ML22251A400

From kanterella
Jump to navigation Jump to search
Enclosure 2: Response to NRC Request for Additional Information 350
ML22251A400
Person / Time
Site: Hermes File:Kairos Power icon.png
Issue date: 09/01/2022
From:
Kairos Power
To:
Office of Nuclear Reactor Regulation
Shared Package
ML22252A149 List:
References
KP‐NRC‐2209‐001
Download: ML22251A400 (15)


Text

KPNRC2209001

ResponsetoNRCRequestforAdditionalInformation350

(NonProprietary)

Page 1 of 5 NRCRequestforAdditionalInformation RAIPackage350,Question410 Section50.34ofTitle10oftheCodeofFederalRegulations(10CFR50.34),"Contentsofapplications; technicalinformation,"providesrequirementsforinformationtobeprovidedinaConstruction Permit(CP).10CFR50.34(a)(4)statesthataCPshallcontainapreliminaryanalysisandevaluationof SSCsprovidedformitigationoftheconsequencesofaccidentstodeterminemarginsofsafetyduring normaloperationsandtransientconditionsduringthelifeofthefacility.

Section3.1.1,"DesignCriteria,"oftheKairosPower(KP)HermesPreliminarySafetyAnalysisReport (PSAR)referencesdocumentKPTR003NPA,"PrincipalDesignCriteria[PDC]fortheKairosPower FluorideSaltCooled,HighTemperatureReactor,"Revision1,toprovidethePDCfortheHermestest reactor.KPFHRPDC14,"Reactorcoolantboundary,"statesthatsafetysignificantelementsofthe reactorcoolantboundaryshallhaveanextremelylowprobabilityofabnormalleakage,rapidly propagatingfailure,andgrossrupture.KPFHRPDC31,"Fracturepreventionofthereactorcoolant boundary,"statesthatthereactorcoolantboundaryshallbedesignedtoconsiderservice degradationofmaterialpropertiesincludingeffectsofcontaminants.KPFHRPDC35,"Passive residualheatremoval,"statesthatasystemshallbeprovidedtoremoveresidualheatduringand afterpostulatedaccidents.KPFHRPDC74,"Reactorvesselandreactorsystemstructuraldesign basis,"statesthatthevesselandreactorsystemshallbedesignedtoensureintegrityismaintained duringpostulatedaccidentstoensurethegeometryforpassiveheatremovalandallowforinsertion ofreactivitycontrolelements.

Section4.3ofthePSAR,"ReactorVesselSystem,"describesthecomponentsthatformthenatural circulationflowpathneededtoprovideresidualheatremovalduringandfollowingpostulated events.Theseincludeportionsofthegraphitereflectoraswellasmetalliccomponentssuchasthe corebarrel,reactorvessel,andfluidicdiode.ThissectionofthePSARdescribeshowthese componentsareneededtomeetPDCs14,31,35,and74.

Section5.1.3ofthePSAR,"SystemEvaluation,"statesthat"significant"airingressintotheprimary heattransportsystem(PHTS)isexcludedbydesignbasis.Inaneventwithpostulatedairingressinto thePHTS,thecomponentsthatcomprisethenaturalcirculationflowpathwillneedtoperformtheir safetyfunctions(i.e.,maintainthenaturalcirculationflowpath)tomeetthePDClistedabove.The staffnotesthatairingressintothePHTScancauseoxidationofthegraphitereflectoraswellas corrosionofmetalliccomponentsintheprimarysystem,andsuchdegradationcouldpotentially challengenaturalcirculationflow.Inordertoevaluateeffectsofairingress,thestaffneedsto understandtheamountofairingressthatwillbeallowedandhowthelimitationofingresswillbe achieved.

Therefore,theNRCstaffrequeststhefollowinginformation:

1. Definewhatconstitutes"significant"airingressintothePHTSandthebasisfordetermining whatis"significant."
2. Describehowcomponentintegrityisensuredifthedurationofanairingresseventislonger thanthedurationcoveredbythematerialsqualificationtesting.
3. Inaneventsuchasasaltspillorheatradiatortuberupture,howisfurtherairingress preventedafteraheatrejectionblowertrip?

Page 2 of 5 KairosPowerResponse NRCQuestion410,Item1 Definewhatconstitutes"significant"airingressintothePHTSandthebasisfordeterminingwhatis "significant."

ThediscussioninPreliminarySafetyAnalysisReport(PSAR)Section5.1.3isreferringtolimitingthe amountofairingressthatisforcedintotheFlibe,notlimitingtheamountofairingresstothe reactorsystemasawhole.AscitedinPSARSection5.1.3,thedesignevaluationoflimitingsignificant airingressdemonstratescompliancewithPrincipalDesignCriteria(PDC)33andPDC70.PDC33and PDC70arefocusedondetailsoftheFlibe,notthegasspaceabovethefreesurfaceofFlibe.This distinctionisimportanttorecognizefortheresponsesprovidedtothisRAI.TheresponsetoItem2 belowincludestheconsiderationofoxidationeffectsfornonFlibewettedgraphiteabovethefree surfaceofFlibe.

AsdescribedinPSARSection5.1.3,significantairingressintothePrimaryHeatTransportSystem (PHTS)referstotwoscenarios:

Significantairbeingentrainedinthecoolantduringnormaloperation(tomeetPDC33)

Forcedairingressoccurringduringpostulatedsystemleakageevents(tomeetPDC70)

Ifairisentrainedinthecoolantduringnormaloperation,operationalcontrolsareexpectedto monitorthequantityofairwithinthePHTStopreventaccumulatingsignificantquantitieswitha technicalspecification,asdiscussedinPSARSection13.1.10.5.Thelimitforsignificantairingress willpreventvoidaccumulationandlimitthetotalcorrosionofFlibewettedcomponents,as describedinPSARTable14.11.Consistentwith10CFR50.34(a)(5),thePSARidentifiesthevariable expectedtobesubjecttotechnicalspecificationcontrol,andPSARSection14.1commitsto providingtheparameterlimitswiththeapplicationforanOperatingLicenseApplication,consistent with10CFR50.34(b)(6)(vi).

Forthescenarioswheresignificantforcedairingressispreventedduringpostulatedeventsinvolving abreachorbreakinthePHTS,significantreferstoamountsofairthatcouldbeforcedintothe Flibebythedrivingforcesassociatedwiththeheatrejectionblowerortheprimarysaltpump.As describedinPSARSection7.3.1,therearesafetyrelatedtripsontheheatrejectionblowerand primarysaltpump,whichremovethemechanismsthatcouldforceairintotheFlibeduringasystem leakageeventtopreventsignificantforcedairingress.

PSARSections5.1.3,and13.1.10.5havebeenupdatedtoclarifythatforcedairingressintothePHTS isprecludedbydesign.

NRCQuestion410,Item2

Describehowcomponentintegrityisensuredifthedurationofanairingresseventislongerthanthe durationcoveredbythematerialsqualificationtesting.

Bymaintainingthequantityofairwithinthetechnicalspecificationlimitduringnormaloperation andremovingthemechanismstoforceairintotheFlibedescribedinItem1ofthisRAI,the structuralintegrityofmetallicandgraphitecomponentsthatremainFlibewettedisensuredto remainwithinconditionsboundedbythematerialsqualificationtestingprograms(References1and 2)forairingresseventsuptosevendays.Themetallicmaterialsqualificationtopicalreportincludes

((

))

Page 3 of 5 (Reference1).Thegraphitematerialqualificationtopicalreportdescribestheassessmentplanfor theeffectsofaircontaminationinFlibeonET10graphite(Reference2).

Duringnormaloperation,theargoninthegasspacewillbemonitoredforpotentialairingressas describedintheKairosPowerresponsetoRCI02(ML22231B230).

ThegraphitereflectorblocksthatarelocatedabovethefreesurfaceoftheFlibearesubjectto potentialoxidationeffectsduringapostulatedairingressevent.Sincetheshutdownelementsinsert atthebeginningoftheevent,thisexposedgraphitestructureisnotcreditedafterinsertionto performalongtermstructuralintegritysafetyfunctionwhenoxidationcouldbegintoaffectthe structuralintegrity.Additionally,ifsignificantoxidationweretoresultinalossofstructuralintegrity oftheexposedgraphite,thereisalayerofsubmerged(Flibewetted)graphitethatmitigatesdebris fromtheexposedgraphitefromenteringthenaturalcirculationflowpath.

AsshowninFigure1,thesecondaryholddownstructureisinstalledwithintheupperlayersofthe graphitereflectorandextendsbelowtheminimumFlibelevelforaPHTSbreakevent.Ifsignificant oxidationweretoresultinalossofstructuralintegrityofthegraphiteabovetheminimumFlibe level,thesecondaryholddownstructurewilltransferloadsfromthesubmergedgraphitetothetop head,keepingtheremainingreflectorstructureinplaceandsubmergedinFlibe.Theeffectsofnon forcedairingressontheintegrityofcomponentsbelowthesurfaceofFlibewillbeboundedbythe materialsqualificationtestingprogramsforatleastsevendaysfollowingtheinitiationoftheevent.

Beyondsevendays,defenseindepthfeaturesinclude:implementingrepairsondamagedSSCs, replenishingargonsupply,orremovaloffuelfromthevessel.Thisensuresthatthegeometryofthe coreandthenaturalcirculationflowpathsaremaintained.PSARSection4.3hasbeenupdatedto removethestatementthereactorvesselisdesignedtoprecludeairingressandtoreflectthe secondaryholddownstructuredesigndetailsdescribedabove.PSARSection13.1.10.5hasbeen updatedtodescribedefenseindepthfeaturesofthedesignavailableaftertheinitialsevenday periodofapostulatedairingressevent.Amarkupofchangestothegraphitequalificationtopical reportprovidingadditionaldetailsoftheoftheassessmentofairingressontheintegrityof componentsbelowthesurfaceofFlibeisbeingprovidedwiththisresponse.Arevisiontothe graphitequalificationtopicalreportwillbesubmittedbyseparateletter.

NRCQuestion410,Item3

Inaneventsuchasasaltspillorheatradiatortuberupture,howisfurtherairingresspreventedafter aheatrejectionblowertrip?

AsdescribedinItem1,safetyrelatedtripsontheheatrejectionblowerandprimarysaltpump removethemechanismsthatcouldforceairintotheFlibeduringasystemleakageevent.The HermesdesigndoesnotcreditanymeansoflimitingfurthernonforcedairingressintothePHTSin theeventofasaltspillorradiatortuberupture.SeeresponsetoItem2fordiscussionoftheimpacts ofnonforcedairingressonvesselinternals.

Page 4 of 5

References:

1. KairosPowerLLC,MetallicMaterialsQualificationfortheKairosPowerFluorideSalt CooledHighTemperatureReactor,KPTR013P,Revision3.
2. KairosPowerLLC,GraphiteMaterialQualificationfortheKairosPowerFluorideSalt CooledHighTemperatureReactor,KPTR014P,Revision3.

ImpactonLicensingDocument:

ThisresponseimpactsSections4.3,5.1.3,and13.1.10.5oftheKairosPowerPreliminarySafety AnalysisReportandSection5.3ofGraphiteMaterialsQualificationfortheKairosPowerFluoride SaltCooledHighTemperatureReactor.Markupsoftheaffectedsectionsareprovidedwiththis response.

Page 5 of 5 Figure1

PreliminarySafetyAnalysisReport

ReactorDescription

KairosPowerHermesReactor

Revision0 429 coolantlevel.Thedesignofthereactorvesselallowsforonlinemonitoring,inserviceinspection,and maintenance.

4.3.1.1.1 VesselTopHead Thereactorvesseltophead(seeFigure4.32)isaflat316HSSdiscboltedandflangedtothevessel shell.Thisinterfaceisdesignedforleaktightnessbutisnotcreditedasbeingleaktightinsafety analyses.Thevesseltopheadcontrolstheradialandcircumferentialpositionsofthereflectorblocksto ensureastablecoreconfigurationforallconditions(e.g.,reactortripandcoremotion).Thetophead containspenetrations,asshowninFigure4.32andTable4.31,intoandoutofthevesselandprovides fortheattachmentofsupportingequipmentandcomponents(e.g.,reactivitycontrolelements,pebble handlingandstoragesystemcomponents,materialsamplingport,neutrondetectors,thermocouples, etc.).Thetopheadsupportsthevesselmaterialsurveillancesystem(MSS)whichprovidesaremote meanstoinsertandremovematerialandfueltestspecimensintoandfromthereactortosupport testing.Aholddownstructuresubassemblyisweldedunderneaththevesseltophead.Thisstructure contactswiththetopsurfaceofthegraphitereflectorandprovidesstructuralsupportagainstupward loadsduringnormaloperationandmostpostulatedevents.Asecondaryholddownstructureisinstalled throughtheuppergraphitelayers,extendingfromthereflectortopintosubmergedgraphitelayersto transferupwardloadsfromsubmergedgraphitetothevesseltopheadduringpostulatedairingress events.Thesecondaryholddownstructureextendstobelowtheminimumreactorvesselcoolantlevel thatcouldresultfrompostulatedsaltspillevents.

4.3.1.1.2 VesselShell Thereactorvesselisa316HSScylindricalshellthat,alongwiththevesselbottomhead,servestoform thesafetyrelatedreactorcoolantboundarywithinthereactorvessel.Itcontainsandmaintainsthe inventoryofreactorcoolantinsidethevessel.Theshellprovidesthegeometryforcoolantinletand vesselsurfacefortheDHRSwhichtransfersheatfromthereactorvesselduringpostulatedevents.The insideoftheshelluses316HSStabstomaintainthecorebarrelinacylindricalgeometryandhasa weldedconnectionatthetopofthecorebarrel.

4.3.1.1.3 VesselBottomHead Thereactorvesselbottomheadisaflat316HSSdiscthatisweldedtothevesselshell.Itcontainsand maintainstheinventoryofthereactorcoolantinsidethevessel,supportsthevesselinternals,maintains thereactorcoolantboundaryandprovidesflowgeometryforlowpressurereactorcoolantinlettothe core.Hydrostatic,seismicandgravityloadsonthevesselandvesselinternalsaretransferredtothe bottomheadandaretransferredtotheRVSS.

4.3.1.2 ReactorVesselInternals Thereactorvesselinternalstructuresincludethegraphitereflectorblocks,corebarrelandreflector supportstructure.Thevesselinternalstructuresdefinetheflowpathsofthefuelandreactorcoolant, provideaheatsink,apathwayforinstrumentationinsertion,controlandshutdownelementinsertion, aswellasprovideneutronshieldingandmoderationsurroundingthecore.Thedesignofthestructures supportinspectionandmaintenanceactivitiesaswellasmonitoringofthereactorvesselsystem.

4.3.1.2.1 ReflectorBlocks ThereflectorblocksareconstructedofgradeETU10graphite.Thereflectorblocksprovideaheatsink forthecoreandarerestrainedensuringalignmentofthepenetrationstoinsertandwithdrawcontrol elements.Thereflectorblocksarebuoyantinthereactorcoolant.Thetopsurfaceofthereflectorblocks contactsthevesseltopheadholddownstructuresubassemblywhichprovidesstructuralsupport

PreliminarySafetyAnalysisReport

ReactorDescription

KairosPowerHermesReactor

Revision0 430 againstupwardloadsduringnormaloperationandmostpostulatedevents.Asecondaryholddown structureisinstalledthroughtheupperreflectorlayerstotransferupwardloadsfromsubmerged graphitetothevesseltopheadduringpostulatedairingressevents.Thebottomreflectorblocksare machinedwithcoolantinletchannelsfordistributionofcoolantinletflowintothecore.Thetop reflectorblocksaremachinedwithcoolantoutletchannelstodirectthecoolantexitingfromthecore intotheupperplenum,fromwhichthePSPdrawssuction.Thetopreflectorblocksalsoformapebble defuelingchute,asshowninFigure4.31,todirectthepebblesfromthecoretothepebbleextraction machine(PEM),allowingonlinedefuelingofthereactor(seeSection9.3).Thereflectorblocksalso providemachinedchannelsforinsertionandwithdrawalofthereactivitycontrolandshutdown elementsdescribedinSection4.2.2.

Thereflectorblocksformanupperplenumandafluidicdiode,whichisastainlesssteelpassivedevice thatconnectstheupperplenumtothetopofthedowncomerasshowninFigure4.31.Thediode introducesahigherflowresistanceinonedirection,whilehavingalowerflowresistanceintheother direction.Thedioderestrictsflowfromthehigherpressuredowncomerintotheupperplenumduring conditionswithforcedcirculation.Theflowpassesinthelowresistancedirectionofthediodefromthe upperplenumtothetopofthedowncomerdrivenbynaturalcirculation.

Thegraphitereflectorblocksreflectneutronsbackintothecore,increasingthefuelutilizationwhile protectingthereactorvesselfromfluencebasedformsofdegradation.Furtherdiscussionofthe reflectorsneutroniccharacteristicsaredetailedinSection4.5.

4.3.1.2.2 CoreBarrel The316HSScorebarrelcreatesanannularspacebetweenitselfandthereactorvesselanddefinesthe downcomerflowpathforthecoolant.Thecorebarrelhasaflangedtopwhichisweldedtotheinner wallofthevesselshell.Thebarreliskeptconcentrictotheshellbyradialtabswhichallowfor differentialthermalexpansion.

4.3.1.2.3 ReflectorSupportStructure The316HSSreflectorsupportstructure,asshowninFigure4.31,definestheflowpathfromthe downcomerannulusintothecoreaswellasprovidessupporttothegraphitereflectorblocks.The reflectorsupportstructureensuresastablecoreconfigurationforallconditions(e.g.,reactortripand coremotion)bycontrollingtheradialandcircumferentialpositionsofthereflectorblocks.

4.3.2 DesignBasis ConsistentwithPDC1,thesafetyrelatedportionsofthereactorvesselandreactorvesselinternalsare fabricatedandtestedinaccordancewithgenerallyrecognizedcodesandstandards.

ConsistentwithPDC2,thereactorvesselandreactorvesselinternalsperformtheirsafetyfunctionsin theeventofasafeshutdownearthquakeandothernaturalphenomenahazards.

ConsistentwithPDC4,thereactorvesselandreactorvesselinternalsaccommodatetheenvironmental conditionsassociatedwithnormaloperation,maintenance,testing,andpostulatedevents.

ConsistentwithPDC10,thereactorvesselandinternalsmaintainageometryandcoolantflowpathto ensurethatthespecifiedacceptablesystemradionuclidereleasedesignlimits(SARRDLs)willnotbe exceededduringnormaloperationincludingpostulatedevents.

ConsistentwithPDC14,thereactorvesselisfabricatedandtestedtohaveanextremelylowprobability ofabnormalleakageorsuddenfailureofthereactorcoolantboundarybygrossrupture.

PreliminarySafetyAnalysisReport

ReactorDescription

KairosPowerHermesReactor

Revision0 433 factorsuptoatemperatureof650°CforER1682weldmetalwith316Hbasemetal.Testingprovides stressrupturefactorsupto816°Cforweldmaterialwith316Hbasemetal(Reference3).Theplant controlsystemwilldetectleakagefromthereactorvesselandcatchbasinsareusedtodetectleaksin nearbycoolantcarryingsystems.ThesefeaturesdemonstratecompliancewithPDC30.

Reactorvesselstressrupturefactorsaredeterminedupto816°Ctoencompasstransientconditions.

Thestressrupturefactorsaredeterminedbyacreeprupturetestonthevesselbasematerialwithweld metalunderthegastungstenarcweldingprocess.Thevesselprecludesmaterialcreep,fatigue,thermal, mechanical,andhydraulicstresses.Theleaktightdesignofthereactorvesselheadminimizesairingress intothecovergasandprecludescorrosionoftheinternals.Thehightemperature,highcarbongrade 316HSSofthecorebarrelandreflectorsupportstructurehavehighcreepstrengthandareresistantto radiationdamage,corrosionmechanisms,thermalaging,yielding,andexcessiveneutronabsorption.

Vesselfluencecalculations,asdescribedinSection4.5,confirmadequatemarginrelativetotheeffects ofirradiation.Thefastneutronfluencereceivedbythereactorvesselfromthereactorcoreandpebble insertionandextractionlinesisattenuatedbythecorebarrel,thereflector,andthereactorcoolant.

Coolantpuritydesignlimitsarealsoestablishedinconsiderationoftheeffectsofchemicalattackand foulingofthereactorvessel.ThesefeaturesdemonstrateconformancewithPDC31.

TheMSSutilizescouponsandcomponentmonitoringtoconfirmthatirradiationaffectedcorrosionis nonexistentormanageable.The316HSSreactorvesselandER1682weldmaterial,asapartofthe reactorcoolantboundary,willbeinspectedforstructuralintegrityandleaktightness.Asdetailedin Reference3,fracturetoughnessissufficientlyhighin316HSSunderreactoroperatingconditionsthat additionaltensileorfracturetoughnessmonitoringandtestingprogramsareunnecessary.These featuresdemonstrateconformancetoPDC32.

Fluidicdiodesareusedtoestablishaflowpathforcontinuousnaturalcirculationofcoolantinthecore duringpostulatedeventstoremoveresidualheatfromthereactorcoretothevesselwall.Duringand followingapostulatedevent,thehotcoolantfromthecoreflowsfromtheupperplenumthroughthe lowflowresistancedirectionofthefluidicdiodetothecoolerdowncomervianaturalcirculation, therebycoolingthecorepassively.Continuouscoolantflowthroughthereactorcorepreventspotential damagetothevesselinternalsduetooverheatingtherebyensuringthecoolablegeometryofthecoreis maintained.Theantisiphonfeaturealsolimitsthelossofreactorcoolantinventoryfrominsidethe reactorvesselintheeventofaPHTSbreach.ThesefeaturesdemonstratecompliancewithPDC35.

Thereactorvesselreflectorblockspermitinsertionofthereactivitycontrolandshutdownelements.The ETU10gradegraphiteofthereflectorblocksiscompatiblewiththereactorcoolantchemistryandwill notdegradeduetomechanicalwear,thermalstressesandirradiationimpactsduringthereflectorblock lifetime.ThegraphitereflectormaterialisqualifiedasdescribedintheKairosPowertopicalreport GraphiteMaterialQualificationfortheKairosPowerFluorideSaltCooledHighTemperatureReactor, KPTR014(Reference4).Toprecludedamagetothereflectorduetoentrainedmoistureinthegraphite, thereflectorblocksarebaked(i.e.,heateduniformly)priortocomingintocontactwithcoolantand thereactorvesselisdesigntoprecludeairingress.Thereflectors,whichactasaheatsinkinthecore, arespacedtoaccommodatethermalexpansionandhydraulicforcesduringnormaloperationand postulatedevents.Thegapsbetweenthegraphiteblocksalsoallowforcoolanttoprovidecoolingtothe reflectorblocks.Thereactorvesselpermitstheinsertionofthereactivitycontrolandshutdown elementsaswell.ThevesselisclassifiedasSDC3perASCE4319andwillmaintainitsgeometryto ensuretheRCSSelementscanbeinsertedduringpostulatedeventsincludingadesignbasisearthquake.

ThesefeaturesdemonstratecompliancewithPDC74.

PreliminarySafetyAnalysisReport

ReactorDescription

KairosPowerHermesReactor

Revision0 439 Figure4.33:TheReactorVesselSystemSecondaryHoldDownStructure

PreliminarySafetyAnalysisReport

HeatTransportSystems

KairosPowerHermesReactor 54 Revision0 5.1.3 SystemEvaluation ThedesignofthenonsafetyrelatedPHTSissuchthatafailureofcomponentsofthePHTSdoesnot affecttheperformanceofsafetyrelatedSSCsduetoadesignbasisearthquake.Inadditiontoprotective barriers,thePHTSpipeconnectionstothereactorvesselnozzleshavesufficientlysmallwallthickness, suchthatifloadedbeyondelasticlimits,inelasticresponseoccursinthePHTSpipingwhichisnonsafety related.Thesefeatures,alongwiththeseismicdesigndescribedinSection3.5,demonstrate conformancewiththerequirementsinPDC2forthePHTS.

WhilethePHTSisaclosedsystem,thereareconceivablescenariosthatmayresultinthereleaseof radioactiveeffluents.Thefueldesignlocatesthefuelparticlesneartheperipheryofthefuelpebble, enhancingtheabilityofthefueltotransferheattothecoolant.Thethermalhydraulicanalysisofthe core(seeSection4.6)ensuresthatadequatecoolantflowismaintainedtoensurethatSARRDLs,as discussedinSection6.2,arenotexceeded.Thesefeaturesdemonstrateconformancewiththe requirementsinPDC10.

Thedesignofthereactorcoolant,inpart,ensuresthatpoweroscillationscannotresultinconditions exceedingSARRDLs.ThereactoriskeptnearambientpressureandthereactorcoolantinthePHTSdoes notexperiencetwophaseflow.Thecoolanthasahighthermalinertiamakingthereactorresilientto thermalhydraulicinstabilityevents.Thesefeatures,inpart,demonstrateconformancewiththe requirementsinPDC12.

ThefunctionalcontainmentisdescribedinSection6.2.Thedesignreliesprimarilyonthemultiple barrierswithintheTRISOfuelparticlestoensurethattheradiologicaldoseattheexclusionarea boundaryasaconsequenceofpostulatedeventsmeetsregulatorylimits.However,thereactorcoolant alsoservesasadistinctphysicalbarrierforfuelsubmergedinFlibebyprovidingretentionoffission productsthatescapethefuel.Thedesignofthereactorcoolantcompositionprovides,inpart,ameans tocontroltheaccidentalreleaseofradioactivematerialsduringnormalreactoroperationand postulatedevents(PDC60),andsupports,inpart,demonstrationofthefunctionalcontainmentaspects.

ThedesignaspectsofthereactorcoolantarediscussedinReference5.1.51.TheFlibealsoaccumulates radionuclidesfromfissionproducts,andtransmutationproductsfromtheFlibeandFlibeimpurities.The retentionpropertiesoftheFlibearecreditedinthesafetyanalysisasabarriertoreleaseof radionuclidesaccumulatedinthecoolant,andradionuclidecon

specifications.ThetransportofradionuclidesthroughFlibeisb

justifiedintheapplicationforanOperatingLicense.Thesefeat

requirementsinPDC16.

SignificantforcedairingressintothePHTSisexcludedbydesignbasis.Airingresscouldaffectthe inventoryofreactorcoolantinthereactorvesselaswellasaffectthepurityofthereactorcoolant.

Designfeaturesoftheheatrejectionsubsystemandthereactortripsystemwilllimitthequantitiesof airingressduringsystemleakageeventsbytrippingtheheatrejectionblowersandtrippingthePSP.

ThesedesignfeaturessatisfyPDC33andPDC70.TheeffectsofnonforcedairingressintothePHTSon safetyrelatedHermescomponentsareboundedbytheresultsofmaterialsqualificationprogramsas describedinSection4.3.

ThedesignofthePHTScontrolsthereleaseofradioactivematerialsingaseousandliquideffluentsin theeventthePHTSworkingfluidisinadvertentlyreleasedtotheatmospherevialeaksinthepiping system.ThePHTSSSCsthatarepartofthereactorcoolantboundaryaredesignedtotheASMEB31.3 Code(forthepiping)andSectionVIII(forthePHX)suchthatleaksareunlikely.Meansareprovidedfor detectingand,totheextentpractical,identifyingthelocationofthesourceofreactorcoolantleakagein thePHTSSSCs.ApostulatedeventinthePHTSwouldbeaPHXtubefailure.ThiseventwouldcauseFlibe Highlightedtextwaspreviously changed.Submitted21822 (ML22049B556)

PreliminarySafetyAnalysisReport

AccidentAnalysis

KairosPowerHermesReactor 1315 Revision0 ensurethereisnorecriticalityaftertheRCSShasinitiatedshutdown,asdescribedinSection4.5.

Additionally,thegraphitereflectorblocksaredesignedtomaintainstructuralintegrityandensure misalignmentsdonotpreventtheinsertionpathoftheshutdownelements,asdiscussedinSection4.3.

13.1.10.2 DegradedHeatRemovalorUncooledEvents Inpostulatedeventswherethenormalheatrejectionisnotavailable,naturalcirculationinthereactor vesselandtheheatremovalfunctionoftheDHRSarereliedupontoremoveheatfromthereactorcore.

Degradedheatremovaloruncooledeventsareexcludedfromthedesignbasis.Theinitiationofnatural circulationiscompletelypassive,andthedesignfeatures,includingthestructuralintegrityofthereactor vesselinternals,thatensureacontinuednaturalcirculationflowpatharediscussedinSection4.6.The DHRSisalignedandoperatingwhenthereactorpowerisaboveathresholdpowerandremainsinthis stateasdescribedinSection6.3,precludingtheneedforanactuationtooccurfortheDHRStoremove heatduringapostulatedevent.TheDHRSdesignincludessufficientredundancytoperformitssafety functionassumingthelossofasingletrain,asdiscussedinSection6.3.

13.1.10.3 FlibeSpillBeyondMaximumVolumeAssumedinPostulatedSaltSpills Inthesaltspillpostulatedeventcategory,anupperboundvolumeofFlibeisassumedtospilloutofthe PHTSontothefloor.AvolumeofFlibespillingoutofthesystembeyondtheamountassumedinthe boundingsaltspilleventisexcludedfromthedesignbasis.Thereareseveraldesignfeaturesensuring theamountofFlibeavailabletospillislimitedtoanupperboundvalue.Thereactorvesselisdesigned withantisiphonfeaturesdiscussedinSection4.3.Thesefeaturesaredesignedtopassivelybreakthe siphonintheeventofabreak.ThePSPalsotripstoallowtheprimarysystemtodepressurize.The reliabilityoftheRPS,whichtripsthePSPandISPintheeventofasaltspill,isdiscussedinSection7.3.

Thereactorvesselshellalsomaintainsintegrityinpostulatedeventstoensurethefuelinthecore remainscoveredwithFlibe.Thereactorvesselshelldesignfeaturesthatpreventleakagearediscussed inSection4.3.

13.1.10.4 InServiceTRISOFailureRatesandBurnupsAboveAssumptionsinPostulatedEvents Theinservicefuelfailureratesandtheburnupofpebblesassumedinthepostulatedeventsarebased onthefuelqualificationspecificationsinSection4.2.1.InserviceTRISOfailureratesabovetherate assumedinpostulatedeventsareexcludedfromthedesignbasis.Theinsertionofpebbleswitha burnuphigherthanthefuelqualificationenvelopeisexcludedfromthedesignbasis.Asdescribedin Section7.3,theRPSincludesafunctiontostopthepebbleinsertionandextractionfunctionstoensure pebblesarenotdamagedinfaultsoccurringafteraneventinitiation.Thefuelqualificationprogram includestesting,inspection,andsurveillancetoensurethefueloperatingenvelopeiswithinthefuel qualificationenvelope.InspectionandsurveillanceofthefuelinserviceisperformedinthePHSSas discussedinSection9.3.

13.1.10.5 SignificantIntermediateCoolantAirIngressIntoPHTS EventswheresignificantquantitiesofairareentrainedinthePHTScoolantduringnormaloperationare excludedfromthedesignbasis.Operationalcontrolsareexpectedtomonitorthequantityofairwithin thePHTStopreventaccumulatingsignificantquantities.Chapter14discussestheexpectedcoolant systemstechnicalspecificationsthatmonitorsignificantairingress.

EventswheresignificantquantitiesofforcedairenterthePHTSfollowingpostulatedHRRtubebreak eventsarealsoexcludedfromthedesignbasis.Chapter5discussesthedesignfeaturesoftheHRRthat Highlightedtextwaspreviously changed.Submitted21822 (ML22049B556)

PreliminarySafetyAnalysisReport

AccidentAnalysis

KairosPowerHermesReactor 1316 Revision0 limitsthequantitiesofforcedairingressduringsaltspilltransients.Thepostulatedeventsassumea positivepressuredifferentialbetweentheprimaryandintermediatecoolantsystems.Eventswhere significantquantitiesofintermediatecoolantenterthePHTSareexcludedfromthedesignbasis.

Chapter5discussesthedesignfeaturesofthePHTSandPHRSthatmaintainapositivepressure differential.

Theeffectsofnonforcedairingressonreactorvesselandvesselinternalcomponentswillremain boundedbythematerialsqualificationtestingprogramsforatleastsevendaysduringairingressevents asdescribedinSection4.3.Beyondsevendays,defenseindepthstrategiesinclude:implementing repairsondamagedSSCs,replenishingtheargonsupply,andremovaloffuelfromthevessel(fuelcore offloadcapabilitydiscussedinSection9.3.1.8.3).

13.1.10.6 DHRSReactorCavityFlooding TheDHRSisawaterbasedsystemthatremovesheatfromthereactorvesselshell.Eventswherethe waterfromtheDHRSleaksintothereactorcavityinquantitiessignificantenoughtowetthereactor vesselareexcludedfromthedesignbasis.Leakprevention,includingdoublewalledcomponentsand leakdetection,fortheDHRSisdescribedinSection6.3.

13.1.10.7 InsertionofExcessReactivityBeyondRateAssumedinPostulatedEvents Theinsertionofexcessreactivitypostulatedeventcategoryincludesalimitingreactivityinsertionrate basedonthemaximumcontrolelementdrivewithdrawalrate.Multiplecontrolelementsmoving simultaneouslyisexcludedfromthedesignbasis.Controlelementmovementislimitedtooneelement atatime,asdescribedinSection7.2.Acontrolelementwithdrawingfasterthanthelimitisexcluded fromthedesignbasis.Themaximumdrivewithdrawalspeedislimitedbythedrivehardware,as describedinSection4.2.2.Arapidcontrolelementejectionisexcludedfromthedesignbasisbecause thereactoroperatesatlowpressures.

Theinsertionofreactivityduetoanovercoolingeventisalsoboundedbythelimitingreactivityinsertion rate.CorecoolingduetopumpoverspeedfromthePSP,ISP,orPHRSblowerarelimitedtoamaximum limitwithintheprogrammednormaloperatingrangediscussedinSection7.2.

13.1.10.8 CriticalityOccurrenceExternaltoReactorCore PebblesoutsideofthereactorcorearecontainedinthePHSS.ThePHSSincludespebblesintransit duringhandling,instorage,andinatransportconfiguration.ThePHSSisdesignedtoprecludecriticality assumingpostulatedeventconditionsusingdesignfeaturesthatmaintainanoncriticalgeometryof pebblesineachoftheseareas.ThedesignfeaturesofPHSSpreventingcriticalityaredescribedin Section9.3.

13.1.10.9 ExcessiveRadionuclideReleasefromFlibe ThepostulatedeventsassumeareleaseofradionuclidesfromthefreesurfacesofFlibe.Theassumed releaseofradionuclidesfromFlibecouldbeaffectedbythecharacteristicsofthecovergassuchasa higherpressureaffectingthecovergasfloworthepurityofthecovergasaffectingtheradionuclides availableforrelease.Thecovergasismaintainedbytheinertgassystem,describedinSection9.1.2.

13.1.10.10 InternalorExternalEventsInterferingwithSSCs SSCsthatperformsafetyfunctionsarelocatedinaportionofthereactorbuildingdesignedtopreclude damagefrombothinternalandexternalhazardsthatcouldinterferewiththosefunctions.Additionally, SSCscontainingFlibeareprotectedfrominternalfloodstoprecludethepotentialforFlibe-water interactions.Thefailureofsafetyfunctionsduetointernalorexternalhazardsisexcludedfromthe Highlightedtextwaspreviously changed.Submitted21822 (ML22049B556)