ML22258A185

From kanterella
Jump to navigation Jump to search
Enclosure 2: Response to NRC Question on Fluidic Diode Testing and PSAR Chapter 4 Changes
ML22258A185
Person / Time
Site: Hermes File:Kairos Power icon.png
Issue date: 09/15/2022
From:
Kairos Power
To:
Office of Nuclear Reactor Regulation
Shared Package
ML22258A182 List:
References
KP‐NRC‐2209‐011
Download: ML22258A185 (5)


Text

KPNRC 2209 011

Enclosure2 ResponsetoNRCQuestiononFluidicDiodeTestingandPSARChapter4Changes (NonProprietary)

AspartoftheNRCgeneralauditofthePSAR,theNRCstaff askedquestionsregardingthedevelopment programofthefluidicdiode.

Asdescribed in PSARSection4.3, thefluidicdiodesupportsasafetyrelatedheatremovalfunctionby supportinganadequateamountofnaturalcirculationflow inthereactor vessel.Toprovide this function,thefluidicdevicesdesignisundergoinganongoingtesting anddevelopmentprogramas stated inPSARSection1.3.9.PSARSection4.6hasbeenupdatedto statethatthedevelopmentprogram willincludequalificationorfunctional testingas requiredbydesignverification.

ThePSARincludescommitmentstotest safetyrelatedstructures, systems,andcomponentstoensure thesuccessfulperformanceofsafetyfunctions.AsdescribedinPSARChapter 4,thefluidicdiode will meetPDC 4andPDC 35.PDC4requiresthatthediodecanperformitssafetyfunctionunderthe environmentalconditionsassociated withnormalplant operationas well as duringpostulatedevents.

PDC 35 requiresthatthediodeperformsitssafetyfunctionbysupportingsufficientremovalofresidual coredecayheatfollowingpostulatedaccidentscenarios.AsdescribedinPSARChapter12,Appendix B, Section2.3.3,theadequacyofthedesign willbe verified using methodsincludingtheperformanceof qualificationtests.Qualificationtestingforthefluidicdiode willbedefined inatestplanthat includes appropriate acceptance criteriaanddemonstratesthecomponentreliabilityandadequacyof performanceunderconditionsthatsimulatethemostadversedesignbasisconditions.

Asdiscussedabove,qualificationtestingmaybeusedas partofthedesignverificationprocess.The design verificationwillcharacterizethebaselineflowandevaluatepotential phenomenathat mayaffect theabilitytoremoveresidualcoredecayheatthrough naturalcirculationflow,including:

((

))Thetestingplansarebasedonthepreliminarydesign,and final testingneedswillbe determinedthrough preliminarytests,detaileddesigndevelopment, andanalysis.

The testinganddevelopmentprogramwillprovide justificationthatthediodeswillbeabletomaintain anadequateflow rate requiredtoremovedecayheatfromthecoreduringapostulatedevent.The programneededtovalidatethediodeperformanceinnormalandpostulatedeventconditionswillbe availablewiththeapplicationforanoperatinglicense.Theresultsofthisprogramneededtoqualifythe componentthroughstartupqualificationtestingwillbeavailableduringtheoperationphase.

In addition,thePSARincludescommitmentstoensurethecontinuedoperability ofthefluidic diode throughinspectionandmonitoring,whichensuresthatdegradationmechanismswillnotpreventthe fluidicdiodefromperforming itssafetyfunction.Section 4.3.3commitsthediodetoPDC 36 andPDC 37,

Page1of2 whichrequirethat thefunctionalityofthediodecanbe confirmedthrough monitoringandinspection.

Asdescribed in RAI339,themonitoringandinspectionstrategy for thediodewillensurethat thediode performsitssafetyfunction inapostulatedevent.

Page2of2 PreliminarySafetyAnalysisReport TheFacility

1.3.9 ResearchandDevelopment Therequirementsin10CFR50.34(a)requirethatthePSARidentifythosestructures,systemsor componentsofthefacilitythatrequireadditionalresearchanddevelopmenttoconfirmtheadequacyof theirdesign;andidentificationanddescriptionoftheresearchanddevelopmentprogramwhichwillbe conductedtoresolveanysafetyquestionsassociatedwithsuchstructures,systems,orcomponents;and ascheduleoftheresearchanddevelopmentprogramshowingthatsuchsafetyquestionswillbe resolvedatorbeforethelatestdatestatedintheapplicationforcompletionofconstructionofthe facility.Suchadditionaldevelopmentactivitiesaredescribedbelow:

Performalaboratorytestingprogramtoconfirmfuelpebblebehavior(Section4.2.1)

Developahightemperaturematerialsurveillancesamplingprogramforthereactorvesseland internals(Section4.3.4)

PerformtestingofhightemperaturematerialtoqualifyAlloy316HandER1682(Section4.3)

Performanalysisrelatedtopotentialoxidationincertainpostulatedeventsforthequalificationof thegraphiteusedinthereflectorstructure(Section4.3)

Developmentandvalidationofcomputercodesforcoredesignandanalysismethodology (Section4.5)

Developandperformqualificationtestingforafluidicdiodedevice(Section4.6)

Justificationofthermodynamicdataandassociatedvaporpressurecorrelationsofrepresentative species.(Section5.1.3)

Completeevaluationsoftheintermediateandreactorcoolantchemicalinteraction(Section5.1.3)

Developprocesssensortechnologyforkeyreactorprocessvariables(Section7.5.3)

Developthereactorcoolantchemicalmonitoringinstrumentation(Section9.1.1) 1.3.10 References

1. KairosPowerLLC,PrincipalDesignCriteriafortheKairosPowerFluorideSaltCooledHigh TemperatureReactor,KPTR003NPA.

KairosPowerHermesReactor 18 Revision0 Preliminary Safety AnalysisReport ReactorDescription

4.6 THERMALHYDRAULIC DESIGN 4.6.1 Description Thethermal hydraulicdesignofthereactorisacombination ofdesignfeaturesthatenableeffective heattransportfromthefuelpebbletothereactorcoolantandeventuallytotheheatrejectionsystem ofthereactor,consideringtheeffectsofbypass flowandflownonuniformity.Thedesignfeaturesthat playakeyrolein thethermalhydraulic designofthereactor systeminclude thefuelpebble(seeSection 4.2.1),reactorcoolant(seeSection 5.1),reactor vesselandreactorvesselinternalstructures(see Section4.3),theprimary heattransportsystem(PHTS)(see Section5.1),andtheprimary heatrejection system(PHRS)(see Section5.2).

4.6.1.1 CoreGeometry Thecoregeometryismaintainedin partbythereactorvesselinternalsincludingthereflectorblocks whichkeepthepebblesinageneral cylindrical coreshape.Coolantinlet channelsin thegraphite reflectorblocksareemployedtolimit thecorepressuredrop.Theuseofpebblesin apackedbed configurationalsocreateslocalvelocityfieldsthatenhancepebbletocoolant heattransfer.Thereactor thermalhydraulic designusesthefollowingheattransfermechanismstoextractthefissionheat.

Pebbleto coolantconvectiveheattransfer Pebble radiativeheattransfer Pebbleto pebble heattransferbypebblecontactconduction Pebbleto pebble heattransferbyconductionthroughthereactorcoolant Heattransfertothegraphitereflector bymodesofconduction,convection,andradiation.

4.6.1.2 CoolantFlow Path During normaloperation,reactorcoolantatapproximately550°Centers thereactorvesselfromtwo PHTScold legnozzlesandflowsthroughadowncomerformed betweenthemetalliccorebarrelandthe reactorvesselshellasshown inFigure4.61.Thecoolantisdistributed alongthevesselbottomhead throughthereflectorsupportstructure,upthroughcoolantinletchannelsinthereflectorblocksandthe fuelingchuteand intothecorewithaportionofthecoolantbypassingthecoreviagapsbetweenthe reflector blocks.Thecoolanttransfersheatfromfuelpebbleswhicharebuoyantinthecoolantand providescooling tothereflectorblocksand thecontrolelementsviaengineeredbypassflow. Coolant travelsoutoftheactivecorethroughtheupperplenum viathecoolantoutletchannelsandexitsthe reactorvesselviathePHTSoutlet.Themaximum vesselexittemperatureis620°Cand dependentonthe amount ofcorrespondingbypassflowthroughthereflectorblocks.

During postulatedeventswherethenormal heatremovalpaththroughthePHTSisnolongeravailable, includingwhen thePHTSisdrained,afluidicdiode(seeSection4.3),isused tocreateanalternateflow path.Duringsuchevents, forcedflowfromtheprimary saltpump(PSP)isalsonotavailable.The fluidic diode thendirectsflowfromthehotwelltothedowncomerasshowninFigure4.61.Thisopensthe pathforcontinuousflowvianaturalcirculation.Duringnormaloperation,whilethe PSPisinoperation, the fluidic diodeminimizesreverseflow. Qualificationorfunctionaltestingplansforthe fluidicdiode as wellasanytestresultsneededtovalidateperformanceassumedinthesafetyanalysiswill beavailable withtheapplication foranoperatinglicense.

Kairos PowerHermesReactor Revision0454