ML20210H685

From kanterella
Jump to navigation Jump to search
Rev 1 to App D to, GE Reload Fuel Application for Oyster Creek
ML20210H685
Person / Time
Site: Oyster Creek
Issue date: 09/17/1986
From:
GENERAL PUBLIC UTILITIES CORP.
To:
Shared Package
ML20210H663 List:
References
NEDO-24195-APP, NEDO-24195-APP-D-R01, NEDO-24195-APP-D-R1, NUDOCS 8609260269
Download: ML20210H685 (15)


Text

5

,_ 9 APPENDIX D CYCLE 11 RELOAD LICENSE SUBMITTAL REVISION 1 1

0-1/D-it i

i 8609260269 860717 PDR ADOCK 05000219 P PDR

D.1 REFERENCE CORE LOADING PATTERN (1.0, 2.7, 3.3.1 AND 4.0)*

Fuel Type Group Number Irradiated Exxon Type VB A 176 Exxon Type VB B 24 P80RB239 C 112 P80RB265H D 60 New P8DRB265H E 4 P80RB299ZA F 48 P80RB299Z G 136 Total 560 Nominal previous cycle core average exposure at end of

<ycle: 14,898 MHd/t Minimum previous cycle core average exposure at end of cycle from cold shutdown considerations: 14,898 MHd/t Assumed reload cycle core average exposure at end of cycle: 15,769 MHd/t Core loading pattern: Figure 0-1 Sources of non-GE bundle characteristic'.:

Local Thermal-Hydraulic Nuclear Peaking Model (Fuel and Bundle Type Libraries Factor R-Factor Channels)

Exxon Type VB Developed via GE See App. B See App. B lattice methods NED0-24195 NED0-24195

  • ( ) Refers to areas of discussion in " General Electric Reload Fuel Application for Oyster Creek", NED0-24195, August 1979.

D-1

D.2 CALCULATED CORE EFFECTIVE MULTIPLICATION AND CONTROL SYSTEM WORTH -

NO VOIDS, 20*C (3.3.2.1.1 AND 3.3.2.1.2)

BOC k.,,

Uncontrolled 1.103 Fully Controlled 0.945 Strongest Control Rod Out 0.975 R, Maximum Increased in Cold Core Reactivity with 0.002 Exposure Into Cycle, ak D.3 STANDBY LIQUID CONTROL SYSTEM SHUTDOHN CAPABILITY (3.3.2.1.3)

Shutdown Margin (ak)

J ppm (20*C, Xenon Free) 600 0.045 D.4 TRANSIENT ANALYSIS INPUTS (3.3.2.1.5 and 5.2)

Void Coefficient N/A* ( /% Rgo) -6.71/-8.39 Void Fraction (%) 36.2 Doppler Coefficient N/A ( /*F) -0.221/-0.210 Average Fuel Temperature (*F) 1138 Scram Worth N/A ($) -37.64/-30.11

Scram Reactivity vs Time Figure D-2 a

0.5 GETAB TRANSIENT ANALYSIS INITIAL CONDITION PARAMETERS (5.2) i l

P8x8R EX8

, Peaking Factors (local, 1.20 1.28 radial and axial 1.683 1.609 1.40 1.40 R-Factor 1.051 1.098 Bundle Power (MWt) 5.653 5.416 Bundle Flow (10' lb/hr) 89.34 91.02 Initial MCPR 1.35 1.32

  • N = Nuclear Input Data; A - Used in Transient Analysis j ,

D-2 J

D.6 CORE-WIDE TRANSIENT ANALYSIS RESULTS (5.2.1)

Exposure $ Q/A ACPR Transient (mwd /T) (% NBR) (%) P8x8R Ex8 Figure 1

Turbine Trip EOC 516 122 0.28 0.25 Figure D-3 without Bypass Loss of 100*F BOC to EOC 115 114 0.13 0.12 Figure D-4 Feedwater Heating Feedwater Con- EOC 350 121 0.24 0.22 Figpre D-5 i troller Failure 0.7 LOCAL ROD WITHDRAWAL ERROR (WITH LIMITING INSTRUMENT FAILURE) TRANSIENT

SUMMARY

(5.2.1)

Limiting Rod Pattern: Figure D-6 .

Reactor Rod Position ACPR MLHGR (kW/ft)

Power (%) (Feet Withdrawn) P8x8R Ex8 P8x8R Ex8 104 .

7.0 0.23 0.22 17.0 13.8 105 8.0 0.26 0.25 17.9 14.4 106 8.5 0.27 0.25 17.9 14.4 107 9.0 0.28 0.25 17.9 14.4 108** 9.0 0.28 0.25 17.9 14.4 109 9.5 0.29 0.25 17.9 14.4 110 9.5 0.29 0.25 17.9 14.4 D.8 CYCLE MCPR VALUES *** (5.2)

Non-pressurization Events Exposure Range: BOC to EOC P8x8R Ex8 Loss of Feedwater Heater 1.20 1.19 i Fuel Loading Error 1.21 N/A i l i Rod Withdrawal Error 1.35 1.32 1

    • Indicates APRM rod block setpoint selected.

l 0-3

Pressurization Events Exposure Range: SOC to EOC Option A Option B P8x8R Ex8 P8x8R Ex8 i

Turbine Trip w/o Bypass 1.41 1.38 1.36 1.33 Feedwater Controller Failure 1.37 1.34 1.28 1.26 0.9 OVERPRESSURIZATION ANALYSIS

SUMMARY

(5.3)

's1 "v
Transient (psig) (psig) Plant Response l

MSIV Closure 1264 1302 Figure D-7 0.10 STABILITY ANALYSIS RESULTS (5.4)

Not required by reference.

D.11 LOADING ERROR RESULTS (5.5.4)

Rotated Bundle: P8x8R ICPR: 1.21 (before rotating)

MCPR: 1.09 (after rotating)

ACPR: 0.14*

4 i

  • Includes 0.02 ACPR penalty.

1 D-4

. , . , ,. - - . . - , . - - _ . . . - e

M -

- B[EI[E[E [EfE a

844 88 [9[E [ELGJJ LJG

  • 8[EI[E[0IO[E 9FclI[EIcIl a B [E@ 0[5 i@Z l 42 @G f I G@lq^juB[E 4

[C lA a B [B[B444 0[E [E0 @LG' [9LGJ

= BM [B[EI[E[EIO@l0@'[EFcl

=

9444444

[EE 0[E 9[E [H E EFGl [iil^g!

34 E I M O I M E I E [EI O 9 1 8 FclI[E W I

=2 9444444

[0[E @[E @[E [E[E [9LG1 [d Gl o

ZI[B[EI[E[EI[EMI[ECl[EMI[ElcI

==

9J [EJ 8J [EJ [EJ OJ LAJ 3 5 7 9 11 13 15 17 19 21 FUEL TYPE A = EXXON -VB D = P8DRB265H G = P8DRB299Z l B = EXXON-VB E = P8DRB265H C = P8DRB239 F = P8DRB299ZA Figure D-1. Reference Core Loading Pattern for Cycle 11 0-5 l

1% 45 CCNTROL ACO ORIVE VS TtvE SCR AM REACTivlTV VS TIME 60 -

- 40 80 -

- 35 70 -

67A CRQ IN PERCENT 30 60 -

- 25 3 a

2 U 50 - 2, o

20 $

NO MIN AL,5CR AM 40 -

CURV E IN 1-SI

- 15

0 -

- 10 20 -

~

10 - SCR AM CURVE USED IN ANALYSIS l l l I g

3 1 2 3 4 5 6 TIVE isect Figure 0-2. EOC Scram Reactivity l

D-6

, - - - - - - , _ . - - - . - - - -- -- . - , .. .- - ----.* -. .w w.,- . -g em eM ew--+vwm - - ' -

--M-----'4"-- * -- *---r- -MP

1 NEUTRON FLUE 1 VESSEL PRES 5 RISE (PSI) 2 AVE SURFACE HEAT FLUX 2 SAFETY V ALVE FLOW 3 CORE IM.ET rLOW 3 RELIEF VALVE FLOW 15 0. 0 300.0 m e-==ce uitu r m_e=

a O 181.0

  • h Nl 200.0 A,

3

- S 0. 0 100.0

O 7
0. 0 0. 0  ;
0. 0 2.0 4.0 6.0 0. 0 2.0 4. 0 0.0 TIME (SEC0251 TIME (SEC04 S]

1LEwELCINCH-EEF-SEP-SMRT) 1 V010 QEACTIVd Y 2 VESSEL STEAFFLCW 2 CCPPLER REACT ITY 3 TLEBINE STE AMFLCW 3 SCR AM me QEA.Cf!VIcAny 200.0 ' rEEy a'es rLCu 1.0 v7v . :_

W too.g 0.0 -_ _

v T M i

! ~NJ 00 < , , , , . -1.0 )

, .y g

l l

-100.0 2,g

0. 0 2.0 4.0 6.0 0. 0 2. 0 4. 0 8.0 TIME (SECO W S) - TIME (SECCE S]

Figure D-3. Plant Response to Turbine Trip Hithout Bypass 0-7

= .

1NEurRON FLUX I VESSEL PRESS RISE (PSI) 2 AVE SURFACE HEAT FLUX 2 REL IEF VALVE FLOW 3 CORE IM.ET FLOW 3 9YPLSS VALYE FLOW 150.0 ' " "E "_E' ?' ? _

.-t  ; ^

100.0

_ .- . .. m.

a W 2 0 0. 0 , , ,  ; ;  ;  ;  ;  ;  ;  ;; ,

I!:

y 50.0 W

r 50,0 88 , C :; 'O 0: ;  : 3

0. 0
0. 0 100.0 200.0 0. 0 100.0 200.0 TIME (SECCNOS) TIME (SECDeS1 1 LEVELCINCH. REC.SEP.5MRT)  ! VOI 3 REACTIVITY 2 VES EL STEAMFLOW 2 COP)LER REACTIVITY 3 TUA INE STEAMFLOV 3 SCRAM REACTIVITY 158.0 ' rE E_w **En ELCu . l.0 ' 70 rat mE*cr e v e rv G

3 -C: - ^ 3; "; (U tea,o ,

c.c_ 0. 0 -

. . _ .- - .- ~_ .= .

3 m

8 5

I 50.0 W . .0 l N l a i 1

0. 0 -2.0 0.0 100.0 200.0 0. 0 100.0 200.0 TIME (SECONOS) TIME (SECOWS3 s, Figure 0-4. Plant Response to Loss of 100*F Feedwater Heating D-8

= .

118.0 1NEUIRCN FLUX l 1 WESSEL FRESS #!SE : PSI) 2 AVE SURF ACE H '

' LUX 2 SAFEfY WALVE F 1 3 CCRE INLET FL: 3 RELIEF VALVE Ft ,

tg0. s e +-=e *%E \

4 8YPASS VALVE F ;C 1 1

a j

100.0

- # _N

$a 180.3

- 2'  : 'E '

, ~- ,

at b

50.8 U 1  %

W  %

t S 0. 8

(*

8.0 .

0.3

0. 0 20.0 40.0 0. 0 20.0 40.0 Time (SECCNCS) f!ME (SECC t s)

!!LEvELCINCH :FF.5EP SMRI) { 40!3 GEACT!v!"Y VE53EL STEA=FLCw CCPptER REACT VIf f E Fb?

l. " Sk  ?

190. s  :

b i f igg,3 - - - - 2 "

2 2, 0.0 .

kM I i

E

-~

\

90.0 h I h -1.8 h! .

/'/

0. 0 20.0 40.0 0. 0 20.0 40.0 f!ME (SEC0411  ?!ME (SECCNOSI Figure 0-5. Plant Response to Feedwater Controller Failure j 0-9 1

i . .

2 6 10 14 18 22 26 30 34 38 42 46 50 51 48 48 48 47 06 06 06 06 43 06 40 48 40 06 39 06 06 34 34 06 06 35 48 40 48 38 48 40 48 31 06 34 0 0 34 06 27 48 48 38 48 38 48 48 23 06 34 0 0 34 06 19 48 40 48 38 48 40 48 15 06 06 34 34 06 06 11 06 40 48 40 06 7 06 06 06 06 l 3 48 48 48 NOTES: 1. Rod pattern is full core.

3

2. No. Indicates number of notches withdrawn i out of 48. Blank is a withdrawn rod.

a

3. Error rod is (22,31).

j l

1 Figure %6 Limiting RHE Rod Pattern

.__D-____

10 __.__ _ _ _ _ , _ _ _ _ ._ _ _ - . , - , _ _ _ . .

1EUTRON F.UX 1 VESSEL PRESS R!SE(PSI) 2A fE SURFA2 NEAT FLUX 2 SAFETY WALVE FLOW 3 CI RE INLET FLOW 3 RELIEF VALVE FLOW 150.0 300.0 e = Se wiLue eLcy a

W 100.0 g '

) Y 7 200.0 8

0 E N 50.0 h 100.0 a

9. 0 0.0 , , _ _ _ _ ,, , ,, ,
0. 0 5.0 0.0 5.0 TIME (SECO251 TIME (SECoeS1 1 LEVEL (INCH 4EF-SEP-SMRT) 1 VO!D RE ACITIVITY 2 VESSEL STAMCLOV 2 DOPPLER REACTIVITY 3 TURBINE STE AMFLOV 3 SCR AM REACTIVITY 200.0
  • cEE"y*?En rLCw . 1.0 ' t a ?
  • L e E ir ? ' u ' Yv 3

I C O. 3 , ,

0.0 s

; ;  ;  ; q

'. N I 00 __- - 5 . .0 z " " " " ~ "

g

-100.0 -2.0

0. 0 5.0 0. 0 5.8 TIME (SECO251 TIME ( EC04 51 .

Figure D-7. Plant Response to MSIV Closure, No Scram 0-11

9 Table 5-14a MAPLHGR VERSUS AVERAGE PLANAR EXPOSURE Plant: Oyster Creek Fuel Type: P8DRB239 Average Planar l Exposure MAPLHGR PCT 0xidation j (mwd /t) (kW/ft) (*F) Fraction 200 9.5 2198 0.095 1000 9.5 2198 0.395 i

5000 9.5 2194 0.085 l

10,000 9.5 2193 0.085 15,000 9.5 2194 0.085 20,000 9.0 2092 0.169 l

1 25,000 8.9 2048 0.169 i

30,000 8.9 2049 0.170 35,000 8.7 2050 0.170 40,000 8.3 2049 0.170 e

l

Table 5-14b MAPLHGR VERSUS AVERAGE PLANAR EXPOSURE Plant: Oyster Creek Fuel Type: P80RB265H Average Planar Exposure MAPLHGR PCT 0xidation 1 (mwd /t) (kW/ft) (*F) Fraction 200 9.5 2198 0.095 1000 9.5 2198 0.095 5000 9.5 2198 0.086 j 10,000 9.5 2198 0.086 l 15,000 9.5 2198 0.086 t

l 20,000 8.9 2078 0.170 25,000 8.8 2050 0.170 l

30,000 8.8 2044 0.166 35,000 8.6 2049 0.170 40,000 8.3 2050 0.170 i

i I

l

Table 5-14c MAPLHGR VERSUS AVERAGE PLANAR EXPOSURE Plant: Oyster Creek Fuel Type: P80RB299

! Average Planar

Exposure MAPLHGR PCT 0xidation (mwd /t) (kW/ft) ('F) Fraction 200 9.3 2198 0.092 1000 9.4 2198 0.091 5000 9.5 2199 0.085 10,000 9.5 2197 0.085 0.086 15,000 9.5 2198 l

20,000 0.169

) 8.8 2047 25,000 8.7 2046 0.168 4 30,000 8.7 2042 0.166 35,000 8.5 2047 0.169 40,000 8.2 2048 0.170 ,

45,000 7.7 2046 0.167 I

I l

, ,. _ . _ .