ML22258A185

From kanterella
Jump to navigation Jump to search
Enclosure 2: Response to NRC Question on Fluidic Diode Testing and PSAR Chapter 4 Changes
ML22258A185
Person / Time
Site: Hermes File:Kairos Power icon.png
Issue date: 09/15/2022
From:
Kairos Power
To:
Office of Nuclear Reactor Regulation
Shared Package
ML22258A182 List:
References
KP‐NRC‐2209‐011
Download: ML22258A185 (5)


Text

KPNRC2209011 ResponsetoNRCQuestiononFluidicDiodeTestingandPSARChapter4Changes (NonProprietary)

Page1of2 AspartoftheNRCgeneralauditofthePSAR,theNRCstaffaskedquestionsregardingthedevelopment programofthefluidicdiode.

AsdescribedinPSARSection4.3,thefluidicdiodesupportsasafetyrelatedheatremovalfunctionby supportinganadequateamountofnaturalcirculationflowinthereactorvessel.Toprovidethis function,thefluidicdevicesdesignisundergoinganongoingtestinganddevelopmentprogramas statedinPSARSection1.3.9.PSARSection4.6hasbeenupdatedtostatethatthedevelopmentprogram willincludequalificationorfunctionaltestingasrequiredbydesignverification.

ThePSARincludescommitmentstotestsafetyrelatedstructures,systems,andcomponentstoensure thesuccessfulperformanceofsafetyfunctions.AsdescribedinPSARChapter4,thefluidicdiodewill meetPDC4andPDC35.PDC4requiresthatthediodecanperformitssafetyfunctionunderthe environmentalconditionsassociatedwithnormalplantoperationaswellasduringpostulatedevents.

PDC35requiresthatthediodeperformsitssafetyfunctionbysupportingsufficientremovalofresidual coredecayheatfollowingpostulatedaccidentscenarios.AsdescribedinPSARChapter12,AppendixB, Section2.3.3,theadequacyofthedesignwillbeverifiedusingmethodsincludingtheperformanceof qualificationtests.Qualificationtestingforthefluidicdiodewillbedefinedinatestplanthatincludes appropriateacceptancecriteriaanddemonstratesthecomponentreliabilityandadequacyof performanceunderconditionsthatsimulatethemostadversedesignbasisconditions.

Asdiscussedabove,qualificationtestingmaybeusedaspartofthedesignverificationprocess.The designverificationwillcharacterizethebaselineflowandevaluatepotentialphenomenathatmayaffect theabilitytoremoveresidualcoredecayheatthroughnaturalcirculationflow,including:

((

))Thetestingplansarebasedonthepreliminarydesign,andfinaltestingneedswillbe determinedthroughpreliminarytests,detaileddesigndevelopment,andanalysis.

Thetestinganddevelopmentprogramwillprovidejustificationthatthediodeswillbeabletomaintain anadequateflowraterequiredtoremovedecayheatfromthecoreduringapostulatedevent.The programneededtovalidatethediodeperformanceinnormalandpostulatedeventconditionswillbe availablewiththeapplicationforanoperatinglicense.Theresultsofthisprogramneededtoqualifythe componentthroughstartupqualificationtestingwillbeavailableduringtheoperationphase.

Inaddition,thePSARincludescommitmentstoensurethecontinuedoperabilityofthefluidicdiode throughinspectionandmonitoring,whichensuresthatdegradationmechanismswillnotpreventthe fluidicdiodefromperformingitssafetyfunction.Section4.3.3commitsthediodetoPDC36andPDC37,

Page2of2 whichrequirethatthefunctionalityofthediodecanbeconfirmedthroughmonitoringandinspection.

AsdescribedinRAI339,themonitoringandinspectionstrategyforthediodewillensurethatthediode performsitssafetyfunctioninapostulatedevent.

PreliminarySafetyAnalysisReport

TheFacility KairosPowerHermesReactor 18 Revision0 1.3.9 ResearchandDevelopment Therequirementsin10CFR50.34(a)requirethatthePSARidentifythosestructures,systemsor componentsofthefacilitythatrequireadditionalresearchanddevelopmenttoconfirmtheadequacyof theirdesign;andidentificationanddescriptionoftheresearchanddevelopmentprogramwhichwillbe conductedtoresolveanysafetyquestionsassociatedwithsuchstructures,systems,orcomponents;and ascheduleoftheresearchanddevelopmentprogramshowingthatsuchsafetyquestionswillbe resolvedatorbeforethelatestdatestatedintheapplicationforcompletionofconstructionofthe facility.Suchadditionaldevelopmentactivitiesaredescribedbelow:

Performalaboratorytestingprogramtoconfirmfuelpebblebehavior(Section4.2.1)

Developahightemperaturematerialsurveillancesamplingprogramforthereactorvesseland internals(Section4.3.4)

PerformtestingofhightemperaturematerialtoqualifyAlloy316HandER1682(Section4.3)

Performanalysisrelatedtopotentialoxidationincertainpostulatedeventsforthequalificationof thegraphiteusedinthereflectorstructure(Section4.3)

Developmentandvalidationofcomputercodesforcoredesignandanalysismethodology (Section4.5)

Developandperformqualificationtestingforafluidicdiodedevice(Section4.6)

Justificationofthermodynamicdataandassociatedvaporpressurecorrelationsofrepresentative species.(Section5.1.3)

Completeevaluationsoftheintermediateandreactorcoolantchemicalinteraction(Section5.1.3)

Developprocesssensortechnologyforkeyreactorprocessvariables(Section7.5.3)

Developthereactorcoolantchemicalmonitoringinstrumentation(Section9.1.1) 1.3.10 References

1. KairosPowerLLC,PrincipalDesignCriteriafortheKairosPowerFluorideSaltCooledHigh TemperatureReactor,KPTR003NPA.

PreliminarySafetyAnalysisReport ReactorDescription KairosPowerHermesReactor

Revision0 454 4.6 THERMALHYDRAULICDESIGN 4.6.1 Description Thethermalhydraulicdesignofthereactorisacombinationofdesignfeaturesthatenableeffective heattransportfromthefuelpebbletothereactorcoolantandeventuallytotheheatrejectionsystem ofthereactor,consideringtheeffectsofbypassflowandflownonuniformity.Thedesignfeaturesthat playakeyroleinthethermalhydraulicdesignofthereactorsystemincludethefuelpebble(seeSection 4.2.1),reactorcoolant(seeSection5.1),reactorvesselandreactorvesselinternalstructures(see Section4.3),theprimaryheattransportsystem(PHTS)(seeSection5.1),andtheprimaryheatrejection system(PHRS)(seeSection5.2).

4.6.1.1 CoreGeometry Thecoregeometryismaintainedinpartbythereactorvesselinternalsincludingthereflectorblocks whichkeepthepebblesinageneralcylindricalcoreshape.Coolantinletchannelsinthegraphite reflectorblocksareemployedtolimitthecorepressuredrop.Theuseofpebblesinapackedbed configurationalsocreateslocalvelocityfieldsthatenhancepebbletocoolantheattransfer.Thereactor thermalhydraulicdesignusesthefollowingheattransfermechanismstoextractthefissionheat.

Pebbletocoolantconvectiveheattransfer

Pebbleradiativeheattransfer

Pebbletopebbleheattransferbypebblecontactconduction

Pebbletopebbleheattransferbyconductionthroughthereactorcoolant

Heattransfertothegraphitereflectorbymodesofconduction,convection,andradiation.

4.6.1.2 CoolantFlowPath Duringnormaloperation,reactorcoolantatapproximately550°Centersthereactorvesselfromtwo PHTScoldlegnozzlesandflowsthroughadowncomerformedbetweenthemetalliccorebarrelandthe reactorvesselshellasshowninFigure4.61.Thecoolantisdistributedalongthevesselbottomhead throughthereflectorsupportstructure,upthroughcoolantinletchannelsinthereflectorblocksandthe fuelingchuteandintothecorewithaportionofthecoolantbypassingthecoreviagapsbetweenthe reflectorblocks.Thecoolanttransfersheatfromfuelpebbleswhicharebuoyantinthecoolantand providescoolingtothereflectorblocksandthecontrolelementsviaengineeredbypassflow.Coolant travelsoutoftheactivecorethroughtheupperplenumviathecoolantoutletchannelsandexitsthe reactorvesselviathePHTSoutlet.Themaximumvesselexittemperatureis620°Canddependentonthe amountofcorrespondingbypassflowthroughthereflectorblocks.

DuringpostulatedeventswherethenormalheatremovalpaththroughthePHTSisnolongeravailable, includingwhenthePHTSisdrained,afluidicdiode(seeSection4.3),isusedtocreateanalternateflow path.Duringsuchevents,forcedflowfromtheprimarysaltpump(PSP)isalsonotavailable.Thefluidic diodethendirectsflowfromthehotwelltothedowncomerasshowninFigure4.61.Thisopensthe pathforcontinuousflowvianaturalcirculation.Duringnormaloperation,whilethePSPisinoperation, thefluidicdiodeminimizesreverseflow.Qualificationorfunctionaltestingplansforthefluidicdiodeas wellasanytestresultsneededtovalidateperformanceassumedinthesafetyanalysiswillbeavailable withtheapplicationforanoperatinglicense.