ML22224A201

From kanterella
Jump to navigation Jump to search
Enclosure 1: Changes to Postulated Event Analysis Methodology Technical Report (KP-TR-018)
ML22224A201
Person / Time
Site: Hermes File:Kairos Power icon.png
Issue date: 08/12/2022
From:
Kairos Power
To:
Office of Nuclear Reactor Regulation
Shared Package
ML22224A199 List:
References
KP‐TR‐018‐NP, Rev. 0
Download: ML22224A201 (14)


Text

PostulatedEventAnalysisMethodology

NonProprietary DocNumber Rev EffectiveDate KPTR018NP 0 September2021

ForpipebreakscenariosinotherFlibecontainingSSCs(exceptthevessel)notconnectedtothereactor, thecoredoesnotexperienceatransientfromreactortrip.

Inordertoensurethatthedesignfeaturesmitigatingasaltspilleventaresufficienttokeepthe consequencesboundedbytheMHA,thefollowingkeyfiguresofmeritmustbeevaluated:

PeakTRISOtemperaturetolimitdiffusionofradionuclides PeakTRISOtemperatureTRISOfailureprobabilitytolimitincrementalTRISOlayerfailures PeakFlibecovergasinterfacialtemperaturetolimitevaporationmasstransferofradionuclides Peakvesselandcorebarreltemperaturestopreventvesselfailureandmaintainlongtermcooling AerosolsgeneratedbyreleasedFlibetolimitthematerialsatriskreleased VolatileproductsformedfromthechemicalreactionbetweenFlibeandair,Flibeandstainlesssteel, andFlibeandinsulationtolimitthematerialsatriskreleased Masslossofstructuralgraphiteduetooxidationtolimittritiumrelease Masslossofpebblecarbonmatrixduetooxidationtolimittritiumreleaseandpreventadditional releaseofmaterialsatrisk Peaktemperatureofstructuralgraphitetolimitthetritiumrelease Peaktemperatureofpebblecarbonmatrixtolimittheamountoftritiumrelease 3.2.2.2 InsertionofExcessReactivity Acontrolsystemerrororoperatorerrorcausesacontinuouswithdrawalofthehighestworthcontrol elementatmaximumreactivitycontrolandshutdownsystem(RCSS)drivespeed.Thereactivity insertionisdetectedbythereactorprotectionsystemwhichinitiatescontrolandshutdownelements insertion,fulfillingthereactivitycontrolfunction.Thereactordecayheatremovalsystemlimitsreactor temperatureandfulfillstheheatremovalfunction.

Asafestateisestablishedwhen:

Thecoreissubcriticalandlongtermreactivitycontrolisassured.

Thedecayheatisbeingremovedandlongtermcoolingisassured,wherefiguresofmerit temperaturesaresteadilydecreasingandFlibetemperatureremainsaboveFlibefreezing temperatureduringthemissiontimeofthedecayheatremovalsystem.

Thisnarrativecapturesthelimitingeventofthispostulatedeventcategory.Othereventsgroupedinthis categoryinclude:

Reactivityinsertioneventscausedbyfuelloadingerror(e.g.,errorsinrateoffreshfuelinjection, incorrectorderoffuelinsertion)

Reactivityinsertioneventswithconcurrentpumptrip Reactivityinsertioneventswithnormalheatrejectionavailable Localphenomenaleadingtorampinsertionofreactivity Changeinreactivityduetoshiftingofgraphitereflectorblocks

©2021KairosPowerLLC 20of97 PostulatedEventAnalysisMethodology

NonProprietary DocNumber Rev EffectiveDate KPTR018NP 0 September2021

Ventingofgasbubblesaccumulatedintheactivecore Localphenomenaleadingtostepinsertionofreactivity Localnegativereactivityanomaly(e.g.,inadvertentsingleelementinsertion,covergasinjection)

Reactivityinsertioneventsduringstartup Thecontrolelementwithdrawalatmaximumspeed,describedabove,isassumedtobethelimiting eventofthiscategory.However,theamountandrateofreactivityinsertionfromothergroupedevents underinsertionofexcessreactivity(e.g.,duringthepebbleloadingerrorevent,ventingofaccumulated gasbubblesintheactivecore)iscomparedwiththosefromthecontrolelementwithdrawalevents.

Additionally,thereactivityinsertionduetoIncreaseinHeatRemovaleventsanddesignbasisseismic event,respectively,iscomparedtothereactivityinsertionofcontrolelementwithdrawalevents.

Inordertoensurethatthedesignfeaturesmitigatingareactivityinsertioneventaresufficienttokeep theconsequencesboundedbytheMHA,thefollowingkeyfiguresofmeritmustbeevaluated:

PeakTRISOtemperaturetolimitdiffusionofradionuclides PeakTRISOtemperatureTRISOfailureprobabilitytolimitincrementalTRISOlayerfailures PeakFlibecovergasinterfacialtemperaturetolimitevaporationmasstransferofradionuclides Peakvesselandcorebarreltemperaturestopreventvesselfailureandmaintainlongtermcooling Peaktemperatureofstructuralgraphitetolimitthetritiumrelease Peaktemperatureofpebblecarbonmatrixtolimittheamountoftritiumrelease 3.2.2.3 IncreaseinHeatRemoval Theprimarycoolantpumpoverspeeds,causingasurgeinsertionofcoldFlibeintothecore.Theeventis detectedbythereactorprotectionsystem,whichinitiatescontrolandshutdownelementsinsertion, fulfillingthereactivitycontrolfunction.Thereactorprotectionsystemalsotripstheprimarycoolant pump.Thereactordecayheatremovalsystemlimitsreactortemperatureandfulfillstheheatremoval function.

Asafestateisestablishedwhen:

Thecoreissubcriticalandlongtermreactivitycontrolisassured.

Thedecayheatisbeingremovedandlongtermcoolingisassured,wherefigureofmerit temperaturesaresteadilydecreasingandFlibetemperatureremainsaboveFlibefreezing temperatureduringthemissiontimeofthedecayheatremovalsystem.

Thisnarrativecapturesthelimitingeventofthispostulatedeventcategory.Othereventsgroupedinthis categoryinclude:

Increaseinheatremovalduetooverspeedofintermediatesaltpump Increaseinheatremovalduringlowpoweroperation Theincreaseinheatremovaleventsaredemonstratedtobeboundedbytheinsertionofexcess reactivitypostulatedevent.

©2021KairosPowerLLC 21of97 PostulatedEventAnalysisMethodology

NonProprietary DocNumber Rev EffectiveDate KPTR018NP 0 September2021

Inordertoensurethatthedesignfeaturesmitigatinganincreaseinheatremovaleventaresufficientto keeptheconsequencesboundedbytheMHA,thefollowingkeyfiguresofmeritmustbeevaluated:

PeakTRISOtemperaturetolimitdiffusionofradionuclides PeakTRISOtemperatureTRISOfailureprobabilitytolimitincrementalTRISOlayerfailures PeakFlibecovergasinterfacialtemperaturetolimitevaporationmasstransferofradionuclides Peakvesselandcorebarreltemperaturestopreventvesselfailureandmaintainlongtermcooling Peaktemperatureofstructuralgraphitetolimitthetritiumrelease Peaktemperatureofpebblecarbonmatrixtolimittheamountoftritiumrelease 3.2.2.4 LossofForcedCirculation Thefailureoftheprimarysaltpumpresultsinthelossofforcedcirculation.Thereducedflowis detecteddirectlyorindirectlybythereactorprotectionsystem,whichinitiatescontrolandshutdown elementsinsertion,fulfillingthereactivitycontrolfunction.Thereactordecayheatremovalsystem limitsreactortemperatureandfulfillstheheatremovalfunction.

Asafestateisestablishedwhen:

Thecoreissubcriticalandlongtermreactivitycontrolisassured.

Thedecayheatisbeingremovedandlongtermcoolingisassured,wherefiguresofmerit temperaturesaresteadilydecreasingandFlibetemperatureremainsaboveFlibefreezing temperatureduringthemissiontimeofthedecayheatremovalsystem.

Thisnarrativecapturesthelimitingeventofthispostulatedeventcategory.Othereventsgroupedinthis categoryincludelossofforcedcirculationdueto:

Blockageofflowpathexternaltothereactorvesselintheprimaryheattransportsystem, Spuriouspumptripsignal Pumpseizure Shaftfracture Bearingfailure Pumpcontrolsystemerrors Supplybreakerspuriousopening Lossofnetpositivesuctionhead(e.g.,pumpoverspeed,lowlevel)

Lossofnormalelectricalpower Lossofnormalheatsink Therearetwoboundingeventswithinthiseventcategorytoevaluatethelongtermpassivecooling performance.Oneistoboundtheoverheatingconsequence,andanotheristoboundthedowncomer freezingconsequence.Twoscenariosareconsideredforthesetwoboundingevents:

©2021KairosPowerLLC 22of97 PostulatedEventAnalysisMethodology

NonProprietary DocNumber Rev EffectiveDate KPTR018NP 0 September2021

Thefirsteventscenario(overheating)considersthelimitingcasetoanalyzethepeakvesselandcore barreltemperaturestopreventvesselfailureandmaintaincoolablegeometry.Themostlimiting reactoroperationpowerandoperatinghistoryareassumed.

Thesecondscenario(longtermovercooling)aimatthereactorperformanceevaluationintermsof coolantfreezepreventionatdowncomer.Aspectrumofreactordecayheatlevelsandoperating powerlevelsareanalyzedforthispurpose.

Fortheoverheatingboundingevent,thelossofforcedcirculationduetolossofnormalelectricalpower isboundedbytheprimarysaltpumpfailurescenario.Thelossofpowertothereactivitycontroland shutdownsystemmechanismsresultsinreleaseandinsertionofthecontrolandshutdownelements.As such,thereactorpowerisreducedfastercomparedtootherlossofforcedcirculationscenarioswhere thereactortripsonareactortripsignal.Forthelongtermovercoolingboundingevent,thelossof normalelectricalpowereventboundsotherlossofcirculationscenariossincethiseventhastheleast storedenergy.

Inordertoensurethatthedesignfeaturesmitigatingalossofforcedcirculationeventaresufficientto keeptheconsequencesboundedbytheMHA,thefollowingkeyfiguresofmeritmustbeevaluated:

PeakTRISOtemperaturetolimitdiffusionofradionuclides PeakTRISOtemperatureTRISOfailureprobabilitytolimitincrementalTRISOlayerfailures PeakFlibecovergasinterfacialtemperaturetolimitevaporationmasstransferofradionuclides Peakvesselandcorebarreltemperaturestopreventvesselfailureandmaintainlongtermcooling Peaktemperatureofstructuralgraphitetolimitthetritiumrelease Peaktemperatureofpebblecarbonmatrixtolimittheamountoftritiumrelease Theonlyfigureofmeritforthelongtermovercoolingscenariois:

Minimumreactorvesselinnersurfacetemperaturetopreventpartialfreezingwithindowncomer 3.2.2.5 PebbleHandlingandStorageSystemMalfunction Therearethreetypesofeventsinthiseventcategory:pebblehandlingandstoragesystem(PHSS) break,lossofPHSScooling,andgrindingofapebbleinthepebblehandlingmachine.However,theloss ofPHSScoolingisaneventmitigatedthroughdesignofpebblestoragesystem,andthegrindingof pebblemitigatedthroughthedesignofpebbleextractionmachine.Theconsequencesofthesetwo eventsareexpectedtobelimitedbythedesignspecificationswhichareboundedbyMHAconsequence.

Therefore,thePHSSbreakeventistheassumedlimitingeventtobeanalyzedforthiscategory.

Thepebblehandlingandstoragesystemtransferlinebreakswhenpebblesaregettingremovedfrom thecore,resultinginspillingofthepebbleswithinthetransferlineintothereactorcell.Thisconditionis detecteddirectlyorindirectlybythereactorprotectionsystem,whichtripsthepebblehandlingand storagesystemtostoppebblemovement.Forthespilledpebbles,thereactivitycontrolfunctionis fulfilledbythelowfissileinventoryofpebbles,whichprecludescriticalitysafetyconcerns,whileheat transfermechanismswithintheroomfulfillstheheatremovalfunction.Thestructuralintegrityofthe pebblesmaintainstheconfinementfunction.Forthepebblesremaininginthepebblehandlingand storagesystem,thereactivitycontrol,heatremovalandconfinementfunctionscontinuetobefulfilled bythesystemdesignresultinginasafeandstablestate.TheheatupofthepebblesinthePHSS

©2021KairosPowerLLC 23of97 PostulatedEventAnalysisMethodology

NonProprietary DocNumber Rev EffectiveDate KPTR018NP 0 September2021

mobilizestheFlibeaccumulatedonthepiping.AiringressintothePHSSandreactorcovergasregion occursthroughthebreak.

Asafestateisestablishedwhen:

Themovementofpebblesoutsideofthecorehasstoppedandcriticalitysafetyisassured.

Decayheatisbeingremovedfrompebblesoutsideofthecoreandlongtermcoolingisassured, wherefigureofmerittemperaturesaresteadilydecreasing.

ThisnarrativecapturesthelimitingPHSSbreakeventofthispostulatedeventcategory.OtherPHSS breakeventsgroupedinthiscategoryinclude:

Atransferlinebreakwhenpebblesaregettinginsertedintoemptycore Atransferlinebreakwhenpebblesaregettinginsertedintothecoreatpower Atransferlinebreakwhenpebblesaregettingtransferredtostoragecanisters Amishandlingoffueloutsidethereactor(e.g.,containmentbox,atthematerialbalanceareasand keymeasurepoints)

ThePHSSbreakeventwhenpebblesareextractedfromthecoreisconsideredboundingamongthe groupedeventsbecausethespilledpebbleshavehighertemperaturesandburnups,therefore,the highestdecayheatandMARloadingcomparedtoothereventsinthegroup.

InordertoensurethatthedesignfeaturesmitigatingaPHSSbreakeventaresufficienttokeepthe consequencesboundedbytheMHA,thefollowingkeyfiguresofmeritmustbeevaluated:

PeakTRISOtemperatureexvesseltolimitdiffusionofradionuclides MobilizedFlibeandgraphitedustreleased PeakTRISOtemperatureinvesseltolimitdiffusionofradionuclides PeakTRISOtemperatureTRISOfailureprobabilitytolimitincrementalTRISOlayerfailures PeakFlibecovergasinterfacialtemperaturetolimitevaporationmasstransferofradionuclides Peakvesselandcorebarreltemperaturestopreventvesselfailureandmaintainlongtermcooling Masslossofpebblecarbonmatrixduetooxidationtolimittritiumreleaseandpreventadditional releaseofmaterialsatrisk Masslossofstructuralgraphiteduetooxidationtolimittritiumrelease Peaktemperatureofstructuralgraphitetolimitthetritiumrelease Peaktemperatureofpebblecarbonmatrixtolimittheamountoftritiumrelease 3.2.2.6 RadioactiveReleasefromaSubsystemorComponent Anexternalhazardeventcausesafailureofcomponentsnotprotectedfromthehazardtofailand releaseMARstoredinthesesystems.Thesesystemsinclude:

Tritiummanagementsystem Inertgassystem Chemistrycontrolsystem

©2021KairosPowerLLC 24of97 PostulatedEventAnalysisMethodology

NonProprietary DocNumber Rev EffectiveDate KPTR018NP 0 September2021

Figuresofmeritmethodcansignificantlyreduceanalysiscostsincethedoseofthesamerelease pathwaycanbeboundedbyoneboundingcase.

Figuresofmeritforthepostulatedeventmustbedemonstratedtomeetacceptancecriteriaderived fromtheMHAconditions.Thefiguresofmeritforeachpostulatedeventaredevelopedbasedonthe releasepathwaysofradionuclidesduringtheevent.Theacceptancecriteriaforfiguresofmeritare developedtoensuretheradionuclidereleasesfromthepostulatedeventsthroughthesamepathways astheMHAarelessthanthosefromtheMHA.Therefore,iftheacceptancecriteriaforallfiguresof meritforapostulatedeventaremet,thedoseofthepostulatedeventisboundedbytheMHA.

ForthepostulatedeventswithadditionalreleasepathwaysthatdonotexistintheMHA,thethird methodisused.Thismethodhasthreesteps:

1. Boundingdosesarecalculatedforeachreleasepathway;boundingdoseforeachrelease pathwayisthenusedtoderiveacceptancecriteriaforfiguresofmeritaccordingtothe boundingreleasepathwayconditionsforthepostulatedevent.
2. Foreachspecificpostulatedevent,iffiguresofmeritfortheinvolvedreleasepathways meetacceptancecriteria,thecorrespondingboundingdosevaluesforthepathwayscanbe usedinsteadofdirectdoseanalysis.Directdoseanalysisforcertainreleasepathwayscan alsobeperformed.
3. Allthedosevaluesforeachreleasepathwayforthepostulatedeventaresummedto comparewiththeMHAtotalreleasedose.Thetotaldoseforthepostulatedeventmustbe lowerthantheMHAdose.

Asanexample,forthefiguresofmeritmethod(i.e.,secondmethod),duringacoretransient, radionuclidesdiffusethroughtheTRISOfuellayersasafunctionoftemperature.Radionuclides inFlibeevaporatefromtheFlibecovergasinterfaceasafunctionoftemperature.Tritiumdesorbsfrom thegraphiteandpebblecarbonmatrix.Therefore,thepeakTRISOtemperaturetime,peakFlibecover gasinterfacialtemperature,peakgraphitetemperatureandpeakpebblecarbonmatrixtemperature profilesduringtheeventarefiguresofmeritforapostulatedeventthatinvolvesthecore.Additionally, peakTRISOtemperatureTRISOfailureprobabilityisalsoafigureofmerittolimitincrementalfuelfailure toanegligiblelevelduringthetransient;peakvesselandcorebarreltemperaturesarekeyfigureof merittoensurethereactorvesselperformsitssafetyfunction.

Thefiguresofmeritusedforsystemscodeanalysis(KPSAM)areasurrogatefordemonstratingthat consequencesareboundedbyMHAdoses,orformaintainingacoolablegeometry.However,ifdoseis thefigureofmeritforanevent(i.e.,adoseanalysisisperformedfortheevent),thenthosesurrogate figuresofmeritfordosedonotneedtomeetacceptancecriteria,becausethedoseacceptancecriterion isbeingexplicitlyevaluated.Likewise,whenafigureofmerithasbeenanalyzedseparatelyforbounding conditions(e.g.,astructuralanalysisofthevesselisperformedseparatelyfromthesystemsanalysis) thenthatfigureofmeritdoesnotneedtobeanalyzedinthesystemscodetomeetanacceptance criterion.

Thefiguresofmeritderivedforeachpostulatedeventandtheassociatedacceptancecriteriaare providedinTable32.

3.4.2.1 PeakTRISOTemperatureTime Thereleasepathwayforfuelisdiffusionalreleaseasafunctionoftemperature.Duringapostulated event,peakTRISOtemperatureisboundedbytemperaturetimecurvederivedfromtheassumedMHA

©2021KairosPowerLLC 29of97 PostulatedEventAnalysisMethodology

NonProprietary DocNumber Rev EffectiveDate KPTR018NP 0 September2021

fueltemperaturetimecurvetolimitdiffusionofradionuclidestolessthantheamountduringtheMHA.

BoundingtemperaturetimecurvederivedfromtheassumedMHAtemperaturetimecurvecanbe basedonintegratedeffectsondose.

3.4.2.2 PeakTRISOFailureProbabilitytemperature BasedonTRISOfuelqualificationeffortsasdescribedin(Reference26),itisexpectedthatdDuringa postulatedevent,incrementalfailureofTRISOfuelislimitedtoanegligiblelevelifthepeaktemperature isbelow1600°C.FailureprobabilityofTRISOfuelcanincreaseduetooverpressureintheTRISO particles,whichisafunctiontemperature.ThefailureprobabilityofTRISOfuelisevaluatedusingthe methodologydescribedinSection4.2.Incrementalfailureisdemonstratedtobenegligibleforpeakfuel temperaturesupto1600°C.

Alternatively,usingthemethodologydescribedinSection4.2,theincrementalfuelfailureduringthe postulatedeventiscalculatedusingtheassumedMHAfueltemperatureprofilesandisdemonstratedto benegligible.IfthepeakTRISOtemperatureduringapostulatedeventisboundedbytheassumedMHA fueltemperaturetimecurve,incrementalfailurefuelfailureisdemonstratedtobenegligible.

3.4.2.3 PeakFlibecovergasinterfacialtemperatures RadionuclidereleasefromFlibeisthroughevaporation.Duringapostulatedevent,peakFlibecovergas interfacialtemperatureisboundedbytemperaturetimecurvederivedfromtheassumedMHAFlibe covergasinterfacialtemperaturetimecurvetolimitevaporationmasstransferofradionuclidestoless thantheamountduringtheMHA.BoundingtemperaturetimecurvederivedfromtheassumedMHA temperaturetimecurvecanbebasedonintegratedeffectsondose.

3.4.2.4 Peakvesselandcorebarreltemperature Topreventvesselfailureandmaintainlongtermcoolingduringapostulatedevent,thepeakvesseland corebarreltemperaturesmustbelessthanboth(a)amaximumallowabletemperaturederivedtolimit excessivecreepdeformationanddamageaccumulationand(b)816°C.Themaximumallowable temperatureiscalculatedsothatthecreepstraininducedbyprimarymembranestresseswithinthe vesselandthecorebarreldoesnotexceed1%attheendofreactorlife.Itsderivationreliesonthe followingassumptions:

  • AllregionsofthevesselandcorebarrelincontactwithFlibeareexposedtotemperatureslower thanorequalto650°Cforthehotoperatingtimeofthevesselandtemperatureslowerthanor equaltothevesselandcorebarrelpeaktemperaturesforamaximumdurationof360hours(15 days).
  • Themaximumprimarystressesundergonebythevesselandcorebarrelcanbeboundedbya maximumstressvaluederivedasdescribedintheevaluationmodelforstructuralintegrity.

3.4.2.5 Minimumreactorvesselinnersurfacetemperature Duringthelongtermcoolingphaseofapostulatedeventwhendecayheatisbeingremovedpassively bytheDHRS,freezingmustbeavoidedwithinthedowncomertopreservethenaturalcirculation characteristicsinthevesselthatallowforuninterrupteddecayheatremoval.Aconservativetreatment istolimitthereactorvesselinnersurfacetemperaturetoalwayshigherthantheFlibefreezing temperatureof459°C.Ifthisconditionismet,nofreezinghappenswithinthedowncomer.

3.4.2.6 Airbornereleasefractionofspilled/splashedFlibe

©2021KairosPowerLLC 30of97 PostulatedEventAnalysisMethodology

NonProprietary DocNumber Rev EffectiveDate KPTR018NP 0 September2021

Duringasaltspillevent,aerosolscanbegeneratedthroughjetbreakup,andspillingandsplashing.The airbornereleasefractionsduetoaerosolizationmustbelimitedsothatthedoseconsequencesofthe saltspilleventsareboundedbytheMHA.

3.4.2.7 VolatileproductsfromFlibechemicalreactions Flibecouldbeexposedtoairduringasaltspillevent.ThekeyreleasepathwayofradionuclidefromFlibe isthroughevaporation,whichisafunctionofvaporpressureoftheradionuclidespecies.WhenFlibeis exposedtoair,theFlibeairchemicalreactiondoesnotresultinexcessivereactivevaporizationwhich wouldformradionuclidechemicalspeciesthathaveahighervaporpressurethanthosealreadyexistsin Flibecirculatingactivity.ItisexpectedthatafewspecificRNchemicalspecieswillhaveahighervapor pressureafterreactingwithairthanthoseinthecirculatingactivity.However,thosespeciesare expectedtobepresentatverylowconcentrationsandtheresultingdifferenceinevaporationratewill beofminimalsignificance.Forexample,CsFdissolvedinFlibedoesnotreactwithairtoformahighly volatilecesiumhydroxide.Assuch,Flibeairreactiondoesnotresultinsignificantadditionalreleaseof radionuclidesfromFlibethroughevaporation.

ThereactorcellfloorisassumedtobedesignedtoprecludeFlibeconcretereaction.WhenFlibeis spilled,ithasthepotentialtocomeincontactwithstainlesssteelandinsulationmaterial.Flibe interactionswithstainlesssteelandinsulationdonotresultinformationofradionuclidechemical speciesthathaveahighervaporpressurethanthosealreadyexistsinFlibecirculatingactivity.

Therefore,FlibestainlesssteelandFlibeinsulationreactionsintheHermesdesignbasisdonotresultin additionalreleaseofradionuclidesfromFlibethroughevaporation.

Duringasaltspillevent,Flibeisnotexposedtowater,andthereforenoFlibewaterreactionneedtobe considered.However,ifacommoncausefailure(e.g.,seismic)causesawatercontainingSSCandFlibe containingSSCtofailconcurrently,theamountofwaterthatFlibecouldbeexposedtoisassumedtobe limitedtoanupperboundlimitbydesign.Wheninteractingwiththisupperboundamountofwater, Fliberedoxpotentialisstillmaintainedwithintheboundsofsaltchemistryconditionsdefinedforthe evaporationmodel;therefore,doesnotresultinadditionalreleaseofradionuclidesfromFlibethrough evaporation.

Duringapostulatedeventthatinvolvestheprimaryheatexchanger(PHX),Flibecouldmixwithnitrate saltandreactchemically.ThevolatileproductsformedfromFlibeandnitratemixingareaddressedin Section4.5.

3.4.2.8 Masslossofstructuralgraphiteandpebblecarbonmatrix PebblesandstructuralgraphitenotsubmergedinFlibecanoxidizewhenexposedtoair.Ifthemassloss ofthepebblecarbonmatrixdoesnotextendtothefueledzone,tritiumreleaseistheonlyadditional MARreleasepathwaytobeconsideredwhenfuelpebbleoxidizes.Tritiumispuffreleasedfromoxidized pebblecarbonmatrixandoxidizedstructuralgraphite.IntheMHAanalysis,theassumedtemperature forpebblecarbonmatrixissohighthatallavailabletritiumiseffectivelypuffreleasedfromthepebble carbonmatrix.TheportionofstructuralgraphiteunsubmergedinFlibeissmall.Theinventoryoftritium puffreleased(insteadofasafunctionoftemperature)fromoxidizationofstructuralgraphitenot submergedinFlibeisaccommodatedbythefollowinginherentconservatisminthetreatmentoftritium intheMHA:

  • Conservativeinventoryoftritiumavailableforrelease
  • Conservativelyhighassumedtemperatureofpebbles

©2021KairosPowerLLC 31of97 PostulatedEventAnalysisMethodology

NonProprietary DocNumber Rev EffectiveDate KPTR018NP 0 September2021

thevolumebranch,valve,pump,tank,pointkineticmodels,thermalradiation,andgapconductance models.

Thewidelyusedpointkineticsequationsmodelformultiplegroupsofdelayedneutronprecursorswas implementedinKPSAMwithfullyimplicittimeschemeoptionsavailableupto5thorderaccuracy.The decayheatpowercanbecalculatedfromtheuserprovideddecaycurve,ortheANSI/ANS5.12005 standardmethod.Whichevermethodisused,uncertaintyfactorswillbeappliedtoensureitis conservative.orfromthedecayheatmodelbasedonastandarddecayheatcurve.Forthepredictive decayheatmodel,thefissilematerialfissionfractionsincludeU235,U238,Pu239,andPu241andare providedbythereactorcoredesigncalculation.Thefissionratiosoffissilematerialsareprovidedfor variousstagesofoperation(buildup).Asensitivityfactorcanalsobeappliedtothedecayheatfraction inordertoconservativelyaccountforuncertaintiesindecayheat.

Closurerelationsarecorrelationsandequationsthathelptomodelthetermsinthefieldequationsby providingcodecapabilitytomodelandscaleparticularprocesses.Typicalclosuremodelsincludewall frictionfactorandformlossmodelsfordifferentflowgeometries,convectiveheattransfercorrelations fordifferentheattransfersurfacesandpumpperformancecurves.Fluidandsolidproperties,including equationsofstatearealsoneededtoclosethefieldequations.ThefluidstobesimulatedincludeFlibe, intermediatesalt,water,simulantoil,air,andargongas.

Table41summarizesthemodelsandthefieldequationsusedbyKPSAM.

4.1.1.2 ControlSystemDescription TheSAMcontrolsystemisusedtoperformtheevaluationofalgebraicandsimpleordinarydifferential equations;thetripsystemisusedtoperformtheevaluationoflogicalstatements.Thefundamental approximationmadeinthedesignofcontrol/tripsystemisthattheexecutionofcontrol/tripsystemis decoupledfromtheotherpartsofthehydraulicsystems.Themainexecutionofindividualcontrol/trip unitsissetattheendofeachtimestep.

4.1.1.3 NumericalMethods SAMusesacontinuousfiniteelementmethodsformulationforthespatialdiscretizationofthe1Dor2 Dfieldequations.ThedetaileddiscretizationforbothtimeandspaceismanagedbyMOOSE,withthe codeformulatedsuchthatthenumericalmethodordersarecontrolledthroughuserinputs.Forfluid models,aspatialstabilizationmethodisrequiredtosuppresscheckerboardtypespatialoscillationsthat manifestwhensolvingadvectiondominatedproblemsusingcontinuousfiniteelementmethods.The StreamLineUpwind/PetrovGalerkinandthePressureStabilizing/PetrovGalerkinschemeare implementedinSAMtoresolvethenumericalinstabilityissues(Reference10).

ThephysicsinSAMisintegratedintoasinglefullycouplednonlinearequationsystem.Thediscretized nonlinearequationsystemissolvedusingapreconditionedJacobianFreeNewtonKrylovmethod.The combinationoftheJacobianFreeNewtonKrylovnonlinearsolverandhighordernumericalmethodsfor bothtimeandspaceenablesthecapabilitytominimizenumericalerrors.

4.1.1.4 QualityAssuranceandConfigurationControl Thesoftwarequalityassuranceplanisdesignedtoprovideaframeworkforsolvingcomputational engineeringproblems.Thesoftwarequalityassuranceplanincludesrolesandresponsibilitiesforthe softwaredeveloper,reviewer,tester,anduseraswellasdocumentationandsoftwarereview requirements.Thesoftwarequalityassuranceplanalsodescribesconfigurationmanagement,change control,auditrequirements,softwareengineeringmethods,standards,practices,conventions,and

©2021KairosPowerLLC 35of97 PostulatedEventAnalysisMethodology

NonProprietary DocNumber Rev EffectiveDate KPTR018NP 0 September2021

CompromisedTRISOdT+(1dIdSdOdT)xfT WheredI,dS,dO,anddTarethedefectivefractionsoftheIPyClayer,SiClayer,OPyClayer,andTRISO particle(i.e.,exposedkernel),respectively,whilefI(crackedIPyC),fIS(crackedIPyC+failedSiC),fS(failed SiC),andfT(failedTRISO)aretheinservicefailurefractionsfortheTRISOfuelfailuremodes.

Radionuclidereleaseiscalculatedforeachoftheintactandfivecompromisedstatesandtheoverall radionuclidereleasefromthepopulationofTRISOparticlesisobtainedbyweightingtheresulting releasefractionsbytheprobabilitiesofoccurrenceofthesestates.Disperseduraniumisassumedtobe fullyreleasedfromtheTRISOparticlesanditscontributionisaddedtothereleasefromtheintactand compromisedparticles.

TheverificationandvalidationplansfortheKPBISONcodearesummarizedinReference7.

4.3 NEUTRONICS TheSerpent2codeisusedforneutronicscalculations.TheStarCCM+codeisusedforbothdiscrete elementmodelingofthepebbleflowandporousmediaapproximationforthermalhydraulicsfeedback.

Thedescriptionofthesetoolsandmodelsalongwithvalidation,verification,anduncertaintiesare presentedinReference8.

4.4 STRUCTURALANALYSIS ThematerialsqualificationplanforhightemperaturemetallicmaterialsisprovidedinReference9.The materialsqualificationplanforgraphitematerialsisprovidedinReference11.Thesequalificationplans informthefiguresofmeritforthereactorvesselandinternalsdescribedinthisreport.Thestructural analysisofthematerialsunderpostulatedeventconditionswillbeperformedpriortosubmittalofan OperatingLicenseApplication.

4.5 EVENTSPECIFICMETHODS Thissectionprovidestheeventspecificmethodsthatusetheevaluationmodelswithconservative inputstoanalyzethetransientsdiscussedinSection3.Keymodeluncertaintiesandinitialconditionsare conservativelyappliedtothemethodstoensurefiguresofmeritareconservativelypredicted.Sample resultsforthepostulatedeventcategoriesareprovidedinAppendixAtoillustratethetransient methodologies.

4.5.1 SaltSpills ThesaltspilleventcategoryisdescribedinSection3.2.2.Theanalysisoftheboundingsaltspilleventis composedofthefollowingmodels:

Singlephasebreakflowmodel-themassflowratewithtimethroughthebreakandthefinalupper plenumfreesurfacelevelarethetwomajormodelingresults.Twophaseflowduetogas entrainmentispreventedthroughtheprimarypumpdesign.Twomodelingoptionsareavailable:(a)

KPSAMmodelbasedontheslightmodificationofthebaselineplantmodeltoincludethesingle phasebreakflowmodel;and(b)aconservativeanalyticalmodel Longtermperformanceofpassivedecayheatremovalmodel-thisissimilarasthemodelusedfor lossofforcedcirculationoverheatingboundingcasebutwithreducedfreesurfacelevel.

Radioactivesourcetermreleasemodelstoestimatetheboundingtotalreleasefromtheevent.Two majorsourcetermmodelsarerequired:

©2021KairosPowerLLC 39of97 PostulatedEventAnalysisMethodology

NonProprietary DocNumber Rev EffectiveDate KPTR018NP 0 September2021

whereEisanentrainmentcoefficient.AconservativelyhighlowvalueofEis2.1E6(Reference19).The aerosolgenerationduetothespillingandsplashingisthenobtainedthroughtheFlibespillingrateand Equations16and17.

MARreleaseassociatedwiththeaerosolgenerationisevaluatedthroughtheaerosolamountandthe concentrationofMARinthespilledFlibe.

EvaporativeReleasefromSpilledFlibe TheevaporativereleaseisthephasewhenthedischargeoftheFlibefromthevesselendsandthe spilledFlibecompletesspreadingonthereactorcellfloor.SmallamountofFlibeislikelytospreadonlya fractionofthereactorcellfloorareabeforeitiscompletelysolidified.ItisnotamajorconcernforMAR releaseforpartiallyspreadingFlibebecauseitfreezesquickly.Moreconcernislargeamountofspilled Flibewhichspreadstheentireareaofthereactorcellfloor.Inthiscase,aFlibepoolisexpectedtoform withadepthofmoltenFlibe.Thebottomofthepoolcontactswithsteellinerwhichisplacedtoprevent Flibeconcreteinteraction.Thetopofthepooltransfersheattoairthroughconvectionandto surroundingstructuresthroughradiation.NowaterandnowatersourcesarepresentwheretheFlibe spreads,andFlibewaterinteractionisexcluded.

MARreleasefromtheFlibepoolisdominatedbyevaporationoverthetopsurfaceofthepool.It continuesuntilthetopsurfaceissolidified.ToevaluatetheamountofMARreleased,Flibe temperaturesareevaluatedfirst.TheFlibetemperatureisbasedonenergybalanceofthepool.Forthe downwardheattransfer,alayerofsolidifiedFlibeisexpectedbetweentheliquidFlibeandtheliner.A 1Dmovingboundaryequationneedstobesolvedforthetemperatureprofilewithinthesolidifiedlayer, andgrowth(orshrinkage)ofthelayer.TheboundaryconditionattheinterfacebetweentheliquidFlibe andthesolidifiedlayerisdeterminedbyGlobeDropkincorrelation(Reference20).Theboundary conditionattheinterfacebetweenthesolidifiedlayerandtheunderneathlinerisgivenbygap conductancebetweenthesolidifiedlayerandtheliner,orthroughcontinuityconditionsoftemperature andheatfluxifnogapisassumed.TheheattransferbetweentheliquidFlibetothetopsurfaceis determinedbyGlobeDropkincorrelationagain,andtheheattransferontheairsideisbasedon McAdamscorrelation(Reference21)fornaturalconvectionandradiationwithalowtemperatureheat structure.TheseheattransfertermsarecombinedtodeterminetheenergychangeoftheliquidFlibe duetoheattransferandsolidificationatthebottom,andeventuallythetemperaturesoftheliquidFlibe andatthetopsurface.

Oncethetemperaturesaredetermined,evaporationratesareassessedwiththesamemethodasthe MHAforMAR.Theevaporationrateandintegralreleaseamountareevaluateduntilthetemperatureof thetopsurfaceislowerthantheFlibemeltingtemperature.

4.5.2 InsertionofExcessReactivity ThelimitinginsertionofexcessreactivityisdescribedinSection3.2.2.Theanalysisofthelimitingevent inthiscategory(acontrolelementwithdrawal)includesasystemsanalysiswithconservativeneutronics andfuelperformanceinput.

4.5.2.1 InitialConditions Theinitialconditionsofthetransientarebiasedtoensureaconservativeevaluationofthefiguresof merit.Thelimitingcontrolrodwithdrawalscenarioisassumedtoinitiatefromthehighestpossible reactorpowerbecausethehigherpowerprovidesthehighestheatinputtochallengetheidentified figuresofmerit.However,sensitivitiesmustbeperformedtoensurethatreactivityinsertionsfrom

©2021KairosPowerLLC 43of97 PostulatedEventAnalysisMethodology

NonProprietary DocNumber Rev EffectiveDate KPTR018NP 0 September2021

lowerpowerlevelsdonotunexpectedlychallengeafigureofmerit.Apoweruncertaintyisappliedto reactorpowertocoveruncertaintiesassociatedwithdetectionandsignaldelays.Sincethereactor powerisbiasedhighintheassumedlimitingreactivityinsertionevent,theinitialreactorpoweris modeledat102%power.AdditionalinitialconditionvaluesareprovidedinTable44.

4.5.2.2 TransientAnalysisMethods Thereactivityinsertiontransientinvolvesachangeincorereactivitythataddsheattoprimarysystem.

Therefore,theeventanalysisrequiresinformationfromthesystemscode,fuelperformance,and neutronicsEMs.Thesystemscode,KPSAManalyzestheeventprogressionwithinputsfromthe neutronicsEMandprovidesinputstothefuelperformanceEM.

Thenuclearfissionpowerprofilewithinthepebblebedisaffectedbytheneutronfluxdistributioninthe coreregionandthefuelburnupstatusofthepebbles.Thecurrentapproachtomodelingcorepower densityisanaxiallyresolvedradiallyaveragedmethodanddoesnotexplicitlyaccountforradialpower peakinginthecore.Theradialpowerprofileanditseffectonthecoolantandfueltemperaturearenot explicitlymodeled;therefore,localpeakcoolantandfueltemperaturesarenotfullyresolved.Thehot channelfactormethodologydescribedinSection4.1accountsforbothpowerpeakingandthe possibilityofflowbeingpoorlydistributedinthecore.

TheKPSAMbasemodelinSection4.1isusedwithmodificationstothereactorcoremodel.Thenuclear fissionpowerprofilewithinthepebblebedisaffectedbytheneutronfluxdistributioninthecoreregion andthefuelburnupstatusofthepebbles.Withasinglechannelmodelingofthecorezone,theaxial powerprofilecanbedefinedbyprovidingthepowershapefunctionintheKPSAMcodeinputdeck.

Theradialpowerprofileanditseffectonthecoolantandfueltemperaturesarenotexplicitlymodeled, however,becausethesinglechannelmodelusestheaveragepowerateachaxiallevel.Inorderto addresstheradialpowerdistributionandmodelitseffectsonthecoolantandfueltemperature, especiallytocapturetheirmaximumvalues,aseparatecorechannelrepresentinghighradialpoweris analyzedasahotchannel.Consequently,thecoreismodeledastwochannels,i.e.,anaveragechannel andahotchannel.Thehotchannelmodelassumescompletethermalisolationfromtheadjacent averagechannel.Inreality,however,sincethereisnophysicaldistinctionbetweenthetwochannels, somethermalhydraulicinteractionsareexpected.Theisolationassumption,therefore,wouldpredict higherfuelandcoolanttemperaturesinthehotchannel,resultinginmoreconservativepredictions.

Thehotchannelflowareaissettobesmallenoughtorepresenttheradialhighpowerzone.Acoreflow ratecorrespondingtotheareaisassignedtothehotchannel.

Inordertoensureaconservativeevaluationofthelimitingreactivityinsertionevent,thefollowing conservatismsareappliedtomodelinputs:

Highestworthcontrolelementisassumedtobewithdrawn.

o Thelimitingreactivityinsertionrateisdeterminedfromthelimitingreactivityrodworthper lengthfromneutronicsEM,combinedwiththemaximumcontrolelementwithdrawalspeed.

o Arangeofreactivityinsertionrates,dependingonthecontrolelementcontroldesign,is analyzedinthefinalsafetyanalysistoensurethatthehighestreactivityinsertionrateis identifiedthatboundsthereactivityinsertionratespossibleforothereventsinthecategory.

o Atfullpowerandhotzeropower,theinitialcontrolelementpositionisassumedtobefully insertedinthereactorcore.

©2021KairosPowerLLC 44of97 PostulatedEventAnalysisMethodology

NonProprietary DocNumber Rev EffectiveDate KPTR018NP 0 September2021

19. M.Epstein,andM.Plys,PredictionofAerosolSourceTermsforDoseSiteFacilityApplications, ProceedingsofEFCOGSafetyAnalysisWorkingGroup,AprilMay2006.
20. S.Globe,andD.Dropkin,NaturalConvectionHeatTransferinLiquidsConfinedbyTwoHorizontal PlatesandHeatedfromBelow,J.HeatTransfer,Vol81,No.1,pp.2428,February1959.
21. W.McAdams,HeatTransmission,3rdEdition,McGrawHill,NewYork,p.180,1954.
22. K.Jafarpur,Yovanovich,M.M.,LaminarFreeConvectiveHeatTransferfromIsothermalSpheres:a NewAnalyticalMethod,Int.J.HeatMassTransfer,Vol35,No.9,pp.21952201,1992.
23. M.F.Young,LiftoffModelforMELCOR,SAND20156119,SandiaNationalLab,2015.
24. S.Levy,TwoPhaseFlowinComplexSystems,1stEdition,WileyInterscience,August1999.
25. S.K.Friedlander,Smoke,Dust,andHaze:FundamentalsofAerosolDynamics,2ndEd.,Oxford UniversityPress,2000.
26. ElectricPowerResearchInstitute,UraniumOxycarbide(UCO)TristructuralIsotropic(TRISO)Coated ParticleFuelPerformance,TopicalReportEPRIAR(NP)A,3002019978,November2020.

©2021KairosPowerLLC 55of97 PostulatedEventAnalysisMethodology

NonProprietary DocNumber Rev EffectiveDate KPTR018NP 0 September2021

Table32:DerivedFiguresofMeritandAcceptanceCriteriaforPostulatedEvents FigureofMerit AcceptanceCriterion ApplicableEvents PeakTRISOtemperaturetime GenerallyboundedbytemperatureSaltSpills,Reactivity timecurvesderivedfromthe Insertion,IncreaseinHeat assumedMHAfueltemperature Removal,LossofForced timecurve Circulation,PHSSbreak, Seismic,PHXTubeBreak PeakTRISOtemperature BelowincrementalNegligibleTRISO SaltSpills,Reactivity timeTRISOfailureprobability fuelfailuretemperatureprobability Insertion,IncreaseinHeat Removal,LossofForced Circulation,PHSSbreak, PHXTubeBreak PeakFlibecovergasinterfacial Generallyboundedbytemperature SaltSpills,Reactivity temperature timecurvesderivedfromthe Insertion,IncreaseinHeat assumedMHAFlibecovergas Removal,LossofForced interfacialtemperaturetimecurve Circulation,PHSSbreak, PHXTubeBreak Peakvesselandcorebarrel Boundedbyboththemaximum SaltSpills,Reactivity temperatures allowabletemperaturederivedto Insertion,IncreaseinHeat limitexcessivecreepdeformation Removal,LossofForced anddamageaccumulationandby Circulation,PHSSbreak, 816°C(highesttemperature PHXTubeBreak consideredbyASMESectionIII Division5for316H)

Minimumreactorvesselinner AboveFlibemeltingtemperature LossofForcedCirculation surfacetemperature Airbornereleasefractionof Belowairbornereleasefraction SaltSpills,Seismic,PHX spilled/splashedFlibe limitderivedtoboundtotalreleases TubeBreak ofthepostulatedeventtolessthan theMHA Volatileproductformationfrom Negligibleamountofadditional SaltSpills,PHSSbreak, Flibeairreaction volatileproductsformed PHXTubeBreak Volatileproductformation Negligibleamountofadditional SaltSpill fromFlibechemicalreactionwith volatileproductsformed water,concrete,and/or constructionmaterials(e.g.,

insulation,steel)

Volatileproductformationfrom Negligibleamountofadditional PHXTubeBreak Flibechemicalreactionwith volatileproductsformed nitrate Masslossofpebblecarbon Masslossdoesnotextendintothe SaltSpills,PHSSbreak matrixduetooxidation fueledzone Masslossofstructuralgraphite BoundedbytheMHArelease SaltSpills,PHSSbreak duetooxidation

©2021KairosPowerLLC 58of97