ML22286A242

From kanterella
Jump to navigation Jump to search
Kairos Power, LLC - Postulated Event Analysis Methodology
ML22286A242
Person / Time
Site: Hermes File:Kairos Power icon.png
Issue date: 10/13/2022
From:
Kairos Power
To:
Office of Nuclear Reactor Regulation
Shared Package
ML22286A240 List:
References
KP-NRC-2210-008
Download: ML22286A242 (3)


Text

PostulatedEventAnalysisMethodology NonProprietary DocNumber Rev EffectiveDate KPTR018NP 1

September2022

©2022KairosPowerLLC

29of98 duringthetransient;peakvesselandcorebarreltemperaturesarekeyfigureofmerittoensurethe reactorvesselperformsitssafetyfunction.

Thefiguresofmeritusedforsystemscodeanalysis(KPSAM)areasurrogatefordemonstratingthat consequencesareboundedbyMHAdoses,orformaintainingacoolablegeometry.However,ifdoseis thefigureofmeritforanevent(i.e.,adoseanalysisisperformedfortheevent),thenthosesurrogate figuresofmeritfordosedonotneedtomeetacceptancecriteria,becausethedoseacceptancecriterion isbeingexplicitlyevaluated.Likewise,whenafigureofmerithasbeenanalyzedseparatelyforbounding conditions(e.g.,astructuralanalysisofthevesselisperformedseparatelyfromthesystemsanalysis) thenthatfigureofmeritdoesnotneedtobeanalyzedinthesystemscodetomeetanacceptance criterion.

Thefiguresofmeritderivedforeachpostulatedeventandtheassociatedacceptancecriteriaare providedinTable32.Theapplicableevent(s)arethosethatareexpectedtoprovidethelimitingcase foragivenfigureofmerit.

3.4.2.1 PeakTRISOTemperatureTime Thereleasepathwayforfuelisdiffusionalreleaseasafunctionoftemperature.Duringapostulated event,peakTRISOtemperatureisboundedbytemperaturetimecurvederivedfromtheassumedMHA fueltemperaturetimecurvetolimitdiffusionofradionuclidestolessthantheamountduringtheMHA.

BoundingtemperaturetimecurvederivedfromtheassumedMHAtemperaturetimecurvecanbe basedonintegratedeffectsondose.

3.4.2.2 TRISOFailureProbability BasedonTRISOfuelqualificationeffortsasdescribedin(Reference26),itisexpectedthatduringa postulatedevent,incrementalfailureofTRISOfuelislimitedtoanegligiblelevelifthepeaktemperature isbelow1600°C.FailureprobabilityofTRISOfuelcanincreaseduetooverpressureintheTRISO particles,whichisafunctiontemperature.ThefailureprobabilityofTRISOfuelisevaluatedusingthe methodologydescribedinSection4.2.

3.4.2.3 PeakFlibecovergasinterfacialtemperatures RadionuclidereleasefromFlibeisthroughevaporation.Duringapostulatedevent,peakFlibecovergas interfacialtemperatureisboundedbytemperaturetimecurvederivedfromtheassumedMHAFlibe covergasinterfacialtemperaturetimecurvetolimitevaporationmasstransferofradionuclidestoless thantheamountduringtheMHA.BoundingtemperaturetimecurvederivedfromtheassumedMHA temperaturetimecurvecanbebasedonintegratedeffectsondose.

3.4.2.4 Peakvesselandcorebarreltemperature Topreventvesselfailureandmaintainlongtermcoolingduringapostulatedevent,thepeakvesseland corebarreltemperaturesmustbelessthanboth(a)amaximumallowabletemperaturederivedtolimit excessivecreepdeformationanddamageaccumulationand(b)750°C.Themaximumallowable temperatureiscalculatedsothatthecreepstraininducedbyprimarymembranestresseswithinthe vesselandthecorebarreldoesnotexceed1%attheendofreactorlife.Itsderivationreliesonthe followingassumptions:

AllregionsofthevesselandcorebarrelincontactwithFlibeareexposedtotemperatureslower thanorequalto650°Cforthehotoperatingtimeofthevesselandtemperatureslowerthanor

PostulatedEventAnalysisMethodology NonProprietary DocNumber Rev EffectiveDate KPTR018NP 1

September2022

©2022KairosPowerLLC

30of98 equaltothevesselandcorebarrelpeaktemperaturesforamaximumdurationof360hours(15 days).

Themaximumprimarystressesundergonebythevesselandcorebarrelcanbeboundedbya maximumstressvaluederivedasdescribedintheevaluationmodelforstructuralintegrity.

3.4.2.5 Minimumreactorvesselinnersurfacetemperature ToensurethattheFlibetemperaturewithinthevesselremainsabovetheFlibefreezingtemperature duringthemissiontimeoftheDHRSforatleast72hours,alowerlimitonthereactorvesselinner surfacetemperatureisconservativelysettotheFlibefreezingtemperature.

3.4.2.6 Airbornereleasefractionofspilled/splashedFlibe Duringasaltspillevent,aerosolscanbegeneratedthroughjetbreakup,andspillingandsplashing.The airbornereleasefractionsduetoaerosolizationmustbelimitedsothatthedoseconsequencesofthe saltspilleventsareboundedbytheMHA.

3.4.2.7 VolatileproductsfromFlibechemicalreactions Flibecouldbeexposedtoairduringasaltspillevent.ThekeyreleasepathwayofradionuclidefromFlibe isthroughevaporation,whichisafunctionofvaporpressureoftheradionuclidespecies.WhenFlibeis exposedtoair,theFlibeairchemicalreactiondoesnotresultinexcessivereactivevaporizationwhich wouldformradionuclidechemicalspeciesthathaveahighervaporpressurethanthosealreadyexistsin Flibecirculatingactivity.ItisexpectedthatafewspecificRNchemicalspecieswillhaveahighervapor pressureafterreactingwithairthanthoseinthecirculatingactivity.However,thosespeciesare expectedtobepresentatverylowconcentrationsandtheresultingdifferenceinevaporationratewill beofminimalsignificance.Forexample,CsFdissolvedinFlibedoesnotreactwithairtoformahighly volatilecesiumhydroxide.Assuch,Flibeairreactiondoesnotresultinsignificantadditionalreleaseof radionuclidesfromFlibethroughevaporation.

ThereactorcellfloorisassumedtobedesignedtoprecludeFlibeconcretereaction.WhenFlibeis spilled,ithasthepotentialtocomeincontactwithstainlesssteelandinsulationmaterial.Flibe interactionswithstainlesssteelandinsulationdonotresultinformationofradionuclidechemical speciesthathaveahighervaporpressurethanthosealreadyexistsinFlibecirculatingactivity.

Therefore,FlibestainlesssteelandFlibeinsulationreactionsintheHermesdesignbasisdonotresultin additionalreleaseofradionuclidesfromFlibethroughevaporation.

Duringasaltspillevent,Flibeisnotexposedtowater,andthereforenoFlibewaterreactionneedtobe considered.However,ifacommoncausefailure(e.g.,seismic)causesawatercontainingSSCandFlibe containingSSCtofailconcurrently,theamountofwaterthatFlibecouldbeexposedtoisassumedtobe limitedtoanupperboundlimitbydesign.Wheninteractingwiththisupperboundamountofwater, Fliberedoxpotentialisstillmaintainedwithintheboundsofsaltchemistryconditionsdefinedforthe evaporationmodel;therefore,doesnotresultinadditionalreleaseofradionuclidesfromFlibethrough evaporation.

3.4.2.8 Masslossofstructuralgraphiteandpebblecarbonmatrix PebblesandstructuralgraphitenotsubmergedinFlibecanoxidizewhenexposedtoair.Ifthemassloss ofthepebblecarbonmatrixdoesnotextendtothefueledzone,tritiumreleaseistheonlyadditional MARreleasepathwaytobeconsideredwhenfuelpebbleoxidizes.Tritiumispuffreleasedfromoxidized pebblecarbonmatrixandoxidizedstructuralgraphite.IntheMHAanalysis,theassumedtemperature

PostulatedEventAnalysisMethodology NonProprietary DocNumber Rev EffectiveDate KPTR018NP 1

September2022

©2022KairosPowerLLC

56of98 Table32:DerivedFiguresofMeritandAcceptanceCriteriaforPostulatedEvents FigureofMerit AcceptanceCriterion ApplicableEvents PeakTRISOtemperaturetime Generallyboundedbytemperature timecurvesderivedfromthe assumedMHAfueltemperature timecurve SaltSpills,Reactivity Insertion,IncreaseinHeat Removal,LossofForced Circulation,PHSSbreak, Seismic TRISOfailureprobability NegligibleTRISOfuelfailure probability SaltSpills,Reactivity Insertion,IncreaseinHeat Removal,LossofForced Circulation,PHSSbreak PeakFlibecovergasinterfacial temperature Generallyboundedbytemperature timecurvesderivedfromthe assumedMHAFlibecovergas interfacialtemperaturetimecurve

SaltSpills,Reactivity Insertion,IncreaseinHeat Removal,LossofForced Circulation,PHSSbreak Peakvesselandcorebarrel temperatures Boundedbyboththemaximum allowabletemperaturederivedto limitexcessivecreepdeformation anddamageaccumulationandby 750°C(highestvesseldesign temperature)

SaltSpills,Reactivity Insertion,IncreaseinHeat Removal,LossofForced Circulation,PHSSbreak Minimumreactorvesselinner surfacetemperature AboveFlibemeltingtemperature LossofForcedCirculation (overcooling)

Airbornereleasefractionof spilled/splashedFlibe Belowairbornereleasefraction limitderivedtoboundtotalreleases ofthepostulatedeventtolessthan theMHA SaltSpills,Seismic Volatileproductformationfrom Flibeairreaction Negligibleamountofadditional volatileproductsformed SaltSpills,PHSSbreak Volatileproductformation fromFlibechemicalreactionwith water,concrete,and/or constructionmaterials(e.g.,

insulation,steel)

Negligibleamountofadditional volatileproductsformed SaltSpill Masslossofpebblecarbon matrixduetooxidation Masslossdoesnotextendintothe fueledzone SaltSpills,PHSSbreak Masslossofstructuralgraphite duetooxidation BoundedbytheMHArelease SaltSpills,PHSSbreak Peakstructuralgraphite temperaturetime Generallyboundedbytemperature timecurvesderivedfromthe assumedMHAstructuralgraphite temperaturetimecurve

SaltSpills,Reactivity Insertion,IncreaseinHeat Removal,LossofForced Circulation,PHSSbreak