ML20210N395

From kanterella
Jump to navigation Jump to search
Rev 2 to SAG.CP11, Sys Analysis of Cable Tray & Hanger Assembly for Comanche Peak Steam Electric Station,Units 1 & 2
ML20210N395
Person / Time
Site: Comanche Peak  Luminant icon.png
Issue date: 01/15/1987
From: Alexandru R, Sunny Chen, Cheng R
EBASCO SERVICES, INC.
To:
Shared Package
ML20210E291 List:
References
SAG.CP11, NUDOCS 8702130112
Download: ML20210N395 (45)


Text

{{#Wiki_filter:__ . _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ SAG.CP11-7/86 l R1

                                                                                                                                    -1/87                                    l R2 EBASCO SERVICES INCORPORATED SYSTEM ANALYSIS OF CABLE TRAY AND HANGER ASSEMBLY FOR COMANCHE PEAK STEAM ELECTRIC STATION UNITS 1 AND 2 O

I REVIEWED i APPROVED l l PAGE l I l PREPARED l REVISION l BY I BY I BY l DATE I AFFECTED l I I I l 1 1 I I R0 I S J Chen i R Alexandrul G Kanakaris 1 4/11/86 l l l l 1 1 l l l ! l I R C Cheng l I I I l I I I l 4 I I I 1 l l l l l l R1 I R C Cheng l R Alexandrul G Kanakaris I 7/31/86 l All I I I I I I I I I I I I I I I l I I I l R C Cheng i S J Chen 1 R Alexandru 1/15/87 , 1, 2, 14 1 l R2 1 M /)I +AXl 1 25,hA2, i f f, l l A4 - A18 l I l EBASCO SERVICES INCORPORATED 2 World Trade Center O 1392R New York, NY 10048 8702130112 870127 4 PDR ADOCK 05000445 A PDR

   ., . --.~.            ....-..      - . . .            ...                                ~- . . . -     . - .   -

i d TABLE OF CONTENTS PAGE i

1.0 INTRODUCTION

1 2.0 REFERENCE DOCUMENTS 1 1 3.0 DESIGN LOADS AND PARAMETERS 2 4.0 SYSTEM ANALYSIS PROCEDURE 2 4.1 Overview 2 4.2 Modelling 3 4.2.1 Model Size Selection 3 4.2.2 Mass Point Spacing 5 4.2.3 Cable Tray Components 7 4.2.4 Hangers 14 4.2.5 Connections from Tray to Hangers 14 4.2.6 Bcundary Conditions 16 R1 , 4.3 load Case Analysis 21 4.3.1 Deadweight 21 i 4.3.2 Thermal 22 4.3.3 Seismic 22-l 4.3.4 Modification Analysis .24 l i (~ 4.3.5 Alternative Analysis Methods _ 24  :

  \                               4.3.6       Consideration of Connectivity between the                                         25          R2 Cable Tray and Transverse Hanger i

5.0 ACCEPTANCE CRITERIA 25 Appendix A Cable Tray Clamp Stiffness -A1 , and Example Clamp Types to R2

A18

[ l L l

O
                                                                                        -i-1392R 1

1.0 INTRODUCIION This document is prepared to provide guidelines for the system analysis of cable tray and hanger assembly for the Comanche Peak Steam Electric Station (CPSES) Units 1 and 2. This system analysis, which uses a detailed three dimensional model including the tray routing, the hanger details, and more sophisticated analysis methods, is primarily used to qualify those cable tray hangers which could not satisfy the acceptance criteria by using a more conservative equivalent static force approach. This document is consistent ~with the design criteria and methodology specified in Reference 13. 2.0 REFERENCE DOCUMENTS 1 The following lists the applicable documents including the codes and regulatory guides. Some of these ' documents were prepared by Gibbs & 4 Hill Inc. and will continue to be used for the design of Seismic Category I cable tray hangers for Comanche Peak Steam Electric Station i Units No.1 and 2. i

1. APPLICABLE CODES AND REGUIATORY GUIDES o Regulatory Guide 1.29 - Seismic Design Classification, Rev. 3, September 1978.

o Regulatory Guide 1.61 - Damping Values for Seismic Design of Nuclear Power Plants, October 1973. o Regulatory Guide 1.89 - Qualification of Class 1E Equipment for Nuclear Power Plants, Rev.1, June 1984. o Regulatory Guide 1.92 - Combining Modal Responses and Spatial Components in Seismic Response Analyses, Rev. 1, February 1976. o NUREG 0800 - Standard Review Plan for the Review of Safety Analysis Reports for Nuclear Power Plants, July 1981. o AISC - Manual of Steel Construction, 7th Edition, including Supplements No. 1, 2 & 3. 4 o AWS D1.1 Structural Welding Code. o AISI - Cold-Formed Steel Design Manual, 1968 edition. 4

2. Cable tray Specification No. 2323-ES-19, Revision 1, dated November 22, 1976, by Gibbs & Hill, Inc.
3. CPSES/FSAR Section 3.8.4.3.3
                                            " Load Combinations and Acceptance Criteria for Other Seismic                 j Category I Steel Structures"                                                  1

(-'r s- > 1392R l

Design Criteria for Cable Tray Supports and Their Arrangement, 4. Gibbs and Hill Calculation Book No. SCS - 111C 3/9-3/24.

   i                                                                                       .

l S. Structural Embedments Specification No. 2323-SS-30, by Gibbs & l Hill, Inc. ] i ! 6. Design procedure: DP-1 Seismic Category I, Electrical Cable Tray

Supports dated June 11, 1984, by Gibbs & Hill, Inc.
7. Refined Response Spectra for Fuel Handling Building, dated

! October 1985, for SSE and OBE.

8. Refined Response Spectra for Reactor Building Internal Structure, l dated January 1985, for SSE.and January 1983 for OBE.
9. Refined Response Spectra for Containment Building, dated January 1985 for SSE and January 1983 for OBE. ,
10. Refined Response Spectra for Auxiliary Building, dated November 1984 R1 for SSE and January 1983 for OBE.
11. Refined Response Spectra for Electrical Building, dated November 1984 for SSE and November 1982 for OBE.
12. Refined Response Spectra for Safeguards Building, dated November 1984 for SSE and January 1983 for OBE.

l 13. Seismic Design Criteria for Cable Tray Hangers for CPSES Unit No.1, R2 l Revision 3, January 15, 1987, by Ebasco Services Incorporated.

14. Seismic Design Criteria for Cable Tray Rangers for CPSES Unit No. 2, R2 Revision 6, January 15, 1987, by Ebasco Services Incorporated.
15. General Instructions for Cable Tray Hanager Analysis for CPSES R2 i Units No. 1 and 2, Revision 4, January 15, 1987, by Ebasco i Services Incorporated.
16. Dynamic Analysis of Cable Tray Systems, Revision 5, October 10, 1986, R1
Impe11 Instruction No. PI-02.

3.0 DESIGN LOADS AND PARAMETERS i l See " Seismic Design Criteria for Cable Tray Hangers" (References 13 and R2 l

14) for design loads and parameters.
,                                                                                                                                              i 4.0    SYSTEM ANALYSIS PROCEDURES                                                                                                 l i

4.1 Overview I Presented in the following sections is a comprehensive procedure l to be used for the analysis / qualification of cable tray raceway j systems at CPSES. This procedure is intended to provide i i guidelines on the assembly of analytical system models, the evaluation of the system response to applied loads, both static

                                                                      ;             1392R
                -_ n - x _ _ _        _ _ _: _ _ . _ . _ __--_ _ _ ,                   __2,   _ ..__             _-w -. ., _ _ . . . . . . - -

l 4 and dynamic, and the criteria to be used to show acceptance of the } . tray systems. i The cable tray system analyses will be performed using three dimensional finite element models prepared to accurately predict the system response to the design loads. To do this, all of the significant components of the cable tray system will be modelled . in detail. More specifically, tray components, including straight - tray, bends, tees, crosses, reducers, etc. and support components, including tray-to-support clips, member connections, support t anchorage, etc., will be modelled to accurately represent their behavior. Also included in the following sections are basic i' guideline for determining logical analysis boundary locations so that model sizes can be made manageable. 1 Generally, the cable tray system dynamic analysis is beneficial in terms of load reduction. It shall be used to qualify those cable

  -                                            tray hangers which could not satisfy the acceptance criteria by                                                                               R1 using the more conservative static equivalent analysis method.

The candidate hangers for the system analysis shall be selected and properly identified on the cable tray span length drawings. , 4.2 Modelling Analysis of the cable tray systems shall be performed using the PD R1 STRUDL program.. The modelling of cable tray systems'is discussed in this section. First, the procedure to select the model size is described. The required design input, modelling techniques for ! (\s,/h various component types, and the proper selection for boundary conditions are then followed. These modelling procedure are

;                                              intended to establish a standard approach for an accurate and consistent production work.

4.2.1 Model Size Selection The purpose of the 3-D model cable tray system analysis is l to qualify those cable tray hangers which could not i satisfy the acceptance criteria by using the more

conservative static or static equivalent analysis

! methods. From the tray routing and hanger span layout l drawings, the analyst shall first identify these hangers and then determine the size and the boundary cut-off for the analysis model based on the following criteria: i a) There should be at least two tray spans (transverse and R1 vertical) in each side of end hangers under consideration. These hangers at the ends of the model are used only to simulate the boundary conditions and are defined as " analysis-only" hangers (see Figure 4.1). Loads on those " analysis-only" hangers are not used for qualification. It is desirable to use those i . 1392R

                     ^

i l l

                                                                                         - , . _ , _ _ - - . .-.                   .~ . ._

hangers already qualified as the " analysis-only" hangers. b) The analysis model may not cover all the longitudinal hangers in a straight run tray due to the limitation of the model size. To properly consider the dynamic - load distribution in the longitudinal direction, the following procedure shall be applied in the modeling:

1) Determine the stiffness of the decoupled g longitudinal hangers in the longitudinal -

i direction at each of the tray attachment points. This shall be performed by simultaneously  ; applying a unit load at each tray attachment , point. The sti.ffness shall be calculated as the value of the load divided by the resulting deflection. l i R1 < ii) Calculate the combined stiffness of the support and clamp which are in series. The clamp stiffness is discussed in Section 4.2.5. iii) Extend the tray model all the way to the ends of the straight run and add spring elements to simulate the support and clamp stiffness at tray attachment points as illustrated below. At the extended portion of the tray model, all degrees l of freedom other than the one for the O longitudinal translation shall be fully restrained. l l l l

                               !    !           !    !                            7.uy7               .

m 1 . ..- .. I l l ---WSd NY  ! l l l l dbweyah"l- sfms \ H y4K l Must = ---,.sys. cab po,oy gag , i l iv) Lump the appropriate portion of the hanger weight-at tray attachment points. c) For more efficient analysis, the model shall be limited R1 to approximately 250 nodal points. Cable tray systems consisting of a single tray run should be limited to roughly 20-25 hangers; systems with two tray runs , should be limited to 15-20 hangers, and systems with j three or more tray runs should be limited to 10-15 l hangers. l Figure 4.1 illustrates some example of the model. l 0 1392R

4.2.2 Mass Point Spacing . Dynamic analyses using a lumped mass idealization require O that a sufficient number of mass points be defined. The mass point spacing shall be calculated using the following equation: 1/2 / Elg /4 7r ) Sm =II\1[2f / (W ). 4 Where Sm = mass point spacing (in) f = analysis cutoff frequency, 33 Hz j E = 2 9.5 x 106 p.1 I = moment of inertia (weak bending axis) (in4 ) 3 g = 386.4 in/sec 2 , d W = unit weight of component (lb/in) - I. i ': This mass point spacing assures that all significant modes below 33 Hz are considered. Moreover, a miniaur. of 3 mass points shall be used to represent the tray between two ' R1 neighboring hangers. i t

O i
 =

( -

                                                                                   -S-1392R
                                                                                                          ~
                                                                                                                                                  \

l l l l

                                                                  " Analysis-only" hangers _.-

O / / 1 N f l  ! l  !  ! l  !  !  !  !  !  ! [ Tray l ' ' I i l j j l l 1 f I I I , , g g i I i 8 'I transverse l l I l I l l

                                                                                                                 !                   Iongitudinal (tyP)                                                                 !                                                (typ) l      g        y                 g        g     l

_a Analysis Model _

                                                                          " Analysis-only" I     !     !          I      I      !           !  I   I       !
                                                                                                                         '   I    !

end lI l l l l ll I I l I l lf I l l l i f of tray , g l l l

                                                                                           ,   l  l   ,       ,          l   l    gj 0-i    i                 i             e       a   i  I   8       I          8 I    8 Analysis Model                                      Longitudinal
.                                                " Analysis-only"
 ,                                                      f       !        I       I       !       l  .              I   l
           -                                                    i        I              i        j  i       i      ;   i l                       I                   '

i l l I I l Tray l , l g i i i i

                                                       !,       I e        i      I
                                                                                       !.        i l

i i I  ! i I 8 1 I i 1 I i l 8 longitudinal l f {~ Analysis Model Figure 4-1 Model Examples 1392R  %  ! _9

_,n ~ . _ - - . . . _. . , , 4.2.3 Cable Tray Components

a. Straight Trays Straight cable tray runs shall be modelled as general beam elements with section properties calculated as indicated below.

y W The tray axial area, A3 , shall be the total cross-sectional area of the side rails. The results j i from the test shall be t. sed to calculate the moments of inertia lyy and Izz, and torsional constant J. j R1 ;

  • It should be noted that,.while only Burndy/ Husky trays l were used throughout the Unit 2 plant, both - I Burndy/ Husky and T.J. Cope trays were used in Unit 1 cable tray routings. ' Documents also show that only-T.J. Cope tray was used in the non-common area building (such as Diesel Generator Building) and both Burndy/ Husky and T.J. Cope trays were installed in the common area buildings (Auxiliary Building, Fuel Handling Building, Ele.ctrical and Control Buildings).  ;

Furthermore, even from the same tray manufacture.r, there exist two different tray properties; one covers the ladder type tray and the other covers the solid i trough type tray. Unless the walk-down report clearly differentiates the 6

!;                                   type and the brana name of the tray for every                   j installed system, an enveloped sectional properties shall be used. Table 4-1 shows T.J. Cope tray              l properties for various tray sizes and types and Tables     i 4-2 and 4-3 show the enveloped properties. While Table 4-2 is intended'to be used in analyzing the i

systems installed in the common area buildings, Table 4-3 shall only be used for. systems inside Diesel l Generator Building. 1392R

TABLE 4-1 . T J COPE TRAY PROPERTIES 4 T J Cope Tray (in2) J (in ) Iyy Izz Ca t. No. Description Ax GI-30SL-12 30x61/4xl 1/4 Iedder 1.787 0.0066 2.46 2.32 12 GA. Siderail GI-24SL-12 24x61/4x11/4 Ladder 1.787 0.0066 2.20 3.32* 12 GA. Siderail JM-36SL-12 36x6 1/4xl 1/4 Corrug. 1.787 0.0066 2.89 2.10 Through 12 GA. Siderail

;   JM-30SL-12       30x61/4x1 1/4 Corrug.          1.787  0.0066  3.27   2.10 Through 12 GA. Siderail JM-24SL-12       24x61/4x11/4 Corrug.           1.787  0.0066  3.30   2.10 Through 12 GA. Siderail JM-18SL-12       18x6 1/4x1 1/4 Corrug.         1.285  0.0024  1.835 1.439 Through 14 GA. Siderail GG-3 bbl-12-06   3bx4xl 1/4 Ladder              1.316  0.0048  3.68   2.53 12 GA. Siderail 30x4x1 1/4 Ladder              1.316  0.0046  4.02   2.53 O GG-30SL-12-Ob 12 GA. Siderail g

GG-24SL-12-00 24x4x1 1/4 Ladder 0.949 0.0018 2.20 1.63 14 GA. Siderail GG-185L-12-06 18x4x1 1/4 Ladder 0.949 0.0018 2.46 1.63 14 GA. Siderail GG-12SL-12-06 12x4x 13/16 Ladder 0.658 0.0008 1.50 0.813 16 GA. Siderail GG-06SL-12-06 6x4x 13/16 Ladder 0.658 0.0008 1.30 0.813 4 16 GA. Siderail GF-36SL-12 36x4xl 1/4 Corrug. 1.316 0.0048 3.41 2.07 Trough 12 GA. Siderail GF-30SL-12 30x4x1 1/4 Corrug. 1.316 0.0048 3.72 2.07 Trough 12 GA. Siderail GF-24SL-12 24x4x1 1/4 Corrug. 1.316 0.0048 4.46 2.07 Trough 12 GA. Siderail

     *See Note 3.

O 1392R

  . _ - . _ _ _ _ _ . _ - - _ - _ . _                       . - _           .._ _-.                     . . _ .           -    _._ .-        _   . _ .      _= . _                 .                   . . _ . . _ _ . . _

TABLE 4-1 - T J COPE TRAY PROPERTIES (Cont'd) O bJt.$$e Tray

  • Description bin )

2 J in4) yy Izz GF-18SL-12 18x4x1 1/4 Corrug. 0.949 0.0018 1.17 1.288 Trough 14 GA. Siderail

   .                        GF-12SL-12                  12x4x1 1/4 Corrug.                                            0.949           0.0018          1.24                 1.288                                  R1 Trough 14 GA. Siderall GF-ObSL-12                  6x4x 13/16 Corrug.                                            0.658           0.0008           0.64                  0.839 Trough 16 GA. Siderail-i t

Notes:

1. All ladders have 16 GA.' rungs. ,
2. Transverse shear areas, Ay and 12, are assumed equal to 1000 in2 ,
3. The tray properties given for GI-24SL-12 are preliminary pending test data.

i l t l t i I O  ; 1392R  ; s

  , , - - - - . -                      .1,  , - - - - - a ,r--      --,-y--         - -   , - - - - - -         r----  e-    -                 -              - - - - - - - -       - - - - - , . - --- - - - - , -

_ _ _ . . _ _ _ _ _ _ _ _ _ _ . _ _ _ _ __ . _ _ _ . _ _ _ . . _ _ _ _ , _ _ _ . _ _ _ _ m ._____ _ _ _ _ . . _ _..-..--_.m.._ _ _ . _ . _ . _ . . _ . i L O TABLE 4-2 O O E BURNDY/ MUSKY & T.J. COf E TRAY PROPERTIES FOR UNIT #1 COMMON AREAS l I Enveloped T.J. Cope I I I 1 l Trey l Burndy/ Husky l Enveloped Trey Properties l

I Size l Ladder I hdder & Solid Trouth Burndy/ Husky & T.J. Cope l 4 I lA IJ lizz llyy lA lJ IIzz llyy Area IJ IJzz IIyy I i l lin in in lla fin  !!n  !!n fin l(ta)  !!n ' l(ta) l(ta) l 1 1 I I I I I I I I I I i l
.                                                        I                          I           I            I         I                  I        I            I                I                 I            I                         I          I                I                                 i 4

1 6 ze" 11.102 10.004 l- l - 10.65d 10.000s 10.813 10.638 10.65s lo.000s 10.s13 10.63s l r

;                                                        I                          i           1            I         I                  I        I            I                l                 i            i                         l          I                l l                          I           i            1         1                   I       I            I                I                 I            I                         I          I                I                                  ;

- l 6 m6- 1 I i use same as 6 m4- 1 I I I l .t 4 l I I I I I I I I i 1 1 1 1 ' i 12 34- 11.102 10.002 11.465 15.793 10.65s 10.000s 10.813 11.24 ,10.65s 10.000s 10.s13 11.24 I at I I I i l l l 1 1 1. 1 I I i I I I I I I I i

,                                                         1                          1           I            I         I                  I        I l                                                         l     12 me-               1           1            1         1                  1       use same se 12           4-                      1            I                         I          I                I l

i 1 i I 1 I 1 I 1 l- 1 I I 1 l r l 16 m4- 11.102 10.002 11.664 14.755 10.949 10.001s 11.288 11.17 10.949 10.0018 11.2ss 11.17 l ! I i i i 1 I I I I i 1 1 I I 1 I I I i 1 I I i l 1 I l , I Is st- 11.402 10.002 1 - 1 - 11.285 10.0024 11.439- 11.835 11.2s5 10.002 11.439 11.e35 i , I I I l i I I I I l l 1 l I I I I I I .I I I I l- 1 I i 1 , t 24 s4- 11.531 10.0056 11.19s 14.231 10.949 10.0018 11.63 12.195 10.949 10.001s 11.19s 12.195 l t i I I I i 1 1 I I I J l i I i I i I I i l i l i l i I I I , 24 36- 11.402 10.0056 I - I - 11.787 10.0066 12.10 13.30 11.402 10.0056 12.10 13.30 I I I I I i 1 I I I I I I I I ~ I I l i I I I I I I I I I I l 30 z4- 11.531 10.0056 12.51 13.7s3 11.316 10.0c48 12.07 13.72 11.316 10.0048 12.07 13.72 I I I I I I i 1 1 I l- 1 I I I

,                                                          i                          I            I           I         I                   I       I            I                 I                 I            I                       -l           I                l l     30 as-               11.402       10.0056 13.264 17.223 11.7s7 10.0066 12.10                                       12.455 11.402                  10.0056                    12.10     12.455           I
;                                                          I                          i            l-          I      'l                     l        I           i                 1                 i            i                          l         i                I I                          I           i            i         i                  I         I           I                i                  1            i                          1 .       I                I l    36 se-               11.636       10.006      11.s91 15.705 11.316 10.0948 12.c7-                                  13.41             11.316.      lo.coes                    11.891    13.41            1 i                                                          i                          i           i            1          I              'l           i            1                1                 I            I                          I         I                I I                         I            i           1          I                  I        I           I                 I                 I            I                          I         I                I I    36 s6-                11.951      10.006       13.948 110.695 11.7s7 10.0064 12.10                                 12.s9             11.787       10.006                     12.10      12.89           I 1                          I           i            1         1                  1        1            I                I                 I             I                         I          I                I

-! I I I -1 1 I I I I I I I I I i 1 1392R

TABLE 4-3 O ENVELOPED T.J. COPE TRAY PROPERTIES FOR DIESEL GENERATOR BUILDING (UNIT 1) l I I I I l l Tray I A l J l Iag i Iyg l . l Size I in2 l g,4 I in I in l I l l l l l

1. I I i 1 I I l 6"x4" l 0.658 1 0.0008 l 0.813 1 0.638 l l I I I I I
 ,'          6"x6"           l           0.658        1      0.0008      1   0.813      1 0.638   l l                    l                        l                  l              l         l
   ;         12"x4"                      0.658               0.0008      1   0.813      1 1.24    l    R1 i                    l                        1 1                    I                        I                  I              I         I 1                     I                        I                 I              I         I I

I 12"x6" l 0.658 1 0.0008 1 0.813 l 1.24 I I l l l l 1 I I I I l I 18"x4" l 0.949 l 0.0018 l 1.288 l 1.17 l l 1 I i 18"x6" l 1.285 1 0.0024 l 1.439 1.835 l l I l l 24"x4" 0.949 0.0018 1 1.63 l 2.195 I I 24"x6" 1 1.787 1 0.0066 1 2.10 1 3.30 l

        '                                             i                   '             i j     OlIl 30"x4" i

l l 1.316 1 l 0.0040 l 2.07 l 3.72 l l l i 1 30"x6" 1.781 1 0.0066 1 2.10 1 2.455 I I . I i 1 I I 36"x4" l 1.316 1 0.0048 1 2.07 1 3.41 1  ! I I I I I l ! l 36"x5" i 1.787 l 0.0066 l 2.10 l 2.89 l I I I l l 1 1392R 4 0

b. Bends In cable tray hanger system analysis for dynamic load R1 using STRUDL program, cable tray bends shall be modelled as a series of straight prismatic members with the lumped mass option to specify the load. The mass and cross-sectional properties for straight trays shall be used for curved tray sections. Available test data shall be incorporated in the modelling where appropriate. -
                                                                                                                                                 ,,*'()~I~     .
                                                                                                                                     ' s[D
                                                                           ^ e)
                                                                   *                                                         /

i [r

                                                                                                                       /                           .

l 9 j - f , 1 2 O HORIZOhTAL OR FuT 3 D'D VULTICAL OR R1SER

                                                                                                           .3 5'D                                                          ,

I

c. Tees cable tray tees can be idealized as follows:

I (.D n O _ 1.g,g,ll 1, l . .2 v t , 'I , ,,,i.,, i ii !j  !

                                                                                  "                                                                b                        l ll       p               -

1 t r i 6 -- 3 HORIZOhTAL TEE VERTICAL TEE Hodel a node at the tee intersection. Element Cross-section Properties 1, 2 Same as straight tray for run side 3 Same as straight tray for branch side ) 1392R

l l 5 4 l d. Crosses The cable tray cross shall be modelled as follows: l i g- 1

                                                                                             .                    L
                                                                                        /                         \                                                                                                  :

N \ l

                                                                                                       , ,i
                                                                                                                                 /*           .

j, \ - l HORIZONTAL CROSS

 )                                                                                                .      . . . .
 ]

L!

1. Model a node at the crets intersection j 2. Model each les using strairht tray properties l l

l correspc.nding to the appropriate tray type. t

e. Reducers h -.

o

 ?                                                                                                                                                                             Sep f

V"*

                                                                                                                                            \x       - M        r
                                                                  .    ,(                        j

} , - - .

 .                                                                                         k                                                                                                                         d
                                                                              ,             L S'IRAIGHT REDUCER                                                      OFFSET REDUCER                                                          l 4

l ll

1. Model a node at the change in crose-section (siddle of transition).
2. Model a rigid link for each offset between the centerlines of the trays.

J 1 i i

 )

3 i i i _ _ _ _ _ . . _ . _ . _ _ ' . _ ._ _ . _ _ _ __ L ._____ ___.a_ . . _ _ _ _ . _ , . _ . _ , . _ , _ . _ _ _ _ _ , . - . . _ . .

f. Special Components
  • In addition to the basic components described above, (O) cable tray systems may consist of hinged connections, adjustable bends, vertical cable support elbows, Y-branches, and other less commonly used components.

The modelling of these components shall follow similar rules defined for'the basic components. Particular attention shall be given to the special features of these components. For example, the hinged trays shall be modelled with the appropriate rotational degrees-of-freedom released. For the vertical cable support elbows, rigid members shall be used to reflect the rigidity provided by the gusset plates. 4.2.4 Hangers See modelling of hangers in the General Instructions for Cable Tray Hanger Analysis for CPSES No . 2 (Reference 14). For " analysis-only" hangers, an equivalent simplified model consisting of springs and masses can be used in the model if justifiable. 4.2.5 Connections from Tray to Hangers The cable trays are connected to support beams with a variety of clamps. The various clamp types are shown in Appendix A. The translational and rotational stiffness of O the clamp elements listed in the Appendix A shall be used to connect the tray and hanger model together. The

                  " Released" and the "Non-Released" transverse clamp Propertfea repreaent the degree of connectivity existing betweau the tray an1 the clamp. While the " Released' clamp properties shall oc used for cases where minimum connec-      R2 i tivity is expected, the *Non-heleased" clamp properties shall be used to count for the full connectivity.

Figure 4.2 shows the sketch of the model to be used in the ' , system analysis. For proper consideration of the clarp  ! stiffness in system analysis, Section 4.3.6 shall be referred. l 1392R

i 1

l O -
                                                                                                                          /%

s i u;b -4. #f frif sY - c . 4.

                                     'f /'97                                             -
                                                                    ,eo              o 9

o reyfp!"' n, - r w ep m -p q TM l 4t&rh .. ge  % SonK Y-nG. 74pp r ' 4,ve, \. swt M'?El )

!                                                                                                                  of 7441 i

i f e1 = Distance from the centroid of the web to the shear center of the tier member j e2 = Distance from the midplane of the tier member to the centroid of the ' tray. i l e3 = Distance between the shear center of the tier and the centroid of the post. Pigure 4-2 Model Sketch O 1 1 1392R

                        .. . .                                      . ,     ,.                    ; .                 v . : . gv                                    ..                          ... ..                .
                                                                                                                                                                                                                                                     +

g '- p

                      .'.. : - .= *,. .?  ,

9 f . Fl. ? .'- ' > > ..' -

                                                                                          ,g,t    .f f   g. _ g   f    t4,
                                                                                                                                 .\,     ;    .- - .,                       ,-
                                                                                                                                                                                          'p
                                                                                                                                                                                                '6:         ..

l .*(g  ; 4.2.6 Boundary Conditions l

                                                                                                                                                                                                                                  ,       l' ...

y <..<;. . J b:

     . .                                                                a.       Hanger Anchorage                                                                                                                                             6 p . , . '. ~
                                                                                                                                                                                                                                               . .l f,: ~ .

In general, cable tray hanger anchorages consist of three f -l. .

                                                                                                                                                                                                                                              .p!
             ,'                                                         typest base angles, expansion (and. insert) anchor plates,                                                                                             o C- ' N -(                                                   .
..                                                                      and embedded plates as shown in Figure 4-3.                                                                                                                                         *

, i. . 2' For each of these types of anchorages, the boundary b '4. *. .' assumptions should reflen the actur.1 configuration. The . . boundary conditions which should be.> sed for each of the L. t configurations shown in Figure 4-3 are as follows: ,.  ? '

                                                                                                                                                                                                                                              ..# ,I n f,
 ]
                                                                                                                                                                                                                                                                              \

t 1) Base Angle - 1 bolt 1,E'? 1 <!s f , ' a) Attachment to bcited leg U

. . q 1 ,L . ". .' .

J,'- Translation X - Fixed Y - Fixed .

                                                                                                                                                                                                                                                   ' k M 4 Lf Z - Fixed                                    .                                                                          '4K *i.-                            . .?
                                                                                                                                                                  ,       ,                                                        !     .                                      , s~
fk Rotation XX - K from Table 4-4 ,

R1. _ _,- YY - K from Table 4-4 -  ?

g. 4 l."

i* - ZZ - Free '

s. $

h - = b) Attachment to free leg '" c' r d', - i A 7

                                                                                                                                                                                                                                              .- : T-
                                                                                       . Translation X - Fixed                                                                                r
                                                                                                                                                                                                                                      ,m' .+.                                 . ' <3 0                                                                                                            Y - Fixed                                                                                               < .

3*; s .. , i

    '_,-                                                                                                          Z - Fixed                                                                                                                        .,,....;<  . :,,
  • h Rotation XX - K from Table 4-4 R1 .-

YY - K itom Table 4-4

                                                                                                                                                                                                                                                       *M)%

ZZ - Free .  : i . . , s

                                                                                                                                                                                                                                              ,' % .';.h.?-
                                                                                                                                                                                                                                                                      ..r.         ,

,.- d

, y i -

Y' , _

              .                                                                                                                                                                                                                     / k :.&  c 9                                                                                                                                                                                                                                        g,q.4.' .

y' g. ', ,a . - . ,j- '

                                                                                                                                                                                                                                          . p[,-/ '.                          w 3.i,,

p.

     ~l                                                                                                                                                                                                                                          , 3. _[. . .'- . .                                   j l

p

  ., e                                                                                                                                                                                                                                                                   ,...

e- >fe4-

                                                                                                                                                                                                                                                                          .n           .

I

          ,4
                                                                                                                                                                                                                                               .       e
                                                                                                                                                                                                                                        , .o , .                                            ;
                                                                                                                                                                                                                                          .$., . y r                                                                                                                                                                                                                                                                                               ,

l f; ^,, A [ ' '~

ll
 ;[.                                                                                                                                                                                                                                        .N g.7, .(
                                                                                                          **16-                                                                                                                                        NM ,Y ~

i.; 1392R

                                                                                                                                                                                                                                         "..Qt       ; , e A>.v' r                           .
% w
g. < g[;i t .j. .-

l>%, ~

.. v. 3 .. -

_... c.- -- , ;; t (' y T ,u : >O

                                                                                                                                             - + ..' +; ,                                                               ;1 ~ '),                                             (
e. - l - ' . ,,w.s  ; _ : 1i.y,y
                                                                      .? ::- : _. ',

s'

                                                                                                                                                                      ...        ',' . .f~                                                                  ;,.
                        's- _ fy - l.,                                                                     ij,'O**.                                     ' '
                                                                 ,x t-                                   .   %    +.   . -           .' *. . '              *
                                                                                 ,.    - ~_           . . . -  . _ __- .   --. -

( J ' t

                             \            <                            l    t,
                                         /              -
                                                                            )

j 2)) Base Angle - 2 & 3 bolt

   ,f, a) Attachment to bolted leg Translation X - Fixed Y - Fixed Z - Fixed Rotation     XX - K from Table 4-4
     ,,'                                                                                     YY - K from Table 4-4                     R1 fr '                            ZZ - K from Table 4-4 b) Attachment to free les l                                                                               Translation X - Fixed Y - Fixed
' Z - Fixed i

XX - K from Table 4-4 Rotation i YY - K from Table 4-4 R1

 !                                                                                          ZZ - K from Table 4-4
j 3) Expansion and Insert Anchor Plates ( >, 2 bolts along 2 l R2
p uniques axes) i j ',' 7 Translation X - Fixed

.%-  ! Y - Fixed Z - Fixed Retation X - Fixed

Y - Fixed
                                                                                             .! - Fixed                                   '

. '/..

      ,                                                         :4) Embedded Plater l                                                !                               Trt.nslation X - Fired
                                      '                                                       Y - Fixed                                   I i                                   "",'       '

Z - Fixed l i  ! l

                                                       ,                        Rotation      X - Fixed                                   l 2            -

Y - Fixed Z - Fixed

         ,                                                       The anchorage stiffness to be used in representing the                   l boundary condition for base angle with one or two bolts                  j are shown on Tables 4-4A and 4-4B. For anchorage system              R1
                                                         ,       not covered in the tables, an unique analysis shall be
                                                  "              performed to establish proper anchorage stiffness.

1

                                            ^

es ,

                                 ,r f %.

t _17

 ,                     1392R
                            . . . . _ _ .                   .n                                                     --       -         .,

1

                                                                          ,~                      ;

A W , won ,. L. A/e4AeN4lr  ;

  • e  !
                                                                                        "W I

a

                                                                      /*
                  '                      '                                   RE+ b&.

8 W s

                      , I and 2 ' Bolt Base Angles (Attachment to Bolted or Free Iag) 4f O                                     /

Expansion Anchor Plates

                                                                                                  ]

bY

                                  .o*                 *           , .     ,
                                       '
  • l
                                 -c..                                    , .'
                                                                                       "g
                               ;.~                                 s.:                            l p/. . . , . . ,.

ff I Embedded Plates Figure 4-3 Anchorage Types t

                                                                                 /

1392R i L.

TABLE 4-4A R1 ANCHOR STIFFNESS j R1 CASE 1A: 1 BOLT PATTERN v Q

                                                                                             -      y/                   /

g w .s s

                                                                                                                                                .W;
                                                                                                                                             .'.a -

l

                                                                               ! ".3,,af ~ ".                                              ',yl#

5,e s I I I KMX (in.k/deg.) i KMY (in.k/deg.) i KMZ-(in.k/deg.) i I ANGLE I L I-----------------l-----------------l-----------------I I SIZE I (in.) 11.25 dial 1.5 dia.11.25 diall.5 dia.11.25 diall.5 dia.I 1 l ISU. HILT!! INSERT ISU.HILTIl INSERT I ISU.HILTIlI INSERT Il IL5X5X.751 -- l 14 1 27 I 86 1 188 -- --- ________+________+________+________g I --- I l________+_______+________+________+i IL6X6X.731 -- l 16 1 26 Se i 15JL_. I ---

  • ________+________+________+________g I I l________+_______+________+________+1 I L8 x 8 X. "751 --- 1 18 8 2 2. ,

72- 1 134 I -- --- f ,

                                                                                                                                              ~

CASE 2A: 2 BOLT PATTERN

                                                                                                                                                          - 4' T             4           )I                  s W;

W

                                                                                                                                                                      )

k'

                                                                                                                               /                        .

y - - V '.# 4:e 3m( . I KMX (in.k/deg.) I KMY (in.k/deg.) t MMZ (in.k/deg.) l I I ANGLE I I L I--- -------------l-----------------i-----------------I I SIZE I (in.) 11.25 dial 1.5 dia.11.25 diali.5 dia.11.25 diall.5 dia.1 I I ISU.HILTil INSERT ISU.HILTII1 INSERT 651 l ISU.HILTIl 113 1 INSERT 171 II 12 I as i 41 1 277 i i 417 984 I 152 1 199 I i 18 21 1 46 1 8 206 I I 1 49 3 544 I 1984 1 172 4 IL5X5X.751 24 8 22 3 180 l 206 I 22 49 I 653 1 1187 1 I i 30 1 3 1229 184 1 202 I i 36 22 3 48 1 748 1 1 I 8 ___:.____+_______+._______+______-_+____--__g g_______+_______+________+1 686 8 187 1 156 l l i 12 27 39 8 295 8 182 I i 1 46 I 457 l 878 8 144 1 l l l 18 1 38 1 163 1 192 I i 32 58 8 612 1 1991 1 IL6X6X.751 24 1 1 1837 1 172 1 ~195 I 30 33 1 52 1 749 1 194 I i I 1 52 I 863 3 1323 1 176 1 I 36 33 1 I 1 _____+-_______+________+-_______l g___..____+_______+________+________+___266 497 8 94 1 129 i i 12 1 28 1 33 I 1 153 I I 49 I 431 1 771 1 126 1 i 18 1 33 1 166 I O) '1 601 1821 I 145 1 24 1 36 1 46 I 1 173 I IL8X8X.751 59 1 764 8 1229 1 155 1 l I 30 1 39 I 16e I 175 1 40 52 I 914 1 1396 1 I I 36 1 1 1392R

m . . _ _ . _ - . .. _ . _ . _ . - . _ _ _ _ _ _ . . . _ _ _-__-- _ TABLE 4-4B ANCHOR STIFFNESS CASE 15: 1 SOLT PATTERN - . . , . .

                                                                                                                                                                                                     * . . g, ' y  %
                                                                                                                                    ,/ ;$'
                                                                                                                                                  /.                                           *'               *
Y.
                                                                                                                                                                                                                       ' . ~- .

d .'  %~ .* g

  • v
                                                                                                       . . <~ , , .,s. ' -                                      .-

M. ,*,. [* ' ,Y ,- j

                                                                                                                           .r       .

[- . p

                                                                                                                                                                                                                    ~
                                                                                                                                                                                                                        . v. f.
                                                                                                                         . ' ~ = . . . .4 l                                                                                                                                                                         .:.               ,

l l l KMX (in.k/deg.) l KMY (in.k/deg.) l KMZ (in.k/deg.) l. l ANGLE l L -----------------! 0  ! SIZE  ! (in'.):l------------------+-----------------+! HILTI KWIK l R.I. l HILTI KWIK! R.I. HILTI KWIK! R.I !

                                                                                                 ! 1. 0 & 1.25! 1.0 ! 1.0 & 1.25! 1.0 l
             !              !                    ! 1.0 & 1.25! 1.0
lL5X5X.75
12 l 8 l 25 l 55 l 162 : ---

l --- l l l 9 l 7 l 21  ! 34 l 102.l ---

                                                                                                                                                                                                                         ! --- l'

_____+_____+___s_______+_____l ' !________+______+-__________+______+______53 lL6X6X.75: 12 l 10 l 25 l l 149 l --- l --- l

            !               !          9         !           9                    !   20' !                             33                  !             94 !                              ---                          ! --- l El CASE 28:         E BOLT PATTERN c.e Y
                                                                                                                               '/?                                                     ,
                                                                                                                                                                                                                     .6                     t
                                                                                                                                                                                                       .                    .s
                                                                                                                 .N                          .                                                                        .,,1 i
                                                                                                  .            M --                                                           %.                            '

o..

                                                                                                                                                                                                                    ~

1 l Ki1X (in.k/deg.) l KMY (in.k/deg.) KMZ (in.k/deg.) ! l l l ANGLE L l------------------+-----------------+-- --------------l l SIZE l (in.) HILTI KWIK l R.I. l HILTI KWIK l R.I.! HI LTI KWIK! R.I.l l  !  ! 1.0 & 1.25! 1.0 ! 1.0 & 1.25! 1.0 ! 1.0 & 1.25! 1.0 l 12 l 12 l 35 l 200 l 512 ; 69 l 161 l 4 l l

            ;                         18        :            12                   l   39         l                 304                      l 732 l                                         109                          l 193 l lL5X5X.75: 24 l                                  12                   l   41        l                  400                     l 902 l                                          137                          l      204 l l         30         l           12                   l   41         l                 486                      l1020 l                                         154                          l           206 :

l 205  !. 4

l 36 l 12 l 40 l 562 l1090 l 164
         -  l_.______+______+___________+______+_._________+_____+___________+_____;
                            ;         12                     18                   l   38        l                  202                      l 553 l                                                66                    l 149 l l         18         l           20                   l   44         l                 314                      ; 810 l                                          105                         l 180 l l

lL6X6X.75: 24  ! 20  ! 48 l 425 l1018 l 131 l 193 l 30 21 l 50 l E32 11169 l 148 l 197 l __ !  ! l 629 158  ! 196 !

            '               !         36         !           21                   !   50         !                                          !1269't 1392R
                                                          -   - _ - , - . -                .          - .-                               ,               - . , - .                        = .                     - . -                     --         - . -
  +
b. Hanger supported by steel' frames j if the cable tray hanger is supported by a flexible steel f

g building frame, the flexibility of the steel frame should be considered. This can be achieved by inducing proper spring elements at the support locations.

c. Tray cut-off boundary A free end boundary condition shall be assumed at the end of the tray model. As discussed in Section 4.2.1, at
  %                        least two extra tray spans (transverse and vertical) should be used to simulate the tray behavior at the boundary. In addition, the extended tray model should be used to account for the load distribution in the
  ,                        longitudinal direction.
d. Separation of tray at ganged hangers R1 In some instances the analyst may find two or more trays ganged together by common hangers. It is desirable to include all tray runs at the ganged hangers in a single model. In some cases, one of the tray may have to be separated from the analysis model. Loading from the omitted tray should be properly considered. The procedure presented in Section 3.1.2d of Reference 16 can be followed.

4.3 Load Case Analysis Ine cable tray systems shall be analyzed for deadweight, thermal expansion, and seismic loading. Live loads shall be assumed to be negligible. 4.3.1 Deadweight

  ~

The cable tray system shall be analyzed for gravity loading (deadweight), which is a sustained mechanical loading on the tray and supports. The weight of tray

  +                        components, cable fill, support components, and any fire protection or other permanently attached materials (such as tray cover, side rail extension, etc.) shall be                                                            R1 considered in this analysis.                                                                                           e The actual cable tray fill with a margin of 3 pounds per
  !                        square foot of tray area shall be used in calculating the dead load of cable bundles. However, the sum of this load plus the deadweight of the tray itself shall not exceed 35                                                               .

pounds per square foot of tray. This is shown as follows: I Wdesign " Wtray + Wactual fill + 3 lbs/SF of Tray + Nfireproofing I 35 lbs/SF of Tray if fireproofing is not R1 O I bresent5 lbs/SF of Tray + Wfireproofing fireproofing is present if i l 1 1392R

141ghto of th2 tr:y, cover, cida r:11 ext:naicna, thermolag, thermoblanket and 3 PSF allowance for future cable fill are given in detail in Table 4-5. Actual cable fill data shall be obtained from cable fill sheets or from R1 C. the marked-up span length drawings which have the fill data summarized for'each tray run. If the as-built data is unavailable the tray component weights should be based on 100 percent fill assumption. 4.3.2 Thermal In general, support loads resulting from cable tray p, thermal expansion when considering the small variation between installation and maximum ambient temperature, are insignificant. There are many factors which contribute to this result. The most significant is the composition of the cable tray system. The system is composed of a series of bolted components. These bolted connections ensure that when the tray system is heated there exists sufficient flexibility to allow unrestrained thermal growth. Despite the presence of these inherent conditions, thermal loads induced in the cable tray system shall be determined as described below, which is consistent with Ref. 15.

a. Cable tray system thermal loads shall be based on the temperature difference between normal operating ambient temperature end installation temperature, O which are listed in Attachment P of Ref. 15 for various building and rooms. An effective coefficient of thermal expansion of 0.0001 in./in./100*F shall be used.

i R1 l

b. Only the thermal loads induced by the tray i

longitudinal thermal expansion are significant. The

   -                                        modelling procedure described in Section 4.2.1(c) will adequately represent the stiffness of hangers as well as tray in the longitudinal direction. Therefore, the analysis model described before can be used directly in the thermal analysis.
c. The temperature differential input shall only be applied to the tray.

4.3.3 Seismic The seismic events must be considered for the design of the cable tray raceway systems at CPSES. They are represented by response spectra for OBE and SSE, assuming 4 percent and 7 percent structural damping respectively. , O 1392R

     . . . . . _ . . _ . _ _ . . _ _ . _ _ . . _ . _ . _ _ . _ . _ . - - _ _ _ - - . - - - _ _ _ - _ - . . - . . - _ . _ _ .                                       _ _ . .      . . _ . _ . _ . .   =         ..

l O O O

j. TABLE 4-5 CABLE TRAY UNIT WEIGHT WITH AND WITHOUT THERMOLAG/ THERM 0 BLANKET
   .                                                                                                                                 WEIGHT IN LB/FT                                                                             Li

! l I l l l l l l l l I Tray ITray (1) ICover (2) I Side I Future ISua of (1) I Wt of Io Wt of l Wt Limit I

,                      1          Size                   I                       I                          IRail (3) l             Cable     l Eru (4) lhermolag I hernoblanket I _w/o Thermolag                      l

] l l l l IA110w.(4)l I I I or h ernoblanket I'

!                                                                                                           I                    I           .I           I                I                       I                   I i                                                                                                            i                    l            i           i                I                      .I                   I 6"x4"                  l       5.0             l        1.3               l        2.7         l   1.5      l     11    l  13.0          l        Note 1          l        18       ll  R1 1                       I                          I                    I            I           I                I                        I l
 .                     I          6"x6"                  l        5.0            1        1.3              1         2.7         l   1.5      l     11    1  14.5          I                       i         18 I                                 I                       I                          I                   I             I           I                I                        I                  I

, 12"x4" l 6.0 l 2.3 l 2.7 1 3.0 1 14 l 18.5 l l 35 l i l l I I I I I I l-l 12"x6" l 6.0 1 2.3 1 2.7 1 3.0 1 14 1 20.0 1 1 35 I } I 1 1 I I I I I I l ! 18"x4" l 7.0 l 3.3 l 2.7 I 4.5 l 18 24.0 l l 53 l j l l l 1 1 I I I ' I 18"x6" l 8.0 1 3.3 I 2.7 l 4.5 l 19 l 25.5 l l 53 1 ! I I I .I I I I I i. I 1 l 24"x4" l 9.5 1 4.3 l 2.7 'l 6.0 l 23 l 29.5 l 1. 70' l j i l i l l I I I I I

I 24"x6" 'l 9.0 1 4.3 l 2.7 l '6.0 l 23 I 31'.0 -l l 70 l i i l i I I I I I I I
I 30"x4" l 10.5 I 5.3 I .2.7 I .7.5 1 26 1 35.0 l l 88 i
1 I I I I I l l I I i 30"x6" l .10.0 l 5.3 l 2.7 1 7.5 l 26 1 36.5 l l 88 l

! I I I I I I I I I i I 36"x4" l -12.0 1 6.3 1 2.7 l 9.0 1 30 l 40.0 l ' l- 105 . I I I I I I I I l. l-i 36"x6" I 13.0 1 6.3 l 2.7 l 9.0 1 31 1 42.0 1 I 105 I J I I I I I I I l- I Note 1: See Appendix 1, Attachment - C', Table 1,- Sheet A4.2 of the CTH General Instruction .Rev 4 R2 -f l dated January 15, 1987. (Ref.-15) i 1 b j 1392R __ _ __ - ~_

The seismic response of cable tray systems shall be analyzed using the " simple excitation" envelope response spectrum method. The design response spectra is the O- in-structure floor response spectrum which envelopes the building elevations between which the system is supported. For example, if the cable tray system being evaluated is supported in the Reactor Building between floor elevations 860.0 ft. and 885.5 ft., the response spectrum used in the analysis must envelop these elevations and any intermediate floor elevations. The mode shapes and frequencies shall be calculated up to 33 Hz, or for highest cutoff frequency of the input spectra. Missing mass correction shall be applied to account for higher frequency response. The three orthogonal directions of earthquake loading shall be considered to act simultaneously. The modal responses shall be combined using the Grouping Method (10%) for closely spaced modes in accordance with Regulatory Guide 1.92 and CPSES FSAR. If any other method is used, the conservatism should be demonstrated. The response due to three directions of earthquake shall be combined using square root of the sum of the squares method. When the response spectrum method is applied in calculating the seismic effect, not only the effect described above but also those effects due to differential anchorage displacements shall also be considered. While the former effect is generally termed as " inertia effect", the latter effect is regarded as R2

              " displacement effect". The displacement effect shall be generated in static fashion utilizing the maximum relative anchorage displacements as the input. This result shall then be combined with those induced by inertia effect to complete the analysis for seismic load.

For all tray systems the OBE and SSE load cases shall be evaluated in detail. 4.3.4 Modification Analysis In the event that a support requires modifications, the analyst shall determine if a reanalysis is required to evaluate the impact on the system response. Reanalysis will be required if the modification significantly changes the stiffness and frequency of the cable tray system. (e.g., adding a brace for longitudinal loading). If it can be shown that the modified support has little or no impact on the system response, no reanalysis will be necessary. Reanalysis shall be performed using hand calculations when practical. Otherwise, reanalysis shall be performed in accordance with 4.3.3 above. O 1392R

l l I J 4.3.5 Alternative Analysis Methods Generally, cable tray systems shall be analyzed with the ( ') simple excitation envelope response spectrum method for seismic load as discussed in 4.3.3. However, when it is deemed appropriate, a more sophisticated time history R1 l method may be used. Due to the excessive computing cost l in obtaining the system response via time history method, such an approach shall be used only after all the other means have been exhausted. 4.3.6 Consideration of Connectivity between the Cable Tray and Transverse Hanger The non-friction or " released" clamp properties shall be assumed for all transverse hangers when system analysis is performed. In addition, the friction or "Non-Released" effect shall also be considered. This can be accomplished by performing the system analysis via the use of the "Non- R2 Released" clamp stiffness instead for all transfer hangers and enveloping the result with those obtained earlier with non-friction assumption. If effort shows that the one with non-friction clamp stiffness will generally induce a con-servative result, then the re-analysis of all RSM systems may be avoided. 5.0 ACCEPTANCE CRITERIA s ,) The acceptance criteria shall be in accordance with those specified in References 13 and 14. The evaluation for structural member, welding R2 and anchorage adequacy shall be performed in accordance with the general instruction given in Reference 15. I l 1392R 1

A -- m. A - m m-&n e a a &. A .. - e - a.m _ t e APPENDIX A CABLE TRAY CLAMP STIFFNESS AND EXAMPLE CLAMP TYPES l R2 j 1 l f i h I l l r l 1 i ) i Al ! 1392R _- _ . . . - . - - . . ..-, . - ...-- . . _ , - -_-_- _ .-__ -_ - __ - -- .,_.- . . - ,- -. --_-- . .. - - - _ _ - ~ . .-

In order to closely represent the cable tray clamp stiffness in system analysis model, the following guidelines should be followed: 1

1) The clamp stiffnesses shown on the next page shall be used at all times.
2) If the clamp types are known, the longitudinal cleap stiffnesses shall be used for all longitudinal clamps including types B, D, E, F. H, J, K, N, P, Q and R. For transverse clamps A, C and G, the transverse clamp stiffnesses shall be used. The most commonly used cleap types for R2 -

Comanche Peak SES Units 1 and 2 are shown in this attachment.

3) If the clamp types are not known due to inaccessibility, the following procedure shall apply. - First, the support type has to be determined.' If the support is a longitudinal support, then the longitudinal cleap stiffnesses shall be specified. Otherwise, the transverse clamp stiffnesses shall be applied. A hanger is defined as a longitudinal hanger only if it is braced in the longitudinal direction or if the vertical members of the hanger are so oriented that the strong axis will.

act against longitudinal forces. O l j i ) I O A2 1392R 1 _ 1

l O O O . .: 1 i

CABLE TRAY CLAMP STIFFNESS I

W - Width of Cable Tray H - Height of Sidera11

!                   Clamp Type              Cable Tray            Translational Stiffness K/in               Rotational Stiffness K-in/ rad 1                                              Size                      Kx              Ky     Kz                Kxx       Kyy       Kzz i

4 Transverse Clamps 36x6 3.60 69.3 653.0 770.0 1.2E4 22.4 (Non Released) 30x6 3.60 69.3 653.0 660.0 1.1E4 22.4 ) 24x6 3.60 69.3 653.0 563.0 9.9E3' 22.4 18x6 3.60 69.3 653.0 472.0 776.0 22.4 36x4 5.40 73.2 653.0 5.6E3 3.5E4 22.4

      ,                                        30x4                    5.40           73.2    653.0              5.2E3      3.3E4    22.4 24x4                    5.40            73.2   653.0            871.0        3.1E4    22.4 18x4                    5.40            73.2   653.0            679.0      913.0      22.4 12x4                    5.40            73.2   653.0            507.0      640.0      22.4 6x4                    5.40            73.2   653.0            360.0      411.0      22.4 I

Transverse Clamps Use the corresponding values given above except Ky = Kxx = Kzz = 0.0 (Released) Longitudinal Clamps WxH 580.0 150.0 7.1E3 1.5E5 4.7E5 804.0 4 t T

;                                                                                           rp--
                                                                                  - - - = - =

_.=-_==:.._.-(

                                                                                                 => - (

TUGCO Civil Structural Engineering TNE-FVM-CS-001, Rev.' 2 C JAN. 06, 1984 Page 69 I ATTACHMENT "A" i i el' # BOLT , M V/VASHER ' i i V '

                       !     i       l HOLE FOR { ' @ BOLT & WASHER J
O  %

i l CYPRUS OR BURNDY HUSKY c BOLT

                                     +
                                               '         CONFIGURATION CLAMP                                                            max FILLER P
                                   '!'                                                                                                  THICKNESS =}'

FRICTION l Z'eh !'7 FRICTION TYPE N  ! NORMAL ASSEMBLY CLAMP l

                    !$$".0 (TYP)

O \,-- T '"^' .

                                                                                                           '-          T'"y-g%           g, THICK ( MAX)

T BOLT FOR {GAPMAX(y 0 TRAY CLAff BOLT FOR SUIT) ( TYP) ( A-307 MIN) TRAY CLAlf ( A-307 MIN) , NOTE: FOR WASHER (IF REQ' DI DETAILS AND CRIENTATION SEE ATTACHNENT *E'. TYPE ' A' CLAMP SH 1 0F 2

                                                 .                                 A4           . , ,              _,                ,,
        .                                                                                                                                                                                                                            1 4

5 e

     -[ '-
                                                                                                               'TUGCO Civil Structural Engineering TNE-FVM-CS-001, Rev. 2 JAN. 04, 1984 Page 70
                                                                                         .UTAct!ENT "A" (Cont'd)

TRAY TRAY 23 -eq327- s 2s iMIN j,- CLAMa

           .~

stpecni , ;3P,g.,3g- < MIN j

                                                              /
                                                          ,/ . ,7 ' ' [,

EHIM PLATE,'3ET".EEN TRAY

                                                                                                                     & GUPPCPT s THICM MIN)
                                                                                    ,                                ( LENGTH & W!DTH TO SUIT)-

se r

                                                                                    \                                                    TRAY -
                                                      /        /                         N
                                 /                // s-     "

V '{.. - -

  • V'j' .'/ 7' '
                                                                                                                                         --      ....t......s'...'....' l s-     - SCL~ 2 ' AGE .0CATICN                                                                       / ~/'                        l/

CF SLF50RT 3ECTICN '

                                                                                                                                        / v'                                   F
                                                         ! CH ANNF.L. ETC TYP)

['.'/ / .

                                                                                                                                                         \/t
                                                                                                                                     /                  ,/   N, R
                                                                                                                                 '//./.3...,...%......
                                                                                                                            .. ..y
                                                                                                                                   /

l TRAY i I I I CLAMP - To ggg7 9

                                                                                                                                                                 +             IMIN 2 ) gl MIN ( WELD @

NOTE: OVECHANG CF ' CLAMP' FROM SUPPORT

!                       STRUCTURE IS ACCEPTABLE AS LONC j

AS SOLT HEAD CR NUT OR WASHER ( IF USED) NA5 TOTAL SEARING WITH' . SUP8CRT STRUCTURE. SHIM FCATE MAY SE FIELD - FABRICATED AND PAINTED WITH ' CALVAN0X P AINT' WELOS FOR $HIM PLATE TO CTH MEMSER ARE NCN-C WELDS ' . I TYPE ' A' CLAMP SH 2 0F 2 1 1 1 0 i l i l . A5

              --              -,--.-.,--,,e-                   - - . . , , ,          , - - , -           , , , -      , ,_                 ,. --             , - - - + + . -           ..-g,,,g--,,    ,,n   .-. , , _ - - - -n--

h ' TUGC0 Civil Structural Engineering TNE-FVM-CS-001, Rev.'O JAN. Oh, 1986 i Page 71 ATTACHMENT "A" ( CONT. ) g k TRAY g,0RD HEAVY DUTY n, TRAY CLAPP

                                                              ;.r,

[ HD SCLT F (A307) CHANNEL W/STD WASHER 3,\ l u CHANNEL lPART. PEN. FORyPLATEs k [, f

                                                                                                                                           /

FULL PEN. FORjPLATE' " HQT.Et THE PLATE MAY , BE BENT TO FIT

 ,                                                                                               THE CURVATURE OF i

TRAY. . k-TYPE 'B' HEAVY OUTY CLAMP l !O i A6

                                                                                                                           . .m
   ,     c.,,._.-   ---------yp_,,-,--4-,c,,       ,,y-m___.r--        ,,-.---,wm.,                        m-,,em,       ,,4,-.__.n ,,..ww.,      .,,...v      , e et v - ~ vtt t +'*~&>-Nm-'wr*
                                                                                             .                                     l l

TUGCC Civil Structural Engineer:ng ( s TNE r7M-CS-001, Rev. :: JAN. 06, 1956 l Page 72 l l ATTACHMENT "#' ( CONT) FLANGE OF SUPPORT f TRAY 1 g TRAY j _ TfCLAMP AR 7 gussg,,as- zus: ===ss. p........ l m-l--ir . , . CHANNEL 4 1! MINN g 14 MIN VIEW A-A i WELDED CLIP

                                            ^

l dPLATE I . 1 BOLTED CLIP i SHIM R IF RE0' O l' THICK ( MAX) (TRAY HOLE FCR P p BCLT (LENGTH & ( A-30T MIN) VIDTH TO SHIM ( FILLER PLATE) SUIT) IF RE0'D TRAY CLAMP SUPPOR J Rf ONLY) 5HCLE FOR [4 BOLT & WASHER ' ,FI]LLER

                        \
                          % ss HOLE AS IN CLAMPy PLATE
                                                                                                               ,/ IF RE0'D 4

O BOLT MAX FILLER R THICXNESSs

  • NOTE:

SHIM PLATE MAY BE FIELD FABRICATED AND PAINTED VITH ' GALVAN 0X PAINT *. O VELDS FOR SHIM PLATE TO CTH ttMBER ARE NON-Q VELDS. TYPE ' C' CLAMP BOLTED OR WELDED SH 1 0F 2 i

                                                             .              ^7 .                                                .

I a 5 l r .

                                                                                                                   .TUGCC Civil Structural Engineering TNE-FVM-CS-Coi, Rev. 2 JAN. 06,. 1996 Page 73 ATTAOSET "A** (Cant'd) i

, $s { MIN ALTERNATE j , 's j' jMIN,70'a'ELO@

                                                                                  \                      r0 l:u..l j-:"AY CLAMP N\.       t y

q.... ., .....- D

                                                                                                                / .b 2

[ -....y . ; ,... sV'.l. v TRAY 9 4 j ths kMIN,WELO @ -i 3 , { MIN NON Q CUT FRCM STANDARD TRAY CLAMP- l TRANSVERSE TYPE ' 7 SUPPORT!6 s + /- Vss C9 s l l TRAY TRAY l i NOTE: OVERHANC OF 'CLAMo* FROM SUPPORT

                                   $TRUCTURE IS ACCEPTABLE AS LONG AS BOLT HEAD OR NUT OR WASHER E                                   ( IF USED) HAS TOTAL BEARING WITH
<                                  SUPPORI STRUCTURE.

FOR VASHER ( IF REQ' 01 OETAILS AND ORIENTATION SEE ATTACHMENT 'E'. TYPE ' C' CLAMP SH 2 0F 2 4 w/ 1 A?, 77-,--n--- - . - . - , y ,,----,,y e-,-.,,-.-------- , - - - - - y .--,,.--_,,,,,,3

                                                                                                                               -3,,-.-,~,.,3     . , , . ,   ,, , -.,      .-,-r-,   - -
                                                                                                                                                                                            ,,,-.--w-,---   9.-, , - . - , .w-   +   -,c--

l

                                                                                                                                                                                                                         \

l

                                                                                                                                                                                                                         )

TUGCC Civil Structural Engineering TNE-WM-CS-001, Rev. 2 JAN. 06, l'996 C Page 74 4 ATTACHMENT "A" ( CONT. ) iOR} HEAVY DUTY ANGLE ANGLE TRAY SHIM PLATE t kHNIdx i

                                                                                          =

M l'd RD HD CHANNEL m -= 'lf " i W BOLTS ( A30T) W/STD WASHER T 4i , f CHANNEL q.2 BOLT ( A-325 MIN)

;                                                                                                                                                                                     NOTE:             ,

{ THE ANGLE MAY BE BENT

                                                                                      -                                                                                               TO FIT THE CURVATURE OF THE TRAY
                                                                                                                                                        @ BOLT

($g] C s }' I Q HOLEFORl'$ 80LT AND WASHER Y i SHIM PLATE ( LENGTH & WIDTH TO SUIT) i NOTE: CVERHANC OF ' CLAMP' FROM SUPPORT I STRUCTURE IS ACCEPTABLE AS LONG , AS BOLT HEAD OR NUT OR VASHER i

 !                              (IF USED) HAS TOTAL BEARING VITH SUPPORT STRUCTURE.

SHIM PLATE MAY BE FIELD FABRICATED AND PAINTED WITH GALVAN 0X PAINT. i FOR WASHER (IF RE0' 01 DETAILS AND ORIENTATION SEE ATTACHMENT *E'. . TYPE ' O' HEAVY OUTY CLAMP A?

   ...___._._.,,_f___).___ __
                                                                                                                                                                                                             ,,,,_...__4

_ , _ . . _ _. _ .. _ . -. . - . _ _ m _ _ TUGCO Civil Structural Engineerin9 TNE4VM-CS-oct, a.v, , ~ JAN. 06, 1966 Page 75 ) ATTACHMENT "A" ( CONT. ) l i 4 1 tS '8 RO 37 S W/STD WASHER

                                                                                                \     7                   HEAVY OUTY                             $$AE j PART. PEN. FORjPLATE                                                               TRAY CLAff                             h$$$

)' FULL PEN. FORl PLATE Y-bCHANNEL

                                                                                              >                  t                  i l

t 4 i \ ' NOTE: 3 THE PLATE MAY BE BENT To FIT THE CURVATURE OF TRAY. O TYPE ' E' HEAVY DUTY CLAMP ' ~ i AT TRAY SPLICE A10 r--.- _ - -_-, .c.,,.-.~-- .---.,,,m. . . ..- ,-,., ..w--.3 ,yem,,--y$,, p.,.--..-w , ~.,,.--.,-,...-.r-- e, -

                                                                                                                                                                                              ---t-  -t -- - - - '

4--w-~

TUGCO Civil Structural Engineer-i ng f-TNE-i:VM-CS-001, Rev. 2 JAN.' 06, 1986 . Page 76 ATTACHMENT "A" ( CONT. ) i" i OR 1) MEAVY OUTY AN L SHOWN OR PLATE) e F

                                                                                                                ^^^^             g (D8-{*9RD H         OLT SHIM PLATE                                           h IIII           /          (A 7)

(IF REC' 0) w yvv W/ D WASHER l' THICK . ( PAX) \ s y a T e \

  • k j's BOLT & VASHER i

r

  • CHANNEL HOLEFOR{
                                                                                           \ BOLT                                             mm THE ANGLE MAY y                                             BE BENT TO FIT
THE CURVATURE OF TRAY.

i SHIM PLATE ( LENGTH & WIDTH TO SUIT) l NOTE: OVERMANG OF ' CLAMP

  • FROM SUPPORT STRUCTURE IS ACCEPTABLE AS LONG AS BOLT HEAD OR NUT OR VASHER -

(IF USED) HAS TOTAL BEARING VITH SUPPORT STRUCTURE. SHIM PLATE MAY BE FIELD FABRICATED AND PAINTED VITH CALVANOX PAINT. l l FOR WASHER (IF RE0'D) DETAILS l AND ORIENTATION SEE ATTACHNENT *E'. 4 TYPE ' F' HEAVY DUTY CLAMP AT TRAY SPLICE All

        ,7- .-.--     ,      - , , -         - ~ , ,

r--L ,, ., , ,, ,,.--,,.,n, L., - - , , - , , - ---.---..-,---.t . -, .-

                . .          .                 .                                                               ...                           . ..         --.    =                      .-          . .

l

                                                  ,                                                                                   TUGC0 Civil Struc ural Engineering

,O TNE-FVM-CS-001, Rev, 2 JAN. 06, 1986 Page 77 i  ! ATTACHMENT "A" ( CONT) ! 1 4 TO SUIT I R{'X2(:{) ( TYP) e *

                                                            >E                >   I                                                                  -

4YP N to om I g7 EQ "5 I, I f80TTOM f. CF TRAY

                                                                                                                                                    # glN1{ MIN \'

i SUPPORT ] TOP HORZ PLA E ^ i 1 i I

                                                                                                       /'.,. -
                                                                        )

i t i THIS DETAIL MAY BE USED WHERE TRAY BEN 05. IF REQUIRED, THE VERTICAL PLATE MAY BE i BENT TO FIT THE CURVATURE OF TRAY. TOP HORI20NTAL PLATE MAY ALSO BE CUT TO MATCH TRAY. d !O TYPE ' G' CLAMP A12 p' w- -ge, m,-w .-. - _ . - ,__p,wg -74 9.,,m. .,,,w y,,.m ,, y .,__-.-.,4 ,__,..,.t- '

                                                                                                                                                                            ----W---y-r"---   ' -

TUGCO Civil, Structural Engineering O TNE-FVM-CS-001, Rev. 2 Q JAN. 06, 1994 Page 78 ATTACHMENT "x' ( CONT. ) dORjANGLE t8 '3 RD ( 3b7 ANGLE v/STD WASHER - g

                                                               \ Y
                                                                        ]h                                                                .A     A A p
                                                                                                                                         ..h........

k N / NORMAL . HANNEL g< N WELD LOC LEG OF ANGLE MAY BE TURNED IN8OARD, UNDER TRAY ( TYP) . N. S. AS SHOVN OR F.S. AS ALTERNATE. 0MIT THIS VELD (FOR TRAYS LESS THAN 24' AT ALL ELEVATIONS AND FOR ALL TRAYS dr AT EL.832*6 AND BELow. BUT IF 00NE IN FIELD MAY REMAIN AS IS. ALTERNATEN VELO LOC' g' ggg g _ g (A / NORt%L _ i = .. ......... y - L0e

                                                       $.....................7                       TUBE STEEL

{( T RN E TUBE STEEL . NOTE: THE ANGLE MAY BE BENT TO FIT THE CURVATURE CF TRAY. FOR VASHER (IF REQ'0) OETAILS AND CRIENTATION SEE ATTACHMENT 'E'. I i TYPE 'H' CLAMP HEAVY DUTY AT TRAY SPLICE A13

                                                              . - .              . _ . . _ _ . .         . , . _ _   1. _. -_      -,,

TUGCC Civil Str uctural Engineet-ing O TNE-FVM-CS-001, Rev. O JAN. 06, 1996 Page 79 ~ ATTACHMENT "A" ( CONT. ) DOR l ANOLE y TRAY

                                             , e d WASHER $?.

F FOR TRAY 24* AND UP t l i

                                +a                         t CHANNEL             d      / NORML g'     ' sELD LOC O                              LEG OF ANGLE MAY BE TURNED IN80ARD. UNDER TRAY ( TYP3.                                  ~

N.S. AS SHOWN OR F.S. AS ALTERNATE. OMIT THIS VEL'O dy (FORTRAYSLESSTHAN24'ATALLELEVATIONSANDFORALLTRAYS AT EL.8I2'6 AND SELOW. BUT IF DONE IN FIELO MAY REMAIN AS IS. l ir fh'3RD HD CLT

                   "      4-                                                                         ( A3 71
                   "                '* HOLES                                                         W/S 0 WASHER T               FOR { BOLTS dWASHERPLATE WE L ggggg g4y BE BENT TO FIT
!                         --                          --                C        C               THE CURVATURE OF L.............    .......j
                                                                     ...... .........            TRAY.

TUBE STEEL / ALTERNATE TUBE STEEL

                                                                                         '* ' WELD LOC TYPE ' J' CLAMP HEAVY DUTY A14 4

f j TUGCO Civil Structural Engineering TNE-FVM-CS-001, Rev. 2 i JAN. 06, 1996 Page SO 1 ATTACHMENT "A" ( CONT. ) ( 8-j'8 RD ($3$  % i f l f- V/STD WASHER HEAVY DUTY

                                                                                                                       \-
                              !I i !

04-

                                                        /          l PART. PEN.f ,3 CLAMP I                                   .

l 9 FOR PLATE

                                                                                                              =

FULL PEN. ,, CHANNELd. FOR PLATE CHANNEL J 4 l I E l I I l l j NOTE:

  • I THE PLATE MAY BE BENT TO FIT THE CURVATURE OF TRAY.

a I l a... TYPE 'X' CLAMP HEAVY DUTY ' ' l AT TRAY SPLICE l A 15 , 1

                                                                        -o.

TUGCO Civil Structural Engineering i TNE-FVM-CS-001, Rev. O JAN. 06, 1986 Page 81 ATTACHMENT "A" ( CONT. ) i {ORl ANGLE TRAY [ ANGLE (.l*p80LT O ( A-325 MIN)

                                        -.mL      L{ OR j                     W/ WASHER                 -

F EP" RD HD BOLT (A3071 CHANNEL %3 l CHANNEL # h T tic.m. NG ~ THE FI gk H < CURVATURE OF BOLT THRU SUPP0RT -> yL i IRAY -SHIM PLATE ' IF REQ' D (,/ 1* THICK . ( MAX)

 !                                   l SHIM PL ATE (LENGTH & WIDTH To SUIT) 1                                                                                                           .

NOTE: l OVERHANG OF ' CLAMP' FROM SUPPCRT STRUCTURE IS ACCEPTABLE AS LONG AS 80LT HEAD OR NUT OR WASHER (IF USEDI HAS TOTAL BEARING WITH l SUPPORT STRUCTURE.

!                SHIM PLATE MAY BE FIELD
 !               FABRICATED AND PAINTED VITH GALVAN 0X PAINT.

FOR WASHER (IF REC' D1 DETAILS AND ORIENTATION SEE ATTACHMENT *E'. O TYPE 'N' CLAMP HEAVY DUTY 1 A16

TUGCC Civil Structural Engineering g TNE-FVM-CS-OO1, Rev. 2 , \ JAN. 06, 1986 Page 32 i I ATTACHMENT "A" ( CONT. ) i

                                                                                                                         &CRl ANGL                             TRAY ANGLE              l'SRDHD                                                                             NOTE:

4

                                                         /                     BOLT ( A30T)

W/STD VASHER THE ANGLE MY BE BENT i

                                           -O          -

F TO FIT THE I CURVATURE OF ThE TRAY CHANNEL # - . - CHANNEL A / NORMAL l }V ' WELD LOC ~ LEG OF ANGLE MY BE TURhED INBOARD. UNDER TRAY ( TYP) .

                                      }                        AS SHOWN OR F.S. AS ALTERNATE.                                           OMIT THIS WELD FCR TRAYS LESS THAN 24' AT ALL ELEVATIONS AND FOR ALL TRAYS
!                                     d ) ( N. S.        AT EL. 832' 6 AND BELOV. . BUT IF DONE IN FIELD MAY REMAIN AS IS.                            '

j NOTE: . OVERHANG OF 'CL Aff' FROM SUPPORT . STRUCTURE IS ACCEPTA8LE AS LONG AS 80LT HEAD OR NUT OR WASHER (IF USED) HAS TOTAL BEARING VITH SUPPORT STRUCTURE. SHIM PLATE NAY BE FIELD FA8RICATED AND PAINTED j VITH GALVAN 0X PAINT. iO TYPE ' P' CLAMP HEAVY OUTY , A17

                                                                                                            ,1 i 'I t   l l                                                                                                            l   l l                                                                                                            I TUGCC Civil Structur al Engineering         $
                   .                                            TNE-i:VM-CS-OO1, Rev.
  • O- JAN. 06, 1986 Page 83 <

2 I ATTACHMENT "A" ( CONT) } ANCLE CHANNEL 7 g,# BOLT ~~" "~ ~ ~ ~' I J . f A-325 HIN)  % i

                       $l l .[W/ WASHER                                                J ;;

1 CHANNEL l*4RDHD [ p

 '                                                           BOLT ( A307) /         '~""~~~~

V/ WASHER -

                                                                                @\ TRAY I

HOLE AS IN CLAMP 7 BOLT THRU SUPT f i 1 i

                                 ' P !!INE$$                                       SHIM PLATE l' THICK                            (LENGTH & WIDTH TO SUIT)

( MAX)

]

NOTE: OVERMANG OF ' CLAMP' FROM SUPPORT STRUCTURE , IS ACCEPTABLE AS LONG AS BOLT HEAD OR NUT OR WASHER (IF USED) HAS A TOTAL BEARING WITH SUPPORT STRUCTURE.

  !           SHIM PLATE MAY BE FIELD FABRICATED AND PAINTED WITH ' GALVAN 0X PAINT *.                                                                         j FOR VASHER (IF RE0'D) DETAILS AND CRIENTATION SEE ATTACHMENT          *E'.                                                      )

1

                     +

TYPE 'O' CLAMP HEAVY DUTY - l i

                                       ,             A18                                                        '
}}