ML17212A709: Difference between revisions

From kanterella
Jump to navigation Jump to search
(Created page by program invented by StriderTol)
(Created page by program invented by StriderTol)
 
(6 intermediate revisions by the same user not shown)
Line 3: Line 3:
| issue date = 09/04/1981
| issue date = 09/04/1981
| title = Application for Amend to License DPR-67 Submitted as Response to NRC 810728 Info Request & Proposed Amends to Tech Specs Re Boration Control,Moderator Temp Coefficient, Reactor Coolant Pumps & Boron Dilution & Addition
| title = Application for Amend to License DPR-67 Submitted as Response to NRC 810728 Info Request & Proposed Amends to Tech Specs Re Boration Control,Moderator Temp Coefficient, Reactor Coolant Pumps & Boron Dilution & Addition
| author name = UHRIG R E
| author name = Uhrig R
| author affiliation = FLORIDA POWER & LIGHT CO.
| author affiliation = FLORIDA POWER & LIGHT CO.
| addressee name = CLARK R A
| addressee name = Clark R
| addressee affiliation = NRC OFFICE OF NUCLEAR REACTOR REGULATION (NRR)
| addressee affiliation = NRC OFFICE OF NUCLEAR REACTOR REGULATION (NRR)
| docket = 05000335
| docket = 05000335
Line 14: Line 14:
| document type = OPERATING LICENSES-APPLIATION TO AMEND-RENEW EXISTING, TEXT-LICENSE APPLICATIONS & PERMITS
| document type = OPERATING LICENSES-APPLIATION TO AMEND-RENEW EXISTING, TEXT-LICENSE APPLICATIONS & PERMITS
| page count = 52
| page count = 52
| project =
| stage = Request
}}
}}


=Text=
=Text=
{{#Wiki_filter:REGULATOR NFORMATION DISTRIBUTION STKM(RIDS)ACCESSION NBR:8109100207 DOC~DATE':61/09/04NOTARIZED INOFACILt;50-335 St,LUciePlantEUnit1<FloridaPower8LightCo.AUTH',NAME'UTHOR AFFILIATION UHRIGgR,E, Flor,ida-Power8LightCo,RECIP~NAMElRECIPIENTAFFILSATION-CLARiX"PR
{{#Wiki_filter:REGULATOR         NFORMATION DISTRIBUTION                       S      TKM  (RIDS)
~ADOperating, ReactorsBranch3
ACCESSION NBR:8109100207                 DOC ~ DATE': 61/09/04    NOTARIZED                      I NO                OOCKEll'" 0 FACILt;50-335 St, LUcie PlantE Unit 1< Florida Power                                        8  Light  Co.           05000335 AUTH',NAME'UTHOR AFFILIATION UHRIGgR,E,             F l or,i da- Power 8 Light Co, REC IP ~ NAMEl          RECIP IENT AF F ILS ATION-CLARiX"PR ~ AD              Operating, Reactors Branch 3


==SUBJECT:==
==SUBJECT:==
Application foramendtoLicenseDPR-67submitted asresponsetoNRC810728inforequest8proposedamendstoTe'chSpecsreborationcontrolimoderator tempcoefficienti reactorcoolantpumps8borondilution8,addition.'ISTRIBUTION CODE;:AOOIS,.COPIESRECEEVED:l.iTR
Application for amend to License DPR-67 submitted as response to NRC 810728 info request 8 proposed amends to Te'ch Specs re boration controlimoderator temp coefficienti reactor coolant pumps 8 boron dilution 8, CODE;:   AOOIS,. COPIES RECEEVED:l.iTR addition.'ISTRIBUTION
+ENCL+SIZE'::'lITLEt:-
                                                                    +ENCL                         +   SIZE'::
GeneralDistributionforafter>>Issuance~
Gener al  Distr ibution for        after>> Issuance~ of Operating Lii cense                    'lITLEt:-
ofOperating LiicenseiVOTES:OOCKEll'"
iVOTE S:
005000335RECIPlKNT IDCODE/NAMEI ACT'ION:"
RECIPlKNT                COPIES            RECIPIENT                                COPIES ID CODE/NAMEI             LTTR ENCL>>        IO CODE/NAME                            LlTTRi ENCLI ACT'ION:"     ORB  03 BC!       04"       13    13 INTKRNALl, D/DIRPHU4l FACOB                        1      DIRi DI V OF  LIC                            1        1 I8 Ei              06'R 2      2      OELD                                11      1      0 ASSESS'R        10.       1      0      RAD ASMT BR                                  1 L          01        1      1 09        16    16      LPDR                                03 KXTERNALi: ACRS NRC NTIS PDR          02i        1 1
ORB03BC!04"INTKRNALl, D/DIRPHU4l FACOBI8Ei06'RASSESS'R10.L01COPIESLTTRENCL>>13131221011RECIPIENT IOCODE/NAME DIRiDIVOFLICOELD11RADASMTBRCOPIESLlTTRiENCLI11101KXTERNALi:
1, 1
ACRSNRCPDRNTIS0902i1616LPDR11,NSIC1103051111gp1gqgSETOTALNUMBEROFCOPIESREQUIRED:
NSIC                                05 1
LTTR41ENCL'l39 llrtkttIII
1 1
~+~wc'efP.o.BOX629100,MIAMI,FL33162fkvv<4%FLORIDAPOWER&LIGHTCOMPANYSeptember 4,1981L-81-388OfficeofNuclearReactorRegulation U.S.NuclearRegulatory Commission Washington, D.C.20555Attention:
1 qgSE gp  1g TOTAL NUMBER OF COPIES              REQUIRED: LTTR      41  ENCL'l  39
Mr.RobertA.Clark,ChiefOperating ReactorsBranch$/3
 
ll r        t kt t
III
 
P.o. BOX 629100, MIAMI,FL 33162
~ + ~ w c'ef                                                                                            fkvv<4%
FLORIDA POWER & LIGHT COMPANY September 4, 1981 L-81-388 c
Office of Nuclear Reactor Regulation U. S. Nuclear Regulatory Commission Washington, D.C. 20555 Attention: Mr. Robert A. Clark, Chief Operating Reactors Branch $/3                         I S~P Og 1981 Qi%a +~~95


==Subject:==
==Subject:==
St.LucieUnit1DocketNo.50-335StretchPowerProposedAmendment cS~POg1981IQi%a+~~95
St. Lucie Unit 1 Docket No. 50-335 Stretch Power Proposed Amendment


==References:==
==References:==
: 1. Letter, R. A. Clark to R. E. Uhrig, 7/28/81
: 2. Letter, R. E. Uhrig to D. G. Eisenhut, L-80-381, 11/10/80
: 3. Letter, R. E. Uhrig to D. G. Eisenhut, L-81-306 7/23/81
==Dear Mr. Clark:==
In response to the information request of your Reference        1 letter, we have enclosed responses to your ten (10) questions in Attachment  1 to this letter.
In order to clarify the relationship of our Reference 3 submittal (Shutdown Margin and MTC changes) to our Reference 2 submittal (Stretch Power) we have described the proposed amendment to Stretch below and have enclosed all the pertinent amended Technical Sepcification pages in Attachment 2 to this letter.
Pa es 3/0  l-l R 3/0 1-2 R 3/0 1-5 R 3/0 0-1 R B 3/0 l-l The requirements for shutdown margin were increased, and a shutdown margin calculation change was added. The requirements for part loop operation were simplified and the shutdown margin requirements decreased slightly. The requirement for the moderator temperature coefficient (MTC) at rated thermal power was changed.
The proposed amendment to Stretch has been previously reviewed and approved by the St. Lucie Facility Review Group and the Florida Power
* Light Company Nuclear Review Board.          Specifically the new requirements for shutdown margin and MTC are bounded in all the other analyses which use the more conservative values of 0.3% Ijhk/k and -2.5 x 10-< hk/k/OF, respectively.
Further we were able to simplify the requirements for part loop operation 8109100207 Bi 0904 PDR ADOCK 05000335 POR PEOPLE... SERVING PEOPLE


1.Letter,R.A.ClarktoR.E.Uhrig,7/28/812.Letter,R.E.UhrigtoD.G.Eisenhut, L-80-381, 11/10/803.Letter,R.E.UhrigtoD.G.Eisenhut, L-81-3067/23/81
1'
                              . '-P. /CASA ~~ >>  'i: ~ a', '1 gf.". J3f; ~
                                          ~t L
1
                                                                            )l'AJJ
                                                                      \I            4
~ 'VJ<)I~I . )~, - ~> '.~ '~ I                                        c  ~
J
* because the required reactor coolant pump (RCP) trip causes the full loop and part loop events to behave with no significant differences in results.
T We have enclosed the safety evaluations for the Excess Load (EL) and the Steam Generator Tube Rupture (SGTR) events in Attachment 3 to this. letter.
These events along with the Steam Line Rupture (SLB) event (submitted through Reference 3) were reanalyzed for Cycle 5 to include the effect of NRC mandated TMI-2 related operational and design changes, i.e. automatic initiation of auxilliary feedwater flow and manual, trip of all four RCP s. Other analyses are not significantly affected by these changes. These three event safety evaluations (SLB, EL and SGTR) should replace those submitted through Reference 2. No new Technical Specification changes to Stretch, other than those in Attachment 2 to this letter, arise as a result of the reanalysis of these events. Also the responses to questions on SLB and SGTR (Questions 7,8, and 9) in Attachment 1 to this letter are based on these revised analyses in Attachment 3 and Reference 3.
Very  t    yours Robert E. Uhrig Vice President Advanced Systems    2 Technology cc: Mr. J. P. O'Reilly, Director, Region II Mr. Harold F. Reis, Esquire


==DearMr.Clark:==
ATTACHMENTI guestion  1 4
Inresponsetotheinformation requestofyourReference 1letter,wehaveenclosedresponses toyourten(10)questions inAttachment 1tothisletter.Inordertoclarifytherelationship ofourReference 3submittal (Shutdown MarginandMTCchanges)toourReference 2submittal (StretchPower)wehavedescribed theproposedamendment toStretchbelowandhaveenclosedallthepertinent amendedTechnical Sepcification pagesinAttachment 2tothisletter.Paes3/0l-lR3/01-2R3/01-5R3/00-1RB3/0l-lTherequirements forshutdownmarginwereincreased, andashutdownmargincalculation changewasadded.Therequirements forpartloopoperation weresimplified andtheshutdownmarginrequirements decreased slightly.
The  inverse boron'worth values listed in Table 7.1.1-1 are increased for all modes of operation. Increased inverse boron worth means that more boron must be diluted for a given change in reactivity, which is less conservative. Oescribe the bases for and justify the new values of inverse boron worth for each mode of operation.
Therequirement forthemoderator temperature coefficient (MTC)atratedthermalpowerwaschanged.Theproposedamendment toStretchhasbeenpreviously reviewedandapprovedbytheSt.LucieFacilityReviewGroupandtheFloridaPower*LightCompanyNuclearReviewBoard.Specifically thenewrequirements forshutdownmarginandMTCareboundedinalltheotheranalyseswhichusethemoreconservative valuesof0.3%Ijhk/kand-2.5x10-<hk/k/OF,respectively.
~Res ense The new  inverse boron worths reported in Table 7.1.1-1 are based on explicit diffusion theory ca1culations of reactivity which span the
Furtherwewereabletosimplifytherequirements forpartloopoperation 8109100207 Bi0904PDRADOCK05000335PORPEOPLE...
'power levels and temperature range allowed within each operating mode.
SERVINGPEOPLE 1'.'-P./CASA~~>>'i:~a','1gf.".J3f;~~tL1\I)l'AJJ4~'VJ<)I~I.)~,-~>'.~'~Ic~J*
These inverse boron worths are consistent with the critical boron con-centrati'ons shown in Table 7.1,1-1. Although the i'nverse boron worths have increased when compared to the Reference Cycle values, the new values reported in Tab'le 7,1.1-1 are sttll l.ower than the explicit Cycle 4 cal-culated values. Since the new values bound the explicit calculated values, their use jn the, Cycle 4 boron dilution event is justified.
becausetherequiredreactorcoolantpump(RCP)tripcausesthefullloopandpartloopeventstobehavewithnosignificant differences inresults.T-Wehaveenclosedthesafetyevaluations fortheExcessLoad(EL)andtheSteamGenerator TubeRupture(SGTR)eventsinAttachment 3tothis.letter.TheseeventsalongwiththeSteamLineRupture(SLB)event(submitted throughReference 3)werereanalyzed forCycle5toincludetheeffectofNRCmandatedTMI-2relatedoperational anddesignchanges,i.e.automatic initiation ofauxilliary feedwater flowandmanual,tripofallfourRCPs.Otheranalysesarenotsignificantly affectedbythesechanges.Thesethreeeventsafetyevaluations (SLB,ELandSGTR)shouldreplacethosesubmitted throughReference 2.NonewTechnical Specification changestoStretch,otherthanthoseinAttachment 2tothisletter,ariseasaresultofthereanalysis oftheseevents.Alsotheresponses toquestions onSLBandSGTR(Questions 7,8,and9)inAttachment 1tothisletterarebasedontheserevisedanalysesinAttachment 3andReference 3.VerytyoursRobertE.UhrigVicePresident AdvancedSystems2Technology cc:Mr.J.P.O'Reilly,
 
: Director, RegionIIMr.HaroldF.Reis,Esquire ATTACHMENTI 4guestion1Theinverseboron'worth valueslistedinTable7.1.1-1areincreased forallmodesofoperation.
Ouestion    2 1
Increased inverseboronworthmeansthatmoreboronmustbedilutedforagivenchangeinreactivity, whichislessconservative.
1 The  refueling shutdown margin listed in Table 7.1.1-1 has been changed from 9.45&#xc3; subcritical to 6.28&#xc3; subcritial, which reduces the dilution time to reach criticality . What is the boron concentration that corresponds with the new shutdown margin? Compare this with the previous refueling boron concentration.
Oescribethebasesforandjustifythenewvaluesofinverseboronworthforeachmodeofoperation.
~Res  ense The  critical boron concentration for Cycle 4 is 1280 PPM, in comparison to the reference cycle value of 1200 PPH. The initial boron concentra-tion for both Cycle 4 and the reference cycle is the minimum required Technical Specification boron concentration of 1720 PPM.
~ResenseThenewinverseboronworthsreportedinTable7.1.1-1arebasedonexplicitdiffusion theoryca1culations ofreactivity whichspanthe'powerlevelsandtemperature rangeallowedwithineachoperating mode.Theseinverseboronworthsareconsistent withthecriticalboroncon-centrati'ons showninTable7.1,1-1.Althoughthei'nverseboronworthshaveincreased whencomparedtotheReference Cyclevalues,thenewvaluesreportedinTab'le7,1.1-1aresttlll.owerthantheexplicitCycle4cal-culatedvalues.Sincethenewvaluesboundtheexplicitcalculated values,theirusejnthe,Cycle4borondilutioneventisjustified.
 
Ouestion211Therefueling shutdownmarginlistedinTable7.1.1-1hasbeenchangedfrom9.45&#xc3;subcritical to6.28&#xc3;subcritial, whichreducesthedilutiontimetoreachcriticality
~ I uestion  3 The  results of the boron dilution events shown in Table 7.1.1-2 list the time to lose prescribed shutdown margin for each mode. Please be aware that SPR Section 15.4.6 specifies minimum times from when an alarm makes the operator aware of an unplanned dilution event as acceptance criteria. What alarms makes the operator aware of boron dilution in each mode?   What are the setpoints, time delays, and errors associated with detection and alarm systems, and how are these accounted for in the time for the operator to react to a boron dilution event?
.Whatistheboronconcentration thatcorresponds withthenewshutdownmargin?Comparethiswiththepreviousrefueling boronconcentration.
 
~ResenseThecriticalboronconcentration forCycle4is1280PPM,incomparison tothereference cyclevalueof1200PPH.Theinitialboronconcentra-tionforbothCycle4andthereference cycleistheminimumrequiredTechnical Specification boronconcentration of1720PPM.  
===Response===
~Iuestion3TheresultsoftheborondilutioneventsshowninTable7.1.1-2listthetimetoloseprescribed shutdownmarginforeachmode.PleasebeawarethatSPRSection15.4.6specifies minimumtimesfromwhenanalarmmakestheoperatorawareofanunplanned dilutioneventasacceptance criteria.
The  indicators that are available to the operator for determining if an unplanned dilution is in progress are: 1) the startup flux channels,
Whatalarmsmakestheoperatorawareofborondilutionineachmode?Whatarethesetpoints, timedelays,anderrorsassociated withdetection andalarmsystems,andhowaretheseaccounted forinthetimefortheoperatortoreacttoaborondilutionevent?ResponseTheindicators thatareavailable totheoperatorfordetermining ifanunplanned dilutionisinprogressare:1)thestartupfluxchannels, 2)thelowlevelalarmontheVolumeControlTank,3)theboronometer and4periodicsampling.
: 2) the low level alarm on the Volume Control Tank, 3) the boronometer and 4 periodic sampling.     Depending on the mode of operation and on the rate of dilution, one or all of these indicators would alert the operator that an inadvertent dilution is in progress.
Depending onthemodeofoperation andontherateofdilution, oneoralloftheseindicators wouldalerttheoperatorthataninadvertent dilutionisinprogress.
The  least  amount of time to lose'rescribed shutdown margin is in Mode
Theleastamountoftimetolose'rescribed shutdownmarginisinMode5.Theprimaryindicator inMode5is.thestartup'lux channels.
: 5. The  primary indicator in Mode 5 is. the startup'lux channels. Two startup flux channels are requi red to be operable in Mode 5 by the Technical Specifications.     Procedures will be developed which will require the operator to:
TwostartupfluxchannelsarerequiredtobeoperableinMode5bytheTechnical Specifications.
a)   Observe the count  rate  upon entering  Mode 5, b)   Periodically check that the count rate has not increased (the interval is dependent on the number of charging pumps in operation and  the liquid volume .in the RCS),
Procedures willbedeveloped whichwillrequiretheoperatorto:a)b)ObservethecountrateuponenteringMode5,Periodically checkthatthecountratehasnotincreased (theintervalisdependent onthenumberofchargingpumpsinoperation andtheliquidvolume.intheRCS),c)Takecorrective actionwheneverthecountrateexceedsaprescribed value(i.e.,effectively analarmlimit)Theseactionsaresufficient becauseinNode5theboronconcentration isnormallyhigherthanrequiredbyTechnical Specications.
c)   Take  corrective action whenever the count rate exceeds  a prescribed value   (i.e., effectively an alarm  limit)
Thishigherconcentration resultsfromnotdilutingfromthehigherrequiredconcentrations forNodes4and6.Itshouldalsobenotedthatpastexperience atSt.Luciehasverifiedthequalityofoperatortrainingandoperatoractionduringaborondilutionevent,LER335-80-71 reportedaborondilutionatpowerwhichwascorrectly controlled bytheSt.Lucieoperators.
These  actions are sufficient because in Node 5 the boron concentration is normally higher than required by Technical Specications.      This higher concentration results from not diluting from the higher required concentrations for Nodes 4 and 6.
Isuestion4Theparameters showninTable7.1.4-4arestatedtomaximizethecalculated peakRCSpressureforalossofloadevent.However,theinitialpressureof2200psiaislowerthanthevaluepreviously utilized(2250psia)tomaximizetheRCSpeakpressure.
It  should also be noted that past experience at St. Lucie has verified the quality of operator training    and operator action during a boron dilution event, LER    335-80-71 reported  a boron dilution at power which was correctly controlled by the St. Lucie operators.
Providefurtherdiscussion onwhyalowerinitialpressureisconservative, orevaluatetheeffectsofahigherinitialpressureonthecal-culatedpeakpressure.
 
~ResenseTheuseofthelowestinitialRCSpressureisconservative sincethisdelaysthetimeofHighPressurizer Pressure(HPP)trip.DelayingthetimeofHPPtripmaximizes therateofpressurein-creaseatthetimeoftripandtherebymaximizes thepressureover--shootafterreactortrip.Thisresultsin.thepeakRCSpressureduringtheevent.
I s
Therefore, thelowestRCSpressureof2200psiaallowedbytheTechnical Specification wasconservatively assumedtodetermine.
uestion  4 The parameters shown in Table 7.1.4-4 are stated to maximize the calculated peak RCS pressure for a loss of load event. However, the initial  pressure of 2200 psia is lower than the value previously utilized (2250 psia) to maximize the RCS peak pressure. Provide further discussion on why a lower    initial pressure is conservative, or evaluate  the effects  of a higher initial pressure on the cal-culated peak pressure.
thepeakpressureduringtheLossofLoadev'ent; guestion5TheLossofCoolantFlowanalysishasseveralareaswhicharenotfullyaddressed andmaybenon-conservative.
~Res  ense The use  of the lowest  initial RCS pressure is conservative since this delays    the time of High Pressurizer Pressure (HPP) trip.
Pleasediscussthefollowing:
Delaying the time of HPP trip maximizes the rate of pressure in-crease at the time of trip and ther eby maximizes the pressure over--
1)Theinitialcorepowerisat100%ratherthan102&#xc3;asrequiredbySRPSection15.3.1;2)Theassumedscramcharacteristics donotdiscussifthemostreactiverodisheldoutofthecore;3)t<obasesareprovidedtojustifythepumpcoastdown curve.~Resonse1)Reference 1documents C-E'sstatistical combination ofuncertainty methodology.
shoot after reactor trip. This results in. the peak RCS pressure during theevent. Therefore, the lowest RCS pressure of 2200 psia allowed by the Technical Specification was conservatively assumed to determine. the peak pressure during the Loss of Load ev'ent;
Themethodsandinitialconditions usedintheLossofFloweventareconsisteqt with/hosereportedingeferencq
 
.I,.Inparticular, theuncertainty ininitialpowerleveiisincludedas.,a-t'erm inthetotaluncertainty.
guestion    5 The Loss      of Coolant  Flow analysis has several areas which are not fully addressed      and may be non-conservative.     Please discuss the following:       1) The  initial  core power is at 100% rather than 102&#xc3; as  required    by SRP Section 15.3.1; 2) The assumed scram characteristics do  not discuss are if the most reactive rod is held out of the core; provided  to justify the pump coastdown curve.
Therefore, aninitialpowerlevelof100wasassumedintheLossofFloweventanalysis.
: 3) t<o  bases
2)The,:;,-scram worthusedintheanalysiswascalculated withthemost",reactive rodheldoutofthecore.3)The'-pump coastdown curveusedintheLossofFloweventiscalculated usingthecodeCOAST(Reference 2).Thiscoastdown curveis'identical totheone.usedandacceptedbytheNRCintheFSARandpreviousreloadsafetyanalysis..
~Res onse
: 1)   Reference 1 documents C-E's statistical combination of uncertainty methodology. The methods and initial conditions used in the Loss of Flow event are consisteqt with /hose reported in geferencq .I,.
In particular, the uncertainty in      initial  power levei is included as .,a-t'erm in the total uncertainty.     Therefore, an initial power level of 100      was  assumed  in the Loss  of Flow  event analysis.
: 2) The,:;,-scram worth used in the analysis was calculated with the most",reactive rod held out of the core.
: 3)   The'-pump coastdown     curve used in the Loss of Flow event is calculated using the code COAST (Reference 2). This coastdown curve is'identical to the one .used and accepted by the NRC in the FSAR and previous reload safety analysis..
References
References
'1.CEH-12(F)-'P, "Statistical Combination ofUncertainties, Part.3,"March1980.2.CENPD-98, "COASTCodeDescription,"
: 1. CEH-12(F)-'P,   "Statistical   Combination   of Uncertainties, Part.3,"
May1973.
March 1980.
1t(}uestion 6TheLossofNon-Emergency ACPowereventutilizesthesameDNBanalysisusedfortheLossofCoolantFlowtransient (7.2.2).Theitemsinquestion5mustbesatisfactorily resolvedbeforetheanalysisforLossofACPowerwillbeconsidered valid.1n~addition, thevalueof1.15usedforthedopplercoefficient multiplier mustbejustified asconservative considering thepreviousvalueof0.85usedintheFSAR.~ResenseAdopplercoeff'icient multiplier of1.15wasusedintheanalysissincethisresultsinaslowerpowerrampdownfollowing reactortrip.Thisincreases theresidualheatthatmustberemovedduringplantcooldownandincreases thesteamreleases.
: 2. CENPD-98, "COAST Code      Description," May 1973.
Highersteamreleasesduringthecooldownincreases thesiteboundarydoses.Thus,itisconservative touseadopplercoefficient multiplier of1.15.
 
uestion7providejustification forthevaluesoftheinitialcorecoolanttemperature andpressuretoshowthattheyareconservative fortheSteamLineBreakanalysis.
(}uestion 6 1                              t The Loss  of Non-Emergency AC Power event utilizes the same DNB analysis used for the Loss of Coolant Flow transient (7.2.2).
Also,discussthebasisfortheinitial,coreflowratesassumedandthedelayedneutronfraction.
The items in question 5 must be satisfactorily resolved before the analysis for Loss of AC Power will be considered valid. 1n
~ResenseThemaximuminitialcorecoolanttemperature allowedbytheTechnical Specification wasusedintheanalysis.
~
Thiscausesthegreatestcoolanttemperature decreaseduringtheevent,whichresultsinthemaximumpositivereactivity insertion duetomoderator feedback..
addition, the value of 1.15 used for the doppler coefficient multiplier must be justified as conservative considering the previous value of 0.85 used in the FSAR.
Thegreatestamountofpositivereactivity insertion enhancesthepotential forReturn-to-Criticality (R-T-C)andReturn-to-Power (R-T-P).TheSLBeventinitiated withthe.maximuminitialRCSpressuredelaystheinitiation ofSafetyInjection Actuation Signal(SIAS).Thisresultsintheleastamountofnegativereactivity addedtothecoreduetoboroninjected,via the,HighPressureSafetyInjection (HPSI)pumps,Thesmalleramountofnegativereactivity insertedenhancesthepotential forR>>T-CandR-T-P.0Themaximumvalueforthedelayedneutronfractionatendofcyclewasassumedintheanalysis.
~Res ense A  doppler coeff'icient multiplier of 1.15 was used in the analysis since this results in a slower power rampdown following reactor trip. This increases the residual heat that must be removed during plant cooldown and increases the steam releases. Higher steam releases during the cooldown increases the site boundary doses. Thus,   it  is conservative to use a doppler coefficient multiplier of 1.15.
Themaximumvalueincreases thesubcritical multiplication andthusenhancesthepotential forR-T-P.Theinitialcoremassflowrateassumedintheanalysisisconsistent with'heminimumguaranteed Technical Specification vesselflowrateof370,000GPN.
 
uestion8NoDNBanalysiswasperformed despitetherapidsystemdepressurization.
uestion  7 provide justification for the values of the initial core coolant temperature and pressure to show that they are conservative for the Steam Line Break analysis. Also, discuss the basis for the initial, core flow rates assumed and the delayed neutron fraction.
WhataretheminimumDNBratioscalculated?
~Res ense The maximum  initial  core coolant temperature allowed by the Technical Specification was used in the analysis. This causes the greatest coolant temperature decrease during the event, which results in the maximum positive reactivity insertion due to moderator feedback.. The greatest amount of positive reactivity insertion enhances the potential for Return-to-Criticality (R-T-C) and Return-to-Power (R-T-P).
~ResenseTheminimumDNBRduringthetransient wascalculated usingtheMacBethrodclustercorrelation (Reference 1)withtheLeenon-uniform heatfluxcorrection factor(Reference 2).Theminimum.transient DNBRfortheHFPSLBeventoccursat145secondsandisequalto1.27.References 1..R.V.MacBeth,"Anappraisal ofForcedConvection Burn-OutData",Proc.Instn.Mech.Engrs.,1965-66,Vol.180,Pt.3C,pp.37-50.2.D.H.Lee,"AnExperimental Investigation ofForcedConvection BurnoutinHighPressureMater;PartIV,LargeDiameterTubesatAbout1600psia",AEBl-R479,November, 1966.
The SLB event  initiated with the. maximum initial RCS pressure delays the initiation of Safety Injection Actuation Signal (SIAS).
uestion9',TheSteamGenerator TubeRuptureEventshows.arapiddropinRCSpressureandtemperature atabout600secondsinFigures7.3.3-3and7.3.3-4.Pleaseprovidefigureswithfinerdetailinthisregion(approximately 550'o650seconds)andevaluatethechancesofandeffectsofsteambubbleformation inthevesselheadorhotlegs.Theeffectsofsteambubbleformation onthe"radiological evaluations shouldalsobeconsidered.
This results in the least amount of negative reactivity added to the core due to boron injected,via the, High Pressure Safety Injection (HPSI) pumps, The smaller amount of negative reactivity inserted enhances the potential for R>>T-C and R-T-P.
~ResenseAsrequested, Figures1and2presentinfinerdetailtheRCSpressureandtemperature from550secondsto650seconds.Thereference, preparedinresponsetopreviousNRCquestions onupperheadvoiding,confirmsthatthemodelbeing-usedinthisanalysisadequate1y addresses theeffectsofsteambubbl'eformation inthevesselupperheadandhot'egsduringaSteamGenerator TubeRuptureevent.Inaddition, the.the.reference containsanevaluation oftheradiological doseduetosteambubbleformation.
0 The maximum value for the delayed neutron fraction at end of cycle was assumed in the analysis. The maximum value increases the  subcritical multiplication and thus    enhances the potential for R-T-P.
'eference:
The  initial  core mass flow rate assumed in the analysis is consistent with'he  minimum guaranteed Technical Specification vessel flow rate of 370,000 GPN.
LetterfromRobertE.UhrigtoDarrellG.Eisenhut, "St.LucieUnit1DocketNo.50-335Natural'irculation Cooldown",
 
L-81-43,February9,1981; guestion10TheSeizedRotoranalysisdoesnotincludeacalculated DNB,MDNBR{accounting forstatistical uncertainties withthenewC-Emethodology) orapeakcladtemperature asrequiredbySRPSection15.3.3Pleaseprovidethisinformation andconfirmthatthemostreactiverodwasassumedstuckoutofthecore.~ResonseTheminimumONBRforaSeizedRotoreventinitiated fromTechnical Specification DNBLimitingConditions forOperation is1.025~AsstatedinSection7.3.4,thepredicted numberoffuelpinfailuresisnotbasedonasingleHDNBRvaluebutisca]'c61ated throughadistribution ofthefractionofpinswithapar'ticular ONBRasafunctionofDNBR.Thisdistribution isthen,:,convoluted withaprobability ofburnoutvs.DNBRtoobtaintheamount,offuelfailure.Thescramworthusedinanalyzing this.event'~was calculated assumingthatthemostreactiverodisstuckoutofthe,-.core.
uestion  8 No DNB  analysis was performed  despite the rapid system depressurization.
II~~I IOXIOTONINCH7Xi0INCHES'ICaICEUEEEL0ESiIIERCO.IIJWIIIUSA461320~k'~I~II!J:IL'''Ilijl!IIIijT(IiI~~~I.IlliI;II~ITIi~IIII,IIJ~iljI~IIilI~I~I~~I~~~ililIlt(IIsI~II~Il,:tI~~III~III'I/ISSIl,'I~(Ij;!LI'II~~i~~~~'IlIjlI~~II~l::il!!:ijI(lIIslIii(I~Ili'IP(II~i(II~II~l(ll:I''.'.LLhajjjij~II',ililliI~~IiW illX10TO'INCH1XlsiINCIIESfE-~ILKEUFfiLAESSEACO,assisisasisola461320.~iili~IIi'f'.'ij~iI~IIII~i~sl~~I~I!;aia~I~Isi~~~~sl~~i:.~~iIiI~at't,.l~f,Ii~~I)iI~~~7~,lt'jiilII~~~~~~~II~~Is~IEEii~jsl,,Ia~iI~iiiiiis.IREI~I~tlI~$$URii~~I~siil~I~IIaI~I~o4~IIaa'i~~Ii~,~~~~~~~~~~Ii''!II~s~~~I~~a~~sIa~I~JI~>>ais.iI~II~I~ala~~IsLII'IIII~~~~~i~.iI:i'IIs:.i'jI,i~I.IIIili.i''gh.~~III.~~I~~'i:II~I;i~Il~sifl~~Iifljla,IaIII~IaI~~~I~IiIa~I~~~Ii~t~Ii~LaIisisal~~I~~IIa~aliI'lIa~ls ATTACHMENT 2
What are the minimum  DNB  ratios calculated?
ATTACHMENT 3
~Res ense The minimum DNBR  during the transient was calculated using the MacBeth rod cluster correlation (Reference 1) with the Lee non-uniform heat flux correction factor (Reference 2). The minimum. transient DNBR for the HFP SLB event occurs at 145 seconds and is equal to 1.27.
7.1.3ExcessLoadEventTheExcessLoadEventwasreanalyzed todetermine thattheDNBRandCTMdesignlimitsarenotexceededduringCycle5.TheanalysesincludedtheeffectsofmanuallytrippingtheRCP'sonSIASduetolowpressurizer pressureandtheinitiation ofauxiliary feedwater flow180secondsafterreactortrip.TheHighPowerLeveland.ThermalMargin/Low Pressure{TM/LP)tripsprovideprimaryprotection topreventexceeding theDNBRlimitduringthefullpowerExcessLoadevent.Additional protection isprovidedbyothertripsignals.including highrateofchangeofpower,lowsteamgenerator waterlevel,andlowsteamgenerator pressure.
References 1.. R. V. MacBeth, "An appraisal of Forced Convection Burn-Out Data",
Theapproachtothe.CTMlimitsisterminated byeithertheAxialFluxOffsettrip,theDNBrelatedtriportheHighPowerLeveltrip.In,thisanalysis, creditis,takenonlyfortheactionoftheHighPowerLeveltripinthedetermination oftheminimumtransient DNBRandmaximumCTM.ForthezeropowerExcessLoadtransient, protection isprovidedbytheVariableHighPowerLeveltriptopreventviolation oftheDNBRandCTMliririts.
Proc. Instn. Mech. Engrs., 1965-66, Vol. 180, Pt. 3C, pp. 37-50.
Aspresented intheFSAR,themostlimitingloadincreaseeventsatfullpowerandhot.Rempowerconditions"occur'or the.completeopeningofthe.steamdumpandbypass'valves.Ofthesetwoevents,thefullpowercaseisthe'morelimiting{i.e.,approaches closertotheacceptable DNBRandCTMlimits)case.Forconservatism intheanalyses, auxiliary feedwater flowratecorresponding to15.3%offullpowermainfeedwater flow(i.e.,7.66Koffullpowermainfeedwater flowpergenerator) wasassumed.Theadditionoftheauxiliary feedwater toeachsteamgeneratorwasinitiated at180seconds,afterreactortrip.Theadditionofauxiliary feedwater enhancesthecooldownoftheRCSandthepotential forareturn-to-power
: 2. D. H. Lee, "An Experimental    Investigation of Forced Convection Burnout in High Pressure Mater; Part IV, Large Diameter Tubes at About 1600 psia", AEBl-R 479, November, 1966.
{R-T-P)orcriticality arisingfromreactivity feedbackmechanisms.
 
>TheExcessLoadeventatfullpowerwasinitiated attheconditions giveninTable7.1.3-.1.
uestion    9
A,Moderator Temperature Coefficient of-2.5x10-"
',The      Steam Generator Tube Rupture Event shows.a      rapid drop in RCS pressure and temperature at about 600 seconds in Figures        7.3.3-3 and 7.3.3-4.
ap/oFwasassumedintheanalysis.
Please provide figures with finer detail in this region (approximately 550 650 seconds) and evaluate the chances of and effects of steam bubble
ThisMTC,inconjunction withthedecreasing coolantinlettemperature, enhancestherateofincreaseinthecoreheatfluxatthetfmeofreactortrip.5minimumFuelTemperature Coefficient (FTC),corresponding tobeginning ofcycleconditions withanuncertainty of155,wasusedintheanalysissincethisFTCresultsintheleastamountofnegativereactivity additiontomitigatethetransient increaseincoreheatflux.TheminimumCEAworthassumedtobeavailable forshutdownatthetjmeofreactortripforfullpoweroperation is4.3Xap.Theanalysisconservatively assumedthattheworthofboroninjectedbythesafetyinjection systemis-1.0&#xc3;apper105PPM.Thepressurizer pressurecontrolsystemwasassumedtobeinoperable becausethisminimizes theRCSpressureduringtheeventandtherefore reducestheca1culated DNBR.Allothercontrolsystemswereassumedtobeinmanualmodeofoperation andhavenosignificant impactontheresultsforthisevent.
                                                                                        'o formation in the vessel head or hot legs. The effects of steam bubble formation on the"radiological evaluations should also be considered.
TheFullPowerExcessLoadeventresultsinaHighPowerLeveltripat8.4seconds.TheminimumDNBRcalculated fortheeventattheconditions speci-.fiedinTable7.1.3-1is1.29comparedtothedesignlimitof1.23.Themaximum.locallinearheatgeneration ratefortheeventis18.3KW/ft.FortheExcessLoadeventinitiated fromHFPconditions, SIASisgenerated
~Res    ense As  requested, Figures 1 and 2 present in finer detail the      RCS  pressur e and temperature from 550 seconds to 650 seconds.
't54.0seconds.Upongeneration ofanSIAS,theRCP'saremanuallytrippedbythe'perator.
The  reference, prepared in response to previous NRC questions on upper head voiding, confirms that the model being- used in this analysis adequate1y addresses the effects of steam bubbl'e formation in the vessel upper head and hot'egs during a Steam Generator Tube Rupture event.         In addition, the
Thecoastdown ofthepumpsdecreases therateofdecayheatremovalandmaintains theRCScoolanttemperatures andpressureathighervalues.Auxiliary feedwater flowisdelivered tobothsteamg'enerators at188.4seconds.Thesubcooled feedwater flowcausesanadditional cooldownoftheRCS.Thedecreasing RCStemperatures, incombination withanegativeMTC,resultinpositivereactivity insertion whichenablesthecoretoapproachcriticality.
  . the. reference contains an evaluation of the radiological dose due to steam bubble formation.
Thenegativereactivity insertedbytheCEAsandtheboroninjectedviatheHighPressureSafetyInjection (HPSI)pumps,.however, issufficient tomaintainthecoreinasubcritical condition.
Letter from Robert E. Uhrig to Darrell G. Eisenhut,
Table7.1.3-2presentsthesequenceofeventsforanExcessLoadeventinitiated atHFPconditions.
                          'eference:
Figures7.1.3-1to7-1.3-5showtheNSSSresponseforpower,heatflux,RCStemepratures, RCSpressure, andsteamgenerator pressureduringthisevent.TheZeroPowerExcessLoadeventwasinitiated attheconditions giveninTable?.1.3-3.Theh)TCandFTCvaluesassumedintheanalysisarethesameasforthefullpowercaseforthereasonspreviously given..TheminimumCEAshutdownworthavailable isconservatively assumedtobe-4.3&#xc3;ap.TheresultsoftheanalysisshowthataVariableHighPowertripoccursat44.6seconds.TheminimumDNBRcalculated duringtheeventis3..15andthepeaklinearheatgeneration rateis11.59KW/ft.FortheZP'xcessLoadevent,anSIASsignalonlowpressurizer pressureisgenerated at73.7seconds.At224.6secondsauxiliary feedwater
                    "St. Lucie Unit 1 Docket No. 50-335 Natural
'flowisdelivered tobothsteamgenerators.
                  'irculation       Cooldown", L-81-43, February 9, 1981;
Theadditional positivereactivity resulting fromtheenhancedcooldownoftheRCSismitigated bythenegativereactivity insertedduetotheCEAsandtheboroninjectedviatheHPSIpumps.Thenegativereactivity addedissufficient tomaintainthecoresubcritical atalltimesafterauxiliary feedwater flowisinitiated.
 
The.sequence ofeventsforthezeropowercaseispresented inTable7.1.3-4.Figures7.1.3-6to7.1.3-10showtheNSSSresponseforcorepower,coreheatflux,RCStemperature, RCSpressureandsteamgenerator pressure.
guestion  10 The Seized Rotor  analysis does not include    a  calculated  DNB, MDNBR
ForthefullandzeropowerExcessLoadeventsinitiated byafullopeningofthesteamdumpandbypassvalves,theDNBRandCTHlimitsarenotexceeded.
{accounting for statistical uncertainties with the new C-E methodology) or a peak clad temperature as required by SRP Section 15.3.3  Please provide this information and confirm that the most reactive rod was assumed stuck out of the core.
Inaddition, thecoreremainssubcritical following automatic initiation oftheauxiliary feedwater flowandmanualtrippingoftheRCP'sonSIASduetolowpressurizer pressure.
~Res onse The minimum  ONBR  for a  Seized Rotor event  initiated    from Technical Specification DNB Limiting Conditions for Operation is 1.025~ As stated in Section 7.3.4, the predicted number of fuel pin failures is not based on a single HDNBR value but is ca]'c61ated through a distribution of the fraction of pins with a par'ticular ONBR as a function of DNBR. This distribution is then,:,convoluted with a probability of burnout vs. DNBR to obtain the amount, of fuel failure.
Thereactivity transient duringaHFPandHZPExcessLoadeventislesslimitingthanthecorresponding SteamLineRuptureevents.  
The scram worth used    in analyzing this. event'~was calculated assuming that the most reactive rod is stuck out of the,-.core.
~Tab1e7.1.3-1KEYPARAMETERS ASSUMEDFORFULLPOWEREXCESSLOADEVENTANALYSISParameter InitialCorePowerLevelCoreInletTemperature ReactorCoolantSystemPressureCoreMassFlowRateModerator Temperature Coefficient CEAWorthAvailable atTripDopplerMultiplier InverseBoronWorthAuxiliary Feedwater FlowRateHighPowerLevelTripSetpointLowS.G.WaterLevelTripSetpointUnitsMWtOFpsiaxlOibm/hrx10hp/FPPM/Capibm/secX.ofFullPower~Cele327545512200133.7-2.5-4.3e85105125.4/S.G.
 
11229.9Reference.
II~
CycleisFSAR.FullPower.ExcessLoadresultswerenotpresented inFSAR,therefore nocomparison ismade.
~ I
Table7.1.3-2SEQUENCEOFEVENTSFORTHEEXCESSLOADEVENTATFULLPOWERTOCALCULATE MINIMUMDNBRTime(sec)0.08.89.39.310.054.054.169.372.573.313P.5188.4600.0EventCompleteOpeningofSteamDumpandBypassValvesatFullPowerHighPowerTripSigna1Generated TripBreakersOpenCEAsBegintoDropIntoCoreMaximumPower;MaximumLinearHeatGeneration RateOccursMinimumDNBROccursSafetyInjection Actuation SignalGenerated; ManualTripofRCP'sPressurizer EmptiesRampdownofMainFeedwater FlowCompleted MainSteamIsolation SignalLowSteamGenerator LevelTripSetpointReachedIsolation ofMainFeedwater FlowtoBothSteamGenerators Auxiliary Feedwater FlowOelivered toBothSteamGenerators OperatorTerminates Auxiliary Feedwater FlowtoBothSteamGenerators SetointorValue112Koffullpower114.4Xoffullpower18.3KW(ft1.291578psia5Xoffullmain=feedwater flow578,psia29.9ft125.4lb/sectoeachsteamgenerator ttKEYPARAMETERS ASSUMEDFORHOTSTANDBYEXCESSLOADEVENTANALYSISParameter InitialCorePowerLevelCoreInletTemperature ReactorCoolantSystemPressureCoreMassFlowRateModerator Temperature Coefficient CEAWorthAvailable atTripDopplerMultiplier InverseBoronWorthVariableHighPowerTrip'Setpoint LowS.G.MaterLevel-Trip SetpointAuxiliary Feedwater FlowRateUnitsMWt0Fpsiax101bm/hr6x10hp/FXhp"'PM/Sap 5of-'-.full Powerftibm/sec~Cele55322200137.0-2.5-4.3.851004029.9125.4/S.G.
 
Reference CycleisFSAR..  
    'I IO  X IO TO N INCH          7 X i0 INCHES Ca    ICEUE EEL  0 ESiIIER CO. IIJW III USA                                                    46 1320 jl  !    (
'Table'7;l;3-'4 SEQUENCEOFEVENTSFOREXCESSLOADEVENTATHOTSTANDBYCONDITIONS TOCALCULATE MINIMUMDNBRTime(sec)0.044.645.0'5.545.6'vent SteamDumpandBypassValvesOpentoMaximumFlowCapacity.Variable HighPowerTripSignalGenerated TripBreakersOpenCEAsBegintoDropintheCoreMaximumPower;MaximumLinearHeatGeneration RateOccursSetointorValue40Koffullpower41.09&#xc3;of.fullpower11.59KM/ft.46.167.771.173.7131.1MinimumDNBROccurs(CE-.2)Pressurizer EmptiesMainSteamIsolation SignalGenerated SafetyInjection Actuation SignalGenerated; ManualTripofReactorCoolantPumpsIsolation ofMainFeedwater FlowtoBothSteamGenerators "vvIg'3.150578psia1578psia224.6600.0Auxiliary Feedwater FlowDelivered toBothSteamGenerators OperatorTerminates Auxiliary Feedwater FlowtoBothSteamGenerators 125.4lb/sectoeachsteamgenerator 12GiGOCDFIJLLPOWERLIJSG'uJQCLi'LJ60CL.ul401GG2003GG400TINE~SECONDSSGOFLORIDAPOWER5LIGHTCOSt.LuciePlantUnit1EXCESSLOADINCIDENTCOREPOMERVSTINEFIGURE7.1.5-1 120I-1GOI-80OCFULLPOMERUJ40201GO20030040GTINE.SECONDS6GOFLORIDAPOWER8LIGHTCOeSt.LuciePlantUnit1EXCESSLOADINCIDENTHEATFLUXYSTINEFIGURE7I1I3-2  
li Ii I;II
'GGFULLPOWERTOUTTAVGCY.'00Z:300TAYG=AVERAGECORECOOLANTTENPERATURE OUTCOREOUTLETTENPERATURE TINCOREINLETTENPERATURE 10001002003004GOTINESECONDSSO0S00FLORIDAPOWER8tLIGHTCO>St.LucieP1antUnit1EXCESSLOADINCIDENTTPIPERATURE YSTIYiEFIGURE~7.1,3-3 24002GGGFULLPOWER160012GGSGO1GO200300400SGOBGGTIME.SECONDSFLORIDAPONER5LIGHTCO<St.LuciePlantUnitIEXCESSLOADINCIDENTNAINSTEANPRESSUREVSTINEFIGURE7.1,3-0
                                                                  ~
>2GOFULLPOMER8GGSOO+(y.1p<Pt('D4GG2GO1GO2003GO400TINESECONOSSGO600FLORIDAPOWER5LIGHTCOsSt.Lucie1Unit1EXCESSLOADINCIDENTREACTORCOOLANTSYSTEMPRESSUREVSTIMEFIGURE7.~.3-5
                                                                  ~ I I
                                                                        ~
il I lt(
                                                                                                                                  ~ ~
I sl    P( I :
                                                                                                                                                              ~
I''
II hajj
                                                                                                                                                                  ~
                                                                  ~
I~
I/I
                                                                                                                  ~
(
                                                                                                                      ;!L I                I
                                                                                                                                                          ~ l(ll ij ii(i(II IT I                                                                                        I
                ~k'              :IL'''
                                                          ~         ~ ~
il  II I~ ~ I ~
I                        I' i I            l::
                            !J                            i ~ I                I I
                                                                                  ~
s SS
                                                                                                                      ~
I ~
                                                                                                                            ~
il        I
                                                                                                                                                            .'.LL III                                                          ~ ~ ~                       ~ I
              ~
I I ~
II        ,I IJ    ~
I ~
I'                           jl                  li          jij I                      I            il    j                                              Ij            I ij I ~ ~
                                                      ~ I I                    I II                              'I  l    I~
I              .Il  ~
I I                   l            I           Il I
                                                                                                                                      !!:    I(l li    T              il    I              ,:t                       ,'I                                  I
                                                                                                                                                    'I I                                                                  '                                ill
~
                                                                                          ,i                  i I                                                                                                                                        I l                                          ~   ~
I   i W
 
ill X 10 TO ' INCH      1  X lsi INCIIES f  E-
                                        ~IL      KEUFfiL A ESSEA CO,     assisi  sas isola                                                    46 1320                                      .~
                                                                                                                                                  'i i  il      ~
II II        ~ ~
iI~ a                    ~ ~                 I                  ~
i iiii I      ~
I                      ii      Ii ~,                   a                          ~ ~
sl i                                                                                                                                                                                                      .i
                ~
                                                                                                                                                        ~ ~ ~ ~               I~                                 i i ~ II
            ~
            ~
I~ I
                  ~
I i:.                            I)                  ~   ~
                                                                                                                                                ~ ~
I~           ~ ~
                                                                                                                                                                            ~
J I
                                                                                                                                                                                                        ~ ~     ~     ~
i'f                ~
t't,.                                                                                                          si
            !;aiI    si
                          ~ ~
iI                              iI ~ ~
                                                                                        ~ Is ~ I iis.                                        ilI  ~ ~
      '.'ij a ~
                    ~ ~
                    ~ ~                                   ~
7                          E E                            RE $ $ UR            ~
                                                                                                                                                        ~ ~ ~
                                                                                                                                                          ~ I                    ~ >>
a I
sL I: i'I    I  s l~                                                                                            I is.i        I'  I i'j I,
                                                                                                                                                ~
sl                                            ~,                                                                          I a~
ii                                                                                                        :.
~
i I
lt'   iil    ~ ~ ~ ~
II
                                                                                                        ~
                                                                                                            , I I  ~ I
                                                                                                                                ~
tl I
I~
o4 I
II
                                                                                                                                                                                    ~             I I           i ~ I. I II
                                                                            ~     ~
jsl, a
                                                                                                                                                ~
Ia I      i''! I
                                                                                                                                                                  ~ ~
I~
                                                                                                                                                                                      ~ I il  i.i f,  I i            j      I                                                          I ~           a        I~ s ~
                                                                                                                                                                  ~ a
                                                                                                                                                                    ~ ~ s I
                                                                                                                                                                                  ~
ala
                                                                                                                                                                                  ~ ~ I I
I  I.                        :II
                                                                                                                          ~  ~       a I
                                                                                                                                                                                    ~
I ~
                              'gh    .                                          ~ ~
I~  ~ I            I  i            I I
                                                                                                                                                                                  ~
Ii ~
                                                                                                                                                                                        ~
si a
t                ~ I i ~ La I
                                                                                                  ~ 'i ;iI~          fl  fljl          ~
a I
                                          ~ ~ I                                                                                        I              ~ I l ~
                                                                                                                                    ,I a
                                                                                                                                      ~
                                                                                                                                        ~
I
                                                                                                                                            ~
i I
is
                                                                                                                                ~ ~
I ~ ~
ali I'                                                 a    ~
is                            al        I  I                            l a  ~                            I                        ls
 
ATTACHMENT2 ATTACHMENT3 7.1.3  Excess Load Event The Excess    Load Event was reanalyzed    to determine that the  DNBR  and CTM design  limits  are not exceeded during Cycle 5.
The analyses included the effects of manually tripping the RCP's on SIAS due to low pressurizer pressure and the initiation of auxiliary feedwater flow 180 seconds after reactor      trip.
The High Power Level and .Thermal Margin/Low Pressure        {TM/LP) trips provide primary protection to prevent exceeding the DNBR limit during the full power Excess Load event. Additional protection is provided by other trip signals
      .including high rate of change of power, low steam generator water level, and low steam generator pressure.       The approach to the. CTM limits is terminated by  either  the  Axial  Flux Offset  trip, the DNB related trip or the High Power Level trip. In, this analysis, credit is, taken only for the action of the High Power Level trip in the determination of the minimum transient DNBR and maximum CTM. For the zero power Excess Load transient, protection is provided by the Variable High Power Level trip to prevent violation of the DNBR    and CTM  liririts.
As  presented in the FSAR, the most limiting load increase events at full power and hot .Rem power conditions"occur'or the. complete opening of the.
steam dump and bypass 'valves. Of these two events, the full power case is the'more limiting {i.e., approaches closer to the acceptable DNBR and CTM limits) case.
For conservatism    in the analyses, auxiliary feedwater flow rate corresponding to  15.3%  of full  power main feedwater flow (i.e., 7.66K of full power main feedwater flow per generator) was assumed. The addition of the auxiliary feedwater to each steam gener ator was initiated at 180 seconds, after reactor trip. The addition of auxiliary feedwater enhances the cooldown of the RCS and the potential for a return-to-power {R-T-P) or criticality arising from reactivity feedback mechanisms.
      >The Excess  Load event    at full power was  initiated at the conditions given in Table 7.1.3-.1. A, Moderator Temperature Coefficient of -2.5x10-" ap/oF was assumed in the analysis.         This MTC, in conjunction with the decreasing coolant inlet temperature, enhances the rate of increase in the core heat flux at the tfme of reactor trip. 5 minimum Fuel Temperature Coefficient (FTC), corresponding to beginning of cycle conditions with an uncertainty of 155, was used in the analysis since this FTC results in the least amount of negative reactivity addition to mitigate the transient increase in core heat flux. The minimum CEA worth assumed to be available for shutdown at the tjme of reactor trip for full power operation is 4.3Xap. The analysis conservatively assumed that the worth of boron injected by the safety injection system is -1.0&#xc3;ap per 105 PPM. The pressurizer pressure control system was assumed to be inoperable because this minimizes the RCS pressure during the event and therefore reduces the ca1culated DNBR. All other control systems were assumed to be in manual mode of operation and have no significant impact on the results for this event.
 
The Full  Power Excess Load event results in a High Power Level      trip  at 8.4 seconds. The minimum  DNBR calculated  for the event  at  the conditions  speci-
. fied in Table 7.1.3-1 is    1.29  compared  to the design  limit  of 1.23. The maximum.
local linear heat generation rate for the event is 18.3 KW/ft.
For the Excess Load event initiated from HFP conditions, SIAS is generated 54.0 seconds. Upon generation of an SIAS, the RCP's are manually tripped by
                                                                                      't the'perator. The coastdown of the pumps decreases the rate of decay heat removal and maintains the RCS coolant temperatures and pressure at higher values.
Auxiliary feedwater flow is delivered to both      steam g'enerators at 188.4 seconds.
The subcooled  feedwater flow causes    an additional cooldown of the RCS. The decreasing RCS temperatures, in combination with a negative MTC, result in positive reactivity insertion which enables the core to approach criticality.
The negative reactivity inserted by the CEAs and the boron injected via the High Pressure Safety Injection (HPSI) pumps,.however, is sufficient to maintain the core in a subcritical condition.
Table    7.1.3 -2 presents the sequence of events for an Excess Load event initiated at  HFP conditions. Figures 7.1.3-1 to 7-1.3-5 show the NSSS response for power, heat flux, RCS temepratures,        RCS pressure, and steam generator pressure during this event.
The Zero Power Excess Load event was initiated at the conditions given in Table ?.1.3-3. The h)TC and FTC values assumed in the analysis are the same as for the    full power case for the reasons previously given. .
The minimum CEA shutdown worth available is conservatively assumed to be -4.3&#xc3;ap.
The  results of the analysis show that a Variable High Power trip occurs at 44.6 seconds. The minimum DNBR calculated during the event is 3..15 and the peak linear heat generation rate is 11.59 KW/ft.
For the ZP'xcess Load event, an SIAS signal on low pressurizer pressure is generated at 73.7 seconds. At 224.6 seconds auxiliary feedwater
  'flow is delivered to both steam generators. The additional positive reactivity resulting from the enhanced cooldown of the RCS is mitigated by the negative reactivity inserted due to the CEAs and the boron injected via the  HPSI pumps. The negative  reactivity added is sufficient to maintain the core subcritical at    all times after auxiliary feedwater flow is initiated.
The .sequence of events for the zero power case is presented in Table 7.1.3-4. Figures 7.1.3-6 to 7.1.3-10 show the NSSS response for core power, core heat flux, RCS temperature, RCS pressure and steam generator pressure.
For the full and zero power Excess Load events initiated by a full opening of the steam dump and bypass valves, the DNBR and CTH limits are not exceeded.     In addition, the core remains subcritical following automatic  initiation of  the auxiliary feedwater flow and manual tripping of the RCP's on SIAS due to low pressurizer pressure. The reactivity transient during a HFP and HZP Excess Load event is less limiting than the corresponding Steam Line Rupture events.
 
                            ~    Tab1e 7.1.3-1 KEY PARAMETERS ASSUMED FOR FULL POWER EXCESS LOAD EVENT ANALYSIS Parameter                                      Units                      ~Cele  3 Initial  Core Power Level                      MWt                        2754 Core  Inlet  Temperature                        OF                          551 Reactor Coolant System Pressure                psia                        2200 Core Mass Flow Rate                            xlO ibm/hr                  133.7 Moderator Temperature Coefficient              x10  hp/ F                -2.5 CEA  Worth  Available at Trip                                              -4.3 Doppler  Multiplier                                                        e85 Inverse Boron Worth                            PPM/Cap                    105 Auxiliary Feedwater   Flow Rate                ibm/sec                    125.4/S.G.
High Power Level  Trip Setpoint                X.of Full Power            112 Low S.G. Water Level    Trip Setpoint                                      29.9 Reference. Cycle is FSAR. Full Power. Excess Load results were not presented  in FSAR, therefore no comparison is made.
 
Table 7.1.3-2 SEQUENCE OF EVENTS FOR THE EXCESS LOAD EVENT AT FULL POWER TO CALCULATE MINIMUM DNBR Time (sec)                    Event                      Set  oint    or Value 0.0    Complete Opening    of  Steam Dump and Bypass Valves at    Full Power Hi g h Power  Tri p Si gna1 Generated          112K  of full    power 8.8    Trip Breakers    Open 9.3    CEAs  Begin to Drop Into Core 9.3    Maximum Power;                                114.4X    of full    power Maximum Linear Heat      Generation Rate Occurs                                            18.3 KW(ft 10.0    Minimum DNBR Occurs                                      1.29 54.0    Safety Injection Actuation Signal                    1578    psia Generated;    Manual  Trip of RCP's 54.1    Pressurizer Empties 69.3    Rampdown  of  Main Feedwater Flow              5X  of  full main  =
Completed                                          feedwater flow 72.5    Main Steam    Isolation Signal                          578,  psia 73.3    Low Steam    Generator Level Trip                      29.9  ft Setpoint  Reached 13P. 5  Isolation of Main Feedwater Flow to Both Steam Generators 188.4    Auxiliary Feedwater Flow Oelivered              125.4 lb/sec to each to Both Steam Generators                            steam generator 600.0    Operator Terminates Auxiliary Feedwater Flow to Both Steam Generators
 
t                                t KEY PARAMETERS ASSUMED FOR HOT STANDBY EXCESS LOAD EVENT ANALYSIS Parameter                                      Units                      ~Cele  5 Initial  Core Power Level                      MWt Core  Inlet  Temperature                        0F                          532 Reactor Coolant System Pressure                psia                        2200 6                      137.0 Core Mass Flow Rate                            x10    1 bm/hr Moderator Temperature Coefficient              x10      hp/ F            -2.5 CEA  Worth  Available at Trip                                              -4.3 Doppler  Multiplier                            Xhp"'PM/Sap                .85 Inverse Boron Worth                                                        100 Variable High Power Trip'Setpoint              5 of-'-.full Power          40 Low S.G. Mater Level-Trip Setpoint            ft                          29.9 Auxiliary Feedwater    Flow Rate                ibm/sec                    125.4/S.G.
Reference Cycle  is  FSAR..
 
                              'Table'7;l;3-'4 SEQUENCE OF EVENTS FOR EXCESS LOAD EVENT AT HOT STANDBY CONDITIONS TO CALCULATE MINIMUM DNBR Time (sec)                                                  Set      oint or    Value 0.0        Steam Dump and Bypass Valves Open to Maximum Flow Capacity 45.6'vent 44.6 45.0
              .Variable High Generated Trip Breakers Power Open Trip Signal            40K      of  full  power
        '5.5 CEAs Begin to Drop    in the    Core Maximum Power;                                41.09&#xc3;        of. full power Maximum Linear Heat    Generation Rate Occurs                                                11.59 KM/ft.
                                                              "vv Ig 46.1        Minimum  DNBR  Occurs  (CE-.2)                      '      3.15 67.7        Pressurizer Empties 0
71.1        Main Steam  Isolation Signal                              578    psia Generated 73.7        Safety Injection Actuation Signal                        1578    psia Generated; Manual Trip of Reactor Coolant Pumps 131.1        Isolation of Main Feedwater        Flow to Both Steam Generators 224.6        Auxiliary Feedwater Flow Delivered              125.4 lb/sec to each to Both Steam Generators                            steam generator 600.0        Operator Terminates Auxiliary Feedwater Flow to Both Steam Generators
 
12G FIJLL POWER iGO CD LIJ
      'uJ SG Q
CL i'LJ 60 CL.
ul 40 1GG        200      3GG      400 SGO TINE~ SECONDS FLORIDA EXCESS LOAD INCIDENT        FIGURE POWER 5    LIGHT  CO St. Lucie Plant              CORE POMER VS TINE          7.1.5-1 Unit 1
 
120 I          FULL POMER 1GO I
OC 80 UJ 40 20 1GO      200      300      40G      6GO TINE . SECONDS FLORIDA LIGHT COe            EXCESS LOAD INCIDENT      FIGURE POWER  8 St. Lucie Plant                HEAT FLUX YS TINE      7I 1I 3-2 Unit 1
 
          'GG FULL POWER TOUT TAVG CY.'00 Z:
300          =  AVERAGE CORE COOLANT TENPERATURE TAYG CORE OUTLET TENPERATURE OUT TIN    CORE INLET TENPERATURE 100 0      100        200      300      4GO  SO0      S00 TINE    SECONDS FLORIDA POWER      LIGHT CO>              EXCESS LOAD INCIDENT              FIGURE 8t St. Lucie P1ant                  TPIPERATURE YS TIYiE          ~
7.1,3-3 Unit  1
 
2400 FULL POWER 2GGG 1600 12GG SGO 1GO        200      300      400 SGO      BGG TIME . SECONDS FLORIDA                  EXCESS LOAD INCIDENT          FIGURE PONER  5 LIGHT  CO<
St. Lucie Plant          NAIN STEAN PRESSURE VS TINE      7.1,3-0 Unit I
 
        >2GO FULL POMER
                +(y.1 p<P 8GG  t SOO
('D 4GG 2GO 1GO      200        3GO      400      SGO    600 TINE    SECONOS FLORIDA                        EXCESS LOAD INCIDENT              FIGURE POWER  5 LIGHT COs St. Lucie 1                REACTOR COOLANT SYSTEM PRESSURE VS TIME    7.~.3-5 Unit 1
 
12C HOT STANDBY 100
      ~e 80 Q
QJ CD 60 Q
CD 40 20 200      300    400 TINE SECONDS FLORIDA POWER  5  LIGHT CO          EXCESS LOAD INCIDENT      FIGURE St. Lucie Plant                          TINE Unit 1 CORE POMER YS          7,1,3-6
 
          ..120 tIOT STANDBY U
CD    iOO I
UJ UJ O-100      200        300    400 50C TIME. SECONDS FLOR IDA PONER  Q  LIGHT CO I        EXCESS LOAD INCIDENT          FIGURE St. Lucie Plant              HEAT FLUX VS TINE          7.1.3-7 Unit I  .
 
700 HOT STANDBY 5GO                                              'TAVG TIN 40G 300
                          = AVERAGE CORE COOLANT TEMPERATURE TAVG
                          = CORE OUTLET TENPERATURE TOUT 200            CORE  INLET TENPERATURE
                                                        'IN a
                                                    'C'10G 100        200      300              400  50G    . 600 TINE    SECONDS FLORIDA POWER  Imt LIGHT CO            EXCESS LOAD INCIDENT                    FI GURE St. Lucie Plant                TENPERATURE YS TINE                  7.1,3-8 Unit  1
 
24CO HOT STANDBY 2CGC 1600 1200 800 1GG      200      3GQ        400      SGQ    BCG T I VE, SECQNt'5 FLORIDA                  EXCESS LOAD INCIDENT                FIGURE POWER  g LI GH'I CO s St. Lucie Plant      REACTOR COOLANT SYSTEN PRESSURE  YS TINE    7e1,3-9 Unit 1
 
1200 HOT STANDBY 1000 800 600 4GO 0
100      200      300      400 S00      BGG TINE    SECONDS FLORIDA                  EXCESS LOAD INCIDENT          FIGURE POWER  5'LICHT  COg St. Lucie P'tant          NAIN STENR PRESSURE VS TINE      7,i,3-10 Unit 1
 
The Steam Generator    Tube Rupture (SGTR) event was reanalyzed    for                    Cycle 5 to verify that the site      boundary doses will not exceed the guidelines of 10CFR100 following post TMI NRC requirement to manually trip the Reactor Coolant Pumps on SIAS due to low pressurizer pressure.
The design basis SGTR    is a double ended break of one steam generator U-tube. Table 3.2.3.3-1 lists the key transient related paramters used in this analysis. In the analysis,        it is assumed that the initial RCS-pressure is as high as 2300 psia. This initial RCS pressure maximizes the amount of primary coolant transported to the secondary steam system since the leak rate is directly proportional to the difference between the primary and secondary pressure.        In addition, the higher the low pressurizer pressure trip which prolongs the transient .',,
pressurey".;-..-"'elays and therefore maximizes the total primary to secondary mass and acti.vries transport'ed.
For this event, the acceptable DNBR limit is not exceeded due to the..
action of the Thermal Margin/Low Pressure (TM/LP) trip which provides"-,a reactor trip to maintain the DNBR above 1.30. The tube rupture trans'ident does not  significantly affect the core    power  distribution. 'Therefore'">>"
the  PLHGR SAFDL  is not approached.
The Thermal Margin/Low Pressure      trip,  with conservative coefficients which account  for the limiting radial    and axial peaks, maximum inlet temper'ature, RCS pressure, core power, and conservative CEA scram characteristics, would be the primary RPS trip intervening during the course of the tran-sient. However, to maximize the coo'lant transported from the primary to secondary and thus the radioactive steam releases to the atmosphere, the analysis was performed assuming that the reactor trip is not initiated un-til  the minimum setpoint (floor) of the Thermal Marqin/Low Pressure trip (i.e., Low Pressuri er Pressure Trip) is reached. This prolongs the steam releases to the atmosphere and thus maximizes, the site boundary doses.
The Steam Generator Tube Rupture'as analyzed for a power level of 2754 M!(t (102/ of 2700 Ml<t)..The'results will be applicable to 2560 Milt since the higher operating power leads to more conservative site boundary doses. The analysis assumes operation of 3 High Pressure Safety Injection pumps. This assumption leads to    faster refilling of the pressurizer, therefore resulting in higher  RCS  pressure and thus, increasing the primary to secondary leak.
The methodology followed is consistent with the methods previously used and approved by NRC. These methods are documented in Reference 3.
Table 3 ' 3  '-1  shows the key parameters assumed in the analysis of the event. The sequence of events for the SGTR event with manual trip of RCPs  is presented in Table 3.2.3.3-2.
 
The  analysis conservatively            assumed that at 1800 seconds, the operator
  'nitiates          cooldown by using the Atmospheric Dump Valves (ADV). The analysis did not credit the use of steam dump and bypass system to the condenser.      The use of atmospheric dump valves results in a substantial increase in the calculated site boundary dose since the ADV partition factor is .1 compared to .0005 for the condenser air ejectors.
Figures 3.2.3.3-1 through 3.2.3.3-5 present the transient behavior of core power, heat      flux, RCS pressure, RCS temperatures, and steam generator pressure.
I-131 activity release is based on the Tech Spec allowed primary to secondary leak rate of 1 GPM and on the steam flow required to cool the plant to condi-tions where the shutdown cool,ing system can be initiated. This release is calculated as the product of-:st'earn flow, the time dependent steam activity and the decontamination factors applicable to each release pathway.
The 0    to 2  hour I-131 site;boundary dose, is calculated from:
AI-131 +
BP x > x DDSE  (REM)                                CFI-131 where:
AI-131                activity I-131                  released .to  site boundary, Ci, BR          breathing rate,          m  /sec, x/Q          dispersion coefficient, sec/m ,
CFI-131      I-131 dose conversion factor, Rem/Ci.
. In determining the whole body dose,'he major assumption                  made is that all noble gases leaked through the ruptured tube will be released to the atmosphere.        Therefore, the whole body dose is proportional to the total primary to secondary leak and is calculated using the following equation.
i<hole Body Dose =      [ .25  (K    +    )] *
                                              .25 E
g L *A RCS g
  ,where:
E        average energy release            by gamma decay, Y
E        average energy release by beta decay, total primary to        secondary mass transport RCS noble gas    activity of        primary coolant g/((      di".)ii'r'n c'o<'t l i <  i<'nt.
 
~ ~
The  results of the analysis are that 81540 lbs. of primary coolant are transported to the steam generator secondary. side. Based on this mass transport and values in Table 3.2.3.3-3, the 0-2 Hr site boundary doses calculated are:
Thyroid (DEQ I-ll ):      0.32 REN Whole Body (DEQ  Xe-133): 0.08 REN The  reactor protective system (i.e., TN/LP trip) intervenes to protect the core from exceeding the DHBR limit. The do'ses resulting from the activity released as a consequence of h double-ended rupture of one steam generator tube, assuming the maximum allowable Tech Spec activity for the primary concentration at a core power of 2754 NIlt, are significantly below the guidelines of 10CFR100. Thus, the results do not e'xceed acceptance criteria.
 
TABLE  7.3.3-"1 KEY PARAMETERS ASSUMED IH THE STEAN GENERATOR TUBE RUPTURE EYEtlT KEY TRANSIENT RELATED PARAMETERS:
Parameter                        Units            FSAR      ~Cele  5 Power                                              2611      2754 MTC                              xl0    ap/'F      -2.5      -2.5 Doppler Coefficient                                1.15      1.15 Multiplier Scram 1/orth                                        4.55      -4.0.
544 in RCS  Pressure                    psia              2300      2300 Initial  Core Mass Flow Rate    x10. lb/hr      117,.5    133.9 (548oF, 2200 psia)
Initial  Secondary Pressure      Dsi a            841        9O2. 0
 
g~
    ~
TABLE    7.'3; 3-2 SEQUENCE OF EVENTS FOR THE STEAM GENERATOR TUBE RUPTURE EVENT WITH RCP COASTDOllN ON SIAS Time (sec)                    Event                Setpoint or Value 0.0    Tube Rupture Occurs 577.2    Low  Pressurizer Pressure Trip            1853 psia Signal Generated 577.4    Dump  Valves Open 578. 6    CEAs  Begin to Drop Into Core 579.1    Bypass Valves Open 584.8    Maximum Steam  Generator Pressure        949 psia 587.4    Pressurizer Empties 588.0    Safety Injection Actuation Signal Generated;    RCPs Manually Tripped I    1578 psia 1395.4    Minimum  RCS  Pressure                    1034  psia 1800.0    Operator Isolates Damaged Steam Generator and Begins Cooldown to 325'F 7859      Operator  Initiates  Shutdown Cooling (TAV        F)
 
TABLE  7. 3. 3-3 ASSUMPTIONS FOR THE RADIOLOGICAL EVALUATION FOR THE STEAM GEhERATOR TUBE RUPTURE Parameter                                          uni ts  C cle  5 Value Reactor Coolant System Maximum                    yCi/gm      1.0 Allowable Concentration    (DEQ  I-131)
Steam Generator Maximum Allowable                  uCi/gm Concentration  (DEQ  I-131)1 Reactor Coolant System Maximum                    pCi/gm      100/E Allowable Concentration of'oble Gases  (DEQ  Xe-133)1 Atmospheric  Dump  Valve Partition Factor Condenser  Air Ejector Partition Factor                      .0005 Atmospheric Dispersion Coefficient                sec/m        8.55x10  .
Breathing Rate                                    m  /sec      3.47x10 Dose Conversion    Factor (I-131)                REM/Ci      1.48xlO Tech Spec  limits.
P 0-2 hour accident condition    for St. Lucie Unit  1.
 
,c7 C 110 99 8"
77 55 UJ gq CD 32 22 0 200 900    600    800    1000  1200 1000 1600  1800 TIl'lE, SECONDS FLORIDA          )TEAt"l GEI",ERECTOR TUBE FAILURE EVENT      Figure ~
POV/ER 6 LICL<T CO.
St. Lvcie PIont
                            ~
CORE POYiER vs TIk'IE              7.3.3-1
 
~1 ~
110 ag 77 66 55 22 I        I            I 0.
0    200 400  600  800    1000    120Q      1000 160Q 1800 TINE,  SECONDS STEAM GENERATOR TU BE FAILLE,iE E'LtEiilT        FlgVf C F l.OR IDA t'O'"'L'."",    l.t.C i !T CC.
CORf AVFiliXGF flEAT FI Ui'i vs TIA'iE        7 ~3 &3 2 5t. Lv-te f'loci(
              ~    ~
                      ~
 
~ ~ ~
2403 220D 2003 1800 1603 D
            . 1403 1203 1000
                  .0 200  000    600    800    1000  1200  1400    1600 . 1300 TINE, SECONDS Ficure FLORIDA            S) EAM GEIJERATOR  TURNE FAILURE EVEi'lT POVCER 5 LlGt<T CQ.                                                          7 3 &3 3 St. Lucio Plont    REACTOR COOLAl'JT SYSTEM:l PRESSURE vs TIi~,E
 
65J TOtjTLET 603 TAYERAGE TINLET 550 500 CD I        I      I        I 05.0 0              200    400    600      800      .
1000  . 1200  1000    1600  1800 TIME,      SECONDS STEAI';1 GENERATOR        TU~uE FAILURE EVE:~T      FIgv;c:
Fl ORIDA POWER 8 LIGHT CO.
PEACTPR CPOl.ANT      S'(STEMMA  TEMPERATURE vs TITLE    7.3.3-4 5t, Lvc i c P I a i: I
 
950 900 850 800 750 c 700 650 600 550 I                  I I    I  I          I 500 0 200 000 600  800  1000  1200 1000 1600 1800 TINE, SECONDS Figur c 7.3.3-


12C100~e80QHOTSTANDBYQJ60CDQCD4020200300400TINE.SECONDSFLORIDAPOWER5LIGHTCOSt.LuciePlantUnit1EXCESSLOADINCIDENTCOREPOMERYSTINEFIGURE7,1,3-6
Q f v,~     )
..120UCDI-UJUJO-iOOtIOTSTANDBY100200300400TIME.SECONDS50CFLORIDAPONERQLIGHTCOISt.LuciePlantUnitI.EXCESSLOADINCIDENTHEATFLUXVSTINEFIGURE7.1.3-7 700HOTSTANDBY5GO40G300200'TAVGTINTAVG=AVERAGECORECOOLANTTEMPERATURE TOUT=COREOUTLETTENPERATURE
I <}}
'INCOREINLETTENPERATURE a'C'10G10020030040050G.600TINESECONDSFLORIDAPOWERImtLIGHTCOSt.LuciePlantUnit1EXCESSLOADINCIDENTTENPERATURE YSTINEFIGURE7.1,3-8 24CO2CGCHOTSTANDBY160012008001GG2003GQ400SGQBCGTIVE,SECQNt'5FLORIDAPOWERgLIGH'ICOsSt.LuciePlantUnit1EXCESSLOADINCIDENTREACTORCOOLANTSYSTENPRESSUREYSTINEFIGURE7e1,3-9 12001000HOTSTANDBY8006004GO0100200300400TINESECONDSS00BGGFLORIDAPOWER5'LICHTCOgSt.LucieP'tantUnit1EXCESSLOADINCIDENTNAINSTENRPRESSUREVSTINEFIGURE7,i,3-10 TheSteamGenerator TubeRupture(SGTR)eventwasreanalyzed forCycle5toverifythatthesiteboundarydoseswillnotexceedtheguidelines of10CFR100following postTMINRCrequirement tomanuallytriptheReactorCoolantPumpsonSIASduetolowpressurizer pressure.
ThedesignbasisSGTRisadoubleendedbreakofonesteamgenerator U-tube.Table3.2.3.3-1 liststhekeytransient relatedparamters usedinthisanalysis.
Intheanalysis, itisassumedthattheinitialRCS-pressureisashighas2300psia.ThisinitialRCSpressuremaximizes theamountofprimarycoolanttransported tothesecondary steamsystemsincetheleakrateisdirectlyproportional tothedifference betweentheprimaryandsecondary pressure.
Inaddition, thehigherpressurey".;-..-"'elays thelowpressurizer pressuretripwhichprolongsthetransient
.',,andtherefore maximizes thetotalprimarytosecondary massandacti.vries transport'ed.
Forthisevent,theacceptable DNBRlimitisnotexceededduetothe..actionoftheThermalMargin/Low Pressure(TM/LP)tripwhichprovides"-,a reactortriptomaintaintheDNBRabove1.30.Thetuberupturetrans'ident doesnotsignificantly affectthecorepowerdistribution.
'Therefore'">>"
thePLHGRSAFDLisnotapproached.
TheThermalMargin/Low Pressuretrip,withconservative coefficients whichaccountforthelimitingradialandaxialpeaks,maximuminlettemper'ature, RCSpressure, corepower,andconservative CEAscramcharacteristics, wouldbetheprimaryRPStripintervening duringthecourseofthetran-sient.However,tomaximizethecoo'lanttransported fromtheprimarytosecondary andthustheradioactive steamreleasestotheatmosphere, theanalysiswasperformed assumingthatthereactortripisnotinitiated un-tiltheminimumsetpoint(floor)oftheThermalMarqin/Low Pressuretrip(i.e.,LowPressurierPressureTrip)isreached.Thisprolongsthesteamreleasestotheatmosphere andthusmaximizes, thesiteboundarydoses.TheSteamGenerator TubeRupture'as analyzedforapowerlevelof2754M!(t(102/of2700Ml<t)..The'results willbeapplicable to2560Miltsincethehigheroperating powerleadstomoreconservative siteboundarydoses.Theanalysisassumesoperation of3HighPressureSafetyInjection pumps.Thisassumption leadstofasterrefilling ofthepressurizer, therefore resulting inhigherRCSpressureandthus,increasing theprimarytosecondary leak.Themethodology followedisconsistent withthemethodspreviously usedandapprovedbyNRC.Thesemethodsaredocumented inReference 3.Table3'3'-1showsthekeyparameters assumedintheanalysisoftheevent.ThesequenceofeventsfortheSGTReventwithmanualtripofRCPsispresented inTable3.2.3.3-2.
Theanalysisconservatively assumedthatat1800seconds,theoperator'nitiates cooldownbyusingtheAtmospheric DumpValves(ADV).Theanalysisdidnotcredittheuseofsteamdumpandbypasssystemtothecondenser.
Theuseofatmospheric dumpvalvesresultsinasubstantial increaseinthecalculated siteboundarydosesincetheADVpartition factoris.1comparedto.0005forthecondenser airejectors.
Figures3.2.3.3-1 through3.2.3.3-5 presentthetransient behaviorofcorepower,heatflux,RCSpressure, RCStemperatures, andsteamgenerator pressure.
I-131activityreleaseisbasedontheTechSpecallowedprimarytosecondary leakrateof1GPMandonthesteamflowrequiredtocooltheplanttocondi-tionswheretheshutdowncool,ingsystemcanbeinitiated.
Thisreleaseiscalculated astheproductof-:st'earn flow,thetimedependent steamactivityandthedecontamination factorsapplicable toeachreleasepathway.The0to2hourI-131site;boundary dose,iscalculated from:DDSE(REM)AI-131+BPx>xCFI-131where:AI-131BRx/QCFI-131I-131activityreleased.tositeboundary, Ci,breathing rate,m/sec,dispersion coefficient, sec/m,I-131doseconversion factor,Rem/Ci..Indetermining thewholebodydose,'hemajorassumption madeisthatallnoblegasesleakedthroughtherupturedtubewillbereleasedtotheatmosphere.
Therefore, thewholebodydoseisproportional tothetotalprimarytosecondary leakandiscalculated usingthefollowing equation.
i<holeBodyDose=[.25(K+-E)]*L*A*-.25gRCSg,where:EYERCSg/((averageenergyreleasebygammadecay,averageenergyreleasebybetadecay,totalprimarytosecondary masstransport noblegasactivityofprimarycoolantdi".)ii'r'n c'o<'tli<i<'nt.
~~
Theresultsoftheanalysisarethat81540lbs.ofprimarycoolantaretransported tothesteamgenerator secondary.
side.Basedonthismasstransport andvaluesinTable3.2.3.3-3, the0-2Hrsiteboundarydosescalculated are:Thyroid(DEQI-ll):0.32RENWholeBody(DEQXe-133):0.08RENThereactorprotective system(i.e.,TN/LPtrip)intervenes toprotectthecorefromexceeding theDHBRlimit.Thedo'sesresulting fromtheactivityreleasedasaconsequence ofhdouble-ended ruptureofonesteamgenerator tube,assumingthemaximumallowable TechSpecactivityfortheprimaryconcentration atacorepowerof2754NIlt,aresignificantly belowtheguidelines of10CFR100.
Thus,theresultsdonote'xceedacceptance criteria.
TABLE7.3.3-"1KEYPARAMETERS ASSUMEDIHTHESTEANGENERATOR TUBERUPTUREEYEtlTKEYTRANSIENT RELATEDPARAMETERS:
Parameter PowerMTCDopplerCoefficient Multiplier Scram1/orthinRCSPressureInitialCoreMassFlowRate(548oF,2200psia)InitialSecondary PressureUnitsxl0ap/'Fpsiax10.lb/hrDsiaFSAR2611-2.51.154.555442300117,.5841~Cele52754-2.51.15-4.0.2300133.99O2.0 g~~TABLE7.'3;3-2SEQUENCEOFEVENTSFORTHESTEAMGENERATOR TUBERUPTUREEVENTWITHRCPCOASTDOllN ONSIASTime(sec)0.0577.2577.4578.6579.1584.8587.4588.01395.41800.07859EventTubeRuptureOccursLowPressurizer PressureTripSignalGenerated DumpValvesOpenCEAsBegintoDropIntoCoreBypassValvesOpenMaximumSteamGenerator PressurePressurizer EmptiesSafetyInjection Actuation SignalGenerated; RCPsManuallyTrippedIMinimumRCSPressureOperatorIsolatesDamagedSteamGenerator andBeginsCooldownto325'FOperatorInitiates ShutdownCooling(TAVF)SetpointorValue1853psia949psia1578psia1034psia TABLE7.3.3-3ASSUMPTIONS FORTHERADIOLOGICAL EVALUATION FORTHESTEAMGEhERATOR TUBERUPTUREParameter ReactorCoolantSystemMaximumAllowable Concentration (DEQI-131)SteamGenerator MaximumAllowable Concentration (DEQI-131)1ReactorCoolantSystemMaximumAllowable Concentration of'obleGases(DEQXe-133)1Atmospheric DumpValvePartition FactorCondenser AirEjectorPartition FactorAtmospheric Dispersion Coefficient Breathing RateDoseConversion Factor(I-131)unitsyCi/gmuCi/gmpCi/gmsec/mm/secREM/CiCcle5Value1.0100/E.00058.55x10.3.47x101.48xlOTechSpeclimits.P0-2houraccidentcondition forSt.LucieUnit1.
,c7C 110998"7755UJgqCD3222020090060080010001200100016001800TIl'lE,SECONDSFLORIDAPOV/ER6LICL<TCO.St.LvciePIont)TEAt"lGEI",ERECTOR TUBEFAILUREEVENT~COREPOYiERvsTIk'IEFigure~7.3.3-1
~1~110ag776655220.III02004006008001000120Q1000160Q1800TINE,SECONDSFl.ORIDAt'O'"'L'."",
l.t.Ci!TCC.5t.Lv-tef'loci(STEAMGENERATOR TUBEFAILLE,iE E'LtEiilT CORfAVFiliXGF flEATFIUi'ivsTIA'iEFlgVfC7~3&32~~~
~~~2403220D200318001603D.140312031000.02000006008001000120014001600.1300TINE,SECONDSFLORIDAPOVCER5LlGt<TCQ.St.LucioPlontS)EAMGEIJERATOR TURNEFAILUREEVEi'lTREACTORCOOLAl'JT SYSTEM:lPRESSUREvsTIi~,EFicure7%3&33 65J603550500CD05.0TOtjTLETTAYERAGETINLETIIII0200400600800.1000.1200100016001800TIME,SECONDSFlORIDAPOWER8LIGHTCO.5t,LvcicPIai:ISTEAI';1GENERATOR TU~uEFAILUREEVE:~TPEACTPRCPOl.ANTS'(STEMMA TEMPERATURE vsTITLEFIgv;c:7.3.3-4 950900850800750c700650600550500II0200000IIII60080010001200100016001800TINE,SECONDSFigurc7.3.3-Qfv,~)I<}}

Latest revision as of 15:44, 4 February 2020

Application for Amend to License DPR-67 Submitted as Response to NRC 810728 Info Request & Proposed Amends to Tech Specs Re Boration Control,Moderator Temp Coefficient, Reactor Coolant Pumps & Boron Dilution & Addition
ML17212A709
Person / Time
Site: Saint Lucie NextEra Energy icon.png
Issue date: 09/04/1981
From: Robert E. Uhrig
FLORIDA POWER & LIGHT CO.
To: Clark R
Office of Nuclear Reactor Regulation
Shared Package
ML17212A710 List:
References
L-81-388, NUDOCS 8109100207
Download: ML17212A709 (52)


Text

REGULATOR NFORMATION DISTRIBUTION S TKM (RIDS)

ACCESSION NBR:8109100207 DOC ~ DATE': 61/09/04 NOTARIZED I NO OOCKEll'" 0 FACILt;50-335 St, LUcie PlantE Unit 1< Florida Power 8 Light Co. 05000335 AUTH',NAME'UTHOR AFFILIATION UHRIGgR,E, F l or,i da- Power 8 Light Co, REC IP ~ NAMEl RECIP IENT AF F ILS ATION-CLARiX"PR ~ AD Operating, Reactors Branch 3

SUBJECT:

Application for amend to License DPR-67 submitted as response to NRC 810728 info request 8 proposed amends to Te'ch Specs re boration controlimoderator temp coefficienti reactor coolant pumps 8 boron dilution 8, CODE;: AOOIS,. COPIES RECEEVED:l.iTR addition.'ISTRIBUTION

+ENCL + SIZE'::

Gener al Distr ibution for after>> Issuance~ of Operating Lii cense 'lITLEt:-

iVOTE S:

RECIPlKNT COPIES RECIPIENT COPIES ID CODE/NAMEI LTTR ENCL>> IO CODE/NAME LlTTRi ENCLI ACT'ION:" ORB 03 BC! 04" 13 13 INTKRNALl, D/DIRPHU4l FACOB 1 DIRi DI V OF LIC 1 1 I8 Ei 06'R 2 2 OELD 11 1 0 ASSESS'R 10. 1 0 RAD ASMT BR 1 L 01 1 1 09 16 16 LPDR 03 KXTERNALi: ACRS NRC NTIS PDR 02i 1 1

1, 1

NSIC 05 1

1 1

1 qgSE gp 1g TOTAL NUMBER OF COPIES REQUIRED: LTTR 41 ENCL'l 39

ll r t kt t

III

P.o. BOX 629100, MIAMI,FL 33162

~ + ~ w c'ef fkvv<4%

FLORIDA POWER & LIGHT COMPANY September 4, 1981 L-81-388 c

Office of Nuclear Reactor Regulation U. S. Nuclear Regulatory Commission Washington, D.C. 20555 Attention: Mr. Robert A. Clark, Chief Operating Reactors Branch $/3 I S~P Og 1981 Qi%a +~~95

Subject:

St. Lucie Unit 1 Docket No. 50-335 Stretch Power Proposed Amendment

References:

1. Letter, R. A. Clark to R. E. Uhrig, 7/28/81
2. Letter, R. E. Uhrig to D. G. Eisenhut, L-80-381, 11/10/80
3. Letter, R. E. Uhrig to D. G. Eisenhut, L-81-306 7/23/81

Dear Mr. Clark:

In response to the information request of your Reference 1 letter, we have enclosed responses to your ten (10) questions in Attachment 1 to this letter.

In order to clarify the relationship of our Reference 3 submittal (Shutdown Margin and MTC changes) to our Reference 2 submittal (Stretch Power) we have described the proposed amendment to Stretch below and have enclosed all the pertinent amended Technical Sepcification pages in Attachment 2 to this letter.

Pa es 3/0 l-l R 3/0 1-2 R 3/0 1-5 R 3/0 0-1 R B 3/0 l-l The requirements for shutdown margin were increased, and a shutdown margin calculation change was added. The requirements for part loop operation were simplified and the shutdown margin requirements decreased slightly. The requirement for the moderator temperature coefficient (MTC) at rated thermal power was changed.

The proposed amendment to Stretch has been previously reviewed and approved by the St. Lucie Facility Review Group and the Florida Power

  • Light Company Nuclear Review Board. Specifically the new requirements for shutdown margin and MTC are bounded in all the other analyses which use the more conservative values of 0.3% Ijhk/k and -2.5 x 10-< hk/k/OF, respectively.

Further we were able to simplify the requirements for part loop operation 8109100207 Bi 0904 PDR ADOCK 05000335 POR PEOPLE... SERVING PEOPLE

1'

. '-P. /CASA ~~ >> 'i: ~ a', '1 gf.". J3f; ~

~t L

1

)l'AJJ

\I 4

~ 'VJ<)I~I . )~, - ~> '.~ '~ I c ~

J

  • because the required reactor coolant pump (RCP) trip causes the full loop and part loop events to behave with no significant differences in results.

T We have enclosed the safety evaluations for the Excess Load (EL) and the Steam Generator Tube Rupture (SGTR) events in Attachment 3 to this. letter.

These events along with the Steam Line Rupture (SLB) event (submitted through Reference 3) were reanalyzed for Cycle 5 to include the effect of NRC mandated TMI-2 related operational and design changes, i.e. automatic initiation of auxilliary feedwater flow and manual, trip of all four RCP s. Other analyses are not significantly affected by these changes. These three event safety evaluations (SLB, EL and SGTR) should replace those submitted through Reference 2. No new Technical Specification changes to Stretch, other than those in Attachment 2 to this letter, arise as a result of the reanalysis of these events. Also the responses to questions on SLB and SGTR (Questions 7,8, and 9) in Attachment 1 to this letter are based on these revised analyses in Attachment 3 and Reference 3.

Very t yours Robert E. Uhrig Vice President Advanced Systems 2 Technology cc: Mr. J. P. O'Reilly, Director, Region II Mr. Harold F. Reis, Esquire

ATTACHMENTI guestion 1 4

The inverse boron'worth values listed in Table 7.1.1-1 are increased for all modes of operation. Increased inverse boron worth means that more boron must be diluted for a given change in reactivity, which is less conservative. Oescribe the bases for and justify the new values of inverse boron worth for each mode of operation.

~Res ense The new inverse boron worths reported in Table 7.1.1-1 are based on explicit diffusion theory ca1culations of reactivity which span the

'power levels and temperature range allowed within each operating mode.

These inverse boron worths are consistent with the critical boron con-centrati'ons shown in Table 7.1,1-1. Although the i'nverse boron worths have increased when compared to the Reference Cycle values, the new values reported in Tab'le 7,1.1-1 are sttll l.ower than the explicit Cycle 4 cal-culated values. Since the new values bound the explicit calculated values, their use jn the, Cycle 4 boron dilution event is justified.

Ouestion 2 1

1 The refueling shutdown margin listed in Table 7.1.1-1 has been changed from 9.45Ã subcritical to 6.28Ã subcritial, which reduces the dilution time to reach criticality . What is the boron concentration that corresponds with the new shutdown margin? Compare this with the previous refueling boron concentration.

~Res ense The critical boron concentration for Cycle 4 is 1280 PPM, in comparison to the reference cycle value of 1200 PPH. The initial boron concentra-tion for both Cycle 4 and the reference cycle is the minimum required Technical Specification boron concentration of 1720 PPM.

~ I uestion 3 The results of the boron dilution events shown in Table 7.1.1-2 list the time to lose prescribed shutdown margin for each mode. Please be aware that SPR Section 15.4.6 specifies minimum times from when an alarm makes the operator aware of an unplanned dilution event as acceptance criteria. What alarms makes the operator aware of boron dilution in each mode? What are the setpoints, time delays, and errors associated with detection and alarm systems, and how are these accounted for in the time for the operator to react to a boron dilution event?

Response

The indicators that are available to the operator for determining if an unplanned dilution is in progress are: 1) the startup flux channels,

2) the low level alarm on the Volume Control Tank, 3) the boronometer and 4 periodic sampling. Depending on the mode of operation and on the rate of dilution, one or all of these indicators would alert the operator that an inadvertent dilution is in progress.

The least amount of time to lose'rescribed shutdown margin is in Mode

5. The primary indicator in Mode 5 is. the startup'lux channels. Two startup flux channels are requi red to be operable in Mode 5 by the Technical Specifications. Procedures will be developed which will require the operator to:

a) Observe the count rate upon entering Mode 5, b) Periodically check that the count rate has not increased (the interval is dependent on the number of charging pumps in operation and the liquid volume .in the RCS),

c) Take corrective action whenever the count rate exceeds a prescribed value (i.e., effectively an alarm limit)

These actions are sufficient because in Node 5 the boron concentration is normally higher than required by Technical Specications. This higher concentration results from not diluting from the higher required concentrations for Nodes 4 and 6.

It should also be noted that past experience at St. Lucie has verified the quality of operator training and operator action during a boron dilution event, LER 335-80-71 reported a boron dilution at power which was correctly controlled by the St. Lucie operators.

I s

uestion 4 The parameters shown in Table 7.1.4-4 are stated to maximize the calculated peak RCS pressure for a loss of load event. However, the initial pressure of 2200 psia is lower than the value previously utilized (2250 psia) to maximize the RCS peak pressure. Provide further discussion on why a lower initial pressure is conservative, or evaluate the effects of a higher initial pressure on the cal-culated peak pressure.

~Res ense The use of the lowest initial RCS pressure is conservative since this delays the time of High Pressurizer Pressure (HPP) trip.

Delaying the time of HPP trip maximizes the rate of pressure in-crease at the time of trip and ther eby maximizes the pressure over--

shoot after reactor trip. This results in. the peak RCS pressure during theevent. Therefore, the lowest RCS pressure of 2200 psia allowed by the Technical Specification was conservatively assumed to determine. the peak pressure during the Loss of Load ev'ent;

guestion 5 The Loss of Coolant Flow analysis has several areas which are not fully addressed and may be non-conservative. Please discuss the following: 1) The initial core power is at 100% rather than 102Ã as required by SRP Section 15.3.1; 2) The assumed scram characteristics do not discuss are if the most reactive rod is held out of the core; provided to justify the pump coastdown curve.

3) t<o bases

~Res onse

1) Reference 1 documents C-E's statistical combination of uncertainty methodology. The methods and initial conditions used in the Loss of Flow event are consisteqt with /hose reported in geferencq .I,.

In particular, the uncertainty in initial power levei is included as .,a-t'erm in the total uncertainty. Therefore, an initial power level of 100 was assumed in the Loss of Flow event analysis.

2) The,:;,-scram worth used in the analysis was calculated with the most",reactive rod held out of the core.
3) The'-pump coastdown curve used in the Loss of Flow event is calculated using the code COAST (Reference 2). This coastdown curve is'identical to the one .used and accepted by the NRC in the FSAR and previous reload safety analysis..

References

1. CEH-12(F)-'P, "Statistical Combination of Uncertainties, Part.3,"

March 1980.

2. CENPD-98, "COAST Code Description," May 1973.

(}uestion 6 1 t The Loss of Non-Emergency AC Power event utilizes the same DNB analysis used for the Loss of Coolant Flow transient (7.2.2).

The items in question 5 must be satisfactorily resolved before the analysis for Loss of AC Power will be considered valid. 1n

~

addition, the value of 1.15 used for the doppler coefficient multiplier must be justified as conservative considering the previous value of 0.85 used in the FSAR.

~Res ense A doppler coeff'icient multiplier of 1.15 was used in the analysis since this results in a slower power rampdown following reactor trip. This increases the residual heat that must be removed during plant cooldown and increases the steam releases. Higher steam releases during the cooldown increases the site boundary doses. Thus, it is conservative to use a doppler coefficient multiplier of 1.15.

uestion 7 provide justification for the values of the initial core coolant temperature and pressure to show that they are conservative for the Steam Line Break analysis. Also, discuss the basis for the initial, core flow rates assumed and the delayed neutron fraction.

~Res ense The maximum initial core coolant temperature allowed by the Technical Specification was used in the analysis. This causes the greatest coolant temperature decrease during the event, which results in the maximum positive reactivity insertion due to moderator feedback.. The greatest amount of positive reactivity insertion enhances the potential for Return-to-Criticality (R-T-C) and Return-to-Power (R-T-P).

The SLB event initiated with the. maximum initial RCS pressure delays the initiation of Safety Injection Actuation Signal (SIAS).

This results in the least amount of negative reactivity added to the core due to boron injected,via the, High Pressure Safety Injection (HPSI) pumps, The smaller amount of negative reactivity inserted enhances the potential for R>>T-C and R-T-P.

0 The maximum value for the delayed neutron fraction at end of cycle was assumed in the analysis. The maximum value increases the subcritical multiplication and thus enhances the potential for R-T-P.

The initial core mass flow rate assumed in the analysis is consistent with'he minimum guaranteed Technical Specification vessel flow rate of 370,000 GPN.

uestion 8 No DNB analysis was performed despite the rapid system depressurization.

What are the minimum DNB ratios calculated?

~Res ense The minimum DNBR during the transient was calculated using the MacBeth rod cluster correlation (Reference 1) with the Lee non-uniform heat flux correction factor (Reference 2). The minimum. transient DNBR for the HFP SLB event occurs at 145 seconds and is equal to 1.27.

References 1.. R. V. MacBeth, "An appraisal of Forced Convection Burn-Out Data",

Proc. Instn. Mech. Engrs., 1965-66, Vol. 180, Pt. 3C, pp. 37-50.

2. D. H. Lee, "An Experimental Investigation of Forced Convection Burnout in High Pressure Mater; Part IV, Large Diameter Tubes at About 1600 psia", AEBl-R 479, November, 1966.

uestion 9

',The Steam Generator Tube Rupture Event shows.a rapid drop in RCS pressure and temperature at about 600 seconds in Figures 7.3.3-3 and 7.3.3-4.

Please provide figures with finer detail in this region (approximately 550 650 seconds) and evaluate the chances of and effects of steam bubble

'o formation in the vessel head or hot legs. The effects of steam bubble formation on the"radiological evaluations should also be considered.

~Res ense As requested, Figures 1 and 2 present in finer detail the RCS pressur e and temperature from 550 seconds to 650 seconds.

The reference, prepared in response to previous NRC questions on upper head voiding, confirms that the model being- used in this analysis adequate1y addresses the effects of steam bubbl'e formation in the vessel upper head and hot'egs during a Steam Generator Tube Rupture event. In addition, the

. the. reference contains an evaluation of the radiological dose due to steam bubble formation.

Letter from Robert E. Uhrig to Darrell G. Eisenhut,

'eference:

"St. Lucie Unit 1 Docket No. 50-335 Natural

'irculation Cooldown", L-81-43, February 9, 1981;

guestion 10 The Seized Rotor analysis does not include a calculated DNB, MDNBR

{accounting for statistical uncertainties with the new C-E methodology) or a peak clad temperature as required by SRP Section 15.3.3 Please provide this information and confirm that the most reactive rod was assumed stuck out of the core.

~Res onse The minimum ONBR for a Seized Rotor event initiated from Technical Specification DNB Limiting Conditions for Operation is 1.025~ As stated in Section 7.3.4, the predicted number of fuel pin failures is not based on a single HDNBR value but is ca]'c61ated through a distribution of the fraction of pins with a par'ticular ONBR as a function of DNBR. This distribution is then,:,convoluted with a probability of burnout vs. DNBR to obtain the amount, of fuel failure.

The scram worth used in analyzing this. event'~was calculated assuming that the most reactive rod is stuck out of the,-.core.

II~

~ I

'I IO X IO TO N INCH 7 X i0 INCHES Ca ICEUE EEL 0 ESiIIER CO. IIJW III USA 46 1320 jl  ! (

li Ii I;II

~

~ I I

~

il I lt(

~ ~

I sl P( I :

~

I

II hajj

~

~

I~

I/I

~

(

!L I I

~ l(ll ij ii(i(II IT I I

~k' :IL

~ ~ ~

il II I~ ~ I ~

I I' i I l::

!J i ~ I I I

~

s SS

~

I ~

~

il I

.'.LL III ~ ~ ~ ~ I

~

I I ~

II ,I IJ ~

I ~

I' jl li jij I I il j Ij I ij I ~ ~

~ I I I II 'I l I~

I .Il ~

I I l I Il I

!!: I(l li T il I ,:t ,'I I

'I I ' ill

~

,i i I I l ~ ~

I i W

ill X 10 TO ' INCH 1 X lsi INCIIES f E-

~IL KEUFfiL A ESSEA CO, assisi sas isola 46 1320 .~

'i i il ~

II II ~ ~

iI~ a ~ ~ I ~

i iiii I ~

I ii Ii ~, a ~ ~

sl i .i

~

~ ~ ~ ~ I~ i i ~ II

~

~

I~ I

~

I i:. I) ~ ~

~ ~

I~ ~ ~

~

J I

~ ~ ~ ~

i'f ~

t't,. si

!;aiI si

~ ~

iI iI ~ ~

~ Is ~ I iis. ilI ~ ~

'.'ij a ~

~ ~

~ ~ ~

7 E E RE $ $ UR ~

~ ~ ~

~ I ~ >>

a I

sL I: i'I I s l~ I is.i I' I i'j I,

~

sl ~, I a~

ii  :.

~

i I

lt' iil ~ ~ ~ ~

II

~

, I I ~ I

~

tl I

I~

o4 I

II

~ I I i ~ I. I II

~ ~

jsl, a

~

Ia I i! I

~ ~

I~

~ I il i.i f, I i j I I ~ a I~ s ~

~ a

~ ~ s I

~

ala

~ ~ I I

I I. :II

~ ~ a I

~

I ~

'gh . ~ ~

I~ ~ I I i I I

~

Ii ~

~

si a

t ~ I i ~ La I

~ 'i ;iI~ fl fljl ~

a I

~ ~ I I ~ I l ~

,I a

~

~

I

~

i I

is

~ ~

I ~ ~

ali I' a ~

is al I I l a ~ I ls

ATTACHMENT2 ATTACHMENT3 7.1.3 Excess Load Event The Excess Load Event was reanalyzed to determine that the DNBR and CTM design limits are not exceeded during Cycle 5.

The analyses included the effects of manually tripping the RCP's on SIAS due to low pressurizer pressure and the initiation of auxiliary feedwater flow 180 seconds after reactor trip.

The High Power Level and .Thermal Margin/Low Pressure {TM/LP) trips provide primary protection to prevent exceeding the DNBR limit during the full power Excess Load event. Additional protection is provided by other trip signals

.including high rate of change of power, low steam generator water level, and low steam generator pressure. The approach to the. CTM limits is terminated by either the Axial Flux Offset trip, the DNB related trip or the High Power Level trip. In, this analysis, credit is, taken only for the action of the High Power Level trip in the determination of the minimum transient DNBR and maximum CTM. For the zero power Excess Load transient, protection is provided by the Variable High Power Level trip to prevent violation of the DNBR and CTM liririts.

As presented in the FSAR, the most limiting load increase events at full power and hot .Rem power conditions"occur'or the. complete opening of the.

steam dump and bypass 'valves. Of these two events, the full power case is the'more limiting {i.e., approaches closer to the acceptable DNBR and CTM limits) case.

For conservatism in the analyses, auxiliary feedwater flow rate corresponding to 15.3% of full power main feedwater flow (i.e., 7.66K of full power main feedwater flow per generator) was assumed. The addition of the auxiliary feedwater to each steam gener ator was initiated at 180 seconds, after reactor trip. The addition of auxiliary feedwater enhances the cooldown of the RCS and the potential for a return-to-power {R-T-P) or criticality arising from reactivity feedback mechanisms.

>The Excess Load event at full power was initiated at the conditions given in Table 7.1.3-.1. A, Moderator Temperature Coefficient of -2.5x10-" ap/oF was assumed in the analysis. This MTC, in conjunction with the decreasing coolant inlet temperature, enhances the rate of increase in the core heat flux at the tfme of reactor trip. 5 minimum Fuel Temperature Coefficient (FTC), corresponding to beginning of cycle conditions with an uncertainty of 155, was used in the analysis since this FTC results in the least amount of negative reactivity addition to mitigate the transient increase in core heat flux. The minimum CEA worth assumed to be available for shutdown at the tjme of reactor trip for full power operation is 4.3Xap. The analysis conservatively assumed that the worth of boron injected by the safety injection system is -1.0Ãap per 105 PPM. The pressurizer pressure control system was assumed to be inoperable because this minimizes the RCS pressure during the event and therefore reduces the ca1culated DNBR. All other control systems were assumed to be in manual mode of operation and have no significant impact on the results for this event.

The Full Power Excess Load event results in a High Power Level trip at 8.4 seconds. The minimum DNBR calculated for the event at the conditions speci-

. fied in Table 7.1.3-1 is 1.29 compared to the design limit of 1.23. The maximum.

local linear heat generation rate for the event is 18.3 KW/ft.

For the Excess Load event initiated from HFP conditions, SIAS is generated 54.0 seconds. Upon generation of an SIAS, the RCP's are manually tripped by

't the'perator. The coastdown of the pumps decreases the rate of decay heat removal and maintains the RCS coolant temperatures and pressure at higher values.

Auxiliary feedwater flow is delivered to both steam g'enerators at 188.4 seconds.

The subcooled feedwater flow causes an additional cooldown of the RCS. The decreasing RCS temperatures, in combination with a negative MTC, result in positive reactivity insertion which enables the core to approach criticality.

The negative reactivity inserted by the CEAs and the boron injected via the High Pressure Safety Injection (HPSI) pumps,.however, is sufficient to maintain the core in a subcritical condition.

Table 7.1.3 -2 presents the sequence of events for an Excess Load event initiated at HFP conditions. Figures 7.1.3-1 to 7-1.3-5 show the NSSS response for power, heat flux, RCS temepratures, RCS pressure, and steam generator pressure during this event.

The Zero Power Excess Load event was initiated at the conditions given in Table ?.1.3-3. The h)TC and FTC values assumed in the analysis are the same as for the full power case for the reasons previously given. .

The minimum CEA shutdown worth available is conservatively assumed to be -4.3Ãap.

The results of the analysis show that a Variable High Power trip occurs at 44.6 seconds. The minimum DNBR calculated during the event is 3..15 and the peak linear heat generation rate is 11.59 KW/ft.

For the ZP'xcess Load event, an SIAS signal on low pressurizer pressure is generated at 73.7 seconds. At 224.6 seconds auxiliary feedwater

'flow is delivered to both steam generators. The additional positive reactivity resulting from the enhanced cooldown of the RCS is mitigated by the negative reactivity inserted due to the CEAs and the boron injected via the HPSI pumps. The negative reactivity added is sufficient to maintain the core subcritical at all times after auxiliary feedwater flow is initiated.

The .sequence of events for the zero power case is presented in Table 7.1.3-4. Figures 7.1.3-6 to 7.1.3-10 show the NSSS response for core power, core heat flux, RCS temperature, RCS pressure and steam generator pressure.

For the full and zero power Excess Load events initiated by a full opening of the steam dump and bypass valves, the DNBR and CTH limits are not exceeded. In addition, the core remains subcritical following automatic initiation of the auxiliary feedwater flow and manual tripping of the RCP's on SIAS due to low pressurizer pressure. The reactivity transient during a HFP and HZP Excess Load event is less limiting than the corresponding Steam Line Rupture events.

~ Tab1e 7.1.3-1 KEY PARAMETERS ASSUMED FOR FULL POWER EXCESS LOAD EVENT ANALYSIS Parameter Units ~Cele 3 Initial Core Power Level MWt 2754 Core Inlet Temperature OF 551 Reactor Coolant System Pressure psia 2200 Core Mass Flow Rate xlO ibm/hr 133.7 Moderator Temperature Coefficient x10 hp/ F -2.5 CEA Worth Available at Trip -4.3 Doppler Multiplier e85 Inverse Boron Worth PPM/Cap 105 Auxiliary Feedwater Flow Rate ibm/sec 125.4/S.G.

High Power Level Trip Setpoint X.of Full Power 112 Low S.G. Water Level Trip Setpoint 29.9 Reference. Cycle is FSAR. Full Power. Excess Load results were not presented in FSAR, therefore no comparison is made.

Table 7.1.3-2 SEQUENCE OF EVENTS FOR THE EXCESS LOAD EVENT AT FULL POWER TO CALCULATE MINIMUM DNBR Time (sec) Event Set oint or Value 0.0 Complete Opening of Steam Dump and Bypass Valves at Full Power Hi g h Power Tri p Si gna1 Generated 112K of full power 8.8 Trip Breakers Open 9.3 CEAs Begin to Drop Into Core 9.3 Maximum Power; 114.4X of full power Maximum Linear Heat Generation Rate Occurs 18.3 KW(ft 10.0 Minimum DNBR Occurs 1.29 54.0 Safety Injection Actuation Signal 1578 psia Generated; Manual Trip of RCP's 54.1 Pressurizer Empties 69.3 Rampdown of Main Feedwater Flow 5X of full main =

Completed feedwater flow 72.5 Main Steam Isolation Signal 578, psia 73.3 Low Steam Generator Level Trip 29.9 ft Setpoint Reached 13P. 5 Isolation of Main Feedwater Flow to Both Steam Generators 188.4 Auxiliary Feedwater Flow Oelivered 125.4 lb/sec to each to Both Steam Generators steam generator 600.0 Operator Terminates Auxiliary Feedwater Flow to Both Steam Generators

t t KEY PARAMETERS ASSUMED FOR HOT STANDBY EXCESS LOAD EVENT ANALYSIS Parameter Units ~Cele 5 Initial Core Power Level MWt Core Inlet Temperature 0F 532 Reactor Coolant System Pressure psia 2200 6 137.0 Core Mass Flow Rate x10 1 bm/hr Moderator Temperature Coefficient x10 hp/ F -2.5 CEA Worth Available at Trip -4.3 Doppler Multiplier Xhp"'PM/Sap .85 Inverse Boron Worth 100 Variable High Power Trip'Setpoint 5 of-'-.full Power 40 Low S.G. Mater Level-Trip Setpoint ft 29.9 Auxiliary Feedwater Flow Rate ibm/sec 125.4/S.G.

Reference Cycle is FSAR..

'Table'7;l;3-'4 SEQUENCE OF EVENTS FOR EXCESS LOAD EVENT AT HOT STANDBY CONDITIONS TO CALCULATE MINIMUM DNBR Time (sec) Set oint or Value 0.0 Steam Dump and Bypass Valves Open to Maximum Flow Capacity 45.6'vent 44.6 45.0

.Variable High Generated Trip Breakers Power Open Trip Signal 40K of full power

'5.5 CEAs Begin to Drop in the Core Maximum Power; 41.09Ã of. full power Maximum Linear Heat Generation Rate Occurs 11.59 KM/ft.

"vv Ig 46.1 Minimum DNBR Occurs (CE-.2) ' 3.15 67.7 Pressurizer Empties 0

71.1 Main Steam Isolation Signal 578 psia Generated 73.7 Safety Injection Actuation Signal 1578 psia Generated; Manual Trip of Reactor Coolant Pumps 131.1 Isolation of Main Feedwater Flow to Both Steam Generators 224.6 Auxiliary Feedwater Flow Delivered 125.4 lb/sec to each to Both Steam Generators steam generator 600.0 Operator Terminates Auxiliary Feedwater Flow to Both Steam Generators

12G FIJLL POWER iGO CD LIJ

'uJ SG Q

CL i'LJ 60 CL.

ul 40 1GG 200 3GG 400 SGO TINE~ SECONDS FLORIDA EXCESS LOAD INCIDENT FIGURE POWER 5 LIGHT CO St. Lucie Plant CORE POMER VS TINE 7.1.5-1 Unit 1

120 I FULL POMER 1GO I

OC 80 UJ 40 20 1GO 200 300 40G 6GO TINE . SECONDS FLORIDA LIGHT COe EXCESS LOAD INCIDENT FIGURE POWER 8 St. Lucie Plant HEAT FLUX YS TINE 7I 1I 3-2 Unit 1

'GG FULL POWER TOUT TAVG CY.'00 Z:

300 = AVERAGE CORE COOLANT TENPERATURE TAYG CORE OUTLET TENPERATURE OUT TIN CORE INLET TENPERATURE 100 0 100 200 300 4GO SO0 S00 TINE SECONDS FLORIDA POWER LIGHT CO> EXCESS LOAD INCIDENT FIGURE 8t St. Lucie P1ant TPIPERATURE YS TIYiE ~

7.1,3-3 Unit 1

2400 FULL POWER 2GGG 1600 12GG SGO 1GO 200 300 400 SGO BGG TIME . SECONDS FLORIDA EXCESS LOAD INCIDENT FIGURE PONER 5 LIGHT CO<

St. Lucie Plant NAIN STEAN PRESSURE VS TINE 7.1,3-0 Unit I

>2GO FULL POMER

+(y.1 p

>" the PLHGR SAFDL is not approached. The Thermal Margin/Low Pressure trip, with conservative coefficients which account for the limiting radial and axial peaks, maximum inlet temper'ature, RCS pressure, core power, and conservative CEA scram characteristics, would be the primary RPS trip intervening during the course of the tran-sient. However, to maximize the coo'lant transported from the primary to secondary and thus the radioactive steam releases to the atmosphere, the analysis was performed assuming that the reactor trip is not initiated un-til the minimum setpoint (floor) of the Thermal Marqin/Low Pressure trip (i.e., Low Pressuri er Pressure Trip) is reached. This prolongs the steam releases to the atmosphere and thus maximizes, the site boundary doses. The Steam Generator Tube Rupture'as analyzed for a power level of 2754 M!(t (102/ of 2700 Ml<t)..The'results will be applicable to 2560 Milt since the higher operating power leads to more conservative site boundary doses. The analysis assumes operation of 3 High Pressure Safety Injection pumps. This assumption leads to faster refilling of the pressurizer, therefore resulting in higher RCS pressure and thus, increasing the primary to secondary leak. The methodology followed is consistent with the methods previously used and approved by NRC. These methods are documented in Reference 3. Table 3 ' 3 '-1 shows the key parameters assumed in the analysis of the event. The sequence of events for the SGTR event with manual trip of RCPs is presented in Table 3.2.3.3-2. The analysis conservatively assumed that at 1800 seconds, the operator 'nitiates cooldown by using the Atmospheric Dump Valves (ADV). The analysis did not credit the use of steam dump and bypass system to the condenser. The use of atmospheric dump valves results in a substantial increase in the calculated site boundary dose since the ADV partition factor is .1 compared to .0005 for the condenser air ejectors. Figures 3.2.3.3-1 through 3.2.3.3-5 present the transient behavior of core power, heat flux, RCS pressure, RCS temperatures, and steam generator pressure. I-131 activity release is based on the Tech Spec allowed primary to secondary leak rate of 1 GPM and on the steam flow required to cool the plant to condi-tions where the shutdown cool,ing system can be initiated. This release is calculated as the product of-:st'earn flow, the time dependent steam activity and the decontamination factors applicable to each release pathway. The 0 to 2 hour I-131 site;boundary dose, is calculated from: AI-131 + BP x > x DDSE (REM) CFI-131 where: AI-131 activity I-131 released .to site boundary, Ci, BR breathing rate, m /sec, x/Q dispersion coefficient, sec/m , CFI-131 I-131 dose conversion factor, Rem/Ci. . In determining the whole body dose,'he major assumption made is that all noble gases leaked through the ruptured tube will be released to the atmosphere. Therefore, the whole body dose is proportional to the total primary to secondary leak and is calculated using the following equation. i<hole Body Dose = [ .25 (K + )] * .25 E g L *A RCS g ,where: E average energy release by gamma decay, Y E average energy release by beta decay, total primary to secondary mass transport RCS noble gas activity of primary coolant g/(( di".)ii'r'n c'o<'t l i < i<'nt. ~ ~ The results of the analysis are that 81540 lbs. of primary coolant are transported to the steam generator secondary. side. Based on this mass transport and values in Table 3.2.3.3-3, the 0-2 Hr site boundary doses calculated are: Thyroid (DEQ I-ll ): 0.32 REN Whole Body (DEQ Xe-133): 0.08 REN The reactor protective system (i.e., TN/LP trip) intervenes to protect the core from exceeding the DHBR limit. The do'ses resulting from the activity released as a consequence of h double-ended rupture of one steam generator tube, assuming the maximum allowable Tech Spec activity for the primary concentration at a core power of 2754 NIlt, are significantly below the guidelines of 10CFR100. Thus, the results do not e'xceed acceptance criteria. TABLE 7.3.3-"1 KEY PARAMETERS ASSUMED IH THE STEAN GENERATOR TUBE RUPTURE EYEtlT KEY TRANSIENT RELATED PARAMETERS: Parameter Units FSAR ~Cele 5 Power 2611 2754 MTC xl0 ap/'F -2.5 -2.5 Doppler Coefficient 1.15 1.15 Multiplier Scram 1/orth 4.55 -4.0. 544 in RCS Pressure psia 2300 2300 Initial Core Mass Flow Rate x10. lb/hr 117,.5 133.9 (548oF, 2200 psia) Initial Secondary Pressure Dsi a 841 9O2. 0 g~ ~ TABLE 7.'3; 3-2 SEQUENCE OF EVENTS FOR THE STEAM GENERATOR TUBE RUPTURE EVENT WITH RCP COASTDOllN ON SIAS Time (sec) Event Setpoint or Value 0.0 Tube Rupture Occurs 577.2 Low Pressurizer Pressure Trip 1853 psia Signal Generated 577.4 Dump Valves Open 578. 6 CEAs Begin to Drop Into Core 579.1 Bypass Valves Open 584.8 Maximum Steam Generator Pressure 949 psia 587.4 Pressurizer Empties 588.0 Safety Injection Actuation Signal Generated; RCPs Manually Tripped I 1578 psia 1395.4 Minimum RCS Pressure 1034 psia 1800.0 Operator Isolates Damaged Steam Generator and Begins Cooldown to 325'F 7859 Operator Initiates Shutdown Cooling (TAV F) TABLE 7. 3. 3-3 ASSUMPTIONS FOR THE RADIOLOGICAL EVALUATION FOR THE STEAM GEhERATOR TUBE RUPTURE Parameter uni ts C cle 5 Value Reactor Coolant System Maximum yCi/gm 1.0 Allowable Concentration (DEQ I-131) Steam Generator Maximum Allowable uCi/gm Concentration (DEQ I-131)1 Reactor Coolant System Maximum pCi/gm 100/E Allowable Concentration of'oble Gases (DEQ Xe-133)1 Atmospheric Dump Valve Partition Factor Condenser Air Ejector Partition Factor .0005 Atmospheric Dispersion Coefficient sec/m 8.55x10 . Breathing Rate m /sec 3.47x10 Dose Conversion Factor (I-131) REM/Ci 1.48xlO Tech Spec limits. P 0-2 hour accident condition for St. Lucie Unit 1. ,c7 C 110 99 8" 77 55 UJ gq CD 32 22 0 200 900 600 800 1000 1200 1000 1600 1800 TIl'lE, SECONDS FLORIDA )TEAt"l GEI",ERECTOR TUBE FAILURE EVENT Figure ~ POV/ER 6 LICL<T CO. St. Lvcie PIont ~ CORE POYiER vs TIk'IE 7.3.3-1 ~1 ~ 110 ag 77 66 55 22 I I I 0. 0 200 400 600 800 1000 120Q 1000 160Q 1800 TINE, SECONDS STEAM GENERATOR TU BE FAILLE,iE E'LtEiilT FlgVf C F l.OR IDA t'O'"'L'."", l.t.C i !T CC. CORf AVFiliXGF flEAT FI Ui'i vs TIA'iE 7 ~3 &3 2 5t. Lv-te f'loci( ~ ~ ~ ~ ~ ~ 2403 220D 2003 1800 1603 D . 1403 1203 1000 .0 200 000 600 800 1000 1200 1400 1600 . 1300 TINE, SECONDS Ficure FLORIDA S) EAM GEIJERATOR TURNE FAILURE EVEi'lT POVCER 5 LlGt<T CQ. 7 3 &3 3 St. Lucio Plont REACTOR COOLAl'JT SYSTEM:l PRESSURE vs TIi~,E 65J TOtjTLET 603 TAYERAGE TINLET 550 500 CD I I I I 05.0 0 200 400 600 800 . 1000 . 1200 1000 1600 1800 TIME, SECONDS STEAI';1 GENERATOR TU~uE FAILURE EVE:~T FIgv;c: Fl ORIDA POWER 8 LIGHT CO. PEACTPR CPOl.ANT S'(STEMMA TEMPERATURE vs TITLE 7.3.3-4 5t, Lvc i c P I a i: I 950 900 850 800 750 c 700 650 600 550 I I I I I I 500 0 200 000 600 800 1000 1200 1000 1600 1800 TINE, SECONDS Figur c 7.3.3- Q f v,~ ) I <