ML20210F616
Text
A a'f
,a y '.
15 id A
f,1-
-f A
r:
T [G 0
?
TEXA UTILITIE GEN BL A
NG S
Y
^
e y--
y:.
6}1l' il
'1 U?M???l@
- 2: -
- V. ';
.I
- -[ l..
hf i
')
~
t'.
4 l
? I, f
ib[..
re N
.V.1 Ji l,
VOLUME I - BOOK 12 h[h kobbk 5
[J w ~erra s n -
y.
i i
i 1
l
)
i i
.i l
l 1
I i
1 i
i i
I i
i I
J 1
i TABLE OF CONTENTS FOR Tills BOOK t
I V
i l
l 5
I l
l j
i i
l 4
I I R' l
i 4
I
n
_ -~
,,..n-.-.....-...---..
VOLUME I - BOOK 12 TEXAS UTILITIES GENERATING COMPANY COMANCHE PEAK UNITS 1 & 2 TABLE OF CONTENTS SUBJECT CTH ANCHORAGE BASE PLATE FLEXIBILITY STUDY PAGE Purpose 2
Description 2
Table 1. Comparison of Support Joint Reactions 3
Table 2. Spring Rates for Typical Base Plate Configurations 5
i Case 1: 2 Bolt Pattern Case 2: 1 Bolt Pattern 4
O i
5 O
BOOK 12A VOLUME I
/~'
TEXAS UTILITIES GENERATING COMPANY f(
COMANCHE PEAK UNITS 1&2 TABLE OF CONTENTS CTH Anchorage Base Plate Flexibility Study - computer runs
- STRUDL finite element analysis to calculate rotational displacements for unit moments on base angles with one and two bolt patterns (1-1/2 in.
Richmond Inserts).
l Computer l Date l
l lrun I.D.! of run l TITLE l
___l l________+________+________________________________________________in.
lJ 7936A l12-3-85 l Two 1-1/2" Richmond Inserts, L5X5X.75, L = 36 l
l________+________+___________________________________________________l lJ 7380A l12-3-85 ! Two 1-1/2" Richmond Inserts, L5X5X.75, L = 30 in. l l________+________+___________________________________________________l lJ 8191A l12-3-85 l Two 1-1/2" Richmond Inserts, L5X5X.75, L = 24 in. l l________+________+________________________________________
lJ 9547A l12-4-85 l Two 1-1/2" Richmond Inserts, L5X5X.75, L = 18 in.
l________+_______+___________________________________________________l lJ 6973A l12-3-85 l Two 1-1/2" Richmond Inserts, L5X5X.75, L = 12 in. l l________+-_______+___________________________________________________l lJ 301A l12-4-85 l Two 1-1/2" Richmond Inserts, L6X6X.75, L = 36 in. l l________+________+___________________________________________________l lJ 9993A l12-4-85 l Two 1-1/2" Richmond Inserts, L6X6X.75, L ='30 in. l l________+________+___________________________________________________l lJ 5611A l12-2-85 : Two 1-1/2" Richmond Inserts, L6X6X.75, L = 24 in. l l________+________+___________________________________________________l lJ 5430A l12-2-85 l Two 1-1/2" Richmond Inserts, L6X6X.75, L = 18 in. l l___.____+________+___________________________________________________l lJ 1068A l11-26-85l Two 1-1/2" Richmond Inserts, L6X6X.75, L = 12 in. !
l________+_______+__________________________________________________l lJ 560A l12-4'-85 l Two11-1/2" Richmond Inserts, L8X8X.75, L = 36 in. l l________+-_______+__________________________________________________l lJ 733A l12-4-85 : Two 1-1/2" Richmond Inserts, L8X8X.75, L = 30 in. l l
l________+________+___________________________________________________l lJ 828A l12-4-85 l Two 1-1/2" Richmond Inserts, L8X8X.75, L = 24 in. l l________+________+_____._____________________________________________l lJ 1538A l12-4-85 Two 1-1/2" Richmond Inserts, L8X8X.75, L = 18 in. l l________+________+______.
.__________________________________________l lJ 1809A l12-5-85 l Two 1-1/2" Richmond Inserts, L8X8X.75, L = 12 in. l
___l l________+________+________________________________________________in.
lJ 2550A l12-5-85 l One 1-1/2" Richmond Insert, L5X5X.75, L = 12 l
l________+________+___________________________________________________l lJ 7471A l4-23-86 l One 1-1/2" Richmond Insert,. L5X5X.75, L=
9 in.. l
)
l________+_______+___________________________________________________l
!J 6373A l12-5-85 l One 1-1/2" Richmond Insert, L6X6X.75, L = 12 in.-l l________+________+___________________________________________________l lJ 5569A l4-22-86 One 1-1/2" Richmond Insert, L6X6X.75, L =
9 in. l l________+________+___________________________________________________l lJ 2155A l12-5-85 ! One 1-1/2" Richmond Insert, L8X8X.75, L = 12 in. l l________+________+ __________________________________________________l 4
lJ 7437A l4-23-86 One 1-1/2" Richmond Insert.
L8X8X.75.
L=
9 in. !
-,w n--
BOOK 12B VOLUME I TEXAS UTILITIES GENERATING COMPANY COMANCHE PEAK UNITS
'l & 2 TABLE OF CONTENTS CTH Anchorage Base Plate Flexibility Study - computer runs
- STRUDL finite element analysis to calculate rotational displacements for unit moments on base angles with one and two bolt patterns (1-1/4 in.
HILTI Super Kwik Bolts).
l Computer!
Date l
l lrun I.D.
of run l T I T.L E l
l________+________+___________________________________________________
lJ 6003A l12-23-85 Two 1-1/4" Hilti Super Kwik, L5X5X.75, L = 36 in. l l________+________+___________________________________________________
lJ 6000A l12-23-85! Two 1-1/4" Hilti Super Ewik, L5X5X.75, L = 30 in. l l________+________+___________________________________________________l lJ 5995A l12-23-85: Two 1-1/4" Hilti Super Kwik, L5X5X.75, L = 24 in. l l________+________+___________________________________________________l lJ 6001A l12-23-85: Two 1-1/4" Hilti Super Kwik, L5X5X.75, L = 18 in. l l________+-_______+___________________________________________________:
lJ 4647A l12-20-85: Two 1-1/4" Hilti Super Kwik, L5X5X.75, L = 12 in. l l________+________+___________________________________________________
lJ 4581A l12-20-85! Two 1-1/4" Hilti Super Kwik, L6X6X.75, L = 36 in. l l________+________+___________________________________________________l lJ 4573A l12-20-85: Two 1-1/4" Hilti Super Kwik,.L6X6X.75, L-=
30 in. l l________+________+___________________________________________________
lJ 4564A l12-20-85: Two 1-1/4" Hilti Super' Kwik, L6X6X.75, L = 24 in.
l________+________+___________________________________________________
lJ 4296A l12-20-85l Two 1-1/4" Hilti Super Kwik, L6X6X.75, L_=
18 in. l l________+________+___________________________________________________
lJ 4132A l12-20-85l Two 1-1/4" Hilti Super Kwik, L6X6X.75, L = 12 in. l l________+________+___________________________________________________
lJ 6222A l12-23-85! Two 1-1/4" Hilti Super Kwik, L8X8X.75, L = 36 in. l l________+________+___________________________________________________
lJ 6209A l12-23-85! Two 1-1/4" Hilti Super Kwik, L8X8X.75, L = 30 in. l
- ________+________+___________________________________________________
lJ 6197A l12-23-85 Two 1-1/4" Hilti Super Kwik, L8X8X.75, L = 24 in.
l________+________+___________________________________________________l lJ 6008A l12-23-85 Two 1-1/4" Hilti Super Kwik, L8X8X.75, L = 18 in. l l________+________+___________________________________________________l lJ 6006A l12-23-85: Two 1-1/4" Hilti Super Ewik, L8X8X.75, L = 12 in. l l________+________+___________________________________________________l lJ 6520A l12-23-85l One 1-1/4" Hilti Super Kwik, L5X5X.75, L = 12 in. !
l________+________+___________________________________________________l lJ 5525A l4-22-86.l One 1-1/4" Hilti Super Ewik, L5X5X.75, L =
9 in. l l________+________+___________________________________________________
lJ 6529A l12-23-85l One 1-1/4" Hilti Super Ewik, L6X6X.75, L = 12 in. l l________+________+___________________________________________________
lJ 5512A l4-22-86 l One 1-1/4" Hilti Super Kwik, L6X6X.75, L=
9 in. l l________+________+___________________________________________________
lJ 6151A l12-23-85: One 1-1/4" Hilti Super Kwik, L8X8X.75, L = 12 in. l l________+-_______+___________________________________________________
!J 6729A !4-23-86 ! One 1-1/4" Hilti' Super Kwik. L8X8X.75.
L=
9 in. !
. _ _. _. - _... ~ ~.
i t
i i
l i.
i 1
BOOK 12C j
5 VOLUME I i
i TEXAS UTILITIES GENERATING COMPANY I
COMANCHE PEAK UNITS. 1&2 i
1 i
TABLE OF CONTENTS CTH Anchorage Base Plate Flexibility Study - computer runs
- STRUDL 4
frame analysis with rotational and translational support joint stiffnessnes, and base plate finite element analysis..
l l Computer!
Date l
l j-lrun I.D.
of run l T I T L.E l
l________+________+__________________l. w/supp. joints EMZ =
lJ 9437A l12-04 85l STRUDL frame ana 0
"k/deg.
i j
l________+________+__________________l, w/supp. joints KMZ =
30 "k/deg.!
l lJ 9443A !12-04_85: STRUDL frame ana _________________________________l
- ________+________+__________________l. w/supp. joints KMZ = 130 "k/deg.l 4
lJ 9445A l12-04 85: STRUDL frame ana l
}
l _ _ _ _ _ _ _ _ + _ _ _ _ _ _ _ _ + _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ __ _l. w/ s upp.'j o i nt s XMZ = i n f i n i l
lJ 9440A l12-04_85l STRUDL frame ana _________________________________;
l________+________+__________________l.w/transl. stiffness KFY=117 k/in!
lJ 5413A l 4-15_86; STRUDL frame ana
_________________________________l
- ________+________+__________________l. w/transl. stiffness KFX=359 k/inl 4
lJ 5429A l 4-15-86l STRUDL frame ana j
l________+________+__________________l. w/tr. stiff.KFX=359 KFY=117 k/in!
lJ 5431A l 4-15-86: STRUDL frame ana
!________+________+_____________________X=359,KFY=117k/inKMZ:130 "k/dg!
lJ 5434A l 4-15-86l STRUDL fr. anal. w/KF
______________________l J
!________+-_______+_____________________________iffness KMZ =1400 k/in.l l
lJ 5440A l 4-15-86: STRUDL frame anal. w/ rot.st l________+-_______+___________________is with offset = 6 in.
l i
lJ 7846A l 5-01-86: Base plate analys I
________________________________l l________+________+___________________iswith offset =
lJ 8275A l 5-01-86l Base plate analys 3 in.
j
___________________________________l j
- ________+________+________________ lysis with offset = 9 in.
l j
lJ 9704A l 5-02-86: Base plate ana ___________________________________
l l________+________+__________~______ lysis with L=12 in.,
!J 9901A l 5-02-86l Base plate ana offset = 3 in. l J
l
- ________+________+________________ lysis without offsets i
lJ 8288A l 5-01-86l Base plate ana
_l l________+ _______+__________________________________________________in!
lJ 4015A l 2-05-86l Base plate analysis with more grid lines, G=2.5 j
l________+________+________ late analysis with more grid lines, G=3.0 in i
lJ 6965A l 2-07-86l Base p ___________________________________________
- ________+________+________ late analysis with more grid lines, G=3.5 in!
lJ 2426A l 2_04-86: Base p l
_________l
- _______+________+__________________________________________G=3.5 in.!
j
!J 2226A l 2_04-86l Base plate analysis with three loadings, j
- ________+________+________ late analysis with three loadings, G=4.5 in.!
lJ 2567A l 2-04-86; Base p l
- ________+________+ __________________________________________________
t i
lJ 4538A l 1 29-86l Base plate analysis with three loadings,L8X8X.75 l
l
- _ _ ______+________+________ late analysis with three loadings, G= 1. 5 in. l lJ 4008A l 2 05-86l Base p l
- ________+________+________ late analysis with three loadings. G=2.5 in.!
!J 4520A ! 1_29-86! Base v j
a t
)
l BBASCO SERVICES INCORPORATED CALCULATION COVER SHEET l
l l CLIENT: TEXAS UTILITIES GENERATING COMPANY OFS. NO.3306.221 l
l l
l PROJECT: COMANCHE PEAK SES UNITS 1&2 DEPT. NO. 550 l
l l
l l
l SUBJECT CTH ANCHORAGE BASE PLATE FLEXIBILITY STUDY.
l l
l CALCULATION NO. VOLUME 1. BOOK 12 NUMBER OF SHEETS 6
l l
l l PROBLEM: Evaluate the impact which the baseplate stiffness has on the!
STRUDL frame analysis, and generate standard spring constant!
]
l tables for most common baseplate configurations encountered l
l I
l in the CTH Design Verification.
l l
l i
l l
l l
}
l l
l l
l l
l l
l l
l t
i l
l lCONTAINS ASSUMPTIONS WHICH REQUIRE CONFIRMATION YES NO X
l l
l l ASSUMPTIONS CONFIRMED ON N/A BY N/A l
4 l
l l Computer runs associated with this study are located in volume I,l l
l
! books 12A through 12C l'
2 l
l
{
l l
l l
l l
l l l
l l
l l
l l
l l0l l
l l
l l
l l
lPl l
l l
l l
l l
lT:
l l
l l
l l
l l
lI!
l l
l l
l l
l l
l0l l
l l
lN!
l l
I I
Y3 6 5l%2'*L:
I l
O 5
I d, l
l l
l l
i 1
l REV. l SHEET l NAME
!DATE! N AME
!DATE! l NAME
!DATEl l NO.
! NOS.! CALCULATION BY
! C HECKED BY
! ! REVIEWED / APP.BYl PRELIMINARY l[!
FINAL ![!
SUPERSEDES CALC. NO.
N/A I
e
EBASCO SERVICES INCORPORATED m
BY:J.Christoudias DATE:5/03/86 SHEET 1
0F__5_
CHKD.BY:J.Swanso DATE:5/03/86 DEPT. 550 PROJECT: Comanche Peak Units 1 and 2
SUBJECT:
CTH Anchorage Base Plate Flexibility Study TABLE OF CONTENTS page Purpose........................................................
2 Description....................................................
2 Table 1, Comparison of Support Joint Reactions.................
3 Table 2, Spring rates for typical base plate configurations.... 5 Case 1: 2 Bolt Pattern Case 2: 1 Bolt Pattern O ATTACHMENTS:
Book 12A :
Fifteen base plate STRUDL runs for three common angle
- sizes, with two Hilti Super Kwik Bolts spaced at 12, i
18, 24, 30 and 36 inches and six base plate STRUDL runs for the same three common angle sizes, but with one Hilti Super Kwik Bolt.
Book 12B :
Fifteen base plate STRUDL runs for three common angle
- sizes, with two Richmond Inserts spaced at 12, 18, 24, 30 and 36 inches and six base plate STRUDL runs for the same three common angle sizes, but with one Richmond Insert.
Book 12C :
Nine sample STRUDL
- runs, for a portal frame with various end conditions, and thirteen sample base plate runs to test various conditions as applicable to practical CTH design applications.
1 A
W--
EBASCO SERVICES INCORPORATED G:
-TL BY J.Christoudias DATE:5/03/86 SHEET __2__OF__S_
CHKD.BY:J.Swanso DATE:5/03/86 DEPT. 550 PROJECT: Comanche Peak Units 1 and 2
SUBJECT:
CTH Anchorage Base Plate Flexibility Study PURPOSE The purpose of this study is to establish the impact of baseplate flexibility on the joint reactions of an indeterminate structure.
DESCRIPTION The support joint reactions on an indeterminate structure depend, among others, on the following factors:
- a. Magnitude and location of applied forces
- b. Structure configuration c.
Flexibility of support joints In many
- frames, usually the support joints are assumed infinitely rigid.
This assumption is usually conservative, since it will produce maximum support joint reactions.
In the case of base angles
- however,
/~' anchored with one or two bolts, as is the case with many cable tray
(_jsupports, the consideration of support joint flexibility will provide a more realistic distribution of moments throughout the entire frame and in many cases a substantial reduction of the anchorage joint reactions.
Therefore, an anchorage which fails if we use reactions from a frame analysis where support joints were considered infinitely
- rigid, may pass if we use reactions from a frame analysis which takes into account the flexibility of the angle anchorage.
YJ To illustrate the
- above, let. us 1
5 consider the frame of figure 1. Make (g
Ud four sample runs as follows:
~TL i-J.
- a. Consider rigid support joints u.
l,r-
- b. Use 0 in.k/deg. spring rate c.
Use 30 in.k/deg. spring rate C6X8.2(typ)
- d. Use 130 in.k/deg. spring rate Tabulate the results of the STRUDL g
i analysis in Table 1.
From these results, we can see that the support 10 k.
joint flexibility can substantially j@)
j])
(((,
reduce the moment reactions, as U
i e
[ compared to a frame analysis which T
~
~
- ~ ~ ~
X considers the support joints to be Zf: 2 2'-0" E-infinitely rigid.
2'-0" m
4
-0" y
f
/
figure 1.
2
EBASCO SERVICES INCORPORATED O'BY:J.Christoudias 1
N-DATE:5/03/86 SHEET __3__OF__5_
CHKD.BY:J.Swanso DATE:5/03/86 DEPT. 550 PROJECT: Comanche Peak Units 1 and 2
SUBJECT:
CTH Anchorage Base Plate Flexibility Study TABLE 1. COMPARISON OF SUPPORT JOINT RT; ACTIONS:
l l
END l
JOINT REACITIONS l
l l JOINT l CONDITION!_------------------------------------l REMARKS l
l l(IN.K/DEOl MZ(in.k) l RX(k) l RY(k) l l
l_____+_________+.___________+__________+____________+_______________l l
l FIXED 16.421 l
1.606 l
-5.04 l
l l_________+____________+ __________+.___________+_______________l l
l KMZ=0 l
0.000 l
1.086 l
-5.04 t
l l
1 l_________+.___________+___________+ ___________+ ______________l l
l KMZ=30 l
0.857 l
1.113 l
-5.04 l
l l
l_________+____________+___________+____________+_______________l l
l KMZ:130 l 3.165 l
1.186 l
-5.04 l
l l_____+_________+.___________+___________+.___________+_______________;
l l FIXED l -16.421 l -1.606 l
-5.04 l
l l
l_________+____________+-__________+___________+______________l l
l KMZ=0 l
0.000 l -1.086 l
-5.04 l
l l
5 l---------+_-__________+_-_______-_+___ -______-+ -_____________l l
l KMZ:30 l
-0.857 l -1.113 l
-5.04 l
l l_________+____________+___________+____________+_______________l l
l KMZ=130 l
-3.165 l -1.186 l
-5.04 l
l l
To obtain realistic spring rates for the base angle anchoragas used on Comanche Peak, we will run the STRUDL base plate program for the three most common angle sizes (i.e.
L5X5X.75, L6X6X.75, L8X8X.75).
Two anchor bolt cases (i.e.
1.5 in.dia. Richmond inserts and 1.25 in. dia.
Hilti Super Kwik bolts),
will be analyzed for each angle size. Apply 1 IN.K.
unit loads and obtain corresponding displacements, then compute opring ratos and tabulate the results in Table 2.
Although the base-plate does not behave linearly, applying spring rates obtained from relatively stiff baseplates (i.e.
3/4 in, thk.
plate with stiffener which is the case of the base angles considered),
will give results much more realistic than infinitely rigid support joints.
To test the limitations of table 2, and the impact of the spring rates on the frame analysis, Nine test runs for baseplate analysis and seven test runs for frame analysis were performed and included in volume I,
book 12C.
From these test runs of representative cases, the following
! conclusions can be drawn:
a.
There is no significant impact on the spring rate values, by adding more grid lines on the baseplate run.
3
EBASCO SERVICES INCORPORATED Yc -
BY:J.Christoudins DATE:5/03/86 SIIEET 4
0F 5
CIIKD.BY:J.Swanso DATE:5/03/86 DEPT._550 PROJECT: Comanche Peak Units 1 and 2
SUBJECT:
CTl! Anchorage Base Plate Flexibility Study b.
For the base angle anchorages of Table 2, varying the loads within the usual moment magnitudes, has no impact on the spring rate values.
c.
Small variations on the gage dimensions (11/2 in) for the anchor bolt location does not impact significantly the spring rate values,
- d. Translational stiffnesses, for the base plate angles of table 2,
need not be considered in the design.
Their impact on the frequency is insignificant for frequencies smaller than 33 liertz for the normal CTII load range (dead load reaction less than 1
k.
per baseplate).
On the other hand, disregarding translational spring rates from the static
- analysis, will yield 'slightly higher reactions, which is conservative.
For marginal
- cases, such translational spring rates can be incorporated in the
- design, and will be calculated on a case by case basis, e.
Moving the location of the channel 16 in, from the centerline of the angle, will not have a significant impact on the spring rate values.
Df.
The distance of the bolt from the end of the angle, can vary from 2.5 to 4.5 inchen.
l
S cf 5 1
i TABLE 2: SPRING RATES FOR TYPICAL BASEPLATE CONFIGURATIONS.
CASE 1: 2 BOLT PATTERN f
~.:&
l Y
!, U 8t 94 I
q
,,. Il l
l l
l
!,100C ( in.k/deg. ) l KMY (in.k/deg.) l KMZ (in.k/deg.) l l ANGLE l
L l-----------------l-----------------l-----------------l l
SIZE
- (in.) l1.25 dial1.5 dia.l1.25 dial1.5 dia.!1.25 dial1.5 dia.l
!SU.HILTI! INSERT !SU.HILTI! INSERT !SU.HILTI! INSERT !
l 12 l
20 l
41 l
277 l
651 l
113 i
171 l
l l
18 l
21
~ 46 l
417 l
904 152 199 l i lL5X5X.75:
24 l
22 l
49 l
544 l
1084 l
172 l
206 l
l l
30 22 l
49 l
653 l
1187 l
180 l
206 l
36 22 l
48 l
740 l
1229 l
184 l
202 l
l l________+______+________+________+._______+....____+___.___+_.._____l l
l 12 l
27 l
39 l
295 l
606 l
107 l
156 l
l 18 l
30 l
46 l
457 l
878 144 l
182 l
lL6X6X.75:
24 l
32 l
50 612 1091 l
163 l
192 l
l l
30 l
33 l
52 l
749 l
1237 l
172 l
195 l
l l
36 l
33 l
52 l
863 l
1323 l
176 l
194 l
i l
l________+_______+._______+_______+________+________+________+._______l l
l l
12 l
28 l
33 266 l
497 l
94 l
129 l,
i l
18 l
33 l
40 l
431 l
771 l
126 l
153 l
lL8X8X.75:
24 36 l
46 l
601
!.1021 l
145 l
166 l
l l
30 l
39 l
50 l
764 l
1229 l
155 l
173 l
36 40 52 914 1396 160 175' !
CASE 2: 1 BOLT PATTERN Of> 7 74 I
V
- J
%<p i
1 l
l KMX (in.k/deg.) : KMY (inYE/deg.) ! KMZ (in.k/deg.) l l ANGLE l
L l-----------------l------------_----l--------_--------l l
SIZE l (in.) 11.25 dia 1.5 dia.!1.25 dial1.5 dia.l1.25 dial1.5 dia.l
!SU.HILTI! INSERT !SU.HILTI! INSERT !SU.HILTI! INSERT !
lL5X5X.75:
12 l
14 l
27 l
86 i
180 l
l l
9 13 l
22 l
55 113 l
l l
l________+.______+_______+.......+..._____+._______+_...____+.__..__l
!L6X6X.75:
12 l
16 i
26 l
80 l
165 l
l l
l 9
l 14 l
21 53 l
103 l
l l
l__..____+.______+________+.___..__+_____...+.______+.____..+-----_--!
O lL8X8X.75!
12 l
18 l
22 l
72 l
134 l
l l
9 14 17 47 85 j
5 O
C
_