosecontributionsfromallsectorsfortheadditionalradialdistancesandaddingthistothepreviousradialman-remexposures.2THYROIDEXPOSURESMathematicallythepopulationradiologicalexposurescanbedescribedasfollows:hyroiJ(Eq-3)@R(MPC)where:ThyroidThyroiddose(rem/yr)DoseConversionfactor(i.e.,~<<<.=1=1-Sr/yr)rIotherparametersaspreviouslydefined.Equation3appliestothedoseinagivensectorataradialdistanceR.Therefore,todeterminetheintegratedpopulationexposureitisnecessarytomultiplyEquation3bythepopulationdistributioninagivensectorandatthegivendistanceRandsumthisproductforallsectorsanddistancesto50miles.Concerningthewholebodydoseeffectsfromthereleaseofnoblegasactivity,thesteamandhenceactivityreleaserateisbasedonanequivalent7gpmwaterleak.ThecloudgammaexposuresarebasedonmathematicalmodelsandarepresentedinTab'le6.2-1.I-2 C
EXHIBIT-B.DIFFUSION--DOSEMQDELS~1..0-8HOURATMOSPHERICDIFFUSIONMODEL20-8HRCLOUDGAMMADOSEMODEL(Eq.5)where:Q;=Activityoftheiisotopereleasein0-8hoursD~~=Cloudgammadosereceivedin8hours(rem)3~THYROIDINHALATIONDOSE(0-8HOURS)(Eq-6)-=Thyroidinhalationdose"receivedin8hours9~=Breathingrate(cc/sec)Qz=Doseconversionfactor(rem/ci)(rem)
4.THYROIDINHALATIONDOSE(8HOURS-30DAYS)jf35where:=Inhalationdosereceivedbetween8hoursand30days(rem)in5REFERENCEI-1.May,M.T.,andStuart,I.F.,<<ComparisonofCalculatedandMeasuredlongtermGammaDosesfromaStockEffluentofRadioactiveGases,<<inEnvironmentalSurveillanceintheVicinityofNuclearFacilities,W.C.Reining,ed.',Springfield,Ill.,CharlesC,Thomas,c..1970..
APPENDIXHTHERMALEFFECTOFHEATEDDISCHARGESONLAKEONTARIO
INTRODUCTIONSupplement1totheNineMi.lePointNuclearStationUnit1EnvironmentalReportisinreplytorequeststransmittedtoNiagaraMohawkonFebruary1,1973.
4II 1.BIOLOGICALREQUEST1-1Provideallavailableinformationtosubstantiatethestatement"Operatingexperiencesince1969indicatesthatvelocitiesofthismagnitude(2fps)haveresultedintheentrapmentofonlyaveryfewfishprimarilyalewives,intheonshorescreenwell,"(p.5.1-2).~ResonseThestatementwasbaseduponinfrequentobservationsoffishinthescreenwellarea.'AstudyprogramwasinitiatedinMay,1972andiscontinuingtodeterminebyactualcountandphysicalexaminationthenumberandconditionoffishentrappedinthisarea.Atotalof12,987fishhavebeencollectedinatotalof146hoursofmonitoring,spreadovereightmonths.Ofthese,5,932werealewives.TableSl-llistsmonthlyaveragefishimpingementrates,andindicatesthattheaveragerateforallspecies,fortheentiresamplingperiod,was89fishperhour.Usingthemonthlyaveragerates,andassumingaveragefishweightsof0.75ouncesforalewives,0.25ouncesforrainbowsmeltsand0.4ouncesforallothers,thetotalfishimpingementfortheeightmonthsoftheprogramsofar,is:AlewivesRainbowSmeltAllOthers12,500pounds1,800pounds2,700poundsToprovidesomeperspectiveofwhatthesevaluesmean,thefollowingcomparisonsareoffered.ThetotalcommercialcatchofallfishfromLakeOntarioduring1970was3,235,000poundsasshowninSection2.2oftheEnvironmentalReport.Thisquantitydoesnotincludealewiveswhichareconsideredtohavenocommercialorsportvalue.Therefore,theamountof4,500poundspresentedaboveasanestimateoftheeightmonthpoundageofimpingedfish,excludingthealewife,isonly0.14percentofthetotallandings.REQUEST1.2Providedetailsandrationaleofyourfishimpingementmonitoringprogram.~ResonseAfishimpingementmonitoringprogramwascarriedoutduringthesummerandfallof1972andearly1973attheNineMilePointNuclearPowerStationUnit1,with-;thefollowingobjectives.
1Al TABLESl-lFISHIMPINGEMENTRATESNumberofFish/HourMonthAllSpeciesAlewivesRainbowSmeltOthers'Max.Ave.Max.Ave.Max.Ave.hoaxAveJuneJulyAugustSeptOctNovDec145912113519309562985331522755679131322747287544314188245171538230972112681821173411872311Averageforentiresamplingperiod853931Sl.1-2
Todeterminethenumberoffishenteringtheexistingintakestructureandretainedonthetravelingscreens.b.Toidentifydiurnalandseasohalvariationsinthenumberoffishimpingedperday.Torelatethemonitoringprogramresultstothedesign,andassessthepotentialforfishimpingementattheproposedUnit2intake.Thegeneralprocedurefortheimpingementstudiesistoexaminetheback-washingsofthetravelingscreens.Screenbackwashingisdoneautomaticallyforthreeminuteseveryhour,andallthreearebackwashedsimultaneously.Materialwashedfromthescreensflowsintoacommontroughrunningtrans-verselyacrossthescreenhouse.Itthenentersaconduitrunningnorthalongonewallofthedischargechannelatanelevationabovethatofthecoolingwaterflowinginthedischargechannel.Atapointstillinsidethescreenhousetheconduitendsandthewashingsdropintothecoolingwaterdischargechannel.Atthispointinthescreenhousefloorthereisaremovabletrapdoorthroughwhichasteelbasket.isloweredtocatchthescreenwashingsbeforetheyenterthedischargechannel.Thebasketislinedwithnettingof14inchmeshsizetocapturesmallorganisms.Itisremovedaftercompletionofanhourlyscreenbackwashcycle,andthecollectedfishareexaminedforphysicalappearance,sized,speciated,andthequantitiesandweightsrecorded.Inordertoidentifydirunalfluctuationsinimpingement,andanyseasonalvariationinthetimeofdayofpeakrates,intensiveruns,lastingtwelvehoursandmore,areperformedatapproximatelyquarterlyintervals.Inter-spersedbetweenthese,longruns,dailyprogramsareruntwiceamonth,con-sistingoftwoorthreehoursineachofthethreeshifts.Inaddition,duringeachshift,thetrashracksarerakedtocaptureanylargerfishthatmayhaveenteredtheintake.Sofar,anylargefishseenhavebeeneasilyabletosquirmofftherakesanddropbackintothescreenwell.Finally,duringeveryrun,appropriateplantdataisrecorded.Thisincludeslaketemperature,intakescreenwelltemperature,coolingwaterflowrate,stationpoweroutput,andambientweatherandlakeconditions.Sl.1-3 I
REQUEST1.3Providenumberandkindsoffishcollectedatthebarracksintheintakebaysforeachdayofobservation.S~esonseThestudiesoffishimpingingonthetravelingscreenswereconductedonsixteendaysbetweenMay30,1972andJanuary30,1973.Thenumberoffishimpingedonthescreensduringaonehourperiodwerecollectedfromfourtofourteentimesadayforatotalof146hours.ThetotalcatchforthemonitoringperiodislistedinTableSl-2,Alewivesandrainbowsmeltconstitutemorethaneightypercentofthetotal.Studiesofdailyfishmovementinthelakehaveshownthatthedensityofthefishpopulationcloseinshorereachesamaximumduringthenighthours.Itseemedreasonabletoexpectthatthenumberoffishremovedfromthescreenswouldshowasimilarmaximum.Consequently,thefirststudywasmadefrom10:00p.m.to8:30a.m.onthenightofMay30-31.Thescreenbackwash(i.e.,allthematerialthathadaccumulatedonthescreensduringthehourprevious)wascollectedeachhour.ThestudywasrepeatedonthenightofJune22-23,from6:30p.m.to6;30a.m.withallplantsystemsinoperation.AthirdextendedstudywasperformedonJuly14from9:30a.m.to10:30p.m.FiguresSl-l,S1-2,andS1-3areplotsofthenumbersoffishimpingedper.hourduringthethreeextendedruns.Themaximumcatcheswererecordedbetween11:00p.m.and3:00a.m.inthesestudieswhiletheminimumcatchestendedtooccurduringthelatemorninghours.Afterthethreeinitialstudiesadditionalstudieswerescheduledfortwodaysamonth.Duringthosedays,backwashingswerecollectedfor2or3hoursatatimeineachofthethreeoperatingshifts.Thefishanalysiswasexpandedtomeasuringthelengthandweightofpracticallyeveryfish,determiningitssexandrecordingitsappearance.Thesemonthlystudieswereconductedundervariousconditionsofwaves,windsandotherweatherconditions.TableS1-3summarizesthetotalcatchaccordingtodateofcaptureandspecies.Thetableshowshowmanyhoursofmonitoringwereperformedoneachday.REQUEST1.4Givepercentageoffishescollectedonthetravelingscreenswhichhavebeenfoundtobealive.~ResonseNostudies.wereconductedtodeterminetheactualsurvivalrateofimpingedfish,butvisualobservationindicatesthatmanyfisharealiveatthetimeofcollection.In1973,studieswillbedonetoevaluatethesurvivalfordifferentmodesofscreenoperation.Thesestudieswillbedonethroughouttheyear.
nJl' TABLES1-2TOTALFISHIMPINGEMENTCATCHMay30,1972toJan.30,1973~secieeAlewifeRainbowSmeltThree-spineSticklebackJohnnyDarterMottledSculpineSpottailShinerYellowPerchTroutperchGizzardShadWhitePerchEmeraldShinerSunfishRockBassSmallmouthBassCarpAmericanEelLampreyEelCommonShinerWhiteSuckerBrownBullheadMudMinnowLongnoseChubGoldfish1ofeachof7speciesNumber5,9324,7097833552872322321321006854242010~7776543227PercenttoTotal45.6736.266.032.732.211.791:791.020.770.520.420.180.150.080.050.050.05TOTAL12,98799.77S1.1-5
200NINEMILEPOINTNUCLEARPOWERSTATI0NFISHIMPINGEMENTSTUDYg490180VALUESPLOTTEDARENOS.OFFISHCAUGHTINTHEHOURENDINGATTHETIMESHOWN(APPROX.)I40SPECIESOTHERTHANALEWIVESSMELTG.LMOTTLEDSCULPIN3-SPINESTICKLEBACKCENTRALJOHNNYDARTERCENTRALMUDMINNOWBLACKSCULPINWHITEPERCHI20ALLFISH0LLIQ380IKIALEWIVESOTHERTHANALEWIVES022000200040006000800~IOOOl25-3O 3I-72TIMEFigureSl-1
NINEMILEPONTNUCLEARPOWERSTATIONFISHIMPINGEMENTSTUDYVALUESPLOTTEDARENOS.OFFISHCAUGHTINTHEHOURENDINGATTHETIMESHOWNI600l400ALLFISHl200l000Cl800600z400200l///////////4JALEWIVESII7mOTHERTHANALEWIVES0I8002200000002006-22-726-23-72040006000800TIMEFigureS1-2 I4"/-A'tc'F~7r~'Ip NINEMILEPOINTNUCLEARPOWER.STATIONFISHIMPINGEMENTSTUDYJULYI4,I972VALUESPLOTTEDARENOS.OFFISHCAUGHTINTHEHOURENDINGATTHETIMESHOWN130120IIO100O9OALLFIS80hJCL70M6OALEWIVESLLJ40Z302010OTHERTHENALEWIVES:I.E:TR.PERCH,SMELT,3-SP.STICKBKS.SHINER'M.EEL7C.J.DARTER'.SHINER,G.L.M.SCULPINW.SUCKERSLAMPREY,ROCKBASS09001000IIOO12001300140015001600170018001900200021002200KKOTIMEFigureS1-3
]II,.yf~I4Akc
~~I~~I~~~~~~~~~~~~~~-I~~~~~~~~~~
"Il REQUEST1.5Provideinformationonthespacingsbetweenthebarsofthebarracks-(a)attheoffshoreintake(b)intheintakebayonshore~Resonse(a)Intheintakestructure,thebarracksarefabricatedof~~>inchbars,spaced10inchoncenters.(b)Intheintakescreenwell,thetrashracksarefabricatedof3/8inchx3inchbars,spaced3.5inchoncenters.REQUEST1.6Providemeasurementsofintakevelocityatthefaceoftheverticaltravelingscreens.~ResonseNomeasurementshavebeenmadeofapproachvelocitytothetravelingscreens.Avelocityof0.85fpshasbeencomputedfromthedesigncoolingwaterflowrate,theknowngeometryoftheintakescreenwell,andanestimatedwaterdepthinthescreenwell.REQUEST1.7DescribetheextentofparticipationofNYStateEnvironmentalConservationDepartment,U.S.BureauofSportFisheriesandwildlife,andotherStateandFederalagenciesinplanningofecologicalstudies.(p.5.5-1).~ResensePriortothebeginningofthesestudies,theaquaticprogramwassetupanddiscussedindetailwiththeNewYorkStateDepartmentof.EnvironmentalConservation.Somefieldworkwascarriedoutinconjunctionwiththeirpersonnel.Sincethen,conferenceshavebeenheldwiththatDepartment,annualreportshavebeenreviewedbythemandresultsoftheprogramhavebeendiscussed.SomechangeshavebeenmadeintheprogramatthesuggestionoftheDepartmentofEnvironmentalConservation.Someconta'ctswiththeU.S.BureauofSp'ortFisheriesandWildlifehavebeenmade.Therehavebeenpersonalconversationswiththeirconsultantandoccasionaltelephoneconversationswiththebureau.SomelimitedcontactswithlocalrepresentativesoftheU.S.EnvironmentalProtectionAgencyhavealsobeenmade.
ILIfIPI RE/VEST1.8Describewhichportionofstudiesconductedsince1963hasbeendesignatedasproviding"baselineinformation."Givetheextentofnaturalvariabilityandsamplingerrorforvariousparametersbeingmeasured.Explainexactlyhoweachofthesemeasuredparameterswillbeusedtoassesstheoperationaleffectsoftheplantinviewofsuchnaturalvariabilityandsamplingerror.~Resensea.BaselineInformationNoportionofthestudieshasbeendesignatedas"baselineinformation"=becasueofextensivenaturalvariability.LakeOntarioisapproximately7,244squaremilesinsurfaceareawith857linearmilesofshorelineand413cubicmilesofwater.Thelakemaybeconsideredasaninfinitebiologicalsourceforanyonepointalongtheshoreandasvariableinbiologicalconcen-trationasanyoceancoastalpoint.Thelakeisalsolargeenoughtohaveconsiderablenaturalvariabilityduetoheavystorms,rains,lightconditionsandotherfactors,similaragaintovariabilityofanoceancoastalsite.i<idevariabilityhasoccurredinthesamplingsofthevariousbiologicalparametersasdescribedbelow.Threeexamplesservetoshowtheimpracticalityofestablishinga"baseline".(1)Intheplanktonstudiesof1964,itwasSoundthatonanyonedayitwaspossibletofinddifferencesinzooplanktonnumbersupto100timesbetweentheshoreareaandapoint2milesoffshoreandasmuchasafactorof8betweentwopointsamileapartalongtheshore.(2)TaggingstudiesoffishinAugust1972showedthatindividualfishwereonlyresidentintheareaforashortperiodoftimeandtaggedfishhavebeenpickedupasmuchas10milestotheeastand20milestothewest.Thereis,therefore,noresidentpopulationtoforma"baseline".(3)Inearly1970,amassivekillofalewives,probablyduetoextendedcoldconditionsinthespring,reducedthealewifepopulationtobetween5and10percentofthatoftheyearbefore.Thisinturnaffectedthesizeofthepopulationsoflargerfishintheareawhichweredependent(inpart)onthealewivesforfood.Sincethen,somepopulationsofotherspecieshavechangeddramaticallyalongthesouthernshoreofthelakeincludingthatpartwhichisoutofanyinfluenceofthestation.Sl.1-8
\AI\
b..NaturalVariabilityandSamplingErrorInanoncontrolledbiologicalpopulation,itisimpracticaltoseparatethenaturalvariabi'lityofagivensamplefromanysamplingerrorwhichmayexist.Examplesofnaturalvariabilityandsampleerrorcanbeseenusing,asabenthicparameter,thetotalorganicweightofthealgaeC~ladoheraglomeratacollectedinagiventimeperiod,ataspecifieddepthforalltransectscombined.TableSl-4showstherangeoftotalweightsforearlysummerdivingatthefivefootdepth.Thestandarddeviationishalfofthemeanvalueforearlysummerdivesandexceedsthemeanforlatesummerdives.ThenumberoffishnettedshownintableSl-Sisarepresentativeparameterofthenaturalvariabilityoffishpopulations.ThedataisfromtransientE-3shorenets.c.OperationalAssessmentInthestrictestsensetheconceptof"baseline"wouldbetheactualamountofbiomassatanyonelocationaveragedoveraperiodofyears.Whilesuchinformationisvaluableinfollowingthetrendsinnaturalvariability,'hecomparisonofthevariousbiologicalparametersbetweentransectsandthevariationsinthepre-andpostoperationalperiodshaveprovedtobemostusefulinassessingtheimpactofthedischargeontheenvironment.Thevariousbiologicalparametershavebeencomparedatthetransectnearestthedischarge(E-1)withthatattransectE-3,2,000feettotheeast,anareaalmostfreeofimpactbythedischarge,yetsimilarecologically.Itisthesecomparisonsforthepre-andpostoperationalperiodswhich,havebeenusedtoassessimpactofthedischarge.Thismethodovercomestheproblemresultingfromnatural'ariabilityandthenecessitytousebaselineinfor-mationatanyonepointforcomparativestudies.Ifsomepointfarremovedfromthe'ischargewereusedasthecontrol,thedifferencesinnaturalvariabilitybetweenthecontrolandthedischargewouldbesogreatthatnoinformationcouldbederivedfromcomparisonofthemeasurements.Sl.1-9 C0C' TableSl-4TotalWeight-CladophoraClomerataSeason1969Weight(grams)*197019711972MeanStandardDeviation(grams)EarlySummer35.211.4474~535.1LateSummer72.70.727.527.8*Onlymaximumandminimumaveragesareshown 1Kf'II'C TableSl-5FishNetStudiesSeason,1969Number(Fishernet)*197019711972MeanStandardDeviation(Fishpernet)Spring139.811.590.875.7EarlySummer63.089.077.913.4LateSummer69.3.33.052.117.7Fall94.336.655.9*Onlymaximumandmin~urnaveragesareshmn t'I)
REQUEST1.9Providerationaleforselecting12transectsinatwomilestretchoftheshore.~ResonseTheNineMilePointPromontoryisabouttwomilesinlength.Preliminaryphysicallimnologystudiesin1963-64hadshownthatcurrentpatternsintheareawouldcarxythethermaldischargefromNineMilePointUnit1toeitherend,ofthepromontory,dependingoncurrentdirection,andthenoutintothelakeineitheraneastorwestdirection.Itwasdecidedthattenlakewardtransectswouldbeestablishedalongthepromontoryandthattwoadditionaltransectswouldbelocatedontheeastandwestsidesofthepromontoryoutoftheinfluenceofanydischargeeffluent.Thetentransectswererequiredandhavebeenusefulforseveralreasons.(a)Itwasimportanttoestablishtheextentofvariabilityoccurringalongthepromontorysothatthemoredetai,leddatacollectedalongtheprimarytransect(E-1)andthecomparativetransect(E-3)couldbeinterpretedwithsomedegreeofaccuracyandintelligence.ThemajorconcentrationofworkisalongthetwotransectsE-1andE-3.Theworkalongtheothertransectsisofamoni,toringnature.(b)(c)TheworkhasnotbeenlimitedtoassessingthedischargeatNineMilePointUnit1buthasalsoprovenvaluableasapreliminarystudyfortheFitzPatrickstation.Thethermaldischargedoesextendasfarastheendsofthepromontoryineitherdirectionandthetransectsproviderepeatablelocationstodetectandmonitoranymeasureableeffects.(d)Thetransectsarealsousedassightingpointsforthethreedimensionalthermalstudies.REQUEST1.10Givereasonsfornotshnchronizingdatacollectionforvariousbiologicalandwaterchemistryparameters.~ResonseThereisveryactivemixinginthelakeandthepurposeinmeasuringthewaterchemistryparameterswastosubstantiatethefactthatmixingwastakingplace.Otherparameterssuchastemperature,waveactivity,variabilityoflight,andwatercurrentsareofsuchmajorimportanceandproducesuchaconsiderablefluxinbiologicalparametersthat,bycomparison,anyfluxcausedbychemicalvariabilityisofmuchlesserimportanceatthissite.Inaddition,thethermaldischargeisdirectlyaffectedandmodifiedbythephysicalparametersandtemperaturefoundinthelake;butnotbythechemicalparameters.
REQUEST1.11Providequantitativedatatosubstantiatethestatement"IngeneralthequantityofplantandanimalmaterialfoundalongtheNineMilePointpromontoryislessthanotherareasinthelake."(p.2.7.7).~ResonseThereisnopublishedquantitativedatawhichshowthatthequantityofplantandanimalmaterialfoundalongtheNineMilePointpromontoryislessthanotherareas.ThisstatementxesultedfromresearchbyDr.JohnF.StorrWhohasstudiedthisxegionofLakeOntarioforseveralyears,.includingunderwaterwalksfordirectobservationsoflakebottomconditions.Itcontinuestorepresenthisprofessionaljudgementofthecharactexisticsofthispromontory.REQUEST1.12Providedataanalysesandrecordsofobservationswhichshowthat"NoadverseeffecthasbeenobservedonaquaticbiotaintheNineMilePointareaduetothexmal,chemical,orradiologicalxeleasesfromthestation."(p.5,1-5).~ResonseThestatementwasmeanttoindicatethatnoadverseeffecthasbeenobservedonaquaticbiotaintheNineMilePointareaduetotheoveralloperationof.NineMilePointUnit1.ResultsofradiologicalsamplingofaquaticspeciesarepresentedinTable2.8-3oftheEnvironmentalReport.Waterqualitysampleswerecollectedandanalyzedduringthe1972ecologicalinvestigations.Surfaceandbottomsamplesweretakenattwolakelocations.Grabsamplesatthecoolingwaterintakeanddischargeandacompositesampleattheplantcompositorwerealsotaken.ThesuxveywasconductedforsixmonthsbetweenAprilandNovember1972(MayandOctoberexcluded)withsamplestakenmonthly.TheanalysesperfoxmedandtheresultsoftheanalysesarepresentedinTableS1-6whichliststhelowestandthehighestofthesixvaluesforeachlocation.SimilarmeasurementsweremadeinthelakeatOswegotocollectdatainanaxeanotinfluencedbytheStationdischarge.Thenitrate-nitrogenvaluesatNineMilePointrangedfrom0.02mg/l.toOe4mg/1anddonotappeartobesignificantlydifferentfromvaluesobservedatOswegoin1970and1973.Theaveragevalueof0.19mg/1in1972SorNineMilePointcomparesto0.18mg/1in1970and0.22mg/1in1972atOswego.Phosphorousvaluesrangedfrom0.01mg/1to0.28mg/1,beinggenerallyloweratNineMilePointthanatOswego,withaveragesof0.06versus0.20mg/1respectively.Thefivedaybiologicaloxygendemand(BOD5)valuesofthelakewateratNineMilePointin1972wexesimilartovaluesobservedatOswegoin1970and1972.Theyrangedfrom0to5mg/1with"anaverageof1.9mg/1in1972atNineMilePoint,whereastheaverageBOD5valueatOswegoin1970wasreportedas1.2mg/l.
0 TABLES1-61972WATERQUALITYMEASUREMENTS-LAKEONTARIONEARNINEMILEPOINTNUCLEARSTATIONSITE30-footWaterDeth40-footWaterDethUnit1SuraceBottomSuraceBottomInteDischaeompos1teAlkalinityColorUnitsng/1869086907787818483907289868820-3030-4020-3Q40-5010-2030-40203030401P2P304P0-3030-4020-3020-30Sp.Conductivity,who/cnTurbidityPhenolmg/1mg/1mg/1NH3-NNitrateNT-Phosphorousng/1Nng/1Nng/1PChlorideSulfateng/1ng/1TotalSolidsTotalSSng/1ng/1OrthoPhosphateng/1PT.VolatileSolidsng/129836023294396443Q2319243143542434134424347367263263302402.251524207.504.712130425102.2010241301.3000.040.32133400301.70.040.400312514434102.503.2504.500.602.3000.040.360.040.300.020.300.040.300.040.280.020.110.005"109133227226.531266302050.030.100.010*90111238323.231.21972970110.010.090.020.100.010.110.005*95187227528.4362503240.14001~821142462263022330909Q.Q10114141287224.53028429105p.pl0.280.010.120.01*134153265826.8292713060160.01*112153363923.5-332553000901.5101.3201.4501.3202.15.01.38BerylliumCadmiumChroniumCopperLeadMercuryVanadiumZincug/1ug/1ug/1ug/1ug/1ug/1ug/1ug/1<15<112<15<2slS<15<2<11<60<60<2<2188.0*<20164<20<1<115<14<1410<1<15<15<15<15=<1517s2<2<2<20<20<20<<202<11<1429<60353<6028<2752268<2<225<205017<15353<609352820<2<2<20s20<6040424<280'.0*68*8.0*88<1<114<<17$15"<15<15<15<113<14<15<15<213S20<20<12S6011626328.0*TemperatureoF6670.5626865.57261*61"~87.8'ecalStreptococcia/100nl10.6*108*10.8*~singlevalue**takenatscreenhousedischargechannel30.8i1Q,B*
Thealkalinity,color,specificconductivity,turbidityandsulfatevaluesshowedonlyminorvariationsduringthe1972survey.Thechlorideconcen-trationvariedfrom22mg/1to83mg/1withanaverageof45mg/1,comparedtotheaveragechlorideconcentrationof48mg/1reportedforOswegoin1972.Theresultsofthemetalsanalysesindicatethat'hemajorityofsamplesanalyzedwerebelowthedetectionlimitsoftheanalyticalprocedure.AstatisticalanalysisofthedatawasmadetodeterminewhateffectsamplinglocationhadoneachwaterqualityparameterwithintheNineMilePointarea.Thetechniquesemployedwere"AnalysisofVariance"and"MultipleComparison".Inall'ases,thedataforaparticularsamplingstationforanyparameterwasgroupedbythenumberofobservationstakenoverthecourseoftheyear.Thus,itwasassumedthatthevalueofanyparameteratanystationwasnotafunctionoftime.Anyvaluesbelowtheappropriatedetectionlimitswerenotusedintheanalysis,eventhough,insomecases,thisresultedincertainstationsbeingomittedfromtheanalysis.Theresultsofthestatisticalanalysisindicatedthatzincwastheonlymeasuredparameterthatexhibitedasignificantdifferenceatthe95percentconfidencelevelwithinthesamplingarea.Theaveragevalueforzincwas36pg/1,witharangefromlessthan9g/1to75pg/l.Allinall,thewaterqualityoftheNineMilePointareadoesnotappeartobedrasticallydifferentfromthewaterqualityobservedatOswegoin1970and1972.Asdiscussedintheresponsetorequest1.8,true"baseline"dataforevaluationofthermaleffectsdoesnotexist.However,thecomparisonofthevariousbiologicalparametersbetweentransectswithintheinfluenceoftheplumeandtransectsoutsidethisinfluencehavebeenuseful.ThebasicdatatoshowthatnoadverseeffectshaveoccurredduetothethermalaspectsofthedischargearecontainedinallthestudyreportslistedinAppendixFoftheEnvironmentalReport.Ingeneral,thesestudiesshowthattheareaofthethermaldischargehasbecomemoreheavilypopulatedwithfishandforagematerialforfish.IthasbecomeanimportantfishingspotforfishermenfromasfarawayasSodusBay(approximately40miles).Itisapparentfromtheincreaseinnumbersofthesmallbottomfishandcrayfishintheimmediatevicinityofthedischargethatplanktonkilledinpassagethroughthecoolingcyclearebeingusedasfood,andinturntheseareattractingthelargerfish..'heimpingementofthewarmerwaterfromthedischargeontheshoreareahasresultedinadecreaseinoverallCladohoragrowthinthearea,butGammarushasincreasedabout6times(ascomparetoareasoutsidetheinfluen~ceothedischarge)andarebeingusedheavilyforfood.Allthekeyorganismsintheshorearea,withtheexceptionofCladophora,havetemperaturepreferendumhigherthanthemaximumsummertemperaturesofthelake.Thethermaldischargeis,therefore,enhancingthethermalaspectsoftheshorearea.Sl.1-15
i&iletheconcentrationoffishintheareaisgenerallylow(exceptforthezoneclosetothedischarge),thetotalnumberoffishinthegeneralareaislarge.Excludingfishsuchasdartersandsculpinwhicharetooclosetothebottomfordetection,theestimatednumberinthe'reatwomileslongandouttothe50footdepthcontourisatleast5,000,000.Thiscalculationisbaseduponactualcountsmadebyarecordingecho-sounderalongtransects.Inthesummerthisnumbermaydwindletoabout350,000.IBycomparison,thenumberoffishbeingentrainedintheintakeperdayissmall.Thespeciesdistributionofthesefisharealewives(50percent),smelt(33percent),stickleback,darters,sculpin,thespottailshiner(14percent),andothers(3percent).Yellowperch,themostabundantfishtakeninthegillnets,madeuponlyaboutonepercentofthetotalnumberoffishentrainedoverasixmonthperiod.Thisindicatesthattheseabundantsportfisharenotbeingtrapped.Morethan98percentofthefishare,therefore,foragefishandevenifentrained,theyarereturnedtothelakefromthebackwashofthetravelingscreens.Anumberoftheentrainedfishundoubtedlyarereturnedtothelakeineitheradeadordyingcondition.Despitethis,thenumberofdeadfishseenonthebottomintheareaofthedischargeisverysmall,2-3atmostonanyoneextendedexploratorydive.Alsotheyarenotobservedatthelakesurface.Itcanonlybeconcludedthatalmostalldeadordyingfisharebeingusedasfoodbythelargerfishandwaterfowl.Sincethesefisharebeingusedasfoodinsteadoflivingfish,theactualeffectofentrainmentonthefishpopulationswouldappeartobeverylimited.Itmaybeconcluded,thatsincethereisapositivefactorinattractionoffish,andanincreaseinamountsofforageorganismsforthesefish,andalso,lowdetrimentaleffectsofplanktonandfishentrainment,thattheoverallimpactisminimal.REQUEST1.13Providequantitativeinformationtosubstantiatethestatement"Fishlarvalabundanceappearstobequitelow."(p.2.7-5).~ResenseThisstatementwasbasedona1971-72analysisofone-literplanktonsamplestakenfromtheNineMilePointUnit1screenwell.Nofishorlarvaewerefoundinthesesamples.Additionally,bothplanktontowsmadeinthelakein1964,andtheplanktonsamplestakeninthe1971-72Unit1screenwellentrainmentstudiesindicatedanabsenceoffishlarvae.Duringbenthicsamplingconductedinthelakefrom1968through1972,alewifefeetofwater.ThisoccurredonlyduringthemonthsofJuneandJuly.Sincetheyarepelagicandpositivelyphototropic,alewifelarvaewouldbeexpectedtobefoundnearthesurfaceandnotsubjecttoentrainment.Sl.1-16
REQUEST1.14Ifthefishlarvalabundanceisquitelowexplainhowwerethelarvaeobtainedforentrainmentstudiesandhowwerethestudiesconducted.Dischssthesignificanceoftheseentrainmentstudiesifthelarvalabundanceisquitelow.~ResonseEntrainmentstudiestodatehaveconcentratedoneffectsonplankton.Planktontowcollectionswereexaminedforpresenceoffishlarvawithlittlesuccess.However,recognizingthatsomefisheggsandlarvaemaybeentrainedinthecirculatingwatersystem,asimplemodelwasusedtohypotheticallyevaluatetheeffectofentrainmentuponthefishpopulation.ThismodelisdesctibedinSection5.1oftheEnvironmentalReport.Itisintendedtoconductadditionalfishlarvaestudies,examiningandemployingnewmethods.\REQUEST1.15Providereasonsfornotproposingphyto-andzooplanktonentrainmentstudies.~ResonsePhytoandzooplanktonentrainmentstudieshavebeenconductedandwillcontinue.However,thestudiesasperfoxmedtodatehavenotprovidedcompleteanswersconcerningtheeffectsofplanktonentrainment.Theyhavebeenconsideredpilotstudiesandhavebeenusedasanattempttodeterminethebestmethodofcollectionandanalysisofdata.Thedatawouldbeusedincalculatingtheimpactofthecoolingcycleontheplanktoncommunityandthelakeecosystemasawhole.Whenthesepilotstudiesindicatethepossibilityofmethodswhichwouldyieldmorecompleteanswers,additionalprogramswillbedevelopedtomeasurethetotaleffectofplanktonentrainment.Sl.1-17 k\
REQUEST1.16Thepreliminaryresultsofentrainmentstudyconservativelyindicatedplanktonmortality.between10'oand30'o(ambienttemperature,bT,andresidencetimenotmentioned).ProvidethefinalresultsforhT,of32Fandaresidencetimeofover4minutesforvariousambienttemperatures(including77oFambient).~ResenseThemortalityrateindicatedmustbeviewedinrelationshiptothespeciesinvolved.Theintakeisinwaterofabout25footdepth,andthemajorspeciesbeingentrainedarerotifers.Thesespeciesaremoresusceptibletomechanicaldamagethancopepodsorcladocerans.Inaddition,therotifercommunityintheholdingtanksusedintheexperimentshavebeenshowntocompletelychangeinspeciesmake-upattheendofthe24hourholdingperiod,indicatingtheirrapidreproductionrate.liliththisrateofregen-eration,theeffectofmortalityisoflesserimpact.Ambienttemperature,temperaturedifferenceandresidencetimearetakenintoaccountinthestudies.Thedischargesampleisroutinelyplacedinaholdingt'ankand'temperaturedecaytakesplaceeithernaturallyorwiththeassistanceofcoolingcoils.Themaximumtemperatureismaintainedforfarlongerthanthenormalresidencetimeexperiencedbytheorganismsinpassingfromthecondensertothepointofdischarge.Thetimelapsebetweeninitiallyplacingthedischargesampleintheholdingtankandthepointatwhichambienttemperatureisreachedisbetween2and6hours.Intheexperimentsreported,nothermaleffectcouldbefoundwithtemperaturedifferencesupto20F.i0hentemperaturedifferenceswerebetween20Fand27F(1971data),noobviousthermaleffectcouldbedetected.However,whenthesedataweresubjectedtomathematicalteststherewasanindicationthattherewasaprobabilitythatsomemortalitywasoccurringduetothermalimpact.Inthe1972data,whentemperaturedifferencesofover31Fwereoccurring,survivalrateswereaboutthesameorderasforlowertemperaturedifferenceswhenambienttemperatureswerelow.However,100percentmortalityoccurredwhenmaximumdischargetemperaturesreached105Formore.Subsequently,laboratoryexperimentswerecarriedouttorelatemortalitytothetemperaturerangefrom80Fto105F.Thisexperimentshowedthatthermalkillwasrelatedtouppertemper'aturelimits.Sl.1-18
REQUEST1.17Explainhowtheplanktondatafrom1964canbeusedinassessingtheimpactofplantoperationonplanktonpopulat'ion.~ResonseTheresultsofthe1964planktonstudiesareusefulintwoways.(a)Theyaresufficientlydetailedtoindicatethatthereisasequenceindominanceofspeciesovertheyear,andalsoindicatewhichspeciesweredominant.(b)ThequantitativeresultswereofsuchanatureastoshowthatintheareaofNineMilePoint,variabilityinnumbersbetweensamplepointscouldbeasmuchas100timesinanyoneday.ThisisduetothefactthatstrongcurrentsalongtheOswego-NineMilePointshore,whichareaverypersistentfeature,willresultinupwellingsalongtheNineMilePointshoreintheareaoftheintake.Slightchangesinwinddirectionwillalsoresultineithersinkingorupwellingalongtheshore.Allofthesephysicalfactorsplusthenormalrandomclumpingoftheplanktonwhichoccursinthelakemakeanyattempttoestablisha"background"levelafrustratingimpossibility.Attemptsarebeingmadetodevelopstudieswhichwillindicateandmeasuresomeaspectsofimpactofanyplanktonkillonthelakeecosystem.REQUEST1.18Providethedirunalandseasonaldistributionpatternforzoo-andphytoplanktoninthevicinityoftheintakestructureatvariousdepths.~ResenseThethxustoftheentrainmentstudieswastodeterminetheeffectofmechanicalandthermalkillofplankton.Inaddition,thedatafromthesestudiesindicate,inpart,thevariabilityinbothspeciesandnumbersofplanktonbeingentrainedonaseasonalbasis.Studieshavebeenmade'inthelaketoattempttoestablishsomepatternofthedistributionofplanktonintheareaofthedischargeandrateofrain-outdeadplankton.Thesestudieshavehadinconclusiveresultsduetopoorweatherandotherconditions.REQUEST1.19Explainifthe20footdepthcontourcoversalltheareaunderlying1FATisothermofthethermalplume.~Resonse~sThe20footdepthcontourdoesnotcoverallofthearea'underlyingthe1F4Tisothermofthethermalplume.The20footdepthisthecompensationpoint 1t REQUEST1.20Givethesizeoftheareasampledforeachofthebenthossamplestakenbythedivers.~ResonseThesizeofthebenthicareasampledbythediversis25x25centimeters.REQUEST1.21Explainusefulnessofweighingashedplantmaterialanduseofthisparameterinevaluatingpowerplantoperationaleffects.~Resonsemajordiscrepanciesincomparisonsofdryandashedsampleswerenoted.Itwasobviousthatanycomparisonofsamplesbasedoneitherdryorwetweightswould,therefore,containalargesampleerrorduetothefactthatveryfinesiltisengrainedintheCladohorasampleandincorporatedintotheCladohorafilaments.Repeatedwashingsoftesampleremovedsomeofthissilt,utalsotendedtobreakupthefilamentswhichwerelostinthewashingprocess.Themethodofpreparationofthesamplewaschanged.Samplesarewashedtoremoveexcessivesiltandthendriedandweighed.Thesesamplesaresubse-quentlyashed,andthedifferencebetweenthedryweightandashedweightgivestht;weightofth'eorganicmateriallostbyashing.Comparisonof.theorganicweightseliminatedtheerrorintroducedbythesiltcontent.Theashedweightwasnotuseddirectlyinevaluatingtheimpactofplantoperation,butonlyobtainingaparameter(organicweight)whichwasalmostentirelyfreeofasamplingerrorencounteredinthelaboratoryanalysisofthesamples,Usingthisorganicweightparameter,apatternofdistributionofCladophoracouldbeestablishedandcomparisonoftheseweightshasgivenboththepatternofimpactandthefactorofimpactofplantoperation.Theserepresent"standingcrop"asseenintheenvironment.The"instantaneous"thermalimpacthasbeendeterminedbylaboratoryexperimentationandtheconstructionofagraphicmathematicalmodelintowhichvarioustemperaturedifferencescanbeinsertedtodeterminethevariationsingrowthunderambienttemperatureconditionswithintheseasonalrateofgrowthpattern.Sl.1-20 II REQUEST1.22Explainthereasonfornotusingeasttransectasacontrolfortrawlsamplingforfishes..(p.5.5-9).~ResonseAsdescribedintheresponsetorequest1.8anEasttransect(E-3)hasbeenusedasacontrolformanyofthestudiesofeffectsofstationoperation.Thistransectis2000feettotheEastofthedischargeandisanareaalmostentirelyfreeofimpactbythedischarge.TheareaoftransectE-3issimilarecologicallytothedischargearea.TogetatrawlingareatotheEastwhichwasaslargeasdesiredwouldresultintrawlingmuchfurtherEastthantheEastcontroltransectE-3.ThiswouldplacethetrawlingareainMexicoBay,anareathatisnotsimilaringormorphologicalcharacteristicstoNineMilePoint.NhilenorelativelylargeareacouldbeselectedthatwouldbeexactlyliketheNineMilePointpromontory,thelaketotheNestwasconsideredtobemorelikethatareathanMexicoBay.TheNestcontrolwasalsoselectedtoaidinestablishingabroadpictureofthelakeshore.SampleswerealsotakenatOswegoandabout2milesNestofOswego.Thefoursamplingsitescoverabout11milesofthelakeshorewithoutleavinganylargeareasoflakeshoreunmonitored.REQUEST1~23Providerationalefortrawlingalongthewholetransects.Thisassumesnochangeinpopulationsfromnearshoreareasto40ft.depth(endoftransect)whichmaynotbetrue.~ResonseThetwelvelakewardtransectswerenotsetupfortrawling,butforothermethodsoffishpopulationstudy,i.e.,gillnetting,andfishpopulationdensityestimationbyfathometer.Attheoutsetofthe1972ecologicalprogram,onesetoftrawlswasperformedalongonelakewardtransectlocatedatNineMilePointUnit1andonecontroltransecttothewest.Theresultswereinconclusiveand,thereafter,trawlingwasdoneparalleltoshorealongthe20and40footcontoursatthesurfaceandbottom.Trawlingwasconductedduringthedaytimeandthenighttimetoaidinevaluatingdiurnalfishmovements.Anecho-soundingfathometerwasusedformaintainingcourseonthecontourselected.Thelengthof.therunwasapprox-imatelyonemile,extendingfromNiagaraMohawk'sProgressCentertotheJamesA.FitzPatrickNuclearPowerPlant.Netsaretrawledjustbelowthesurface,and5feetabovethebottomforcomparisonwithgillnetcatches.Sl.1-21 I
REQUEST1.24Providecompletedetailsofstudiesconductedsince1969whichhaveverifiedthephenomenonthat,"Fishareabletoselectoravoidareasofthethermalplumeinresponsetopreferredtemperatures."(p.5.1-5).~ResonseThedetailssubstantiatingthebehavioroffishinrelationshiptothethermaldischargearecontainedinthereportsoffishnetting,fishdistributionandecologicalsurveillancereferencedinAppendixFoftheEnvironmentalReport.CopiesofthesereportshavebeenprovidedtotheAtomicEnergyCommissionStaffandtheirconsultantsfortheirinformation.Thepatternofattractionoravoidancetohighertemperatureshasbeenshowntobeverycomplex.Itisrarely100percentattractionoravoidanceandishighlymodifiedbytheflowofthewaterinaplumeandtheamountoffoodavailableintheplume,Ithasalsobeenrecordedthatthestimulusforattractiontooravoidanceofareasofslightlydifferenttemperaturesisweakerinthelowertemperaturerangethanintheuppertemperaturerange.REQUEST1.25Providequantitativeinformationobtainedfromdiverstudieswhichhaveshownsignificantincreaseinthesmallmouthbasspopulationinthevicinityofthedischarge.Atwhatlevelweretheseobservationssignificant?(p.5.5-4)~ResonseNoquantitativemeasurementsweremadebythediverssincethiscouldhavebeennomorethanacountwithinatimeperiodduringwhichfishwouldcomewithin8feetofthediver,themaximumvisualrange.Priortoplantoperation,theeventofseeingonebasswasrecordedasanunusualoccurrence.Inthepostoperationalperiod,adiverwillsee5to10bassconstantlywhiledivingintheareabetweentheshoreandthedischarge.Priortooperation,fishermenintheareawereararesight.Inthepostoperationalperiod,asmanyas40boatsatonetimehavebeencounted.Oneofthefieldcrewcapturedandtagged267fishinonedaybystandingonshoreandcastingwitharodandreel.Alargemajorityoftheseweresmallmouthbass.Therestweresunfish.Sl.1-22
REQUEST1.26Providecopiesofdatarecordsthatshownosignificantlossinoxygencontentofwater(mg.ofoxygen/literofwater)duringthewarmestperiodoftheyear,givingexactlocationsofsampling.(p.5.5-7).~ResonseThemajorityoftheoxygenmeasurementsweremadeduringthefishnetstudiesreferencedinAppendixFoftheEnvironmentalReport.TheinformationonoxygenlevelsofthedischargeiscontainedinthedatafortheshorenetattransectE-1.Thesedataarecollectedatthesurfaceatapointabout30feetfromthedischargewheresurfacewatertemperaturesarethoseexperiencedatthepointofupwellingfromthedischarge.'heseoxygenvalueshavebeencomparedtothosefoundatthe7to10meter'epthattransectE-1,thegenerallocationoftheintake.InTableS1-7,aseriesofrecordshavebeencomparedforperiodswhentherewasathermaldischa'rge.Thedatesofthesereadingsaregivenalongwiththenumberofreadingsonthatdate.Thethirdcolumngivesthemeandifferencebetweentheoxygenvaluesatthesurfaceandthe7to10meterdepth.Thelasttwocolumnsgivethesaturationvaluesfortheparticulartemperatureinwhichtheoxygenreadingwasmade.Oxygenlosswasnotedwhensaturationvaluesneartheintakewerehigh.Oxygengainedwasnotedwhenthesesamevalueswerelow.REQUEST1.27Listanyrareandendangeredspeciesofplantsandanimalsfoundinyourterrestrialsurveyoftheplantareaandtransmissionright-of-way.Givenamesofplantsandanimalsandtheirlocations.Describeprecautionstakentopreservethem.~ResonseAcursoryterrestrialsurveywasperformedofthesiteareatonoteandrecordpresenceoffloraandfauna.Norareorendangeredspeciesofplantsandanimalswerenotedeitherasaresultofthesitesurveyoraliteraturesearchregardingthesitearea.Sl.1-23
TABLES1-7NetOxygenChangeSurfacevs.IntakeDepthTransectE-1No.of~ReadinahumeanO2Saturation('o)0~pmDischarge7to10m.June10-11,1971June29-July1,1972August17-18.1971August2,1972August5,1972November5,19710.0-2.3+3.7+0,8+l.2-1.0113.9114.7138.0100.0113.9107.5103.4105.679.377.471.697.3Total14+0.14S1.1-24
2.TRANSMISSIONLINESREQUEST2.1Providethenumberoftransmissionlineswhichwillultimatelybecarriedintheright-of-way.Givetowerdimensions.TheEnvironmentalReportstatesthatthe27mileright-of-waypassesthrough10milesoffarmland,4milesofwetland,and5milesofwoodedareas.Describetheenvironmentthelinepassesthroughintheother8miles.Providenumberofhomesremovedduringconstructionoftheright-of-way.~ResoeseTheright-of-way,whichwasacquiredatthetimeoftheconstructionof.NineMilePointUnit1hasatotalwidthof500feetsuitableforfour345KVsinglecircuitlines.Thecenterofthisright-of-wayispresentlyoccupiedbytwosingle-circuit345,KVlines.Twosingle-circuit115KVlinesarealsolocatedalongtheinitialpartoftheNineMilePointtoClayRoute.Theselinesparallelthewestsideofthe345KVlinestoapointapproximatelyfourmilessouthofthesiteintheTownofScriba.Atthatpoint,the115KVlinesjoinNiagaraMohawk'sLighthouseHill-Oswego115KVlineswhilethetwo345KVlinescontinuesouth-easterlytoClay.Futureuseofthisright-of-waycontemplatestheinstallationoftheproposed765KVtransmissionlineassociatedwithNineMilePointUnit2.Thisfuturelinewouldusetheeastsideoftheexistingright-of-wayandanadditional120footwidestripoflandadjacenttotheeasternedgeoftheexistingright-of-way.Theconstructionofthenewlinewillparalleltheexisting345KVlinesfromNineMilePointUnit1totheproposedVolneyStationsiteabout,9milessouthofNineMilePoint.Useoftheremainingright-of-wayisdependentuponthedevelopmentofgeneratingsitesinthearea.Thetangentstructureusedalongmuchofthe'ineMilePoint-ClayTran..missionLineisthestandardwoodpole"H"frame.TowerdimensionsforthisstructureareshownonFigureS1-4.Thelatticestructurewasusedatallstrainlocationssuchasatanglesintheline.TowerdimensionsforthesestructuresareshownonFigureS1-5.Theright-of-wayforthetransmissionlineis27mileslong.Thelinespassthroughtenmilesoffarmland,fourmilesofwetland,fivemilesofwoodedareasandeightmilesoffalloworpastureland.Duringthelocationofthe500footcorridorfortheNineMilePoint-ClayTransmissionLineten(10)homesweredisplaced.Sl.2-1 4
WOOD'H'RAMESINGLECIRCUIT2626VO,LTAGE:345kvMATERIAL:Wood(treated)AVERAGESPAN:700FOUNDATION:TobebackfilledwithcrushedstoneMINIMUMHEIGHT:80MAXIMUMHEIGHT:100Scale1=15FigureSl-4
LATTICESTEELTOWERSINGLECIRCUIT28-628-6VOLTAGE:345I<VMATERIAL:Gal'vanizedSteelAVERAGESPAN:800FOUNDATION:GrillageorReinforcedConcreteMINIMUMHEIGHT:61'(tocrossarm)MAXIMUMHEIGHT:95(tocrossarm)Scale1=16'igureSl-5 hI REQUEST2'Describeherbicidesusedformaintenanceoftheright-of-way.Givedetailsoflocationandscheduleofuse.~ResonseHelicopterapplicationofTordon101withthickenerwasmadetothenorthern4milesinthesummerof1966.Thebalanceoftheright-of-waywasgivenafoliarapplicationof2,4.5-Tinwaterfromthegroundinthesummerof1970.Futureapplicationwillbeonthegroundatfive(5)yearintervalswithapprovedherbicides.REQUEST2,3Provideinformationifthetransmissionfacilitiesfollow:(a)The"EnvironmentalCriteriaforElectricTransmissionSystems,"publishedbyU.S.Depts.ofInteriorandAgriculture.(b)TheNewYorkPublicServiceCommissionandDepartmentofEnvironmentalConservationRulesandRegulationsaffectingtransmissionlines.(c)FederalPowerCommission's"GuidelinesfortheProtectionofNatural,Historic,ScienceandRecreationalValuesintheDesignandLocationofRight-of-1fayandTransmissionFacilities."~ResonseThelocationandclearingoftheoriginal500footcorridorandconstructionofthetwoNineMilePoint-Clay345KVTransmissionLineswasdonebefore1965andpriortothepublicationoftheaboveguidelines.'owever,ingeneralthefollowingguidelineswereconsideredduringdesignandconstruction:(a)Low-lyingwetlandsormarsheswereavoidedwhereverpossible.(b)Areasofexistingorfuture(totheextentdefinable)highdensitylandusew'ereavoided.(c)Themoreheavilytraveledhighwaysencounteredwerecrossedperpendicularlywhereverfeasible.(d)Onlythecentralpartofthe500footwidecorridorwasclearedleavingexistingvegetationattheedgetoprovidevisualscreeninguntilsuchtimeasadditionaltransmissionlineswouldberequired.(e)Incertainareascontinuingagriculturaluseoftheright-of-waybytheoriginalownersispermittedprovidingthattheuseisconsistentwithmaintenanceofthereliabilityofthet'ransmissionline.(f)Thenumberoflargeanglesrequiringlargersteeldeadendstructuresinthelinewasminimized.Sl.2-2
~~l' 3.CHEMISTRYANDSANITARYWASTESREQUEST3.1Givethevolumeoftheoxygenationpond(2800sq.ft.area)usedforsewageeffluent.~ResenseOperationisatselecteddepthsbetweentwoandfivefeet.Basedonthemodeofoperation,thevolumeofthepondwillbebetween5,600cubicfeetatatwofeetdepthand14,000cubicfeetatafivefeetdepth.Duringwinter'operation,theoperatinglevelcanbeloweredbeforeiceformationandgraduallyincreasedtofivefeetbytheretentionofwinterflows.Inthespring,thelevelcanbeloweredatthetimesurfacerunoffanddilutionwateraregenerallyatamaximum.REQUEST3.2Ifitbecomesnecessarytocleanthecondenserorservicewatersystem,describetheprocesswhichwillbeused.~ResonseIfcleaningofthecondenserorservicewatersystembecomesnecessary,ahighpressurewaterflushorothermechanicalcleaningmethodwillbeused.Therewillbenochemicalcleaning.REQUEST3.3Providedataonaverageflowofmakeupwaterthroughthedemineralizer.~ResenseTheaverageflowofmakeupwaterthroughthedemineralizeris600,000gallonspermonth.REQUEST3.4DescribeprovisionspreventingoilwhichentersfloorandequipmentdrainsfrombeingdischargedintoLakeOntarioviaastormdrain.~ResonseNoequipmentdrainsintheStationaredischargedviastormdrains.Onefloordrainfromtheadministrationbuildingshopandstoresareaentersthestormdrainbywayofaneightinchtiledrain.I(hilesomesmallamountsofoilcouldpossiblyenterthedraintheamountisminimal.Nootherfloordrainsenterthestormdrain.Sl.3-1 JI~
REQUEST3.5Describelocationinthelakewherethedetergentphosphorousconcentrationismeasured.Giveadetailedcalculationshowinghow0.2ppbconcentrationforphosphorouswasobtained.Ifthelaundrywastedischargeisnotcontinuous,givefrequencyofdischargeandmaximumphosphorousconcentrationatthepointofdischarge.s~ResonseAwaterqualityanalysisrecordedbytheNewYorkStateDepartmentofEnviron-mentalConservationgivestheminimum,maximum,andmeanphosphorousconcen-trations.ThedatathatwasrecordedwasbasedonsamplestakenatOswego,NewYork,6000feetintothelakeatadepthof40feet.ThisinformationisinTable2.5-1oftheEnvironmentalReport.Thefigureof0.2ppbreportedinSection3.7.1oftheEnvironmentalReportistheaverageconcentrationwhichisisthedischarge(abovetheconcentrationalreadyexistinginthelake)priortomixinginthelake.Thecalculationisbasedupon100poundsofdetergentreleasedpermonth,fiftypercentofwhichissodiumhexametaphosphate,andcompletemixinginthedischargetunnel.Thelaundrywasteisdumpedinbatchesonafrequencyofaboutoneper3.33daysasshowninTable3.6-2oftheEnviron-mentalReport.Eachbatchis1000gallons,Ifthemaximumpumprateof50gpmisassumed,thenthemaximumincreaseintheconcentrationinthedischargetunnelis0.038ppm.Thiscomparestoameanlakephosphorousconcentrationof0.12ppm.Actually,thepumprateinpumpingoutatankisabout20gpm.Therefore,as"arule,theincreaseinphosphorousconcentrationwhiledischargingwouldbeontheorderof0.015ppm.Thedetailedcalculationsfortheaverageconcentrationarebasedoncompletemixingof100poundspermonthofdetergentinthedischargecanal.Halfofthisishexametaphosphate(NaP03).Themoleweightsofthecomponentsandthecompoundare:Na=22.99P=30.970=16.00NaP03=101.96MoleweightMoleweightMoleweightMoleweightThefractionofphosphorous(P)inthecompound(NaP03)is30.97/101.96or0.303.Thisresultsin15.2poundspermonthofphosphorousdischarged.Thenormalcirculatingwaterflowis600cfs.Atadensityof62.32poundspercubicfootthisrepresents9.68x1010poundspermonthofwaterdis-charged.Theratioofphosphorousdischargedtocoolingwateris15.2/9.68x10or1.57x10-10.Thisisaverageconcentrationofphosphorousinthedischarge(0.16ppb).Asimilarcalculationisdonetodeterminethemaximumconcentrationofphosphorousinthedischarge.Thenormalbatchfrequencyisninepermonth.At15.2poundsofphosphorouspermonthandthenormalbatchfrequencythereare1.69poundsofphosphorousperbatch.Thevolumeofthebatchis1000gallonsandthemaximumflowratetothedischargecanalis50gpm.Atthisflowrateittakes20minutestotransferthebatchtothecanal.Sincethecirculatingwaterflowis600cfsthebatchismixedwith4.48x107poundsofwater.Assumingcompletemixingresultsinamaximumphosphorousconcen-trationof1.69/4.48x10or3.8x108(0.038ppm).S'1.3-2
4.NEEDFORPOWERREQUEST4.1Providethe1972summerandwinterelectricalpowerpeakloadsforthefollowingNewYorkStatePowerPoolmembersandotherutilities:~ResonseCentralHudsonGasandElectricCorp.ConsolidatedEdisonCo,ofN.Y.,Inc.LongIslandLightingCompanyNewYorkStateElectricandGasCorp.NiagaraMohawkPowerCorporationOrangeandRocklandUtilities,Inc.RochesterGasandElectricCorporationPowerAuthorityoftheStateofNewYorkJamestownMunicipalElectricSystemLongSault,Inc.VillageofFreeportThepeakelectricalpowerloadsfortheNewYorkStatePowerPoolmembersandotherassociatedutilitiesarelistedbelow.Theseareforthesummerof1972andthewinterof1972-1973.UtilityCentralHudsonConsolidatedEdisonLongIslandLightingNewYorkStateElectric5GasNiagara-MohawkOrange5RocklandRochesterGas5ElectricPowerAuthorityJamestownLongSault,Inc.VillageofFreeportTotalMWSummer1972566787226201421439257985480060273419225MWWinter1972-73603*61042277*1724*482748182789456142917836*January1973PeaksS1.4-1
REQUEST4.2ProvideatabulationbymonthsofthepowerproductionofNineMilePointUnit1during1971and1972.~ResonseAtabulationbymonthofthepowerproductionofNineMilePointUnit1isshownbelowfor1971and1972.MonthKw-Hrs1971Kw-Hrs1972JanuaryFebruaryMarchAprilMayJuneJulyAugustSeptemberOctoberNovemberDecemberYearlyTotal2951320003308110003728730002406800072460001847840002817060003448990002106170005273500040305800042944000029373690003537620003779610003750080005053000988750003412920003659960002400550003130250003991750004321040003242306000S1.4-2 b'lJll~AI' REQUEST4.3Describeproblemsandtheirresolution(ifany)encounteredbyNiagaraMohawkinprovidingfortheelectricalload,duringperiodswhenNineMilePointUnit1wasnotoperatingorwasoperatedatlessthan80<epowerin1971and1972.DiscussanyadditionalproblemswhichNiagaraMohawkwouldencounterifUnit1wereshutdown.R~eeonseWhenNineMilePointUnit1isshutdownorifthecapacityislimitedtolessthan80percent,thedeficiencymightbemadeupbyincreasingtheoutputofconventionalsteamstations,operatinggasturbines,ormakingpurchasesfromanyothersourcesavailable,Ananalysiswasmadeforthosetimesduring1971and1972whenNineMilePointwasshutdownoroperatingatlessthan80percentpower.AlthoughNiagaraMohawkwasabletoadequatelymeetitscustomersrequirementswithoutloadcurtailmentorvoltagereductionduringtheseparticularyears,itwasnecessaryonseveraloccasionstoresorttogasturbineoperationandrelianceonpowerpurchases,ThesedetailsareprovidedonTableS1-8.Themaximumpurchaseduringthistimeperiodwas460WduringNovember1972.SinceNiagaraMohawkisamemberoftheNewYorkPowerPoolandtheNortheastPowerCoordinatingCouncil(NPCC),ithasanobligationtocoordinateplansforexpansionofpowersupplyfacilitiesbasedontheNPCC"BasicCriteriaforDesignandOperationofInterconnectedPowerSystems".Underthiscriterion,newgeneratingcapacityisplannedsuchthattheprobabilityof.lossofloadundercontingencywouldnotexceedonedayintenyears.SinceNineMilePoint1isanintegralpartoftheNewYorkPowerPool'splanformeetingtheabovecriterion,ashutdownofthefacilitywouldresultinNiagaraMohawk'sinabilitytomeetitsreserveobligationtotheNewYorkPowerPool,therebyjeopardizingsystemreliability.IfNineMilePointUnit1wasshutdown,boththeinstalledcapacityandenergyproducedbytheunitwouldhavetobereplaced.AsstatedinSection9.4oftheEnvironmentalReport,a300hÃinstalledreservedeficiencywouldbecreatedinitiallybytheshutdown.Lead-timeconstraintsrestrictthecon-siderationofnewgenerationfortheshortterm.Attemptswouldbemadetopurchasecapacityonashorttermbasistoprovideforthisdeficiency.However,powerpurchases,asdiscussedinSection9.2oftheEnvironmentalReportcannotbeconsideredasafeasiblealternativeonlongtermbasis.Therefore,ifUnit1weretobeshutdown,acapacitydeficiencywouldexistresultingindegradationofsystemreliability.Sl.4-3
TABLES1-8GASTURBINEGENERATIONANDPURCHASEDPOWERDURINGPERIODSOFNINEMILEUNITNO.1REDUCEDOUTPUTORSHUI'DOWNSYear1971Jan.Jan.Feb.AprilJuneJulyAug.Aug.Sept.Dec.Period13-1924115-June142016-2218,1929,3019-Oct.2831MaximumGasTurbineGeneration(MW)26084298262None217249285262238AmountofPurchasedPower(MW)NoneNoneNone275MWNoneNoneNoneNone150None1972Jan.1Jan,11-17Feb.8Feb.28-hIar.6Mar.23April1-July2July7-July24July26-Aug.1Aug,5Aug.26-Sept.13Sept.21-27Oct.7-9Oct.28-31Nov.19-25None136hNNone292None190NoneNoneNone228250202237255None295MWNoneNoneNoneNoneNoneNoneNone30040100200460Sl.4-4
Withinayearaftershutdown,itisassumedthatgasturbinescouldreplacethecapacitydeficiencycreatedbytheshutdown.Thefull610MWwouldhavetobereplacedtoaccountforloadgrowthovertheinterveningyear.Anadditionalbaseloadunitofatleast610MWcouldbeconstructedasareplace-mentforNineMilePointUnit1.Forthepurposesofthisanalysisitwasassumedthatanotheroil-firedbaseloadunitwouldbescheduledfor1976inadditiontotheOswegoUnit6whichisalreadycommittedforthatyear.Insummary,asdiscussedinSection9.4oftheEnvironmentalReport,thegrandtotalpresentvalue(1976)ofshuttingdownNineMilePointUnit1,maintainingthefacilityinasafecondition,andreplacingtheinstalledcapacityandenergyrequirementwouldbeapproximately$793,000.000.Sl.4-S 4
S.GENERALREQUEST5.1Givetheacreagefoundinthetemporarygamerefuge.Describethestatusoftheplansforcreationof,apermanentgamerefuge.~ResonseApproximately130acresofthesitewereestablishedasanaturalwildliferefugein1969bypostingthenorthwestcornerofthesite.Thispostinghasbeenmaintained.Therearenoplansforcreationofalargerrefuge.REQUEST5.2ProvideinformationifthelandscapingofUnit1iscomplete.DescribeanyerosionontheStationsiteoralongtransmissionlinesincetheplanthasbeenoperating.~ResonseThelandscapingforUnit1wascompletedin1969,althoughreplacementofinjuredordyingshrubberycontinuesasnormalmaintenance.Nosignificanterosiononthesiteoralongthetransmissionroutehasbeenobserved.Landdisturbedduringtheconstructionphase(1965-1969)haslongsincereestablishednaturalregrowthofgroundcoverwhichactsasanerosiondeterent~REQUEST5.3Provideinformationanddescribenavagationalbuoysmarkingintakeanddischargestructures.~ResonseTheNineMilePointUnit1coolingwaterintakeanddischargetructures,in-accordwith.U.S.CoastGuardapproval,arenotmarkedwithnavagationalbuoys.Thisapprovalwasincludedasitem4inAppendixGoftheEnvironmentalReport.REQUEST5.4ThehorizontalscaleonFigure3.5-2isinconsistentwiththedrawing.Providecorrectscale.Givedistancefromtheshorelinetothedischargestructure.The0.1milestatedinSection3.5.2appearstobeinerror.~ResonseFigure3.5-2presentsanincorrectscale.Arevisedfigureisattached.Dimensionsindicatedarecorrect.The0.1miledistancerepresents585feetfromscreenwel1todischargestructure.
N04I"
%.INTAKEEL.228.5'L.222.52'LOWW.S.EL.2440NAX.W.S.EI..248.0'L283Oi~STONEOIKESCREENHOUSEIII00INTAKETUNNEL(LOOKINGEAST)EL.234.0'LDISCHARGEpEL.230.0'L.283.0'TONEDIKESCREENHOUSEA0880I585DISCHARGETUNNEL(LOOKINGEAST)SECTIONI-I05IOSCALE~FEETSECTION2-205IOSCALE~FEE'YNOTES!ALLELEVATIONSAREREFERENCEOTOUSLSI935OATUNI00SCALEFEEI'XCEPTWHERESHOWN200S1FIGURE3$-2PROFILE-CIRCULATINGWATERSYSTEM
REQUEST5.5Providecurrentstatusofauthorizations,permitsandlicensesconnectedwiththeoperationofthefacility.~ResenseLicenseorPermitAuthorizingAgencyCurrentStatusStateofNewYorkCoolingWaterDischargeStateofNewYorkSewageTreatmentPlantStackApprovalLicensetoPossessorUseBy-ProductMaterialLicensetoPossessorUseSpecialNuclearMaterialStateofNewYorkRadioactiveMaterialLicenseStateofNewYorkDepartmentofHealthStateofNewYorkDepartmentofHealthUSFederalAviationAgencyUSAECUSAECStateofNewYorkAtomicEnergyCouncilIssuedApril28,1965-StillValidIssuedMay4,1965-StillValidIssuedNovember3,1966-StillValidActiveunderParagraph2.CofProvisionalNuclearStationOperatingLicenseNo.DPR-17,August,1969.ActiveunderPara'graph2.BofProvisionalNuclearStationOperatingLicenseNo.DPR-17,August,1969.Active-renewedAugust28,1972ProvisionalNuclearStationOperatingLicenseNo.DPR-17USAECActive-amendmentNo.2Apri1,1972FullTermNuclearStationOperatingLicenseUSAECFiledJuly,1972WaterQualityCertificationStateofNewYorkDepartmentEnvironmentalConservationFiledmostrecentrequestNovember,1972LiquidlfasteDischargePermit(NPDES)USEPAFiledmostrecentinformationOctober,1972Sl,5-2 0
REQUESTSe6ProvideresultsofallthermalsurveysmadeintheNineMilePointarea.~ReeonseThematerialcontainingtheresultsofallthermalsurveysintheNineMilePointareaisquitevoluminous.Sortingofreportsandstudiesconcerningthermalsurveysisinprogressandthemostpertinentwillbetransmittedunderseparatecover.S1.5-3
~Ap~
U.S.AtomicEnergyCommissionDocket50-220APPLICANT'SENVIRONMENTALREPORTOPERATINGLICENSESTAGECONVERSION,TOFULL-TERMOPERATINGLICENSEI8AllA8UC8arOIAaIOASUFFLEMEWT2APRIL1973NIAGARAMOHAWKPOWERCORPORATIONSyracuse,NewYork13202 A
INTRODUCTIONSupplement2totheNineMilePointNuclearStationUnit1EnvironmentalReportisinreplytore-queststransmittedtoNiagaraMohawkonApril9,1973.
REQUEST1.Providefuel,operatingandmaintenancecostbreakdownforNineMilePointUnit1facilityforcalendaryears1971and1972.~ResonseNineMilePoint,UnitNo.1CostBreakdown*Fixed0&MFuel19719.43mills/kwhr0.942.2419728.60mills/kwhr0.852.89Total12.6112.34CapacityFactor63.36%60.51%*FromFinancialReportsandSemi-AnnualReportofOperationsREQUEST2.ResponsetoRequest1.12:2.1ProvidethephysicallocationinLakeOntarioatwhicheachofthemeasurementsweretaken.(TableSl-6).2.2Provideallavailablefecalcoliformdataasclosetothesewagedischargeaspossible.(TableS1-6).2.3provideactuallocationinLakeOntariowheresimilarmeasurementsweremadetocollectdatanotinfluencedbytheStationdischarge.(p.Sl.l-13).~ResonseTherequestreferstoResponse1.12previouslysubmittedbythetApplicantaspartofSupplementNo.1totheNineMilePointUnit1EnvironmentalReport.
I'III 2.1.ThephysicallocationsinLakeOntarioof'thevariousmeasurementspresentedinTableSl-6ofSupplement1areillustratedonFigureS2-1"SamplingLocationsNineMilePoint1972".2.2Fecalcoliformandtotalcoliformconcentrationsweremeasuredina24hourcompositesamplecollectedfromtheeffluentoftheUnit1sanitarysewagetreatmentplantoxygenationpondinSeptember1971.During1972sixsamplescollectedatthelocationsshowninFigureS2-1wereanalyzedforFecalStreptococci.AverageconcentrationsoftheseanalysesarepresentedbelowincludingdataresultingfromanalysisoflakewaterbroughtintoUnitl.OxenationPondOutletUnit1LakeXnletFecalColiform(I/100ml)TotalColiform(5/100ml)4309300149300Unit1SurfaceBottomSurfaceBottomInletDisc.FecalStrep.(8/100ml)10.610.810.810.910.810.62.3Similarmeasurementsofwaterqualityof.areasnotinfluencedbytheUnit1dischargeweremadeintheOswegoarea,lake-wardofNiagaraMohawk'sOswegoSteamStation.SpecificsamplelocationsareshownonFiguresS2-2andS2-3.(TheOswegoSteamStationislocatedonthelakeshoreabouteightmileswest,ofNineMilePoint).
4' REQUEST3.ResponsetoRequest2.2:Providespecificherbicidesplannedforuseontheentiretrans-missionlineright-of-way.~ResenseThisrequestalsoreferstodatapreviouslysubmittedbytheAppli-cantaspartofSupplementl.TheApplicant'sguidesfortheuseof.herbicidesareasfollows:a)Useherbicidessuchas2,4,5-Torsimilarcom-poundswhichareapprovedforusebytheU.S.DepartmentofAgriculture,U.S.FoodandDrugAdministrationandU.S.EnvironmentalProtec-tionAgencyforthepurposeintendedandaspre-scribedanddirectedbyregisteredlabel.b)Usenoherbicideswhich.areontheNewYorkStateDepartmentofEnvironmentalConservationrestricteduselist.c)Usenoherbicideswithin100feetof.water-coursesorstatereforestationareas.d)Employselectiveuseofherbicidestomaintain"tightgroundcover"whichwillallowgrowthofcompatibleweedsandwoodyspeciesanden-couragewildlifehabitatgrowth.
(0pqPVH~~8.~POQLS%+g~.(jgO/-INTAKEaiDISCHARGE/NINEMILEPOINTNUCLEARPOWERSTATION(NMPC.)NINE.!ILEPOINT//,PLEASNPOINT~'i)/~~~ggi'I~~I~f)-ymir.-'i~cp~NEP'/C'O'AP'ALCANCO.0RADIOMEASTWSGO0FIGURE'S2-10,000SCALEINFEETROOOOOSVJEGOTRAV/LINEGSTATIONSGiLLNETTiNGSTATiONS9WATERQUALITYSTATIONSSAI~APLlNGLOCATl0'.I3NINEMILEPOI!7I972QUIRK,LAWLER8fs'.ATUSKYEYGINEERSTAPPANsNEVlYORK
- \4~I,0il1III4IHJrlli~I0' nqLAEE0/Y7APi/0~40<<3530l52025258BEAK':VALL20~wiINTAKE8DISCHARGE~OSVtEGOHAR80R0500IOOOl5002000SCALE-FEETQWATERQUALITYSAMPLINGSTATIONSXBENTHICSAMPLINGSTATIONSOSWEGOSTEAMSTATION(NMPC)FIGURES2-2WATERQUALITYANDBENTHICSAMPLINGLOCATIONSOSWEGOSTEAMSTATIONl972QUIRi<,LAWLER8VATUSKYENGINEERSTAPPAN2N.Y e
Q8c@lb9lcg,ldIfg,le.(@laFISVOTER8TEtfiPEt;.ATURE6iINTAKE8DISCHARGEOSVIEGOSTEAMSTATION(NMPC.)Q5SAMPLINGLOCATIONS-OSWEGOSTEAis]STATIONI97ILOTEL
~IsLI'kytP'pitr)'
REQUEST1tProvidecapitalcostof.Unit1attimeoffirstcommercialoperationin1969.~ResonseAtthetimeoffirstcommercialoperationonDecember13,1969thetotalcapitalcostofNineMilePointNuclearStationUnit'was$164,385,253.Thisincludesthecostofland,structures,equipment,engineering,interestanddistributablecosts.The.costofthesubstationisalsoincluded.REQUEST2Providethecapitalcostofmodificationstotheradwastesystemattimeofcompletionandestimatedtimeofcompletion.~ResonseThecostsofradwastesystemmodificationsandestimatedoractualcompletiondatesarelistedinTableS3:l.REQUEST3~'rovideestimatedannualfuelcost,levelizedoverlifetime,andassumedcapacityfactor.~ResonseTheestimatedlevelizedannualfuelcostoverlifeis2.8millsperkilowatthouratacapacityfactorof85percent.RESPONSE4Provideestimatedannualoperationandmaintenancecost,levelizedoverlifetime.~ResonseTheestimatedlevelizedannualoperatingandmaintenancecostoyerlifeis0.3millsperkilowatthouratacapacityfactorof85"percent.REQUEST5ProvidethelevelizedfixedchargeratesapplicabletoUnit1andthebreakdownintoitscomponents.~ResonseThelevelizedfixedchargeratesapplicabletoUnit1modificationsareshowninTableS3.2.'Iheseassumecompletionofmodificationsin1976andaremainingeconomiclifeof18years.
IC TableS3.1RadwasteSysternModificationsSystemCostComletionDateUpgradedOffgas83,9SS,OOOSummer,1975Upgraded'LiquidRadwasteTravelingBedFilterDrywellFloorDrainsRemainingModifications193>000$1,200$1,081,000April,1972April,1972Spring,1974
TableS3.2FixedChargeRates(levelized)(AnnualCharges-PercentofInitialInvestment)CostofCapitalFederalIncomeTaxDepreciationOtherTaxesInsuranceiforkingCapitalTotal6.33.95.63.60.50.220.1Notes:a.Economiclifetimeremaining-18yearsb.Incrementalcostofnewcapitalis9.6percentc.Depreciationisstraightline 4'0~,r(.