NRC-23-0079, Transmittal of Revision 1 of the Core Operating Limits Report for Cycle 22

From kanterella
(Redirected from NRC-23-0079)
Jump to navigation Jump to search
Transmittal of Revision 1 of the Core Operating Limits Report for Cycle 22
ML23348A164
Person / Time
Site: Fermi DTE Energy icon.png
Issue date: 12/14/2023
From: Frank E
DTE Electric Company
To:
Office of Nuclear Reactor Regulation, Document Control Desk
References
NRC-23-0079
Download: ML23348A164 (1)


Text

DTE ElectricCompany 6400 N. Dixie Highway Newport, MI 48166 DTE

December 14, 2023 TS 5.6.5 NRC-23-0079

U.S. Nuclear Regulatory Commission Attention: Document Control Desk Washington, DC 20555-0001

Fermi 2 Power Plant NRC Docket No. 50-341 NRC License No. NPF-43

Subject:

Transmittal of Revision 1 of the Core Operating Limits Report for Cycle 22

In accordance with Fermi 2 Technical Specification 5.6.5, DTE Electric Company (DTE) hereby submits a copy of the Core Operating Limits Report (COLR) for Cycle 22, Revision 1. This COLR will be used during the remainder of the Fermi 2 twenty-second operating cycle.

No new commitments are being made in this submittal.

Should you have any questions or require additional information, please contact me at (734)586-4772.

Sincerely,

Eric Frank Manager - Nuclear Licensing

Enclosure:

Core Operating Limits Report (COLR), Cycle 22, Revision 1

cc: NRC Project Manager NRC Resident Office Regional Administrator, Region III Enclosure to NRC-23-0079

Fermi 2 NRC Docket No. 50-341 Operating License No. NPF-43

Core Operating Limits Report (COLR), Cycle 22, Revision 1 COLR - 22 Revision 1 Page 1 of30

FERMI2

CORE OPERATING LIMITS REPORT

CYCLE22

REVISION 1

Prepared by: 10/23/2023 Paul R. Kiel Date Principal Technical Expert, Reactor Engineering

Reviewed by: 10/24/23 Brian Lefevre Date Lead Engineer, Reactor Engineering

Approved by: /0,27.,~

Michael A. Lake Date Supervisor, Reactor Engineering

November 2023 COLR-22Revision1 Page2of30

TABLEOFCONTENTS

1.0INTRODUCTION

AND

SUMMARY

....................................................................................4 2.0SAFETYLIMITMINIMUMCRITICALPOWERRATIO..................................................5 2.1Definition........................................................................................................................5 2.2DeterminationofCycleSpecificSLMCPR....................................................................5 3.0AVERAGEPLANARLINEARHEATGENERATIONRATE............................................6 3.1Definition........................................................................................................................6 3.2DeterminationofMAPLHGRLimit...............................................................................6 3.2.1CalculationofMAPFAC(P).....................................................................................9 3.2.2CalculationofMAPFAC(F)...................................................................................11 4.0MINIMUMCRITICALPOWERRATIO.............................................................................12 4.1Definition......................................................................................................................12 4.2DeterminationofOperatingLimitMCPR....................................................................12 4.3CalculationofMCPR(P)...............................................................................................14 4.3.1CalculationofKP....................................................................................................14 4.3.2Calculationof 't.......................................................................................................17 4.4CalculationofMCPR(F)................................................................................................18 5.0LINEARHEATGENERATIONRATE...............................................................................19 5.1Definition......................................................................................................................19 5.2DeterminationofLHGRLimit......................................................................................19 5.2.1CalculationofLHGRFAC(P).................................................................................22 5.2.2CalculationofLHGRFAC(F).................................................................................24 6.0CONTROLRODBLOCKINSTRUMENTATION.............................................................25 6.1Definition......................................................................................................................25 7.0BACKUPSTABILITYPROTECTIONREGIONS.............................................................26 7.1Definition......................................................................................................................26

8.0REFERENCES

......................................................................................................................29 COLR-22Revision1 Page3of30

LISTOFTABLES

TABLE1FUELTYPE-DEPENDENTSTANDARDMAPLHGRLIMITS............................7

TABLE2FLOW-DEPENDENTMAPLHGRLIMITCOEFFICIENTS................................11

TABLE3OLMCPR100/105ASAFUNCTIONOFEXPOSUREAND................................13

't TABLE4FLOW-DEPENDENTMCPRLIMITCOEFFICIENTS........................................18

TABLE5STANDARDLHGRLIMITSFORVARIOUSFUELTYPES..............................20

TABLE6FLOW-DEPENDENTLHGRLIMITCOEFFICIENTS.........................................24

TABLE7CONTROLRODBLOCKINSTRUMENTATIONSETPOINTSWITHFILTER25

LISTOFFIGURES

FIGURE1BSPREGIONS(NOMINALFEEDWATERTEMPERATURE).........................27

FIGURE2BSPREGIONS(FEEDWATERTEMPERATUREREDUCTION).....................28 COLR-22Revision1 Page4of30

1.0INTRODUCTION

AND

SUMMARY

Thisreportprovidesthecyclespecificplantoperatinglimits,whicharelistedbelow,forFermi2, Cycle22,asrequiredbyTechnicalSpecification5.6.5.Theanalyticalmethodsusedtodetermine thesecoreoperatinglimitsarethosepreviouslyreviewedandapprovedbytheNuclearRegulatory CommissioninGESTARII(Reference7).

Thecyclespecificlimitscontainedwithinthisreportarevalidforthefullrangeofthelicensed operatingdomain.

OPERATINGLIMITTECHNICALSPECIFICATION

SLMCPR95/952.1.1.2

APLHGR3.2.1

MCPR3.2.2

LHGR3.2.3

RBM3.3.2.1

BSPREGIONS3.3.1.1

SLMCPR=SAFETYLIMITMINIMUMCRITICALPOWERRATIO

APLHGR=AVERAGEPLANARLINEARHEATGENERATIONRATE

MCPR=MINIMUMCRITICALPOWERRATIO

LHGR=LINEARHEATGENERATIONRATE

RBM=RODBLOCKMONITOR

BSP=BACKUPSTABILITYPROTECTION COLR-22Revision1 Page5of30

2.0SAFETYLIMITMINIMUMCRITICALPOWERRATIO

2.1Definition

TECHSPECIDENTOPERATINGLIMIT

2.1.1.2SLMCPR95/95

TheTechnicalSpecificationSAFETYLIMITMINIMUMCRITICALPOWERRATIO (SLMCPR95/95)shallbethesmallestcriticalpowerratiothatexistsinthecoreforeachfuelproduct.

TheTechnicalSpecificationSafetyLimitvalueisdependentonthefuelproductlineandthe correspondingMCPRcorrelation,whichiscycleindependent.ThevalueisbasedontheCritical PowerRatiodatastatisticsanda95%probabilitywith95%confidencethatrodsarenotsusceptible toboilingtransition.(Reference14)

TheCycleSpecificSLMCPR99.9presentedhereisthatpowerinthebundlethatisstatistically calculatedbyapplicationoftheappropriatecorrelationsanduncertaintiestocausesomepointin thebundletoexperienceboilingtransition,dividedbytheactualbundleoperatingpower.

2.2DeterminationofCycleSpecificSLMCPR

TheCycleSpecificSLMCPR,whichisalsoknownasSLMCPR99.9,iscycledependentandensures 99.9%ofthefuelrodsinthecorearenotsusceptibletoboilingtransition.(Reference14)The OperatingLimitMCPRissetbyaddingtheSLMCPR99.9andthechangeinMCPRforthemost limitinganticipatedoperationaloccurrencesuchthatfuelcladdingwillnotsustaindamagebecause ofnormaloperationandanticipatedoperationaloccurrences.

TheSLMCPR99.9issetsuchthatnosignificantfueldamageiscalculatedtooccurifthelimitis notviolated.Sincetheparametersthatresultinfueldamagearenotdirectlyobservableduring reactoroperation,thethermalandhydraulicconditionsthatresultintheonsetoftransitionboiling areusedtomarkthebeginningoftheregioninwhichfueldamagecouldoccur.Althoughtheonset oftransitionboilingwouldnotresultindamagetoBWRfuelrods,thecriticalpoweratwhich boilingtransitioniscalculatedtooccurhasbeenadoptedasaconvenientlimit.

Forthiscycle,theTwoLoopandSingleLoopSLMCPR99.9values(Reference2)are:

TwoLoopSLMCPR=1.08

SingleLoopSLMCPR=1.11 COLR-22Revision1 Page6of30

3.0AVERAGEPLANARLINEARHEATGENERATIONRATE

3.1Definition

TECHSPECIDENTOPERATINGLIMIT

3.2.1APLHGR

TheAVERAGEPLANARLINEARHEATGENERATIONRATE(APLHGR)shallbe applicabletoaspecificplanarheightandisequaltothesumoftheLINEARHEAT GENERATIONRATEs(LHGRs)forallthefuelrodsinthespecifiedbundleatthespecified heightdividedbythenumberoffuelrodsinthebundleattheheight.

3.2DeterminationofMAPLHGRLimit

ThemaximumAPLHGR(MAPLHGR)limitisafunctionofreactorpower,coreflow,fueltype, andaverageplanarexposure.Thelimitisdeveloped,usingNRCapprovedmethodologydescribed inReferences7and8,toensuregrosscladdingfailurewillnotoccurfollowingalossofcoolant accident(LOCA).TheMAPLHGRlimitensuresthatthepeakcladtemperatureduringaLOCA willnotexceedthelimitsasspecifiedin10CFR50.46(b)(1)andthatthefueldesignanalysiscriteria definedinReferences7and8willbemet.

TheMAPLHGRlimitduringdualloopoperationiscalculatedbythefollowingequation:

MAPLHGRLIMIT=MIN(MAPLHGR(P),MAPLHGR(F))

where:

MAPLHGR(P)=MAPFAC(P)xMAPLHGRSTD

MAPLHGR(F)=MAPFAC(F)xMAPLHGRSTD

Withinfourhoursafterenteringsingleloopoperation,theMAPLHGRlimitiscalculatedbythe followingequation:

MAPLHGRLIMIT=MIN(MAPLHGR(P),MAPLHGR(F))

where:

MAPLHGR(P)=MAPFAC(P)xMAPLHGRSTD

MAPLHGR(F)=MAPFAC(F)xMAPLHGRSTD

MAPFAC(P)andMAPFAC(F)arelimitedto0.90

TheSingleLoopOperationmultiplieronMAPLHGRis0.90.(Reference2)

COLR-22Revision1 Page7of30

MAPLHGRSTD,thestandardMAPLHGRlimit,isdefinedatapowerof3486MWthandflowof 105Mlbs/hrforeachfueltypeasafunctionofaverageplanarexposureandispresentedinTable 1.(Reference2)Whenhandcalculationsarerequired,MAPLHGRSTDshallbedeterminedby interpolationfromTable1.MAPFAC(P),thecorepower-dependentMAPLHGRlimitadjustment factor,shallbecalculatedbyusingSection3.2.1.MAPFAC(F),thecoreflow-dependent MAPLHGRlimitadjustmentfactor,shallbecalculatedbyusingSection3.2.2.

TABLE1 FUELTYPE-DEPENDENT STANDARDMAPLHGRLIMITS

GE14Exposure GE14MAPLHGR GWD/ST kW/ft

0.0 12.82 14.51 12.82 19.13 12.82 57.61 8.00 63.50 5.00

FuelTypes GE14-P10CNAB385-13G=-100T-150-T6-4571 GE14-P10CNAB384-15G=-100T-150-T6-4572 GE14-P10CNAB383-13G=-100T-150-T6-4573 GE14-P10CNAB377-15G=-100T-150-T6-4574 GE14-P10CNAB383-8G6.0/5G5.0-100T-150-T6-4478 GE14-P10CNAB383-8G6.0/7G5.0-100T-150-T6-4479 GE14-P10CNAB383-2G6.0/11G5.0-100T-150-T6-4480 GE14-P10CNAB383-10G6.0/5G5.0-100T-150-T6-4481 COLR-22Revision1 Page8of30

TABLE1(Continued)

FUELTYPE-DEPENDENT STANDARDMAPLHGRLIMITS

GNF3Exposure GNF3MAPLHGR GWD/ST kW/ft

0.0 14.36 9.07 13.78 21.22 13.01 40.82 10.75 57.60 8.00 63.50 6.00

FuelTypes GNF3-P10CG3B388-14GZ-83AV-150-T6-4661 GNF3-P10CG3B399-14GZ-83AV-150-T6-4662 GNF3-P10CG3B402-16GZ-83AV-150-T6-4663 GNF3-P10CG3B419-16GZ-83AV-150-T6-4664 GNF3-P10CG3B403-16GZ-83AV-150-T6-4888 GNF3-P10CG3B403-15GZ-83AV-150-T6-4889 GNF3-P10CG3B421-13GZ-83AV-150-T6-4890 GNF3-P10CG3B420-13GZ-83AV-150-T6-4891 GNF3-P10CG3B404-16GZ-83AV-150-T6-4892 GNF3-P10CG3B404-14GZ-83AV-150-T6-4893 COLR-22Revision1 Page9of30

3.2.1CalculationofMAPFAC(P)

Thecorepower-dependentMAPLHGRlimitadjustmentfactor,MAPFAC(P)(Reference2,3&

10),shallbecalculatedbyoneofthefollowingequations.

For 0 ::: P < 25 :

Nothermallimitsmonitoringisrequired.

For 25 ::: P ::: 29.5 :

WithAllEquipmentOPERABLE,orMSRINOPERABLE

Forcoreflow<50Mlbs/hr, MAPFAC(P)=0.568+0.00156(P-29.5)

For core flow ~ 50 Mlbs/hr,

MAPFAC(P)=0.568+0.00156(P-29.5)

WithTurbineBypassINOPERABLE,orTurbineBypassandMSRINOPERABLE

Forcoreflow<50Mlbs/hr, MAPFAC(P)=0.488+0.01067(P-29.5)

For core flow ~ 50 Mlbs/hr,

MAPFAC(P)=0.436+0.00511(P-29.5)

For 29.5 < P ::: 45 :

MAPFAC(P)=0.713+0.00529(P-45)

For 45 < P ::: 60 :

MAPFAC(P)=0.791+0.00520(P-60)

For 60 < P ::: 85 :

MAPFAC(P)=0.922+0.00524(P-85)

For 85 < P ::: 100 :

MAPFAC(P)=1.000+0.00520(P-100)

where:P=Corepower(fractionofratedpowertimes100).

COLR-22Revision1 Page10of30

MAPFAC(P)forPressureRegulatorOutofService(PROOS)Limits WithoneTurbinePressureRegulatorOutofServiceandReactorPowerGreaterThanorEqual to25%andbothTurbineBypassandMoistureSeparatorReheater(MSR)Operable:

For 25 ::; P ::; 29.5 :

Forcoreflow<50Mlbs/hr, MAPFAC(P)=0.568+0.00156(P-29.5)

For core flow ~ 50 Mlbs/hr,

MAPFAC(P)=0.568+0.00156(P-29.5)

For 29.5 < P ::; 45 :

MAPFAC(P)=0.680+0.00626(P-45)

For 45 < P ::; 60 :

MAPFAC(P)=0.758+0.00520(P-60)

For 60 < P ::; 85 :

MAPFAC(P)=0.831+0.00292(P-85)

For 85 < P ::; 100 :

MAPFAC(P)=1.000+0.00520(P-100)

where:P=Corepower(fractionofratedpowertimes100).

Note:Pressureregulatorinserviceandoutofservicelimitsareidenticalforpower>85%.

COLR-22Revision1 Page11of30

3.2.2CalculationofMAPFAC(F)

Thecoreflow-dependentMAPLHGRlimitadjustmentfactor,MAPFAC(F)(Reference2,3,&

10),shallbecalculatedbythefollowingequation:

MIN x--WTA(C,=MAPFAC(F)FF)B+100

where:

WT=Coreflow(Mlbs/hr).

AF=GiveninTable2.

BF=GiveninTable2.

C=1.0inDualLoopand0.90inSingleLoop.

TABLE2FLOW-DEPENDENTMAPLHGRLIMITCOEFFICIENTS

MaximumCoreFlow*

(Mlbs/hr)AFBF

1100.88890.2613

  • AslimitedbytheRecirculationSystemMGSetmechanicalscooptubestopsetting.

COLR-22Revision1 Page12of30

4.0MINIMUMCRITICALPOWERRATIO

TECHSPECIDENTOPERATINGLIMIT

3.2.2MCPR

4.1Definition

TheMINIMUMCRITICALPOWERRATIO(MCPR)shallbethesmallestCriticalPowerRatio (CPR)thatexistsinthecoreforeachtypeoffuel.TheCPRisthatpowerinthebundlethatis calculatedbyapplicationoftheappropriatecorrelation(s)tocausesomepointinthebundleto experienceboilingtransition,dividedbytheactualbundleoperatingpower.

4.2DeterminationofOperatingLimitMCPR

TherequiredOperatingLimitMCPR(OLMCPR)(Reference2)atsteady-stateratedpowerand flowoperatingconditionsisderivedfromtheestablishedfuelcladdingintegritySafetyLimit MCPRandananalysisofabnormaloperationaltransients.ToensurethattheSafetyLimitMCPR isnotexceededduringanyanticipatedabnormaloperationaltransient,themostlimitingtransients havebeenanalyzedtodeterminewhicheventwillcausethelargestreductioninCPR.Three differentcoreaverageexposureconditionsareevaluated.TheresultisanOperatingLimitMCPR whichisafunctionofexposureand. isameasureofscramspeedandisdefinedinSection

4.3.2. ThelimitingOLMCPRshallberepresentedbythefollowingequation

OLMCPR = MA; (MCPR(P),MCPR(F))

TheprocesstocalculateMCPR(P),thecorepower-dependentMCPRoperatinglimit,isillustrated inSection4.3.

TheprocesstocalculateMCPR(F),thecoreflow-dependentMCPRoperatinglimit,isillustrated inSection4.4.

IncaseofSingleLoopOperation,theSafetyLimitMCPRisincreasedtoaccountforincreased uncertaintiesincoreflowmeasurementandTIPmeasurement.ForSingleLoopOperation,the OLMCPRisincreasedby0.03(Reference2)fromtheTwoLoopOLMCPR.

COLR-22Revision1 Page13of30

IncaseofoperationwithoneTurbinePressureRegulatoroutofservice,OLMCPRlimitsare boundingwhenreactorpowerislessthan29.5%orgreaterthan85%.Whenreactorpoweris greaterthanorequalto29.5%andlessthanorequalto85%,thenoperationwithoneTurbine PressureRegulatoroutofserviceispermittedifbothTurbineBypassValvesandtheMoisture SeparatorReheaterareoperable.(Reference2,3,and19)

TABLE3OLMCPR100/105ASAFUNCTIONOFEXPOSUREAND

EXPOSURE CONDITION (MWD/ST) OLMCPR100/105

BOTHTurbineBypassValves ANDMoistureSeparatorReheater TwoLoopSingleLoop OPERABLE BOCto3133 =0 1.44 1.47

=1 1.44 1.47 3133to EOR-5491 =0 1.29 1.32

=1 1.38 1.41 EOR-5491to EOR-3991 =0 1.30 1.33

=1 1.40 1.43 EOR-3991to EOC =0 1.33 1.36

=1 1.43 1.46 ONETurbinePressureRegulatorOutofService ANDReactorPowerbetween29.5%and85%

AND BOTHTurbineBypassValvesandMoistureSeparatorReheaterOperable

BOCto3133 =0 1.44 1.47

=1 1.44 1.47 3133toEOC =0 1.37 1.40

=1 1.48 1.51 MoistureSeparatorReheater INOPERABLEBOCto 3133 =0 1.44 1.47

=1 1.48 1.51 3133toEOC =0 1.37 1.40

=1 1.48 1.51

BOC=BeginningofCycleEOC=EndofCycleEOR=EndofRatedConditions.

EORisdefinedas100%power,100%coreflow,andallcontrolrodsfullywithdrawn.

EOR-5491means5491MWD/STbeforeEndofRatedConditions.

COLR-22Revision1 Page14of30

TABLE3(continued)OLMCPR100/105ASAFUNCTIONOFEXPOSUREAND

EXPOSURE CONDITION (MWD/ST) OLMCPR100/105

TurbineBypassValve INOPERABLEBOCto 3133 't =0 1.44 1.47

't =1 1.47 1.50 3133toEOC 't =0 1.38 1.41

't =1 1.50 1.53 BOTHTurbineBypassValve ANDMoistureSeparatorReheater INOPERABLEBOCto 3133 't =0 1.44 1.47

't =1 1.50 1.53 INOPERABLE 3133toEOC 't =0 1.38 1.41

't =1 1.50 1.53

4.3CalculationofMCPR(P)

MCPR(P),thecorepower-dependentMCPRoperatinglimit,shallbecalculatedbythefollowing equation:

MCPR P ()=Kp OLMCPR100 x/10s

KP,thecorepower-dependentMCPROperatingLimitadjustmentfactor,shallbecalculatedby usingSection4.3.1.OLMCPR100/105shallbedeterminedbyinterpolationon't fromTable3,and

't shallbecalculatedbyusingSection4.3.2.

4.3.1CalculationofKP

Thecorepower-dependentMCPRoperatinglimitadjustmentfactor,KP(Reference2,3,10,&

19),shallbecalculatedbyusingoneofthefollowingequations:

Note:P=Corepower(fractionofratedpowertimes100)forallcalculationofKP.

For0<P<25:

Nothermallimitsmonitoringisrequired.

COLR-22Revision1 Page15of30

For25<P<29.5:

WhenAllEquipmentisOPERABLE,

Forcoreflow<50Mlbs/hr,

( KBYP + ( 0 0067 29 5 - P.x(.)) )

= OLMCPR 100

/10 5

where:KBYP=1.95fortwoloopoperation

=1.98forsingleloopoperation

For core flow 2: 50 Mlbs/hr,

( KBYP + ( 0 0156 29 5 - P.x(.)) )

= OLMCPR 100

/10 5

where:KBYP=2.13fortwoloopoperation

=2.16forsingleloopoperation

For25<P<29.5:(continued)

WhenMoistureSeparatorReheaterisINOPERABLE,

Forcoreflow<50Mlbs/hr,

( KBYP + ( 0 0067 29 5 - P.x(.)) )

= OLMCPR 100 10 5

/

where:KBYP=1.95fortwoloopoperation

=1.98forsingleloopoperation

For core flow 2: 50 Mlbs/hr,

( KBYP + ( 0 0156 29 5 - P.x(.)) )

= OLMCPR 100 10 5

/

where:KBYP=2.13fortwoloopoperation

=2.16forsingleloopoperation

WhenTurbineBypassisINOPERABLE,

( KBYP + ( 0 0244 29 5 - P.x(.)) )

= OLMCPR 100 10 5

/

For core flow 2: or< 50 Mlbs/hr, where: K BYP=2.35fortwoloopoperation

=2.38forsingleloopoperation COLR-22Revision1 Page16of30

WhenTurbineBypassandMoistureSeparatorHeaterareINOPERABLE,

Forcoreflow<50Mlbs/hr,

( KBYP + ( 0 0244 29 5 - P.x(.)) )

= OLMCPR 100

/10 5

where:KBYP=2.35fortwoloopoperation

=2.38forsingleloopoperation

For core flow 2: 50 Mlbs/hr, (KBYP + (o 0178 29 5 -P.x(.)))

= OLMCPR 100 10 5

/

where:KBYP=2.42fortwoloopoperation

=2.45forsingleloopoperation

For29.5<P<45:

=1.150+ ( 45-P) 0.0021x()

For45<P<60:

=1.150

For60<P<85:

=1.056+ ( 85-P) 0.0038x()

For85<P<100:

=1.000+ ( 100 -P) 0.0037x()

KPforPressureRegulatorOutofServiceLimits WithoneTurbinePressureRegulatorOutofService,ReactorPowergreaterthan29.5%,and bothTurbineBypassandMoistureSeparatorReheaterOperable:

For29.5<P<45:

=1.303+ ( 45-P) 0.0081x()

For45<P<60:

=1.241+ ( 60-P) 0.0041x()

For60<P<85:

=1.159+ ( 85-P) 0.0033x()

ForReactorPower<29.5%andReactorPower>85%,thePressureRegulatorOutofService conditionisnotlimiting(Reference2and19).

COLR-22Revision1 Page17of30

4.3.2Calculationof 't

Thevalueof 't,whichisameasureoftheconformanceoftheactualcontrolrodscramtimestothe assumedaveragecontrolrodscramtimeinthereloadlicensinganalysis(References4&16),shall becalculatedbyusingthefollowingequation:

T -r Bave)(=

't T -T AB

where: A=1.096seconds

B=0.830+0.019x1.65 N 1seconds n

Jf Ni i1

n N ii ave= i1 n

Ni i1

n=numberofsurveillancetestsperformedtodateincycle,

Ni=numberofactivecontrolrodsmeasuredintheithsurveillancetest,

i=averagescramtimetonotch36ofallrodsmeasuredinthe ithsurveillancetest,and

N1=totalnumberofactiverodsmeasuredintheinitialcontrolrodscramtime testforthecycle(TechnicalSpecificationSurveillanceRequirement 3.1.4.4).

Thevalueof shallbecalculatedandusedtodeterminetheapplicableOLMCPR100/105valuefrom Table3within72hoursoftheconclusionofeachcontrolrodscramtimesurveillancetestrequired byTechnicalSpecificationSurveillanceRequirements3.1.4.1,3.1.4.2,and3.1.4.4.

COLR-22Revision1 Page18of30

4.4CalculationofMCPR(F)

MCPR(F),thecoreflow-dependentMCPRoperatinglimit(Reference2&3),shallbecalculated byusingthefollowingequation:

ForTwoLoopOperation 211MAXx--WTA(,.(=MCPR(F)FF))B+100

ForSingleLoopOperation 241MAXx--WTA(,.(=MCPR(F)FF))B+100

where:

WT=Coreflow(Mlbs/hr).

AF=GiveninTable4.

BF=GiveninTable4.

TABLE4FLOW-DEPENDENTMCPRLIMITCOEFFICIENTS

MaximumCoreFlow*

(Mlbs/hr)AFBF

TwoLoopOperation110-0.5961.739

SingleLoopOperation110-0.5961.769

  • AslimitedbytheRecirculationSystemMGSetmechanicalscooptubestopsetting.

COLR-22Revision1 Page19of30

5.0LINEARHEATGENERATIONRATE

TECHSPECIDENTOPERATINGLIMIT

3.2.3LHGR

5.1Definition

TheLINEARHEATGENERATIONRATE(LHGR)shallbetheheatgenerationrateperunit lengthoffuelrod.Itistheintegraloftheheatfluxovertheheattransferareaassociatedwiththe unitlength.BymaintainingtheoperatingLHGRbelowtheapplicableLHGRlimit,itisassured thatallthermal-mechanicaldesignbasesandlicensinglimitsforthefuelwillbesatisfied.

5.2DeterminationofLHGRLimit

ThemaximumLHGRlimitisafunctionofreactorpower,coreflow,fuelandrodtype,andfuel rodnodalexposure.Thelimitisdeveloped,usingNRCapprovedmethodologydescribedin Reference7,toensurethecladdingwillnotexceeditsyieldstressandthatfuelthermal-mechanical designcriteriawillnotbeviolatedduringanypostulatedtransientevents.TheLHGRlimitensures thefuelmechanicaldesignrequirementsasdefinedinReferences1,15,&17willbemet.

TheLHGRlimitduringdualloopoperationiscalculatedbythefollowingequation:

LHGRLIMIT=MIN(LHGR(P),LHGR(F))

where:

LHGR(P)=LHGRFAC(P)xLHGRSTD

LHGR(F)=LHGRFAC(F)xLHGRSTD

Withinfourhoursafterenteringsingleloopoperation,theLHGRlimitiscalculatedbythe followingequation:

LHGRLIMIT=MIN(LHGR(P),LHGR(F))

where:

LHGR(P)=LHGRFAC(P)xLHGRSTD

LHGR(F)=LHGRFAC(F)xLHGRSTD

LHGRFAC(P)andLHGRFAC(F)arelimitedto0.90

TheSingleLoopOperationmultiplieronLHGRis0.90.(Reference2)

COLR-22Revision1 Page20of30

LHGRSTD,thestandardLHGRlimit,isdefinedatapowerof3486MWthandflowof105Mlbs/hr foreachfuelandrodtypeasafunctionoffuelrodnodalexposure.LHGRSTDisfoundinthe referencecitedinTable5.Whenhandcalculationsarerequired,LHGRSTDshallbedetermined byinterpolationofthelimitsprovidedintheTable5reference.LHGRFAC(P),thecorepower-dependentLHGRlimitadjustmentfactor,shallbecalculatedbyusingSection5.2.1.

LHGRFAC(F),thecoreflow-dependentLHGRlimitadjustmentfactor,shallbecalculatedby usingSection5.2.2.

TABLE5 STANDARDLHGRLIMITSFORVARIOUSFUEL TYPES

ForGE14fuellistedbelow,themostlimitingLHGRfor UraniumOnlyfuelrodisfoundinNEDC-32868PRevision6 TableD-2(References1&15).

ForGE14fuellistedbelow,themostlimitingLHGRfor GadoliniaBearingfuelrodsisfoundinNEDC-32868P Revision6TableD-4(References1&15).Utilizetherowfor 6%Rod/Sectionwt-%Gd2O3.

FuelTypes GE14-P10CNAB385-13G=-100T-150-T6-4571 GE14-P10CNAB384-15G=-100T-150-T6-4572 GE14-P10CNAB383-13G=-100T-150-T6-4573 GE14-P10CNAB377-15G=-100T-150-T6-4574 GE14-P10CNAB383-8G6.0/5G5.0-100T-150-T6-4478 GE14-P10CNAB383-8G6.0/7G5.0-100T-150-T6-4479 GE14-P10CNAB383-2G6.0/11G5.0-100T-150-T6-4480 GE14-P10CNAB383-10G6.0/5G5.0-100T-150-T6-4481 COLR-22Revision1 Page21of30

TABLE5(CONT.)

STANDARDLHGRLIMITSFORVARIOUSFUEL TYPES

ForGNF3fuellistedbelow,themostlimitingLHGRfor UraniumOnlyfuelrodisfoundinNEDC-33879PRevision2 TableA-1(References1&17).

ForGNF3fuellistedbelow,themostlimitingLHGRfor GadoliniaBearingfuelrodsisfoundinNEDC-33879P Revision2TableA-2(References1&17).Utilizetherowfor 6%Rod/Sectionwt-%Gd2O3.

FuelTypes GNF3-P10CG3B388-14G=-83AV-150-T6-4661 GNF3-P10CG3B399-14G=-83AV-150-T6-4662 GNF3-P10CG3B402-16G=-83AV-150-T6-4663 GNF3-P10CG3B419-16G=-83AV-150-T6-4664 GNF3-P10CG3B403-16G=-83AV-150-T6-4888 GNF3-P10CG3B403-15G=-83AV-150-T6-4889 GNF3-P10CG3B421-13G=-83AV-150-T6-4890 GNF3-P10CG3B420-13G=-83AV-150-T6-4891 GNF3-P10CG3B404-16G=-83AV-150-T6-4892 GNF3-P10CG3B404-14G=-83AV-150-T6-4893 COLR-22Revision1 Page22of30

5.2.1CalculationofLHGRFAC(P)

Thecorepower-dependentLHGRlimitadjustmentfactor,LHGRFAC(P)(Reference2,3,&10),

shallbecalculatedbyoneofthefollowingequations:

For 0 ::: P < 25 :

Nothermallimitsmonitoringisrequired.

For 25 ::: P ::: 29.5 :

WithAllEquipmentOPERABLE,orMSRINOPERABLE

Forcoreflow<50Mlbs/hr, LHGRFAC(P)=0.568+0.00156(P-29.5)

For core flow ~ 50 Mlbs/hr,

LHGRFAC(P)=0.568+0.00156(P-29.5)

WithTurbineBypassINOPERABLE,orTurbineBypassandMSRINOPERABLE

Forcoreflow<50Mlbs/hr, LHGRFAC(P)=0.488+0.01067(P-29.5)

For core flow ~ 50 Mlbs/hr,

LHGRFAC(P)=0.436+0.00511(P-29.5)

For 29.5 < P ::: 45 :

LHGRFAC(P)=0.713+0.00529(P-45)

For 45 < P ::: 60 :

LHGRFAC(P)=0.791+0.00520(P-60)

For 60 < P ::: 85 :

LHGRFAC(P)=0.922+0.00524(P-85)

For 85 < P ::: 100 :

LHGRFAC(P)=1.000+0.00520(P-100)

where:P=Corepower(fractionofratedpowertimes100).

COLR-22Revision1 Page23of30

LHGRFAC(P)forPressureRegulatorOutofServiceLimits WithoneTurbinePressureRegulatorOutofServiceandReactorPowerGreaterThanorEqual to25%andbothTurbineBypassandMoistureSeparatorReheaterOperable:

For 25 ::; P ::; 29.5 :

Forcoreflow<50Mlbs/hr, LHGRFAC(P)=0.568+0.00156(P-29.5)

For core flow ~ 50 Mlbs/hr,

LHGRFAC(P)=0.568+0.00156(P-29.5)

For 29.5 < P ::; 45 :

LHGRFAC(P)=0.680+0.00626(P-45)

For 45 < P ::; 60 :

LHGRFAC(P)=0.758+0.00520(P-60)

For 60 < P ::; 85 :

LHGRFAC(P)=0.831+0.00292(P-85)

For 85 < P ::; 100 :

LHGRFAC(P)=1.000+0.00520(P-100)

where:P=Corepower(fractionofratedpowertimes100).

COLR-22Revision1 Page24of30

5.2.2CalculationofLHGRFAC(F)

Thecoreflow-dependentLHGRlimitadjustmentfactor,LHGRFAC(F)(Reference2,3,&10),

shallbecalculatedbythefollowingequation:

MIN x--WTA(C,=LHGRFAC(F)FF)B+100

where:

WT=Coreflow(Mlbs/hr).

AF=GiveninTable6.

BF=GiveninTable6.

C=1.0inDualLoopand0.90inSingleLoop.

TABLE6FLOW-DEPENDENTLHGRLIMITCOEFFICIENTS

MaximumCoreFlow*

(Mlbs/hr)AFBF

1100.88890.2613

  • AslimitedbytheRecirculationSystemMGSetmechanicalscooptubestopsetting.

COLR-22Revision1 Page25of30

6.0CONTROLRODBLOCKINSTRUMENTATION

TECHSPECIDENTSETPOINT

3.3.2.1RBM

6.1Definition

Thenominaltripsetpointsandallowablevaluesofthecontrolrodwithdrawalblock instrumentationareshowninTable7.ThesevaluesareconsistentwiththebasesoftheAPRM RodBlockTechnicalSpecificationImprovementProgram(ARTS)andtheMCPRoperating limits.(References2,5,&9)

TABLE7CONTROLRODBLOCKINSTRUMENTATIONSETPOINTSWITH FILTER

Setpoint TripSetpoint AllowableValue

Lowpowersetpoint 27.028.4 Intermediatepowersetpoint 62.063.4 Highpowersetpoint 82.083.4

Lowtripsetpoint 117.0118.9 Intermediatetripsetpoint 112.2114.1 Hightripsetpoint 107.2109.1

Downscaletripsetpoint 94.092.3

Forthiscycle,theanalyzedhightripsetpointof111%boundsthesetpointsinTable7.The OLMCPRassociatedwiththeRBMsetpointof111%is1.44fordualloopoperationfrom beginningofcycleto3133MWd/stand1.29from3133MWd/sttotheendofcycle.(Reference 2)

COLR-22Revision1 Page26of30

7.0BACKUPSTABILITYPROTECTIONREGIONS

TECHSPECREFERENCEOPERATINGLIMIT 3.3.1.1ActionConditionJAlternatemethodtodetect andsuppressthermalhydraulic instabilityoscillations

TRMREFERENCEOPERATINGLIMIT 3.4.1.1Scram,Exit,andStability AwarenessRegions

7.1Definition

TheBackupStabilityProtection(BSP)RegionsareanintegralpartoftheTechSpecrequired alternativemethodtodetectandsuppressthermalhydraulicinstabilityoscillationsinthatthey identifyareasofthepower/flowmapwherethereisanincreasedprobabilitythatthereactorcore couldexperienceathermalhydraulicinstability.TheBSPRegionsarerequirediftheOscillation PowerRangeMonitorsareinoperable.Regionsareidentifiedthatareeitherexcludedfrom plannedentry(ScramRegion),orwherespecificactionsarerequiredtobetakentoimmediately leavetheregion(ExitRegion).Aregionisalsoidentifiedwhereoperationisallowedprovidedthat additionalmonitoringisperformedtoverifythatthereactorcoreisnotexhibitingsignsofcore thermalhydraulicinstability(StabilityAwarenessRegion).(Reference2)

TheboundariesoftheScramandExitregionsareestablishedonacyclespecificbasisbasedupon coredecayratiocalculationsperformedusingNRCapprovedmethodology.

BSPboundariesforthiscycledefinedinFigure1areapplicablewhenfinalfeedwatertemperature isneartheoptimumrangeasillustratedin20.107.02,LossofFeedwaterHeatingAbnormal OperatingInstructionEnclosureA.Figure2isapplicabletooperationwithFeedwaterHeaters Out-Of-Service(FWHOOS)orwithFinalFeedwaterTemperatureReduction(FFWTR)orwhen finalfeedwatertemperatureis15ºFto55ºFbelowtheoptimumrange.

80 COLR -22 Revision 1 Page 27 of 30 FIGURE 1: BSP REGIONS (NOMINAL FEEDWATER TEMPERATURE)

Cycle 22. 'BSP Regions (Nominal FeedwaterTemperature) 100% CLTP = 3486 MWt Rated Core Flow= 100.0Mlb/hr M LLlA Rod Une OPRM Enabled Region 30 +----+----'- -___.;...---:::ill',-r-- +----- ----:----- +--'------- ----:----+-:F:-o-ru-,-*s-ed'u--:ri-ng--=o=-p-er---:at*io-n*in-:-:th;--1e Nominal FW Temperature Region of 20.107.02 Enclosure 20 ------------------------------------------

30 40 50 60 70 Percent{3/4) of Rated Core Flow Nominal feedwater heating exists with all feedwater heaters in service, the moisture separator reheaters in service, and reactor water cleanup in or out of service. Nominal feedwater temperature is determined with the Loss ofFeedwater Heating Abnormal Operating Procedure, 20.107.02. Iffeedwater temperature is less than 15 degrees Fahrenheit below the Optimum Line of the Feedwater Inlet Temperature vs. Reactor Power graph provided in Enclosure A of 20.107.02, then Figure 1 can be used.

COLR -22 Revision 1 Page 28 of 30 FIGURE 2: BSP REGIONS (FEEDWATER TEMPERATURE REDUCTION)

Cycle 22 BSP Regions (SSF Temperature Reduc tion),

100% CL TP = 3486 MWt Rated Core Flow= 100.0 Mlb/hr 70,..__N -at-Lira_l _____________ _______ _ __ __ 1--- -------+---- -<

3 0 a.

_! 60 4-- -f. --.,,,,.,-:_ __ 4-___,; _ ____,,__ ___ _:.,. -.-- -.JE. :._ __..JL- ____ _______ ___ -I

'tl

'o g: so..i.-- - -- ---- - "'1"-- -----..-::-- ---+--- - ---- --- ----------- --1

... C GI GI Cl.

Region For use during Operation om 15F 30 +----f--_;_ __ --::io.-::;...-+--..;-----.;..--1--- --- ----1-----=to_S_S_Fb_e_lo_w--::th,_e_O-':::-pt-:""'.im,,_.u,...,,-1::-F

-=-W::-*----1 Temperature line of 20.10.02 Enclosure A 20 --+----<---+ - - - ---+- - -+-----f - -- - --- - ---11---+- - -+--- - -- - +---- - --i--- - -+----+ --'

30 40 50 60 70 Percent (%} of Rated Core Flow Reduced feedwater temperature is analyzed for a 55 degree Fahrenheit reduction in feedwater temperature. If feedwater temperature is between 15 degrees Fahrenheit to 55 degrees Fahrenheit below the Optimum Line of the Feedwater Inlet Temperature vs. Reactor Power graph provided in Enclosure A of 20.107.02, then Figure 2 should be used.

COLR-22Revision1 Page29of30

8.0REFERENCES

CoreOperatingLimitsReportreferencesarecitedfortwopurposes.Manyreferencesareused asthebasisforinformation,numbers,andequationsfoundinCOLR.Thesereferencestendto befueltypeorcyclespecific.Otherreferencesarelistedasbasisinformationforthecontentand structureofCOLRbutarenotCyclespecific.

1.FuelBundleInformationReportforFermi2Reload21Cycle22,GlobalNuclearFuel, DRF006N0352,Revision0,July2021(LHGRLimits),DTC:TRVEND,DSN:Cycle22 FBIR

2.SupplementalReloadLicensingReportforFermi2Reload21Cycle22,GlobalNuclear Fuel,DRF:006N0351,Revision1,August2023(MAPLHGRLimits,SLOMultiplier, MCPRLimits,SLMCPR,Off-RatedLimits,BackupStabilityRegions,OPRMsetpoints, RBMsetpoint,PROOS),DTC:TRVEND,DSN:Cycle22SRLR

3.GNF3FuelDesignCycle-IndependentAnalysesforFermi2PowerPlant,GE-Hitachi, 004N7423,Revision0,November2019.(GNF3andGE14ARTSLimits,RRPumpSeizure, PROOS),EdisonFileNumber:T19-158

4.LetterfromGregPortertoB.L.Myers,ScramTimesforImprovedTechSpecs.GP-99014,October22,1999,containingDRFA12-00038-3,Vol.4informationfromG.A.

Watford,GE,toDistribution,

Subject:

ScramTimesversusNotchPosition(TAU Calculation),EdisonFileNumber:R1-7242

5.NUMACPowerRangeNeutronMonitoringSystem(PRNM)SurveillanceValidation, DesignCalculationDC-4608Volume1,RevisionG(RBMAandBSetpoints),DTC:

TDPINC,DSN:DC-4608VOLI

6.DetroitEdisonFermi-2ThermalPowerOptimizationTaskT0201:OperatingPower/Flow Map,EdisonFileNumber:T13-050(P-FMapforBSPfigures)

7.GeneralElectricStandardApplicationforReactorFuel(GESTARII),NEDE-24011-P-A, Revision31withamendments,EdisonFileNumber:R1-8103

8.TRACGApplicationforEmergencyCoreCoolingSystems/Loss-of-Coolant-Accident AnalysesforBWR/2-6,GE-Hitachi,NEDE-33005P-A,Revision2,May2018,DTC:

TRVEND,DSN:NEDE33005PA,EdisonFileNumber:R1-8509

9.MaximumExtendedOperatingDomainAnalysisforDetroitEdisonCompanyEnrico FermiEnergyCenterUnit2,GENuclearEnergy,NEDC-31843P,July1990(RBM Setpoints),EdisonFileNumber:R1-7177 COLR-22Revision1 Page30of30

10.Fermi2TRACGImplementationforReloadLicensingTransientAnalysis,Revision1, 0000-0128-8831-R1,June2014,(GE14ARTSLimits),EdisonFileNumber:R1-8124

11.MethodologyandUncertaintiesforSafetyLimitMCPREvaluations,NEDC-32601P-A, August1999,EdisonFileNumber:R1-7239

12.PowerDistributionUncertaintiesforSafetyLimitMCPREvaluations,NEDC-32694P-A, August1999,EdisonFileNumber:R1-7240

13.R-FactorCalculationMethodforGE11,GE12,andGE13Fuel,NEDC-32505P-A, Revision1,July1999,EdisonFileNumber:R1-7238

14.Fermi2-IssuanceofAmendmentNo.214Re:TechnicalSpecificationsTaskForce (TSTF)TSTF-564,"SafetyLimitMinimumCriticalPowerRatio"(EPIDL-2019-LLA-0028)LetterfromSujataGoetz,NRC,toPeterDietrich,DTEElectricdatedNovember5, 2019(SLMCPR) 15.GE14CompliancewithAmendment22ofNEDE-24011-P-A(GESTARII),NEDC-32868P,Revision6,March2016(LHGRLimits),EdisonFileNumber:R1-7307 16.LetterfromG.G.JonestoA.D.Smart,Fermi2TechnicalSpecificationChanges, February17,1989(Tau) 17.GNF3GenericCompliancewithNEDE-24011-P-A(GESTARII),NEDC-33879P, Revision2,March2018(LHGRLimits),EdisonFileNumber:R1-8483 18.DTEEnergyEnricoFermiUnit2TRACGECCSLoss-of-CoolantAccident(LOCA)

Analysis,GE-Hitachi,005N1475,Revision1,November2019,EdisonFileNumber:T19-137 19.008N0291Revision0,FermiCycle22MSRSteamFlowThermalLimitsValidation,August 18,2023(MSRISLimits)EdisonFileNumber:R1-8664