ML20196E217: Difference between revisions

From kanterella
Jump to navigation Jump to search
(StriderTol Bot insert)
 
(StriderTol Bot change)
 
Line 17: Line 17:


=Text=
=Text=
{{#Wiki_filter:}}
{{#Wiki_filter:.    .
(                                                                [
t l
l t
l i
i t
,                                                                        I I
t L
i                                                                        !
t
!(                                                                        (
Saismic Qualification of the  t i
Byron Deep Wolis      ;
1 8eport Prepared for      I j                                    Commonwealth Edison Company        i
)
l                                                              St.4492  !
!                                                      November 1988 Havision 1 1
i M2263.001 1165 ss12090294 $91130 PDR    ADOCK 05000454 p                  PDC
 
SARGENTS LUNDY ,                        ,                                      i
                                  ,                                                      SL-4492 CONTENTS Section                                                                          M ES                EXECUTIVE
 
==SUMMARY==
ES-1 1                INTRODUCTION                                                    1-1 2                  WELL QUALIFICATION                                              2-1
                                                                ~
3                  BYRON WELL SITE                                                  3-1 Well Description                                            3-1 Seismic Wave Transmission Characteristics of the Site        3-4 Earthquake Events Significant to the Site                    3-4 Maximum Earthquake Potential                                3-3
    ;        4                  SEISMIC ENVIRONMENT COMPARISON                                  4-1 San Fernando Valley Earthquake                              4-2 Description of Event                                    4-2 Byron Comper! son                                        4-3 Coalinga, California Earthquake                              46 Description of Event                                    46    ,
Byron Site Comparison                                    47 Morgan Hill Earthquaka                                      4-7 Description of Event                                    47 Byron Comparison                                        49 Chile Earthquake, March 3,1985                              4-9 Description of Event                                    4-9 Byron Comparison                                      4-10 San Salvador Earthquake                                    4-10 Description of Event                                  4-10  >
Byron Site Comparison                                  4-!!
m Noeue geog me asuma                                                -88
 
SARGENT S LUNDY .            ,                                            11
                  -    .                                                              SL-4492
(
i.
CONTENTS, Cont.
Section                                                                        Pm Edgecumbe Earthquake                                              4-12 4-12 Description of Event Byron Site Comparison                                        4-13 3      ILLINOIS EARTHQUAKE WITHIN 100 MILES                                    5-1 6      WELL-AQUlFER RESPONSE TO SEISMIC WAVES                                  6-1 Alaska Earthdake                                                    6-2 Description of Event                                          6-2 Tang-Shan Earthquake                                                6-3 Cescription of Event                                          6-3 7      SEISMIC ANALYSIS                                                        7-1 Uncased Well Ca alty                                                7-1 Maximum Strain and Stross due ts Car 9pression ",' aves        7-2 Maximum Stmin and Stress due to Sher.r Waves                  7-3 16-Inch-Diameter Steel Pipe Casing                                  7-4 Maximum Strain and Stress due to Compression Waves            7-4 Maximum strain and $tres: due to Shear Taves                  7-5 8-Iruh Diameter Dischargo Plpe Within the Cas!ng                    7 -)
P!:e Mat
* trial and Geometry                                  7-7 L.oads                                                        77 Forces
* 7-7 Stresses and Allowables                                        7-7 Motor ind Pump                                                      7-8 5 inch-Diamoter Buried Discharge Pipe Between Furnp Shelter Structure and the Station                                          7-3 Pipe Material and Geometry                                    7-9 Stresses and Allowables                                        7-9 i
 
SARGENTS LUNDY .            .
111
                      -                                                SL-4492
(
CONTENTS, Cont.
Section                                                        Page Buried Reinforca >ncrete Ductrun                      7-9 Stresses in the Longitudinal Reinforcement      7-10 Pump Shelter Structure                              7-10
.          8      CONCLUSIONS                                              3-1 Evaluation Based Upon Literature Review              3-1 Well-Aquifer Response to Selsmic Waves            3-4 Evaluation Based Upon Dynamic Analyses                3-4
.          9      REFERENCES                                                9-1
(
e
 
SARSENT & LUNDY ,          ,                              iv
                  ,                                                SL-4492 i                                                                          )
l TABLES i
Table 4-1    Pertinent Data on Wells near Earthquake Epicenters          ,
I I
l l
)
l l
4 l
1 i
i f
I l
I L
 
. o SARGENTS LUN3Y ,            ,                                      v SL 4492 I
EXHIBITS Exhibit ES-1    Deep Well System for Byron Station 3-!    Generalized Stratigraphy and Water-Yleiding Properties of the Rocks in Northern !!!inois 7-1    Typical Geologic Profile Showing Geophysical Properties (Figure 2.5-26 from Byron Station FSAR) 7-2    Analytical Model for the Discharge Pipe in the Casing 7-3    Circulating Makeup and Blowdown Piping--Typleal Excavation and Backfill 7-4    Typical Cross Section of the Reinforced Concrete Doctrun
  \
l
 
SA38ENTELUNDY .                                    .
ES-1
                                    '                                                                    SL-4492 1
EXECUTIVE
 
==SUMMARY==
 
The Byron Station utlilies the Rock River as a source of cooling water makeup for the Ultimate Heat Sink. The current Technical Spec 8tication - Plant Systems 3/4.7.5, Ultimate Heat Sink, has a minimum water level of 670.6 feet Mean Sea Level (MSL) specified in the limiting condition requirements. This report has been prepared to provide technical data in support of changes to be made to the technical specifications by se%mically qualifying the deep wells and thereby allowing greater station operation flexF ility in operating the Ultimate Heat Sink.
The qualification data consist of two categories: a literature review of wells, pumps, and pipeline innA.:hns in areas of high seismicity and an analytical examination of the seismic rock-well lateraction at the postulated levels of motions from the Byron Safe Shutdown
(
Earthquake (SSE) event.
Wells may be damaged during seismic events by massive permanent ground movements, such as those occurring acrcss faults and during ground rupture. Damage may also be caused by significant or large magnitude transient motions resulting frem traveling surface waves with accompanying well syst*m vibrat!)n.
The first three sections of this report describe % i Byron wells and pumping data, geologic conditions, and seismological environment. Subsequent sections provide descriptions of fatllity damage following eight worldwide destructive earthquakes, all of which have a larger magnitude and shorter return interval than the Byron SSE. The reismic environment descrip-tions are intended to dernonstrate the periormance of deep water supply c oil wells during and following the various carthquake events. In addition, data relating to municipal well e astruction has been collected to show the long-term performaxe of municipal wells of communities neighboring the Byron site which have experienced local earthquakes.
t
                                                                                                .-            f
                                                    = - , . _ . - - - . _ . - . .
 
SA'RSENTS LUNDY ,                .                                                  Es-2 SL-4492 f
Performence data from the earthquake literature was compared to the actual well construc-tion at Byron and the postulated earthquake levels of the SSE. The performance data consisted of yield and content of the water, action of the pumps and any bacteriological contamination of the y,roundwater from the surface. The results indicate that wells have remained functional following earthquakes with larger magnitudes, higher accelerations, and longer duratlu motion created during multiple events. Tne literature also reported that wells have remained functional through repetitious large magnitude events in a 60-year history, and through the equivalent of six earthquakes equal to the Byron site SSE in a six and one-half hour duration.
The effects of earthquakes on ground water wells is shown to be dependent upon many factori that change with such variables.as earthquake mechanism, wave propagation geolo-gic setting, soil and rock characteristics, and well construction. For this reason, the effects i        of earthquakes on groundwater wells near the Byron site have also been reviewed. Well rec.rds of the cities of Byron, Oregon, Rochelle, and Stillmaa Valley are reported in conjunc-tion with the four earthquakes reported within 100 miles of the Byron site. The wells of
                                                                                                              ^
these clues are still in service, and there has been no known permanent damage or impairment of pumpage of municipal groundwater wells in the Byron area as the result of earthquakes during the past 90 years.
I A review was made of both the Water Well Standards: State of California Bulletin 74-81 and the AWWA Standard for Water Wells, ANS!/AWWA, A 100-84 for seismic design criteria.              ~
Neither standard provides guidancel however, they are used successfully for the installation of wells in areas of high seismicity. The Byron well exceeds the recommendations of these standards.
A seismic analysis was performed of the entire well system. The system constsa of a            ,
1500-ft-deep borehole through competent unsolutioned dolomites and sandstones with a 16-inch-diameter steel casing cement grouted into a segment of total rock depth. An eight-      ;
inch-diameter discharge pipe hangs within the casing and supports the pump at its lower i        end. A diagram of the well system is pacvided in Exhibit ES-1. The analysis conservatively i
 
O        e SARGENTSLUNDY ,                    ,
Es-3 SL-4 92 used the acceleration time history developed for the station and its response spectra envelope for the site SSE. The analysis concluded that the stresses induced in each component of the well system during the safe shutdown earthquake are well within the code allowables, in summary, both the review of literature which described the conditions of numerous water wells during and af ter earthquakes, and the seismic analysis which determined the well response and resulting - esses from the site SSE indicate that Byron site wells will remain functional af ter the d'    , basis earthquake.
l l                                            -
\
 
0    0 S' ARGENT 5 LUNDY.                  Deep well System                                                Exhibit ES 1
              *        -                    for Byron Station                                              SL 4492 i
l
                                                                              & Pump shelter structure
                                          -                                      . , ,    , , , , , n v                      ,
G ace surf r o u n d /,,', ,,[, ,,                          .,-
ll                            k Burled discharge C "I; Depth O' F '
Buried ductrun                        ,,,    l                            pg p ,, g ,
aus l
kl          8"o Discharge pipe l""D i l_a s _'j' @ s Drawdown depth 250' water surface aus
;                                                                  l l                                                      ,
[ .4! Pump and motor
                                                              !'N%
If            . Depth a 445' i
y=_          ;
16"o Casing        --#                ,
l I
l i            l        Depth a 700' I
4---. Well cavity in" e, or 12"o l
De,ih .1c:0-
[
l l
M2263 002 09 89 i
            ~
 
  .      o SARGENT & LONDY                                                                    l-1 SL-4492 i
Section 1 INTRODUCTION Byron Station Units 1 and 2 utilize the Rock River as a source of makeup for the Ultimatg Heat Sink cooling towers. A minimum River Rock water level of 670.6 MSL is specified in the limiting condition require , ents of Technical Specification - Plant Systems 3/4.7.5, Ultimate Heat Sink. This report has been prepared to provide technical data in support of changes to be made in the Technical Specifications by seismically qualifying the Byron deep wells. These changes will allow greater station operation flexibility by reducing operat'.on restrictions that the Rock River low flow causes. The assessment is divided into two ,: ate-gories: a literature review of wells, pumps, and pipeline Insta!!ations in areas of high sels-micity and an analytical examination of the seismic rock-well interaction considering the in i        situ dynamic rock characteristics. The qualification of the deep wells also includes the ancillary equipment, electrical and structural components, and associated piping.
A review of the relevant literature indicates that the competency of the surrounding medium plays an important role in the assessment of the dynamic response of the entire well-pipe system. Parametric studies have been performed which accounted for the effects of dynamic interaction (Reference !) when the surrounding medium is competent. From these studies it may be concluded that the effects of seismic interaction between buried pipellnes and surrounding soll medium are small and would not be directly responsible for system failure.
Seismic damage to wells and underground pipeline systems is caused primarily by sof t ground movement and faulting, traveling seismic waves, liquefaction of loose sandy soll, or stif fness differences of two horizontally adjacent soll layers (Reference 2).        Based on this, the founding conditions of the Byron well system are reviewed to demonstrate their performance.
i l
l
 
SARGENT E LONDY ,                .                                                12              i
                                                    .                                                            SL-4t#92        )
The conclusions of the studies of earthquake hazard and selsmic well-rock interaction demon-strate that the wells at Byron will remain functional after the postulated SSE event. There-fore, specific changes to the Technical Specification - Plant Systems 3/4.7.5, Ultimate Heat Sink are recommended.
(
i l
l I
 
I SARSENTSLONDY ,
(.g92 Section 2 WEU (UAUFICAT10N Seismic damage to underground w, m. w Ww' S ru i vertical pumps is caused by permanent ground movements, such as those t - ' ing ca .s 'tults, at margins of I .ndslides, zones of liquefaction, surface rif ts, and grourk pturn. ' tmage is also caused by transient motions resulting from travelling waves. Pipelinc, because of their lateral extent, can indicate the extent of damage. This is particularly true in regions of large and variable permanent ground movements which are manifest by the variation in pipeline movement and the relative dis-placement and rotation at joints. Damage is evident by rupture of pipe adjtcent to a rigid wellhead joint, especially at a threaded root; and may be accompanied by lateral shear or
(    fracture, axial buckling, or collapse of the supply pipe between joints.
Where ground shaking is dominated by wave effects, leakage at spots made thin by corrosion and disruption of caulking material in joints are more frequently the cause of failure.
The next section of the report describes the conditions at the Byron site, which includes the pump and well characteristics. Af ter that, data are reviewed from various worldwide destructive earthquakes, which in all cases have a larger magnitude and shorter return interval than the Byron site SSE or Operating Basis Earthquake (OBE). Where damage to wells or piping has been noted or where the wells have been found to be operable following the worldwide earthquakes, a description is provided. Following each earthquake description, a short comparison is made to the Byron site well conditions to illustrate the superior condi-tions of the existing deep wells. The rnost comprehensive knowledge of structure perform-ance was obtained from the assessments of earthquake damage by noted authors who provided descriptions of the damaged conditions but not necessarily the facilities which remained operational. Therefore, operational or functionally stable wells can be inferred from the damage reports.
I
 
SARGENTS LUNDY ,                  .                                            2-2 SL-4492
(
A review was made of both the Water Well Standards: State of California Bulletin 74-81 and the AWWA Standard for Water Wells, ANSI /AWWA, A 100-84 for seismic design criteria.
Neither standard provides specific guidance however, each standard of practice has been used successfully in regions of the country where high levels of earthquake activity occur frequently. The Byron well construction exceeds the requirements of the AWWA and Call-fornia standards.                                                                            ,
6 i
l J                                                                                                    t I
 
0      0 SANSENT R LUNDY .                .                                                F1
                      .                                                                      SL-4492
(
Section 3 BYRON WELL SITE WELL DESCRIPTION The design basis for the Byron well site is based upon recognized American Water Works
      ,    Association (AWWA) standards, A 100-66, governing the installation of the water wells. The two Byron Station deep wells (W-1 and W-2) were completed in the Ironton and Galesville Sandstones of the Cambrian Ordovician Aquifer in 1974. The well as shown in Exhibit ES-1 was cased through the Galena-Platteville dolomites and open from the Ancell Group through the Ironton and Galesville Sandstones; the Ironton and Galesville Sandstone were the major producing zones. The groundwater rekurces in northern Illinois have been described in detall in numerous lilinois State Water Survey and State Geologic Survey reports. The geologic
('        stratigraphic column and aquifer descriptions are shown in Exhibit 3-1. As shown in Er.hibit 3-1, the deep sandstone aquifer contains, in descending order, the Galena-Platteville dolomite, Glenwood-St. Peter Sandstone, the Prairie du Chien series of Ordovician age; the Eminence-Potose dolomite, Franconia Formation, and Ironton-Galesville Sandstone of Cambrian age.
Cooling Tower Structure foundation grouting at Byron Station did not extend into the forma-tions open to the site water wells; therefore, the specific capacities are unaffected by onsite grouting. The actual well construction consists of a submersible pump suspended 443 f t below the ground surface by an 8-inch-diameter supply pipe.
The specific capacities obtained in 1974 during well development pumping tests were 10.3 gpm/It of drawdown at 620 gpm for 12 hours in well W-1 (east well) and 9.6 gpm/ft of draw-down at !!)0 gpm for 24 hours in well W-2 (west well). The pumping rate for W-1 was rela-tively constant for the initial 12 hours, then was varied between 433 and 930 gpm during the last 12 hours of the test. The pumping rate for T-2 was relatively constant for the entire 24 hours.
(
 
SARGENTS LONDY ,                  .                                                  3-2 SL-4492 i
A second aquifer pumping test was performed in November 1978 in order to demonstrate the ability of the station deep water wells to provide the design basis quantity of water makeup to the essential service water system during the 30-day period for safe shutdown. The specified pumping capability of 300 gpm per well or 1600 gpm for two wells exceeds the makeup needs for the worst 24-hour period following a Loss of Coolant Accident of 1545 gpm as documented in the FSAR Paragraph 9.2.5.3. The amount of makeup was conservatively calculated based on evaporation caused by the most extreme 24-hour weather period and conservatively includes $65 gpm blowdown for the 24-hour period. The aquifer pumping test consisted of pumping water W-1 at a continuous rate of $40 gpm while monitoring groundwater levels in water W-2 (Ironton-Galesville Sandstones), the grouting supply well TW-2 (St. Peter Sandstone), and an observation well TW-4 installed in the Ironton-Galesville Sandstone approximately 300 feet from water W-1 on the line connecting W-1, TW-2 and W-t
: 2. The aquifer pumping test consisted of a 22-ho"r pumping period followed by a recovery period of 1-1/2 hours.
The aquifer pumping test results demonstrated an adequate quantity of water; however, they also indicated that the aquifer tranzmissivity was 20,000 gpd/f t, the storage coefficient was 2.0 x 10'", and the specific capacity was 8.5 gpm/f t. These results indicated that in order to assure the necessary water supply during the station design life, the pump setting would have to be deepened because the specific capacity had decreased 15% since the well was first installed. On the basis of subsequen. caliper logging and well depth measurements, the apparent decline in well productivity was attributed to movement of loose sand from the St. Peter Sandstone, with partial blockage of the more productive aquifer strata in the lower portion of the well.
I Deep sandstone wells are commonly uncased through many of the deep aquifer formations similar to those that have been penetrated at the Byron well site because most of the bedrock encountered does not cave or swell. However, in order to ensure constant yields over time, hydrogeologists familiar to the area recommend casing off some of the lower i        geologic units that cause problems. This has been reported by the lilinois State Water Survey
 
SARGENTSLONDY .                .
3-3
              *    .                                                                            SL-4492
(
(Reference 3). The lower shales and conglomerates of the Glenwood-St. Peter Sandstone and some weak shales of the upper beds of the Eau Claire Formation often experience well-wall deterioration and, therefore, require casing for long-term as;urance of water supply.
The caving which occurred may be partially attributed to the local strata thickness, cemen-tation, and lithologic character of medium-grain rock as well as the friable nature of the segment of St. Peter Sandstone penetrated. The loss of this portion of the aquifer does not                I have significant consequences because the caving units generally yleid small antaunts of waters therefore, additional casing and well deepening were undertaken.
Well modifications performed in W-1 and W-2 after the 1978 pumping test consisted of reaming and casing-off the caving St. Peter Sandstone, deepening the wells through the Ironton-Galesvllte Sandstones and into the upper portion of the Mt. Simon Sandstone, in-2 I    creasing the pumps' lift-capacity and lowering the pump settings by 100 feet. The modified water wells are open from the Franconia Formation, through the Ironton and Calesville Sandstones and into the Mt. Simon Sandstone. The Ironton and Galesville Sandstones and the Mt. Simon Aquifer are the major producing zones.
l The specific capacities obtained during well development pumping tests in the modified wells were 12.3 gpm/f t of drawdown at 1330 gpm for 12 hours in W-1 and 12.2 gpm/f t of drawdown at 1210 gpm for 9 hours in W-2. Whereas the pumping rate for W-1 was relatively constant for the entire 12-hour test, the pumping rate for W-2 was relatively constant for only the initial 9 hours, then was varied between 1200 and 1600 gpm during the last 3 hours of the test. The available drawdown in the two wells is approximately 123 feet based on a static                  i 1
water level of 230 feet and a pumping level of 373 feet.                                                    [
A third aquifer verification pumping test was performed in July 1930 af ter the well modifica-tions were completed in order to demonstrate the ability of the modified station water wells to provide the regulu . makeup to the essential service water system. The test consisted of                t pumping W 1 at 790 gpm for 24 hours. The test results indicated that the aquifer transmis-                  l 8
sivity is 40,000 gpd/f t, the storage coef ficient is 2.3 x 10'", and the specific capacity is 13.2 i
 
SARGENT S LONDY -              -
3-4 SL-4492
(
gpm/f t. Based upon these aquifer charact.tristics and the equilibrium conditions achieved, it was concluded that the specified flow of 801 gpm/well could be sustained for 30 days.
SEISMIC WAVE TRANSMISSION CHARACTERISTICS OF THE SITE The engineering properties of the soils and bedrock units at the site were evaluated using field geophysical measurements and laboratory testing the properties were determined by laboratory testing.
Geophysical investigations were performed a6 the plant site. The velocity of compressional and shear wave propagation and other dynamic properties of the natural subsurface condi-tions were evaluated from these investigations, and the data were used in analyzing the response of the materials to earthquake leading.
(
Dynamic modull for the subsurface soll and rock at the site were calculated based on measured properties. The in situ field measurements were compared with labratory tests on the same materlats.
Seismic wave velocities and densities for the deeper rock strata in the region have been measured by others (Reference 4). The data confirmed field measurements, and were used in the seismic analysis of site wells to predict dynamic behavior.
EARTHQUAKE EVENTS SIGNIFICANT TO THE SITE t        The most significant earthquakes in the region can be determined by analyzing the tectonic association of earthquake events with structure, i.e., identifying the earthquake epicenter and known fault or geologic structure. The most significant earthquakes in the region are the 1909 Intensity Vll Beloit earthquake, the 1972 Intensity VI northern Illinois earthquake, the 1912 Intensity VI northeastern Illinois earthquake, the 1804 Fort
 
==Dearborn earthquake,==
and the New Madrid earthquakes of 1811-1812. This evaluation is based on epicentral intensity, felt area, distance from the site, and tectonic association. Intensity is defined as the g
Modified Mercalli Intensity scale of 1931 as abridged and rewritten by C. F. Richter. The 4
 
SARGENTSLONDY ,                ,                                                    33 cL-4 H 7 scale is a measure of the effect of the earthquake and is categorized by levels of I through Xil. Level Vil is defined by the following description: "Most people are frightened and run outdoors. Many find it difficult to stand. The vibration is noticed by persons driving motor cars. Large bells ring."
MAXIMUM EARTHQUAKE POTENTIAL The maximum earthquake which could be expected would be an Intensity Vil event similar to the 1909 Beloit Intensity VII event near the site. This is equivalent also to the occurrence of the largest event which has ever bean recorded within the Central Stable Region, and v.hich cannot yet be associated with a specific structure or structural regions it is therefore described as random. The level of ground motion experienced from a near field VII event would envelop the motion expected from a recurrence of a New Madrid-type event at the closest approach of the Mississippi Embayment, a distance of 330 miles from the site.
(
The recommended safe shutcown earthquake was defined as the occurrence of an Intensity VII event near the site. This near field event would produce maximum horizontal ground accelerations of 0.13 g (Reference 3).
However, at the time of the review of the construction permit application, the NRC consid-I        ered the occurrence of an earthquake of Intensity VI!! to be equally probable (a low order or probability) at any place in the Eastern Central Stable Region. The NRC also took the posi-tion th ., based on the postulated occurrence of an Intensity Vill at the site, a safe shutdown earthquake of 0.2 g at the bedrock soll interface was adequately conservative for the Byron Station.
I
 
    . O
* SARSENT S LUNDY                                                                        oenerailmed stratigraphy and                                                                                                          Exhibit 321
                                                                                              ' Water Yleiding Properties of                                                                                                            S L.449 2 the Plocks in Northern Illinois e.r ,        .....u,        me..                u. woi
                                        ..                    ,mi            a a.                                          .. n . u .                  en m .. =a                                      .m.nu n                ,-,u..
mi..                      .                                            .
                                        ..m u                    on.                                  .u..
                                                                                                        . . . o i.
m.
                                                                                                      .u          ..
t r.. t i nn                                                  m.u ..                      w... . . .                                ,,    .iu u.                                    a .
                                                                                                                                                                        .a. . u.i..a.un,n.,
                                                                                        .a.
: r. .
wm ,                                                                          .,              .
n..i
                              . . . .                  .noe. m...                                                      . a , . . u. . .                                                                m.. ". 3* ,. e. , .u. m u            ., .. ..
f                                      6 .. .u .
n.u.m. .
                                                                                                                                                      ...n.        .u
: i. u. in.
                                                                                                                                                                                                                          .i .m rm w.....
uf,o..n.            n.a...
                                                                                                                                                                                                                                                . u .,.n        .u. o.,.r...    .
: j.                                .,                                  ...                                    .i
                                                                                                                                                                                                      .u...                                      m
                                                                                        ,. . s                        u    n. ..., .                                                              ..
m,... m. .mii        ..u u ,.m m.t                          .
N.s.    ,                      i.w.n....
                                        = ,a                                          .:r-            .m            = ;ag,                                    .am ..n                            so              . n.a            n . u.. s          .u,.
          *g.
: a.                        .
                                                                                                                            .u.,
                                                                                                                            .        ,l.i u. o .
7                                  a
          ...a...
          . .n.
n ..
                            ...                                                          -=.              ....            m..,..                                                                    u..n ., o
                                                                                                                                                                                                                                  .,          u , .
c      -                        m
                                                                                                                        .u -    m..      ..m, n . .u .,
!              c                                                                          .e            . . i.              .a                    .
                                                                                                                              . .. h .a.m g                            3 .o        . u.
          . u.a .          n.,.m          ....,m x                                                                                              .
                                                                                                                                                      .    . . .          u, mo . n.              . . . u . m. ..o.. . . .u n              .a. . . m..
                                        ....o.  .
5 m.u.
u.. ,i. % .n ,, no              .m....,.c.u
                                                                                                                                                                          .u.                        m.m.ma -
m            .
                                                                                                                                                                                                                                      .rm.
u.u.
m        .m .                                  -
u.m... .m. aa                                      ]      -
mi h    . t,,u.,,                a      .w.. ma..
m u. ..m
                                                                                        -                ..n.
n..u.a..
                                                                                                                                        .. , .,                                                      .m. J.  ..m..mu,  %n .. oai i.,um.
n.m.,ma      .
                                                                                                                                                                                                                                                              .ati j_        ,:                                      .
                                                                                                                                                                                                      ..u. .a      .
_.                                                  ;        ._.c                          .u.m..                ..
m                                                                            .m        e.
                                          .u.
                                                                                          ~                . . n.                    n..
                                                                                                                                                  /.,  . n m. .
m,.u.,n.m.r    .
                                                                                                                                                                                                    . m...              u . u .. - a.. . ..m-u.it      . . .um,-s n.m.nm.        .a n..n .n..m.-
j                      i..
m u                            e.m.u
                                                                                                                                                      ,      u. .m.
                                                                                                                                                                                .u .                                n.u. , . ou..mm  n ..
4
                                                            .                          -,-~
m.......
: m. .
                                                                                                                                        ,      u.
                                                                                                                                                      .a.n.m....
uu- mu eu
                                                                                                                                                                                                            .'.t ..
n                                                                              a. . .                                                a.                      =u.                            . u n . . u.,    ... u. ,
l                                                                                    s_                              .n . .. .. .u                  s. ,u.. . u.n. ,..,.m..    .m.. a.
en
                                                                                                                                                                                                      . mu. .
: n.                        ;  -
                                                                                                          .o            m u . ..
m a ama.n. ,
                                                                                                                                                                                                      ...~to
                                                                                                                                                                                                          .              ..ml. m...,. ., ao,.m. o n......                    .
J
: n. . .      n.  ..m. a=am                            1                                  u ..              .n .
                                                                                        ,-                                .u..,..
                                                                                                                            .                      u
                                                                                                                        .. ..m., n.imc .,
                                                                                                                                                                                                                . w .u I-m m.
i
:                                      m......
                                                                                                                        ..      .n.
n ..
                                                                                                                                                          . u u n..
                                                                                                                                                                    . ..n. - a, u.. h,.u.,
i    u
                                                                                                                                                                                                      . . n.
C... .u
                                                                                                                                                                                                                . s n. . .
u . e , .m,u u, n m.iu.u...
: u. ,.
uT
                                                                                                          .            ..~...i..... cm. ..
o.
                                                                                                  <                    m
                                                                                                                                                                                                        . i
: m. n.,m        .,.,u...
u.m.
                                                                                                                                                                                                                                      .un
                                                                                                                                                                                                                                                  .u.
a.f..m.
um.o .n.ti.,...a.
                                                                                                                            .n.
                                                                                                                                ,    n.. . . n..                                                      .  ..          .                                            ..
                                                                                                                                  .,....... ..n    .
                                          ..                                                    c                        m        nb            n..
a..                                  g      s.                . .m          .e n
                                                                                  .g ,,1 .                                  m.n        . . .n . .u .
u                              m  . ~nni...4. i... . . .
o . s .,
                                                                                                                        . .i
                                                                                        -.-,.                          u.            o. .
: s.                              .                            mm                  n. u      -n . u . .
: m. o.m..  .. . ec                                                        . . .                            .
: i.            i, u.m..,.      u. ..
1 y
I.
: m. . .m .
                                                                                          .s            mn              .n
                                                                                                                                ....u... u ,.
u .c.
                                                                                                                                                                    . .. en        u..    .m.        .,
                                                                                                                                                                                                      ,                ..n. ..,u .~
                                                                                                                                                                                                      . m. n .m.m.. . i m ....u
                                                                                                                                                                                                                                .          . nu...om.,m . . m,..m.o.
W l                .
m..u....
                                                                                                                            .              .c u . n.m. . .m .
8                                                          t.                          n                                                    u,                                      m u , . .,..      m. m .a..m.. ..
i..u. ..      u.n.a.                                                              ..i... .n. . un.*it.,.a                              m..,~ ., .              i ..
: m. a.. . n ..
                                                                                                                        .m                                                                              u. .m..L m . . .u~ ,. m ...
                                                                                          +            ,%.                                                              .
                                                                                .s
                                                                                                                        .n,...
                                                                                                                          .nnun.
                                                                                                                                    .      a l
                                                                                                                              ..u                      no .              .a,*.                          .                .. .,
                                                                                                                                                                                                                                            . f%. uu. ,
                                          ...u                                              .4- m.    -.
                                                                                                                                          .u
                                                                                                                                                                                                      ....,mu,...,..-                      i
: n. m                                a.nu.
J.            ..
u.n..    . me    .. .. ..,o , a                                                                                            .
                                                                                                                                                  .a l.a... .. .u
+
                                                                                                                                      .e n m..~        .m i
I                                                                                                                                ,.. . . n . . . .n a m              n. u l
i M2342.009 1188
 
SAB0ENTSLONDY ,                  .
g.g
              .      .                                                                      SL-4492 i
Section 4 SEISMIC ENVIRONMENT COMPARfSON Researching a lifeline or system response to an earthquake was selected as a means of assessing the Byron well's ability to withstand comparable earthquakes therefore, recent worldwide data were reviewed. For the comparison, water well and well pump performrnce of six recent worldwide earthquakes was examined in addition to four earthquakes reported within 100 miles of the Byron site. Worldwide data were selected which had much greater
  -      magnitudes than the Byron postulated SSE in order to demonstrate effects of earthquakes where ground rupture (M, a 6.0) has occurred, while the !!!!nols data illustrate response in local areat. Worldwide earthquake data are presented in terms of magnitude M. The magni-tude M represents a part of the frequency spectrum of seismic waves and therefore respre-sents a physical parameter of the earthquake. For earthquakes at very great distances from the recording station, selsmic surface waves with a period around 20 seconds are of ten dominant on seismograms: the wavelength of these waves is about 60 km. Beno Gutenberg (Reference 6) used this characteristic by defining the amplitude of surface waves with a period of 20 seconds and calling them surface magnitude or Ms . It should be noted that magnitude scales use small numbers to express vast differences in earthquake size. In absolute terms of radiation of seismic energy, energy release increases about 32 times with each increase in magnitude unit. Because the amount of energy radiation reflected in the magnitude scale increases geometrically, small differences in magnitude are much more significant at the higher ends of the scales than they are at the lower ends. The dif ference in radiated energy between earthquake M 7.9 and 3.0, for example, is about one million times larger than the dif ferences between earthquakes M:3.9 and 4.0.
Nuttii(Reference 7) reports that carthquakes east of the Rocky Mountains, in general, do not rupture the earth's surface, while the worldwide events do. Worldwide evidence from historical surface faulting events shows that nearly all ground ruptures have closely followed pre-existing f ault traces. Displacements have occurred repeatedly along or near the same f auy i,t    ad nearly always with the same sense of offset as that which can be inferred for w
 
SARGENT 8,LUNDY 4-2 i                                                                                        SL-4492 the recent geologic past (Reference 3). As reported, and accepted by the NRC staff, there is    !
no evidence of surface faulting near the Byron station. The absence of this condition suggests that the potential of damage could only be related to shaking or vibration. In the    !
larger earthquakes, the stress drops are greater for the eastern earthquakes than for the worldwide events.
The worldwide seismic events selected for comparison with the Byron conditions are as follows:
                  . San Fernando Valley, California, 9 February 71
* Coatinga, California, 3 May 33 f
a  Morgan Hill, California ,24 April 34
* Santiago, Chile, 3 March SS
* San Salvador, El Salvador,10 Cctober 36
* Edgecumbe, New Zealand, 2 March 37 The Illinois earthquakes within 100 miles of the Byron Station include:
* Beloit, 'A isconsin        1909 MM VII                                              i N.E. !!!inois              1912 MM VI f
                  +
Rock Island                1934 MM VI
                  . N. !!!inois                1972 MM VI                                                i k
The discussion of the Illinois earthquakes and their significance on local munlcipal wells is presented in Section 3 of this report.                                                        i L
f SAN FERNANDO VALLEY EARTHQUAKE 1
Description of Event l
The San Fernando Valley earthquake (M g      a 6.6) dramatically demonstrated that seismic design of maior lifelines needed more attention. A detailed examination of pipeline leaks and l
(
 
t SARSENT S LUNBY .            .                                                                              4-3
                                                  -      .                                                                                              SL-4492 I
eastern San Fernando Valley. The surface-faulting effects of the 1971 earthquake have been documented in detall(U.S. Geologic Survey Staff 1971). The zone of surface ruptures was 9.3 miles long extending from the western side of San Fernando to Big Tujunga canyon. Detalleo mapping showed that five separate segments of the fault zone were activated at the surface during the earthquake. The character of ground deformation varied along each segment. The distal parts of the fault zone were marked by relatively simple rupture zones less than 13 feet wide. in contrast, fractures of the west central segment r onsisted of a main belt of thrusting about 230 to 630 feet wide with displacements of 7 feet. The earthquake was accompanied by permanent ground distortion, including uplift and horizontal displacements.
The maximum uplif t was about 7 feet, while horliontal displacements, locally of more than 7 feet, occurring over a broad area showed an abrupt discontinunity along the zone of surface faulting in the pattern and amount of horizontal distortion (Reference 9). The causes of approximately 90 leaks at 71 locations were determined from repair reports of the Los t                                          Angeles Department of Water and Power (Reference 10). The repair reports demonstrate the aerial extent of severe shaking and indicate the location, size, and type of pipe, type of damage, type of soll, and the presence of internal or external corrosion. Also, in the area where earthquake damage tends to occur, the depth to bedrock changes rapidly and, hence, changes in ground motion that affect p! pes may be expected.
The performance of 21 water wells located in the epicentral area, particularly those in the city of San Fernando which were closest to the areas of maximum ground displacement and surface rupturing, was examined with the aid of television cameras. The postearthquake condition or performance of the wells was judged principally by comparing the yle!d and content of the water, the action of the pumps, and the results of bacteriological tests. The results of the study (Reference 7) Indicated the following:
* A cased well can withstand severe ;round upilf ts and lateral shif ting and compression of the surrounding soil short of actual rupturing, without irreparable damage to either the casing or the pump.
* The California cable-tool method of construction used for the water well was found to be satisfactory in resisting the ground motions experienced in the earthquake. The principal distress was cracking and lateral shif ting of the i                                                  concrete pads attached to the pumps.
 
SARGENTS LUNDY ,                .
4-4 SL-4492
(
It is significant that 20 of the 21 deep wells drilled in the unconsolidated sand, gravel, and finer sediment; withstood the severe ground shaking and uplif t without any appreciable damage. Only well No. 7, a 375-f t-deep well drilled in 1960, was distorted due to earth movements. The 18-in. ID double 8 gauge steel pipe casing with perforations below 88 f t was found distorted in shape and twisted by severe movements when photographed. There were no other reported well f ailures in the San Fernando Valley study. Table 4.1 Indicates the data en walls in the San Fernando epicentral area that are pertinent to the Byron site. A more detailed description of three water wells selected for their age and past performance af ter the earthquake follows.
Well No.1. The oldest in the system, Well No, I was drilled to a depth of $34 feet by cable tools in 1901. It was cased to an unknown depth with a 15-inch ID riveted steel casing with
(      riveted joints. The pump is an electric-driven, deep-well turbine type supported on a concrete base. The pump house is constructed of corrugated metal with a concrete floor stab. This well was located south of the zone of tectonic rupturing and was operating at the time of the earthquake. The post-earthquake survey showed there was no structural damage to the well and well house, and the operation of the well had not been impaired.
Well No. 2. Drilled in 1910 to a depth of 250 feet using a cable tool method, Well No. 2 was cased to full depth with a 13-inch ID riveted steel casing with riveted joints. The casing was perforated with a milling Mife. The pump is an electric-driven, deep-well turbine pump set directly on a concrete pad. Well No. 2 is outside of the zone of ruptures however, the general ground around the well was raised over 3 feet. Photographs of the well, taken with a three-dimensional down hole camera, both above and below the water surface, showed that the casing was in good shape considering its age. Joints of the casing were rough, the perfora-tions were enlarged, and several deformations in the lower casing, where it was pushed in at the }oint, were recorded. Af ter remedial measures were taken near the surface to seat out contamination, the well resumed operation.
(
Well No. 7. Drilled in 1960 by a cable tool method to a depth of 376 feet, Well No. 7 has an
 
O    e SARSENTS LONDY -          -
4-3 SL-4492
(
18-inch ID double 3-gauge stovepipe casing with telescoping joints. The pump is an electric-l        driven submersible type with the well discharge housed in a 3-foot-deep concrete pit. The well is located in the west central rone of ground rupture, and the damage survey revealed that the electric cable had split open near the top of the well creating a short circuit. A calipher check was m4de of the 18-inch casing with the following results indicating the l        ovaling of the pipe to the following dimensions:
0-130 it      17.625 inch 150-180 f t  17.250 inch 180-230 ft  17.0 inch 230-280 f t  13.373 inch 280-304 f t  14 inch 304-309 it  7.75 inch l
Because of the distortion and twisting of the casing, the well was considered beyond repair.
The well was abandoned and filled with concretes however, a new replacement well was
!!      Installed 160 feet away from the abandoned well.
i Byron Comparison l        Table 4-1 Indicates the data on wells in the San Fernando epicentral area that are pertina it to the the Byron site. The Byron deep well and associated piping are ASTM A33 welded steel casing and welded steel supply pipe covered under ANSI B39.1 pressure piping. The Byron well casing has a 3/8-inch wall thickness which exceeds the December 1981 Water Well Standards for the State of California Bulletin 74-81. Both the well and supply piping are grouted into the dolomite bedrock above the regional groundwater table. The highly active geologic conditions and loose soli conditions which greatly contributed to the damage in the San Fernando Valley simply do not exist at the Byron site. Yerkes (Reference 9) reports that i
an approximate messure of historical frequency of damaging earthquakes in the region where a ma}ority of these wells are located is provided by the record since 1800. The record indicates that some part of the Los Angeles area has been shaken by a moderate or large event on the average of about once every 4 years. In terms of exposure to damaging earthquakes, the 1300 mi2 miles of urbanized Los Angeles basin where the referenced wells in Table 4.1 are drilled, has been shaken at MM1VII (B>ron SSE) at least once in the last ISO l
t
 
l i
SIROENT S LONDY .            -
44 SL-4492          :
years. Approximately 91% of that area has been shaken twice or more; about $7% has been shaken 3 times or mores about 27% has been shaken 4 times or mores and about 9% has been            ,
shaken five times or more. A direct comparison cannot be made between the superior construction materials and competent fault-free founding conditions at the Byron site and the poorer quality materials and unconsolidated founding strata in California. However, given the more severe environment, it is noted that 20 of the 21 deep alluvial wells in the San Fernando Valley remained functional following the M, = 6.6 earthquake and associated subsequent ground failure or differential soll movement generated failures.
The deep wells at Byron are expected to survive the Byron SSE (M, = 3.3) because of the much lower magnitude of grou4 motion compared to San Fernando and because of the superior foundation material (competent bedrock)in which the wells are located.
I    COALINGA, CALIFORNIA EARTHQUAKE Description of Event The M s    6.2 earthquake sequence provides an opportunity to study damage in representative water distributlen pipeline systems and major all field deep wells. The main shock has been estimated as M, = 6.3 and a large af tershxk as magnitude Mt = 3.1. The distribution systems and oil field experienced ground surface motions of 0.4 to 0.6 g with 0.3 g as a reasonable estimate for the entire network (Reference !!). The oil field wells are within 2 km of the earthquake epicenter and were reported to experience a ground surface accelera-tion of 0.6 g.
Where damage occurred to wells, the extent of damaged systems varied according to the use and type of construction used for the well. The various investigators who surveyed post-earthquake condicions described damage according to one of three categories of wells: water supply wells, irrlEation wells, and oil wells. The irrigation wells suffered the greatest damage. This could be expected because these wells generally have the least controls placed on them by the state installation specifications. The most frequently reported damage was failure of the pump head as a result of being shaken out of alignment and knocked off its
 
S$$SENTS LUNDY ,                                      .                                                      g.7
                              -                                                                                      SL-4492
(
foundation, in addition,2 of the 23 Irrigation well reports indicated that light wall casings partially collapsed due to ground rupture (Reference 12). However, of the more than 1000 wells in the Shell Company oil field, where American Petroleum Institute (API) recommended practices are used, resulting in better constructed welded steel cased we!!s, none sustained losses of any consequence to subsurface equipment. 011 productim had decreased for a short period, but returned to normal only days later.
Darnage to oil field pumping Jacks was reported with several Jacks coming to rest at angles of up to 45' af ter the earthquakes subsided. In addition, observations were made indicating that ground separation occurred for distances of 1000 to 1300 feet, with evidence of both high-Intensity and long-duration excitation in other oil field structures.
Byron Site Comparison
  \
The two nearly simultaneous Coalinga earthquakes demonstrated that the quality of con-struction is an important factor in seismic design. In both the pipenne reports and wel!
!          examination documentation, poorer quality materials: 1.e., transite pipe and poorly mounted irrigation pumps suffered the greatest damage.
The ATWA specified Byron deep well construction and materials closely fo!!ow petroleum or API recommended practices for wel! construction utilizing 3/3-in;h-thick welded ASTM A33 steel. The Byron type of construct:on is very similar to that used in the Shell Oil wells nearby to the Coatinga event which did not sustain significant subsurface damage, although the ground surface accelerations were between 0.4 and 0.6 g, and ground separation occurred in the highly variable sand and gravel deposits.                                The Byron deep v, ells are founded in competent rock and, if exposed to the much less severe 0.2 g ground acceleration due to the postulated SSE, will remain functional.
I MORGAN HILL EARTHQUAKE Description of Event lt        On April 24,1934, a moderate earthquake of M3 6.2 occurred in the vicinity of Morgan Hill,
 
SIRSENTEI. UNDY.                .                                                    g.g
                *      -                                                                      SL-4492
(
Califxnla. Relatively strong and duration-significant shak'.ng was experienced. The five closest strong motion accelergraphs registered peak accelerations of 0.31 g, 0.5 g, 0.63 g, 0.41 g, and 1.29 g which were recorded at the abutment of a dam. Because of the 72 accelergraph records obtained, observations from the earthquake are of engineering signifi-cance. The records taken for this event demonstrate the distinctive characteristic of this earthquake. The records give clear evidence of excitations from two sources with different characteristics. The first source provides a high frequency motion. A later event with a lower frequency content starts about 10 seconds af ter the first event (Reference 13).              .
1 The response of equipment at three localindustrialinstallations is examined to show the lack
-          of damage to well-engineered structures. The installations are IBM Santa Teresa 1.abora-tories, United Technologies Chemical Systems (UTCS), and the Santa Clara Valley Water District (SCVWD). Free fleid peak ground accelerations were as follows:                            !
l
                  . IBM measured at a distance of 100 yards from the building N-S 0.45 g, E-T                I O.23 g and vertical 0.50 g
                  -  UTCS, estimated values 0.4 g to 0.5 gi and
* 3CVWD estimated and variable 0.45 g to 0.60 g.                                          ,
The results of inspections of these facilities and associated piping are reported by Swan (Reference 13). Because of the quality of seismic design and construction, the facilities          f experienced no significant damage despite the relatively high levels of selsmic motion. It          l should be noted that the UTCS facility, which covers 3200 acres, did not report well damage        [
;          but did suffer some piping damage. Major piping damage involved 37 breaks in underground lines. Pipe diameters ranged from 6 to 10 inches, depths from 60 to 120 inches. Buried lines l
included transite pipe, cast iron, ductile iron, and mortar or concrete-lined pipe. Most breaks occurred in the cast iron or the concrete lined steel pipe primarily at connections and as a      l result of ground failure.                                                                          l l
The Santa Clara Valley Water District's principal facilities consist of a wide varlety of pump stations and hydraulic structures, located from 6 to 27 miles from the epicenter of the earth-      !
,  L        quakes, and varying in age from a few years to over 50 years. The ecuipment suffered either i
 
4    0 SAR8ENT S LONSY          ,    ,
g.9 SL-4492 1
no damage or minor and functionally insignificant damage from the earthquake.
Byron Comparison The well facilities at Byron are designed and constructed using methods and engineering standards of the American Water Works Association (AWWA) with materials specified by ASTM or API specifications, and like tL facilities of the Morgan Hill earthquake should not suffer damage. The Byron water supply , stem is not founded in materLsis which may realize ground failure or any !Meral shif t in rock strata during earthquake ground motion. In addi-tion, the method of pipeline trench and backfill construction was closely monitored according to Quality Control and Quality Assurance procedures and documentation.
CHILE EARTHQUAKE, MARCH 3,1985
.        Description of Event A major earthquake of magnitude (Mt 7.8) occurred of f the coast of central Chile af fe: ting the populated areas of. Santiago and Valparaiso. A major network of strong motion instru-ments recorded the event. From the evaluation of these records, Saragoni (Reference 14) concludeo that the event ' involved two successive shocks: the first o! magnitude M3 = 3.3                                          .
with a duration of strong motion of 10 seconds, and the sacond, which occurred 10 seconds                                          i later, of magnitude ML = 7.5 with a strong motion duration of 30 seconds. The duration of                                          ,
recorded motion was as much as 120 seconds. The peak ground accelerations measured for                                              .
the earthquake at Milipilla were 0.67 g N-S direction and 0.60 g in the E-T direction.                                              f Post-earthquake reports described the performance of deep wells at the 24 year old Bata                                            t Shoe Factory located on the outskirts of Milipilla (Reference 14), The onsite well is located i
near the northeast corner of the facility with a nearby vertical storage tank. Steel plates welded to the base of each tank leg are embedded in the concrete foundation. The concrete foundation spalled and cracked however, the tank was not damaged and the well was avail-
!        able for use following the earthquake. The well was a ISO-mm-diameter cased hole through
,        the overburden soils into a sandstone-like aquifer.
(      Water supply systems were damagee primarily due to soll foundation failure and liquefac-                                          r
;                                                                                                                                            i l
i
 
3ARSENTS LONDY '
[Lk92 I
tion. The most notable occurrence of well performance occurred at the San Juan de Llolleo                            ,
pumping plant. The pumping plant was constructed on poorly consolidated solls whlen had                              !
suffered considerable disturbance end settlements from previous earthquakes. At this station, peak ground accelerations were 0.67 g horizontal and 0.81 g vertical.
The main structures at the pumping plant are a two-story building and a basement concrete frame building with masonry infl!!ed walls which house well pumps. The facility has six pumps and well casings 30 m (160 f t) deep. The plant has a maximum capacity of 4601/s (7300 gpm). Dam' age to the prmphouse consisted of differential settlement of up to 200 mm (8 inches), a tilted second story and partial collapse of one wall. One of the pumps in the pumphouse suffered a crack to the vertical discharge tube casing at old weld repairs due to an earlier nonearthquake-related crack. Af ter repairs to the cracked concrete and broken welds, the facility was operable in spite of the large differential settlement. More detailed I
descriptions of the Chile earthquake are available in Reference 14.
Byron Coinparison
)
i The postulated maximum vertical and horizontal acceleration of the Byron site is approxi-mately one-sixth and one-fourth, respectively, of the accelerations measured at the Llolleo pumping plant. In addition, the founding conditions at Byron well site consist of competent ambrian-Ordovician age sandstone and dolomites which are far superior to the unconsoll-dated solls of the pumping station de,cribed it is, therefore, expected that the Byron cased well grouted in bedrock will ;;#orm better than the cased wells at the .Mlr ynping station and Bata shoe l',ctory, which were subject to large liquefaction induced fround i        movements, but nevertneless remained functional.
SAN SALVADOR EARTHQUAKE Description of Event The October 10, 1936, San Salvador magnitude Ms s 3.6 was selected because this earthquake represents the latest in a series of damaging earthquakes to the cit) and also because the I      damage assessment provides a description of the effects of the earthquake on deep wells and
 
SABOEWT4LONDY -
41f SL-4492
(
pumping stations.
During the last 276 years, the interval between destructive upper-crusted earthqunes at San Salvador has ranged from 2 to 66 years and has averaged about 23 years. The last earthquake prior to the 1986 event occurred on May 3,1963, and was recorded as magnitude M, = 6.0 event which is typleal for the area.
The descriptions prepared by the Earthquake Engineering Research Institute (EERI) inspec-tion team, headed by S. W. Swan (Reference 15), has provided a complete description of well        l and pump performance: "The water pianping stations, which pumped from both groundwater ar;d tanks, include vertical deep (150') well pumps (ranging from 100 hp to 300 hp). These pemps, for the most part, performed well. Some pumps have minor out-of-balance related vibration problems, and only one pump in the city's oldest pumping station (cire.1925) burned
(  out following restart af ter the earthquake." The failed pump was later examined and found to have had pre-earthquake severe cavitation and corrosion distress within the impeller casings however, the distress was exacerbated due to the strong motion experienced.                l L
Byron Site Comparison As indicated, this particular event was selected for comparison because of the frequency of        !
destructive earthquakes and the fact that the adequate pump and well system performance continued over 60 years at the San Salvador city site. At the Byron site, the NRC postulated SSE MM VI!! event (magnitude M, a 3.3), which has never occurred within two hundred miles of the site and has an estimated return interval in excess of the 2150 years calculated for the OBE event with a site intensity of Vll. The expected performance of the Byron wells which are grouted into Silurian and portions of Ordovician aged bedrock will be superior to the existing San Salvador city we!!s installed without grouting into volcanic deposits and sub-jected to many earthquakes. The Byron wells should be better than the San Salvador wells, and they will remain functional even if the postulated Byron SSE should occur, because cf the much less frequent seismic activities at Byron.
t
 
SARGENTS LUNDY .                                -
4-12
              -                      .                                                                    SL-4492
(
EDGECUMBE EARTilQUAKE Description of Event Modified Mercalliintensities of 1X and X were reported as a result of the magnitude ML * ''3                              ,
earthquake located near the town of Edgecumbe in the North Island of New Zealand on March 2,1937. Strong motion accelergraphs recorded peak ground accelerat'ons of 0.33 g within 13 km (9.3 miles) of the epicenter. Of particular interest is accc'mpanying seismic activity before and af ter the principal shock, each of which was greater than Mt : 3.2 mag-                              ;
nitude. The foreshock and subsequent four af tershocks were within a 6-1/2-hour time period. The main shock produced a complex series of surface ground ruptures, the longest                                  ,
being 7 km (4.3 miles) long with a 1.3 m (4.3 f t) extension and 1.3 m (4.9 f t) downthrown                                !
surface. There was extensive evidence of level ground !!quefaction and lateral spreading.
Analysis of the strong motion accelergraphs indicated that the main shock response spectra
(      was comparable to design levels of a ISO-year return period.
The affected area geology consists of later Quaternary rhyoletic volcanics and Mesogole greywacke with Quaternary alluvium consisting of alternating sequences of mainly pumice-                                  ,
derived alluvial sand and gravel, tephra sand, and marine slit and sand. The wat.er table varies from 0 to 3 m (9.1 f t) below the ground surface with shallow wells as the primary source of water.                                                                                                          i l
The behastor of existing functional wells is reported by Pender (Reference 16). Three types of responses were reported by local residents and were noted as                                                            i
                .                  wells with water level below ground had flows above ground a                  wells capped, with a pressure gauge, indicated a rise in pressure af ter the earthquake amounted to several tens of kPa (1 kPa e 20.57 ps!): and
                .                  some well walls moved laterally and allowed water to flow between the                        .
casing and soil, t
i I
i i
 
O              .
sah8ENT4 LUNBY                        *  .                                          4-13 st.-4492
  '                                                                                                                    r i
i Damaga to water supply piping was again used as a measure of the extent of damage. The              ;
demage was major t;ecause of the poor quality types of material and methods of construc-            l
)                    tion. Water supply piping consisted of 100 mm (4 in.) diameter asbestos cement pipes with a        ,
glued socket. The pipes were buried about 750 mm (2,5 f t) below the ground surface.
According to local reports, compression failures at pipe joints contributed to the shortening of one !I km (6.8 iniles) pipeline by 6 m (20 f t).
A natural gas pipeline consisting of a welded Steel pipe,200 mm (8 in.) diameter crossed the main fault trace at roughly right angles to the strike. The pipeline suffered very little darnage. Deformation of the pipeline was confined to ger.tle warping over a relatively wide fault zone.
Byron Site Comparison The Edgecumbe event .. selected for comparison primarily because wells of poorer con-struction quality in an unconulidated loose soll were subjected to six earthquakes equal or i
greater than the Byron SSE within seven hours. Although the Edgecumbe wells were wb-
'                  }ected to liquefaction and increased pore water pressure, they remained functional as will the      l Byron wells should the postulated earthquake occur at the site. The Edgecumbe area wells            ,
'                                                                                                                      t cons!sted of a!!uvial sell wells drilled into sands and gravels and backfilled with graded          i gravel. The Byron wells ve established in more competent rock material and are cement
,                    grot.ted into their location and are not anticipated to be sub}ected to high internitial hydro-    l dynamic pressures or hydroselsms which could cause damage to the rock, pump, or casing.            (
i
;                                                                                                                        i 4
k i
r%. /
 
                                                                                                                                                                                                                    -                                                                                                                          _                                    =
Casing teeiI                                                              Veer                                                                              04a. Depth      & Joiaf        Post 4arihgmake                                                                                  E.
g Type          Candition                                                                      *N iarthquake    Oweer                      tun.
                                                                                ~
Aquifer Type                    Dritled                                                                              (in) (tt)
E
                                                                                                                                                                                                                                                                                                                                                                        =Q flyrom $ite    Commonwealth              I&2                              Or dow lClan-                    1979                                                                            15/12      1500      A5fM AS3      local evalciaal                                                                ,g teells        (dison                                                      Cambelas aged                                                                                                                          steel. W mells with glei-                                                                                      p postwisted                                                                  dolomites and                                                                                                                          welf thica- lar construction                                                                                    G j                                    $5[ N                                                                      Sandstones                                                                                                                            mess =eided and dep1hs re-4 s.,                                                                                                                                                                                                                ti.,,            3- f                c-                                                                        <
f* age 3-8                                                                                                                                                                                                        grouted        tional fo' tow-                                                                                ,        ,
f                                          of feet                                                                                                                                                                                                      into reci. ing the 1909 tes j                                                                                                                                                                                                                                                                      .It e      ..
See f ernan(w City of San                1                                baconsolidated                  1908                                                                                  IS    554    Rive *ed        No damege.
Valley        fermand,                  2                                sends and gravels 1990                                                                                                  IS    250    stees ..th      Crowed raised 84
* 6.6 9 f eb y t 3
4 stratified across pre 1920 9% entire . alley 1926 18  309.5 483 raweted        S feet, sets                                                                  jg is            joints.        #2 remained eenc-                                                            %2                            i P.ge 4-1                                S                                                                  1950                                                                                  84    632                    tienas. Ground o, feet                          .
7 tm 1960 IS IS 3oo 176 59 - pe.
2-plys. 8-r    .. ,..et. .e.,
                                                                                                                                                                                                                                                                        #3 tenctional, E'a{
g gauge          Sectoriologicas                                                                            4
(.962")        centamimetion                                                                ,#
4 st.el.          fr  t.d.          fe                                                        ,,, g shifted in mets                                                              Tq
]                                                                                                                                                                                                                                                                    #S. sto damege la                                                                            8
                                                                                                                                                                                                                                                                      .o    .f .                  ..r . .                                          -
!                                                                                                                                                                                                                                                                      C.si.9 of          .e., ,,
3 colIapsed.
l 1                                                    Caf y of Los              I                                Los Angeles                      1924                                                                                  24    195    Ste-eepipe      Outside t=e some Angeles                  2                                besia solts.                      1926                                                                                  20    209    2-plys.        of rupt re,ac Unconsolidated                                                                                                                        8-genge        damage reported to e                                seads and gravels 1933                                                                                                  16      63    (.167")        the self pumps or
}                                                                              $                                with time seeds.                  1960                                                                                  20    450    stoet pipe. casing. pas bec-
                                                                              .                                                                  1968                                                                                  20    504    teelded        feriological con-stowepipe      faminaties report-t sr.e.          .d: t w .eer., .o                                                          u m --e
{                                                                                                                                                                                                                                                    Casing.                                                                                    to F D deoege tG the cas-g _IT lag is interred.                                                        g $8 p
o~T U
                .-.----,. ._ _ - - -.                  ,,- - - - . - . - - -                            .-_,,,,,-_n        ,-, , , . - , , . . - .                                                                        - - -                    ~_      - _ - , -          -                                    - , .,                      _              , _ . . - .
 
n      .
Casing                                      U.
4 teoll                            Year      Dia. Depth  & Joint    Post-Earthquake              - g Earthquake  Owner          No.          Aquifer Tyne        Drilled    (in) (ft)    Type        Conditson 4
San Fernando Sunlaed tiells  Bernard      Tujunga villey      1924        12    238  S*ovepipe  Located I m;le              , g valley                      Fenwick      soll primarily      1929        16    290  8-gsuge    south or so..e of              ge    ,
(continuecI                  Foot-hill 1 sand and pfavels    1938        18    467  ( .14.'";  surface rupturing.  -
E
* Foot-hill 2                      1940        16    470  ?-plys      No problems re-                      f Lang Muir                      1949      24/18  312  riveted    ported.            '
                                                                                                                                                          .        et tsoodward                        1950      24/18  400  joints.
I.
County of Los    !          Quatsary gravel    1937        la    401  Stowepipe  0.2g to 0.3g Angeles        2          deposits with      1937        48    84  2-plys,    ground accelere                  .
5            Iittle or n: fines 1949        12    600  8-gauge    tion experlenced Deuter Park    I                              unknown    10/8  313  (.lf'")    3 to 4-foot hori-t/4" we*1ed rontal and I-l/2-casing. foot vertical movement. No damage to nells, i
TMd N r*
                                                                                                                                                            $ 1. .g N4g O
m Nee--
                                                                                                                                                            \n
 
8 Estlu.        Casing                                    D well                    Year      Dia. Depth  & Joint  Post-Earthquake            .M  g Ear t hquake  Owner                        h      Aqui er Type      Drilled    (in) (ft)  Type      Condition                        R R
Coalinga                                                                                                                                =G Shell Oil                    1000  Western part of    1941      8/24                                              -
g California    Company Oil                  wells  San Jcaquin      to                              No subsurface                    ga M5 = 6.7 1    Wells                              Valley consisting p.esent                          damage was reported            E S.6                                        of weekly cc-                                      to oil wells cas-              E g
aftershock                                        mented alluvium                                    Ing; however, pump-            4 3 May 83                                          with high propor-                                  lag Jacks were
* Page 4-6
* ion of gravel                                    toppled because of of tent                                        d cobbles                                      surface movement.
Pleasait valley NE920                                  1952      84/12  618 URM wn    Well:,locat.d in water D;st.
ione of ground 'up-Irrigation                                                                            fure. Pump head Wells                                                                                  shaken out of alignment.
NW1621                  1964        16  1000 Stovepipe Pump damaged cas-casing    ing damaged at 4 locations to .
depth within the zone of rupture of 606 feet.
NW729                    1958      16/12    800 Stovepipe Well casing casing    collapsed; unable to repair, well abandoned.
                                                                            $E421                    1964        16  1250 Stovepipe Pumping sand well ccsing    damaged.
T (A H In t"
                                                                                                                                                            $ b.=.
                                                                                                                                                                  . . g W@g O
m Ne-I                                                                                                                              U
 
          -                                                          .-                                          n            a
                                                                                                                                ~
M Estim.        Casing                                D-Year      Dia. Depth          Post-Earthquake E
Well                                            & Joint                              . g3 Earthquake    Owner            No. Aquiter Type      Orliled  (in)  (ft)  Type      --Cc Jitice                  M g
                                                                                                                          =4 j Morgan Hill  Santa Clara      2      Compacted sand    1975        4    140 Plastic    No damage s'eported      . g Catifornia    Valley Water      pumps  and Coyote Dam                                      after emperiencing          ye MS = 6.2      District                                                                      1.29g horizontal          O E
24 April 84                                                                                acceleratioit pres-        g Page 4-7                                                                                    sure,                      e4 of tent                                                                                                            -
Vasona Pump        4    Dense sand and    N/A    Pipe 48    30 Welded    No damage report.
Station            pamps gravel                                  stee; United Techno- N/A        Sand and gravel    1955                            No well Jamage logies Chem 8 cal                                                            reports.
Division San Salvador, National Water            Ancient tawa flows 1925      18    150 Cast iron Punos and wells El Salvador  Co.                      pumic soils, known thru      to      to asbestos  remained func-Ms = 6.2      AM)A Pumping              locally as tierra 1972      24    500 cement      tionsa. Only one 10 Oct 86    Plant                    olenca, or fine                          steel      c.lrca 1925 pump Page 4-10                              sandy silt                              welded    burned out follow-of test                                                                                ing the restart after the earth-quake.
Valparaiso    Bata ' W            I    Terrace Alluvial  1961        6                  Well was available Chile        Facto                    sands and gravels                                    for use, founda-
* M = 7.8                                                                                      tion slab had 3 Mar 85                                                                                  cracked.
Vertical ac-ceteration    Llolleo Pumping 1-6      River Alluvium              24 &    160 Welded    Llalleo pump house 0.81g      plant                    of Maipo River                16        steel      strac'ure had dif-forential Settle-
                                                                                                                  "O f/l 4 WFg 9  A,.-a
                                                                                                                    &@g O
m N 8*=
M
 
            -                                                  --                                      m            .
                                                                                                                      ~
M Estle.      Casing                            D-Well                  Year    Dia. Impth & Joint Post-Carthquatte        ,
Owner          No. Aquifer Type    Drilled  (In) (ft)  Type    Condition                  FE Eart'hquake                  -
E e4 Page 4-9      Concon Pumping        Unconsolidated  N/A        24    33 Welded  sent of 8 inches        -g of test                      Alluvius of                          steel  due to liquefac-          ye Aconcague River                              tion of foundation        C soils. Pumps              E g
remained func-            est tional at both              -
plants except where wall col-lapsed on Llolleo pumps.
Edgecumbe New Zealsad  Rangitaiki      35    Interlayered  N/A        16    33 Welded  Pumping equipment M = 6.3      Drainage e3oard wells marine sedi-                        steel  for irrigation and 2 Mar 67                            ment and vol-                                land drainage re-Five after-                        canic tephara                                mained functional.
shocks                              sand size Ms > 5.2      Otakirl          N/A                  N/A        6    45 Welded  irrigation wells Page 4-12    Orchards                                                  steel  changed flow of text                                                                    characteristics, remained f unc-tional.
I o m .-i on t-*
                                                                                                        $bg. .
U@g O Nem m
M
 
O      e SIR 8ENTS LUNDY ,
                                            .                                                31
                        .                                                                    SL-4492
! (
Section 5 ILLINOIS F ~ RTHQUAKE WITHIN 100 MILES The effects of an earthquake on groundwater wells as noted in the previous section depend on many factors that change with such variables as the earthquake mechanism, wave propaga-tion, felt intensity, geologic setting, engineering characteristics of soil and rock, aquifer systems, and well construction. For this reason, the effects of earthquakes on groundwater wells near the Byron site have been examined in light of the regional seismicity, geologic
    .      setting, and methods of 'vell construction at that particular location.
The states of Missouri and Illinois were surveyed in order to include the h:ghly seismic New Madrid, Missouri areal the epicentral locations of the November 9,1968, and September 15, l        1972, earthquakes; and the Byron site area.
The records of the Illinois State Geological and Water Surveys were used because data are complete and reliable from before the turn of the century. These records show no reports of damage to municipal groundwater wells in the Byron site area due to earthquakes. This time interval includes four of the five most important earthquakes with an epicentral location within 100 miles of the Byron site; the 1909, Beloit, Intensity VII; the 1912, northeastern
            !!!inois, Intensity V!; the 1934, Rock Island, Intensity V!; and the 1972, northern Illinols, Intensity VI.
Available publications on recent earthquakes with epicentral locations in Illinois, November 9, 1968, in southern Illinois and September 15, 1972, in northern !!!inois (References 17 and 18), provide the most-thorough records of the effects of earthquakes in Illinois. The pvblication on the 1968 earthquake included reports of cracked casing in an old, plugged gas well, increased productivity in several oil wells, increased turbidity of the groundwater, and a broken plastic nipple on an elbow coming off a well head. These reports generally covered an area within 30 miles of the epicentral location. The actual study of i          earthquake effects included a field reconnaisance within 100 miles of the epicentral location,
 
SARGENT S LUNDY .              -
F2
                      .                                                                    SL-4492
(
letters of inquiry mailed throughout southern and centralIllinois, and a review of newspaper accounts in Illinois and neighboring states. There were no effects of the 1972 (Reference 19) earthquake on groundwater wells in Illinois reported during a field reconnaisance, letter survey, and review of newspaper accounts.
Attached as Appendix A are records of wells dug in the vicinity of the Byron site. It is interesting to note from these records the following dates and depths of well construction when compared with dates of earthquakes within 100 miles of the Byron site.
Location                          Depth          Date Dug      Flow City of Byron Well //l            2000 ft          1900        100 gpm City of Byron Well //2            673 f t          1929        300 gpm City of Byron Well(/3            715ft            1969        975 gpm City of Oregon Well //l          1690 f t        1897        450 gpm City of Oregon Well //2          1200 f t        1948        736 gpm City of Rochelle Well //l        1896 f t        1897        500 gpm l                City of Rochelle Well //2        1026 f t        1907        250 gpm City of Rochelle Well //3        1484 f t        1923        600 gpm City of Rochelle Well //4        1450 f t        1929        660 gpm l                                                          '
l Village of Stillman Valley        300 ft          1938        200 gpm l
These wells are still in service, and there has been no known damage or impairment of I          pumpage of municipal groundwater wells in the Byron area as a result of any earthquake during the past 90 years or more. Reported effects on groundwater wells in these areas have included insignificant groundwater level fluctuations and temporary increases in turbidity of I
the groundwater; howe.er, neither of these effects have damaged the wells or impaired Pumpage.
l l
l
 
      ~
SARGENT& LUNDY -            '
F3 st-4492 i
Many data on the performance of deep dolomite sandstone wells in northern Illinois have been collected by the State Water Survey. The results of well production tests made on several hundred wells provide important information about the influence that location, depth, con-struction features, and age of a well have on its yield. Survey records indicate that deep sandstone wells such as the Byron deep wells have been prolific sources of water for nearly 100 years.
(
l l
l l
f I
 
8    0 SARGENTS LUNDY .                '
6-1
                  -                                                                      SL-4492
(
Set .m 6 WELL-AQUIFER RESPONSE TO SEISMIC WAVES The response of well systems from seismic waves may be generally grouped into two classes, namely, faulting and shaking. Faulting includes the direct, primary shearing displacement of bedrock that may carry through the overburden to the ground surface. Such direct shearing of the rock or soll is limited to relatively narrow zones of seismically active faults that may be identified by geologic and seismological surveys. No active faults have been identified within 200 miles of the Byron site, and through previous comprehensive investigations the soll and rock of the site has been shown not to lose their integrity during an earthquake. There-fore, the response of the well system is limited to the general case of shaking. Underground shaking of a well casing and pump may respond to the various waves propagating through the k    surrounding soll. A rigorous dynamic analysis of the system response is described in Section
: 7. The following paragraphs provide observations of the seismic response of well water levels and the variation of acceleration with depth in deep wells.
In general, earthquakes have been reported to have affected groundwater wells in a variety of ways. The following have been observed: fluctuations of groundwater levels, increased turbidity of groundwater; extrusion of sand, mud, and water from alluvial wells; changes in productivity of wells; failure of the well system; and failure of associated structures. As a result of groundwater fluctuations, the U.S. Geological Survey (USGS) prediction experiment at Parkfleid, California, along the San Andreas fault regularly monitors a network of water wells. This network consists of wells that are situated at seven sites that were drilled by the USGS for the express purpose of monitoring water levels. R. Vorhis (Reference 20) assem-bled data on 1450 wells in North America, along with other wells from around the world which had a response to the Alaskan Earthquake of 1964.
t
 
SARGENTS LUNDY -                  -
6-2 SL-4492
(
ALASKA EARTHQUAKE Description of Event The Alaska earthquake of 1964 was centered in Prince William Sound. The land vibrated for as long as six minutes from the main shock which had a magnitude Mt = 8.4. During the main shock and following af tershocks, more than 40,000 m12 of land was lowered as much as eight feet and more than 25,000 mi2was raised as much as 33 f t (Reference 20). The extent of the hydrologic effects was felt as far away as South Africa (Reference 20). Published reports (Reference 20) describing the conditions of 100 water wells during the intensity XI earth-quake indicate that seven wells were destroyed because of earth displacement, and five failed due to liquefaction and sanding of the well.
In Illinois, a total of 21 hydroseisms were reported from local wells as a result of the Alaska earthquake. Only two af tershocks were recorded, and both were registered in well DuPage ANL-10.
Seismic seiches were recorded in Illinois at two lake stations: Wolf Lake at Chicago and Money Creek at Lake f31oomington. A well in Cook County (37N 14E-22.lb) from an uncased portion of the well which taps a Cambro-Ordovician sandstone has a depth of 1648 ft reportedly pumped sand following the earthquake, and two wells in Union County reportedly yielded muddy water af ter the event (Reference 20).
The response of water wells especially certain artesian wells which are in totally confined j        aquifers is remarkably great and is reported in Reference 21.
The mechanics of the volume change and corresponding water level change are described by Cooper (Reference 21) with the passage of seismically induced Rayllegh waves at the 8-to-30 second-period range. The requirements for a well to experience wide fluctuations in water level are a confined aquifer (artesian conditions), a highly permeable aquifer in which water readily moves in and out of the well, and a major earthquake energy.
, t i
 
                                                                ~
o    .
sanosuvaLunny -                                                                    g.3 SL-4492 I
Based upon these criteria and the mass of the water column at the Byron well, it has been estimated that the well would behave as an overdamped well and the water level oscillation would not occur; therefore, well or pump damage would not occur. A well located at and monitored continuously by the Illinois Geological Suevey has experienced some water level change during major earthquakes. The well, located in the NE corner of Clark County, is used as a waste injection we!! with the fluids injected into a confined aquifer. The well is located in differen' geologic formations than the Byron site and responds to many distant large earthquakes without damage to the well system due to water level fluctuations.
Interestingly, the Illinois State Water Survey has no record of groundwater fluctuations in any observation well equipped with continuous recorders in response to any earthquake which had an epicentra! location in Illinois. These observation wells equipped with continuous recorders are located in northeastern Illinois, the Champaign-Urbana area, Clark County, and the East I
St. Louis area.
TANG-SHAN EARTHQUAKE Description of Event The July 28,1976, Ms : 7.3 earthquake in the People's Republic of China was most notable for detern.ining how a strong earthquake affects underground facilities. In the area of Tang-Shan where the strongest shaking Intensity X and XI occurred, 80% to 90% of the surface structures codpsed (Reference 22). However, for the irrportant engineered structures immediately below the surface, there was generally no serious damage regardless of the depth or size of the structure. It was reported that tacause underground structures are located within, and restrained by, rock or soil, damage is different from that to surface structures, and from measured response, it was found that ea thquake damage decreased with increasing depth.
The Chinese National Earthquake Bureau (CNEB) installed seismographs in an inclined shaf t through limestone bedrock into the 2100 f t deep Tang Shan coal mine following the main i
 
1 SARGENTaLUNDY
                                  -                                                            6-4 SL-4492
(
earthquake and recorded 80 af tershocks of varying magnitude. The results of the analysis of recorded ground motion were as follows from Reference 22:
                  -  P-wave (compression) amplitudes at 25 m (80 ft) depth were about f 3% to 80% of those at the surface:
* S-wave (shear) amplitudes at 25 m (80 ft) depth rcaged from 60% to 120% of the surface values
                  -  the subsurface to surface P-wave and S-wave am alitudes at 83 m (270 ft) depth were 30% to 40% and 20% to 80%, respective ,y.
CNEB analy::is of these records indicate that the ground displacement at 25 m (80 f t) depth is one-half the displacement at the surface and at 83 m (270 f t) is one-third the displacement at the surface.
lt was also reported in the same paper that there was extensive damage to the shallow water
(
supply wells and near surface underground piping. Damage was caused by sand liquefaction, infiltration into the wells, and separation of the bell and spigot piping joints due to the strong motion. The Bryon wells are founded in competent rock and the water piping has welded steel joints, therefore, they would not be subject to the types of failures occurring at Tang-Shan.
 
  .      o SANSENT S LUNDY          *    '
7-1 SL-4492 6
Sectiort 7 SEISMIC ANALYSIS This sect!on presents the seismic analyses of the deep well system and evaluates the opera-tion of the wells during and af ter the postulated safe shutdown earthquake. Exhibit ES-1 schematically shows the deep well system. It consists of a 1500-foot-deep borehole in competent rock formations. The top 700 feet of the borehole is cased with a 16-inch-diame-ter steel pipe. An eight-inch-diameter discharge pipe hangs within the cased portion of the well; it also supports the motor and the pump at its lower end. The length of the discharge pipe within the wellis about 425 feet. The discharge pipe from the pump shelter structure to the station is also eight inches in diameter. This portion of the discharge pipe is buried in the same trench in which the safety-related essential service water pipeline is buried. There is also a buried reinforced concrete ductrun for the electrical cables from the station to the pump shelter structure. Each of these items is evaluated for the safe operation of the deep well system. The items include:
* Uncased well cavity a  16-inch-diameter steel pipe casing
* 8-inch-diameter discharge pipe within the casing
* Motor and pump
                    +  8-inch-diameter buried discharge pipe between pump shelter structure and the station a  Buried reinforced concrete ductrun
* Pump shelter structure UNCASED WELL CAVITY The 15"-12" diameter uncased portion of the borehole runs through a competent rock strata which consists of Cambrian through Orodovician aged dolomites and sandstor.es. The 1
 
    . c                                                                                                ,
i SARGENTSLUNDY .                .                                                  7-2 SIA 492 i
measured average ultimate strength of Orodovician dolomite was 16,834 psi and of the sand-stone was 10,050 psi. Also, information gathered from deep gas storage projects in Illinois indicates that the ultimate compressive strength of Ironton-Galesville S. ndstone is in excess of 16,000 psi. Based on these data, an ultimate compressive strength of 10,000 psi and ten-slie strength of 1,000 psi are conservatively used in the seismic evaluation of the uncased cavity.
The state of strain and stress is determined in the rock formation during the postulated SSE and is then compared with the strength of the rock. The procedure given in Reference 23 is used to determine the state of stress in rock. The procedure is a simplified approach based on expressions derived by Newmark (Reference 24). It is considered conservative and is commonly used for buried structures. In the precedure, the maximum strain in the soil or rock is determined due to the passage of the seismic compress;cn and shear waves. The direction of the particular wave propagation is selected to produce maximum strain in the structural element under consideration.
Maximum Strain and Stress due to Compression Waves The maximum axial strain sa is given by t
* t [vP i
Where v is the maximum particle velocity and Cpis the apparent wave velocity, which is the same as the compression wave velocity in the rock. Based on earthquake records, the maxi-mum particle acceleration a, the particle velocity v and the particle displacement d are related by the following equation (Reference 24):
                                                      = 5 to 15 v
In the above equation, ad/v 2 3 5 is usec' to conservatively derive the maximum particle ve.xity and thus yleid a conservative large strain in the rock.
t
 
b 8  0
  ~
SkRGENT S LUNDY -
7_3 SL-4492 1
The above equation is based on data recorded at the ground surface. However, as discussed in Section 6 describing the Tang-Shan earthquake it has been observed that particle vibration amplitudes generally decrease as the depth increases (References 25 and 26). Hence, the use of the particle velocity corresponding to the ground surface is conservative.
The peak particle velocity corresponding to 0.20 g ground acceleration is 0.88 foot /sec (d =
0.6 f t per RG = 1.60).
The compression wave velocity for dolomite and sandstone is 18,300 feet /sec (Exhibit 7-1).
Hence, the maximum strain in the rock ist c, = t 18, 0 = t 4.80 x 10-5 Maximum tensile stress : E c a where the modulus of elasticity of the rock is given by:
E=oC2=                (18,300)2 (o = mass density) p 6
          = 1.61205 x 10      ksf Maximum tensile stress          = 1.61205 x 106 x 4.30 x 10~0
                                      = 77.5 k/sq f t
                                      = 338 psi Maximum Strain and Stress Due to Shear Waves The maximum axial strain is given by:
v c
a"*{
i
 
    . e SARGENT8 LUNDY -
7_,
SL-4492
(
Where Cs is the shear wave velocity.
Since, the shear wave velocity for the rock stratum under consideration is 9,500 feet per second which is greater than half the compression wave velocity, the compression wave velocity gives the larger strain in the rock at the cavity surface.
The above evaluation shows that the maximum tensile stress during SSE in the rock at the well cavity is $38 ksi as compared to the rock's tensile strength of 1,000 psi. Hence, the rock at the cavity surface will not scab or chip during the postulated SSE.
16-INCH-DIAMETER STEEL PIPE CASING The casing is made of ASTM A33 Grade B steel pipe of outer diameter of 16.0" and wall thickness of 3/8". Af ter the casing was put in place, the gap between the rock and casing
(
was grouted with cement grout. Hence, during an earthquake, the relative motion of the casing is the same as the surrounding rock.
The lowest compression wave velocity and shear wave velocity in the upper layer of the rock formation are:
Ccs 7,500 f t/sec Cs    2,900 f t/sec Maximum Strain and Stress Due to Compression Waves Axial Strain c, = 1 h = t h = 1.17 x 10-4 P
Bending Strain cb * (C)2 p
k i
l 1
 
S$RGENTE LUNDY -                -
7_3 SL-4492
(
where R is the radius of the pipe and a is the particle acceleration. Hence, 6.44                      (Negligible as compared to axial strain) x cb = .385 x h0        (7500)2 = 2.94 x 10-8
      . . Maximum axial stress
        '                            = 29,000 x 1.17 x 10'4
                                    = 3.4 ksi Maximum Strain and Stress Due to Shear Waves c, = t      =2x      900 = 1.51 x 10'4 As shown previously, the maximum bending strain will be negligible as compared to the axial k      strain.
Maximum axial stress a 29,000 x 1.51 x 10'" = 4.4 ksi Hence, the maximum axial stress in the casing is 4.4 ksi as compared to the ASME allowable stress of 22.5 ksl(1.5 x 15 ksi). This gives a margin of safety of about 5.
8-INCH-DIAMETER DISCHARGE PIPE WITHIN THE CASING The discharge pipe with the motor and pump attached to its lower end is supported by the well casing through a head fitting at the ground elevation. Part of the vertical hanging discharge pipe is submerged in water. This will cause hydrodynamic coupling between the discharge pipe (also the pump and motor) and the casing. This hydrodynamic coupling effect is taken into account by using the method developed by Fritz (Reference 27). The fluid reaction forces Fgg and Ff 2, respectively, on the discharge pipe and the casing are given by:
Fft = -Mg$g+(Mg+M)$      g    2 i
 
SnROENT 5 LONDY ,              .                                                      76 SL-4492
(
Ff2"(H1+H)      H  1~(H1+N2+N)        H  2 where Mi a mass of water displaced by the discharge pipe as a solid M2      mass of water that can fill the casing in the absence of the discharge pipe bI+aE "H = M1b2 -a 2 where b is the inner radius of the casing and a is the outer radius of the discharge pipe.
          $1 and $ 2 are the horizontal accelerations of the discharge pipe and the casing, respec-1      tively.
In the analysis, the effect of the above hydrodynamic forces is taken into account in addition to the inertial forces on the discharge pipe.
The analytleal model for the system is shown in Exhibit 7-2. The discharge pipe is modeled by beam elements and the gaps between the discharge pipo (also the pump and motor) and the casing are modeled by nonlinear gap elements. Two cases have been considered in the analy-sis. One, earthquake occurs when the pump is not operating, and the second earthquake occurs when the pump is operating. In the first case, the 8-inch-diameter pipe does not have l        water in it up to a depth of 250' below ground. In the second case when the pump is operat-ing, there is a drawdown of water in the well to a depth of 373 feet below the ground levM and there is water in the discharge pipe. A nonlinear time-history analysis is performed using Sargent & Lundy NONLIN-2 program. The acceleration time-history used in the analysis is the same that was developed for the Byron Station and corresponds to the site safe shutdown earthquake response spectra. In the analysis, a 2% damping for the pipe has been used (RG 1.61).
(
{
 
SARGENTS LUNDY ,              .                                                    77
            .      .                                                                      SL-4492 i
Pipe Material and Geometry Material. SA-106 Grade B carbon steel pipe F y 35 ksi, Fu 60 ksi Geometry. 8"0 schedule 40 pipe wall thickness 0.322" OD = 8.625" Loads Dead Lcad (DL) = 14.53 kips (Pump not operating)
Dead Load (DL) = 23.71 Kips (Pump operating)
Maximum Downthrust (DT) = 16.7 kips Design Pressure (P) = 225 psi
(      Maximum Upthrust (UT)      10 kips Forces Seismic Loads                Pump Not Operating      Pump Operating Due to horizontelceismic (Sh)
,              Maximum moment                              11.83 Kit          16.25 Kf t Maximum shear                                0.82 K            1.13 K Due to vertical seismic (Sy)
Axlal force                                  11.77 K              19.2 K Stresses and Allowables Stress Pump Not        Pump            Allowable Load Combination            Operating    Operating          Stress          Margin Leve' A DL + (DT, UT or P)          3.72 ksi      4.16 ksi          15.0 ksi          3.6 l
 
-=
0    e SkRGENT S LUNDY -      -
7-8 SL-4492
(
Stress Pump Not          Pump              Allowable Load Combination            Operating        Operating            Stress        Margin Level C DL + P + Sh + S v                                                                              -
Membrane                    3.13 ksi        6.44 ksi          22.5ksi        3.5 Membrane + Bending
* 10.73 ksi      16.67 ksi          27.0 ksi      1.6
(*l.0 S h+ 0.4 S for y simultaneous component of earthquake)
The above analysis shows that the stresses induced in the discharge pipe during safe shutdown earthquake are well within the code allowables.
    !    MOTOR AND PUMP The dynamic analysis perfor med for the discharge pipe with the pump and motor attached to its lower end shows that maximum stress in the 8-inch-diameter pipe is 16.67 ksi. Since the pump and motor are structurally rigid and of rugged construction, stresses in these compo-nents will be less than the pipe stresses during the safe shutdown earthquake. Also the experience with wells, discussed in the literature review section, shows that there was no failure of the pump oi motor itself, even during much stronger earthquake events than the Byron SSE. Hence, the pumps and motor should perform well during and af ter the postulated safe shutdown carthquake.
8-INCH-DIAMETER BURIED DISC 11ARGE PIPE BCTWEEN PUMP SHELTER STRUCTURE AND THE STATION As mentioned before, the discharge pipe is buried in the trench which also has the seismic safety-related essential service water pipe.        Exhibit 7-3 shows a typical section of the trench. The pipe is buried about 6 feet below the ground surface.
(
 
=
SARGENTS LUNDY ,
79 SL-4492 i
The seismic strains and stresses in the pipe are calculated using the procedure given in Reference 23 (similar to one described for 16-inch-diameter steel pipe casing).
The loads acting on the buried pipe are:
              . Internal pressure, P (225 psi);
* Soil overburden and surcharge load, Lg;
* Thermal load, To (AT = 70* - 45' s 25'F): and a  Seismic load, Es '
For seismic stresses, a conservative, apparent wave velocity of 3000 feet /see has been used for both shear and compression waves (Reference 23).
(
Pipe Material and Geometry The pipe material and geometry are the same as the discharge pipe within the well casing.
Stresses and Allowables Load Combination                    Stress        , Allowable          Margin 1.0 Lg + 1.0 To+ P + 1.0 E s Membrane                            13.95 ksi    22.5 ksi                1.6 Membrene and Bending                18.83 ksi      27.0 ksi              1.4 The above analysis shows that the stresses induced in the pipe during the safe shutdown earthquake are well below the code at owables.
BURIED RE!NFORCED CONCRETE DUCTRUN Exhibit 7-4 shows a typical cross section of the ductrun with its reinforcements and
('      conduits. The major loads on the ductrun are the seismic loads and the thermal load. The
 
o  .
S$RGENTSLUNDY .                .
7_to SL-4492
(
thermal stresses are calculated assuming an installation temperature of 70*F and a winter temperature of 43'F (a temperature drop of 23'F). The seismic loads are calculated using the same procedure as for the buried discharge pipt (as given in Reference 23).
Stresses in the Longitudinal Reinforcement Stress due to temperature drop                  = 4.71 ksi Stress due to SSE                              = 7.78 ksi Total stress                              = 12.49 ksi Allowable                                = .95 Fy = 57 ksi Hence, the ductrun has a large safety margin against the safe shutdown earthquake.
PUMP SHELTER STRUCTURE This is a small reinforced concrete box-like structure which houses the wellhead fittings, the junction box, and cables connected to the wellhead. The structure is already designed for tornado loads. For seismic evaluation of the structure, the seismic loads are compared with the corresponding tornado pressure loads, and it is concluded that the seismic loads are much smaller than the tornado loads.
The frequency calculation for the wall and roof of the structure shows that the structure is very rigid (frequencies greater than 33 Hz). Hence, peak ground acceleration of 0.2 g was applied to determine the horizontal and vertical seismic load.
The 20-inch-thick walls are designed for a tornado wind pressure of 265 lb/f 2t . The 14 inch-thick roof slab is designed for a tornado wind pressure of 216 lb/f 2t . The equivalent accel-erations corresponding to these loads are 1.06 g for the wall and 1.23 g for the roof, as compared to the peak seismic acceleration of 0.2 g. Hence, the pump shelter structure has a large safety margin against the safe shutdown earthquake.
 
                                                                                                                                                )
SARGENT 5 LUNDy.                                            . Typical Geologic Pr: file                              Exhibit 71      J Showing Geophysical                                    SL 4492        '
Properties I
(Figure 2.5 26 from Byron FSAR)
E*
2
: a. A          .
Depth                                                                          !$a            e        Bba In feet                                                                          E,e            Ie        w3e
                                                                                                                                          ^
I,,,,
(not to              Graphic                              Unit                  !$$            i5          3 {>$:::,
i3            j1 p 3 $,
E scale)              Column                              Description            oRO            a. E 0
                          .; . '. 4                  .4, 4 4e*4,,                            ,    Overburden            1,000        ( 0.4 4)      (330)    110 130 4 ' *4,'#4 . ', #4                                              0,200
                          ##'4*                        '
15            /
7 /,                /4  '
Dunlelth                7,5 0'.. 0.37 0.41      2,900      147 164 7 f                          k              Dolomite              11,000                    3,500 90
                        ;.' ' ,' ,' 2 Guttenberg                                                    150 157
                                                      /
Dolomite              12,000      0.33 0.41      4,500 95            ',            '            '                            15,250                    6,000
                                                  ,              > Quimbys Mill                                                  156 166
                      . ' , ', ',                                  Dolomite
                      ~ ^                  '          '
101              -            -            -
                                      -            ', - Nachuss                                                                    162 168 g
u,                                ,
Dolomite 125    ,_ -                    -            -
                    ;, ', y                                        Grand Detour                                                  156 177 7
Dolomite 163'            '
                                              'l M                Miffiln                                                        I O O
* 10 0
                          -            -            'e            Dolomite 180              ' , ' ,
15,0 C 0    0.19 0.23      9,500 Peca onica                                                    146 160 Dolomite 202 Harmonv Hill
                                                                    ,Se Shsie                                                    11#*128 205 % 4,-
g;          = = = -
rt_c3        L c1t. r- e,E Dolomite
                          . . - . . ur , um 33 ayay11 e and                                          155 167 OE    Sandstone 227
                          .....              u. . .. .
                          ..........                              st. poter
::::::,*::                                                    (15,000)    (0.1s.0.23)    (e,500)      130 132 sand ione v v          s      s s
: v. .v. .      -
                                                  -e                cambrian through
                            .. . . t 1 1 (18,300)                  (11,000)    (152 159)
: :: 6,Y                                    omite and                        (0.2 2) 4                                                                  Sandstone
                          % f ~% g s '#-                        %  Precambrian M tsmorphic and
(                        f    f                    h\      i  , 'n e                (19,000)      (0.18)    (12,000)        (162)
                          "/ \ -A / -/                            gesement Rocke M2263 003 09 88                                                              Hote: Values in parentheses are estimated.
 
4
    . o SARGENT S LUNDy                -
Analytical Model for the                                      Exhibli 7 2 Discharge Pipe in the                                          SL 4492    l Casing i
J>>>>2sji>>i                            _
d                                      k        Gap element (2.94")
j      q
                                                        >pl                      typleal between discharge y            ,
t i
(        pipe and caelng I                            i          k e
i      o        i es                                    %%
a    .*
                              #1 d                                  %%
                                                  "'                          250'
                                $            ,              ,          k i
i  >
i Y            ,              i          k i      i >      a
                                            ,              i          k i      o        i
                                $                                      k
: a. s              as                  m
                              @d                                    %%
                                    .<, oora,osa.
aas,,,oas ...aako#--    .[._ Wster surtace i              i
(                          $                            i          k i
i      o        ,
e              i i
o      .
g                        1              (        Discharge pipe l                                            ,              ,
195'  Y                            i        k d  i    i i
as
                                $              ,                        5 l
                                              '    '  'h,i          m        Osp element (0.84")
Y              i    , ,      a        N        between motor and casing i
7y                ,
                                                ,    f  )
4  ,        (        Pump and motor i
l I
l i  l l
l I
U2263 004 09 88
 
Circulating Makeup and                                                                      Exhibit 7 3
                      'SARGENT 5 LUNDY                              .
SL 4492 Blowdown Piping-Typical Excavation and Backfill
(
                                                                                                                                                -Ground surface verles V
Regular compeeted escrfill compacted to 90% max clensity,                                                  ~ 48"4 line ASTM D698                                          ps , well                        Essential T470'.0"                            O                    dischstge          service      1 Ilne          V    water      j Controlled compacted                                                            -  a la 95% max donelty 9,867'.6"                                                      '
ASTM D1557                    -
6" min bedding -
Granular fill
(
l l
l l
(
M2263 005 09 88
 
      =
* T/pleal cross secti:n cf the                                  Exhibit 7 4 SARGENT S LUNDY                                                                                    SL 4492 Reinforced Concrete Ductrun
(
Y        e                            e              e-;  -3 . es T & B
                                      . 4"4 condult .                3"4 Conduit 3  2
                                                                -                    -O      #3 at 12" C.C.          .
y      e                            e              e 12                                            a l'              1' . 3 1/2"                  "I i
M2263.006 09 88
 
SARGENTS LUNDY '
a-1 SIA 492
(
Section 8 CONCLUSIONS The deep well system is one of two makeup sources for the Ultimate Heat Sink at the Byron Station. The ongoing drought has caused the level in the Rock River to drop below the limit specified in the !!miting condition for operatior. sf the Ultimate Heat Sink technical specifi-cation. That !!mit is 670.6 feet Mean Sea Level (MSL). As a result, Lyron Station has entered technical' specification action requirement 3.7.5e. This action requirement permits reactor operation to continue for an unlimited period of time as long as river flow remains greater than 700 cubic feet per second (cis) and river level remains above 664.7 feet MSL.
River flow must be verified every 12 hours under these conditions unit the level exceeds 670.6 feet MSL.
(
In order to relieve or roltigate these operational restrictions, an examination of the deep wells' seismic response has been completed. The methodology of examination consisted of two parts: first, a literature review and second, an analytical evaluation of the well system when subjectd to the maximum site seismicity.
EVALUATION BASED UPON LITERATUP.E REVIEW In general, earthquakes have been reported in the literature to have affected grour.dwater levels in a varlety of ways, most extensively by extrusion of sand, mud, and water from alluvial wells; fluctuations of groundwater levels: Increased turbidity of grour.dwaters changes in productivity of wells in jointed rocks failure of alluvial wells due to sitting of the pump column or due to differential movement of the well casing and the surrounding alluvial deposits; and, damage to or failure of associated pumping equipment (Reference 2).
The reported effects vary with a wide range of site-dependent parameters, such as the type of well construction; the geologic setting, the engineering characteristics of the soil and/or rock, and the felt ground motions. Six worldwide earthquakes have been described which
 
SIRGENTS LUNBT .                            -
3-2 SL-4492
(
lliustrate the ways in which earthquakes may affect wells and theh associated piping. Each earthquake selected for direct comparison produced magnitudes of strong motion which were 10 and as much as 130 times stronger than the postulated Byron SSE.
The selected earthquakes and reason for selection are as followst
                        =
San Fernando Valley Ms = 6.6 Minor damage to cased alluvial wells in a higt seismic area.
                        - Coalinga M3 = 6.2 Very high (0.4 to 0.6 g) peak ground accelerations in an area of major oil field wells. Variable damage to wells of different construction.
                        . Morgan Hill M3 = 6.2
(
Two simultaneous earthquakes affecting well-engineered buildings and water supply district facilities including wells, pumps, and reservoirs.
Chile Mg = 7.8 Two simultaneous earthquakes producing 120 seconds of strong motion with the effects of vertical peak ground accelerations of 0.8 g on wells of a water supply pumping station.
San Salvador Ms = 6.0 Repeated destructive earthquakes over a long time period (60 years) indicate well reliablilty when cased into foundation materials.
* Edgecumbe M3 = 6.3 Six magnitude M3 a 3.2 earthquakes occurred within 7 hours and caused extensive liquefaction around alluvial wells and associated piping. Demon-strates variable effects of ground failure on wells.
                        . Illinois Wells Describes wells in the site area which have been in operation since the late 1800s and which have withstood local seismological events.
I
 
o    .
SARGENT S LUNDY ,                .                                                    g_3
                -      .                                                                        SL-4492
(
The Byron groundwater wells were constructed in accordance with AWWA standards of practice A 100-66 and, are cased with ASTM A33 steel casir.g through the soll and r )ck to a depth of 700 feet. Individual lengths of well casing were welded together when installed.
The annular spaces between the boreholes and the well casings were grouted with cencrete grout from the bottom upward in order to seat the casings into the bedrock and to provide seats preventing the movement of soll or surface contaminants into the wells. The produc-tion portion of the wells consisted of uneased, open borehole in the Ironton-Galesville and          ,
                                                          ~
upper portion of the Mt. Simon sandstone, which have been reported as prolific sources or water for nearly 100 years by the Illinois Water Survey. The wells were overpumped after completion to remove any loose rock or drill cuttings. Subsequent pumping tests demon-strated the water yield for the Essential Service Cooling Tower makeup. The AWWA type of well construction, with the length of casing welded together and seated into the bedrock, provides the maximum strength for a groundwater well. Municipal or large-volume industrial I      wells in northern Illinois are generally of similar or lesser construction.
As noted in the literature review dsta presented, two conclusions may be drawn. First, worldwide experience indicates that deep, well-constructed, cased wells, either in alluvial solls or rock, have withstood a wide range of earthquake ground motions provided that the wells are not subjected to fault displacements, ground separation, landslide shear, or lateral spreading of Ilquefied soils. Based upon the extensive geologic and seismological investiga-tions of the site, no active faulting has been found within 200 miles, therefore, fault shears and ground separations will not occur. Second, groundwater wells in Illinois of similar or lower quality construction than the Byron wells have experienced no impairment of produc-tion resulting from ground motions associated with earthquakes, and in particular, local events such as the November 9,1968, earthquake in southern Illinois (epicentral Intensity VII) and the September 15, 1972, earthquake in northern Illinois (epicentral Intensity VI). Felt intensities in the vicinity of the Byron :.ite for these earthquakes were Intens!tles IV and V at ,
Byron. It is therefore concluded from the litera7re review that the deep wells at the Byron station would experience no damage or impairment of prwuction as a result of felt ground motions of intensity Vill or less.
(
 
SARGENTG MIf'dY ,              .                                                  g4 SL-4492 i
yell-Aquifer Resnonse to Seismic U.y.es Two additional earthquakes were researched to demonstrate the response of wells to earth-quake motion. From the Tang-Shan, Mss 7.8 event, measurements indicate that seismic displacements decrease with depth below the ground surface. Thus, the analyses of the Byron wells discussed in Section 7 which are based on acceleration at the greund surface, are conservative.
The Alaska, Ms    3.4 earthquake was reviewed to demonstrate the effect of a great. arth-quake on water levels in distant wells. In addition, the U.S. Geological Survey p' *cictk experiment at Packfield, California has a program that monitors water levels in water w W in an effort to predict earthquakes. A comparisor, of the Byron well coni'icas and the criteria used in the Parkfield experiment indicates that significant water level fluctuations caused by an earthquake would not occur in the Byron wells, therefore, well production woele; I
not be affected by kucn fluctuations.                                                        l EVALUATION BASED UPON DYNAMIC ANALYSES Seismic analyses of the components of the deep well system have been performed based on technically conservative and acceptable procedures generally used for similar seismic safety- l related components in the nuclear power industry. The items analyzed are        the uncased  i borehole cavity, the well casing, the discharge pipe witnin the casing, the motor and the pump, the buried discharge pipe between the pump shelter structure and the station, the buried concrete ductrun, and the pump shelter 1,:ructure. The results of the analyses show that strains and stresses induced in these components, during the safe shutdown earthquake (including the other normal loadd are well witnin the corresponding nlowables.
I I
I 1
 
SkE9ENTS LUNDY -                -
s-3
            .          .                                                                      SL-4492
(
Based on both the literature review and the dynamic analysis, it is concluded that the deep well system at the Byron Station is seismically quallfled for the safe shutdown earthquake and will remain functional af ter the postulated earthquake event.
SARG                N ,y                                          p-
,        G. Holish b                            .
                                                                    /wh
                                                                      )
ingh Suoervisor, Geotechnical Section                      Assistant Division Head Project Engineering Division                          Structural Analytical Division
              <f          L  bid                                      /'
keviewed by                                            Xprpaved by S. L. Wahlert                                          R. J. Netzel Structural Project Engineer                            Senior Structural Project Engineer
(    Structural Project Engineering Division                Structural Project Engineering Division A
_ l              !    j    '
                                                      ) .j k.,Ei.Jg:
                                        $ i' ' ' d'.IU .M, o...27ir69.. ':
i
 
SARSENTS LONDY -                                                                  91 SL-492
(
Section 9 REFERENCES
: 1. R. A. Parmilee, C. Ludtke, "Seismic Soll Structure Interaction of Buried Pipelines,"
Proceedings of U.S. National Conference on Earthquake Engineering, Earthquake Engineering Research Institute, Berkeley, CA,1973.
: 2. K. Kubo, "Behavior of Underground Waterpipes During Earthquake," Proceedings of the 5th World Conference on Earthquake Engineering, Vol.1,369, Rome, M74.
: 3. W. C. Walton and S. Csallany, "Yleids of Deep Sandstone Wells in Northern Illinois,"
Report of Investigation 43, State of Illinois,1962.
: 4. L. D. McGinnis, et al., "The Gravity Field and Tectonics of !!!!nols," tilinois State Geologic Survey Circular 494,1976.
: 5. M. D. Trifunac, A. G. Brady,"On the Correlation of Seismic Intensity Scales with Peaks
(          of Recorded Strong Ground Motion," Seismol. Soc. America Bulletin 63, 1:139-162, February 1973.
: 6. B. Gutenberg and C. F. Richter, Seismicity of the Earth, Princeton University Press, 2nd ed.,310 p.,1934.
: 7. O. W. Nuttli, "The Earthquak1 Preblem in the Eastern United States," ASCE Journal of Structural Division, Vol. 3, No. ST 6, June 1982.
: 8. M. G. Bonilla, "Surface Faulting and Related Effects," , Earthquake Engineering, 14 entice Hall Englewood Clifis, NJ,1970.
: 9. R. F. Yerkes and M. G. Bonilla, "Geologic Environment of the Van Norman Reservoirs area, in the Van Norman Reservoirs area of Northern San Fernando Valley, California,"
U.S. Geological Survey, Circular 691-A,1974.
: 10. 3. Isenberg, "Role of Corrosion in Water Pipeline P2rformance in Three U.S.
Earthquakes," Proceedings of the 2nd U.S. National Conference on Earthquake Engineering, Earthquake Engineering Research Institute, Berkeley, CA,1979.
      !!.  "Water and Sewage Lifellnes," Section IV Advisory Notes on Lifeline Earthquake Engineering Prepared by the Water and Sewage Committee of the ASCE Technical Council on Lifeline Earthquake Engineering ASCE,1983.
t
 
O    o SARGENT S LUNDY,                .
92
              .      .                                                                    SL-4492
(
: 12. J. B. Summers, Damag'a to irrigation Wells and Other Facilities in the Pleasant Valley Water District Due to the May 3,1983, Earthquake and Af tershocks," California Dept.
of Conservation, Division of Mines and Geology, Special Publication 66,1983.
: 13. Simon, Naasch, "The Morgan Hill Earthquake of April 24,1984 - Performance of Three Engineered Structures," Earthquake Spectra, Journal of the Earthquake Engineering Research Institute, Vol.1, No. 3, Berkeley, CA,1983.
: 14.  "Industrial Facilities," Journal of the Earthquake Engineering Research Institute, Vol. 2, No. 2, Berkeley, CA, February 1986.
: 15. J. R. Morgan, S. W. Swan, "Performance of Lifelines," Earthquake Spectra, Journal of the Earthquake Engineering Research Institute, Vol. 3, No. 3, August 1987.
: 16. M. S. Pender, T. W. Robertson, "Edgecumbe Earthquakes Reconnaissance Report,"
Earthquake Spectra, Journal of Earthquakes Engineering Resea';h Institute, Vol. 3, No. 4, Berkeley, CA, November 1987.
: 17. D. W. Gordon, et al., "The South-Central Illinois Earthquake of November 9,1968,"
  ;              Macroseitmic Studles, Seismological Society of America Bulletin, Vol. 60, No. 3, pp. 953-971,1970.
: 18. P. C. Helgold, "Notes on the Earthquakes of September 15,1972, in Northern Illinols,"
Illinois State Geological Survey Environmental Geology Notes, No. 59,1972.
: 19. P. C. Helgold, "Notes on the Earthquake of November 9,1968, in Southern Illinois,"
tilinois State Geological Survey Environmental Geology Notes, No. 24,1968.
: 20. R. C. Vorhis,1967, "Hydrologic Effects of the Earthquake of March 27, 1963, outside Alaska," United States Geological Survey Professional Paper,544-C,1967.
: 21. H. H. Cooper, et al., "The Response of Well Aquifer Systems to Seismic Waves," The Great Alaska Earthquake of 1964 - Hydrology Volume National Academy of Sciences, Washington, D.C., Publication 1603,1968.
: 22. Wang Jing-Ming, "The Distribution of Earthquake Damage to Underground Facilities During the 1976 Tang Shan Earthquake," Earthquake Sxctra, Journal of the Earthquake Engineering Research Institute. Vol.1, No.4, Earthquake Engineering Research Institute, Berkeley, CA, August 1983.
: 23. Committee on Seismic Analysis of the ASCE Structural Division Committee on Nuclear Structures and Materials, Seismic Response of Buried Pipes and Structural Components, Published by American Society of Civil Engineers, New York.
i
 
SANSENT S LUNDY .            .                                                      93
            .      .                                                                        St.-4492
: 24. N. M. Newmark, "Problems in Wave Propagation in Soll and Rock," International Symposium on Wave Propagation and Dynamic Properties of Earth Materials,"
University of New Mexico Press,1967.
: 25. N. M. Newmark, and E. Rosenblueth, Fundamentals of Earthquake Engineering, Prentice-Hall, Inc., New York, NY,1971.
: 26. Y. Ohsaki and T. Hagiwara, "On Effects of Soll and Foundation Upon Earthquake Inputs to Buildup," Research Paper No. 41, Bldg. Res. Inst. Minister of Construction, Japan, 1970.
: 27. R. J. Fritz, "The Effect of Liquids on Dynamic Motions of immersed Solids," Journal of Engineer.ng for Industry, February 1972.
: 28. W. B. Joyner, R. E. Warrick and A. A. Oliver, "Analysis of Seismograms from Downhole Array in Sediments Near San Francisco Bay," Bull. Sels. Soc. of America, Vol. 66, No. 3, June 1966.
: 29. G. Plafker, "Tectonic Deformation Associated with the 1964 Alaska Earthquake,"
Science 148, pp.1675-1687, June 1965.
: 30. P. C. Jennings, "Earthquake Eng!neering and Hazards Reduction in China," National Academy of Sciences Report, CSCPRC No. 8, Washington, D.C., N80.                            l
: 31. S. W. Swan, et al., "Ef fects on Industrial Installations, Buildings, and Other Facilities,"
Earthquake Spectra, Journal of the Earthquake Engineering Research Institute, Vol.1, No. 3, Berkeley, CA, May 1983.
: 32. H. N. Nazarian, "Water Well Design for Earthquake-Induced Motions," Journal of Power Division, ASCE P02, November 1973.
i
 
1 t
Appendix A Well Records l
M2263.007 09 88
 
Illinois State Wcter Survey . Culletta No. 40                                                            OREGON 03 1) Csunty
                                                                                                                -        -                              Mar.18.1944 The city of Oregon (2825) installed a public    Sample-study log of Well No. 2 furnished by the g
water supply in 1646.                                            State Geological Survey Originally, water for fire protection was ob.          Formation                    Thickne s s              De pth tained from a shallow well. In 1897. the well was                                                      it.          ft.
deepened to 1690 ft. This well is located close to the bank of the Rock River la the northeast      Pleistocene system "Clay, sandy"                                12        12 part of town. near the intersection of 3rd and 11-linois St. (or approximately 2300 ft. S. and 1500          "Gravel"                                    131        143 ft. E. of the N.W. corner of Section 3. T. 23 N.,            Granule gravel, clean                        3      146 R.10 E.). The surface elevation is 6721 ft. This    Ordovielen system well is 10 in. in diameter.                            St. Peter sandstone, chert and clay                                      26        172 Originally, water flowed from the well into  Cambrian system Trempealeau dolomite                            100        272 an excavated stone. curbed reservoir surround.
lag the well. 1:4 1931. the reservoir vras aban-        Franconta sandstone, some doned, and the well casing sealed. The suction            dolomite                                      88        3 60 side of each of the 2 Could triples pumps which        Gale sville sandstone previously had pumped water from the reservoir.            Sandstone, partly dolo-mitte                                    60        420 was connected to the well.
S and stone, inc ohe r e nt                73        493 In Sept.1947. the suction pumps were rea          Eau Claire shale and thin placed by the existing pumping equipment: 90 f t.        sandstone                                    447        940 of 6.in, column pipe; 15 stage Fairbanks. Morse        Mt. Simon sandstone                            260      1200 Pomona turbine, wate r lubricated pump, No.
SH1260s the overall length of the pump is 10 ft.:        The hole anc'. casing record is shown in Table 10 ft. of 6.tn. suction pipe 100 ft. of air linei  1.
40-hp.,1745 rpm. General Electric motor. No.
l                                                5309746.                                                                  TABLE 1 When :he turbine was installed, water was                            Hole Record pumped for 24 hr. at a rate of 450 gpm. On Dec.
: 2. 1947. the non. pumping water level was re-                    12 3/4.tn. to 1200 ft.
ported to be 5 ft. below the top of the well and when pumping at i6 gpm. the drawdown was 60                            Castne Record it.
20.in. od. from + 3.0 to 145 ft.
Analysis of a sample (Lab. No. !!2.800) col-                  below surface.
lected Dec. 2.1947 after 1.hr. pumping at 466                  14.in, od, from + 1.0 to 3 5 8 ft.
spm.. showed this water to have a hardness of                  19.tn. od. from 133 to 181 ft.
17.0 gr. per gal., a residue of 286 ppm.. and an tron content of 0.3 ppm.                                When the drilling had reached 962 ft.'s pro.
duction test was made by the State Water Survey The reservoir around the top of the well has  on Apr. 23.1948 using the following equipment been fille J in and a pum;, house butit over the    for te st purposes: 200 ft, of 7.in. id. co'umn well. Tae Gould pumps have not been removed        pipe; ll. stage turbine pump having an overall from ths pump house located 20 ft. south of the    length of 12 ft.: 200 ft, of 1/4-in, air lines elec.
w =11 but the pumps are disconnected from the      trte motor.
wels.
Before the tes the water level was 31 ft.
Well No. 2 was completed at a depth of 1200  from the top of the 20.tn. casing. After 3.hr.
ft. in July,1948 by Neely and Schtmelpfenig. Ba. pumping at 385 spm.. the drawdown was 71 ft.
tavia, and located 150 ft, east of Third St. and    and after an additional 7-hr. pumping at a final 150 f t. south of Franklin St. (or approximately    r ate of 735 spm.. the drawdon was 149 ft.
930 ft. S. and 1600 ft. E of the N. W. corner of  Thirty min. efter stopping the pump, the water Section 3). The ground elevation is 707t it.        level was 53 ft and !! hr. later the water level g
 
e      .
                . Cr: gen
                                                                                                ~
to 34 ft.                                .        a hardness of 17.2 gr. per gal., a resuue of 320
(                                                    ppm.. and an iron content of 1.1 ppm.
Partial analysis of a sample (Lab. No.
15.403) collected July 16.1948 after 51/4-hr.          Pumpage is estimated to average 265.000 umplag at 640 gym.. showed this water to have      gpd.
LABORATORY NO. !!2.800
: g.      eym.                          ppm. epm.
Iron (total) Te    0.3          Silica        $10        11.9 Manganese Mn      0.0          Fluoride      T            2.0 Calcium      Ca  60.0    3.00 Chloride      Cl          6.0  0.17 Magnesium Mg      34.5    2.84 Nitrate        NO,        T r. Tr.
Ammonium NHe      0.1    0.01 Sulfate        SO4        15.2  0.32 Sodium      Na    0.0    0.00 Alkalinity (as CACO3 ) 268.      5.36 Turbidity        T r.          Hardne s s (as CACO  3 ) 292. 5.84 Color              0            Re sidue                286.
Odor              Tr.          Temperature 57.30 T.
l i
l l
l i
I l
 
e        .
Illinois State Water Survey - Bulletin No. 40                    .        .                  ROCHELLE
                              .        .                                                                                        Ogle County Dec. 4.1947 t
The city of Rochelle (4200) established a          on Mar. 4.1949. Mr. J. H. Russell. Water mualcipal water supply about 1876.                    Superintendent, reported that the pumping equip-ment was replaced in 1948 by 190 ft. of column Water was first pumped from an old stone      pipe and a 5 in. 7-stage American Well Works guarry near the south end of town by 2 duplex        turbine pump rated at 350 gym. When pumping in pumps.                                                1948 at 225 spm. with this installation the draw.
down was 145 ft.
i                About 1897.Well No. I was drilled to a depth of 1896 ft. by T. M. Gray. Chicago and located            Well No. 3 was drilled to a depth of 1484 ft.
near the quarry, on the west side of Eighth St.      In 1923 by P. E. Millis and Co.. Byron, and is between Ave. "A" and Ave. "B". about 1000 ft.        located 150 ft. east of Well No. 2.
southwest of the pump station. The quarry supply was abandoned. The well is 8 la. la diameter at                            Hole Record the top and was reported to'be cased to about 70 ft. The well was abtndoned about 1907 but was                  20-in,        from surface to 131 ft.
cleaned and putbacklato service in 1919. at which              15-in.        from 170 to 301 ft.
time the non-pumping water level was reported                  12 1/2 in. from 301 to 1484 ft.
to be 12 ft. below the ground surface and the drawdown was 38 ft. when pumping at 500 spm.                            Casine Record In 1923 the water level was 30 ft.
16-in. od. from surface to 131 ft.
This well is equipped with 150 ft, of 4 in, column pipi; 4-in. 4-stage A. D. Cook turbine              The well is equipped with 140 ft.cf 8 in, col-pump; 10 ft. of 4 in, suction pipe; 169 ft. of air    umn pipe; 12 in. 6-stage American Well Works line which extends 19 ft. below the top of the        turbine pump rated at 600 gpm. at 1150 rpm.
bowls; 25.hp. U. S. electric motor. This pump          140 ft.of air line; 10 ft. of 8-in, suction pipe; 40 discharges at a rate of 190 gym. and is used to      hp. General Electric motor operating at 1140 rpm.
supply water to the swimming pool and is main-        Air line is to the top of the bowls.
tained as a standby for emergency use.
In 1930, it was repot'ed that this well pro.
Analysis of a sample (Lab. No. 41220) col. duced 680 gpm. with a drawdown of 77 ft. from a lected in June 1919. showed wate r from Well No.      non-pumping water levelof 35 ft. below the ground 1 to have a hardness of 16.9 gr. per gal., a rest-  surf ace. On Dec. 4.194 7. the non-pumping water due of 307 ppm., and no tron content,                level wa s e stimated to be 35 ft.below ground sur-face and the drawdoom was 100 ft. when pumping Well No. 2 was drilled in 1907 to a depth of  at 680 gpm. Mr. Russell reported that on Mar.
1026 ft, by the J. P. Miller Arte sian Well Co.. 4.1949, when pumping at 560 gpm.. the draw.
:'hicago, and is located just outside the power      do.vn wa s 140 ft, s ta tt o.. (approximately 400 ft. N. and 1000 ft. E.
of the S. W. corner of Section 24. T. 40 N.. R.1          Analysis of a sample (Lab. No. 82732) col-E.). The ground elevation is 7931 f t.                lected Jan. 6.1938, showed this water to have a hardness of 16.4 gr. per gal.. a residue of 328 In 4940.the well was"shot" and then plugged    ppm. and at: tron content of 0.07 ppm.
at 800 ft. by Frank Gray. A 10 in. casing was set from the surface to 150 ft. Grout was placed          Well No. 4 was completed to a depth of 1450 outside the casing.                                  f t. in Jan.1929 by P. E. Millis and Co.. and to-cated 1%0 ft, east of Well No. 3.
In 1930 the well was equipped with 145 ft of column pipe; 8-in. 8-stage Amr rican Well Works                            Hole Record i                              turbine pump rated at 250 gpm. 20-hp. U. S. Elec-tric Manufacturing Co. motor operating at 1800                    20 in. from surface to 135 ft.
I r pm.                                                            15-in, from 135 to 487 ft.
12-in. f rom 48 7 to 14 50 ft.
In 1930.the non pumping water level was re-ported to be 35 ft. below the ground surface, and                        h aine Record in Dec. 1947. the non-pumping water level was e stimated to be 35 ft.. and when pumping at 250              16-in. casing from surface to 135 ft.
spm.. the drawdown was 44 ft.                                  12-in liner from 426 to 487 ft.
 
e    .
2 - Rochelle                      .
I      The well is equ4 ped with 140 ft. of 8.in.            In 1947. one stage was added to the pump and        )
cclumn pipes 12.in.. 8. stage Arre rican Well        the pump installation consists of 140 ft. of 8.in.
Works turbine pump rated at 640 gym.: 10 ft. of      column pipe 6. stage Arnerican Well Works tur.
4.in. suction pipel140 ft.of air line 30.hp.. !!$0  bine pump. No. 61758, having a rated capacity of rpm. General Electric motor.                        650 gym.1 140 ft. of air line 10 ft. of 8.in. sue.
tion pipe 40.hp. General Electric motor.
In 1930.it was reported that.when pumping at 680 gym. the der.wdown was 77 ft. from a non.              This pump discharges at a rate of 525 to 575 pumping water level of 35 ft. below the ground      spm., directly into the mains.          In 1946, when s rface. On Dec. 4.1947. the non.pumplag water      pumping at 575 spm.. the drawdown was 92 ft.
I: vel was estimated to be 35 ft. below the ground  from a non. pumping water level of 36 ft.below surface and the drawdown was 91 ft. when pump.      the ground surface. The pump usually operates ing at 640 gym. Mr. Russell reported that on        24 hr.dailybut at present time is betag repaired.
Mar. 4 1949. when pumping at 660 gpm.. the drawdown was 96 ft.                                        Analysis of a sample (Lab. No. 83417) col.
lected Apr.28.1938, after 12.hr. pumping at 700 Analysis of a sample (Lab. No. !!2.801) col. spm.. showed the water to have a hardness of 1:cted Dec. 4.1947 after 2.hr. pumping at 640        16.3 gr. per gal., a re sidue of 278 ppm. and an 8Pm.. showed this water to have a hardness of        iron content of 1.3 ppm.
19.1 gr. per gal., a residue of 325 ppm. and an iron content of 3.9 ppm. A previous analysts of            Well No. 6 was drilled to a depth of 867 ft.
a sample (Lab. No. 82.731) collected in 1938        in 1942 by the McC thy Well Co.. St. Paul, showed the water to contain 2.0 ppm. tron. The      Minn. and locra ted on the north side of Ave. "C" t3mperature and qualityindicate s that little if any between South 3rd and South 4th St. (or approxt.
water is being obtained from the lower forma.        mately 1625 ft. 5. and 1525 ft. W. of Section 25).
tions.                                              The ground surface elevation is 800* ft.
t        Water from Wells No. l.2. 3.and 4 to pumped                          Hole Record                          )
to a re servoir.
19.in. from surf ace to 156 ft. 6 in.
12.in. from 156 ft. 6 in, to 783 ft.
Well No. 5 was drilled in 1938 to a depth of 8 I"'
502 ft. by W. L. Thorne Co.. Des Plaines, and                    30*tn. from 783 ft. 8 in, to 867 ft.
1rcated on the north side of Sixth St.. one half block east of Tourteenth St.. (or apprc,mimately Casine Record 2000 f t. N. and !!00 ft. W. of the 5. E. corner of Section 23). The elevation of the grour.d surface 12.in. casing from surface to 15 6 f t.
is 820* ft.                                                          6 in.
10.in. line r f rom 613 to 78 3 ft. 8 in.
Hole Record In 1942 the non. pumping water level wa s 40 10.in. to bottom of well.              ft. below the ground surface.
Castna Record                          The pump assembly consists of 150 ft, of 8 (n. column pipet 12.in. 8. stage Arnerican Well 15.in from + 1 ft. to 4 3 f t.            Works turbine pump, rated at 600 gpm.: 150 ft.
10-in, from el it, to lo t it, of air line; 20 ft. of 8.in. suction pipe 60.hp.
General Electric motor.
The to.in. casing was sealed in with neat ce*        This well has not been used for 2 years. but ment grout from the bottom to the top of the 15*      tt is expected to be returned to service, upon in, casing.                                            Installation of an iron removal plant about June.
1948.
A production test was made on Apr. 28. 1938 by the State Water Survey. A pump furnished by              Water from Wells 5 and 6 is pumped directly
)
j i    the dritter, was set at 200 ft. below the ground      into the mains.                                            g I      surface. Afte r 42.hr. pumping at 700 gpm.. the drandown was 47 ft, from a non. pumping level              In 1947. municipal pumpage aversted 11/4 of 3 6 f t. below the ground surface.                  mgd.
1 1
 
o        .
    . .. o Rochelle . 3
(                  Sample. study log of.Well No. 4 furnished by the state Oeological Surveys Formation                          Thickness M ft.          ft.
Plataleceae avatarrg Clay                                      4            4 Ordovician avstam Platteville dolomite                          87          91 Olenwood sendstone, dolomite, and
                .                      thin sha3e beds                            49        140 St. Peter formation Sand stone, inc ohe r e nt            300        440 Sandstone, chert and shale              70        510 Cambrian avstem Trempealeau dolomite. thin sand.
stone and shale beds                      100        610 Franconta dolomite and sendstone              95        705 Oslesville sandstone Sandstone, partly dolomitic            15        780 Sand s tone , incohe r ent              75        855 Eau Claire formation Sandstone. shale, and thin dolomite beds                        265        1820                  .
Sandstone. incoherent                  180        1300 C ambrian and Pre.C ambrian systems Mt. $1 mon and Fond du Lar sandstone s g
and thin shale beds                        150        1450 LABORATORY NO. 112.801 ppm.        epm.                              ppm.      epm.
Iron (total) Te        3.9                Silica        Stos        14.9 Manganese Mn          0.0                  T!uoride      T            0.4 Caletum      Ca      73.3          3.67    Chloride      CA            2.0    0.06 Magnesium Mg        34.8          2.86    Nitrate      NO          0.1 Tr.
Ammonium NHe          0.2          0.01    Sulfate      50,        14.3      0.24 Sodium      Na        3.7        0.16    Alkattnity (as Ca003 ) 320.        6.40 Turbidity            35                    Hardness (as CACO 3 ) 327,          6.53 Color                0                    Residue                  325.
Odor                Tr.                  Temperature 51.5* F.
l i
I            .
 
                                                                        .        . Illinois state Geological Sarwy                                                                  ?
LU Urbana, Illinci                                                                40                    Sec.
City of Rochelle M                                                                                L }0 N
I                                                                                                                                                                                  cele co.
Elevation: 78$ E.T.H.                                                                                            Sample set No. 41SC2, Drilled 1960 kr Webling Well Works            '"
Studied 3/6) by J.E. Rocke s    5                          7 111. dark brewn                                                      's      e    38' Fleistoosee          36      20 25          '*4 h. d and naval                                                                      CT        s  Y1',,
AA    M          /'e'  a      s' Till. -- -a v . 14 ht . par                                          e 54                                  Dolomite, yellowish-butt, finely crystal-                                          3
                                                                                                                                                                                                            ,,,f,'
                                                                                            ,o                                u.e                                                                        -
Platteville  119                                            Dolmite, light gray limestene, light 33 30              ' ' ,'              Lelosite, light butt 15$      %
lu    las                w.
m- d . e -
ri ,        - , . - -                          1 g
                                                                                                                                                                                                        ,p.E.
25            .,..;,
                                                                                                      ' , ' .,: y stone, vnite, fine to coeroe                                                            "
R Glenwood          $$            39o i
l ,'lt D                              5  ns                                                                                                !          >eet
: c.                          1s ro                            - =.m .a a .. .. m- - r ai a,,a. mm im t.ma                            i          i ati' Y                                                  : '.        .
g                                            ' ' , *.,                                                              '
L                                          !'*.%' ', !                                                                                              19'
                                                                                                          *: *:Saidstone,                                                                                  kole 3                        133                                                        partly arginaceous, fine to y                                            .'.J..,.
                                                                                                      .                      nedius St. Feter    145                          . ; --- -
S                                                  '.
g
                                                                                                                    ,'                                                                                  .C S                                  u$
y                            Av    m        ==-=rww.3._                      11 ,=.t  tadri . -a., -
E N
Shakopee        25      2$    g          J'l'feloalte,lightbrevn,firselycrystalline
                                                            !iew P.icascad 20      20    g g% aMstone,                  5          fine to amiing dolcaite; cherb
  !                                                                                                    -e-e 80                , 'f G 1calte, cherty, light grayis.% tuff, 4                        finely crystalline
,                                                          Cnecta        140            g Q l
W~
f,,o                                  Dolcaite, light grayish-brown to light
                                                                                                  ,3 j j                    pirAish-brown, firmly crystallian                                        ' q,
                                                                                          %0      i          )^                                                                                        g,,
Gunter -        yo    yo                  . . , . ,        Sandstene, time to mediua; doloalte, Jordan                      570                                caerty. light, tre w w>            '.                                                                                l 6$              q                      voloalte,11 gat tuff, sublithogroptLic                                      l c
fr p.co.      10$            .n      +
A 40                            [Dolcaite, glauconitic, tuff to light                                                I M
6,5    ,.p y                      grafi a-cuff R
                                                                                  'S            ghwlosite, glauconitic, light pirAishgrayi 2                                                    - -
eensstone, glanonstic, very tire                              <
A      ytanconia      8$            720 3
40              d' YSardstone, glaucenitic, dolcaitic, very S                                  760                                f18* %* I1L*3 11%%1' d'l'*1t* ''#* 'hal' f
y)                ..
                                                                                                                  ;    SaMatone, s11gatly glauccratic, dolcr.it1<                    ,                n3, S
790 '. ' l .,r,        O fine to ccarse                                                        "        '
l                                                j                            y3                W y Astcra, silty, fine to smila, little
                                                                                                    ..: , coarse M                                    825
(                                                                                                                Mstene, tarie to sedia, lit,tle ccarses                                          ! $ 's "
i                                                        Ircnk n -              M 0,desv111e 170 8
                                                                                        '55            ''
dolcr.ite, pirA                                                      l holt I                                                                                                              .
I 75
                                                                                                              .' IS*ri' ten * , btite very fine to a.11u=,
s s
                                                                                        ,30
                                                                                                  ' ' ,'.'' ' . incoherent  ..
u_ema c. aire            s! 5 .y3 s Oxul e . s aM r. li c. -                                        s  m rie r.i s -:n_rr            i
                                                                                                                                                                                                      ?O t
 
e      .
              ~
                                .N 0 6 k .                              .
            *t./
IJHG )          -
W- L L. L 1. 0.;.1. .t-.        A_T A Si t L L...I                                          .
(                        .=~
layno-Westem Company,Inc.
k' ,'.                                                              WATER SUPPLY C O N T ft A C T O R S
:pi w.si su.aa.i A    m,.        . Ave .. ii. . cowt .                                    P.+ r .it 2mgi eu                        ,
d Ab _ V111aag_ppcha11 a c-19 25GWell No.                                                                8                              Date Testea _ 10/10/75 (waiioa              _ Roc)1311a                                                                                                      Tested 07            A Atchauar-04 etWeli                  15          ,x 19h                                                                                        o,,ve,              250        H.P.. B.J.
0.oih of Well                        9 JJ '                                      Pump used.                                          Column and Snah                      10' Lt.igtm et A..i.no                    233'                                                                                            so.is            14"GM - 4 Stage Nam Piemp.ag Level                    107'                                                                                            v nut :io,,, _ Byron Jackeon o..ic s.ie                            10_2t 7                                                                                          smai No                  380443
                  .r ... .... ... .__ _. ...                              . . .,. .._.
                                                                                    ,. .. ., .... .e
                                    ....                                    ..                                                                    ... . ........                    e ..
_ .4              . . . . -            .._ -
1 20.
Start                                                                                              . . . _ _ , .. _ . . _          . ,
I                      . l          _,,        ,,
1: 2 5 . :.0 9. 5.                                1720                _ )8                      19 5 _L.8 8..._ 8 0 J                                                                        318240-240._.
1:35..[66                              .._. 1680___ __37                                        196                    89                  80        !              l gg                  _,
1:45.                64.5..b.1650                                        31                  _202._ _98...__80_I.-                                                  h                        235-235-235 -.
I                                          i
                                                                        .__ 31. _ . 2 0 2... . 95_. _7 0_..
sand 330-230-    - D5.rty
          '5...... 56.5 J 1554                                                                                                                                            I Sand          - D.30irt _
i                                                                                                                                                      230-231-231.y 2:05 _                58_.            4_.15.7.4                        _32_              _ 20L                        9.4                79                                                                                __
                                                                                                                                                          +
sand              Dirty 2:15 _. 58                                .      1574 _ _ 32                            ! 201 _ _ .9 4. . . 7 0.                                        . _          .
L230-2  ss an  0 3'31 .- -
2:25. .            .71.. .. 1760.                                        22              I 211              .
10.4                  __6 0_.                    I                        CIcaring                    __.
                    .                                                                                                                    l 235-233-235 2i35            8 69 . . _. _1J 4 0                                      22                    211                10.4                    6.0__j                                                  35 235-235
:.ttle Sand -
l21i
* I 2_:.4 5 68.5_ !                    i13s            l        22                                        io4                l_60          !                                            :,e ar        _                .
i l
                                                                                                                                                                                                    ,235-235-235 l                                        }                                                                        ~-
e i
82          I. 90 Litt1'e sand T 2 55._ 1.41                                _, .1).2 6                    44            p9                                                                                                    C1ea r.                              .
l              l                                        220-220-221 _
3: 00. . shut._Qam                                                                                                                  ,
                                                                                                                                              =        . _. .._          .                                                      . _ .
I              !                        !
I              I                                                          -
                    ., _ . _ . n                                              _        ._ - _ _                                                                                                    _
l                                                                        I                    !
j                  !
r i
1 l                                                                        !                                          !            l                  i
_., L . - ._                                                i l            .._..s._Lm._                  I
_ _;                - - ..~
 
e    e f                                                                      .h
          =                            .,                                                                        .
(                                        1111acis State Geological $arvey                                                        b urbane, tuaois m City of Roche n e We                          M J __g.
N C(e Co.
Elevation: 78) E.7.M.                                                                            Semple set No. 4150)
Drilled , 1960 kr Wh11 na Va ll Works                                                    Studied 4/1%J tty J :. Rcehe 15 's ' (Sc11. till sandy, rollow fjg W ooene          15 15                                                                                                            3,-
Dolomite, yellow, fiaely crysta uine6 4$
60                                till, simpd l
                                                                                                                                          " * .''?' '
Platteville    84 w    7o =
                                                                                  --T e . mm t uten to ma t mrr. - --
i l
a    99 ool m u. orar
                                                          -- M erratS t a. c, ught buft, rias.'.y                                      i          y l            f.
3g          .$'.,': Sandstone, light tsaffish-grey, medium, 130      **3*                      1accherent                                                            isa i            Closwood        71    15  us  _ N.snale, very sandy, light green, weak D                        23        '.4,.;.:.!Saruistone,                    light anatt, fine to coarse, 170            .. .
                                                                .                  insams                                                            211' g
V                                      , .',M . -Sardstone, mite, fine to medius, f                                  ' .,* .',{incoherent  ,
I                        0  235                  .        _Sandstons, vnite, fine to coarse 3
        '        N                                    .d Y, Sardstone, mite, medam to fine, 4$
280          .'.                    ince.herent 3        ,
y                        AV  %O                              cmmiatene. Alt a . erarna to fira                                              .
S                                                                                                                                    "'
7    St. Feter    295 E                                      *',
I                                        120            /.','.* Sardstone, light greyish knaff to 41te, fine to sotium, incoherent 410 ' , ' ' . ' ' . '
30 440 . *.. *-        ' ' .l.SaMstone, white, sed) .as, lacoberent 15  Ass                            isandstons, white u rjarse to fine 7
10  Ani .... . % Matene, rM ila( p . fi.not al.lta t c ra Woota          30  30        , , ;Doloalte, light tatt, finely crystau ine an 495 Ount.r .            25                                  j5aMstons, c.sers t, pidian, ineo ront                                      ,.
J 8d *^
                                          "T5"k,,,a  :=e_-==-psna rt 4:e 15 P.                          M
                                                                                ~}f{194_Aru.      gLE-Paff,
                                          ..=  SA,
                                                ,    S,                                                < w s.fA{rtel _. rystalli.,0,1
                                                                                                                                                  'x Dolomite, pir.aish-c.rown, finely cryst,af-.-      ,
30                            A        libel sandstons, v'.ite soilm, taccherst t C    lrespealeau    95      58 5                                                                                      '    ~~
welcaite,11e;ht trWu to pidish tuff, A                                          ,,
                  ;                            ,,,  a rasiy uystatune m e ne, n u to reo, n oei, ,,,st u ume, R
23 6?0  W                                        gQg          at botte
                                                                                                                                                  'a.
M y p .7* stece, grMOei A    tranconis      75                                                                                            m c,mumue, uat                                              very.,,stu n%una,- me 25                                    siltstoee, lia;nI.,,en, n,. green, sa. stone, fir 4                                                            '
700 3
                                                          . s.:. S'ituman                            Wto itu.iNa #J 40                                                    !                                              n.
                  !                            740 7
E                        j$                            .      SaMstone, light tuffish-gray, time to                                                            -
M                            .,,,      e..                      a.u u., a m m .nt a-
  <                    tro,to. -
k envius 1
2    ,,,
wwa,ur-o,w., fu. to mars.i
                                                                              , d stcro. e k fArA to Cearsteintohereb l'
                                                                                                                                ~
                                          -25  g1g
* l 40              , ' , -Sardstons, tite, fine to noiin, ISO                                inec.herent                                                                                          ;
              .,                          27        . , *
                                                                              .iSaMstons, light grayisb-cracao, fine to i                          F77        '.1                      cearse. ineeberent                                            70 FT4u 'laire      u.u      se.5 . Nt r. .al e . li m t rc wT. . w am
 
                          ...DOk          .
I','L      M0 tor = 310 Amp 3 wet.L TEST DATA SHEET
                                ~
                ,p                                (edyne-Westem Company,Inc.
WATER SUPPLY CONTRACTOAT.                                                                      ,
A .        .        A .... iiime., roboo .          P+e 3 ; asif.NI                      ',
17i weu in.
City Of Rochelle                                      Well No.              9              Date Testeet          Februarv 4. 1990
          .loh Park Well                                                                            T eiinl u y      W. Whisenant 1, n, ..i .o n Di ever 250 ft.P.                  490 v. Tye d D.a of wert 18 x 16 x 12                                                                                                                                      R/L coivmn.y m y                  10" T&C n.nih of weil                      869'6*                            p ,mn usc(
318'                                                                    u,mii 12"Hot - 10 stage CIBF
        . L. w n.itA. rime                                                                                                          .. c. D y r o n J a e k s o n n,,,, p ,mn.n,, t ,,.                63'                                                                  u.,.u t...
in  v 7                                                                !.cial Ne.        c-380443 ( 7 21-c-00 51 L O..r.ce 2,re                                                                                                                    u .-. . u . . _      ~                -
          . . --.        . .... .. ~-
c*
                                                          ,m........
                                                                  .....c..
                                                                                        .,      n...
e......,              I........
e~**....-.
5 . . .,
e..-..'~ T i 7 ....
                                .......,i                                                                                                                          .
70                248            185 l 80                185            433            H2O dirty
          , 15_                43.5              1364 180          80          185            429              218 -2 2_0__2. 2 0 Anp.
:20 I
j43.5                    1364                75                243                                                                              .
200          80          185            448              H2O dirty 225                    40.0              1311                55                263 i
50                268            205          80          185            453
:                      40.0              1311 85          196          466              220-220-222 Anp 140                    37.5              1274                48                270            207 45                273            210      100            231          504            H2O rusty 50                33                1200 45                  273            210      110            254          527              bloudy.
too                  34                1218 45                  273            210      110            254          527                                  . .. _ _
:10                  34                1218 45                  274          _21,0jl10                  254          527              G.qudy
:20                  34                1218 1218                45          _ 273                  210 (110                  254          527              Nosand 340                  34 1218                45                  273            210~T  ,110              254        i 527                blear 200                  34                                                    -
          .s l_o_ _ 34 _                            1218                45 .                273_          210  _
110            254 527              1,-
210 .110                  254            525              220-220-222 Anp 20              34                  1218                45                  273
                                                                .                                                    . -.            _ _ . .                        ~hhut Down.      -                                  -
I                                          ... _          ._      .
1218 GtM = ' sl(_.Qf ti/J_t4'LD.
Spe_qi_f.j_e i          _W_ ell Capacity._=                                                                            '.
210 ft/DD I                            1                                                                                                      .
                                                                                                              .. l i        .                .
                                                                                                      '                                                            I                                                    _
                                                                                    =
          ..__...                  _ = -._
i              i                          I              ,                  !
t l        .
l              l                  I                                                      =
l l                                    I            l            '_            l                    l                .
i                                              - -
l            l                          1 i                                  l                              . . .
i
 
e    .
111tnets State Cater Servey*. Calletta No. 40                                                                                                                                                                                STILLMAN VALLEY Ogle County Dec.3.1947 I          The village of Stillman Valley (333) tastalled                                                                                                                                  Worse and Co. oil. lubricated turbine pump. No.
a public water supply la 1938.                                                                                                                                                      35200. rated at ;00 gym against 250 ft. of head at 1759 rpm. the overall length of the pump is 7 Water is obtained from a well drilled to a                                                                                                                                    ft. 7 3/4 in.120 h. of 5.in od. suction pipel 10 depth of 300 n. La Aug.1934 by C. W. Varner.                                                                                                                                          hp. Fairbanks. Morse hollow shan motor operat.
Dubuque. tows. mad located 300 A. south of Roose.                                                                                                                                    ing at 1750 rpm.
ve14 St.and 160 ft. east of Spruce St. (or apprort.
mately 1100 A. N. and 1300 ft. E. of the S. W.                                                                                                                                                              Hole Record corner of Section 1. T. 24 N.. R.11 E.). The surface elevation is 7251 ft.                                                                                                                                                                      II.in, from surface to 160 ft.
8.ta. from 160 to 300 ft.
Correlated del 11er's log of well dettled in 1936 furnished by the State Geological Survey:                                                                                                                                                          Castna Reeted Formation                        Thichas e s                                                                                                          Death                  Il.in. from surface to 10 ft.
ft.                                                                                ft,.                  12.tn. from surface to 59 ft. 3 in.
8.tn. from surface to 161 ft. 4 in.
Pleistocene systens Sand and gravel                                                                    55                                                                      55            The driller reported a production test im.
Ordovietan system                                                                                                                                                                    mediately after completion. Aher pumping 9 hr.
Platteville formation                                                                                                                                                              at 203 gym..the drawdown was 55 ft. from a non.
Lime stone yellow and                                                                                                                                                pumping water level of 30 ft.
blue                                                                              60                                                                    115 Olenwood formation                                                                                                                                                                    Analysts of a sample (Lab. No. 112.797) col.
Shale and !!me                                                                    38                                                                      153        lected Dec. 3.1947 after 9.hr. pumping at 203 St. Peter formation                                                                                                                                                                spm. showed this water to have a hardness of Sand stone                                                          147                                                                                  300        17.7 gr. per gal., a residue of 310 ppm.. and an tron content of 1.1 ppm.
(
The pumping egulpment consists of 150 ft. of 4.tn.ed. column pipe 6.tn. 20. stage Fairbank s.                                                                                                                                          Pumpage is estimated to average 20.000 spd.
LABORATORY NO. 112.797 ppm.                                                                                          epm.                                            ppm. e pm.
,                                    Iron (total) Fe                                                        1.1                                                                          Silic a                Stoa          17.8 Manganese Mn                                Tr.                                                                                                    Fluoride                F              0.1 Calcium                Ca                            10.6                                                                                    3.53    Chloride                Cl              1.0  0.03 Magne sium Mg                                      30.7                                                                                    2.52    Nitrate                NO3            0.1 T r.
Ananonium NHe Tr.                                                                                                                          Tr.      Sulfate                504            8.4  0.18 Sodium                Na                                            0.0                                                                    0.00    Alkattnity (as C aCO ) 292. 3 5.84 T urbidity                                          20                                                                                              Hardne s s (as CACO            3  ) 303. 6.05
!                                      Color                                                                0                                                                              R e sidue                            310.
Odor                                        Tr.                                                                                                      Temperature 56' F.
I
 
e    e Illinole State Water Survey                                                              STILLMAN VALLEY I  '        Bulletin 40 Supplement 11                                                                Ogle County s                                                                                                October 10, 1960 Two wolle furaleh water to the public sup.        banks. Morse Pomona turbine pump. No. 175987 ply of Sttilman Valley ($98).                            rated at 280 gym. and connected to a 25.hp. e.
lectric motor.
WELL NO.1. described in Balletta 40. was completely rehabilitated and the purrip repatted                A mineral analyste of a sample (Lab. h v.
to 1957 or 1958. The well now to maintained for          153360) collected Oct. 6.1960 showed the waten emergency service.                                        In Well No. 2 to have a hardness of 16.5 gr. per gal.. total dissolved minerale of 194 ppm. . and WELL NQ. 2 was completed in Sept.1954            an tron content of 0.9 ppm.
to a depth of 445 f t. by Allabaugh Well Co. . Rock.
ford, and located adjacent to the elevated tank.                There are 150 services. Pampage to re.
or approntmately 300 ft. N. and 750 ft. E. of the        ported to average 40.000 syd.
: 5. W. corner of Section 1. 724N. AllE. The ground elevation at the well is 740. The well was cased with 159 f t. 6 in. of 12.tn. pipe and with 8                              TABLE A in. Pipe from the surf ace to 179 f t. 6 in. . below which the hole was fintehed 8 in in diameter to                        Water Level                                                      Dy 3 the bottom. The annulus betwe ets the two cas.                    f r om            to                                                    it.
tage and between the 8.in. casing and the wall of the 12 in hole was pressure grouted.                                  0          164                                                      0 164            190                                                    60 Dartog the drilling of the well, water levels              190            235                                                    58 were observed as shown in Table A.                                  235            290                                                    53 290            430                                                    50 The pumping equipment includes a Tatt.                      430            460                                                    36 L
l LABORATORY NO. 153360 ppm.      epm.                                    ppm.                                            epm.
Iron (total)      Te        0. 9          Stitca            Sto            10.8 Manganese        Mn      T r.            Fluoride          T              0. 2 Caletum          Ca      63.0      3.15  Beren              B              0. 0 M a g ne s ium    Mg      30.3      2.49  Chloride          Cl              0.                                              .00 Amm entum        NH. T r. T r. Nitrate            NO,            0. 6                                            .01 S o dt um        Na        4.        .17  Sulf ate          Se e            6. 0                                            .12 Analtntty (as CACO 3)            244.                                              5.64 T urbtdtty                  5            Hardness (as CaCOg)              282.                                              5.64 C olor                      0 Oder                        0              Total Dies olved Minerale        294.
i
 
6  .
      .                                                                                                    Ctlim.nst                M~                                              le 'h hO SY305 Qc ey
                                                                                                                                ~
To be. Poblished in 1989 by TJimois ce doqic.Survq.
The city of Byron (2035) installed a public water supply in 19Ju.
Three wells are in use.                                  In 1950 ti. ore wa ro 375 sorvices, 371 netered:
the average and maximum pumpages were 115,000                                                                and 140,000 gpd, respectively.                          In 1984 there were 871 services, all metered; tha average and maximum pumpages wore 460,000 and 620,005 gpd, respectively.                          The water is chlorinated and fluoridated.
WILL Wo. 1, finished in sand stone, wa s completed in .. . .,__
!        1900 to a depth of 2001 ft (cleanes out to                                                                        ft in 19 4 d) ty W.                                          it .
Gray and eros., ;hicago.                                  This well is pumped in con jur. tion with hell No. 2.                          The well is loc 2ted suutu of dain St. betveth 'Jhioti an!
Walnut Sts, in the main toon of the purnphaavs, approxi.nately 20 s3 f t
(
5 and 700 ft I of the NW corner of coction 32,123N, & 1 1 *. .                                                                                                        ". h t lant surface elevation at ti.e well is appro xi.'istely 720 't.
1 A drillers loq of kell NJ.                                  I follows:
Thickneca          Dspth Strata                                                                                                                                  (f+1            (ft) l l
Originally, a 12-ir.. disneter hole was drilled to a depth of 213 ft, redaced to 10 in. ostweer. 213 and lacu :t, reda:ea t.1 d is..
between 10.1) and Ica ) ft, atd finiswd 5 t r. . it. dtaaetat I r 0 *.                                                                                                    1*. 81 to 200J tt.                        The v6.11          4s oriat r.sily case d w it h ';-in. l i p + t r a.; $an!
 
    %    0 Curicco to o d:pth,of {13 ft.        In 1948, tho well eco ec2msd out and the hole has then reported to be 10 in. in diameter 'from ).and surface to a depth of 246 ft, 8 in. from 246 to 8 50 f t, and 6 in. from 855 to 1280 ft. The well was then cased with 12-in. pipe f rom land surf ace to a depth of 213 f t and 10-in. Pipe from about 1.5 ft above land surface to a depth of 40 f t (cemented in) ,
Upon completion, the well reportedly flowed.
In November 1947, the well reportedly producwd 3501pm with a draudown of 62 f t fron a nonpumping water level af 32 f t bc 1) w th+
pump base.
4
!                              In 1946, C. E. Verner, Cubuque, Iowa, reanel nat the hol;, instatici new casing, and shot the wall with 200 in c4:h at depths o' 305, o 4),
1150, and 1240 ft. The wwil was then clasnod oat to a de et'a of 12id i t. On August 23, 19 9, tha no n p 'anp i r. ) wat se level van r et' art el to be 50 tt below the p urph-)use floor (h.11 'h.            2 idit) .
The pumping equipment p re ser.tly i ru t a l le 1 i n a _ _ __, __ __ _ __ ___ __ _ _ _
pump svt at ___ ft, cated at 61) 1pm, anin power #. by 4 ; )- t. p 1775 rpn General Liectric motor (Model Na. In ris90, Jcrtal Na. E*Jb7ei?44).    .
l A kineral analysis made by the :llinois invironnental Protection Agenc y (La b. No. 537333) of a sanple coltected teoruary 27, 14o0, after pumping for 1 hr at 600 gpm, showcd the vator to have a hardness of 26 2 mg/1, total dissolved n.tnerals ot' 271 ng/1, and on iron )nten' of 0.15 nq/1.
l WELL Wo. 2, tinished tr. sandstane, .aa canpletoj in __________.
 
o      .
1929 to o depth cf 673 f t (31eanad cot to (75 f t in 19o6) oy p.
I.
81111s, afron.      This well is always pumpwd in conjun'etion with well I
No. 1 because of high chromiur content.                    The well is located in a small room south of the main room in the pumphouse about 14 ft southeast of sell No.                  1, approximate).y 2612 f t S and 706 ft 2 a: tne he corner of Section 32, T25N, R111.                  The land surf ace elevation at the voll is approximately 720 ft.
A sample study log of Well No. 2 f urnished by the Stat e 3eslogical S%rvey follows:
                                                            .                                                                                              Thickness        Dapth Strata                                                                                                                                    (ft)          (f t)
PLIISTOCENE SILILS Soil                                                                                                                                            15            15 i
Sar.3 and gravel                                                                                                                                145          2i)
OED0VICIAN SYSTEM St. peter Formation i
Sandstone, incoherer.t                                                                                                                          It3          D1 Sandstone, chert ar.d thir,shain Le ts                                                                                                          di          u.1 CAMBEIAN SYST1M
;            Treppealeau dolomite and chcrt                                                                                                                    55          *s5 Franconia sandstone, suale, and some du13mita                                                                                                      85          51)
Galesville Sandstone Sandstone, partly dolomiti:                                                                                                                      53          c39 Sandstone, incoherant                                                                                                                          43          073 l                                                                                                                                                                                      ,
A n S-in. diameter hole was drilled to a o v .)
* t o f 3 71 tt.                                                                                Ih-  =w il i
is caseo wit h 8-in. dri ve pies f ro.'i s to s                              save lar.1 sarfaca ei a depth of 212 ft.
l
[    .                                                                              ._                    -                                            _                .
 
O      e
                                                                      ~
In 1948,'.C  W. Tarner, Dubuque, Iowa, shot tne wel1 with 401 lo
(          of 100 percent nitrogel (200 lb per shot) a t 64 0 and 6 00 f +. .        The nonpupping water level was reported to be c 3 f t below lar.d surface bef ore shooting and 57 f t below land surface after shooting.            the hole was then cleaned out to 675 ft.        After this wort, the well reportedly producea 300 gpm with a dr 'wdown of 26 f t from a nonpumpit.g watet level of 39 f t below the pumphouse floor.
The pumping equipment presently installed consists of a 15-hp
    . 1775 rpm Gwneral Electric motor (sol-1 No. 12F4510, Serial N). r 5 2912 9) ,
a 10-in., 6-stage peerleas turotne pump (Gerial No. 62302) sat at 100
  .      ft, cated at 300 g pm, ar..I ha s 10J f t of b-in. column pipe.        4 10-ft section of 6-in, suction pipe is attachat to the punp intaAv.
!          A mineral analysis nadc py the lilina is invironnar.tal Protactinn Agency (ha b. No. 02dd79) of a dar.pl+ calle:ted J$nu sty 3,        1991, after pumping for 1 he at 3'0 s  1pm, shivva the water to tsve a nardneaa of 139 mg/1, total dissolved minerals of -1. .n J/1, a r.d a n i c u r c or.t e r.*. a t 0.0o9 siq/1.
I
          & 5-in. diametcc test hole was constructed in April 1964 to a depth of 14) f t by the Layne-Western Co. , Aurora.        It was locat?!
approximately 2650 f t 5 and 700 f t L or tha NW carner of sect ion 32, 225N, Elli. A temporary 2-in. casing was installed and the nonpumpini vater level on April 8, 1964, was report-d to be 52 ft neiov lanj surface.
i 1
4 W E!.L No. 3, f inishc i in aan,1ston , w a s co.npl$ted in Jgt emr e-      1 e rs ta a depth of 715 ft Ly the Layne-d est ari. Co. , Aurara.      This ==L1 waa
 
plac:4, in c;rvico in 1973. Tho v311 to locatcd abaut 153 f t east of market St. and 250 f t north of Second St. under t he eigvated tank, I  approximately 1310 f t s and 1820 f t 1 of the NW carner or section 32, T255, R11L. The isnd surf ace elevation at the well is approximately 7 20 f t.
      & drillers log of Well No. 3 follows:
T51ckness                      Dwpth Strata                                                                    (ft)  (f t) 1      1 niaca soil Brown clay                                                                              a      6 2
S and, gra vel, few boulders                                                          74      8a Boulders, drilled very rough                                                            3    d3 Sand, Jeavel, clay atcoaks, few co'11dars                                            02    175 i
Sand, gravel, clay                                                                    53    22d S ands tone                                                                          12    241 Sandstone, whita shale cuttin.;a                                                      23    2o3 117    374 St. Peter sandstone St. Peter sandstone, limesto ne ler.s:s                                              20    J90
: 4)      34 thite limestonc Brown Limestone, some chert, hard                                                    29    454 Sanastone, limestone and chert, hard'                                                  17  47o Light brown limestone, some chert, hard                                                19  495 As    $33 Green and brownish red sandstone 4  547 Limestone and chert 13    ,d )
S ands tone i
5  in) 5 Limeston9 t
13  e< ]
l Sanastons witn limestone lensen 5    t;4 i      White sandstone l
 
4                      -
Green chelo ccd browa 1_imeatcne                                        8        702  ;
Green and red shale                                                    is        715
(
l 4 22-in. diameter hole was drilled to a depth of 20 f t, ruduced to 19 in. between 20 and 250 f t, and finished 15 in. in diame+;er from 25a to 715 ft. The well is cased with 20-in. pipe f rom land surfacc to a depth of 23 f t and 16-in. Pipe f rom land surf ace to a dopth of 249 ft (cemented in) .
A production test was conducted on September 11-12, 1969, by representatives of the det11er an1        !11stt, llotmann 5 Aasa:iatos, Consulting Ingineers. After 24 hr of punging at ratos of 1012 to 12bd gpm, the final drawdown was 50 tt ?;ron a nanparpin; water Laval of 59                l ft be lov land surf ace.
I In May 1990, the well reportedly prodacet 415 gpn with a draviawn of 40 ft from a nonpurping water leval of 55 ft.
The pw3 ping equipment presently installea consists at a 75-Fp 1775 rpm U. 5. electric nator (.1o ic A Na, 11, serial No. r2Ja'196), s i
12-in., 4-stage Crane DemLnj turbina pamp (sadel W). *P),            Serial sa.
1 T 7137 6) , set at 150 ft, rated at 10JO 1pn at atcat 221 ft IDH, and has 150 ft of 8-in. column pipe.        A 13-ft sectian of 5-i;      suction pips is attached to the pump inta ke.
I i
l l                              The following nineral analysis made by tr4e Illino is Invironmental                  ,
Protection Agency (Lab. No. 83342iy is tot a water sampla from the                  l l
well collected January 26, 1982, af te r      1. 5 he of pu.mptn1 at 113) apa.
l l
WELL NO. 3, L%dCRATCSY NC. 33).,294 l
 
mg/l    me/1                                mg/l  Ce/1 0-              Iro n                                re  <0.005              4 :a : .        3102        9. 5 Manganese                            Mn    0.0 18            # 1.w rido      r            0.29  0.02 Ammonium                              NH4 <0.1                Boron            8            J.02 Sodium                                Na    3          0.13  Cyanide          CN          <u.005 Potassium                          K    3. 2      0.03  Nitrate          NO3          %.3  0.03 Calcium                              Ca  63          3.14  Ch10ridt        C1          2. 2  0.06 Magnesium                            ag  35.0        2. 8 d sulfato          504        30    0.62 Strontium                            Sr    0.105            Alkalinity (am caco 3)      285    5. 7 .1 i                  A rs enic                            As , <0.001            Hardriess    (as esco3)    149    5.98 Barium                                Ba    0.065 Ber y lli'im                          Se  <0.0005            Total Jtssolved minerais    347
!                C ad mi um                              Od  <0.00 3
(              ChromiJm                                Gr  < 0. 015 Cobalt                                  to  <0.005 I                  Copper                                Cu  < 1. J.13 Lead                                  Pb  <0.005 nercury                              Hg  <J.00005 Nickel                                Ni  <0.003 I                  selenium                              se  <0.031 silver                                  Ag  <0.005 Yanadium                              T    <0.004 sinc                                  Zn  <J.032            pH (as rec ed)        7. 4 t
1 i
9                                                  8 2}}

Latest revision as of 04:09, 13 November 2020

Rev 1 to Seismic Qualification of Byron Deep Wells
ML20196E217
Person / Time
Site: Byron  Constellation icon.png
Issue date: 11/30/1988
From:
SARGENT & LUNDY, INC.
To:
Shared Package
ML20196E192 List:
References
SL-4492, SL-4492-R01, SL-4492-R1, NUDOCS 8812090294
Download: ML20196E217 (85)


Text

. .

( [

t l

l t

l i

i t

, I I

t L

i  !

t

!( (

Saismic Qualification of the t i

Byron Deep Wolis  ;

1 8eport Prepared for I j Commonwealth Edison Company i

)

l St.4492  !

! November 1988 Havision 1 1

i M2263.001 1165 ss12090294 $91130 PDR ADOCK 05000454 p PDC

SARGENTS LUNDY , , i

, SL-4492 CONTENTS Section M ES EXECUTIVE

SUMMARY

ES-1 1 INTRODUCTION 1-1 2 WELL QUALIFICATION 2-1

~

3 BYRON WELL SITE 3-1 Well Description 3-1 Seismic Wave Transmission Characteristics of the Site 3-4 Earthquake Events Significant to the Site 3-4 Maximum Earthquake Potential 3-3

4 SEISMIC ENVIRONMENT COMPARISON 4-1 San Fernando Valley Earthquake 4-2 Description of Event 4-2 Byron Comper! son 4-3 Coalinga, California Earthquake 46 Description of Event 46 ,

Byron Site Comparison 47 Morgan Hill Earthquaka 4-7 Description of Event 47 Byron Comparison 49 Chile Earthquake, March 3,1985 4-9 Description of Event 4-9 Byron Comparison 4-10 San Salvador Earthquake 4-10 Description of Event 4-10 >

Byron Site Comparison 4-!!

m Noeue geog me asuma -88

SARGENT S LUNDY . , 11

- . SL-4492

(

i.

CONTENTS, Cont.

Section Pm Edgecumbe Earthquake 4-12 4-12 Description of Event Byron Site Comparison 4-13 3 ILLINOIS EARTHQUAKE WITHIN 100 MILES 5-1 6 WELL-AQUlFER RESPONSE TO SEISMIC WAVES 6-1 Alaska Earthdake 6-2 Description of Event 6-2 Tang-Shan Earthquake 6-3 Cescription of Event 6-3 7 SEISMIC ANALYSIS 7-1 Uncased Well Ca alty 7-1 Maximum Strain and Stross due ts Car 9pression ",' aves 7-2 Maximum Stmin and Stress due to Sher.r Waves 7-3 16-Inch-Diameter Steel Pipe Casing 7-4 Maximum Strain and Stress due to Compression Waves 7-4 Maximum strain and $tres: due to Shear Taves 7-5 8-Iruh Diameter Dischargo Plpe Within the Cas!ng 7 -)

P!:e Mat

  • trial and Geometry 7-7 L.oads 77 Forces
  • 7-7 Stresses and Allowables 7-7 Motor ind Pump 7-8 5 inch-Diamoter Buried Discharge Pipe Between Furnp Shelter Structure and the Station 7-3 Pipe Material and Geometry 7-9 Stresses and Allowables 7-9 i

SARGENTS LUNDY . .

111

- SL-4492

(

CONTENTS, Cont.

Section Page Buried Reinforca >ncrete Ductrun 7-9 Stresses in the Longitudinal Reinforcement 7-10 Pump Shelter Structure 7-10

. 8 CONCLUSIONS 3-1 Evaluation Based Upon Literature Review 3-1 Well-Aquifer Response to Selsmic Waves 3-4 Evaluation Based Upon Dynamic Analyses 3-4

. 9 REFERENCES 9-1

(

e

SARSENT & LUNDY , , iv

, SL-4492 i )

l TABLES i

Table 4-1 Pertinent Data on Wells near Earthquake Epicenters ,

I I

l l

)

l l

4 l

1 i

i f

I l

I L

. o SARGENTS LUN3Y , , v SL 4492 I

EXHIBITS Exhibit ES-1 Deep Well System for Byron Station 3-! Generalized Stratigraphy and Water-Yleiding Properties of the Rocks in Northern !!!inois 7-1 Typical Geologic Profile Showing Geophysical Properties (Figure 2.5-26 from Byron Station FSAR) 7-2 Analytical Model for the Discharge Pipe in the Casing 7-3 Circulating Makeup and Blowdown Piping--Typleal Excavation and Backfill 7-4 Typical Cross Section of the Reinforced Concrete Doctrun

\

l

SA38ENTELUNDY . .

ES-1

' SL-4492 1

EXECUTIVE

SUMMARY

The Byron Station utlilies the Rock River as a source of cooling water makeup for the Ultimate Heat Sink. The current Technical Spec 8tication - Plant Systems 3/4.7.5, Ultimate Heat Sink, has a minimum water level of 670.6 feet Mean Sea Level (MSL) specified in the limiting condition requirements. This report has been prepared to provide technical data in support of changes to be made to the technical specifications by se%mically qualifying the deep wells and thereby allowing greater station operation flexF ility in operating the Ultimate Heat Sink.

The qualification data consist of two categories: a literature review of wells, pumps, and pipeline innA.:hns in areas of high seismicity and an analytical examination of the seismic rock-well lateraction at the postulated levels of motions from the Byron Safe Shutdown

(

Earthquake (SSE) event.

Wells may be damaged during seismic events by massive permanent ground movements, such as those occurring acrcss faults and during ground rupture. Damage may also be caused by significant or large magnitude transient motions resulting frem traveling surface waves with accompanying well syst*m vibrat!)n.

The first three sections of this report describe % i Byron wells and pumping data, geologic conditions, and seismological environment. Subsequent sections provide descriptions of fatllity damage following eight worldwide destructive earthquakes, all of which have a larger magnitude and shorter return interval than the Byron SSE. The reismic environment descrip-tions are intended to dernonstrate the periormance of deep water supply c oil wells during and following the various carthquake events. In addition, data relating to municipal well e astruction has been collected to show the long-term performaxe of municipal wells of communities neighboring the Byron site which have experienced local earthquakes.

t

.- f

= - , . _ . - - - . _ . - . .

SA'RSENTS LUNDY , . Es-2 SL-4492 f

Performence data from the earthquake literature was compared to the actual well construc-tion at Byron and the postulated earthquake levels of the SSE. The performance data consisted of yield and content of the water, action of the pumps and any bacteriological contamination of the y,roundwater from the surface. The results indicate that wells have remained functional following earthquakes with larger magnitudes, higher accelerations, and longer duratlu motion created during multiple events. Tne literature also reported that wells have remained functional through repetitious large magnitude events in a 60-year history, and through the equivalent of six earthquakes equal to the Byron site SSE in a six and one-half hour duration.

The effects of earthquakes on ground water wells is shown to be dependent upon many factori that change with such variables.as earthquake mechanism, wave propagation geolo-gic setting, soil and rock characteristics, and well construction. For this reason, the effects i of earthquakes on groundwater wells near the Byron site have also been reviewed. Well rec.rds of the cities of Byron, Oregon, Rochelle, and Stillmaa Valley are reported in conjunc-tion with the four earthquakes reported within 100 miles of the Byron site. The wells of

^

these clues are still in service, and there has been no known permanent damage or impairment of pumpage of municipal groundwater wells in the Byron area as the result of earthquakes during the past 90 years.

I A review was made of both the Water Well Standards: State of California Bulletin 74-81 and the AWWA Standard for Water Wells, ANS!/AWWA, A 100-84 for seismic design criteria. ~

Neither standard provides guidancel however, they are used successfully for the installation of wells in areas of high seismicity. The Byron well exceeds the recommendations of these standards.

A seismic analysis was performed of the entire well system. The system constsa of a ,

1500-ft-deep borehole through competent unsolutioned dolomites and sandstones with a 16-inch-diameter steel casing cement grouted into a segment of total rock depth. An eight-  ;

inch-diameter discharge pipe hangs within the casing and supports the pump at its lower i end. A diagram of the well system is pacvided in Exhibit ES-1. The analysis conservatively i

O e SARGENTSLUNDY , ,

Es-3 SL-4 92 used the acceleration time history developed for the station and its response spectra envelope for the site SSE. The analysis concluded that the stresses induced in each component of the well system during the safe shutdown earthquake are well within the code allowables, in summary, both the review of literature which described the conditions of numerous water wells during and af ter earthquakes, and the seismic analysis which determined the well response and resulting - esses from the site SSE indicate that Byron site wells will remain functional af ter the d' , basis earthquake.

l l -

\

0 0 S' ARGENT 5 LUNDY. Deep well System Exhibit ES 1

  • - for Byron Station SL 4492 i

l

& Pump shelter structure

- . , , , , , , , n v ,

G ace surf r o u n d /,,', ,,[, ,, .,-

ll k Burled discharge C "I; Depth O' F '

Buried ductrun ,,, l pg p ,, g ,

aus l

kl 8"o Discharge pipe l""D i l_a s _'j' @ s Drawdown depth 250' water surface aus

l l ,

[ .4! Pump and motor

!'N%

If . Depth a 445' i

y=_  ;

16"o Casing --# ,

l I

l i l Depth a 700' I

4---. Well cavity in" e, or 12"o l

De,ih .1c:0-

[

l l

M2263 002 09 89 i

~

. o SARGENT & LONDY l-1 SL-4492 i

Section 1 INTRODUCTION Byron Station Units 1 and 2 utilize the Rock River as a source of makeup for the Ultimatg Heat Sink cooling towers. A minimum River Rock water level of 670.6 MSL is specified in the limiting condition require , ents of Technical Specification - Plant Systems 3/4.7.5, Ultimate Heat Sink. This report has been prepared to provide technical data in support of changes to be made in the Technical Specifications by seismically qualifying the Byron deep wells. These changes will allow greater station operation flexibility by reducing operat'.on restrictions that the Rock River low flow causes. The assessment is divided into two ,: ate-gories: a literature review of wells, pumps, and pipeline Insta!!ations in areas of high sels-micity and an analytical examination of the seismic rock-well interaction considering the in i situ dynamic rock characteristics. The qualification of the deep wells also includes the ancillary equipment, electrical and structural components, and associated piping.

A review of the relevant literature indicates that the competency of the surrounding medium plays an important role in the assessment of the dynamic response of the entire well-pipe system. Parametric studies have been performed which accounted for the effects of dynamic interaction (Reference !) when the surrounding medium is competent. From these studies it may be concluded that the effects of seismic interaction between buried pipellnes and surrounding soll medium are small and would not be directly responsible for system failure.

Seismic damage to wells and underground pipeline systems is caused primarily by sof t ground movement and faulting, traveling seismic waves, liquefaction of loose sandy soll, or stif fness differences of two horizontally adjacent soll layers (Reference 2). Based on this, the founding conditions of the Byron well system are reviewed to demonstrate their performance.

i l

l

SARGENT E LONDY , . 12 i

. SL-4t#92 )

The conclusions of the studies of earthquake hazard and selsmic well-rock interaction demon-strate that the wells at Byron will remain functional after the postulated SSE event. There-fore, specific changes to the Technical Specification - Plant Systems 3/4.7.5, Ultimate Heat Sink are recommended.

(

i l

l I

I SARSENTSLONDY ,

(.g92 Section 2 WEU (UAUFICAT10N Seismic damage to underground w, m. w Ww' S ru i vertical pumps is caused by permanent ground movements, such as those t - ' ing ca .s 'tults, at margins of I .ndslides, zones of liquefaction, surface rif ts, and grourk pturn. ' tmage is also caused by transient motions resulting from travelling waves. Pipelinc, because of their lateral extent, can indicate the extent of damage. This is particularly true in regions of large and variable permanent ground movements which are manifest by the variation in pipeline movement and the relative dis-placement and rotation at joints. Damage is evident by rupture of pipe adjtcent to a rigid wellhead joint, especially at a threaded root; and may be accompanied by lateral shear or

( fracture, axial buckling, or collapse of the supply pipe between joints.

Where ground shaking is dominated by wave effects, leakage at spots made thin by corrosion and disruption of caulking material in joints are more frequently the cause of failure.

The next section of the report describes the conditions at the Byron site, which includes the pump and well characteristics. Af ter that, data are reviewed from various worldwide destructive earthquakes, which in all cases have a larger magnitude and shorter return interval than the Byron site SSE or Operating Basis Earthquake (OBE). Where damage to wells or piping has been noted or where the wells have been found to be operable following the worldwide earthquakes, a description is provided. Following each earthquake description, a short comparison is made to the Byron site well conditions to illustrate the superior condi-tions of the existing deep wells. The rnost comprehensive knowledge of structure perform-ance was obtained from the assessments of earthquake damage by noted authors who provided descriptions of the damaged conditions but not necessarily the facilities which remained operational. Therefore, operational or functionally stable wells can be inferred from the damage reports.

I

SARGENTS LUNDY , . 2-2 SL-4492

(

A review was made of both the Water Well Standards: State of California Bulletin 74-81 and the AWWA Standard for Water Wells, ANSI /AWWA, A 100-84 for seismic design criteria.

Neither standard provides specific guidance however, each standard of practice has been used successfully in regions of the country where high levels of earthquake activity occur frequently. The Byron well construction exceeds the requirements of the AWWA and Call-fornia standards. ,

6 i

l J t I

0 0 SANSENT R LUNDY . . F1

. SL-4492

(

Section 3 BYRON WELL SITE WELL DESCRIPTION The design basis for the Byron well site is based upon recognized American Water Works

, Association (AWWA) standards, A 100-66, governing the installation of the water wells. The two Byron Station deep wells (W-1 and W-2) were completed in the Ironton and Galesville Sandstones of the Cambrian Ordovician Aquifer in 1974. The well as shown in Exhibit ES-1 was cased through the Galena-Platteville dolomites and open from the Ancell Group through the Ironton and Galesville Sandstones; the Ironton and Galesville Sandstone were the major producing zones. The groundwater rekurces in northern Illinois have been described in detall in numerous lilinois State Water Survey and State Geologic Survey reports. The geologic

(' stratigraphic column and aquifer descriptions are shown in Exhibit 3-1. As shown in Er.hibit 3-1, the deep sandstone aquifer contains, in descending order, the Galena-Platteville dolomite, Glenwood-St. Peter Sandstone, the Prairie du Chien series of Ordovician age; the Eminence-Potose dolomite, Franconia Formation, and Ironton-Galesville Sandstone of Cambrian age.

Cooling Tower Structure foundation grouting at Byron Station did not extend into the forma-tions open to the site water wells; therefore, the specific capacities are unaffected by onsite grouting. The actual well construction consists of a submersible pump suspended 443 f t below the ground surface by an 8-inch-diameter supply pipe.

The specific capacities obtained in 1974 during well development pumping tests were 10.3 gpm/It of drawdown at 620 gpm for 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br /> in well W-1 (east well) and 9.6 gpm/ft of draw-down at !!)0 gpm for 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> in well W-2 (west well). The pumping rate for W-1 was rela-tively constant for the initial 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br />, then was varied between 433 and 930 gpm during the last 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br /> of the test. The pumping rate for T-2 was relatively constant for the entire 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br />.

(

SARGENTS LONDY , . 3-2 SL-4492 i

A second aquifer pumping test was performed in November 1978 in order to demonstrate the ability of the station deep water wells to provide the design basis quantity of water makeup to the essential service water system during the 30-day period for safe shutdown. The specified pumping capability of 300 gpm per well or 1600 gpm for two wells exceeds the makeup needs for the worst 24-hour period following a Loss of Coolant Accident of 1545 gpm as documented in the FSAR Paragraph 9.2.5.3. The amount of makeup was conservatively calculated based on evaporation caused by the most extreme 24-hour weather period and conservatively includes $65 gpm blowdown for the 24-hour period. The aquifer pumping test consisted of pumping water W-1 at a continuous rate of $40 gpm while monitoring groundwater levels in water W-2 (Ironton-Galesville Sandstones), the grouting supply well TW-2 (St. Peter Sandstone), and an observation well TW-4 installed in the Ironton-Galesville Sandstone approximately 300 feet from water W-1 on the line connecting W-1, TW-2 and W-t

2. The aquifer pumping test consisted of a 22-ho"r pumping period followed by a recovery period of 1-1/2 hours.

The aquifer pumping test results demonstrated an adequate quantity of water; however, they also indicated that the aquifer tranzmissivity was 20,000 gpd/f t, the storage coefficient was 2.0 x 10'", and the specific capacity was 8.5 gpm/f t. These results indicated that in order to assure the necessary water supply during the station design life, the pump setting would have to be deepened because the specific capacity had decreased 15% since the well was first installed. On the basis of subsequen. caliper logging and well depth measurements, the apparent decline in well productivity was attributed to movement of loose sand from the St. Peter Sandstone, with partial blockage of the more productive aquifer strata in the lower portion of the well.

I Deep sandstone wells are commonly uncased through many of the deep aquifer formations similar to those that have been penetrated at the Byron well site because most of the bedrock encountered does not cave or swell. However, in order to ensure constant yields over time, hydrogeologists familiar to the area recommend casing off some of the lower i geologic units that cause problems. This has been reported by the lilinois State Water Survey

SARGENTSLONDY . .

3-3

  • . SL-4492

(

(Reference 3). The lower shales and conglomerates of the Glenwood-St. Peter Sandstone and some weak shales of the upper beds of the Eau Claire Formation often experience well-wall deterioration and, therefore, require casing for long-term as;urance of water supply.

The caving which occurred may be partially attributed to the local strata thickness, cemen-tation, and lithologic character of medium-grain rock as well as the friable nature of the segment of St. Peter Sandstone penetrated. The loss of this portion of the aquifer does not I have significant consequences because the caving units generally yleid small antaunts of waters therefore, additional casing and well deepening were undertaken.

Well modifications performed in W-1 and W-2 after the 1978 pumping test consisted of reaming and casing-off the caving St. Peter Sandstone, deepening the wells through the Ironton-Galesvllte Sandstones and into the upper portion of the Mt. Simon Sandstone, in-2 I creasing the pumps' lift-capacity and lowering the pump settings by 100 feet. The modified water wells are open from the Franconia Formation, through the Ironton and Calesville Sandstones and into the Mt. Simon Sandstone. The Ironton and Galesville Sandstones and the Mt. Simon Aquifer are the major producing zones.

l The specific capacities obtained during well development pumping tests in the modified wells were 12.3 gpm/f t of drawdown at 1330 gpm for 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br /> in W-1 and 12.2 gpm/f t of drawdown at 1210 gpm for 9 hours1.041667e-4 days <br />0.0025 hours <br />1.488095e-5 weeks <br />3.4245e-6 months <br /> in W-2. Whereas the pumping rate for W-1 was relatively constant for the entire 12-hour test, the pumping rate for W-2 was relatively constant for only the initial 9 hours1.041667e-4 days <br />0.0025 hours <br />1.488095e-5 weeks <br />3.4245e-6 months <br />, then was varied between 1200 and 1600 gpm during the last 3 hours3.472222e-5 days <br />8.333333e-4 hours <br />4.960317e-6 weeks <br />1.1415e-6 months <br /> of the test. The available drawdown in the two wells is approximately 123 feet based on a static i 1

water level of 230 feet and a pumping level of 373 feet. [

A third aquifer verification pumping test was performed in July 1930 af ter the well modifica-tions were completed in order to demonstrate the ability of the modified station water wells to provide the regulu . makeup to the essential service water system. The test consisted of t pumping W 1 at 790 gpm for 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br />. The test results indicated that the aquifer transmis- l 8

sivity is 40,000 gpd/f t, the storage coef ficient is 2.3 x 10'", and the specific capacity is 13.2 i

SARGENT S LONDY - -

3-4 SL-4492

(

gpm/f t. Based upon these aquifer charact.tristics and the equilibrium conditions achieved, it was concluded that the specified flow of 801 gpm/well could be sustained for 30 days.

SEISMIC WAVE TRANSMISSION CHARACTERISTICS OF THE SITE The engineering properties of the soils and bedrock units at the site were evaluated using field geophysical measurements and laboratory testing the properties were determined by laboratory testing.

Geophysical investigations were performed a6 the plant site. The velocity of compressional and shear wave propagation and other dynamic properties of the natural subsurface condi-tions were evaluated from these investigations, and the data were used in analyzing the response of the materials to earthquake leading.

(

Dynamic modull for the subsurface soll and rock at the site were calculated based on measured properties. The in situ field measurements were compared with labratory tests on the same materlats.

Seismic wave velocities and densities for the deeper rock strata in the region have been measured by others (Reference 4). The data confirmed field measurements, and were used in the seismic analysis of site wells to predict dynamic behavior.

EARTHQUAKE EVENTS SIGNIFICANT TO THE SITE t The most significant earthquakes in the region can be determined by analyzing the tectonic association of earthquake events with structure, i.e., identifying the earthquake epicenter and known fault or geologic structure. The most significant earthquakes in the region are the 1909 Intensity Vll Beloit earthquake, the 1972 Intensity VI northern Illinois earthquake, the 1912 Intensity VI northeastern Illinois earthquake, the 1804 Fort

Dearborn earthquake,

and the New Madrid earthquakes of 1811-1812. This evaluation is based on epicentral intensity, felt area, distance from the site, and tectonic association. Intensity is defined as the g

Modified Mercalli Intensity scale of 1931 as abridged and rewritten by C. F. Richter. The 4

SARGENTSLONDY , , 33 cL-4 H 7 scale is a measure of the effect of the earthquake and is categorized by levels of I through Xil. Level Vil is defined by the following description: "Most people are frightened and run outdoors. Many find it difficult to stand. The vibration is noticed by persons driving motor cars. Large bells ring."

MAXIMUM EARTHQUAKE POTENTIAL The maximum earthquake which could be expected would be an Intensity Vil event similar to the 1909 Beloit Intensity VII event near the site. This is equivalent also to the occurrence of the largest event which has ever bean recorded within the Central Stable Region, and v.hich cannot yet be associated with a specific structure or structural regions it is therefore described as random. The level of ground motion experienced from a near field VII event would envelop the motion expected from a recurrence of a New Madrid-type event at the closest approach of the Mississippi Embayment, a distance of 330 miles from the site.

(

The recommended safe shutcown earthquake was defined as the occurrence of an Intensity VII event near the site. This near field event would produce maximum horizontal ground accelerations of 0.13 g (Reference 3).

However, at the time of the review of the construction permit application, the NRC consid-I ered the occurrence of an earthquake of Intensity VI!! to be equally probable (a low order or probability) at any place in the Eastern Central Stable Region. The NRC also took the posi-tion th ., based on the postulated occurrence of an Intensity Vill at the site, a safe shutdown earthquake of 0.2 g at the bedrock soll interface was adequately conservative for the Byron Station.

I

. O

  • SARSENT S LUNDY oenerailmed stratigraphy and Exhibit 321

' Water Yleiding Properties of S L.449 2 the Plocks in Northern Illinois e.r , .....u, me.. u. woi

.. ,mi a a. .. n . u . en m .. =a .m.nu n ,-,u..

mi.. . .

..m u on. .u..

. . . o i.

m.

.u ..

t r.. t i nn m.u .. w... . . . ,, .iu u. a .

.a. . u.i..a.un,n.,

.a.

r. .

wm , ., .

n..i

. . . . .noe. m... . a , . . u. . . m.. ". 3* ,. e. , .u. m u ., .. ..

f 6 .. .u .

n.u.m. .

...n. .u

i. u. in.

.i .m rm w.....

uf,o..n. n.a...

. u .,.n .u. o.,.r... .

j. ., ... .i

.u... m

,. . s u n. ..., . ..

m,... m. .mii ..u u ,.m m.t .

N.s. , i.w.n....

= ,a .:r- .m = ;ag, .am ..n so . n.a n . u.. s .u,.

  • g.
a. .

.u.,

. ,l.i u. o .

7 a

...a...

. .n.

n ..

... -=. .... m..,.. u..n ., o

., u , .

c - m

.u - m.. ..m, n . .u .,

! c .e . . i. .a .

. .. h .a.m g 3 .o . u.

. u.a . n.,.m ....,m x .

. . . . u, mo . n. . . . u . m. ..o.. . . .u n .a. . . m..

....o. .

5 m.u.

u.. ,i. % .n ,, no .m....,.c.u

.u. m.m.ma -

m .

.rm.

u.u.

m .m . -

u.m... .m. aa ] -

mi h . t,,u.,, a .w.. ma..

m u. ..m

- ..n.

n..u.a..

.. , ., .m. J. ..m..mu, %n .. oai i.,um.

n.m.,ma .

.ati j_ ,: .

..u. .a .

_.  ; ._.c .u.m.. ..

m .m e.

.u.

~ . . n. n..

/., . n m. .

m,.u.,n.m.r .

. m... u . u .. - a.. . ..m-u.it . . .um,-s n.m.nm. .a n..n .n..m.-

j i..

m u e.m.u

, u. .m.

.u . n.u. , . ou..mm n ..

4

. -,-~

m.......

m. .

, u.

.a.n.m....

uu- mu eu

.'.t ..

n a. . . a. =u. . u n . . u., ... u. ,

l s_ .n . .. .. .u s. ,u.. . u.n. ,..,.m.. .m.. a.

en

. mu. .

n.  ; -

.o m u . ..

m a ama.n. ,

...~to

. ..ml. m...,. ., ao,.m. o n...... .

J

n. . . n. ..m. a=am 1 u .. .n .

,- .u..,..

. u

.. ..m., n.imc .,

. w .u I-m m.

i

m......

.. .n.

n ..

. u u n..

. ..n. - a, u.. h,.u.,

i u

. . n.

C... .u

. s n. . .

u . e , .m,u u, n m.iu.u...

u. ,.

uT

. ..~...i..... cm. ..

o.

< m

. i

m. n.,m .,.,u...

u.m.

.un

.u.

a.f..m.

um.o .n.ti.,...a.

.n.

, n.. . . n.. . .. . ..

.,....... ..n .

.. c m nb n..

a.. g s. . .m .e n

.g ,,1 . m.n . . .n . .u .

u m . ~nni...4. i... . . .

o . s .,

. .i

-.-,. u. o. .

s. . mm n. u -n . u . .
m. o.m.. .. . ec . . . .
i. i, u.m..,. u. ..

1 y

I.

m. . .m .

.s mn .n

....u... u ,.

u .c.

. .. en u.. .m. .,

, ..n. ..,u .~

. m. n .m.m.. . i m ....u

. . nu...om.,m . . m,..m.o.

W l .

m..u....

. .c u . n.m. . .m .

8 t. n u, m u , . .,.. m. m .a..m.. ..

i..u. .. u.n.a. ..i... .n. . un.*it.,.a m..,~ ., . i ..

m. a.. . n ..

.m u. .m..L m . . .u~ ,. m ...

+ ,%. .

.s

.n,...

.nnun.

. a l

..u no . .a,*. . .. .,

. f%. uu. ,

...u .4- m. -.

.u

....,mu,...,..- i

n. m a.nu.

J. ..

u.n.. . me .. .. ..,o , a .

.a l.a... .. .u

+

.e n m..~ .m i

I ,.. . . n . . . .n a m n. u l

i M2342.009 1188

SAB0ENTSLONDY , .

g.g

. . SL-4492 i

Section 4 SEISMIC ENVIRONMENT COMPARfSON Researching a lifeline or system response to an earthquake was selected as a means of assessing the Byron well's ability to withstand comparable earthquakes therefore, recent worldwide data were reviewed. For the comparison, water well and well pump performrnce of six recent worldwide earthquakes was examined in addition to four earthquakes reported within 100 miles of the Byron site. Worldwide data were selected which had much greater

- magnitudes than the Byron postulated SSE in order to demonstrate effects of earthquakes where ground rupture (M, a 6.0) has occurred, while the !!!!nols data illustrate response in local areat. Worldwide earthquake data are presented in terms of magnitude M. The magni-tude M represents a part of the frequency spectrum of seismic waves and therefore respre-sents a physical parameter of the earthquake. For earthquakes at very great distances from the recording station, selsmic surface waves with a period around 20 seconds are of ten dominant on seismograms: the wavelength of these waves is about 60 km. Beno Gutenberg (Reference 6) used this characteristic by defining the amplitude of surface waves with a period of 20 seconds and calling them surface magnitude or Ms . It should be noted that magnitude scales use small numbers to express vast differences in earthquake size. In absolute terms of radiation of seismic energy, energy release increases about 32 times with each increase in magnitude unit. Because the amount of energy radiation reflected in the magnitude scale increases geometrically, small differences in magnitude are much more significant at the higher ends of the scales than they are at the lower ends. The dif ference in radiated energy between earthquake M 7.9 and 3.0, for example, is about one million times larger than the dif ferences between earthquakes M:3.9 and 4.0.

Nuttii(Reference 7) reports that carthquakes east of the Rocky Mountains, in general, do not rupture the earth's surface, while the worldwide events do. Worldwide evidence from historical surface faulting events shows that nearly all ground ruptures have closely followed pre-existing f ault traces. Displacements have occurred repeatedly along or near the same f auy i,t ad nearly always with the same sense of offset as that which can be inferred for w

SARGENT 8,LUNDY 4-2 i SL-4492 the recent geologic past (Reference 3). As reported, and accepted by the NRC staff, there is  !

no evidence of surface faulting near the Byron station. The absence of this condition suggests that the potential of damage could only be related to shaking or vibration. In the  !

larger earthquakes, the stress drops are greater for the eastern earthquakes than for the worldwide events.

The worldwide seismic events selected for comparison with the Byron conditions are as follows:

. San Fernando Valley, California, 9 February 71

a Morgan Hill, California ,24 April 34

  • Santiago, Chile, 3 March SS
  • San Salvador, El Salvador,10 Cctober 36
  • Edgecumbe, New Zealand, 2 March 37 The Illinois earthquakes within 100 miles of the Byron Station include:
  • Beloit, 'A isconsin 1909 MM VII i N.E. !!!inois 1912 MM VI f

+

Rock Island 1934 MM VI

. N. !!!inois 1972 MM VI i k

The discussion of the Illinois earthquakes and their significance on local munlcipal wells is presented in Section 3 of this report. i L

f SAN FERNANDO VALLEY EARTHQUAKE 1

Description of Event l

The San Fernando Valley earthquake (M g a 6.6) dramatically demonstrated that seismic design of maior lifelines needed more attention. A detailed examination of pipeline leaks and l

(

t SARSENT S LUNBY . . 4-3

- . SL-4492 I

eastern San Fernando Valley. The surface-faulting effects of the 1971 earthquake have been documented in detall(U.S. Geologic Survey Staff 1971). The zone of surface ruptures was 9.3 miles long extending from the western side of San Fernando to Big Tujunga canyon. Detalleo mapping showed that five separate segments of the fault zone were activated at the surface during the earthquake. The character of ground deformation varied along each segment. The distal parts of the fault zone were marked by relatively simple rupture zones less than 13 feet wide. in contrast, fractures of the west central segment r onsisted of a main belt of thrusting about 230 to 630 feet wide with displacements of 7 feet. The earthquake was accompanied by permanent ground distortion, including uplift and horizontal displacements.

The maximum uplif t was about 7 feet, while horliontal displacements, locally of more than 7 feet, occurring over a broad area showed an abrupt discontinunity along the zone of surface faulting in the pattern and amount of horizontal distortion (Reference 9). The causes of approximately 90 leaks at 71 locations were determined from repair reports of the Los t Angeles Department of Water and Power (Reference 10). The repair reports demonstrate the aerial extent of severe shaking and indicate the location, size, and type of pipe, type of damage, type of soll, and the presence of internal or external corrosion. Also, in the area where earthquake damage tends to occur, the depth to bedrock changes rapidly and, hence, changes in ground motion that affect p! pes may be expected.

The performance of 21 water wells located in the epicentral area, particularly those in the city of San Fernando which were closest to the areas of maximum ground displacement and surface rupturing, was examined with the aid of television cameras. The postearthquake condition or performance of the wells was judged principally by comparing the yle!d and content of the water, the action of the pumps, and the results of bacteriological tests. The results of the study (Reference 7) Indicated the following:

  • A cased well can withstand severe ;round upilf ts and lateral shif ting and compression of the surrounding soil short of actual rupturing, without irreparable damage to either the casing or the pump.
  • The California cable-tool method of construction used for the water well was found to be satisfactory in resisting the ground motions experienced in the earthquake. The principal distress was cracking and lateral shif ting of the i concrete pads attached to the pumps.

SARGENTS LUNDY , .

4-4 SL-4492

(

It is significant that 20 of the 21 deep wells drilled in the unconsolidated sand, gravel, and finer sediment; withstood the severe ground shaking and uplif t without any appreciable damage. Only well No. 7, a 375-f t-deep well drilled in 1960, was distorted due to earth movements. The 18-in. ID double 8 gauge steel pipe casing with perforations below 88 f t was found distorted in shape and twisted by severe movements when photographed. There were no other reported well f ailures in the San Fernando Valley study. Table 4.1 Indicates the data en walls in the San Fernando epicentral area that are pertinent to the Byron site. A more detailed description of three water wells selected for their age and past performance af ter the earthquake follows.

Well No.1. The oldest in the system, Well No, I was drilled to a depth of $34 feet by cable tools in 1901. It was cased to an unknown depth with a 15-inch ID riveted steel casing with

( riveted joints. The pump is an electric-driven, deep-well turbine type supported on a concrete base. The pump house is constructed of corrugated metal with a concrete floor stab. This well was located south of the zone of tectonic rupturing and was operating at the time of the earthquake. The post-earthquake survey showed there was no structural damage to the well and well house, and the operation of the well had not been impaired.

Well No. 2. Drilled in 1910 to a depth of 250 feet using a cable tool method, Well No. 2 was cased to full depth with a 13-inch ID riveted steel casing with riveted joints. The casing was perforated with a milling Mife. The pump is an electric-driven, deep-well turbine pump set directly on a concrete pad. Well No. 2 is outside of the zone of ruptures however, the general ground around the well was raised over 3 feet. Photographs of the well, taken with a three-dimensional down hole camera, both above and below the water surface, showed that the casing was in good shape considering its age. Joints of the casing were rough, the perfora-tions were enlarged, and several deformations in the lower casing, where it was pushed in at the }oint, were recorded. Af ter remedial measures were taken near the surface to seat out contamination, the well resumed operation.

(

Well No. 7. Drilled in 1960 by a cable tool method to a depth of 376 feet, Well No. 7 has an

O e SARSENTS LONDY - -

4-3 SL-4492

(

18-inch ID double 3-gauge stovepipe casing with telescoping joints. The pump is an electric-l driven submersible type with the well discharge housed in a 3-foot-deep concrete pit. The well is located in the west central rone of ground rupture, and the damage survey revealed that the electric cable had split open near the top of the well creating a short circuit. A calipher check was m4de of the 18-inch casing with the following results indicating the l ovaling of the pipe to the following dimensions:

0-130 it 17.625 inch 150-180 f t 17.250 inch 180-230 ft 17.0 inch 230-280 f t 13.373 inch 280-304 f t 14 inch 304-309 it 7.75 inch l

Because of the distortion and twisting of the casing, the well was considered beyond repair.

The well was abandoned and filled with concretes however, a new replacement well was

!! Installed 160 feet away from the abandoned well.

i Byron Comparison l Table 4-1 Indicates the data on wells in the San Fernando epicentral area that are pertina it to the the Byron site. The Byron deep well and associated piping are ASTM A33 welded steel casing and welded steel supply pipe covered under ANSI B39.1 pressure piping. The Byron well casing has a 3/8-inch wall thickness which exceeds the December 1981 Water Well Standards for the State of California Bulletin 74-81. Both the well and supply piping are grouted into the dolomite bedrock above the regional groundwater table. The highly active geologic conditions and loose soli conditions which greatly contributed to the damage in the San Fernando Valley simply do not exist at the Byron site. Yerkes (Reference 9) reports that i

an approximate messure of historical frequency of damaging earthquakes in the region where a ma}ority of these wells are located is provided by the record since 1800. The record indicates that some part of the Los Angeles area has been shaken by a moderate or large event on the average of about once every 4 years. In terms of exposure to damaging earthquakes, the 1300 mi2 miles of urbanized Los Angeles basin where the referenced wells in Table 4.1 are drilled, has been shaken at MM1VII (B>ron SSE) at least once in the last ISO l

t

l i

SIROENT S LONDY . -

44 SL-4492  :

years. Approximately 91% of that area has been shaken twice or more; about $7% has been shaken 3 times or mores about 27% has been shaken 4 times or mores and about 9% has been ,

shaken five times or more. A direct comparison cannot be made between the superior construction materials and competent fault-free founding conditions at the Byron site and the poorer quality materials and unconsolidated founding strata in California. However, given the more severe environment, it is noted that 20 of the 21 deep alluvial wells in the San Fernando Valley remained functional following the M, = 6.6 earthquake and associated subsequent ground failure or differential soll movement generated failures.

The deep wells at Byron are expected to survive the Byron SSE (M, = 3.3) because of the much lower magnitude of grou4 motion compared to San Fernando and because of the superior foundation material (competent bedrock)in which the wells are located.

I COALINGA, CALIFORNIA EARTHQUAKE Description of Event The M s 6.2 earthquake sequence provides an opportunity to study damage in representative water distributlen pipeline systems and major all field deep wells. The main shock has been estimated as M, = 6.3 and a large af tershxk as magnitude Mt = 3.1. The distribution systems and oil field experienced ground surface motions of 0.4 to 0.6 g with 0.3 g as a reasonable estimate for the entire network (Reference !!). The oil field wells are within 2 km of the earthquake epicenter and were reported to experience a ground surface accelera-tion of 0.6 g.

Where damage occurred to wells, the extent of damaged systems varied according to the use and type of construction used for the well. The various investigators who surveyed post-earthquake condicions described damage according to one of three categories of wells: water supply wells, irrlEation wells, and oil wells. The irrigation wells suffered the greatest damage. This could be expected because these wells generally have the least controls placed on them by the state installation specifications. The most frequently reported damage was failure of the pump head as a result of being shaken out of alignment and knocked off its

S$$SENTS LUNDY , . g.7

- SL-4492

(

foundation, in addition,2 of the 23 Irrigation well reports indicated that light wall casings partially collapsed due to ground rupture (Reference 12). However, of the more than 1000 wells in the Shell Company oil field, where American Petroleum Institute (API) recommended practices are used, resulting in better constructed welded steel cased we!!s, none sustained losses of any consequence to subsurface equipment. 011 productim had decreased for a short period, but returned to normal only days later.

Darnage to oil field pumping Jacks was reported with several Jacks coming to rest at angles of up to 45' af ter the earthquakes subsided. In addition, observations were made indicating that ground separation occurred for distances of 1000 to 1300 feet, with evidence of both high-Intensity and long-duration excitation in other oil field structures.

Byron Site Comparison

\

The two nearly simultaneous Coalinga earthquakes demonstrated that the quality of con-struction is an important factor in seismic design. In both the pipenne reports and wel!

! examination documentation, poorer quality materials: 1.e., transite pipe and poorly mounted irrigation pumps suffered the greatest damage.

The ATWA specified Byron deep well construction and materials closely fo!!ow petroleum or API recommended practices for wel! construction utilizing 3/3-in;h-thick welded ASTM A33 steel. The Byron type of construct:on is very similar to that used in the Shell Oil wells nearby to the Coatinga event which did not sustain significant subsurface damage, although the ground surface accelerations were between 0.4 and 0.6 g, and ground separation occurred in the highly variable sand and gravel deposits. The Byron deep v, ells are founded in competent rock and, if exposed to the much less severe 0.2 g ground acceleration due to the postulated SSE, will remain functional.

I MORGAN HILL EARTHQUAKE Description of Event lt On April 24,1934, a moderate earthquake of M3 6.2 occurred in the vicinity of Morgan Hill,

SIRSENTEI. UNDY. . g.g

  • - SL-4492

(

Califxnla. Relatively strong and duration-significant shak'.ng was experienced. The five closest strong motion accelergraphs registered peak accelerations of 0.31 g, 0.5 g, 0.63 g, 0.41 g, and 1.29 g which were recorded at the abutment of a dam. Because of the 72 accelergraph records obtained, observations from the earthquake are of engineering signifi-cance. The records taken for this event demonstrate the distinctive characteristic of this earthquake. The records give clear evidence of excitations from two sources with different characteristics. The first source provides a high frequency motion. A later event with a lower frequency content starts about 10 seconds af ter the first event (Reference 13). .

1 The response of equipment at three localindustrialinstallations is examined to show the lack

- of damage to well-engineered structures. The installations are IBM Santa Teresa 1.abora-tories, United Technologies Chemical Systems (UTCS), and the Santa Clara Valley Water District (SCVWD). Free fleid peak ground accelerations were as follows:  !

l

. IBM measured at a distance of 100 yards from the building N-S 0.45 g, E-T I O.23 g and vertical 0.50 g

- UTCS, estimated values 0.4 g to 0.5 gi and

  • 3CVWD estimated and variable 0.45 g to 0.60 g. ,

The results of inspections of these facilities and associated piping are reported by Swan (Reference 13). Because of the quality of seismic design and construction, the facilities f experienced no significant damage despite the relatively high levels of selsmic motion. It l should be noted that the UTCS facility, which covers 3200 acres, did not report well damage [

but did suffer some piping damage. Major piping damage involved 37 breaks in underground lines. Pipe diameters ranged from 6 to 10 inches, depths from 60 to 120 inches. Buried lines l

included transite pipe, cast iron, ductile iron, and mortar or concrete-lined pipe. Most breaks occurred in the cast iron or the concrete lined steel pipe primarily at connections and as a l result of ground failure. l l

The Santa Clara Valley Water District's principal facilities consist of a wide varlety of pump stations and hydraulic structures, located from 6 to 27 miles from the epicenter of the earth-  !

, L quakes, and varying in age from a few years to over 50 years. The ecuipment suffered either i

4 0 SAR8ENT S LONSY , ,

g.9 SL-4492 1

no damage or minor and functionally insignificant damage from the earthquake.

Byron Comparison The well facilities at Byron are designed and constructed using methods and engineering standards of the American Water Works Association (AWWA) with materials specified by ASTM or API specifications, and like tL facilities of the Morgan Hill earthquake should not suffer damage. The Byron water supply , stem is not founded in materLsis which may realize ground failure or any !Meral shif t in rock strata during earthquake ground motion. In addi-tion, the method of pipeline trench and backfill construction was closely monitored according to Quality Control and Quality Assurance procedures and documentation.

CHILE EARTHQUAKE, MARCH 3,1985

. Description of Event A major earthquake of magnitude (Mt 7.8) occurred of f the coast of central Chile af fe: ting the populated areas of. Santiago and Valparaiso. A major network of strong motion instru-ments recorded the event. From the evaluation of these records, Saragoni (Reference 14) concludeo that the event ' involved two successive shocks: the first o! magnitude M3 = 3.3 .

with a duration of strong motion of 10 seconds, and the sacond, which occurred 10 seconds i later, of magnitude ML = 7.5 with a strong motion duration of 30 seconds. The duration of ,

recorded motion was as much as 120 seconds. The peak ground accelerations measured for .

the earthquake at Milipilla were 0.67 g N-S direction and 0.60 g in the E-T direction. f Post-earthquake reports described the performance of deep wells at the 24 year old Bata t Shoe Factory located on the outskirts of Milipilla (Reference 14), The onsite well is located i

near the northeast corner of the facility with a nearby vertical storage tank. Steel plates welded to the base of each tank leg are embedded in the concrete foundation. The concrete foundation spalled and cracked however, the tank was not damaged and the well was avail-

! able for use following the earthquake. The well was a ISO-mm-diameter cased hole through

, the overburden soils into a sandstone-like aquifer.

( Water supply systems were damagee primarily due to soll foundation failure and liquefac- r

i l

i

3ARSENTS LONDY '

[Lk92 I

tion. The most notable occurrence of well performance occurred at the San Juan de Llolleo ,

pumping plant. The pumping plant was constructed on poorly consolidated solls whlen had  !

suffered considerable disturbance end settlements from previous earthquakes. At this station, peak ground accelerations were 0.67 g horizontal and 0.81 g vertical.

The main structures at the pumping plant are a two-story building and a basement concrete frame building with masonry infl!!ed walls which house well pumps. The facility has six pumps and well casings 30 m (160 f t) deep. The plant has a maximum capacity of 4601/s (7300 gpm). Dam' age to the prmphouse consisted of differential settlement of up to 200 mm (8 inches), a tilted second story and partial collapse of one wall. One of the pumps in the pumphouse suffered a crack to the vertical discharge tube casing at old weld repairs due to an earlier nonearthquake-related crack. Af ter repairs to the cracked concrete and broken welds, the facility was operable in spite of the large differential settlement. More detailed I

descriptions of the Chile earthquake are available in Reference 14.

Byron Coinparison

)

i The postulated maximum vertical and horizontal acceleration of the Byron site is approxi-mately one-sixth and one-fourth, respectively, of the accelerations measured at the Llolleo pumping plant. In addition, the founding conditions at Byron well site consist of competent ambrian-Ordovician age sandstone and dolomites which are far superior to the unconsoll-dated solls of the pumping station de,cribed it is, therefore, expected that the Byron cased well grouted in bedrock will ;;#orm better than the cased wells at the .Mlr ynping station and Bata shoe l',ctory, which were subject to large liquefaction induced fround i movements, but nevertneless remained functional.

SAN SALVADOR EARTHQUAKE Description of Event The October 10, 1936, San Salvador magnitude Ms s 3.6 was selected because this earthquake represents the latest in a series of damaging earthquakes to the cit) and also because the I damage assessment provides a description of the effects of the earthquake on deep wells and

SABOEWT4LONDY -

41f SL-4492

(

pumping stations.

During the last 276 years, the interval between destructive upper-crusted earthqunes at San Salvador has ranged from 2 to 66 years and has averaged about 23 years. The last earthquake prior to the 1986 event occurred on May 3,1963, and was recorded as magnitude M, = 6.0 event which is typleal for the area.

The descriptions prepared by the Earthquake Engineering Research Institute (EERI) inspec-tion team, headed by S. W. Swan (Reference 15), has provided a complete description of well l and pump performance: "The water pianping stations, which pumped from both groundwater ar;d tanks, include vertical deep (150') well pumps (ranging from 100 hp to 300 hp). These pemps, for the most part, performed well. Some pumps have minor out-of-balance related vibration problems, and only one pump in the city's oldest pumping station (cire.1925) burned

( out following restart af ter the earthquake." The failed pump was later examined and found to have had pre-earthquake severe cavitation and corrosion distress within the impeller casings however, the distress was exacerbated due to the strong motion experienced. l L

Byron Site Comparison As indicated, this particular event was selected for comparison because of the frequency of  !

destructive earthquakes and the fact that the adequate pump and well system performance continued over 60 years at the San Salvador city site. At the Byron site, the NRC postulated SSE MM VI!! event (magnitude M, a 3.3), which has never occurred within two hundred miles of the site and has an estimated return interval in excess of the 2150 years calculated for the OBE event with a site intensity of Vll. The expected performance of the Byron wells which are grouted into Silurian and portions of Ordovician aged bedrock will be superior to the existing San Salvador city we!!s installed without grouting into volcanic deposits and sub-jected to many earthquakes. The Byron wells should be better than the San Salvador wells, and they will remain functional even if the postulated Byron SSE should occur, because cf the much less frequent seismic activities at Byron.

t

SARGENTS LUNDY . -

4-12

- . SL-4492

(

EDGECUMBE EARTilQUAKE Description of Event Modified Mercalliintensities of 1X and X were reported as a result of the magnitude ML * 3 ,

earthquake located near the town of Edgecumbe in the North Island of New Zealand on March 2,1937. Strong motion accelergraphs recorded peak ground accelerat'ons of 0.33 g within 13 km (9.3 miles) of the epicenter. Of particular interest is accc'mpanying seismic activity before and af ter the principal shock, each of which was greater than Mt : 3.2 mag-  ;

nitude. The foreshock and subsequent four af tershocks were within a 6-1/2-hour time period. The main shock produced a complex series of surface ground ruptures, the longest ,

being 7 km (4.3 miles) long with a 1.3 m (4.3 f t) extension and 1.3 m (4.9 f t) downthrown  !

surface. There was extensive evidence of level ground !!quefaction and lateral spreading.

Analysis of the strong motion accelergraphs indicated that the main shock response spectra

( was comparable to design levels of a ISO-year return period.

The affected area geology consists of later Quaternary rhyoletic volcanics and Mesogole greywacke with Quaternary alluvium consisting of alternating sequences of mainly pumice- ,

derived alluvial sand and gravel, tephra sand, and marine slit and sand. The wat.er table varies from 0 to 3 m (9.1 f t) below the ground surface with shallow wells as the primary source of water. i l

The behastor of existing functional wells is reported by Pender (Reference 16). Three types of responses were reported by local residents and were noted as i

. wells with water level below ground had flows above ground a wells capped, with a pressure gauge, indicated a rise in pressure af ter the earthquake amounted to several tens of kPa (1 kPa e 20.57 ps!): and

. some well walls moved laterally and allowed water to flow between the .

casing and soil, t

i I

i i

O .

sah8ENT4 LUNBY * . 4-13 st.-4492

' r i

i Damaga to water supply piping was again used as a measure of the extent of damage. The  ;

demage was major t;ecause of the poor quality types of material and methods of construc- l

) tion. Water supply piping consisted of 100 mm (4 in.) diameter asbestos cement pipes with a ,

glued socket. The pipes were buried about 750 mm (2,5 f t) below the ground surface.

According to local reports, compression failures at pipe joints contributed to the shortening of one !I km (6.8 iniles) pipeline by 6 m (20 f t).

A natural gas pipeline consisting of a welded Steel pipe,200 mm (8 in.) diameter crossed the main fault trace at roughly right angles to the strike. The pipeline suffered very little darnage. Deformation of the pipeline was confined to ger.tle warping over a relatively wide fault zone.

Byron Site Comparison The Edgecumbe event .. selected for comparison primarily because wells of poorer con-struction quality in an unconulidated loose soll were subjected to six earthquakes equal or i

greater than the Byron SSE within seven hours. Although the Edgecumbe wells were wb-

' }ected to liquefaction and increased pore water pressure, they remained functional as will the l Byron wells should the postulated earthquake occur at the site. The Edgecumbe area wells ,

' t cons!sted of a!!uvial sell wells drilled into sands and gravels and backfilled with graded i gravel. The Byron wells ve established in more competent rock material and are cement

, grot.ted into their location and are not anticipated to be sub}ected to high internitial hydro- l dynamic pressures or hydroselsms which could cause damage to the rock, pump, or casing. (

i

i 4

k i

r%. /

- _ =

Casing teeiI Veer 04a. Depth & Joiaf Post 4arihgmake E.

g Type Candition *N iarthquake Oweer tun.

~

Aquifer Type Dritled (in) (tt)

E

=Q flyrom $ite Commonwealth I&2 Or dow lClan- 1979 15/12 1500 A5fM AS3 local evalciaal ,g teells (dison Cambelas aged steel. W mells with glei- p postwisted dolomites and welf thica- lar construction G j $5[ N Sandstones mess =eided and dep1hs re-4 s., ti.,, 3- f c- <

f* age 3-8 grouted tional fo' tow- , ,

f of feet into reci. ing the 1909 tes j .It e ..

See f ernan(w City of San 1 baconsolidated 1908 IS 554 Rive *ed No damege.

Valley fermand, 2 sends and gravels 1990 IS 250 stees ..th Crowed raised 84

  • 6.6 9 f eb y t 3

4 stratified across pre 1920 9% entire . alley 1926 18 309.5 483 raweted S feet, sets jg is joints. #2 remained eenc- %2 i P.ge 4-1 S 1950 84 632 tienas. Ground o, feet .

7 tm 1960 IS IS 3oo 176 59 - pe.

2-plys. 8-r .. ,..et. .e.,

  1. 3 tenctional, E'a{

g gauge Sectoriologicas 4

(.962") centamimetion ,#

4 st.el. fr t.d. fe ,,, g shifted in mets Tq

] #S. sto damege la 8

.o .f . ..r . . -

! C.si.9 of .e., ,,

3 colIapsed.

l 1 Caf y of Los I Los Angeles 1924 24 195 Ste-eepipe Outside t=e some Angeles 2 besia solts. 1926 20 209 2-plys. of rupt re,ac Unconsolidated 8-genge damage reported to e seads and gravels 1933 16 63 (.167") the self pumps or

} $ with time seeds. 1960 20 450 stoet pipe. casing. pas bec-

. 1968 20 504 teelded feriological con-stowepipe faminaties report-t sr.e. .d: t w .eer., .o u m --e

{ Casing. to F D deoege tG the cas-g _IT lag is interred. g $8 p

o~T U

.-.----,. ._ _ - - -. ,,- - - - . - . - - - .-_,,,,,-_n ,-, , , . - , , . . - . - - - ~_ - _ - , - - - , ., _ , _ . . - .

n .

Casing U.

4 teoll Year Dia. Depth & Joint Post-Earthquake - g Earthquake Owner No. Aquifer Tyne Drilled (in) (ft) Type Conditson 4

San Fernando Sunlaed tiells Bernard Tujunga villey 1924 12 238 S*ovepipe Located I m;le , g valley Fenwick soll primarily 1929 16 290 8-gsuge south or so..e of ge ,

(continuecI Foot-hill 1 sand and pfavels 1938 18 467 ( .14.'"; surface rupturing. -

E

  • Foot-hill 2 1940 16 470  ?-plys No problems re- f Lang Muir 1949 24/18 312 riveted ported. '

. et tsoodward 1950 24/18 400 joints.

I.

County of Los  ! Quatsary gravel 1937 la 401 Stowepipe 0.2g to 0.3g Angeles 2 deposits with 1937 48 84 2-plys, ground accelere .

5 Iittle or n: fines 1949 12 600 8-gauge tion experlenced Deuter Park I unknown 10/8 313 (.lf'") 3 to 4-foot hori-t/4" we*1ed rontal and I-l/2-casing. foot vertical movement. No damage to nells, i

TMd N r*

$ 1. .g N4g O

m Nee--

\n

8 Estlu. Casing D well Year Dia. Depth & Joint Post-Earthquake .M g Ear t hquake Owner h Aqui er Type Drilled (in) (ft) Type Condition R R

Coalinga =G Shell Oil 1000 Western part of 1941 8/24 -

g California Company Oil wells San Jcaquin to No subsurface ga M5 = 6.7 1 Wells Valley consisting p.esent damage was reported E S.6 of weekly cc- to oil wells cas- E g

aftershock mented alluvium Ing; however, pump- 4 3 May 83 with high propor- lag Jacks were

  • Page 4-6
  • ion of gravel toppled because of of tent d cobbles surface movement.

Pleasait valley NE920 1952 84/12 618 URM wn Well:,locat.d in water D;st.

ione of ground 'up-Irrigation fure. Pump head Wells shaken out of alignment.

NW1621 1964 16 1000 Stovepipe Pump damaged cas-casing ing damaged at 4 locations to .

depth within the zone of rupture of 606 feet.

NW729 1958 16/12 800 Stovepipe Well casing casing collapsed; unable to repair, well abandoned.

$E421 1964 16 1250 Stovepipe Pumping sand well ccsing damaged.

T (A H In t"

$ b.=.

. . g W@g O

m Ne-I U

- .- n a

~

M Estim. Casing D-Year Dia. Depth Post-Earthquake E

Well & Joint . g3 Earthquake Owner No. Aquiter Type Orliled (in) (ft) Type --Cc Jitice M g

=4 j Morgan Hill Santa Clara 2 Compacted sand 1975 4 140 Plastic No damage s'eported . g Catifornia Valley Water pumps and Coyote Dam after emperiencing ye MS = 6.2 District 1.29g horizontal O E

24 April 84 acceleratioit pres- g Page 4-7 sure, e4 of tent -

Vasona Pump 4 Dense sand and N/A Pipe 48 30 Welded No damage report.

Station pamps gravel stee; United Techno- N/A Sand and gravel 1955 No well Jamage logies Chem 8 cal reports.

Division San Salvador, National Water Ancient tawa flows 1925 18 150 Cast iron Punos and wells El Salvador Co. pumic soils, known thru to to asbestos remained func-Ms = 6.2 AM)A Pumping locally as tierra 1972 24 500 cement tionsa. Only one 10 Oct 86 Plant olenca, or fine steel c.lrca 1925 pump Page 4-10 sandy silt welded burned out follow-of test ing the restart after the earth-quake.

Valparaiso Bata ' W I Terrace Alluvial 1961 6 Well was available Chile Facto sands and gravels for use, founda-

  • M = 7.8 tion slab had 3 Mar 85 cracked.

Vertical ac-ceteration Llolleo Pumping 1-6 River Alluvium 24 & 160 Welded Llalleo pump house 0.81g plant of Maipo River 16 steel strac'ure had dif-forential Settle-

"O f/l 4 WFg 9 A,.-a

&@g O

m N 8*=

M

- -- m .

~

M Estle. Casing D-Well Year Dia. Impth & Joint Post-Carthquatte ,

Owner No. Aquifer Type Drilled (In) (ft) Type Condition FE Eart'hquake -

E e4 Page 4-9 Concon Pumping Unconsolidated N/A 24 33 Welded sent of 8 inches -g of test Alluvius of steel due to liquefac- ye Aconcague River tion of foundation C soils. Pumps E g

remained func- est tional at both -

plants except where wall col-lapsed on Llolleo pumps.

Edgecumbe New Zealsad Rangitaiki 35 Interlayered N/A 16 33 Welded Pumping equipment M = 6.3 Drainage e3oard wells marine sedi- steel for irrigation and 2 Mar 67 ment and vol- land drainage re-Five after- canic tephara mained functional.

shocks sand size Ms > 5.2 Otakirl N/A N/A 6 45 Welded irrigation wells Page 4-12 Orchards steel changed flow of text characteristics, remained f unc-tional.

I o m .-i on t-*

$bg. .

U@g O Nem m

M

O e SIR 8ENTS LUNDY ,

. 31

. SL-4492

! (

Section 5 ILLINOIS F ~ RTHQUAKE WITHIN 100 MILES The effects of an earthquake on groundwater wells as noted in the previous section depend on many factors that change with such variables as the earthquake mechanism, wave propaga-tion, felt intensity, geologic setting, engineering characteristics of soil and rock, aquifer systems, and well construction. For this reason, the effects of earthquakes on groundwater wells near the Byron site have been examined in light of the regional seismicity, geologic

. setting, and methods of 'vell construction at that particular location.

The states of Missouri and Illinois were surveyed in order to include the h:ghly seismic New Madrid, Missouri areal the epicentral locations of the November 9,1968, and September 15, l 1972, earthquakes; and the Byron site area.

The records of the Illinois State Geological and Water Surveys were used because data are complete and reliable from before the turn of the century. These records show no reports of damage to municipal groundwater wells in the Byron site area due to earthquakes. This time interval includes four of the five most important earthquakes with an epicentral location within 100 miles of the Byron site; the 1909, Beloit, Intensity VII; the 1912, northeastern

!!!inois, Intensity V!; the 1934, Rock Island, Intensity V!; and the 1972, northern Illinols, Intensity VI.

Available publications on recent earthquakes with epicentral locations in Illinois, November 9, 1968, in southern Illinois and September 15, 1972, in northern !!!inois (References 17 and 18), provide the most-thorough records of the effects of earthquakes in Illinois. The pvblication on the 1968 earthquake included reports of cracked casing in an old, plugged gas well, increased productivity in several oil wells, increased turbidity of the groundwater, and a broken plastic nipple on an elbow coming off a well head. These reports generally covered an area within 30 miles of the epicentral location. The actual study of i earthquake effects included a field reconnaisance within 100 miles of the epicentral location,

SARGENT S LUNDY . -

F2

. SL-4492

(

letters of inquiry mailed throughout southern and centralIllinois, and a review of newspaper accounts in Illinois and neighboring states. There were no effects of the 1972 (Reference 19) earthquake on groundwater wells in Illinois reported during a field reconnaisance, letter survey, and review of newspaper accounts.

Attached as Appendix A are records of wells dug in the vicinity of the Byron site. It is interesting to note from these records the following dates and depths of well construction when compared with dates of earthquakes within 100 miles of the Byron site.

Location Depth Date Dug Flow City of Byron Well //l 2000 ft 1900 100 gpm City of Byron Well //2 673 f t 1929 300 gpm City of Byron Well(/3 715ft 1969 975 gpm City of Oregon Well //l 1690 f t 1897 450 gpm City of Oregon Well //2 1200 f t 1948 736 gpm City of Rochelle Well //l 1896 f t 1897 500 gpm l City of Rochelle Well //2 1026 f t 1907 250 gpm City of Rochelle Well //3 1484 f t 1923 600 gpm City of Rochelle Well //4 1450 f t 1929 660 gpm l '

l Village of Stillman Valley 300 ft 1938 200 gpm l

These wells are still in service, and there has been no known damage or impairment of I pumpage of municipal groundwater wells in the Byron area as a result of any earthquake during the past 90 years or more. Reported effects on groundwater wells in these areas have included insignificant groundwater level fluctuations and temporary increases in turbidity of I

the groundwater; howe.er, neither of these effects have damaged the wells or impaired Pumpage.

l l

l

~

SARGENT& LUNDY - '

F3 st-4492 i

Many data on the performance of deep dolomite sandstone wells in northern Illinois have been collected by the State Water Survey. The results of well production tests made on several hundred wells provide important information about the influence that location, depth, con-struction features, and age of a well have on its yield. Survey records indicate that deep sandstone wells such as the Byron deep wells have been prolific sources of water for nearly 100 years.

(

l l

l l

f I

8 0 SARGENTS LUNDY . '

6-1

- SL-4492

(

Set .m 6 WELL-AQUIFER RESPONSE TO SEISMIC WAVES The response of well systems from seismic waves may be generally grouped into two classes, namely, faulting and shaking. Faulting includes the direct, primary shearing displacement of bedrock that may carry through the overburden to the ground surface. Such direct shearing of the rock or soll is limited to relatively narrow zones of seismically active faults that may be identified by geologic and seismological surveys. No active faults have been identified within 200 miles of the Byron site, and through previous comprehensive investigations the soll and rock of the site has been shown not to lose their integrity during an earthquake. There-fore, the response of the well system is limited to the general case of shaking. Underground shaking of a well casing and pump may respond to the various waves propagating through the k surrounding soll. A rigorous dynamic analysis of the system response is described in Section

7. The following paragraphs provide observations of the seismic response of well water levels and the variation of acceleration with depth in deep wells.

In general, earthquakes have been reported to have affected groundwater wells in a variety of ways. The following have been observed: fluctuations of groundwater levels, increased turbidity of groundwater; extrusion of sand, mud, and water from alluvial wells; changes in productivity of wells; failure of the well system; and failure of associated structures. As a result of groundwater fluctuations, the U.S. Geological Survey (USGS) prediction experiment at Parkfleid, California, along the San Andreas fault regularly monitors a network of water wells. This network consists of wells that are situated at seven sites that were drilled by the USGS for the express purpose of monitoring water levels. R. Vorhis (Reference 20) assem-bled data on 1450 wells in North America, along with other wells from around the world which had a response to the Alaskan Earthquake of 1964.

t

SARGENTS LUNDY - -

6-2 SL-4492

(

ALASKA EARTHQUAKE Description of Event The Alaska earthquake of 1964 was centered in Prince William Sound. The land vibrated for as long as six minutes from the main shock which had a magnitude Mt = 8.4. During the main shock and following af tershocks, more than 40,000 m12 of land was lowered as much as eight feet and more than 25,000 mi2was raised as much as 33 f t (Reference 20). The extent of the hydrologic effects was felt as far away as South Africa (Reference 20). Published reports (Reference 20) describing the conditions of 100 water wells during the intensity XI earth-quake indicate that seven wells were destroyed because of earth displacement, and five failed due to liquefaction and sanding of the well.

In Illinois, a total of 21 hydroseisms were reported from local wells as a result of the Alaska earthquake. Only two af tershocks were recorded, and both were registered in well DuPage ANL-10.

Seismic seiches were recorded in Illinois at two lake stations: Wolf Lake at Chicago and Money Creek at Lake f31oomington. A well in Cook County (37N 14E-22.lb) from an uncased portion of the well which taps a Cambro-Ordovician sandstone has a depth of 1648 ft reportedly pumped sand following the earthquake, and two wells in Union County reportedly yielded muddy water af ter the event (Reference 20).

The response of water wells especially certain artesian wells which are in totally confined j aquifers is remarkably great and is reported in Reference 21.

The mechanics of the volume change and corresponding water level change are described by Cooper (Reference 21) with the passage of seismically induced Rayllegh waves at the 8-to-30 second-period range. The requirements for a well to experience wide fluctuations in water level are a confined aquifer (artesian conditions), a highly permeable aquifer in which water readily moves in and out of the well, and a major earthquake energy.

, t i

~

o .

sanosuvaLunny - g.3 SL-4492 I

Based upon these criteria and the mass of the water column at the Byron well, it has been estimated that the well would behave as an overdamped well and the water level oscillation would not occur; therefore, well or pump damage would not occur. A well located at and monitored continuously by the Illinois Geological Suevey has experienced some water level change during major earthquakes. The well, located in the NE corner of Clark County, is used as a waste injection we!! with the fluids injected into a confined aquifer. The well is located in differen' geologic formations than the Byron site and responds to many distant large earthquakes without damage to the well system due to water level fluctuations.

Interestingly, the Illinois State Water Survey has no record of groundwater fluctuations in any observation well equipped with continuous recorders in response to any earthquake which had an epicentra! location in Illinois. These observation wells equipped with continuous recorders are located in northeastern Illinois, the Champaign-Urbana area, Clark County, and the East I

St. Louis area.

TANG-SHAN EARTHQUAKE Description of Event The July 28,1976, Ms : 7.3 earthquake in the People's Republic of China was most notable for detern.ining how a strong earthquake affects underground facilities. In the area of Tang-Shan where the strongest shaking Intensity X and XI occurred, 80% to 90% of the surface structures codpsed (Reference 22). However, for the irrportant engineered structures immediately below the surface, there was generally no serious damage regardless of the depth or size of the structure. It was reported that tacause underground structures are located within, and restrained by, rock or soil, damage is different from that to surface structures, and from measured response, it was found that ea thquake damage decreased with increasing depth.

The Chinese National Earthquake Bureau (CNEB) installed seismographs in an inclined shaf t through limestone bedrock into the 2100 f t deep Tang Shan coal mine following the main i

1 SARGENTaLUNDY

- 6-4 SL-4492

(

earthquake and recorded 80 af tershocks of varying magnitude. The results of the analysis of recorded ground motion were as follows from Reference 22:

- P-wave (compression) amplitudes at 25 m (80 ft) depth were about f 3% to 80% of those at the surface:

  • S-wave (shear) amplitudes at 25 m (80 ft) depth rcaged from 60% to 120% of the surface values

- the subsurface to surface P-wave and S-wave am alitudes at 83 m (270 ft) depth were 30% to 40% and 20% to 80%, respective ,y.

CNEB analy::is of these records indicate that the ground displacement at 25 m (80 f t) depth is one-half the displacement at the surface and at 83 m (270 f t) is one-third the displacement at the surface.

lt was also reported in the same paper that there was extensive damage to the shallow water

(

supply wells and near surface underground piping. Damage was caused by sand liquefaction, infiltration into the wells, and separation of the bell and spigot piping joints due to the strong motion. The Bryon wells are founded in competent rock and the water piping has welded steel joints, therefore, they would not be subject to the types of failures occurring at Tang-Shan.

. o SANSENT S LUNDY * '

7-1 SL-4492 6

Sectiort 7 SEISMIC ANALYSIS This sect!on presents the seismic analyses of the deep well system and evaluates the opera-tion of the wells during and af ter the postulated safe shutdown earthquake. Exhibit ES-1 schematically shows the deep well system. It consists of a 1500-foot-deep borehole in competent rock formations. The top 700 feet of the borehole is cased with a 16-inch-diame-ter steel pipe. An eight-inch-diameter discharge pipe hangs within the cased portion of the well; it also supports the motor and the pump at its lower end. The length of the discharge pipe within the wellis about 425 feet. The discharge pipe from the pump shelter structure to the station is also eight inches in diameter. This portion of the discharge pipe is buried in the same trench in which the safety-related essential service water pipeline is buried. There is also a buried reinforced concrete ductrun for the electrical cables from the station to the pump shelter structure. Each of these items is evaluated for the safe operation of the deep well system. The items include:

  • Uncased well cavity a 16-inch-diameter steel pipe casing
  • 8-inch-diameter discharge pipe within the casing
  • Motor and pump

+ 8-inch-diameter buried discharge pipe between pump shelter structure and the station a Buried reinforced concrete ductrun

  • Pump shelter structure UNCASED WELL CAVITY The 15"-12" diameter uncased portion of the borehole runs through a competent rock strata which consists of Cambrian through Orodovician aged dolomites and sandstor.es. The 1

. c ,

i SARGENTSLUNDY . . 7-2 SIA 492 i

measured average ultimate strength of Orodovician dolomite was 16,834 psi and of the sand-stone was 10,050 psi. Also, information gathered from deep gas storage projects in Illinois indicates that the ultimate compressive strength of Ironton-Galesville S. ndstone is in excess of 16,000 psi. Based on these data, an ultimate compressive strength of 10,000 psi and ten-slie strength of 1,000 psi are conservatively used in the seismic evaluation of the uncased cavity.

The state of strain and stress is determined in the rock formation during the postulated SSE and is then compared with the strength of the rock. The procedure given in Reference 23 is used to determine the state of stress in rock. The procedure is a simplified approach based on expressions derived by Newmark (Reference 24). It is considered conservative and is commonly used for buried structures. In the precedure, the maximum strain in the soil or rock is determined due to the passage of the seismic compress;cn and shear waves. The direction of the particular wave propagation is selected to produce maximum strain in the structural element under consideration.

Maximum Strain and Stress due to Compression Waves The maximum axial strain sa is given by t

  • t [vP i

Where v is the maximum particle velocity and Cpis the apparent wave velocity, which is the same as the compression wave velocity in the rock. Based on earthquake records, the maxi-mum particle acceleration a, the particle velocity v and the particle displacement d are related by the following equation (Reference 24):

= 5 to 15 v

In the above equation, ad/v 2 3 5 is usec' to conservatively derive the maximum particle ve.xity and thus yleid a conservative large strain in the rock.

t

b 8 0

~

SkRGENT S LUNDY -

7_3 SL-4492 1

The above equation is based on data recorded at the ground surface. However, as discussed in Section 6 describing the Tang-Shan earthquake it has been observed that particle vibration amplitudes generally decrease as the depth increases (References 25 and 26). Hence, the use of the particle velocity corresponding to the ground surface is conservative.

The peak particle velocity corresponding to 0.20 g ground acceleration is 0.88 foot /sec (d =

0.6 f t per RG = 1.60).

The compression wave velocity for dolomite and sandstone is 18,300 feet /sec (Exhibit 7-1).

Hence, the maximum strain in the rock ist c, = t 18, 0 = t 4.80 x 10-5 Maximum tensile stress : E c a where the modulus of elasticity of the rock is given by:

E=oC2= (18,300)2 (o = mass density) p 6

= 1.61205 x 10 ksf Maximum tensile stress = 1.61205 x 106 x 4.30 x 10~0

= 77.5 k/sq f t

= 338 psi Maximum Strain and Stress Due to Shear Waves The maximum axial strain is given by:

v c

a"*{

i

. e SARGENT8 LUNDY -

7_,

SL-4492

(

Where Cs is the shear wave velocity.

Since, the shear wave velocity for the rock stratum under consideration is 9,500 feet per second which is greater than half the compression wave velocity, the compression wave velocity gives the larger strain in the rock at the cavity surface.

The above evaluation shows that the maximum tensile stress during SSE in the rock at the well cavity is $38 ksi as compared to the rock's tensile strength of 1,000 psi. Hence, the rock at the cavity surface will not scab or chip during the postulated SSE.

16-INCH-DIAMETER STEEL PIPE CASING The casing is made of ASTM A33 Grade B steel pipe of outer diameter of 16.0" and wall thickness of 3/8". Af ter the casing was put in place, the gap between the rock and casing

(

was grouted with cement grout. Hence, during an earthquake, the relative motion of the casing is the same as the surrounding rock.

The lowest compression wave velocity and shear wave velocity in the upper layer of the rock formation are:

Ccs 7,500 f t/sec Cs 2,900 f t/sec Maximum Strain and Stress Due to Compression Waves Axial Strain c, = 1 h = t h = 1.17 x 10-4 P

Bending Strain cb * (C)2 p

k i

l 1

S$RGENTE LUNDY - -

7_3 SL-4492

(

where R is the radius of the pipe and a is the particle acceleration. Hence, 6.44 (Negligible as compared to axial strain) x cb = .385 x h0 (7500)2 = 2.94 x 10-8

. . Maximum axial stress

' = 29,000 x 1.17 x 10'4

= 3.4 ksi Maximum Strain and Stress Due to Shear Waves c, = t =2x 900 = 1.51 x 10'4 As shown previously, the maximum bending strain will be negligible as compared to the axial k strain.

Maximum axial stress a 29,000 x 1.51 x 10'" = 4.4 ksi Hence, the maximum axial stress in the casing is 4.4 ksi as compared to the ASME allowable stress of 22.5 ksl(1.5 x 15 ksi). This gives a margin of safety of about 5.

8-INCH-DIAMETER DISCHARGE PIPE WITHIN THE CASING The discharge pipe with the motor and pump attached to its lower end is supported by the well casing through a head fitting at the ground elevation. Part of the vertical hanging discharge pipe is submerged in water. This will cause hydrodynamic coupling between the discharge pipe (also the pump and motor) and the casing. This hydrodynamic coupling effect is taken into account by using the method developed by Fritz (Reference 27). The fluid reaction forces Fgg and Ff 2, respectively, on the discharge pipe and the casing are given by:

Fft = -Mg$g+(Mg+M)$ g 2 i

SnROENT 5 LONDY , . 76 SL-4492

(

Ff2"(H1+H) H 1~(H1+N2+N) H 2 where Mi a mass of water displaced by the discharge pipe as a solid M2 mass of water that can fill the casing in the absence of the discharge pipe bI+aE "H = M1b2 -a 2 where b is the inner radius of the casing and a is the outer radius of the discharge pipe.

$1 and $ 2 are the horizontal accelerations of the discharge pipe and the casing, respec-1 tively.

In the analysis, the effect of the above hydrodynamic forces is taken into account in addition to the inertial forces on the discharge pipe.

The analytleal model for the system is shown in Exhibit 7-2. The discharge pipe is modeled by beam elements and the gaps between the discharge pipo (also the pump and motor) and the casing are modeled by nonlinear gap elements. Two cases have been considered in the analy-sis. One, earthquake occurs when the pump is not operating, and the second earthquake occurs when the pump is operating. In the first case, the 8-inch-diameter pipe does not have l water in it up to a depth of 250' below ground. In the second case when the pump is operat-ing, there is a drawdown of water in the well to a depth of 373 feet below the ground levM and there is water in the discharge pipe. A nonlinear time-history analysis is performed using Sargent & Lundy NONLIN-2 program. The acceleration time-history used in the analysis is the same that was developed for the Byron Station and corresponds to the site safe shutdown earthquake response spectra. In the analysis, a 2% damping for the pipe has been used (RG 1.61).

(

{

SARGENTS LUNDY , . 77

. . SL-4492 i

Pipe Material and Geometry Material. SA-106 Grade B carbon steel pipe F y 35 ksi, Fu 60 ksi Geometry. 8"0 schedule 40 pipe wall thickness 0.322" OD = 8.625" Loads Dead Lcad (DL) = 14.53 kips (Pump not operating)

Dead Load (DL) = 23.71 Kips (Pump operating)

Maximum Downthrust (DT) = 16.7 kips Design Pressure (P) = 225 psi

( Maximum Upthrust (UT) 10 kips Forces Seismic Loads Pump Not Operating Pump Operating Due to horizontelceismic (Sh)

, Maximum moment 11.83 Kit 16.25 Kf t Maximum shear 0.82 K 1.13 K Due to vertical seismic (Sy)

Axlal force 11.77 K 19.2 K Stresses and Allowables Stress Pump Not Pump Allowable Load Combination Operating Operating Stress Margin Leve' A DL + (DT, UT or P) 3.72 ksi 4.16 ksi 15.0 ksi 3.6 l

-=

0 e SkRGENT S LUNDY - -

7-8 SL-4492

(

Stress Pump Not Pump Allowable Load Combination Operating Operating Stress Margin Level C DL + P + Sh + S v -

Membrane 3.13 ksi 6.44 ksi 22.5ksi 3.5 Membrane + Bending

  • 10.73 ksi 16.67 ksi 27.0 ksi 1.6

(*l.0 S h+ 0.4 S for y simultaneous component of earthquake)

The above analysis shows that the stresses induced in the discharge pipe during safe shutdown earthquake are well within the code allowables.

! MOTOR AND PUMP The dynamic analysis perfor med for the discharge pipe with the pump and motor attached to its lower end shows that maximum stress in the 8-inch-diameter pipe is 16.67 ksi. Since the pump and motor are structurally rigid and of rugged construction, stresses in these compo-nents will be less than the pipe stresses during the safe shutdown earthquake. Also the experience with wells, discussed in the literature review section, shows that there was no failure of the pump oi motor itself, even during much stronger earthquake events than the Byron SSE. Hence, the pumps and motor should perform well during and af ter the postulated safe shutdown carthquake.

8-INCH-DIAMETER BURIED DISC 11ARGE PIPE BCTWEEN PUMP SHELTER STRUCTURE AND THE STATION As mentioned before, the discharge pipe is buried in the trench which also has the seismic safety-related essential service water pipe. Exhibit 7-3 shows a typical section of the trench. The pipe is buried about 6 feet below the ground surface.

(

=

SARGENTS LUNDY ,

79 SL-4492 i

The seismic strains and stresses in the pipe are calculated using the procedure given in Reference 23 (similar to one described for 16-inch-diameter steel pipe casing).

The loads acting on the buried pipe are:

. Internal pressure, P (225 psi);

  • Soil overburden and surcharge load, Lg;
  • Thermal load, To (AT = 70* - 45' s 25'F): and a Seismic load, Es '

For seismic stresses, a conservative, apparent wave velocity of 3000 feet /see has been used for both shear and compression waves (Reference 23).

(

Pipe Material and Geometry The pipe material and geometry are the same as the discharge pipe within the well casing.

Stresses and Allowables Load Combination Stress , Allowable Margin 1.0 Lg + 1.0 To+ P + 1.0 E s Membrane 13.95 ksi 22.5 ksi 1.6 Membrene and Bending 18.83 ksi 27.0 ksi 1.4 The above analysis shows that the stresses induced in the pipe during the safe shutdown earthquake are well below the code at owables.

BURIED RE!NFORCED CONCRETE DUCTRUN Exhibit 7-4 shows a typical cross section of the ductrun with its reinforcements and

(' conduits. The major loads on the ductrun are the seismic loads and the thermal load. The

o .

S$RGENTSLUNDY . .

7_to SL-4492

(

thermal stresses are calculated assuming an installation temperature of 70*F and a winter temperature of 43'F (a temperature drop of 23'F). The seismic loads are calculated using the same procedure as for the buried discharge pipt (as given in Reference 23).

Stresses in the Longitudinal Reinforcement Stress due to temperature drop = 4.71 ksi Stress due to SSE = 7.78 ksi Total stress = 12.49 ksi Allowable = .95 Fy = 57 ksi Hence, the ductrun has a large safety margin against the safe shutdown earthquake.

PUMP SHELTER STRUCTURE This is a small reinforced concrete box-like structure which houses the wellhead fittings, the junction box, and cables connected to the wellhead. The structure is already designed for tornado loads. For seismic evaluation of the structure, the seismic loads are compared with the corresponding tornado pressure loads, and it is concluded that the seismic loads are much smaller than the tornado loads.

The frequency calculation for the wall and roof of the structure shows that the structure is very rigid (frequencies greater than 33 Hz). Hence, peak ground acceleration of 0.2 g was applied to determine the horizontal and vertical seismic load.

The 20-inch-thick walls are designed for a tornado wind pressure of 265 lb/f 2t . The 14 inch-thick roof slab is designed for a tornado wind pressure of 216 lb/f 2t . The equivalent accel-erations corresponding to these loads are 1.06 g for the wall and 1.23 g for the roof, as compared to the peak seismic acceleration of 0.2 g. Hence, the pump shelter structure has a large safety margin against the safe shutdown earthquake.

)

SARGENT 5 LUNDy. . Typical Geologic Pr: file Exhibit 71 J Showing Geophysical SL 4492 '

Properties I

(Figure 2.5 26 from Byron FSAR)

E*

2

a. A .

Depth  !$a e Bba In feet E,e Ie w3e

^

I,,,,

(not to Graphic Unit  !$$ i5 3 {>$:::,

i3 j1 p 3 $,

E scale) Column Description oRO a. E 0

.; . '. 4 .4, 4 4e*4,, , Overburden 1,000 ( 0.4 4) (330) 110 130 4 ' *4,'#4 . ', #4 0,200

    1. '4* '

15 /

7 /, /4 '

Dunlelth 7,5 0'.. 0.37 0.41 2,900 147 164 7 f k Dolomite 11,000 3,500 90

.' ' ,' ,' 2 Guttenberg 150 157

/

Dolomite 12,000 0.33 0.41 4,500 95 ', ' ' 15,250 6,000

, > Quimbys Mill 156 166

. ' , ', ', Dolomite

~ ^ ' '

101 - - -

- ', - Nachuss 162 168 g

u, ,

Dolomite 125 ,_ - - -

, ', y Grand Detour 156 177 7

Dolomite 163' '

'l M Miffiln I O O

  • 10 0

- - 'e Dolomite 180 ' , ' ,

15,0 C 0 0.19 0.23 9,500 Peca onica 146 160 Dolomite 202 Harmonv Hill

,Se Shsie 11#*128 205 % 4,-

g; = = = -

rt_c3 L c1t. r- e,E Dolomite

. . - . . ur , um 33 ayay11 e and 155 167 OE Sandstone 227

..... u. . .. .

.......... st. poter

,*:: (15,000) (0.1s.0.23) (e,500) 130 132 sand ione v v s s s
v. .v. . -

-e cambrian through

.. . . t 1 1 (18,300) (11,000) (152 159)

:: 6,Y omite and (0.2 2) 4 Sandstone

% f ~% g s '#-  % Precambrian M tsmorphic and

( f f h\ i , 'n e (19,000) (0.18) (12,000) (162)

"/ \ -A / -/ gesement Rocke M2263 003 09 88 Hote: Values in parentheses are estimated.

4

. o SARGENT S LUNDy -

Analytical Model for the Exhibli 7 2 Discharge Pipe in the SL 4492 l Casing i

J>>>>2sji>>i _

d k Gap element (2.94")

j q

>pl typleal between discharge y ,

t i

( pipe and caelng I i k e

i o i es  %%

a .*

  1. 1 d  %%

"' 250'

$ , , k i

i >

i Y , i k i i > a

, i k i o i

$ k

a. s as m

@d  %%

.<, oora,osa.

aas,,,oas ...aako#-- .[._ Wster surtace i i

( $ i k i

i o ,

e i i

o .

g 1 ( Discharge pipe l , ,

195' Y i k d i i i

as

$ , 5 l

' ' 'h,i m Osp element (0.84")

Y i , , a N between motor and casing i

7y ,

, f )

4 , ( Pump and motor i

l I

l i l l

l I

U2263 004 09 88

Circulating Makeup and Exhibit 7 3

'SARGENT 5 LUNDY .

SL 4492 Blowdown Piping-Typical Excavation and Backfill

(

-Ground surface verles V

Regular compeeted escrfill compacted to 90% max clensity, ~ 48"4 line ASTM D698 ps , well Essential T470'.0" O dischstge service 1 Ilne V water j Controlled compacted - a la 95% max donelty 9,867'.6" '

ASTM D1557 -

6" min bedding -

Granular fill

(

l l

l l

(

M2263 005 09 88

=

  • T/pleal cross secti:n cf the Exhibit 7 4 SARGENT S LUNDY SL 4492 Reinforced Concrete Ductrun

(

Y e e e-; -3 . es T & B

. 4"4 condult . 3"4 Conduit 3 2

- -O #3 at 12" C.C. .

y e e e 12 a l' 1' . 3 1/2" "I i

M2263.006 09 88

SARGENTS LUNDY '

a-1 SIA 492

(

Section 8 CONCLUSIONS The deep well system is one of two makeup sources for the Ultimate Heat Sink at the Byron Station. The ongoing drought has caused the level in the Rock River to drop below the limit specified in the !!miting condition for operatior. sf the Ultimate Heat Sink technical specifi-cation. That !!mit is 670.6 feet Mean Sea Level (MSL). As a result, Lyron Station has entered technical' specification action requirement 3.7.5e. This action requirement permits reactor operation to continue for an unlimited period of time as long as river flow remains greater than 700 cubic feet per second (cis) and river level remains above 664.7 feet MSL.

River flow must be verified every 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br /> under these conditions unit the level exceeds 670.6 feet MSL.

(

In order to relieve or roltigate these operational restrictions, an examination of the deep wells' seismic response has been completed. The methodology of examination consisted of two parts: first, a literature review and second, an analytical evaluation of the well system when subjectd to the maximum site seismicity.

EVALUATION BASED UPON LITERATUP.E REVIEW In general, earthquakes have been reported in the literature to have affected grour.dwater levels in a varlety of ways, most extensively by extrusion of sand, mud, and water from alluvial wells; fluctuations of groundwater levels: Increased turbidity of grour.dwaters changes in productivity of wells in jointed rocks failure of alluvial wells due to sitting of the pump column or due to differential movement of the well casing and the surrounding alluvial deposits; and, damage to or failure of associated pumping equipment (Reference 2).

The reported effects vary with a wide range of site-dependent parameters, such as the type of well construction; the geologic setting, the engineering characteristics of the soil and/or rock, and the felt ground motions. Six worldwide earthquakes have been described which

SIRGENTS LUNBT . -

3-2 SL-4492

(

lliustrate the ways in which earthquakes may affect wells and theh associated piping. Each earthquake selected for direct comparison produced magnitudes of strong motion which were 10 and as much as 130 times stronger than the postulated Byron SSE.

The selected earthquakes and reason for selection are as followst

=

San Fernando Valley Ms = 6.6 Minor damage to cased alluvial wells in a higt seismic area.

- Coalinga M3 = 6.2 Very high (0.4 to 0.6 g) peak ground accelerations in an area of major oil field wells. Variable damage to wells of different construction.

. Morgan Hill M3 = 6.2

(

Two simultaneous earthquakes affecting well-engineered buildings and water supply district facilities including wells, pumps, and reservoirs.

Chile Mg = 7.8 Two simultaneous earthquakes producing 120 seconds of strong motion with the effects of vertical peak ground accelerations of 0.8 g on wells of a water supply pumping station.

San Salvador Ms = 6.0 Repeated destructive earthquakes over a long time period (60 years) indicate well reliablilty when cased into foundation materials.

  • Edgecumbe M3 = 6.3 Six magnitude M3 a 3.2 earthquakes occurred within 7 hours8.101852e-5 days <br />0.00194 hours <br />1.157407e-5 weeks <br />2.6635e-6 months <br /> and caused extensive liquefaction around alluvial wells and associated piping. Demon-strates variable effects of ground failure on wells.

. Illinois Wells Describes wells in the site area which have been in operation since the late 1800s and which have withstood local seismological events.

I

o .

SARGENT S LUNDY , . g_3

- . SL-4492

(

The Byron groundwater wells were constructed in accordance with AWWA standards of practice A 100-66 and, are cased with ASTM A33 steel casir.g through the soll and r )ck to a depth of 700 feet. Individual lengths of well casing were welded together when installed.

The annular spaces between the boreholes and the well casings were grouted with cencrete grout from the bottom upward in order to seat the casings into the bedrock and to provide seats preventing the movement of soll or surface contaminants into the wells. The produc-tion portion of the wells consisted of uneased, open borehole in the Ironton-Galesville and ,

~

upper portion of the Mt. Simon sandstone, which have been reported as prolific sources or water for nearly 100 years by the Illinois Water Survey. The wells were overpumped after completion to remove any loose rock or drill cuttings. Subsequent pumping tests demon-strated the water yield for the Essential Service Cooling Tower makeup. The AWWA type of well construction, with the length of casing welded together and seated into the bedrock, provides the maximum strength for a groundwater well. Municipal or large-volume industrial I wells in northern Illinois are generally of similar or lesser construction.

As noted in the literature review dsta presented, two conclusions may be drawn. First, worldwide experience indicates that deep, well-constructed, cased wells, either in alluvial solls or rock, have withstood a wide range of earthquake ground motions provided that the wells are not subjected to fault displacements, ground separation, landslide shear, or lateral spreading of Ilquefied soils. Based upon the extensive geologic and seismological investiga-tions of the site, no active faulting has been found within 200 miles, therefore, fault shears and ground separations will not occur. Second, groundwater wells in Illinois of similar or lower quality construction than the Byron wells have experienced no impairment of produc-tion resulting from ground motions associated with earthquakes, and in particular, local events such as the November 9,1968, earthquake in southern Illinois (epicentral Intensity VII) and the September 15, 1972, earthquake in northern Illinois (epicentral Intensity VI). Felt intensities in the vicinity of the Byron :.ite for these earthquakes were Intens!tles IV and V at ,

Byron. It is therefore concluded from the litera7re review that the deep wells at the Byron station would experience no damage or impairment of prwuction as a result of felt ground motions of intensity Vill or less.

(

SARGENTG MIf'dY , . g4 SL-4492 i

yell-Aquifer Resnonse to Seismic U.y.es Two additional earthquakes were researched to demonstrate the response of wells to earth-quake motion. From the Tang-Shan, Mss 7.8 event, measurements indicate that seismic displacements decrease with depth below the ground surface. Thus, the analyses of the Byron wells discussed in Section 7 which are based on acceleration at the greund surface, are conservative.

The Alaska, Ms 3.4 earthquake was reviewed to demonstrate the effect of a great. arth-quake on water levels in distant wells. In addition, the U.S. Geological Survey p' *cictk experiment at Packfield, California has a program that monitors water levels in water w W in an effort to predict earthquakes. A comparisor, of the Byron well coni'icas and the criteria used in the Parkfield experiment indicates that significant water level fluctuations caused by an earthquake would not occur in the Byron wells, therefore, well production woele; I

not be affected by kucn fluctuations. l EVALUATION BASED UPON DYNAMIC ANALYSES Seismic analyses of the components of the deep well system have been performed based on technically conservative and acceptable procedures generally used for similar seismic safety- l related components in the nuclear power industry. The items analyzed are the uncased i borehole cavity, the well casing, the discharge pipe witnin the casing, the motor and the pump, the buried discharge pipe between the pump shelter structure and the station, the buried concrete ductrun, and the pump shelter 1,:ructure. The results of the analyses show that strains and stresses induced in these components, during the safe shutdown earthquake (including the other normal loadd are well witnin the corresponding nlowables.

I I

I 1

SkE9ENTS LUNDY - -

s-3

. . SL-4492

(

Based on both the literature review and the dynamic analysis, it is concluded that the deep well system at the Byron Station is seismically quallfled for the safe shutdown earthquake and will remain functional af ter the postulated earthquake event.

SARG N ,y p-

, G. Holish b .

/wh

)

ingh Suoervisor, Geotechnical Section Assistant Division Head Project Engineering Division Structural Analytical Division

<f L bid /'

keviewed by Xprpaved by S. L. Wahlert R. J. Netzel Structural Project Engineer Senior Structural Project Engineer

( Structural Project Engineering Division Structural Project Engineering Division A

_ l  ! j '

) .j k.,Ei.Jg:

$ i' ' ' d'.IU .M, o...27ir69.. ':

i

SARSENTS LONDY - 91 SL-492

(

Section 9 REFERENCES

1. R. A. Parmilee, C. Ludtke, "Seismic Soll Structure Interaction of Buried Pipelines,"

Proceedings of U.S. National Conference on Earthquake Engineering, Earthquake Engineering Research Institute, Berkeley, CA,1973.

2. K. Kubo, "Behavior of Underground Waterpipes During Earthquake," Proceedings of the 5th World Conference on Earthquake Engineering, Vol.1,369, Rome, M74.
3. W. C. Walton and S. Csallany, "Yleids of Deep Sandstone Wells in Northern Illinois,"

Report of Investigation 43, State of Illinois,1962.

4. L. D. McGinnis, et al., "The Gravity Field and Tectonics of !!!!nols," tilinois State Geologic Survey Circular 494,1976.
5. M. D. Trifunac, A. G. Brady,"On the Correlation of Seismic Intensity Scales with Peaks

( of Recorded Strong Ground Motion," Seismol. Soc. America Bulletin 63, 1:139-162, February 1973.

6. B. Gutenberg and C. F. Richter, Seismicity of the Earth, Princeton University Press, 2nd ed.,310 p.,1934.
7. O. W. Nuttli, "The Earthquak1 Preblem in the Eastern United States," ASCE Journal of Structural Division, Vol. 3, No. ST 6, June 1982.
8. M. G. Bonilla, "Surface Faulting and Related Effects," , Earthquake Engineering, 14 entice Hall Englewood Clifis, NJ,1970.
9. R. F. Yerkes and M. G. Bonilla, "Geologic Environment of the Van Norman Reservoirs area, in the Van Norman Reservoirs area of Northern San Fernando Valley, California,"

U.S. Geological Survey, Circular 691-A,1974.

10. 3. Isenberg, "Role of Corrosion in Water Pipeline P2rformance in Three U.S.

Earthquakes," Proceedings of the 2nd U.S. National Conference on Earthquake Engineering, Earthquake Engineering Research Institute, Berkeley, CA,1979.

!!. "Water and Sewage Lifellnes,"Section IV Advisory Notes on Lifeline Earthquake Engineering Prepared by the Water and Sewage Committee of the ASCE Technical Council on Lifeline Earthquake Engineering ASCE,1983.

t

O o SARGENT S LUNDY, .

92

. . SL-4492

(

12. J. B. Summers, Damag'a to irrigation Wells and Other Facilities in the Pleasant Valley Water District Due to the May 3,1983, Earthquake and Af tershocks," California Dept.

of Conservation, Division of Mines and Geology, Special Publication 66,1983.

13. Simon, Naasch, "The Morgan Hill Earthquake of April 24,1984 - Performance of Three Engineered Structures," Earthquake Spectra, Journal of the Earthquake Engineering Research Institute, Vol.1, No. 3, Berkeley, CA,1983.
14. "Industrial Facilities," Journal of the Earthquake Engineering Research Institute, Vol. 2, No. 2, Berkeley, CA, February 1986.
15. J. R. Morgan, S. W. Swan, "Performance of Lifelines," Earthquake Spectra, Journal of the Earthquake Engineering Research Institute, Vol. 3, No. 3, August 1987.
16. M. S. Pender, T. W. Robertson, "Edgecumbe Earthquakes Reconnaissance Report,"

Earthquake Spectra, Journal of Earthquakes Engineering Resea';h Institute, Vol. 3, No. 4, Berkeley, CA, November 1987.

17. D. W. Gordon, et al., "The South-Central Illinois Earthquake of November 9,1968,"
Macroseitmic Studles, Seismological Society of America Bulletin, Vol. 60, No. 3, pp. 953-971,1970.
18. P. C. Helgold, "Notes on the Earthquakes of September 15,1972, in Northern Illinols,"

Illinois State Geological Survey Environmental Geology Notes, No. 59,1972.

19. P. C. Helgold, "Notes on the Earthquake of November 9,1968, in Southern Illinois,"

tilinois State Geological Survey Environmental Geology Notes, No. 24,1968.

20. R. C. Vorhis,1967, "Hydrologic Effects of the Earthquake of March 27, 1963, outside Alaska," United States Geological Survey Professional Paper,544-C,1967.
21. H. H. Cooper, et al., "The Response of Well Aquifer Systems to Seismic Waves," The Great Alaska Earthquake of 1964 - Hydrology Volume National Academy of Sciences, Washington, D.C., Publication 1603,1968.
22. Wang Jing-Ming, "The Distribution of Earthquake Damage to Underground Facilities During the 1976 Tang Shan Earthquake," Earthquake Sxctra, Journal of the Earthquake Engineering Research Institute. Vol.1, No.4, Earthquake Engineering Research Institute, Berkeley, CA, August 1983.
23. Committee on Seismic Analysis of the ASCE Structural Division Committee on Nuclear Structures and Materials, Seismic Response of Buried Pipes and Structural Components, Published by American Society of Civil Engineers, New York.

i

SANSENT S LUNDY . . 93

. . St.-4492

24. N. M. Newmark, "Problems in Wave Propagation in Soll and Rock," International Symposium on Wave Propagation and Dynamic Properties of Earth Materials,"

University of New Mexico Press,1967.

25. N. M. Newmark, and E. Rosenblueth, Fundamentals of Earthquake Engineering, Prentice-Hall, Inc., New York, NY,1971.
26. Y. Ohsaki and T. Hagiwara, "On Effects of Soll and Foundation Upon Earthquake Inputs to Buildup," Research Paper No. 41, Bldg. Res. Inst. Minister of Construction, Japan, 1970.
27. R. J. Fritz, "The Effect of Liquids on Dynamic Motions of immersed Solids," Journal of Engineer.ng for Industry, February 1972.
28. W. B. Joyner, R. E. Warrick and A. A. Oliver, "Analysis of Seismograms from Downhole Array in Sediments Near San Francisco Bay," Bull. Sels. Soc. of America, Vol. 66, No. 3, June 1966.
29. G. Plafker, "Tectonic Deformation Associated with the 1964 Alaska Earthquake,"

Science 148, pp.1675-1687, June 1965.

30. P. C. Jennings, "Earthquake Eng!neering and Hazards Reduction in China," National Academy of Sciences Report, CSCPRC No. 8, Washington, D.C., N80. l
31. S. W. Swan, et al., "Ef fects on Industrial Installations, Buildings, and Other Facilities,"

Earthquake Spectra, Journal of the Earthquake Engineering Research Institute, Vol.1, No. 3, Berkeley, CA, May 1983.

32. H. N. Nazarian, "Water Well Design for Earthquake-Induced Motions," Journal of Power Division, ASCE P02, November 1973.

i

1 t

Appendix A Well Records l

M2263.007 09 88

Illinois State Wcter Survey . Culletta No. 40 OREGON 03 1) Csunty

- - Mar.18.1944 The city of Oregon (2825) installed a public Sample-study log of Well No. 2 furnished by the g

water supply in 1646. State Geological Survey Originally, water for fire protection was ob. Formation Thickne s s De pth tained from a shallow well. In 1897. the well was it. ft.

deepened to 1690 ft. This well is located close to the bank of the Rock River la the northeast Pleistocene system "Clay, sandy" 12 12 part of town. near the intersection of 3rd and 11-linois St. (or approximately 2300 ft. S. and 1500 "Gravel" 131 143 ft. E. of the N.W. corner of Section 3. T. 23 N., Granule gravel, clean 3 146 R.10 E.). The surface elevation is 6721 ft. This Ordovielen system well is 10 in. in diameter. St. Peter sandstone, chert and clay 26 172 Originally, water flowed from the well into Cambrian system Trempealeau dolomite 100 272 an excavated stone. curbed reservoir surround.

lag the well. 1:4 1931. the reservoir vras aban- Franconta sandstone, some doned, and the well casing sealed. The suction dolomite 88 3 60 side of each of the 2 Could triples pumps which Gale sville sandstone previously had pumped water from the reservoir. Sandstone, partly dolo-mitte 60 420 was connected to the well.

S and stone, inc ohe r e nt 73 493 In Sept.1947. the suction pumps were rea Eau Claire shale and thin placed by the existing pumping equipment: 90 f t. sandstone 447 940 of 6.in, column pipe; 15 stage Fairbanks. Morse Mt. Simon sandstone 260 1200 Pomona turbine, wate r lubricated pump, No.

SH1260s the overall length of the pump is 10 ft.: The hole anc'. casing record is shown in Table 10 ft. of 6.tn. suction pipe 100 ft. of air linei 1.

40-hp.,1745 rpm. General Electric motor. No.

l 5309746. TABLE 1 When :he turbine was installed, water was Hole Record pumped for 24 hr. at a rate of 450 gpm. On Dec.

2. 1947. the non. pumping water level was re- 12 3/4.tn. to 1200 ft.

ported to be 5 ft. below the top of the well and when pumping at i6 gpm. the drawdown was 60 Castne Record it.

20.in. od. from + 3.0 to 145 ft.

Analysis of a sample (Lab. No. !!2.800) col- below surface.

lected Dec. 2.1947 after 1.hr. pumping at 466 14.in, od, from + 1.0 to 3 5 8 ft.

spm.. showed this water to have a hardness of 19.tn. od. from 133 to 181 ft.

17.0 gr. per gal., a residue of 286 ppm.. and an tron content of 0.3 ppm. When the drilling had reached 962 ft.'s pro.

duction test was made by the State Water Survey The reservoir around the top of the well has on Apr. 23.1948 using the following equipment been fille J in and a pum;, house butit over the for te st purposes: 200 ft, of 7.in. id. co'umn well. Tae Gould pumps have not been removed pipe; ll. stage turbine pump having an overall from ths pump house located 20 ft. south of the length of 12 ft.: 200 ft, of 1/4-in, air lines elec.

w =11 but the pumps are disconnected from the trte motor.

wels.

Before the tes the water level was 31 ft.

Well No. 2 was completed at a depth of 1200 from the top of the 20.tn. casing. After 3.hr.

ft. in July,1948 by Neely and Schtmelpfenig. Ba. pumping at 385 spm.. the drawdown was 71 ft.

tavia, and located 150 ft, east of Third St. and and after an additional 7-hr. pumping at a final 150 f t. south of Franklin St. (or approximately r ate of 735 spm.. the drawdon was 149 ft.

930 ft. S. and 1600 ft. E of the N. W. corner of Thirty min. efter stopping the pump, the water Section 3). The ground elevation is 707t it. level was 53 ft and !! hr. later the water level g

e .

. Cr: gen

~

to 34 ft. . a hardness of 17.2 gr. per gal., a resuue of 320

( ppm.. and an iron content of 1.1 ppm.

Partial analysis of a sample (Lab. No.

15.403) collected July 16.1948 after 51/4-hr. Pumpage is estimated to average 265.000 umplag at 640 gym.. showed this water to have gpd.

LABORATORY NO. !!2.800

g. eym. ppm. epm.

Iron (total) Te 0.3 Silica $10 11.9 Manganese Mn 0.0 Fluoride T 2.0 Calcium Ca 60.0 3.00 Chloride Cl 6.0 0.17 Magnesium Mg 34.5 2.84 Nitrate NO, T r. Tr.

Ammonium NHe 0.1 0.01 Sulfate SO4 15.2 0.32 Sodium Na 0.0 0.00 Alkalinity (as CACO3 ) 268. 5.36 Turbidity T r. Hardne s s (as CACO 3 ) 292. 5.84 Color 0 Re sidue 286.

Odor Tr. Temperature 57.30 T.

l i

l l

l i

I l

e .

Illinois State Water Survey - Bulletin No. 40 . . ROCHELLE

. . Ogle County Dec. 4.1947 t

The city of Rochelle (4200) established a on Mar. 4.1949. Mr. J. H. Russell. Water mualcipal water supply about 1876. Superintendent, reported that the pumping equip-ment was replaced in 1948 by 190 ft. of column Water was first pumped from an old stone pipe and a 5 in. 7-stage American Well Works guarry near the south end of town by 2 duplex turbine pump rated at 350 gym. When pumping in pumps. 1948 at 225 spm. with this installation the draw.

down was 145 ft.

i About 1897.Well No. I was drilled to a depth of 1896 ft. by T. M. Gray. Chicago and located Well No. 3 was drilled to a depth of 1484 ft.

near the quarry, on the west side of Eighth St. In 1923 by P. E. Millis and Co.. Byron, and is between Ave. "A" and Ave. "B". about 1000 ft. located 150 ft. east of Well No. 2.

southwest of the pump station. The quarry supply was abandoned. The well is 8 la. la diameter at Hole Record the top and was reported to'be cased to about 70 ft. The well was abtndoned about 1907 but was 20-in, from surface to 131 ft.

cleaned and putbacklato service in 1919. at which 15-in. from 170 to 301 ft.

time the non-pumping water level was reported 12 1/2 in. from 301 to 1484 ft.

to be 12 ft. below the ground surface and the drawdown was 38 ft. when pumping at 500 spm. Casine Record In 1923 the water level was 30 ft.

16-in. od. from surface to 131 ft.

This well is equipped with 150 ft, of 4 in, column pipi; 4-in. 4-stage A. D. Cook turbine The well is equipped with 140 ft.cf 8 in, col-pump; 10 ft. of 4 in, suction pipe; 169 ft. of air umn pipe; 12 in. 6-stage American Well Works line which extends 19 ft. below the top of the turbine pump rated at 600 gpm. at 1150 rpm.

bowls; 25.hp. U. S. electric motor. This pump 140 ft.of air line; 10 ft. of 8-in, suction pipe; 40 discharges at a rate of 190 gym. and is used to hp. General Electric motor operating at 1140 rpm.

supply water to the swimming pool and is main- Air line is to the top of the bowls.

tained as a standby for emergency use.

In 1930, it was repot'ed that this well pro.

Analysis of a sample (Lab. No. 41220) col. duced 680 gpm. with a drawdown of 77 ft. from a lected in June 1919. showed wate r from Well No. non-pumping water levelof 35 ft. below the ground 1 to have a hardness of 16.9 gr. per gal., a rest- surf ace. On Dec. 4.194 7. the non-pumping water due of 307 ppm., and no tron content, level wa s e stimated to be 35 ft.below ground sur-face and the drawdoom was 100 ft. when pumping Well No. 2 was drilled in 1907 to a depth of at 680 gpm. Mr. Russell reported that on Mar.

1026 ft, by the J. P. Miller Arte sian Well Co.. 4.1949, when pumping at 560 gpm.. the draw.

'hicago, and is located just outside the power do.vn wa s 140 ft, s ta tt o.. (approximately 400 ft. N. and 1000 ft. E.

of the S. W. corner of Section 24. T. 40 N.. R.1 Analysis of a sample (Lab. No. 82732) col-E.). The ground elevation is 7931 f t. lected Jan. 6.1938, showed this water to have a hardness of 16.4 gr. per gal.. a residue of 328 In 4940.the well was"shot" and then plugged ppm. and at: tron content of 0.07 ppm.

at 800 ft. by Frank Gray. A 10 in. casing was set from the surface to 150 ft. Grout was placed Well No. 4 was completed to a depth of 1450 outside the casing. f t. in Jan.1929 by P. E. Millis and Co.. and to-cated 1%0 ft, east of Well No. 3.

In 1930 the well was equipped with 145 ft of column pipe; 8-in. 8-stage Amr rican Well Works Hole Record i turbine pump rated at 250 gpm. 20-hp. U. S. Elec-tric Manufacturing Co. motor operating at 1800 20 in. from surface to 135 ft.

I r pm. 15-in, from 135 to 487 ft.

12-in. f rom 48 7 to 14 50 ft.

In 1930.the non pumping water level was re-ported to be 35 ft. below the ground surface, and h aine Record in Dec. 1947. the non-pumping water level was e stimated to be 35 ft.. and when pumping at 250 16-in. casing from surface to 135 ft.

spm.. the drawdown was 44 ft. 12-in liner from 426 to 487 ft.

e .

2 - Rochelle .

I The well is equ4 ped with 140 ft. of 8.in. In 1947. one stage was added to the pump and )

cclumn pipes 12.in.. 8. stage Arre rican Well the pump installation consists of 140 ft. of 8.in.

Works turbine pump rated at 640 gym.: 10 ft. of column pipe 6. stage Arnerican Well Works tur.

4.in. suction pipel140 ft.of air line 30.hp.. !!$0 bine pump. No. 61758, having a rated capacity of rpm. General Electric motor. 650 gym.1 140 ft. of air line 10 ft. of 8.in. sue.

tion pipe 40.hp. General Electric motor.

In 1930.it was reported that.when pumping at 680 gym. the der.wdown was 77 ft. from a non. This pump discharges at a rate of 525 to 575 pumping water level of 35 ft. below the ground spm., directly into the mains. In 1946, when s rface. On Dec. 4.1947. the non.pumplag water pumping at 575 spm.. the drawdown was 92 ft.

I: vel was estimated to be 35 ft. below the ground from a non. pumping water level of 36 ft.below surface and the drawdown was 91 ft. when pump. the ground surface. The pump usually operates ing at 640 gym. Mr. Russell reported that on 24 hr.dailybut at present time is betag repaired.

Mar. 4 1949. when pumping at 660 gpm.. the drawdown was 96 ft. Analysis of a sample (Lab. No. 83417) col.

lected Apr.28.1938, after 12.hr. pumping at 700 Analysis of a sample (Lab. No. !!2.801) col. spm.. showed the water to have a hardness of 1:cted Dec. 4.1947 after 2.hr. pumping at 640 16.3 gr. per gal., a re sidue of 278 ppm. and an 8Pm.. showed this water to have a hardness of iron content of 1.3 ppm.

19.1 gr. per gal., a residue of 325 ppm. and an iron content of 3.9 ppm. A previous analysts of Well No. 6 was drilled to a depth of 867 ft.

a sample (Lab. No. 82.731) collected in 1938 in 1942 by the McC thy Well Co.. St. Paul, showed the water to contain 2.0 ppm. tron. The Minn. and locra ted on the north side of Ave. "C" t3mperature and qualityindicate s that little if any between South 3rd and South 4th St. (or approxt.

water is being obtained from the lower forma. mately 1625 ft. 5. and 1525 ft. W. of Section 25).

tions. The ground surface elevation is 800* ft.

t Water from Wells No. l.2. 3.and 4 to pumped Hole Record )

to a re servoir.

19.in. from surf ace to 156 ft. 6 in.

12.in. from 156 ft. 6 in, to 783 ft.

Well No. 5 was drilled in 1938 to a depth of 8 I"'

502 ft. by W. L. Thorne Co.. Des Plaines, and 30*tn. from 783 ft. 8 in, to 867 ft.

1rcated on the north side of Sixth St.. one half block east of Tourteenth St.. (or apprc,mimately Casine Record 2000 f t. N. and !!00 ft. W. of the 5. E. corner of Section 23). The elevation of the grour.d surface 12.in. casing from surface to 15 6 f t.

is 820* ft. 6 in.

10.in. line r f rom 613 to 78 3 ft. 8 in.

Hole Record In 1942 the non. pumping water level wa s 40 10.in. to bottom of well. ft. below the ground surface.

Castna Record The pump assembly consists of 150 ft, of 8 (n. column pipet 12.in. 8. stage Arnerican Well 15.in from + 1 ft. to 4 3 f t. Works turbine pump, rated at 600 gpm.: 150 ft.

10-in, from el it, to lo t it, of air line; 20 ft. of 8.in. suction pipe 60.hp.

General Electric motor.

The to.in. casing was sealed in with neat ce* This well has not been used for 2 years. but ment grout from the bottom to the top of the 15* tt is expected to be returned to service, upon in, casing. Installation of an iron removal plant about June.

1948.

A production test was made on Apr. 28. 1938 by the State Water Survey. A pump furnished by Water from Wells 5 and 6 is pumped directly

)

j i the dritter, was set at 200 ft. below the ground into the mains. g I surface. Afte r 42.hr. pumping at 700 gpm.. the drandown was 47 ft, from a non. pumping level In 1947. municipal pumpage aversted 11/4 of 3 6 f t. below the ground surface. mgd.

1 1

o .

. .. o Rochelle . 3

( Sample. study log of.Well No. 4 furnished by the state Oeological Surveys Formation Thickness M ft. ft.

Plataleceae avatarrg Clay 4 4 Ordovician avstam Platteville dolomite 87 91 Olenwood sendstone, dolomite, and

. thin sha3e beds 49 140 St. Peter formation Sand stone, inc ohe r e nt 300 440 Sandstone, chert and shale 70 510 Cambrian avstem Trempealeau dolomite. thin sand.

stone and shale beds 100 610 Franconta dolomite and sendstone 95 705 Oslesville sandstone Sandstone, partly dolomitic 15 780 Sand s tone , incohe r ent 75 855 Eau Claire formation Sandstone. shale, and thin dolomite beds 265 1820 .

Sandstone. incoherent 180 1300 C ambrian and Pre.C ambrian systems Mt. $1 mon and Fond du Lar sandstone s g

and thin shale beds 150 1450 LABORATORY NO. 112.801 ppm. epm. ppm. epm.

Iron (total) Te 3.9 Silica Stos 14.9 Manganese Mn 0.0 T!uoride T 0.4 Caletum Ca 73.3 3.67 Chloride CA 2.0 0.06 Magnesium Mg 34.8 2.86 Nitrate NO 0.1 Tr.

Ammonium NHe 0.2 0.01 Sulfate 50, 14.3 0.24 Sodium Na 3.7 0.16 Alkattnity (as Ca003 ) 320. 6.40 Turbidity 35 Hardness (as CACO 3 ) 327, 6.53 Color 0 Residue 325.

Odor Tr. Temperature 51.5* F.

l i

I .

. . Illinois state Geological Sarwy  ?

LU Urbana, Illinci 40 Sec.

City of Rochelle M L }0 N

I cele co.

Elevation: 78$ E.T.H. Sample set No. 41SC2, Drilled 1960 kr Webling Well Works '"

Studied 3/6) by J.E. Rocke s 5 7 111. dark brewn 's e 38' Fleistoosee 36 20 25 '*4 h. d and naval CT s Y1',,

AA M /'e' a s' Till. -- -a v . 14 ht . par e 54 Dolomite, yellowish-butt, finely crystal- 3

,,,f,'

,o u.e -

Platteville 119 Dolmite, light gray limestene, light 33 30 ' ' ,' Lelosite, light butt 15$  %

lu las w.

m- d . e -

ri , - , . - - 1 g

,p.E.

25 .,..;,

' , ' .,: y stone, vnite, fine to coeroe "

R Glenwood $$ 39o i

l ,'lt D 5 ns  ! >eet

c. 1s ro - =.m .a a .. .. m- - r ai a,,a. mm im t.ma i i ati' Y  : '. .

g ' ' , *., '

L  !'*.%' ', ! 19'

  • *:Saidstone, kole 3 133 partly arginaceous, fine to y .'.J..,.

. nedius St. Feter 145 . ; --- -

S '.

g

,' .C S u$

y Av m ==-=rww.3._ 11 ,=.t tadri . -a., -

E N

Shakopee 25 2$ g J'l'feloalte,lightbrevn,firselycrystalline

!iew P.icascad 20 20 g g% aMstone, 5 fine to amiing dolcaite; cherb

! -e-e 80 , 'f G 1calte, cherty, light grayis.% tuff, 4 finely crystalline

, Cnecta 140 g Q l

W~

f,,o Dolcaite, light grayish-brown to light

,3 j j pirAish-brown, firmly crystallian ' q,

%0 i )^ g,,

Gunter - yo yo . . , . , Sandstene, time to mediua; doloalte, Jordan 570 caerty. light, tre w w> '. l 6$ q voloalte,11 gat tuff, sublithogroptLic l c

fr p.co. 10$ .n +

A 40 [Dolcaite, glauconitic, tuff to light I M

6,5 ,.p y grafi a-cuff R

'S ghwlosite, glauconitic, light pirAishgrayi 2 - -

eensstone, glanonstic, very tire <

A ytanconia 8$ 720 3

40 d' YSardstone, glaucenitic, dolcaitic, very S 760 f18* %* I1L*3 11%%1' d'l'*1t* #* 'hal' f

y) ..

SaMatone, s11gatly glauccratic, dolcr.it1< , n3, S

790 '. ' l .,r, O fine to ccarse " '

l j y3 W y Astcra, silty, fine to smila, little

..: , coarse M 825

( Mstene, tarie to sedia, lit,tle ccarses  ! $ 's "

i Ircnk n - M 0,desv111e 170 8

'55

dolcr.ite, pirA l holt I .

I 75

.' IS*ri' ten * , btite very fine to a.11u=,

s s

,30

' ' ,'. ' . incoherent ..

u_ema c. aire s! 5 .y3 s Oxul e . s aM r. li c. - s m rie r.i s -:n_rr i

?O t

e .

~

.N 0 6 k . .

  • t./

IJHG ) -

W- L L. L 1. 0.;.1. .t-. A_T A Si t L L...I .

( .=~

layno-Westem Company,Inc.

k' ,'. WATER SUPPLY C O N T ft A C T O R S

pi w.si su.aa.i A m,. . Ave .. ii. . cowt . P.+ r .it 2mgi eu ,

d Ab _ V111aag_ppcha11 a c-19 25GWell No. 8 Date Testea _ 10/10/75 (waiioa _ Roc)1311a Tested 07 A Atchauar-04 etWeli 15 ,x 19h o,,ve, 250 H.P.. B.J.

0.oih of Well 9 JJ ' Pump used. Column and Snah 10' Lt.igtm et A..i.no 233' so.is 14"GM - 4 Stage Nam Piemp.ag Level 107' v nut :io,,, _ Byron Jackeon o..ic s.ie 10_2t 7 smai No 380443

.r ... .... ... .__ _. ... . . .,. .._.

,. .. ., .... .e

.... .. ... . ........ e ..

_ .4 . . . . - .._ -

1 20.

Start . . . _ _ , .. _ . . _ . ,

I . l _,, ,,

1: 2 5 . :.0 9. 5. 1720 _ )8 19 5 _L.8 8..._ 8 0 J 318240-240._.

1:35..[66 .._. 1680___ __37 196 89 80  ! l gg _,

1:45. 64.5..b.1650 31 _202._ _98...__80_I.- h 235-235-235 -.

I i

.__ 31. _ . 2 0 2... . 95_. _7 0_..

sand 330-230- - D5.rty

'5...... 56.5 J 1554 I Sand - D.30irt _

i 230-231-231.y 2:05 _ 58_. 4_.15.7.4 _32_ _ 20L 9.4 79 __

+

sand Dirty 2:15 _. 58 . 1574 _ _ 32  ! 201 _ _ .9 4. . . 7 0. . _ .

L230-2 ss an 0 3'31 .- -

2:25. . .71.. .. 1760. 22 I 211 .

10.4 __6 0_. I CIcaring __.

. l 235-233-235 2i35 8 69 . . _. _1J 4 0 22 211 10.4 6.0__j 35 235-235

.ttle Sand -

l21i

  • I 2_:.4 5 68.5_ ! i13s l 22 io4 l_60  !  :,e ar _ .

i l

,235-235-235 l } ~-

e i

82 I. 90 Litt1'e sand T 2 55._ 1.41 _, .1).2 6 44 p9 C1ea r. .

l l 220-220-221 _

3: 00. . shut._Qam ,

= . _. .._ . . _ .

I  !  !

I I -

., _ . _ . n _ ._ - _ _ _

l I  !

j  !

r i

1 l  !  ! l i

_., L . - ._ i l .._..s._Lm._ I

_ _; - - ..~

e e f .h

= ., .

( 1111acis State Geological $arvey b urbane, tuaois m City of Roche n e We M J __g.

N C(e Co.

Elevation: 78) E.7.M. Semple set No. 4150)

Drilled , 1960 kr Wh11 na Va ll Works Studied 4/1%J tty J :. Rcehe 15 's ' (Sc11. till sandy, rollow fjg W ooene 15 15 3,-

Dolomite, yellow, fiaely crysta uine6 4$

60 till, simpd l

" * .?' '

Platteville 84 w 7o =

--T e . mm t uten to ma t mrr. - --

i l

a 99 ool m u. orar

-- M erratS t a. c, ught buft, rias.'.y i y l f.

3g .$'.,': Sandstone, light tsaffish-grey, medium, 130 **3* 1accherent isa i Closwood 71 15 us _ N.snale, very sandy, light green, weak D 23 '.4,.;.:.!Saruistone, light anatt, fine to coarse, 170 .. .

. insams 211' g

V , .',M . -Sardstone, mite, fine to medius, f ' .,* .',{incoherent ,

I 0 235 . _Sandstons, vnite, fine to coarse 3

' N .d Y, Sardstone, mite, medam to fine, 4$

280 .'. ince.herent 3 ,

y AV %O cmmiatene. Alt a . erarna to fira .

S "'

7 St. Feter 295 E *',

I 120 /.','.* Sardstone, light greyish knaff to 41te, fine to sotium, incoherent 410 ' , ' ' . ' ' . '

30 440 . *.. *- ' ' .l.SaMstone, white, sed) .as, lacoberent 15 Ass isandstons, white u rjarse to fine 7

10 Ani .... . % Matene, rM ila( p . fi.not al.lta t c ra Woota 30 30 , , ;Doloalte, light tatt, finely crystau ine an 495 Ount.r . 25 j5aMstons, c.sers t, pidian, ineo ront ,.

J 8d *^

"T5"k,,,a  :=e_-==-psna rt 4:e 15 P. M

~}f{194_Aru. gLE-Paff,

..= SA,

, S, < w s.fA{rtel _. rystalli.,0,1

'x Dolomite, pir.aish-c.rown, finely cryst,af-.- ,

30 A libel sandstons, v'.ite soilm, taccherst t C lrespealeau 95 58 5 ' ~~

welcaite,11e;ht trWu to pidish tuff, A ,,

,,, a rasiy uystatune m e ne, n u to reo, n oei, ,,,st u ume, R

23 6?0 W gQg at botte

'a.

M y p .7* stece, grMOei A tranconis 75 m c,mumue, uat very.,,stu n%una,- me 25 siltstoee, lia;nI.,,en, n,. green, sa. stone, fir 4 '

700 3

. s.:. S'ituman Wto itu.iNa #J 40  ! n.

! 740 7

E j$ . SaMstone, light tuffish-gray, time to -

M .,,, e.. a.u u., a m m .nt a-

< tro,to. -

k envius 1

2 ,,,

wwa,ur-o,w., fu. to mars.i

, d stcro. e k fArA to Cearsteintohereb l'

~

-25 g1g

  • l 40 , ' , -Sardstons, tite, fine to noiin, ISO inec.herent  ;

., 27 . , *

.iSaMstons, light grayisb-cracao, fine to i F77 '.1 cearse. ineeberent 70 FT4u 'laire u.u se.5 . Nt r. .al e . li m t rc wT. . w am

...DOk .

I','L M0 tor = 310 Amp 3 wet.L TEST DATA SHEET

~

,p (edyne-Westem Company,Inc.

WATER SUPPLY CONTRACTOAT. ,

A . . A .... iiime., roboo . P+e 3 ; asif.NI ',

17i weu in.

City Of Rochelle Well No. 9 Date Testeet Februarv 4. 1990

.loh Park Well T eiinl u y W. Whisenant 1, n, ..i .o n Di ever 250 ft.P. 490 v. Tye d D.a of wert 18 x 16 x 12 R/L coivmn.y m y 10" T&C n.nih of weil 869'6* p ,mn usc(

318' u,mii 12"Hot - 10 stage CIBF

. L. w n.itA. rime .. c. D y r o n J a e k s o n n,,,, p ,mn.n,, t ,,. 63' u.,.u t...

in v 7  !.cial Ne. c-380443 ( 7 21-c-00 51 L O..r.ce 2,re u .-. . u . . _ ~ -

. . --. . .... .. ~-

c*

,m........

.....c..

., n...

e......, I........

e~**....-.

5 . . .,

e..-..'~ T i 7 ....

.......,i .

70 248 185 l 80 185 433 H2O dirty

, 15_ 43.5 1364 180 80 185 429 218 -2 2_0__2. 2 0 Anp.

20 I

j43.5 1364 75 243 .

200 80 185 448 H2O dirty 225 40.0 1311 55 263 i

50 268 205 80 185 453

40.0 1311 85 196 466 220-220-222 Anp 140 37.5 1274 48 270 207 45 273 210 100 231 504 H2O rusty 50 33 1200 45 273 210 110 254 527 bloudy.

too 34 1218 45 273 210 110 254 527 . .. _ _

10 34 1218 45 274 _21,0jl10 254 527 G.qudy
20 34 1218 1218 45 _ 273 210 (110 254 527 Nosand 340 34 1218 45 273 210~T ,110 254 i 527 blear 200 34 -

.s l_o_ _ 34 _ 1218 45 . 273_ 210 _

110 254 527 1,-

210 .110 254 525 220-220-222 Anp 20 34 1218 45 273

. . -. _ _ . . ~hhut Down. - -

I ... _ ._ .

1218 GtM = ' sl(_.Qf ti/J_t4'LD.

Spe_qi_f.j_e i _W_ ell Capacity._= '.

210 ft/DD I 1 .

.. l i . .

' I _

=

..__... _ = -._

i i I ,  !

t l .

l l I =

l l I l '_ l l .

i - -

l l 1 i l . . .

i

e .

111tnets State Cater Servey*. Calletta No. 40 STILLMAN VALLEY Ogle County Dec.3.1947 I The village of Stillman Valley (333) tastalled Worse and Co. oil. lubricated turbine pump. No.

a public water supply la 1938. 35200. rated at ;00 gym against 250 ft. of head at 1759 rpm. the overall length of the pump is 7 Water is obtained from a well drilled to a ft. 7 3/4 in.120 h. of 5.in od. suction pipel 10 depth of 300 n. La Aug.1934 by C. W. Varner. hp. Fairbanks. Morse hollow shan motor operat.

Dubuque. tows. mad located 300 A. south of Roose. ing at 1750 rpm.

ve14 St.and 160 ft. east of Spruce St. (or apprort.

mately 1100 A. N. and 1300 ft. E. of the S. W. Hole Record corner of Section 1. T. 24 N.. R.11 E.). The surface elevation is 7251 ft. II.in, from surface to 160 ft.

8.ta. from 160 to 300 ft.

Correlated del 11er's log of well dettled in 1936 furnished by the State Geological Survey: Castna Reeted Formation Thichas e s Death Il.in. from surface to 10 ft.

ft. ft,. 12.tn. from surface to 59 ft. 3 in.

8.tn. from surface to 161 ft. 4 in.

Pleistocene systens Sand and gravel 55 55 The driller reported a production test im.

Ordovietan system mediately after completion. Aher pumping 9 hr.

Platteville formation at 203 gym..the drawdown was 55 ft. from a non.

Lime stone yellow and pumping water level of 30 ft.

blue 60 115 Olenwood formation Analysts of a sample (Lab. No. 112.797) col.

Shale and !!me 38 153 lected Dec. 3.1947 after 9.hr. pumping at 203 St. Peter formation spm. showed this water to have a hardness of Sand stone 147 300 17.7 gr. per gal., a residue of 310 ppm.. and an tron content of 1.1 ppm.

(

The pumping egulpment consists of 150 ft. of 4.tn.ed. column pipe 6.tn. 20. stage Fairbank s. Pumpage is estimated to average 20.000 spd.

LABORATORY NO. 112.797 ppm. epm. ppm. e pm.

, Iron (total) Fe 1.1 Silic a Stoa 17.8 Manganese Mn Tr. Fluoride F 0.1 Calcium Ca 10.6 3.53 Chloride Cl 1.0 0.03 Magne sium Mg 30.7 2.52 Nitrate NO3 0.1 T r.

Ananonium NHe Tr. Tr. Sulfate 504 8.4 0.18 Sodium Na 0.0 0.00 Alkattnity (as C aCO ) 292. 3 5.84 T urbidity 20 Hardne s s (as CACO 3 ) 303. 6.05

! Color 0 R e sidue 310.

Odor Tr. Temperature 56' F.

I

e e Illinole State Water Survey STILLMAN VALLEY I ' Bulletin 40 Supplement 11 Ogle County s October 10, 1960 Two wolle furaleh water to the public sup. banks. Morse Pomona turbine pump. No. 175987 ply of Sttilman Valley ($98). rated at 280 gym. and connected to a 25.hp. e.

lectric motor.

WELL NO.1. described in Balletta 40. was completely rehabilitated and the purrip repatted A mineral analyste of a sample (Lab. h v.

to 1957 or 1958. The well now to maintained for 153360) collected Oct. 6.1960 showed the waten emergency service. In Well No. 2 to have a hardness of 16.5 gr. per gal.. total dissolved minerale of 194 ppm. . and WELL NQ. 2 was completed in Sept.1954 an tron content of 0.9 ppm.

to a depth of 445 f t. by Allabaugh Well Co. . Rock.

ford, and located adjacent to the elevated tank. There are 150 services. Pampage to re.

or approntmately 300 ft. N. and 750 ft. E. of the ported to average 40.000 syd.

5. W. corner of Section 1. 724N. AllE. The ground elevation at the well is 740. The well was cased with 159 f t. 6 in. of 12.tn. pipe and with 8 TABLE A in. Pipe from the surf ace to 179 f t. 6 in. . below which the hole was fintehed 8 in in diameter to Water Level Dy 3 the bottom. The annulus betwe ets the two cas. f r om to it.

tage and between the 8.in. casing and the wall of the 12 in hole was pressure grouted. 0 164 0 164 190 60 Dartog the drilling of the well, water levels 190 235 58 were observed as shown in Table A. 235 290 53 290 430 50 The pumping equipment includes a Tatt. 430 460 36 L

l LABORATORY NO. 153360 ppm. epm. ppm. epm.

Iron (total) Te 0. 9 Stitca Sto 10.8 Manganese Mn T r. Fluoride T 0. 2 Caletum Ca 63.0 3.15 Beren B 0. 0 M a g ne s ium Mg 30.3 2.49 Chloride Cl 0. .00 Amm entum NH. T r. T r. Nitrate NO, 0. 6 .01 S o dt um Na 4. .17 Sulf ate Se e 6. 0 .12 Analtntty (as CACO 3) 244. 5.64 T urbtdtty 5 Hardness (as CaCOg) 282. 5.64 C olor 0 Oder 0 Total Dies olved Minerale 294.

i

6 .

. Ctlim.nst M~ le 'h hO SY305 Qc ey

~

To be. Poblished in 1989 by TJimois ce doqic.Survq.

The city of Byron (2035) installed a public water supply in 19Ju.

Three wells are in use. In 1950 ti. ore wa ro 375 sorvices, 371 netered:

the average and maximum pumpages were 115,000 and 140,000 gpd, respectively. In 1984 there were 871 services, all metered; tha average and maximum pumpages wore 460,000 and 620,005 gpd, respectively. The water is chlorinated and fluoridated.

WILL Wo. 1, finished in sand stone, wa s completed in .. . .,__

! 1900 to a depth of 2001 ft (cleanes out to ft in 19 4 d) ty W. it .

Gray and eros., ;hicago. This well is pumped in con jur. tion with hell No. 2. The well is loc 2ted suutu of dain St. betveth 'Jhioti an!

Walnut Sts, in the main toon of the purnphaavs, approxi.nately 20 s3 f t

(

5 and 700 ft I of the NW corner of coction 32,123N, & 1 1 *. . ". h t lant surface elevation at ti.e well is appro xi.'istely 720 't.

1 A drillers loq of kell NJ. I follows:

Thickneca Dspth Strata (f+1 (ft) l l

Originally, a 12-ir.. disneter hole was drilled to a depth of 213 ft, redaced to 10 in. ostweer. 213 and lacu :t, reda:ea t.1 d is..

between 10.1) and Ica ) ft, atd finiswd 5 t r. . it. dtaaetat I r 0 *. 1*. 81 to 200J tt. The v6.11 4s oriat r.sily case d w it h ';-in. l i p + t r a.; $an!

% 0 Curicco to o d:pth,of {13 ft. In 1948, tho well eco ec2msd out and the hole has then reported to be 10 in. in diameter 'from ).and surface to a depth of 246 ft, 8 in. from 246 to 8 50 f t, and 6 in. from 855 to 1280 ft. The well was then cased with 12-in. pipe f rom land surf ace to a depth of 213 f t and 10-in. Pipe from about 1.5 ft above land surface to a depth of 40 f t (cemented in) ,

Upon completion, the well reportedly flowed.

In November 1947, the well reportedly producwd 3501pm with a draudown of 62 f t fron a nonpumping water level af 32 f t bc 1) w th+

pump base.

4

! In 1946, C. E. Verner, Cubuque, Iowa, reanel nat the hol;, instatici new casing, and shot the wall with 200 in c4:h at depths o' 305, o 4),

1150, and 1240 ft. The wwil was then clasnod oat to a de et'a of 12id i t. On August 23, 19 9, tha no n p 'anp i r. ) wat se level van r et' art el to be 50 tt below the p urph-)use floor (h.11 'h. 2 idit) .

The pumping equipment p re ser.tly i ru t a l le 1 i n a _ _ __, __ __ _ __ ___ __ _ _ _

pump svt at ___ ft, cated at 61) 1pm, anin power #. by 4 ; )- t. p 1775 rpn General Liectric motor (Model Na. In ris90, Jcrtal Na. E*Jb7ei?44). .

l A kineral analysis made by the :llinois invironnental Protection Agenc y (La b. No. 537333) of a sanple coltected teoruary 27, 14o0, after pumping for 1 hr at 600 gpm, showcd the vator to have a hardness of 26 2 mg/1, total dissolved n.tnerals ot' 271 ng/1, and on iron )nten' of 0.15 nq/1.

l WELL Wo. 2, tinished tr. sandstane, .aa canpletoj in __________.

o .

1929 to o depth cf 673 f t (31eanad cot to (75 f t in 19o6) oy p.

I.

81111s, afron. This well is always pumpwd in conjun'etion with well I

No. 1 because of high chromiur content. The well is located in a small room south of the main room in the pumphouse about 14 ft southeast of sell No. 1, approximate).y 2612 f t S and 706 ft 2 a: tne he corner of Section 32, T25N, R111. The land surf ace elevation at the voll is approximately 720 ft.

A sample study log of Well No. 2 f urnished by the Stat e 3eslogical S%rvey follows:

. Thickness Dapth Strata (ft) (f t)

PLIISTOCENE SILILS Soil 15 15 i

Sar.3 and gravel 145 2i)

OED0VICIAN SYSTEM St. peter Formation i

Sandstone, incoherer.t It3 D1 Sandstone, chert ar.d thir,shain Le ts di u.1 CAMBEIAN SYST1M

Treppealeau dolomite and chcrt 55 *s5 Franconia sandstone, suale, and some du13mita 85 51)

Galesville Sandstone Sandstone, partly dolomiti: 53 c39 Sandstone, incoherant 43 073 l ,

A n S-in. diameter hole was drilled to a o v .)

  • t o f 3 71 tt. Ih- =w il i

is caseo wit h 8-in. dri ve pies f ro.'i s to s save lar.1 sarfaca ei a depth of 212 ft.

l

[ . ._ - _ .

O e

~

In 1948,'.C W. Tarner, Dubuque, Iowa, shot tne wel1 with 401 lo

( of 100 percent nitrogel (200 lb per shot) a t 64 0 and 6 00 f +. . The nonpupping water level was reported to be c 3 f t below lar.d surface bef ore shooting and 57 f t below land surface after shooting. the hole was then cleaned out to 675 ft. After this wort, the well reportedly producea 300 gpm with a dr 'wdown of 26 f t from a nonpumpit.g watet level of 39 f t below the pumphouse floor.

The pumping equipment presently installed consists of a 15-hp

. 1775 rpm Gwneral Electric motor (sol-1 No. 12F4510, Serial N). r 5 2912 9) ,

a 10-in., 6-stage peerleas turotne pump (Gerial No. 62302) sat at 100

. ft, cated at 300 g pm, ar..I ha s 10J f t of b-in. column pipe. 4 10-ft section of 6-in, suction pipe is attachat to the punp intaAv.

! A mineral analysis nadc py the lilina is invironnar.tal Protactinn Agency (ha b. No. 02dd79) of a dar.pl+ calle:ted J$nu sty 3, 1991, after pumping for 1 he at 3'0 s 1pm, shivva the water to tsve a nardneaa of 139 mg/1, total dissolved minerals of -1. .n J/1, a r.d a n i c u r c or.t e r.*. a t 0.0o9 siq/1.

I

& 5-in. diametcc test hole was constructed in April 1964 to a depth of 14) f t by the Layne-Western Co. , Aurora. It was locat?!

approximately 2650 f t 5 and 700 f t L or tha NW carner of sect ion 32, 225N, Elli. A temporary 2-in. casing was installed and the nonpumpini vater level on April 8, 1964, was report-d to be 52 ft neiov lanj surface.

i 1

4 W E!.L No. 3, f inishc i in aan,1ston , w a s co.npl$ted in Jgt emr e- 1 e rs ta a depth of 715 ft Ly the Layne-d est ari. Co. , Aurara. This ==L1 waa

plac:4, in c;rvico in 1973. Tho v311 to locatcd abaut 153 f t east of market St. and 250 f t north of Second St. under t he eigvated tank, I approximately 1310 f t s and 1820 f t 1 of the NW carner or section 32, T255, R11L. The isnd surf ace elevation at the well is approximately 7 20 f t.

& drillers log of Well No. 3 follows:

T51ckness Dwpth Strata (ft) (f t) 1 1 niaca soil Brown clay a 6 2

S and, gra vel, few boulders 74 8a Boulders, drilled very rough 3 d3 Sand, Jeavel, clay atcoaks, few co'11dars 02 175 i

Sand, gravel, clay 53 22d S ands tone 12 241 Sandstone, whita shale cuttin.;a 23 2o3 117 374 St. Peter sandstone St. Peter sandstone, limesto ne ler.s:s 20 J90

4) 34 thite limestonc Brown Limestone, some chert, hard 29 454 Sanastone, limestone and chert, hard' 17 47o Light brown limestone, some chert, hard 19 495 As $33 Green and brownish red sandstone 4 547 Limestone and chert 13 ,d )

S ands tone i

5 in) 5 Limeston9 t

13 e< ]

l Sanastons witn limestone lensen 5 t;4 i White sandstone l

4 -

Green chelo ccd browa 1_imeatcne 8 702  ;

Green and red shale is 715

(

l 4 22-in. diameter hole was drilled to a depth of 20 f t, ruduced to 19 in. between 20 and 250 f t, and finished 15 in. in diame+;er from 25a to 715 ft. The well is cased with 20-in. pipe f rom land surfacc to a depth of 23 f t and 16-in. Pipe f rom land surf ace to a dopth of 249 ft (cemented in) .

A production test was conducted on September 11-12, 1969, by representatives of the det11er an1 !11stt, llotmann 5 Aasa:iatos, Consulting Ingineers. After 24 hr of punging at ratos of 1012 to 12bd gpm, the final drawdown was 50 tt ?;ron a nanparpin; water Laval of 59 l ft be lov land surf ace.

I In May 1990, the well reportedly prodacet 415 gpn with a draviawn of 40 ft from a nonpurping water leval of 55 ft.

The pw3 ping equipment presently installea consists at a 75-Fp 1775 rpm U. 5. electric nator (.1o ic A Na, 11, serial No. r2Ja'196), s i

12-in., 4-stage Crane DemLnj turbina pamp (sadel W). *P), Serial sa.

1 T 7137 6) , set at 150 ft, rated at 10JO 1pn at atcat 221 ft IDH, and has 150 ft of 8-in. column pipe. A 13-ft sectian of 5-i; suction pips is attached to the pump inta ke.

I i

l l The following nineral analysis made by tr4e Illino is Invironmental ,

Protection Agency (Lab. No. 83342iy is tot a water sampla from the l l

well collected January 26, 1982, af te r 1. 5 he of pu.mptn1 at 113) apa.

l l

WELL NO. 3, L%dCRATCSY NC. 33).,294 l

mg/l me/1 mg/l Ce/1 0- Iro n re <0.005 4 :a : . 3102 9. 5 Manganese Mn 0.0 18 # 1.w rido r 0.29 0.02 Ammonium NH4 <0.1 Boron 8 J.02 Sodium Na 3 0.13 Cyanide CN <u.005 Potassium K 3. 2 0.03 Nitrate NO3  %.3 0.03 Calcium Ca 63 3.14 Ch10ridt C1 2. 2 0.06 Magnesium ag 35.0 2. 8 d sulfato 504 30 0.62 Strontium Sr 0.105 Alkalinity (am caco 3) 285 5. 7 .1 i A rs enic As , <0.001 Hardriess (as esco3) 149 5.98 Barium Ba 0.065 Ber y lli'im Se <0.0005 Total Jtssolved minerais 347

! C ad mi um Od <0.00 3

( ChromiJm Gr < 0. 015 Cobalt to <0.005 I Copper Cu < 1. J.13 Lead Pb <0.005 nercury Hg <J.00005 Nickel Ni <0.003 I selenium se <0.031 silver Ag <0.005 Yanadium T <0.004 sinc Zn <J.032 pH (as rec ed) 7. 4 t

1 i

9 8 2