ML22244A248
ML22244A248 | |
Person / Time | |
---|---|
Site: | Hermes File:Kairos Power icon.png |
Issue date: | 09/30/2022 |
From: | Kairos Power |
To: | Office of Nuclear Reactor Regulation |
Shared Package | |
ML22244A246 | List: |
References | |
KP-NRC-2209-002 KP‐TR‐018‐NP, Rev 0 | |
Download: ML22244A248 (22) | |
Text
KPNRC2209002
Enclosure1 ChangestoPostulatedEventAnalysisMethodologyTechnicalReport(KPTR018)
(NonProprietary)
PostulatedEventAnalysisMethodology
NonProprietary DocNumber Rev EffectiveDate KPTR018NP 0 September2021
CompromisedTRISOdT+(1dIdSdOdT)xfT WheredI,dS,dO,anddTarethedefectivefractionsoftheIPyClayer,SiClayer,OPyClayer,andTRISO particle(i.e.,exposedkernel),respectively,whilefI(crackedIPyC),fIS(crackedIPyC+failedSiC),fS(failed SiC),andfT(failedTRISO)aretheinservicefailurefractionsfortheTRISOfuelfailuremodes.
Radionuclidereleaseiscalculatedforeachoftheintactandfivecompromisedstatesandtheoverall radionuclidereleasefromthepopulationofTRISOparticlesisobtainedbyweightingtheresulting releasefractionsbytheprobabilitiesofoccurrenceofthesestates.Disperseduraniumisassumedtobe fullyreleasedfromtheTRISOparticlesanditscontributionisaddedtothereleasefromtheintactand compromisedparticles.
TheverificationandvalidationplansfortheKPBISONcodearesummarizedinReference7.
4.3 NEUTRONICS TheSerpent2codeisusedforneutronicscalculations.TheStarCCM+codeisusedforbothdiscrete elementmodelingofthepebbleflowandporousmediaapproximationforthermalhydraulicsfeedback.
Thedescriptionofthesetoolsandmodelsalongwithvalidation,verification,anduncertaintiesare presentedinReference8.
4.4 STRUCTURALANALYSIS ThematerialsqualificationplanforhightemperaturemetallicmaterialsisprovidedinReference9.The materialsqualificationplanforgraphitematerialsisprovidedinReference11.Thesequalificationplans informthefiguresofmeritforthereactorvesselandinternalsdescribedinthisreport.Thestructural analysisofthematerialsunderpostulatedeventconditionswillbeperformedpriortosubmittalofan OperatingLicenseApplication.
4.5 EVENTSPECIFICMETHODS Thissectionprovidestheeventspecificmethodsthatusetheevaluationmodelswithconservative inputstoanalyzethetransientsdiscussedinSection3.Parameterrangesconsideredforalleventsare providedinTable44.SampleresultsforthepostulatedeventcategoriesareprovidedinAppendixAto illustratethetransientmethodologies.
4.5.1 SaltSpills ThesaltspilleventcategoryisdescribedinSection3.2.2.Theanalysisoftheboundingsaltspilleventis composedofthefollowingmodels:
Singlephasebreakflowmodel-themassflowratewithtimethroughthebreakandthefinalupper plenumfreesurfacelevelarethetwomajormodelingresults.Twophaseflowduetogas entrainmentispreventedthroughtheprimarypumpdesign.Twomodelingoptionsareavailable:(a)
KPSAMmodelbasedontheslightmodificationofthebaselineplantmodeltoincludethesingle phasebreakflowmodel;and(b)aconservativeanalyticalmodel Longtermperformanceofpassivedecayheatremovalmodel-thisissimilarasthemodelusedfor lossofforcedcirculationoverheatingboundingcasebutwithreducedfreesurfacelevel.
Radioactivesourcetermreleasemodelstoestimatetheboundingtotalreleasefromtheevent.Two majorsourcetermmodelsarerequired:
o Aerosolgenerationrateandamountduetosinglephasecoolantjet.
©2021KairosPowerLLC 39of102 PostulatedEventAnalysisMethodology
NonProprietary DocNumber Rev EffectiveDate KPTR018NP 0 September2021
MARreleaseassociatedwiththeaerosolgenerationisevaluatedthroughtheaerosolamountandthe concentrationofMARinthespilledFlibe.
EvaporativeReleasefromSpilledFlibe TheevaporativereleaseisthephasewhenthedischargeoftheFlibefromthevesselendsandthe spilledFlibecompletesspreadingonthereactorcellfloor.SmallamountofFlibeislikelytospreadonlya fractionofthereactorcellfloorareabeforeitiscompletelysolidified.ItisnotamajorconcernforMAR releaseforpartiallyspreadingFlibebecauseitfreezesquickly.Moreconcernislargeamountofspilled Flibewhichspreadstheentireareaofthereactorcellfloor.Inthiscase,aFlibepoolisexpectedtoform withadepthofmoltenFlibe.Thebottomofthepoolcontactswithsteellinerwhichisplacedtoprevent Flibeconcreteinteraction.Thetopofthepooltransfersheattoairthroughconvectionandto surroundingstructuresthroughradiation.NowaterandnowatersourcesarepresentwheretheFlibe spreads,andFlibewaterinteractionisexcluded.
MARreleasefromtheFlibepoolisdominatedbyevaporationoverthetopsurfaceofthepool.It continuesuntilthetopsurfaceissolidified.ToevaluatetheamountofMARreleased,Flibe temperaturesareevaluatedfirst.TheFlibetemperatureisbasedonenergybalanceofthepool.Forthe downwardheattransfer,alayerofsolidifiedFlibeisexpectedbetweentheliquidFlibeandtheliner.A 1Dmovingboundaryequationneedstobesolvedforthetemperatureprofilewithinthesolidifiedlayer, andgrowth(orshrinkage)ofthelayer.TheboundaryconditionattheinterfacebetweentheliquidFlibe andthesolidifiedlayerisdeterminedbyGlobeDropkincorrelation(Reference20).Theboundary conditionattheinterfacebetweenthesolidifiedlayerandtheunderneathlinerisgivenbygap conductancebetweenthesolidifiedlayerandtheliner,orthroughcontinuityconditionsoftemperature andheatfluxifnogapisassumed.TheheattransferbetweentheliquidFlibetothetopsurfaceis determinedbyGlobeDropkincorrelationagain,andtheheattransferontheairsideisbasedon McAdamscorrelation(Reference21)fornaturalconvectionandradiationwithalowtemperatureheat structure.TheseheattransfertermsarecombinedtodeterminetheenergychangeoftheliquidFlibe duetoheattransferandsolidificationatthebottom,andeventuallythetemperaturesoftheliquidFlibe andatthetopsurface.
Oncethetemperaturesaredetermined,evaporationratesareassessedwiththesamemethodasthe MHAforMAR.Theevaporationrateandintegralreleaseamountareevaluateduntilthetemperatureof thetopsurfaceislowerthantheFlibemeltingtemperature.
4.5.2 InsertionofExcessReactivity ThelimitinginsertionofexcessreactivityisdescribedinSection3.2.2.Theanalysisofthelimitingevent inthiscategory(acontrolelementwithdrawal)includesasystemsanalysiswithconservativeneutronics andfuelperformanceinput.
4.5.2.1 InitialConditions Theinitialconditionsofthetransientarebiasedtoensureaconservativeevaluationofthefiguresof merit.Thelimitingcontrolrodwithdrawalscenarioisassumedtoinitiatefromthehighestpossible reactorpowerbecausethehigherpowerprovidesthehighestheatinputtochallengetheidentified figuresofmerit.However,sensitivitiesmustbeperformedtoensurethatreactivityinsertionsfrom lowerpowerlevelsdonotunexpectedlychallengeafigureofmerit.Apoweruncertaintyisappliedto reactorpowertobiasthepowerhigh.coveruncertaintiesassociatedwithdetectionandsignaldelays.
©2021KairosPowerLLC 43of102 PostulatedEventAnalysisMethodology
NonProprietary DocNumber Rev EffectiveDate KPTR018NP 0 September2021
Sincethereactorpowerisbiasedhighintheassumedlimitingreactivityinsertionevent,theinitial reactorpowerismodeledat102%power.AdditionalinitialconditionvaluesareprovidedinTable44.
4.5.2.2 TransientAnalysisMethods Thereactivityinsertiontransientinvolvesachangeincorereactivitythataddsheattoprimarysystem.
Therefore,theeventanalysisrequiresinformationfromthesystemscode,fuelperformance,and neutronicsEMs.Thesystemscode,KPSAManalyzestheeventprogressionwithinputsfromthe neutronicsEMandprovidesinputstothefuelperformanceEM.
TheKPSAMbasemodelinSection4.1isusedwithmodificationstothereactorcoremodel.Thenuclear fissionpowerprofilewithinthepebblebedisaffectedbytheneutronfluxdistributioninthecoreregion andthefuelburnupstatusofthepebbles.Withasinglechannelmodelingofthecorezone,theaxial powerprofilecanbedefinedbyprovidingthepowershapefunctionintheKPSAMcodeinputdeck.
Theradialpowerprofileanditseffectonthecoolantandfueltemperaturesarenotexplicitlymodeled, however,becausethesinglechannelmodelusestheaveragepowerateachaxiallevel.Inorderto addresstheradialpowerdistributionandmodelitseffectsonthecoolantandfueltemperature, especiallytocapturetheirmaximumvalues,aseparatecorechannelrepresentinghighradialpoweris analyzedasahotchannel.Consequently,thecoreismodeledastwochannels,i.e.,anaveragechannel andahotchannel.Thehotchannelmodelassumescompletethermalisolationfromtheadjacent averagechannel.Inreality,however,sincethereisnophysicaldistinctionbetweenthetwochannels, somethermalhydraulicinteractionsareexpected.Theisolationassumption,therefore,wouldpredict higherfuelandcoolanttemperaturesinthehotchannel,resultinginmoreconservativepredictions.
Thehotchannelflowareaissettobesmallenoughtorepresenttheradialhighpowerzone.Acoreflow ratecorrespondingtotheareaisassignedtothehotchannel.
Inordertoensureaconservativeevaluationofthelimitingreactivityinsertionevent,thefollowing conservatismsareappliedtomodelinputs:
Highestworthcontrolelementisassumedtobewithdrawn.
o Thelimitingreactivityinsertionrateisdeterminedfromthelimitingreactivityrodworthper lengthfromneutronicsEM,combinedwiththemaximumcontrolelementwithdrawalspeed.
o Arangeofreactivityinsertionrates,uptoandincludingthemaximumreactivityinsertionrate, dependingonthecontrolelementcontroldesign,isareanalyzedinthefinalsafetyanalysis.to ensurethatthehighestreactivityinsertionrateisidentifiedthatboundsthereactivityinsertion ratespossibleforothereventsinthecategory.
o Atfullpowerandhotzeropower,theinitialcontrolelementpositionisassumedtobefully insertedinthereactorcore.
o Aconservativetreatmentisappliedtoaddresstheimpactofadynamicchangeinpowershape associatedwiththecontrolelementmovement.
Leastnegativereactivityfeedbackcoefficientsareusedtominimizethepowersuppressioneffectby thenegativereactivityfeedbackinpreliminarysafetyanalysis.
Mostnegativereactivityfeedbackcoefficientsarealsobeappliedandanalyzedtoinvestigatethe effectofdelayedreactortripinthefinalsafetyanalysis.
Thiseventisalsoidentifiedasoneoftheboundingfuelperformancecasesandmustbeanalyzedwith theKPBISONusingthemethodologydescribedinSection4.2.
©2021KairosPowerLLC 44of102 PostulatedEventAnalysisMethodology
NonProprietary DocNumber Rev EffectiveDate KPTR018NP 0 September2021
4.5.3 LossofForcedCirculation ThelimitinglossofforcedcirculationscenarioisdescribedinSection3.2.2.Theanalysisofthelimiting eventinthiscategoryincludesasystemsanalysiswithconservativeneutronicsinput.
4.5.3.1 InitialConditions Theinitialconditionsofthetransientarebiasedtoensureaconservativeevaluationofthefiguresof merit.Thelimitinglossofforcedcirculationscenarioisassumedtoinitiatefromthehighestpossible reactorpowerbecausethehigherpowerprovidesthehighestheatinputtochallengetheidentified figuresofmerit.However,sensitivitiesmustbeperformedtoensurethatlossofforcedcirculation eventsfromlowerpowerlevelsdonotunexpectedlychallengeafigureofmerit.Initialconditionvalues areprovidedinTable45.
4.5.3.2 TransientAnalysisMethods Theimportantthermalandhydraulicphenomenaduringthetransientincludetheflowfriction(negative head)atthepump,heattransferbetweenthecoolantandvariousinterfacingstructuressuchaspebble, reactorvesselwallandinternals.Becausetheforcedcirculationislost,thefluidfrictionthroughthe coolantloop,includingthereactorcore,ismoreimportantthanothereventswhereforcedflowis maintained.
KPSAMisusedtoanalyzetheeventprogressionwithinputsfromtheneutronicsEMandprovides inputstothestructuralintegrityEM.Uponalossofforcedcirculation,thereactorexperiencesan immediateincreaseinthefuel(pebble)temperaturebecauseofthereducedheattransfertothe coolant.ThecoolanttemperaturealsorisesbecauseheatremovalfromthereactorcoretothePHXis reducedandeventuallystops.Theincreasedtemperatureofthecoolantcouldchallengetheintegrityof reactorvesselandcorebarrelstructures.
Thenuclearfissionpowerprofilewithinthepebblebedisaffectedbytheneutronfluxdistributioninthe coreregionandthefuelburnupstatusofthepebbles.Thecurrentapproachtomodelingcorepower densityisanaxiallyresolvedradiallyaveragedmethodanddoesnotexplicitlyaccountforradialpower peakinginthecore.Theradialpowerprofileanditseffectonthecoolantandfueltemperaturesarenot explicitlymodeled;therefore,localpeakcoolantandfueltemperaturesarenotfullyresolved.Thehot channelfactormethodologydescribedinSection4.1accountsforbothpowerpeakingandthe possibilityofflowbeingpoorlydistributedinthecore.
TheKPSAMbasemodeldescribedinSection4.1isusedtoanalyzealossofforcedcirculationevent withthefollowingmodifications:
- Typically,theinteractionbetweenthefluidsystemandpump,duringthetransient,ismodeledusing headandtorquecurvesofthepump.Forthelossofforcedcirculationanalysis,thecoolantflow responseismodeledwithoutthedetailedpumpcharacteristics,byconservativelyassumingthe pumpheadafterthetransientstarts.Sincethepumprotorisassumedtostopinstantly,thepump torqueinformationisnotneeded.
- Thereactivityfeedbackeffectonpowerisminimizedforconservativecalculationbyusingleast negativereactivitycoefficientvaluestominimizetheeffectofpowerreductionfromtheinitial temperatureincreasebythereducedcoolantflow.
- TheuncertaintiesinmaterialpropertiesoftheFlibecoolantandvesselstructuresareaddressed conservatively.Thethermalmassofthematerialisreducedsuchthatthetemperaturesoffueland
©2021KairosPowerLLC 45of102 PostulatedEventAnalysisMethodology
NonProprietary DocNumber Rev EffectiveDate KPTR018NP 0 September2021
Table44:InputParametersConsideredforPostulatedEvents Parameter Value Rationale Reactorinitialpower Rangeofvaluesuptoand Rangesofpowerlevelsanalyzed includingmaximumpowerlevel includinguncertainty Coolantaveragetemperature Rangeovercontrollerdeadband Limitingvaluemaybeevent andmeasurementuncertainty dependent Systempressure Nominalforalleventsexcept Theeffectofthesystem forsaltspill pressureisinsignificantforall eventsexceptforsaltspill events Powerdistribution Axial+radialpowerdistribution Mostlimitingpowerdistribution forpeakingfactor isconsidered
Bothfreshcoreandequilibrium coreareconsideredaslimiting conditions Shutdownmargin Considersmostreactive Providemarginformalfunctions shutdownrodisunavailable Shutdownrodinsertiontime Conservativeshutdownrod Delaystheshutdownofthe insertiontimesassumed reactor Reactivitycoefficients Valuesassumedonanevent Limitingvaluesmaybeevent specificbasisandaccountfor dependent uncertainty DHRSCapacity Minimumandmaximum MinimumDHRSperformanceis performanceassumedonan expectedtobeboundingfor eventspecificbasis heatupevents
Minimumperformanceassumes MaximumDHRSperformanceis lossofatrainofDHRSand expectedtobeboundingfor minimumperformance overcoolingevents requirements
Maximumperformance assumesfullcapacityofDHRS plusuncertainty Decayheat Minimumandmaximumvalues Maximizingdecayheatis assumedonaneventspecific expectedtobeboundingfor basis heatupevents
Minimizingdecayheatis expectedtobeboundingfor overcoolingevents Materialproperties Rangedwithinuncertainties Uncertaintyinmaterial propertiesforcoolantand
©2021KairosPowerLLC 63of102 PostulatedEventAnalysisMethodology
NonProprietary DocNumber Rev EffectiveDate KPTR018NP 0 September2021
structurestreatedonanevent specificbasis ReactorProtectionSystem Actuationon: Analyticallimitsprovidemargin analyticallimits HighReactorPower tosafetylimits HighFluxRate HighCoolantTemperature Measurementuncertainty LowLevel appliedtosetpointsarederived fromanalyticallimits ReactorProtectionSystem Conservativedelaytimes Delayreactortrip actuationdelay applied PlantControlSystems Potentialeventmitigation Plantcontrolsystemsarenot capabilitiesoftheplantcontrol safetyrelated systemsarenotcredited Potentiallyadverse Suitablyconservativetreatment performanceofplantcontrol ofrelevantplantcontrol systemsneedstobeconsidered featuresisappliedinthesafety analysis
©2021KairosPowerLLC 64of102 PostulatedEventAnalysisMethodology
NonProprietary DocNumber Rev EffectiveDate KPTR018NP 0 September2021
Table44:InitialconditionsforInsertionofExcessReactivity Parameter InitialCondition Rationale Note ReactorInitial [102%] Potentialpowermeter Modeledexplicitly power uncertainty Coolantaverage Nominal+3%°C Controllerdeadbandand Modeledexplicitly temperature measurement uncertainties Systempressure Nominal Theeffectofthesystem Notmodeled pressureisinsignificant Powerdistribution Axial+radialpower Mostlimingpower Theaxialradially distributionforpeaking distributionisconsidered averagedpowerprofile factor ismodeledexplicitlyin KPSAM.Radialpeaking Bothfreshcore,and anduncertaintiesare equilibriumcoreare handledviahotchannel consideredaslimiting factors conditions
©2021KairosPowerLLC 65of102 PostulatedEventAnalysisMethodology
NonProprietary DocNumber Rev EffectiveDate KPTR018NP 0 September2021
Table45:InitialconditionsforLossofForcedCirculationOverheatingBoundingEvent Parameter InitialCondition Rationale Note ReactorInitial 102% Potentialpowermeter Modeledexplicitly power uncertainty Coolantaverage Nominal+3%°C Controllerdeadbandand Modeledexplicitly temperature measurement uncertainties Systempressure Nominal Theeffectofthesystem Notmodeled pressureisinsignificant Powerdistribution Axial+radialpower Mostlimingpower Theaxialradially distributionfor distributionare averagedpowerprofileis peakingfactor considered modeledexplicitlyinKP SAM.Radialpeakingand Bothfreshcore,and uncertaintiesarehandled equilibriumcoreare viahotchannelfactors consideredaslimiting conditions DHRScapacity 75% AssumeoneDHRStrainis Modeledexplicitlyby outofoperation reducingradiationview factor Heatstructureheat 75% Accountforany Modeledexplicitlyby capacity uncertaintyrelatedtothe applyingascalefactorto heatcapacityofsolid solidmaterialheat materialsinthemodel capacities Flibeheatcapacity 95% Accountforuncertaintyin Modeledexplicitlyby theheatcapacityofFlibe applyingascalefactorto Flibeheatcapacity Reactivity 75% Reducedtoconservatively Modeledexplicitly coefficient biastheimpactof magnitude reactivityfeedbackprior toreactortrip
©2021KairosPowerLLC 66of102 PostulatedEventAnalysisMethodology
NonProprietary DocNumber Rev EffectiveDate KPTR018NP 0 September2021
APPENDIXA. SAMPLETRANSIENTRESULTS
A.1 InsertionofExcessReactivity
EventDescription
Acontrolelementwith3.02$reactivityworthisassumedtobewithdrawncompletelyover100seconds.
Therateofreactivityinsertiondependsonaworthcurveandtheprogressionoftherodwithdrawal.
Whenthepowerlevelexceedsthetripsetpoint,16.8$ofreactivityisinsertedtothecoreover10 secondsaccordingtoanelementworthcurve.After10seconds,thisreactivityismaintained,simulating thetotalassumedelementworth.Theassumptionsmadearesummarizedasbelowandinitial conditionsareprovidedinTableA11.
Powertripsetpoint=120%
Upperplenumtemperaturetripsetpoint=958.1K(665°C+3%)
Powertripdelaytime=2s
Temperaturetripdelaytime=2s
Elementinsertiondelayaftertrip=2s
Timetofullyinsertrodsaftertrip=10s
Elementworth=16.8$
Primarysaltpumphalvingtime=2s
Intermediatevelocityhalvingtime=1s
KPSAManalysisresults
Thetransientisinitiatedat0secondswiththestartofreactivityinsertion.Priortoareactortrip,this positivereactivityinsertioniscounteractedinpartbynegativeDoppler,moderator,andcoolant feedbackrespectivelyinorderofmagnitude.Soonafterreactortripisinitiated,thetotalchangein reactivityofthesystembecomesnegativeandremainssodespitethecontinuationofthereactivity insertion,asshowninFigureA11
Whenthereactortripisinitiated,thePSPistrippedaswell,causingadecreaseinflowratethroughout thesystem.Thishasnotableimpactsonheattransferthroughoutthesystemduringtheentire simulation,asthiswillcharacterizesflowbehaviorinthecoreduringearlierstagesofthetransientand facilitatethetransitiontonaturalcirculationinthelongterm.
KPSAMConclusions
Areactivityinsertionof3.02$over100secondswasassumedtosimulateanuncontrolledcontrol elementwithdrawal.Thereactoristrippedbyahighfluxprotectionsignal(120%)at9secondsafterthe
©2021KairosPowerLLC 71of102 PostulatedEventAnalysisMethodology
NonProprietary DocNumber Rev EffectiveDate KPTR018NP 0 September2021
eventinitiation.FigureA12showskeypredictedtemperaturesrelativetothetemperatureusedinthe MHAanalysis.ThetemperaturerisesintheTRISOandfuelmatrixwereobserved,withverylittlechange intheFlibetemperature.Theresultingtemperatures,withtheexceptionofreflectortemperatures,are withintheacceptancelevel,withsignificantmargins.Theshortdeviation(i.e.,ontheorderofafew minutes)ofthereflectortemperatureslightlyabovetheMHAtemperatureisacceptableduetothe timeattemperaturenatureofdiffusionoftritiumoutofgraphitegrains.
FuelPerformanceAnalysis
ThepowerandtemperatureprofileswereusedasinputstoKPBISON.Thetransientismodeledatthe endofanormaloperationphasethatprovidestheadequatestateoftheTRISOfuelparticles(e.g.,
failurefractions,fissionproductdistribution,fissiongasinventory,etc.).
ThenormaloperationphaseismodeledusingtheirradiationconditionsshowninTableA121.
TableA132showsthefailureprobabilitiescalculatedbyKPBISONwithintheMonteCarlocalculation schemefortheTRISOfailuremodesfornormaloperationandreactivityinsertionevent.Theresultsin TableA132indicatethatthetemperatureduringnormaloperationandtransientisnothighenoughto challengetheTRISOfuelwithoverpressureorPdattack.Furthermore,TableA132showsthatthe reactivityinsertioneventdoesnotleadtoanysignificantincrementalfailure.
©2021KairosPowerLLC 72of102 PostulatedEventAnalysisMethodology
NonProprietary DocNumber Rev EffectiveDate KPTR018NP 0 September2021
TableA11:InitialconditionsforInsertionofExcessReactivityAssumedBoundingEvent
Parameter InitialCondition Rationale Reactorinitial 102% Assumedpowermeasurementuncertainty power Coolantaverage Nominal+3%°C Controllerdeadbandandmeasurement temperature uncertainties Systempressure Nominal Theeffectofthesystempressureisinsignificant Powerdistribution Axial+radialpower Mostlimitingpowerdistributionisconsidered distributionforpeaking factor
Bothfreshcore,and equilibriumcoreare consideredaslimiting conditions
©2021KairosPowerLLC 73of102 PostulatedEventAnalysisMethodology
NonProprietary DocNumber Rev EffectiveDate KPTR018NP 0 September2021
TableA121:95%ConfidenceLevelUpperLimitonInServiceFailureFractionsforNormalOperationand ReactivityInsertionPostulatedEvent
FailureProbability Normal NormalOperation+
Operation ReactivityInsertion ProbabilityofIPyCcracking 9.75x101 9.75x101 ProbabilityofSiCfailure 2.26x103 2.26x103 Contributionduetopalladiumpenetration 3.00x106 3.00x106 ContributionduetoIPyCcracking 2.26x103 2.26x103 ProbabilityofTRISOfailure 3.00x106 3.00x106
©2021KairosPowerLLC 74of102 PostulatedEventAnalysisMethodology
NonProprietary DocNumber Rev EffectiveDate KPTR018NP 0 September2021
TableA132:CompromisedFractionsforNormalOperationandReactivityInsertionPostulatedEvent
ReleaseFraction NormalOperation NormalOperation+
ReactivityInsertion Intact 2.25x102 2.25x102 CompromisedIPyC 9.65x101 9.65x101 CompromisedIPyC+SiC 2.24x103 2.24x103 CompromisedSiC 1.03x104 1.03x104 CompromisedOPyC 1.00x102 1.00x102 CompromisedIPyC+SiC+OPyC 5.30x105 5.30x105
©2021KairosPowerLLC 75of102 PostulatedEventAnalysisMethodology
NonProprietary DocNumber Rev EffectiveDate KPTR018NP 0 September2021
A.4 LossofForcedCirculation
EventDescription
Thepurposeofthiseventistodetermineifthereactorisadequatelydesignedforlongtermheatup events.Assuch,oneofthekeyassumptionsisthatonly75%ofDHRScapacityisavailable.Thelossof forcedcirculationoverheatingboundingeventappliedtotheplantmodelisinitiatedbymanually trippingthepumpandreducingtheheadtozeronearlyinstantaneously.Thecompletelossofflow definesthebeginningofthetransientandoccursconcurrentlywithalossofintermediatecoolantflow.
Intermediatecoolantflowisnotlikelytobelostduringalossofforcedcirculationeventbutisimposed inthisanalysistodemonstratethatintermediatecoolantflowisnotneededtoprotecttheplantduring alossofforcedcirculationevent.Duringthistransient,itisexpectedthatthelargereductionincoolant flowthroughthecoreregionresultsinasignificantriseintemperatureacrossthecore.Therisein temperatureeventuallycausesthereactortotrip,leadingtoalongtermcoolingtransientandthesafe shutdownconditionofthereactor.Initialconditionsfortheoverheatinglossofforcedcirculation assumedboundingeventareprovidedinTableA41.Asetofassumptionskeytothisanalysisarelisted inTableA442.
Thelossofforcedcirculationtransientwasrunoverthecourseof72hoursofsimulationtime.During thetransient,theupperplenumtemperatureexceedsthetripsetpointafter23seconds,withrod insertionfollowingatripdelay.Priortotherodinsertion,powerisreducedbyreactivityfeedbackasthe coreheatsup,afterwardsthestronginsertionofnegativereactivityfromtherodinsertionbringsthe reactorpowerdowntodecayheatlevels.FigureA41showskeypredictedtemperaturesrelativetothe temperatureusedintheMHAanalysis.
Thecompromisedfractionsforthesixstatesareobtainedfromthedefectandinservicefailure fractionsinTable43(seeSection4.2)andTableA453.TheseareshowninTableA464,assumingthe upperspecificationorboundingvalues.
LossofForcedCirculationOverheating
AlossofforcedcirculationtransientbiasedforoverheatingwasperformedusingKPSAM.Inthis simulation,itwasdemonstratedthatdecayheatremovalthroughtheDHRScancompensatefortheloss oftheintermediatesaltflowtoachievestablecoolingafterthefaststageofthetransient.
TheTRISOtemperatureprofileisboundedbytheMHAcurve,whichdemonstratesthatthediffusional releaseofradionuclidesfromfuelisboundedbytheMHA.TheFlibecovergasinterfacialtemperature profileisboundedbytheMHAcurve,whichdemonstratesthatthereleasefromFlibethrough evaporationisalsoboundedbytheMHA.
ThegraphitereflectorandfuelpebbletemperatureprofilesareboundedbytheMHAcurves,which demonstratesthatthetritiumreleaseisboundedbytheMHA.Itisshownthattemperaturesstaybelow thosedefinedbytheMHAexceptfortheupperplenumandreflector/graphitetemperatures.TheMHA releaseanalysisisconservative.TheMHAmarginismaintainedsincedeviationsareminimalandof shortduration(asscaledrelativetothecorrespondingX/Qwindowassociatedwiththedeviation)due totheconservativeevaporativeboundaryconditionsintheMHA(i.e.,aggressivetemperaturegradients drivingnaturalcirculation)andtimesassociatedwiththosetemperaturescorrespondingintheMHA
©2021KairosPowerLLC 85of102 PostulatedEventAnalysisMethodology
NonProprietary DocNumber Rev EffectiveDate KPTR018NP 0 September2021
(i.e.,evaporationanddiffusionaretimeattemperaturereleasemechanisms).Freezingdoesnotoccur inthiseventandthatthevesselremainsbelowthedefinedtemperaturelimit.
ThepowerandtemperatureprofileswereusedasinputstoKPBISON.Thetransientismodeledatthe endofanormaloperationphasethatprovidestheadequatestateoftheTRISOfuelparticles(e.g.,
failurefractions,fissionproductdistribution,fissiongasinventory,etc.).Thenormaloperationphaseis modeledusingtheirradiationconditionsshowninTableA431.
ThefailureprobabilitiesassociatedwiththepotentialfailuremodeslistedinSection4.2wereobtained byaMonteCarlosimulationof106samples.Note:thesamplesizewaschosentooptimizecomputing time.FromtheMonteCarlosimulationresults,upperlimitsonthefailureprobabilitiesassociatedwith eachfailuremodesareobtainedata95%confidencelevelusingtheCopperPearsonexactmethod.
TheselimitsarereportedinTableA453forthenormaloperationandlossofforcedcirculation postulatedevent.
TheresultsinTableA453indicatethatthetemperaturesduringnormaloperationandthetransientare nothighenoughtochallengetheTRISOfuelwithoverpressureorPdattack.Inparticular,theupperlimit onTRISOfailurebyoverpressureisonlyafewpercent(6%)oftheasmanufacturedexposedkernel fractionof5.0x105.Furthermore,TableA453showsthattheTRISOfuelismorelikelytofailduring normaloperationandthatthelossofforcedcirculationeventdoesnotleadtoanysignificant incrementalfailure.Becauseoftheconservativeassumptionsusedtosetupthelowandhigh temperaturetrajectories,thecalculatedfailureprobabilitiesarealsoconservativeandrepresentupper limitsforexpectedfailureprobabilities.
LossofForcedCirculationOvercooling
Whiletheoverheatingversionofthiseventisdesignedtochallengethemargintomaximum temperatures,theovercoolingscenarioisdesignedtochallengethemargintominimumtemperatures.
InthiscasethelimitingminimumtemperatureistakenasthepointatwhichFlibefreezes.Inorderto conservativelyprecludefreezing,theminimumvesselinnersurfacetemperatureistakenasabounding surrogatefortheminimumFlibetemperature.Theeventisinitiatedbymanuallyinitiatingacontrolrod insertion,primarypumptripandintermediateflowtripatt=0.Theprimarypumpandintermediate flowareallowedtocoastdownnormally.Additionally,theDHRSismodeledat100%capacity.Initial conditionsforthelossofforcedcirculationovercoolingeventareprovidedinTableA42.Asetofkey assumptionsforTheinputparametersassumedintheexamplecalculationisareprovidedinTableA4 42.
Theexamplecalculationofacooldownbiasedlossofforcedcirculationtransientwasrunoverthe courseof72hoursofsimulationtime.FigureA42showskeypredictedtemperaturesrelativetothe temperatureusedintheMHAanalysis.TemperaturespredictedbytheKPSAMmodelarebelowthe temperaturesdefinedbytheMHAandfreezingdoesnotoccurwithin72hours.
©2021KairosPowerLLC 86of102 PostulatedEventAnalysisMethodology
NonProprietary DocNumber Rev EffectiveDate KPTR018NP 0 September2021
TableA41:InitialConditionsforLossofForcedCirculationOverheatingAssumedBoundingEvent
Parameter InitialCondition Rationale Reactorinitial 102% Assumedpowermeasurementuncertainty power Coolantaverage Nominal+3%°C Controllerdeadbandandmeasurementuncertainties temperature Systempressure Nominal Theeffectofthesystempressureisinsignificant Powerdistribution Axial+radialpower Mostlimitingpowerdistributionisconsidered distributionfor peakingfactor
Bothfreshcore,and equilibriumcoreare consideredaslimiting conditions DHRScapacity 75% AssumeoneDHRStrainisoutofoperation Heatstructureheat 75% Accountforanyuncertaintyrelatedtotheheat capacity capacityofsolidmaterialsinthemodel Flibeheatcapacity 95% AccountforuncertaintyintheheatcapacityofFlibe Reactivity 75% Reducedtoconservativelybiastheimpactofreactivity coefficient feedbackpriortoreactortrip magnitude
©2021KairosPowerLLC 87of102 PostulatedEventAnalysisMethodology
NonProprietary DocNumber Rev EffectiveDate KPTR018NP 0 September2021
TableA42:InitialConditionsforLossofForcedCirculationOvercoolingAssumedBoundingEvent
Parameter InitialCondition Rationale Reactorinitial 98% Assumedpowermeasurementuncertainty power Minimizedstoredenergy
Coolantaverage Nominal3%°C Controllerdeadbandandmeasurementuncertainties temperature Systempressure Nominal Theeffectofthesystempressureisinsignificant Powerdistribution Axial+radialpower Mostlimitingpowerdistributionisconsidered distributionfor peakingfactor
Bothfreshcore,and equilibriumcoreare consideredaslimiting conditions DHRScapacity 100% FullcapacityofDHRS Heatstructureheat 75% Accountforanyuncertaintyrelatedtotheheat capacity capacityofsolidmaterialsinthemodel Minimizesstoredenergyandacceleratescooldown Flibeheatcapacity 95% AccountforuncertaintyintheheatcapacityofFlibe Minimizesstoredenergyandacceleratescooldown Reactivity Nominal Reactortripinitiatedimmediatelyfollowingevent coefficient initiation magnitude
©2021KairosPowerLLC 88of102 PostulatedEventAnalysisMethodology
NonProprietary DocNumber Rev EffectiveDate KPTR018NP 0 September2021
TableA431:IrradiationConditionsforSimulatedNormalOperationofHermes
Parameter Value Irradiationlength(EFPD) 300 Powerdensity(fission/m3s 5.7x1019 Burnup(%FIMA) 6.0 Fastflux(n/m2s,E>0.1MeV) 7.7x1017 Fastfluence(n/m2s,E>0.1MeV) 2.0x1025
©2021KairosPowerLLC 89of102 PostulatedEventAnalysisMethodology
NonProprietary DocNumber Rev EffectiveDate KPTR018NP 0 September2021
TableA442:InputsforLossofForcedCirculationPostulatedEvents
LossofForcedCirculation-Overheating LossofForcedCirculationOvercooling Parameter Value Parameter Value Temperaturetripdelaytime(s) 2 Timetofullyinsertrodsaftertrip(s) 10 Elementinsertiondelayaftertrip(s) 2 Timetofullyinsertrodsaftertrip(s) 10 Tripdelayaftereventinitiation(µs) 20 Tripworth($ofreactivity) 16.8 Tripworth($ofreactivity) 16.8 Primarysaltpumphalvingtime(pump 0.01 Primarysaltpumphalvingtime(s) 2 seizureapproximation)(s)
Intermediatevelocityhalvingtime(s) 1 Intermediatevelocityhalvingtime(s) 1 DHRScapacity(%) 75 DHRScapacity(%) 100
©2021KairosPowerLLC 90of102 PostulatedEventAnalysisMethodology
NonProprietary DocNumber Rev EffectiveDate KPTR018NP 0 September2021
TableA453:95%ConfidenceLevelUpperLimitsonInServiceFailureFractionsforNormalOperation andLossofForcedCirculationPostulatedEvents
FailureProbability NormalOperation NormalOperation+
LossofForced Circulation IPyCCracking 9.75x101 9.75x101 SiCFailure 2.26x103 2.26x103 Contributionduetopalladiumpenetration 3.00x106 3.00x106 ContributionduetoIPyCcracking 2.26x103 2.26x103 TRISOFailure 3.00x106 3.00x106
©2021KairosPowerLLC 91of102 PostulatedEventAnalysisMethodology
NonProprietary DocNumber Rev EffectiveDate KPTR018NP 0 September2021
TableA464:CompromisedFractionsforNormalOperationandLossofForcedCirculationPostulated Event
ReleaseFraction NormalOperation NormalOperation+Lossof ForcedCirculation Intact 2.25x102 2.25x102 CompromisedIPyC 9.65x101 9.65x101 CompromisedIPyC+SiC 2.24x103 2.24x103 CompromisedSiC 1.03x104 1.03x104 CompromisedOPyC 1.00x102 1.00x102 CompromisedIPyC+SiC+OPyC 5.30x105 5.30x105
©2021KairosPowerLLC 92of102