NLS2008038, Core Operating Limits Report, Cycle 25, Revision 0

From kanterella
Jump to navigation Jump to search
Core Operating Limits Report, Cycle 25, Revision 0
ML081300743
Person / Time
Site: Cooper Entergy icon.png
Issue date: 05/06/2008
From: Vanderkamp D
Nebraska Public Power District (NPPD)
To:
Document Control Desk, Office of Nuclear Reactor Regulation
References
NLS2008038
Download: ML081300743 (33)


Text

N Nebraska Public Power District Always there when you need us NLS2008038 May 6, 2008 U.S. Nuclear Regulatory Commission Attention: Document Control Desk Washington, D.C. 20555-0001

Subject:

Core Operating Limits Report, Cycle 25, Revision 0 Cooper Nuclear Station, Docket No. 50-298, DPR-46

Dear Sir or Madam:

The purpose of this letter is to provide to the Nuclear Regulatory Commission (NRC) the Core Operating Limits Report (COLR) for Cooper Nuclear Station (CNS) for Cycle 25. CNS Technical Specification 5.6.5.d requires that the COLR, including any midcycle revisions or supplements, be provided to the NRC upon issuance for each reload cycle. The COLR for CNS Cycle 25 contains no proprietary information.

Should you have any questions regarding this matter, please contact me at (402) 825-2904.

Sincerely, David W. Van Der Kamp Licensing Manager

/lb Enclosure cc: Regional Administrator w/enclosure USNRC - Region IV Cooper Project Manager w/enclosure USNRC - NRR Project Directorate IV-1 Senior Resident Inspector w/enclosure USNRC - CNS NPG Distribution w/o enclosure CNS Records w/enclosure COOPER NUCLEAR STATION P.O. Box 98 / Brownville, NE 68321-0098 Telephone: (402) 825-3811 / Fax: (402) 825-5211 www.nppd.com

NLS2008038 Enclosure ENCLOSURE CORE OPERATING LIMITS REPORT CYCLE 25, REVISION 0 COOPER NUCLEAR STATION DOCKET NO. 50-298, DPR-46

CNS Cycle 25 COLR Revision .0 COOPER NUCLEAR STATION CORE OPERATING LIMITS REPORT Cycle 25 Revision 0 print. Sign Date Preparer Iorn- ' Ca~IJL4e#'1 1* I- 1 Reviewer I~

Fuels and Reactor Engineering Manager

-Z-ýY"ds .

-J (J

1 of 30

CNS Cycle 25 COLR Revision 0 REVISION HISTORY Revision Date Description 0 Feb 28, 2008 Original issue, Based on rated core power of 2381 2 of 30'

CNS Cycle 25 COLR Revision 0 TABLE OF CONTENTS Section Page 1.0 INTR O D UCT IO N ......................................................... 5 2.0 AVERAGE PLANAR LINEAR HEAT GENERATION RATE .......... 6 2.1 Technical Specification Reference .......... .......................... 6 2.2 Two Recirculation Loop Operation ....................... 6 2.3 Single Recirculation Loop Operation .......................................... 7 3.0 MINIMUM CRITICAL POWER RATIO ........................................ 11 3.1 Technical Specification Reference ........................................... 11 3.2 Two Recirculation Loop Operation ........................................... 11 3.3 Application of Scram Time Surveillance Data to OLMCPR(100) .... 12 3.4 Single Recirculation Loop Operation ........................................... 13 3.5 Use of Full Arc Turbine Control Valve ....................................... 14 4.0 TURBINE BYPASS SYSTEM RESPONSE TIME ...................... 18 4.1 Technical Specification Reference .... ................................ 18 4.2 System Response Time .......................................... 18 5.0 ROD BLOCK MONITOR TRIP SETPOINTS ............................... 18 5.1 Technical Specification Reference ........................................... 18 5.2 Trip Setpoints ........................ 18 6.0 MAXIMUM LINEAR HEAT GENERATION RATE ...................... 19 6.1 Technical Requirements Manual Reference ........ .. ............. 19 6.2 Two Recirculation Loop Operation ....................... 20 6.3 Single Recirculation Loop Operation ......................................... 21 7.0 STABILITY POWER/FLOW MAP ......................................... 27 7.1 Technical Specification Reference ......................................... 27 7.2 Stability Exclusion Region Map .......................... 27

8.0 REFERENCES

..................................... 30 3:of 30

CNS Cycle 25 COLR Revision 0 LIST OFTABLES Table Page 2-1 MAPLHGRSTD Values ......................................... 8 3-1 OLMCPR Values for OLMCPR(100) Calculation .. ....... 15 5-1 Rod Block Monitor Channel Settings ......................................... 19 6-1 Bounding LHGRSTD Values By Fuel Bundle Type ...................... 22 LIST OFFIGURES Figure Page 2-1 Power Dependent MAPFAC(P) and LHGRFAC(P) Multiplier ..... 9 2-2 Flow Dependent MAPFAC(F) and LHGRFAC(F) Multiplier ......... 10 3-1 Power Dependent K(P) and MCPR(P) for GE14 Fuel with Safety Lim it=1 . .10 . . ......................................... 16 3-2 Flow Dependent MCPR(F) for GE14 Fuel with Safety Limit = 1.10 ................................. 17 7-1 Stability Exclusion Region Map . ............ ................ 29 4 of 30

CNS Cycle 25 COLR Revision 0

1. INTRODUCTION The Core Operating Limits Report (COLR) provides the limits for operation of the Cooper Nuclear Station for Cycle 25 at a rated power of 2381 MwTH. Cooper Nuclear Station Technical Specification 5.6.5(a) requires the COLR to contain the following limits:
  • The Average Planar Linear Heat Generation Rate for Specification 3.2.1,
  • The Minimum Critical Power Ratio for Specifications 3.2.2 and 3.7.7,
  • The three Rod Block Monitor Upscale Allowable Values for Specification 3.3.2.1,
  • The power/flow map defining the Stability Exclusion Region for Specification 3.4.1.

In addition, the following information is required to be in the COLR:

" Turbine Bypass System response time for Surveillance Requirement 3.7.7.3,

  • Maximum allowable Linear Heat Generation Rate (LHGR) for Technical Requirements Manual Specification T3.2.1.

The analytical methods used to determine the core operating limits are those previously reviewed and approved: by the NRC as. required by Technical Specification 5.6.5(b). These methods are:

  • NEDE-24011-P-A-15, "General. Electric Standard Application for Reactor Fuel", September 2005 (Reference 1),
  • NEDE-23785-1-P-A, "The GESTR-LOCA and SAFER Models for the Evaluation of the Loss-of-Coolant Accident", Volume Ill, Revision 1, October 1984 (Reference 2),
  • NEDO-31960-A and NEDO-31960-A Supplement 1, "BWR Owner's Group Long-Term Stability Solutions Licensing Methodology", November 1995 (Reference 3).

5 of.30

CNS Cycle 25 COLR Revision 0

2. AVERAGE PLANAR LINEAR HEAT GENERATION RATE 2.1 Technical Specification Reference Technical Specification 3.2.1.

2.2 Two Recirculation Loop Operation During steady-state power operation, the maximum Average Planar Linear Heat Generation Rate (MAPLHGR), as a function of fuel bundle type, axial location, and average planar exposure, shall not exceed the applicable limiting value.

The maximum allowable Average planar Linear Heat Generation Rate with two recirculation loops in operation is defined as follows:

MAPLHGR Limit = minimum [MAPLHGR(P), MAPLHGR(F)]

where, MAPLHGR(P) = MAPLHGRSTD *.MAPFAC(P),

MAPLHGR(F) = MAPLHGRSTD *,MAPFAC(F),

MAPLHGRSTD = Fuel bundle type and exposure dependent MAPLHGR values for rated core power and flow conditions represented by the values shown in Table 2-1, MAPFAC(P) = Core power dependent multiplier shown in Figure 2-1, MAPFAC(F) = Core flow rate dependent multiplier shown in Figure 2-2.

The MAPLHG.RSTD values presented in Table 2-1 are the most limiting values for each fuel bundle type from the exposure dependent values defined in Section 16 of Reference 6. The core monitoring computer will be used to verify the MAPLHGR limits for each fuel bunhdletype are not violated.

The MAPFAC(P) and MAPFAC(F):multipliers presented in Figure 2-1. and Figure 2-2, respectively, are defined in Reference 5.

6 of 30

CNS Cycle 25 COLR Revision 0 No thermal limits monitoring is. required below 25% of rated power. Therefore, the MAPLHGR limit defined iabove is only applicable for core conditions at or above 25% of rated power.

2.3 Single Recirculation Loop Operation:

The maximum allowable Average Planar Linear Heat Generation Rate with one recirculation loop in operation (SLO) is defined as follows:

MAPLHGR Limit = minimum (MAPLHGR(P), MAPLHGR(F), MAPLHGR(SLO)]

where, MAPLHGR(SLO) = MAPLHGRSTD

MAPFAC(SLO) = Single loop operation MAPLHGR multiplier, and MAPLHGR(P) and MAPLHGR(F) are as defined in Section 2.2 above.

As shown above, it is not necessary to apply both the off-rated (MAPFAC(P) and MAPFAC(F)) and SLO multiplier corrections at the same time.

The single loop operation MAPLHGR multiplier for each fuel bundle type are defined in Section 16 of Reference 6 as shown in the table below.

SLO MAPLHGR Fuel Bundle Type . Multiplier All GE14B bundles 0.87 All GE14C bundles 0.87 7 of 30

CNS Cycle 25 COLR Revision 0 Table 2.1 MAPLHGRsTD Values Average MAPLHGRSTD Values for all bundles Planar (kW/ft)

Exposure (GWd/MT) 0.00 12.82 21.10 12;82 63.50 8.00 70.00 5.00 GNF Bundle # GNF Fuel Bundle Identification EDB-3881 GE14-P10HNAB385-14GZ-10OT-148-T6-3881 (GE14B)

EDB-2476 GE14-P 1OHNAB379-17GZ-100T-150-T6-2476 (GE14C)

EDB-2611 GE14-P 10DNAB393-17GZ-10OT-150-T6-2611 (GE14C)

EDB-2569 GE 14-P10DNAB398-16GZ-100T-150-T6-2569 (GE14C)

EDB-2800 GE 14-PIODNAB395-14GZ-10OT-150-T6-2800 (GE14C)

EDB-2801 GE14-PI ODNAB393-17GZ-10OT-150-T6-2801 (GE14C)

EDB-2901 GE 14-P 1ODNAB385-13GZ-10OT-150-T6-2901 (GE14C)

EDB-2902 G E14-P 1ODNAB386-14GZ-1O0T-150-T6-2902 (GE14C)

EDB-3032 GE 14-P1ODNAB383-2G6.0/10G5.0-10OT-150-T6-3032 (GE14C)

EDB-3033 GE 14-P 1ODNAB383-2G6.0/12G5.0-10OT-150-T6-3033 (GE14C) 8 of 30

CNS Cycle 25 COLR Revision 0 Figure 2-1.

Power Dependent MAPFAC(P) and LHGRFAC(P) Multiplier 1.00 0.90 1I _ _ _ _ _ _ _ _ _

0.80 0.70 MAPLHGR(p) = MAPFAC(p) MAPLHGRstd I MAPLHG.Rstd = Standard MAPLHGR Limits For P'<;25%: No Thermial Limits Monitor Requireld.

LL 0.60 ______ ____ No Limits Specified.

IFor 25% <P <30%

I MAPFAC(p) = 0.53 + 0.005*(P-30%) for flow < 50%

I MAPFAC(p) = 0.49 + 0.005*(P-30%) for flow > 50%

I For P >30%

0.50 MPAC(p) = 1.0 +,0,005224*(P-100%)

Flow<,50%:

0.40 Flow >50%

0.30 0.20 0 10 20 30 40 50 60 70 80 90 100 Power (% Rated) 9 of 30

CNS Cycle 25 COLR Revision 0 Figure 2-2 Flow Dependent MAPFAC(F) and LHGRFAC(F) Multiplier 1.1 1.0 0.9 0.8 LL 0.7 a-0.6 0.5 0.4 0.3 30 40 50 60, 70. 80 90 100 110 Core. Flow (% Rated) 10 of 30

CNS Cycle 25 COLR Revision 0

3. MINIMUM CRITICAL POWER RATIO 3.1 Technical Specification Reference Technical Specifications 3.2.2 and 3.7.7.

3.2 Two Recirculation Loop Operation During steady-state power operation, the minimum Critical Power Ratio (MCPR) shall be greater than or equal to the Operating Limit MCPR (OLMCPR) defined as a function of cycle exposure and plant conditions.

The Operating Limit MCPR with two recirculation loops in operation is defined as follows:

OLMCPR = maximum [MCPR(P), MCPR(F)]

where, MCPR(P) = Core power dependent MCPR shown in Figure 3-1, MCPR(F) = Core flow rate dependent MCPR shown in Figure 3-2.

The MCPR(P) and MCPR(F) graphs'presented in Figure 3-1 and Figure 3-2, respectively, are defined in Appendix D of Reference 6.

As shown in Figure 3-1, the MCPR(P) value is calculated as follows:

For P > P(Bypass), MCPR(P) = OLMCPR(100)

  • Kp For P < P(Bypass), MCPR(P) -MCPR(P) as a function of core flow where, P(Bypass) = P(Bypass) is the core power level below which the Turbine Stop Valve closure and Turbine Control Valve fast closure scrams are assumed to be bypassed.

P(Bypass) is currently set at 30% of rated power.

OLMCPR(100) = OLMCPR for rated core power and flow conditions.

OLMCPR(100) is defined as a function of scram time surveillance data as defined in Section 3.3.

Kp = Core power dependent OLMCPR multiplier.

No thermal limits monitoring-is;required below 25% of rated power. Therefore, the OLMCPR limit defined above is only applicable for core conditions at or above 25% of rated power.

11 of30

CNS Cycle 25 COLR Revision 0 3.3 Application. of Scram Time Surveillance Data to OLMCPR(100)

The OLMCPR(100) value applicable to the MCPR(P) calculation presented in Section 3.2 is determined based on scram time Surveillance data recorded for the current operating cycle and the following methodology defined in Reference 7, Reference 11, and Reference 12.

3.3.1 Mean Scram Time (tave)

The mean scram time for control rod insertion to notch 36 is calculated as follows:

n ZN, N=i where,

= Scram time test sequential identification number, n= Number of scram timetests performed to date in the cycle (including beginning of cycle),

Ni= Number of control rods'measured in test i, i= Average insertion time to notch 36 measured in test i.

3.3.2 20% Insertion Conformance Limit Scram Time (Ta)

The 20% insertion conformance limit scram time is calculated as follows:

165,'N SZN, where, i= Mean of the distribution for average scram time insertion to position 36used in the ODYN Option B analysis, G= Standard deviation of the distribution for average scram time insertion to position 36 used in the ODYN Option B analysis,'

N1 Total number of control rods measured during the first surveillance test performed at beginning of cycle.

12 of 30

CNS Cycle 25 COLR Revision 0 The values for gt, a and N1 are given below.

= 0.830 C = 0.019 N1 , = 137 Using the values given above, Reference 7 defines the 20% insertion conformance limit scram time as,*

TB=0.830 + 0.367 1 ZN1 3.3.3 Scram Time Quality Factor (0)

The scram time quality factor is calculated as follows:

If Tave !5TB, T 0.,

If Tave > TB, Cave TA - TB where, TA = Technical Specification limit for 20% insertion (notch 36) 1.08 seconds (Technical Specification Table 3.1.4-1).

3.3.4 Calculation of OLMCPR(100)

The OLMCPR for rated power and core flow conditions is calculated as follows based on the calculated values for Tave, TB, and c:

OLMCPR(100) = OLMCPRB + t * (OLMCPRA - OLMCPRB)

Using the following values obtained from Section 11 of Reference 6, OLMCPRA = Option A OLMCPR value given in Table 3-1, OLMCPRB = Option B OLMCPR value given in Table 3-1.

3.4 Single Recirculation Loop Operation The Operating Limit MCPR with a single recirculation loop in operation is defined as follows:

OLMCPR = maximum [MCPR(SL-P), MCPR(SL-F)]

13 of 30

CNS Cycle 25 COLR Revision 0 where, For P > P(Bypass), MCPR(SL-P) = [OLMCPR(100)+AOLMCPR(SLO)]* Kp For P < P(Bypass), MCPR(SL-P): = MCPR(P) + AOLMCPR(SLO),

For all core flows, MCPR(SL-F) = MCPR(F) + AOLMCPR(SLO),

AOLMCPR(SLO) = 0.02 from Section 11 of Reference 6, and OLMCPR(100),

MCPR(P), and MCPR(F) are as defined in Section 3.2.

The increase in the OLMCPR for single loop operation corresponds to an increase in the safety limit MCPR; (SLMCPR) for single loop operation as described in Reference 6.

3.5 Use of Full Arc Turbine Control Valve_

The Operating Limit MCPR when using full arc turbine control valve mode (CNS operating procedures refer to this as single valve mode) is defined as follows:

OLMCPR (single valve mode)= OLMCPR + AOLMCPR (single valve mode) where, OLMCPR = OLMCPR as calculated inSection 3.2 for two recirculation loop operation or in Section 3.4 for single loop operation.

AOLMCPR (single valve mode) = 0.01 from Appendix F of Reference 6.

14 of 30

CNS Cycle 25 COLR Revision 0 Table 3-1 OLMCPR Values for OLMCPR(100) Calculation Equipment Status Applicable Cycle OLMCPRA OLMCPRB Exposure Range In-Service BOC to EOR-2.370 GWd/MT 1.47 1.36 EOR-2.370 GWd/MT to EOC 1.60 1.43 Turbine Bypass Valve Out of Service BOO to EOC . 1.61 1.44 (TBVOOS)

NOTES:

1. The range of OLMCPR values are defined as follows:

OLMCPRA = Option A OLMCPR from Reference 6 based on Option A analysis using full core scram times defined in' Technical Specification Table 3.1.4-1.

OLMCPRB Option B OLMCPR from Reference 6 based on Option B analysis described in Reference 1.

2. The OLMCPR values presented: above apply to rated power operation based on a two loop operation Safety Limit MCPR (SLMCPR) of 1.10..
3. The OLMCPR values presented above bound Increased Core Flow (ICF) operation to 105% of rated flow throughout the cycle.
4. Exposure ranges are defined as follows:

BOC = Beginning of cycle,:

EOC = End of cycle, EOR = End of rated power operation at rated core flow and all rods withdrawn.

EOR is projected to be 11.795 GWd/MT in Reference 6 Section 3. The EOR exposure will Vary based on actual cycle operations.

,15 of 30

CNS Cycle 25 COLR Revision 0 Figure 3-1 Power Dependent K(P) and MCPR(P) for GEil4 Fuel with Safety Limit= 1.10 Cycle 25 K(p)/lMCPR(p) vs Power for SLMCPR 1.10 3.5- I- - - - - I - . . -

Operating Limit MCPR(p) =Kp*Operating MCPR(I00)

  • I For P<25%: No Thermal Limits Monitoring Required 3.0- ------------- -.--- No.intssewf*--------------

FFor 1 Flow*> 50% 25% < P <P(Bypass):P(Bypass) 30%

Flow >50%: MCPR(P) 2.69+0.050'(30%WP)

-HowO*_ Me*PR(P 2-2+-e--2--e% )---

2.5 Flow_< 50%

For 30% <P <45%:, K(P) 1,28+0401340*(45%-P) 20-


~

For 60% <P<100%: K(P)= 1,0+0.00375*(100%-P) 1.5- - - -

1.0 2 *0 30 40 50 60 70 80 90 100 Power (%Rated) 16 of 30

CNS Cycle 25 COLR Revision 0 Figure 3-2 Flow Dependent MCPR(F) for GE14 Fuel with Safety Limit 1.10 MCPR(f) vs Core Flow for SLMCPR = 1.10 1.78 For Core Flow > 55%

MCPR(f) =MAX(I.34, A(IYW(c)1100+B(f))

1.7 ------------------------- CA(.56------------------------

MCPR(I) MAX(1.56, A(f)'W(cyI00÷8+(f))

Max Fow = 117.0 A(f = -0.650 B(f) 1.860 Max Flow = 112,0 A(f) -0.619 B() = 1,796 1.6 1------

. . Max

- £ Flow=

q- 107.0b A(f)-i(.Y---0.602 Al Bf)

Sj0q=1.i745 n a*r 'B -7 . ..

0o 2

2-12.0%

MCPR(f) below 55% flow is clipped / 107.0%

based on stability requirements 1.3 20 30 40 50 60 70 80 90 100 110 120 .130 Core Flow (% of Rated) 17 of 30

CNS Cycle 25 COLR Revision 0

4. TURBINE BYPASS SYSTEM RESPONSE TIME 4.1 Technical Specification Reference Technical Specification 3.7.7.3.

4.2 System Response Time The system response time for the Turbine Bypass System to be at 80% of rated bypass flow is 0.3 seconds. This was obtained from Reference 8.

5. ROD BLOCK MONITOR TRIP SETPOINTS 5.1 Technical Specification Reference Technical Specification 3.3.2.1.

5.2 Trip Setpoints The allowable values for the power dependent Rod Block Monitor (RBM) upscale trip setpoints are defined in Table 5-1, along with the applicable reactor power ranges associated with each trip setpoint. The Analytical Limit (AL) and Technical Specification Allowable Value (AV) presented in Table 5-1 were determined in Reference 9 and Reference 4.

18 of 30

CNS Cycle 25 COLR Revision 0 Table 5-1 Rod Block Monitor Channel Settings Trip Function Analytical Allowable TripFunction_ Limit' Value Low Power Setpoint (LPSP) 30.0% 27.5%

Intermediate Power Setpoint (IPSP) 65.0% 62.5%

High Power Setpoint (HPSP) 85.0% 82.5%

Downscale Trip Setpoint (DTSP) 89.0% 92.0%

Trip Function Applicable Core MCPR2 Analytical3 Allowable Power Range Limit Limit Value 3 Low Trip Setpoint LPSP_< P_<IPSP 1.29 *120.0/125 <117.0/125 (LTSP)

Intermediate Trip IPSP < P : HPSP :1.29 ---115.2/125 ý_112.5/125 Setpoint (ITSP)

High Trip Setpoint HPSP < P 1.29 <110.2/125 <5107.5/125 (HTSP)

NOTES:

1. Setpoints are given in units of percent of rated power.
2. The RBM trip level settings associated with the MCPR limit were verified in Appendix D of Reference 6 to bound the: cycle specific Rod Withdrawal Error (RWE) analysis for an RBM setpoint of 1.1.1 % of reference level. The MCPR limit is based on an adjusted MCPR limit from the generic analysis documented in Reference 4 performed for an Analyzed Trip Level Setting (without RBM filter) of 111.0% of the reference level or an Analyzed Trip Level Setting (with RBM filter) of 110.2% of the reference level. The generic MCPR limit of 1.25 was calculated in Reference 4 for an SLMCPR of 1.07., The MCPR limit documented above was calculated by multiplying the generic limit of 1.25 by the ratio of the SLMCPR values (1.10/1.07).
3. RBM trip setpoints are given in units of divisions of full scale.
6. MAXIMUM LINEAR HEAT GENERATION RATE 6.1 Technical Requirements Manual Reference Technical Requirements Manual Specification T3.2.1.

19 of 30

CNS Cycle 25 COLR Revision 0 6.2 Two Recirculation Loop Operation During steady-state power operation, the maximum Linear Heat Generation Rate (LHGR) in any fuel rod in any fuel bundle at any axial location shall not exceed the applicable limiting value.

The maximum allowable Linear Heat Generation -Rate with two recirculation loops in operation is defined as follows:

LHGR Limit = minimum [LHGR(P), LHGR(F)]

where, LHGR(P) = LHGRSTD* LHGRFAC(P),

LHGR(F) = LHGRSTD

  • LHGRFAC(F),,

LHGRSTD = Fuel bundle type, fuel rod type, and peak pellet exposure dependent maximum LHGR values for rated core power and flow conditions represented by the values shown in Table 6-1, LHGRFAC(P) = Core power dependent multiplier shown in Figure 2-1, LHGRFAC(F) = Core flow rate dependent multiplier shown in Figure 2-2.

The LHGRSTD values presented in Table.6-1 represent the maximum allowable peak pellet power (LHGR) as a, function of pellet exposure for each pin type in each fuel bundle design. The maximum allowable LHGR limit values have the following pin type dependencies; U0 2 onlyýpins which can either be full and partial length fuel rods, Gadolinia 'rods based on the local and maximum gadolinia concentration in the rod. Each combination of pin type is determined using the fuel bundle gadolinia distributions from Reference 13. The LHGR limit pellet exposure knee point values were obtained from Reference 14 for GE14B bundles and Reference 15 for GE14C bundles The core monitoring computer will be used to verify the pellet specific LHGR limits for each fuel bundle type are not violated.

Reference 6 Appendix D defines the LHGRFAC(P) and LHGRFAC(F) multipliers to be identical to the MAPFAC(P) and MAPFAC(F) multipliers, presented in Figure 2-1 and Figure 2-2, respectively.

No thermal limits monitoring is required below 25% of rated power. Therefore, the LHGR limit defined above is only applicable for core conditions at or above 25% of rated power.

20 of 30

CNS Cycle 25 COLR Revision 0 6.3 Single Recirculation Loop Operation The maximum allowable Linear Heat Generation Rate with one recirculation loop in operation (SLO) is defined as follows:,: .

LHGR Limit = minimum [LHGR(P), LHGR(F), LHGR(SLO)]

where, LHGR(SLO) = LHGRSTD

LHGRFAC(SLO) = Single loop operation. PLHGR multiplier, and LHGR(P) and LHGR(F) are as defined in Section 6.2 above.

As shown above, it is not necessary to apply both the off-rated (LHGRFAC(P) and LHGRFAC(F)) and SLO multiplier corrections at the same time.

The single loop operation peak LHGR (PLHGR) multipliers for each fuel bundle type are defined in Section 16 of Reference 6 as shown in the table below.

lType SLO PLHGR Fuel Bundle Mulipie

... Multiplier All GE14B bundles 0.87 All GE14C bundles 0.87 21 of 30

CNS Cycle 25 COLR Revision 0 Table 6-1 Bounding LHGRSTD Values By Fuel Bundle Type EDB-3881 Peak LHGRsTD LHGRsTD LHGRSTD LHGRSTD Pellet (kW/ft) (kWft) (kW/ft) (kWft)

Exposure U0 2 Only 6% 3% gad 0% gad (GWd/MT) _ _6% gad 3-6% max 0.0000 13.400 11.346 11.800 13.100 12.888 -- 11.346 --

13.069 ....- 11.800 --

15.642 -- __ --. _ . -- 13.100 16.000 13.400 ....--

68.433 -- -- -- 6.648 70.000 6.800 6.203 6,531 xx EDB-2476 LHGRSTD LHGRSTD LHGRSTD LHGRSTD LHGRSTD LHGRSTD LHGRSTD Peak (kW/ft) .(kWilft) (kWlft) (kW/ft) (kW/ft) (kWlft) (kW/ft) pellet U0 2 Only 5% gad 4% gad 4% gad 3% gad 0% gad 0% gad Exposure 5% max 5% max .4% max. 3% max 4-5% max (GWdIMT) gad Igad gad gad gad 0.0000 131400 12.521 12.700. 12.800 12.945 13.000 13.100 12.888 --... -- -- -- -- --

13.664 ...-- 12.700 ........

13.656 -- 12.521 - -- ......

13.754 .... --- 12.945 ....

13.790 ...... 12.800 .- -- .

15.522 ...... ... 13.000 --

15.642 - ..-- ---- -- 13.100 16.000 13.400 - " --

61.115 -- 7.475 _- _........

61.149 ..-- 7.582. : -:  : - .....

61.505 ..... - -- 7.728 -- --

61.604 - -- -_ " -7.761 61.649 .... . ... 7.642 -- ....

62.078 .... -- .. -- -- 7.821 63.500 8.00 -- -- -- -- --

67.610 -- 4.672 --

67.646 -- xx 4.739ý -.......

67.910 ... XX xx ..... 4.850 --

68.039 -- xXXX -- 4.830 xx --

68.198 -- xx xx 4.776

  • xx xx --

68.433 -- xx xx xx xx xx 4.888 70.000 5.000 xx " xx xx xx1 xx xx

.22 of 30

CNS Cycle 25 COLR Revision 0 1 EDB-2611 LHGRSTD LHGRSTD LHGRSTD LHGRSTD LHGRSTD Peak Pellet (kW/ft) (kW/ft) (kW/ft) (kW/ft) (kW/ft)

Exposure Exposure U0 2 Only 5% gad 3% gad 0% gad 0% gad (GWd/MT) 5% max gad _ 3% max gad 5% max gad 0.000 13.400 12.521 . 12.945,; .13.000 13.100 13.656 -- 12.521 -- . ....

13.754 ...-- 12.945. . . -- --

15.522 - -- 13.000--

15.642 .......-- 13.100 16.000 13.400 -- -- , --

61.115 -- 7.475 ......

61.505 ..-- 7.728 --..

61.604 -- - -- 7.761 --

62.078 -- , .. -- .7.821 63.500 8.000 -- - .....

67.610 -- 4.672 - -- --

67.910 -- xx -- 4.850 --

68.039 -- xx 4.830 XX --

68.433 -- XX XX Xx *4.888 70.000 5.000 XX xx Xx xx EDB-2569 LHGRSTD LHGRSTD LHGRSTD LHGRSTD LHGRSTD Exposure (kW/ft) (kW/ft) (kWIft) (kW/ft) (kW/ft)

Exposure U0 2 Only 4% gad 3% gad. 0% gad 0% gad (GWd/MT) . 4% max gad  : 3% max gad 4% max gad 0.0000 13.400 12.800 12.945 13.000 13.100 13.7540 .... 12.945 -- --

13.7900 -- 12.800 -- -- --

15.5220 -- . -- -- 13.000 --

15.6420 -- . -- -- -- 13.100 16.0000 13.400 -L -- -- --

61.505 -- -- 7.728 --

61.604 -- -- -- 7.761 --

61.649 -- 7.642 -- --

62.078 -- -- " -- 7.821 63.500 8.000 -- --

67.9100 -- -- 4.850 --

68.0390 -- - 4.830 xx --

68.1980 -- 4.776 xx xx --

68.4330 -- xx. xx xx 4.888 70.0000 5.000 xx XX xx xx 23 of 30

CNS Cycle 25 COLR Revision 0

  • ___ _EDB-2800 __ _ _

LHGRSTD LHGRSTD' LHGRSTD LHGRSTD LHGRSTD LHGRSTD Peak Pellet (kW/ft) (kW/ft) (kW/ft) (kW/ft) (kWlft) (kW/ft)

Exposure U0 2 Only 6% gad 5% gad 5% gad 4% gad 0% gad (GWd/MT) 6% max ..6% max :5%max 4% max 4-6% max gad gad gad gad gad 0.0000 13.400 12.255 12.400 12.521 12.800 13.100 13.500 -- -- 12.400 .....

13.532 .-- 12.255 -.....

13.656 .... . - 12.521 --..

13.790 ..... - -- 12.800 --

15.642 .... -- 13.100 16.000 13.400 . ....--..

60.499 -- -- 7.403 - .....

60.625 -- 7.316 : -_- .....

61,115 .. .. 7.475 --..

61.649 ...... -- 7.642 --

62.078 .... ...-- 7.821 63.500 8.000 -- - ........

66.930 -- -- 4.627 -- ....

67.069 -- 4 .572 xx --....

67.610 -- xx xx 4.672 ....

68.198 -- xx xx xx 4.776 --

68.433 -- xx xx xx xx 4.888 70.000 5.000 xx xx xx xx xx

  • ___EDB-2801 LHGRSTD: LHGRSTD LHGRsTD LHGRSTD LHGRSTD Peak Pellet (kW/ft) (kW/ft) (kW/ft) (kW/ft) (kWlft)

Exposure U0 2 Only 6% gad 5% gad 4% gad 0% gad (GWdIMT) 6% max 6% max .4% max 4-6% max gad gad gad gad 0.0000 13.400 12.255 12.400 12.800 13.100 13.500 -- -- 12.400 -- --

13.532 -- 12.255 --..

13.656 .....--.

13.790 .... 12.800 --

15.642 -- -- -- 13.100 16.000 13.400 -- r -- --

60.499 -- - 7.403 . ....

60.625 -- 7.316 -- --...

61.649 .... -- 7.642 --

62.078 .. .. -- -- 7.821 63.500 8.000 -- -- ' ..

66.930 -- -- 4.627 ....

67.069 -- 4.572 XX ....

68.198 -- XX XX 4.776 --

68.433 -- XX xX xX 4.888 70.000 5.000 XX xx I.

.. XX . XX 24 of 30

CNS Cycle 25 COLR Revision 0 I EDB-2901 LHGRSTD LHGRSTD LHGRSTD LHGRSTD LHGRSTD LHGRSTD Peak Pellet (kW/ft) (kW/ft) (kW/ft) (kW/ft) (kW/ft) (kW/ft)

Exposure U0 2 Only 6% gad 5% gad 4% gad 4% gad 0% gad (GWd/MT) 6% max. 5% max 5% max 4% max 4-6% max gad. gad gad gad gad 0.0000 13.400 12.255 12.521 12.700 12.800 13.100 13.500 ...-- -- --

13.532 -- 12.255 --7.....

13.656 -- -- 12.521 . ...

13.664 -- . . 12.700 --

13.790 ....-- 12.800 --

15.642 ..... .... 13.100 16.000 13.400 -- - .......

6 0 .499 --.... .. ......

60.625 -- 7.316 . ........

61.115 ... . 7.475 .....

61.149 .... 7.582 --..

61.649 -- 7.642 --

62.078 .....- ..-- 7.821 63.500 8.000 -- -. -- ....

66.930 .... -- .....

67.069 -- 4.572 -- -- -- --

67.610 -- xx 4.672 . - .....

67.646 -- xx xx . 4.739 .....

68.198 -- xx xx xx 4.776 --

68.433 -- xx xx xx xx 4.888 70.000 5.000 xx xx Xx xx xx

.... EDB-2902_

LHGRSTD LHGRSTD. IILHGRSTD LHGRSTD Peak Pellet (kWIft) (kWlft) (kW/ft) (kW/ft)

Exposure U0 2 Only 5% gad 4% gad 0% gad (GWdIMT) 5% max 5% max 4-5% max gad gad gad 0.0000 13.400 12.521 :12.700 13.100 13.656 -- 12.521 ....

13.664 .12.700 --

15.642 .. . ..-- 13.100 16.000 13.400 -- -- --

61.115 -- 7.475 --

61.149 -- 7.582 --

.62.078 -- -- 7.821

.63.500 8.000 ......

67.610 __ 4.672 --...

67.646 . . xx 4.739 "

68.433 -- XX XX 4.888 70.000 5.000 xx xx. xx 25 of 30

CNS Cycle 25 COLR Revision 0

. EDB-3032 and EDB-3033 LHGRSTD LHGRSTD LHGRSTD LHGRSTD Peak Pellet (kW/ft) (kW/ft) (kW/ft) (kW/ft)

Exposure U0 2 Only 6% gad 5% gad 0% gad (GWd/MT) 6% max 5% max 4-6% max

  • gad, gad gad 0.0000 13.400 12.255 .12.521 13.100 13.532 -- 12;255 --

13.656 .. .- 12.521 --

15.642 -- -- .. 13.100 16.000 13.400. -__.

7-- --

60.625 -- 7.316 ....

61.115 " -- 7.475 --

62.078 -- - -- 7.821 63.500 8.000 -- ....

67.069 -- 4.572 * -- --

67.610 -- xx. 4.672 --

68.433 -- xx xx 4.888 70.000 5.000 xx xx xx.

Bundle Types GNF Bundle # GNF Fuel Bundle Identification EDB-3881 GE14-P 10HNA8385-14GZ-1OOT-148-T6-3881 (GE14B)

EDB-2476 GE14-P 1OHNAB379-17GZ-10OT-150-T6-2476 (GE14C)

EDB-2611 GE14-P1ODNAB393-17GZ-10OT-150-T6-2611 (GE14C)

EDB-2569 GE 14-P 1ODNAB398-16GZ-10OT-150-T6-2569 (GE14C)

EDB-2800 GE 14-P 10DNAB395-14GZ-10OT-150-T6-2800 (GE14C)

EDB-2801 GE 14-P 1ODNAB393-17GZ-10OT-150-T6-2801 (GE14C)

EDB-2901 GE1 4-Pl ODNAB385-13GZ-10OT-150-T6-2901 (GE14C)

EDB-2902 GE14-P 1ODNAB386-14GZ-10OT-150-T6-2902 (GE14C)

EDB-3032 GE14-P1ODNAB383-2G6.0/10G5.0-10OT-150-T6-3032 (GE14C)

EDB-3033 GE14-Pi0DNAB383-2G6.0/12G5.0-10OT-150-T6-3033 (GE14C) 26 of 30

CNS Cycle 25 COLR Revision 0

7. STABILITY POWERJFLOW MAP 7.1 Technical Specification Reference Technical Specification 3.4.1.

7.2 Stability Exclusion Region The stability region is represented by the Exclusion Region boundaries defined in Section 15 of Reference 6. The core power values in this table have been rescaled by a factor of 2419/2381=.1.0157,. because the values reported in Reference 6 were reported assuming that the rated core power in cycle 25 would be 2419 MwTH. Appendix I of Reference 6 stated that these coordinates could be rescaled for application to 2381 CLTP power level. A detailed view of the Exclusion Region of the power/flow map is presented in Figure 7-1.

Intentional operation within the Exclusion Region is prohibited. The Exclusion Region is defined in the table below.

Exclusion Region Power (% of CLTP Flow (% of Rated)

Rated)

A *85.38 58.57 B 35.61 32.50 Point "A" is on the highest flow control line and point "B" is on the natural circulation line (see Figure 7-1).

The region boundaries are defined using the generic shape function given in Reference 6. The calculation of the region boundaries as a function of core thermal power and core flow rate is summarized below.

I[w-w' +(w-w*)

where, P = Core thermal power (% of CLTP rated) on the region boundary, W = Core flow rate (% of rated) corresponding to power, P, on the region boundary, 27 of 30

CNS Cycle 25 COLR Revision 0 PA Core thermal power (% of CLTP rated) at point A, PB = Core thermal power (% of CLTP rated) at point B, WA = Core flow rate (% of rated) at point A, WB = Core flow rate (% of rated) at point B.

28 of 30

CNS Cycle 25 COLR Revision 0 Figure 7-1 Stability Exclusion Region Map Cycle 25 Exclusion Region 120.00%

100.00%

80.00%

60.00%

0 (L

40.00%

20.00%

0.00%

0.00% 10.00% 20.00% 30.00% 40.00% 50.00% 60.00% 70.00% 80.00%

% rated flow

-- *- Cycle 25 -- Natural Circ line - MELLA Rod line 29 of 30

CNS Cycle 25 COLR Revision 0

8. REFERENCES The following references are identified in this report:
1. NEDE-24011-P-A-15, "General Electric Standard Application for Reactor Fuel", September 2005.
2. NEDE-23785-1-P-A, "The GESTR-LOCA and SAFER Models for the Evaluation of the Loss-of-Coolant Accident", Volume Ill, Revision 1, October 1984.
3. NEDO-31960-A and NEDO-31960-A Supplement 1, "BWR Owner's Group Long-Term Stability Solutions Licensing Methodology", November 1995.
4. NEDC-31892P, "Extended Load Line Limit and ARTS Improvement Program Analyses for Cooper Nuclear Station Cycle 14", Revision 1, May 1991.
5. GE-NE-L12-00867-12, "Project Task Report Cooper Nuclear Station MIG Project Task 900: Transient Analysis", Revision 1, May 2000.
6. 0000-0080-1273-SRLR, "Supplemental Reload Licensing Report for Cooper Nuclear Station Reload 24 Cycle 25", Revision 1, February 2008.
7. CNS Procedure 10.9, "Control Rod Scram Time Evaluation", current rev.
8. GE Design Specification 22A2859, "Turbine-Generator and Steam Bypass System", Paragraph 4.3.8, Revision 3.
9. NEDC 98-024, "APRM - RBM Setpoint Calculation", current revision.
10. deleted
11. GE Letter DTI:NPPD 81-029, "ODYN Option B Scram Time Surveillance Procedures," March 29,1981.
12. GE Letter DGC:89-190, "Cooper Reload 13 Technical Specification Changes," November 30, 1989.
13. 0000-0080-1273-FBIR, "Fuel Bundle Information Report for Cooper Nuclear Station Reload 24 Cycle 25", Revision 0, February 2008.
14. DB-0012.02, "Fuel-Rod Thermal-Mechanical Performance Limits for GE14",

Rev. 0, October 1999

15. DB-0012.03, "Fuel-Rod Thermal-Mechanical Performance Limits for GE14C", Rev. 0, May 2000 30 of 30

ATTACHMENT 3 LIST OF REGULATORY COMMITMENTS@

ATTACHMENT 3 LIST OF REGULATORY COMMITMENTS© Correspondence Number: NLS2008038 The following table identifies those actions committed to by Nebraska Public Power District (NPPD) in this document. Any other actions discussed in the submittal represent intended or planned actions by NPPD. They are described for information only and are not regulatory commitments. Please notify the Licensing Manager at Cooper Nuclear Station of any questions regarding this document or any associated regulatory commitments.

COMMITMENT COMMITTED DATE COMMITMENT NUMBER OR OUTAGE None 4 4 i i

  • 1 4
  • 1 4 PROCEDURE 0.42 REVISION 22 PAGE 18 OF 25