ML20210C639

From kanterella
Jump to navigation Jump to search
Rev 2 to River Bend Station,Cycle 9 Colr
ML20210C639
Person / Time
Site: River Bend Entergy icon.png
Issue date: 07/02/1999
From: Bedell L, Law W, Sicand P
ENTERGY OPERATIONS, INC.
To:
Shared Package
ML20210C637 List:
References
NUDOCS 9907260113
Download: ML20210C639 (52)


Text

'

Ptg31 of 52 RBS CYCLE 9 COLR Revision 2 RIVER BEND STATION, CYCLE 9 CORE OPERATING LIMITS REPORT (COLR)

PREPARED BY: @/gj'/m/ Date: 7-2-99 '

Responsible Engineer '

1 REVIEWED BY: h I Date: 7-2-77 Revi(w Engineer APPROVED BY: l Date: 7-h 'ki Manniger - Safety & Engineering Analysis APPROVED BY: if (~g Dl Ae.f Date: )-) ,

Director, Engineering River Bend Nuclear Station fEQ 'i SAS APPROVED BY: h h / g gffi g; dNy' Date: //J/f7 facilities'R'eview Committee River Bend Nuclear Station 9907260113 990719 DR ADOCK0500Q8

Pega 2 of 52 RBS CYCLE 9 COLR Rcvision 2 TABLE OF CONTENTS INTRODUCTION AND

SUMMARY

. . 3 CONTROL RODS.. . . 4 TECifNICAL SPECIFICATION 3.2.1 .. . . 5 TECHNICAL SPECIFICATION 3.2.2. . . . 6 TECHNICAL SPECIFICATION 3.2.3 . 7 TECIINICAL SPECIFICATION 3.2.4. .. . . 8 TECHNICAL SPECIFICATION 3.3.1.1 . 9 TECHNICAL SPECIFICATION 3.3.1.3 10 TECHNICAL REQUIREMENT 3.3.1.1 11 TECHNICAL REQUIREMENT 3.3.2.1 , 12 REFERENCES. 13 APPENDIX A- ADM!NISTRATIVE LIMITS , . 14

]

Pag 3 3 of 52 RBS CYCLE 9 COLR Rsvision 2 i

INTRODUCrlON AND

SUMMARY

This report provides Cycle 9 values for the following Technical Specifications:

1. AVERAGE PLANAR LINEAR HEAT GENERATION RATE (APLHGR) limits,
2. MINIMUM CRITICAL POWER RATIO (MCPR) limits,
3. LINEAR HEAT GENERATION RATE (LHGR) limits,
4. FRACTION OF CORE BOILING BOUNDARY (FCBB),
5. REACTOR PROTECTION SYSTEM (RPS) APRM Flow Biased Simulated Thermal Power - High Allowable Values,
6. REACTOR PROTECTION SYSTEM (RPS) APRM Flow Biased Simulated Thermal Power time constant.
7. PERIOD B ASED DETECTION SYSTEM (PBDS) region boundaries.

Technical Specification section 5.6.5 requires these values be determined using NRC-approved methodology and are established such that all applicable limits of the plant safety analysis are met.

This report also provides Cycle 9 values for the following Technical Requirements:

1. REACTOR PROTECTION SYSTEM (RPS) APRM Flow Biased Neutron Flux Power - High Allowable Values and Nominal Trip Setpoints',
2. CONTROL ROD BLOCK INSTRUMENTATION APRM Flow Biased Simulated Thermal Power High limits.

]

In some cases limits in the COLR differ from the limits in the core monitoring system. This is sometimes due to limitations in the core monitoring system to model the actual limits, in which case the core monitoring limits may be more  !

conservative than the COLR limit. In other cases the limits in the COLR are presented in less detail than in the core monitoring system. When these situations exist the core monitoring limits will be explained or be referenced by the COLR and will be made available to Operations.

Figures 28 through 37 are being added as part of the implementation of stability related Technical Specification changes (Amendment No.106).

The reload analyses were performed in accordance with GESTAR 11 and its applicability to Cycle 9 was confirmed by Reference 8.

8 Note that for Figures 30 to 37, the Nominal Setpoints should be used for indicating the entry into a particular stability region as allow ed and appropriate actions be taken prior to the entry l

Pag 3 4 of 52 RBS CYCLE 9 COLR Rrvision 2 CONTROL RODS The River Bend core utilizes both GE original equipment and ABB CR-82M bottom entry cmciform control rods. These Control Rod designs are discussed in more detail in reference 7.

REASONS FOR REVISION Revision I incorporated changes pertaining to the core design in which all the once-burned bundles were replaced either by new bundles or by GE8 design bundles, due to the abnormal oxide build-up. An appendix is also included for information in the COLR, depicted in which are the administrative LHGR limits for the control of potential oxide build-up throughout Cycle 9 to within a specific level.

Revision 2 incorporated changes as a result of CR-1999-ll38 in which an error was discovered in that the M APLHGR limits for non-limiting Batch GGE fuel Group 4 are non-conservative. In particular, the MAPLHGR limits for Group 4 (Figure 7) were revised to remove the nonconservativsm and provide adequate margin for LOCA protection. In addition, the titles for Figures 5,6 and 7 were changed to the MAPLHGR values for the four GGE groups defined in Appendix A.

A

Pigm 5 of 52 RBS CYCLE 9 COLR 1 Revision 2 TECHNICAL SPECIFICATION 3.2.1 POWER DISTRIBUTION LIMITS AVERAGE PLANAR LINEAR HEAT GENERATION RATE (APLHGR)

The limiting APLHGR (sometimes referred to as Maximum APLHGR, or MAPLHGR) value for the most limiting lattice (excluding natural uranium) of l each fuel type as a function of AVERAGE PLANAR EXPOSURE is given in j Figures 2,3,4, and 8 through 11. Additional MAPLHGR limits (Reference 11) '

are also imposed on the GGE batch to account for the excessive crud buildup in these batch identified in RF8. The GGE batch bundles are categorized into 4 groups (Appendix A) for monitoring purpose. The MAPLHGR values for Group 1, the combination of Groups 2 and 3, and Group 4 are depicted in Figures 5,6, and 7, respectively. These values were determined with the SAFER /GESTR LOCA and GESTR-Mechanical rnethodology described in GESTAR-II (Reference 1). Core location by fuel type is provided in Fi;ure i 1 and is the reference core loading pattem in reference 3. These figures are used if alternate calculations are required. The limits of these figures shall be reduced to a value of 0.79 and 0.87 times the two recirculation loop operation limit when in single loop operation for gel 1 and GE8, respectively (Reference 3). Thermal power and core flow dependent multipliers are provided. The value of the exposure dependent limit is reduced by the value of the multiplier at a given offrated power or flow condition. These multipliers are independent of the single loop multipliers and are shown on Figures 26 and 27.

The APLHGR limits in the core monitoring system are in more detail than the limits that appear in the COLR due to there proprietary nature. The core j monitoring system has APLHGR limits for each lattice in a bundle rather than listing only the most limiting value for the entire bundle. Reference 4 lists the core monitoring system limits.

i o w

Paga 6 of 52 RBS CYCLE 9 COLR Rsvision 2 TECHNICAL SPECIFICATION 3.2.2 POWER DISTRIBUTION LIMITS MINIMUM CRITICAL POWER RATIO (MCPR)

The MCPR limits for use in Technical Specification 3.2.2 for flow dependent MCPR (MCPRp) (Reference 3), power dependent MCPR (MCPRp) (Reference 3) are shown in Figures 22 through 25. The most limiting value from the applicable MCPN and MCPR, figures is the operating limit. These values were determined with the GEMINI methodology and GEXL-PLUS critical power ratio correlation described in GESTAR-il (Reference 1) and are consistent with a Safety Limit MCPR from Technical Specification 2.0. The Operating Limit MCPR values in Figures 22 through 25 must be increased by 0.01 during single loop operation.

i l

I 1

l I

l l

r Peg 9 7 of 52 RBS CYCLE 9 COLR 1 RQvision 2 l

TECHNICAL SPECIFICATION 3.2.3 i POWER DISTRIBUTION LIMITS LINEAR HEAT GENERATION RATE (LHGRJ The limiting LHGR value for the most limiting lattice (excluding natural uranium) of each fuel type as a function of AVERAGE PLANAR EXPOSURE is given in Figures' 12 through 21. These values were determined with GESTR-Mechanical methodology described in GESTAR-II (Reference 1). Core location by fuel type is provided in Figure 1 and is the reference core loading pattern in reference 3.

These figures are used if alternate calculations are required. Thermal power and core flow dependent multipliers are provided in Figures 26 and 27. The value of the exposure dependent limit is reduced by the value of the multiplier at a given offrated power or flow condition. l The LHGR limits in the core monitoring system are in more detail than the limits that appear in the COLR due to their proprietary nature. The core monitoring system has LHGR limits for each lattice in a bundle rather than listing only the most limiting value for the entire bundle. Reference 4 lists the core monitoring systen. limits.

Appendix A depicts the administrative limits for the GGE types bundles as identified by their serial numbers. These target LHGRs, although not required by GESTAR (Reference 4), are in general more restrictive than the licensed LHGR limits (Figures 19 to 21) and ensure the oxide build-up throughout Cycle 9 is controlled within the analysis assumptions. The GGE fuel will be operated within the more limiting of the licensed LHGR limits or the administratively controlled LHGR limits included in Appendix A.

3 l

l i

i l

Pagg 8 of 52 RBS CYCLE 9 COLR I Revision 2 ,

I i

i TECHNICAL SPECIFICATION 3.2.4 POWER DISTRIBUTION LIMITS FRACTION OF CORE BOILING BOUNDARY (FCBB)

Restricted Region Boundary Note: The boundary ofthe Restricted Region is established by analysis in terms of thermalponer and coreflow. The Restricted Region boundary is defined by the "non-setup" APRM Flow Biased Simulated Thermal Power - High Control Rod ,

Block Serpoints, uhich are afunction ofreactor recirculation driveflow. \

The Restricted Region boundaries as a function of aligned drive flow are given in Figures 30 through 33 in terms of aligned drive flow. The aligned drive flow is calculated from the input drive flow using the relationship given in Table 1.

Flow Biased Simulated Thermal Power - High Limits The APRM Flow Biased Simulated Thermal Power - High Scram setpoints as a function of aligned derive flow are given in Figures 30 through 33. The aligned drive flow is calculated from the input drive flow using the relationship given in Table 1.

a. Case 1 - Normal Feedwater Heating Operation or Low Reactor Power:

Ty(at rated)2 Ty"(at rated)- 50 F, and rated equivalent at off-rated reactor conditions.

OR P s 30%

b. Case 2 - Reduced Feedwater Heating Operation Ty(at rated) < TR"(at rated)- 50 F, and rated equivalent at off-rated reactor conditions.

AND P > 30%

Where: Ty is feedwater temperature in F, and P is reactor power in percent of rated.

i

Pag) 9 of 52 RBS CYCLE 9 COL" Rsvision .

TECHNICAL SPECIFICATION 3.3.1.1 INSTRUMENTATION REACTOR PROTECTION SYSTEM (RPS) INSTRUMENTATION AVERAGE POWER RANGE MONITORS APRM Flow Biased Simulated Thermal Power- High Limits The APRM Flow Biased Simulated Thermal Power - High scram setpoint Allowable Values are given in Figures 30 through 33 in terms of aligned drive j flow. The aligned drive flow is calculated from the input drive flow using the relationship given in Table 1.

a. Case 1 - Normal Feedwater Heating Operation or Low Reactor Power:

Ty(at rated)2 Ty*(at rated)- 50 F, and rated equivalent at off-rated reactor conditions.

1 OR P s 30%

b. Case 2 - Reduced Feedwater IIeating Operation Ty(at rated)< Tfw""(at rated)- 50 F, and rated equivalent at off-rated reactor conditions.

AND P > 30%

Where: Trw is feedwater temperature in F, and P is reactor power in percent of rated.

APRM Simulated Thermal Power Time Constant The simulated thermal power tirne constant for use in Technical Specification Table 3.3.1.1-1, SR 3.3.1.1.14, is (Reference 6):

6 0.6 seconds.

The maximum simulated thermal power time constant for use in Technical Specification surveillance Table 3.3.1.1-1, SR 3.3.1.1.14 is:

6.6 seconds

Il Pag) 10 of 52 RBS CYCLE 9 COLR Revision 2 l

TECHNICAL SPECIFICATION 3.3.1.3 j INSTRUMENTATION l

PERIOD BASED DETECTION SYSTEM (PBDS) l l

Monitored Region Boundary l

The Monitored Region . Boundaries as a function of core Dow are given in Figures 28 and 29.

Restricted Region Boundary Note: 1he boundary of the Restricted Region is established by analysis in terms of thermalpower and core flow. The Restricted Region boundary is defined by the "non-setup" APRM Flow Biased Simulated Thermal Power - High Control Rod Block Serpoints, which are afimction ofreactor recircidation driveflow.

The Restricted Region boundaries as a function of aligned drive flow are given in y

Figures 30 through 33 in terms of aligned drive Dow. The aligned drive Dow is calculated from the input drive Dow using the relationship given in Table 1.

a. Case 1 - Normal Feedwater Heating Operation or Low Reactor Power:

Ty(at rated)2 Ty"(at rated)- 50 F, and rated equivalent at off-rated reactor conditions. )

OR P s 30%

b. Case 2 - Reduced Feedwater Heating Operation Ty(at rated)< T@"(at rated)-50 F, and rated equivalent at off-rated reactor conditions.

AND P > 30%

Where: Ty is feedwater temperature in F, and P is reactor power in percent of rated.

I 1

~

c Prg311 of 52 RBS CYCLE 9 COLR Ravision 2 TECHNICAL REQUIREMENT 3.3.1.1 INSTRUMENTATION REACTOR PROTECTION SYST EM (itPS) INSTRUMENTATION AVERAGE POWER R ANGE MONITORS APRM Flow Biased Simulated Thermal Power - fligh Limits The APRM F!ow Biased Simulated Thermal Power - High scram se: point Nominal Trip Setpoints are given in Figures 30 throug,h 33 in terms of aligned drive flow. The aligned drive flow is calculated from the input drive flow using the relationship given in Table 1.

a. Case 1 - Normal Feedwater Heating Operation or Low Reactor Power:

T,w(at rated)2 Tfw""(at rated)- 50 F, and rated equivalent at off-rated reactor conditions.

OR P s 30% .

b. Case 2 - Reduced Feedwater Heating Operation T,w(at rated)< Tfw""(at rated)- 50 F.

and rated equivalent at oft-rated reactor conditions.

AND P > 30%

Where: T,w is feedwater temperature in 'F, and P is reactor power in percent of rated.

9

f

]

Pag 312 of 52 )

RBS CYCLE 9 COLR Revision 2 TECHNICAL REQUIREMENT 3.3.2.1 INSTRUMENTATION CONTROL ROD BLOCK INSTRUMENTATION AVERAGE POWER RANGE MONITORS 1 l

APRM Flow Biased Simulated Thermal Power - High Limits The'APRM Flow Biased Neutron Flux - High rod block Allowable Values and l

Nominal Trip Setpoints are given in Figures 34 through 37 in terms of aligned i drive flow The aligned drive flow is calculated from the input drive flow using j the relationship given in Table 1. )

a. Case 1 - Normal Feedwater Heating Operation or Low Reactor Power:

T,w(at rated)2 Ts"(at rated)-50 F, I and rated equivalent at off-rated reactor conditions.

OR P s 30%  ;

b. Case 2 - Reduced Feedwater Heating Operation T,w(at rated)< T$"(at rated)- 50 F, and rated equivalent at off-rated reactor conditions.

AND P > 30%

Where: T,w is feedwater temperature in F, and P is reactor power in percent of rated.

l t _

Paga 13 of 52 RBS CYCLE 9 COLR Rsvision 2 REFERENCES

1) NEDE-240ll-P-A-13 and US Supplement, " General Electric Standard Application for Reactor Fuel," August 1996.
2) Letter, J.S. Charnley (GE) to M.W. Hodges (NRC), Recommended MAPLHGR l Technical Specifications for Multiple Lattice Fuel Designs, March 9,1987 >
3) Jil-03431SRLR Rev.1 Supplemental Reload Licensing Report for River Bend Station Reload 8 Cycle 9" May 1999.

l 4) Jil-03431 MAPL, Revision 1 " Lattice Dependent MAPLHGR Report for River l Bend Station Reload 8 Cycle 9" May 1999..

5) Deleted.
6) Letter, R.E. Kingston to G. W. Scronce, " Time Constant Values for Simulated l Thermal Power Monitor" GFP-1032 November 30,1995. l
7) RBS USAR Section 4.1
8) Calculation NEAD-SR-97/032.RI,"RBS El A COLR Input"
9) Calculation NEAD-SR-97/051.R0, "RBS EIA TRM Rod-Block Setpoints Definition"
10) GE Letter, GFP-1284, RBS-PPF G25.4.3, " River Bend Design Report and GESTAR Report," June 11,1999.

I1) GE letter, A. J. Lipps to Rick Kingston, " River Bend Cmdded Fuel LOCA re-evaluation," July 2,1999, NSA-99-288.

l l

l t

~

Ptg314 of 52 RBS CYCLE 9 COLR Rsvision 2 APPENDIX A ADMINISTRATIVE LIMITS Gmupi Group 2 Gmup 3 Group 4 GGE024 GGE012 GGE016 GGE004 GGE008 GGE028 GGE040 GGE100 GGE020.GGE036 GGE032 GGE048 GGE104 GGE044 GGE052 GGE060 GGE076 GGE056 GGE068 GGE064 GGE092 GGE080.GGE088 GGE072 GGEl12 GGEll6.GGE132 GGE084 GGE120.GGE124 GGE140.GGE148 GGE096 GGE156. GGEl64 GGE152.GGE160 GGE108 GGE168. GGE188 GGE172.GGE176 GGE128 GGE192. GGE200 GGE180 GGEl96 GGE136 GGE208. GGE220 GGE204.GGE212 GGE144.GGE184 GGE224. GGE228 GGE216.GGE232 KW/ft Gmup1 Gmup 2 Gmup 3 Group 4 BOC to 2.074 11.18 9.8F 9.44 7.67 GWD/MTU 2.074 to 5.768 10.17 8.99 8 59 6.98 GWD/MTU The above groupings of the GGE type (bundles Gell P9SUB354 14GI 120T-146-T, Gell P95UB354-13GZ-120T 146-T, and Gell-P95UB353-10GZ-120T 146-T) are categorized for the purpose of administrative control. Bundles identifications shown here correspond to the upper left quadrant. These are target LHGR for the control of oxide buildup and are more limiting than the license limits.

Pagg 15 of 52 RBS CYCLE 9 COLR RGvision 2 Table 1. Aligned Drive Flow 100.652 A" - 29.996 A'" + 70.656 W"-

W=

70.656 -(A'" - A")  ;

Where: W6 =

FCTR card input drive flow in percent rated, Wo = Aligned drive flow in percent rated, A" = Low flow drive flow alignment setting, and A'" =

High flow drive flow alignment setting.

Page 16 Of 52 RBS CYCLE 9 COLR

% vision 2 i FIGURE 1. REFERENCE CORE LOADING PATTERN 33 3]5 8 0 0 5 5 8

sMMMMMMMm
sMMMMMMMMMs
AMMMMMMM88HMs
!sisMMMMMMMMMMM 56 - I @ @ $ @ @ @ 5 @ @
!MMMMMMMMMMMMMs
s M M E8 M M M M M M M M E N s
!MMMMMMMMMMMMEs
-*H M M M M M M M M M M M MS ll MMMMMMMMMMMi8M
l'MMMMMMMMMMM5

':! "MMMMMMMMMS 2

, "MMMENMM5 @@@ggggg l iIIIIIII i : 5 7 s 11 13 15 17 to al rs as at re si sa as at se : es as er *e it sa ss Feel Type A= Gell P9SM130Z 120T 146-T , (Cycle 9) F= Gell P95UB353-10GZ 120T 14T (Cycle 7)

B= Gell P95UB225 NOG 120T 146 T (Cycle 9) ,

G=GE8B P85QB33310GZ 120M-4WR 150 T (Cycle 4)

C<iEll P95UB38813GZ 120T 146 T (Cycle 9) j H-GE8B PSSQB334-10GZ 120M4WR 150 T (Cycle 5)

D= Gell P95UB35414GZ 120T 146 T (Cycle 7)  ;

!=GE88-PSSQB334-10GZ2-120M-4WR 150 T (Cycle 6)

E= Gell P95UB35413GZ 120T 146 T (Cycle 7) t J=GE8B PSSQB334 IIGZ 120M-4WR 150 T (Cycle 6) I 1

Paga 17 of 52 <

RBS CYCLE 9 COLR Revision 2

)

\

FIGURE 2. MAXIMUM AVERAGE PLANAR LINEAR HEAT GENERATION RATE (MAPLIIGR) VERSUS AVERAGE PLANAR EXPOSURE GEIl-P9SUB400-13GZ-120T-146-T 13

, + -

+

i i I i . i 7 i

! . t  !  !

~~

i i r i  !

1

!!~ ' T l

I i i I I I  !

I 1 i i  !  !

y4 k ' . ' . i , a 1

1

%i i

i i 1 i

1 i i i i '

! Ii!=!

1

! ! i iT .

i i 1 ! i I i I -Xg  ! I i I  !  ! I iT ' I gg -

! .f:

r 1 w .j . s . . . . .

W '

i O '! l;l ' I

, ! j !Y ll [!*

F 1

~

e1f - . ' + , . ' ' ' r - i 1 . ii i i

- Ii . .

4i  ! !  ! i i i i ! , - r  !

~[ ' ,

f r

+ L+ tt) '4 -

i i iii, i ;

. [ +-t I' . ' - -

r i 1 i i r

i g / ' I fL 4 3 F t

4! ! i l  ! i ' I 1

Ii 1

i i 0" 11

s. . .

f

, i 5

^  ! ] I  ! l . I I i  ! l . 1 i t 1

++ '

++

l r v

- +

i r- ,

1 n; i 1 1 r i

i i '

{

Uj

{ fF+ Tii 7"'-

i i i , ;T 2 1 : '  ! i ' i

(

g 1 i  !

, ii r , 1  ! ! 4 0

b-

' ' " M_s i i

f 1 i ,

g w. i ,

1 E '

j

! ' ' 1:

3 , jj -

, j

' I g i r i

g , i , ,

i , <

g '

. u. - .

, i I g_w ;,

i

- i, i .

i i i

-J L g

, . i i

i i

< i i,, ! ! v!!  !! l 1

( i *l1 .

,  ! l ';'

> > ! !i! i l ! s' Mf -

li ' ' '

i j 28 -

I I

! I I . i i i  ! i

!1 ,! I i .

's. TL  ! i 1 3

i I t I ' ' r 1

, ! _ l r i ! i [ . ;g i  ! 1 i I ] r [ .[ ,

g I I 3 i ' I i I I :1 i w ,

r  ! r ,r .

? .

i 1

. , i!  ! 4 i v. ' . :

, i f! i k i [

' I  ! I I r 1 i g7 1 i , 1 1 ,

, , ! 1 i i i , 1 1 ,

, i

- y s.

Oj ' 1 i  ! i I  ! . i '

I I  ! .  ! ! I l i 1 gp i 1

! 1 i T

! r I i I I i 3 1 I ' i ~

t 3

!  ! l  ! - I .1I k  ! r . 1 1

i . . I ' -

3 .' I ,

lit  !!lll

! l! '

i i! ' !l'il.

s . . -!  !  !;,  ! -

, i 1 ' '

i i

X6

' ~~'~

k M i i1 i i r ii! "

i ' i ' i 4

as M.

- - - . !l l i i i l1 l i i 1 w M4m; 1 -

i' i ii

^

i i

^

.i

. 1 I ' r 1

7 1 i !I i 1 t' ' : ,

! . ! ' i i ' 7~ I Obd , -

, i , i 1 j

-t .

i i r i! i i . .

'~

, 1 i r . l fl l'  ;

5 O 10 20 30 40 50 60 AVERAGE PLANAR EXPOSURE (GWd/ST)

\

l

Pags 18 of 52 RBS CYCLE 9 COLR Revision 2 ;

l I

i FIGURE 3. MAXIMUM AVERAGE PLANAR LINEAR IIEAT l GENERATION RATE (MAPLIIGR) VERSUS AVERAGE PLANAR EXPOSURE GEIl-P9SUB225-NOG-120T-146-T l 14 4

'i

-t- 4 4 l 4- -4 ! I 7" t i , , ,

t 1 1

^

i r

-i l 1 i r ii 1

1

4 .t t r i .1 i

C '

tO j r s

W a-w : !A t ,

i e

N' ,

i i , iL i- i l b i i p:  : : 1 1

1

-?

7' _d ,

l

-b '!

! i '

4_ :i z -

. i I

r _;_.:

g

w-\ ! '

, i W 11 Z - --

\,.

N M--+--. +- 4 N \+; , .

g

+

a H-~* 3  !

-*"-~ ~

b 10 '

I _. . :L : : ._a :

I

.. l. . .

l' g

Z 9

  • -_ 1 ,

-1+ '

9

' - ~

,'y;; ' -

m\ ; . -

Z i-+ ,I:,,

a

S ' ' '
\

3 1 '

,  ! y! . -

8 t 4 -

_ i a i

q

~~ , . 1 , 1 1

.  : \ n\-*

Ii ~.

ktt: Or  := i

.k i i 1 l i t%  :,:

W

. _: .. ;_._ L i ', i i i;

i p i ,' i

i i
p4A ,ji'

> 7 g _:

r

,+ ,. , .-!

.r.

-+-.'s i i . i i i i t" :  :\; .

"3 , i  !  !  ! -

i g,

X -~

i .i , ,

-i1 'y

, , , ,r -%

h ,

i ill ii MH l' ,  ; ,

, i, . i ,

ii 1 i i r 1 i W ;t 54_ .,

1 i , < r 0 10 20 30 40 50 60 AVERAGE PLANAR EXPOSURE (GWd/ST)

Paga 19 of 52 RBS CYCLE 9 COLR Revision 2 FIGURE 4. AIAXIhlUNI AVERAGE PLANAR LINEAR HEAT GENERATION RATE (NIAPLIIGR) VERSUS AVERAGE PLANAR EXPOSURE Gell-P9SUB388-13GZ-120T-146-T 13 1 ,

+ i r l i '-44 4 i , -

, l

-t i i i

i 1

'i' -

t:

1 1 i i

lt i  !

i , i iT -

i ;i if r I 3 l 4

, i 1 i 1

l l

'ii I

'  ! I '

hC 12 1

i i , r , ' , ,

i W t

+-+-r-i i ' ; -

p ~ -

r- i .,  ;

, j

,,r i, t-- i i i - ,

- + - . + - - ,  : + - . +

1

~*-

.+i.-:

l i 2 i ii i i;1 ,

  • -+-

~

i i {i i i1 l "i 1 2 ,[ .,

j d_ I i1 1 5

i!

3 0 11 r-k' .' s F .

-e-g -,-- -+

- - * - + - * - +  : -+ .

.+-- -

i , ,

-* .--v=-.-- '

==+*4- *t = ;

-+ rw -+-;

Z  : -*-

i, ,

- +- - v-I i

I I

.#  ! 1  !

l ,

O F ,

--+-.

-+ . -

+-- (-f\,;,;

--t x j_-+--

-+-,

, l + --

- +- ++--  !

4 , , 7 , ,

4 z - + - - ~ - - - -

2; , -+-+ r :  :

g ;_. ; -

._.a _

9

~ * - '~

. Y ' '

h ,-  ;

Z

+:

-*-+--

--+- i,

-e .

. ,K,c-+ g  ;-

.-+-

g 7 1 t- 1 x. , r - ---

g ~'*-

!_ gi ; i ',-'--'--+-

4 ' - *.

i

+- ,

f j  !

Z 8 ' s er -

3'.

X i

] '

4 4

4,,,,; I '

I i 1  !

I m ,

0 4 , i 'i!'. iii 1 i-i i il  ! > i 3,g4 ;

i  ! i r r r iii1 w ,

. . , . . . , , , , , ,- n ,, ,,, ,

t ' i r

! i . jP -t- i ii  ;.

( A-

'T I I

ii I

i r i

' I I H

H"" l i

.f i

1

, w.

E 1 i i i

-+

, i i i i i i 1 i . i i - P: ~~

3 i

- i i .

i i < , i <

i ii ir i 4_[ 1

' I 1 2 1

34 1 3

I i i '! 3 t

E  !'! i i;i  !

i

"~ '

1 4i i l 1 I ~

2 , 3 i I

li i

, [' ,

M. m;

.~ .-

, l l  :-~ .

.-+-.4-+; . .

l d ' 4 t  !

h- -+= 7 , ,

4'.* ' M it

..-. . a i.4 -

i i i i -

- i r 4...

I 0 10 20 30 40 50 60 AVERAGE PLANAR EXPOSURE (GWd/ST) i I

- 1 i

Pags 20 of 52 RBS CYCLE 9 COLR i Ravision 2 FIGURE 5. MAXIMUM AVERAGE PLANAR LINEAR HEAT GENERATION RATE (MAPLHGR) VERSUS AVERAGE PLANAR EXPOSURE FOR BATCH GGE GROUP 1  !

13 i . 4 4-  ; . '

1  ! l  : l l

+;

y

.-. , 4 ,

E ,

. . i r .

i i o it: i ,

i i  ! -  ;  !" '

E

~

12 '

~

1

, , i-*--+--

i  ! t I  ! r i i [ I i 1 3

4 e-- e 7

' I I ' '

= - d-  ! -,1 l

! I I l l ,

Z i

-._4 ._ i  ! i i i 1 1 g

7,. 1 i

, i i

1 i s '

l- +- ~. _

w t  ; .g Z '

w 10 i i g ---;

g . .

. .i_. r r 1 z ~~

1 i t.

g  ! i i '

g -

s- _

s .

Z 4- -

j j . .

3 .

y_

l g +-- ---.

7 l _gt--y__.--

i l

M* -

Z 8 '

} .

1 i

i i  ! i 3 1

L ., I w I 1 I I I f ' 1  !

k i i i .

5

, , ,t , ,  !,

i s ,  :

7 l m w i i i - i i i r !

) 4-.+*

l I !

l I f q

i l

h  : '

t  !  !  !  ! L g  !. i

-Q  ! I i i I  !

4'I E6

'~

f f I  ! E i i < i ,  ;

' I - . .w -

.~ .

I.  ! I L l 1

_Q , j _,

[  ! i i I I

3

-.,1 I-r i, - i i.

5

~  ! "' '

0 5 10 15 20 25 30 35 40 AVERAGE PLANAR EXPOSURE (GWd/ST) .

1 Page 21 of 52 RBS CYCLE 9 COLR Revision 2 FIGURE 6. MAXINIUhl AVERAGE PLANAR LINEAR HEAT GENERATION RATE (NIAPLHGR) VERSUS AVERAGE PLANAR EXPOSURE FOR BATCH GGE GROUPS 2&3 I

13 i r i

!  ! . I I I I T l  ! . i !

-+4  !

l , , 1 4l >

l'  !' '

E i . > . i 1

,i x H 3: -+ l! l ,

, i ; i 1 i

u

-t -- :-- .

~4 i >

1 i i i i Oj  ! 1 1 i 1 ,

1 1 t i 1 i  ! 1

! i ii r 7

>- 1 i i

i

, 4!  !

i '

h i, .,

~

1 T ,' i ,

r, i

i I }  !  ! I i 0 11

~

pr-p: , " i i 1

.q ;

i Li , i

,77 i  ! '  !  ! i LM ., '

Q Y . . .

b- _ . i.

__, 7: 7 ]I' ,  ;

t z  :

i i i ,

x si r

i M ' ' I ii .

I i ! _

b -

1 i i i i V z '

3 -

1 I

x-s, I X 1

5 b. -s- 7 hh--f 3

  • T --

i i i -~ i 1  ; 1 1  ; +

2 8 ~

+- -+

} 1 i

I 4

I I 1

!  ! 1 i

1

! i 1  ;

$ [' ' I  ! i ! i  !

i l

uj i i i i 1

, i

! i i i i i

i r

! . I i i  ! I j_

I  ! i 7

uJ i  ! i i i i i i i , i i i a ii i - l  ;

aC a

E i- !b l

i j l l .!l m  :  :; '

. i i

.  : 1 i E6

~ ~

)(

' i I I I I L '

! I i l l D e .

3 , , . i i i , ,

i

'l i ---

-+ ii , l ,

l -

, 1 , ,

i i i ,

i , i _ i i ,

I l i i  ! 1 1  ! I i  ! l 5

O 5 10 15 20 25 30 35 40 AVERAGE PLANAR EXPOSURE (GWd/ST)

Pags 22 of 52 RBS CYCLE 9 COLR Revision 2 FIGURE 7. MAXIMUM AVERAGE PLANAR LINEAR IIEAT GENERATION RATE (MAPLHGR) VERSUS AVERAGE PLANAR i EXPOSURE FOR BATCH GGE GROUP 4 9 )

ii!i i,.. i, .

i i i i i i  ! ,! iiiiiii! iii!!

II  ! II I I I I I l lI I i i i ii i iii Ii i I i Ii i l i !I Il l l iTT i li il i j i i i lii it il T ii i ii i i i 'il

$ lil ill i;i i il i il l'It i! l  ! i g ii

!Ijiilii

!ii i  ; i ,i ii,!i ;i i i: i i i!i I i ii  ;

!i iI i i i I h8

i I i  ! I !I II' ' I I '

y it,iii iiii!! w,:j

ii!!,
,

<ii!!!!!  !

!,, i

< i 1 i!l !ii!,ii! ii!i!!!;  ! ii  !!l  !  !!!ii! i!!!+ '

E .t i j ;;;i  ! i;'i' *!Iii!i jii!: !- '

i !I } } ilii i i'I ii II i!iI I lt ii '[ Il4 l m . .. l,  ;

!!! il ~1,i,  ; iiiT i ,i ,,1 i !!  !

O 'i il li ill lii i llljl i il  : j!  ! !

F b

i

'li t i li.

l i

ill iii llllil liii,i jii lil l i

i I

l ll lU

!!i: i l!

ji l

E i'  ! ! , I i! Ii lii iii!ll iii i iiiIl l II iiIllIiii lii h 'i  !!  !! !!!! I ii!  !! II  ! l  ! !Ii t i '

i z > ,

><  !,1 i i ii,i ii ii  ! i  ; , i l . . ii Iilii iii li Ijiiii i i .i ,

E i, i'Ii jil II! I Il l1i  !  !!!'l h '

i ,

.lili III ii I Iiji i i liiii

< 'i: i i iI ii i! I iiii  ! .i. i 'i!i g ' '

iiill ii ij i ii iiI itj l1 I ill l i iiii '

y ,,, i: i i i j ii i  ! i i i!i iji i i ii!

O i il  !{i!l l l l l I i l I j! I~ i !.

IiI ' II IIII iI' h6 m

I II I I I 'I I I I a !!i,,, i i i i i !ii  !

i,it ,

> i i! i.! l l l I Ili l l Iil 4 lilit ii i ji l I ii E ,I!Iilli i ij 1i o .

l E

i !iii I  !

i 1

I i i iii ii i i

)iii,l I i

, i i'i l I i Ii  ! l I II I i i!l l iii l ll l li l l I IIII II i ;i i 5

II II II I II IIII I IIIIII II l' '

O 10 20 30 40 50 AVERAGE PLANAR EXPOSURE (GWd/ST)

Paga 23 of 52 RBS CYCLE 9 COLR Revision 2 FIGURE 8. MAXIMUM AVERAGE PLANAR LINEAR HEAT GENERATION RATE (MAPLHGR) VERSUS AVERAGE PLANAR EXPOSURE GE8B-P8SQB333-10GZ-120M-4WR-150-T 14

. j I  ! I i . ! .  ! I I .I I . I.

l i . . I i i I I 1 ! . t I i 1  :

i t I t i .

i f

! I r , [ 7 I ;  ; .

j [

313 JM ' ' ' ~

- i

\~  !

l,

1 i;f;'I i

g  :/;- '

- ; N a ji ,  ; s_s 12 f '

's ! '

2 -- 1'i O r'e :2 r

t i

i i-:. - i t

. i i t '!

i i

4_; ! >; p F y -

-+ %I + n g r

=~

1-  !, ,

W 11 t-Z N. i i . .

w .* :

.X . . I I I

..+ !_.

- - x ":, w W 10 Z -

X i , ,

E '?

(l i ' i z Mi

M ,

u P.

I h I  ! 1! i I , : Q hiit ~

l i I Y l 1I i 3 3 i !i r l\ -

CL 1 .

a 1!

@ i i I  ! 1! j

! l f i . . - . . - . k "Y11

. I. I I I I I I

. . . 1 3

I l I l  !  ! I I i !  ! i '  ! !  !

' I W

> 7

. 1 .

I t 1 1

' ' ' i ' '

3 ,

, 1

, 1 1 1

i . I

' k i f i

-- g -@ .

K .

( i l

1

'r

! l, l t . i i i . i . i ' ii 2 j I 1 ! I I j I  !

~ ' '

~  ! '

5 l 1

0 10 20 30 40 50 60 '

AVERAGE PLANAR EXPOSURE (GWd/ST)

Pagn 24 of 52 RBS CYCLE 9 COLR Revision 2 FIGURE 9. MAXIMUM AVERAGE PLANAR LINEAR HEAT GENERATION RATE (MAPLHGR) VERSUS AVERAGE PLANAR l EXPOSURE GE8B-P8SQB334-10GZ-120M-4WR-150-T 14 E

2 . - < i i

! t  !

ll 1

[d '

i . '

i . i g .

I1 '

, , i Il

i1 I

H 13 ' '

h k [ '

M '

j)E l , , , ,

z o _

g1 r i . ,

i i

, m F 12 I '

t # ' ' '

i g -/ i r- i i l

W hi i l l '

. . A E

. _ _ . T i i ie r 1 Z ~ -

y , . ,-i  ; i 0 11 \-  !

g -

,3 . ~ ,; .

( i N.' i i 1 W -

A '4 ;

t 10

4 A, e

.Wg .

1 I 3 t XI

.I ,,I

, l -

i . . -

] 1 k :!' i

, _9 _ 1 - x 4 '..

i i

Z

( .

41 T;'"

1 it -

\ C, >

O j i

g

't-m, l T. *-

1

. i , 'e i i i\

l, 1 ----+-i .- .

1 w i 1

,q 1

4 7 i , 1 . 1 2 ,

i i ;i l

3 1

' ' i i 3 -i 1 . 1 .1 i la i k '

i i ii '  ; , i 4 * '

6 2 -

1 1 .

, i, i , -i 1 i '; i, i 1 11 r i 1 l P! .-_+.4' '

5 i 0 10 20 30 40 50 60 l AVERAGE PLANAR EXPOSURE (GWd/ST) 1

1

(

Page 25 of 52 l RBS CYCLE 9 COLR Revision 2

)

1

(

FIGURE 10. MAXIMUM AVERAGE PLANAR LINEAR HEAT GENERATION RATE (MAPLHGR) VERSUS AVERAGE PLANAR l EXPOSURE GE8B-P8SQB334-10GZ2-120M-4WR-150-T l 14

f[ t ,
5 Aj ; , . I' ' ' .' ,

i

['t jiii ' ' ' '

W '

]  ; ;

sg_ a l  ;

- i M ;, N H 13 4

E fy N ',

+ay it ' i i i

! l l

+'

g . _Y. <t

, 1 i

i i 4 Li O 'I '

W i; ' '

F 12 ' i , 1 i I"

_f ' . - Y- s Ts . '

~

1 <

m -/ ~ h i j

-+  ; d' z O

.a y

~

1 i t!4 W

, 1

~ L-0 11 '

h IT'- ,

4.

b _._ : i ~ -Y .

x' .

z - 1 E \D m T i

@ g~jo e z . .

a, E

4 9

  1. m .. A

's z _

1 '

Ts < .

. a 1

~'

l 1 i.

4 >

n.

W 8 "

i 49 i!

l O 4 1 1 , <

g

,I # 1 ho , 1 i 1 s.

1 t >

.-i, i i . !i i

!4 i,t i,

' l- 1 4 7 i i t ,

a 1 E -

t i

i i i 1 1 i l i 1

i 1i ,

3 ,.

i
i ' ' t i r ;4 3 -~

' t

+

1 j '

Q .l  !

i  !

4 6 .

I li  ; . ;-+ i

~~, . H i i  ! i , , .

1 I I

+

i!  ! I T I I i , i

[

i i I* i ,

l g {;

O 10 20 30 40 50 60 AVERAGE PLANAR EXPOSURE (GWd/ST)

Pags 26 of 52 RBS CYCLE 9 COLR Revision 2 FIGURE 11. MAXIMUM AVERAGE PLANAR LINEAR HEAT GENERATION RATE (MAPLHGR) VERSUS AVERAGE PLANAR EXPOSURE GE8B-P8SQB334-1IGZ-120M-4WR-150-T 14 1

.; i i i 4 , i _;_ , i. -

1 1 i 1 . i 1 , 1 1 l

.': N , i , i

+--

i , t,

, . i l , , 1 i l

-J - w . i 1 .1 i i 1 1 1 i h 13 '

I 'E '

. 1 1 Xt i  ; i i 1 ; ii ii 1 , ir 1

'.s7 . 1 i 1 I I  ! l  ?

z . : /i $. , l  ! l i  !! !

, ll O ,I : d+

~

'.< 1

. , 1-, t i . ii i F 12 i t

. 1 ir a 1

( '

i WW . ii , .

I I I

1 , , i 1 . 1 <

Q '

g ,

k i  !  !  ;!

Z f,;

\' l W f y '

l  ;

l 0 11 ~1

~

(X:.Y l- ' ' '

H '

y #. 1: f i

i i

1

' 4 l

Z --- N.  ; ' '

g .

h e^10 1 .; , i i,

l-8g - - N2 I !

, , , 'g ; '

E g

.^

s.

Z '

!\ l '

3 r 1

1 1

- U., l w 8 1 i !'  ; l' iH * ~ ~

O 1 , i i ii i i r i i, .

TT 1 m , ,

1 .

i  ;

i i i i

j i 'ij't i: s 1 t '

l

' i

'i'  ; i ii

's !!!,,

4 7 N  ; il;ji '

, l ll i ; l l li 3 1

!. i ,

. .i1  :. i i ii -

IE 1 ' 1 1 < < i i i ' t >t R i ,

l ,  ; ,

il  ! ,' ll 4 6 3 i i i . < l i i r y, i ,1 1

i r i 1 I i i I I i ' ' I l l I I 5

0 10 20 30 40 50 60 AVERAGE PLANAR EXPOSURE (GWd/ST)

Page 27 of 52 RBS CYCLE 9 COLR Retnsion 2 FIGURE 12. LINEAR HEAT GENERATION RATE (LHGR) LIMIT VERSUS AVERAGE PLANAR EXPOSURE Gell-P9SUB400-13GZ-120T-146-T 15

a +_ :

ib g i N 14 '

._._ --- s i a -:

u k;! '

i  !-*-

-_,_._._in_b .a . 1 . 1 13 N " '

2 4 N g k 's

  • M 12 y 'A l

~

r g. ,

h 11

- .g' ~

Z :s- . 4 o 4 .x __

F r,= -

m 10 's W -x ,

Z ~  :'7 *

- C W \

O '

. N1 __ -

F 9 T ' 'd j ._

2;'-4:.

z + -

.a _

~ .. ~

E N_. .u j 8 X

+:

2 . .

3

_J i

,x_g_

7 AA. - _

r_ +! ih y;,;- . ~ .

g

._ _; _ __ L

,w  : h+-

I

-+

1 g

.. .e 5

0 10 20 30 40 50 60 AVERAGE PLANAR EXPOSURE (GWd/ST)

Page 28 of 52 RBS CYCLE 9 COLR Revision 2 I

FIGURE 13. LINEAR HEAT GENERATION RATE (LHGR) LIMIT VERSUS AVERAGE PLANAR EXPOSURE gel 1-P9SUB225-NOG-120T-146-T 15 -

-+-o=  ; ..

i i. ! t i 1

,4 I I r j i 1 i

! i i hiI ! I ki a h I i : T i i i ki I h h [ i 14

.a+=;

7 i i I I i  ! i 1

4 i

+" '

I-+-

%: n u. t -.

~'

i , "t

__,,, i  !

P P_Q_

5 - .-  !

&z w g
  • y ---N; m

<+t +

i

'=

-' - - ~ ~ -

r

.
2+

- T ^

-- g -

' 11

~~

N *

" _+-

Z -

.- . ._,_. a  :- A

.: \; :

O -.- .

ri l _._ , _ _ _ .

  • s .

-=

.Y: :_ 42:

A M 10 ~

W _

I:- --

2:2 _

Z U ":

n

?. - - .-.

3 ;;

-4

~

Fg M1 4 -

-. T; ,_

W

~

I e- ..;

.s': ,_

g + -+ -

gg "i

.'th

_ a_. ; _._r z - .

W:::

3 2_.i-. -- i _ #93

+ -

+: -

Xj -

7

-- -~.

2+gw.. =-::

1

~ '-' ~ ~

M

!?

_ i4 1

i

'~~~

w..

i N *-

. . -+-w + - -

?=. P f 'b  : 4d l

~

' ~

6

.g.  ; .-- ._  :--- ,

--- -' l

-*"' f-_,_ : -;_:

+_ , , ..

.-+

~ '

g -

+--r-+- -

l 0 10 20 30 40 50 60 l AVERAGE PLANAR EXPOSURE (GWd/ST)

Page 29 of 52 RBS CYCLE 9 COLR Revision 2 FIGURE 14. LINEAR IIEAT GENERATION RATE (LIIGR) LIMIT VERSUS AVERAGE PLANAR EXPOSURE gel 1-P9SUB388-13GZ-120T-146-T 15

- ,  ; i , , -

i ,,, ,

\,

+

! 4_-+4..

f I

5__

[~

-+' -i ' 1-* ;

w-

-w

_ a._ .

i fii1 , - i -- -i n

=-

i

+--

- _y 1 W
: :

7 3 N_.'. ,

=

+. __._

~

" -~

^

13

-+-

N

_ ti % i g a. '

g 2. .

x,

s ,

, - i .+- .

l Q *-' ~

-+- e .-+--* - - .

b= _._: T -

. .. E-. I 1

11 ' -

Z -

-r --.

o --- -

-_ A_3; ; :- -

~~

l i

p::  :~~

~~~'~~.-7 m X;

_._ _ . L._.- .

( ~

7- ~ - ' -~ ~

s 3= -~^

_ _i-. i 4-+__

ct: 10 W mn 72 N*n~.*._: C Z

m

=C . ~*~

1

-Y'-x _f l

~*~ *~*

F Q

, ~.' '

r._ . . _

g

+ - * - - - - + - - - + - ~

._.  ; _. . \. y---*  ; . --  :-6

- + - -

l

  • +~~ l

g

@ . ,__ _._ 1 x . - . _ . . - - -

g . _ . - _ ._,_:

__ ~ = _ , . . ,

8 2-n--: - r- --

l Z . _ ._-

. =:r:

.~ i zri  :: :_. : .  :

't

-+- - ~ -

) ,.

.-!. l  !. d.__ .

[

Y

',._._) ' _, g' ,

7 . -w _

7 -.

w7

.?_~,_ j .  :

"' ~- -

. i-+- -+-+---' ,i._.~ _ ;-

l l _+._- . .

6 4 = ~

~* -

! iC g4 . -- 4 ; ._. ,2

.,.  ! . . !C ':-.H ZO . - - . .

M L * *---:--*-~ l -*~ '. L

-*-+-

j_w +-'_.

y-i -*-* -  :-~ -+

,~ ,

;_; - ;. ; _.a-5- -*- -*- ~^

~

  • - -'~~

0 10 20 30 40 50 60 AVERAGE PLANAR EXPOSURE (GWd/ST)

Paga 30 of 52 RBS CYCLE 9 COLR Revision 2 FIGURE 15. LINEAR HEAT GENERATION RATE (LHGR) LIMIT VERSUS AVERAGE PLANAR EXPOSURE GE8-P8SQB333-10GZ-120M-4WR-150-T 15 i i , . 1 '

, i , i i i i , i ii ,

_i_ < i r i f}

i l

1 , ,

i i li i  !

i P I 7\! k ",,I " i r i i

i I

y. i
i i t i

,i;

,! i i >

p i. i 1

\,<i1 l s .

g

-~

1 .

! i i

^ \ i ! I i i i  ; -

E w\t-g i i' , '

i , ,

1

~

1 i i g i

! i i , ,

2

~

13 s

!y

(,'

lii W , 4! ,

, .} t 4-F _31 1 r i i I 1 I

-4 l ,'

Z -

O 12 g p ~

x.

g a ,  ;( i i w Ni- l Z - s W gg  ! A: ' '

O _ _s F -

, +- wX-t -+- i i j 1 i 1 j y z

g

xy .:

i i ,

l 10 s-4 --

m _. i- T w Z +-

i i i b l 7

~* ' '

' ' 'g' '

9

~

r i i

, --t i

't '. i i r

. - .4

! i t i 1 i f i 3 i i

i i fi i I 4 i 34 0 5 10 15 20 25 30 35 40 45 AVERAGE PLANAR EXPOSURE (GWd/ST)

Page 31 of 52 RBS CYCLE 9 COLR Revision 2 FIGURE 16. LINEAR HEAT GENERATION RATE (LHGR) LIMIT VERSUS '

1 AVERAGE PLANAR EXPCSURE GE8B-P8SQB334-10GZ-120M-4WR-150-T 15

& 1 i i

< i- ,

i 1 i , . i i . ,

i 1 y

7 i

} i ;jij  ! J [ i M .

X; h

, 1 i i h 1 i ,

y .;

i 1

4  ; i . . .

i i  ! i i > 1 i

,y

\,<.

,i i , . i

. 4 i . . i i

i i

,e i 3 i

si --

g . x,

s.

1 i !

, , , r i i

, , i x; . . . , , i 1 , s, ,

g ,3 i , ,

g 's'k!

t I 8 i .! ,  ! i ! . I '

b sf ~

i [ .

m .

r-

^l l i 1 i i

i

- - + - +

+- '

! g O 12 ' ~

F _ i  : 1 < T r-r  :+ i ,

1 i 1

\ pl W ~

l l ,

j Z T ._._ : s -

W -

' (

0 H

- -- n

x1 1 4

y

. 1 l

l d- + l!

I r .

!! ; i

~

(E N,;

<r 10 W _, 1 i

di j z

J

~

, 1

, i . i 1 , , i r i1  ! i  ! t 1 1 i i , ,

i i , , , ,

9 i , 1

! r i i i  ; i

! I 4

3 t i l i !

r i ! I . i .

! i .  ; T  ! ,

j  !  ! l 3

! l  ! i i i r i  ! ' ' '

t l  !

1 i i ,! i i i i  !  !  ! i i i 8 ' '

O 5 10 15 20 25 30 35 40 45 AVERAGE PLANAR EXPOSURE (GWd/ST)

Page 32 of 52 <

RBS CYCLE 9 COLR Revision 2 FIGURE 17. LINEAR HEAT GENERATION RATE (LHGR) LIMIT VERSUS l AVERAGE PLANAR EXPOSURE GE8B-P8SQB334-10GZ2-120M-4WR-150-T 15 i i i i i 1 '

i , i i i 7, i i i ' ;_ i i +

._t i i,

' I l 7 i l i [

+  !

i  ; i i l' 1

1 1

'Y ~4 i P i h i!

i t

l l -!'

4 i\s r .

z .

1 i

i , 1. 4.

i,,-

i 1i

! i j , l' E "

' i 3 . .

l

, i 6 13 ~ '

m F

N :: - ,_

i 7 -

4i '

h I z

t '

O 12 s F _ N +1 g ._._. -Nr- ,

3 y _ ,i m m , ,

g 11 v F

g

~ ~

, i ki,y ~

z ' '

iX g ._,_ 1 .

',s. . _ _ ,

A

< 10 W ,!  ; \,-- -

i z ,

+ i

, ,y -

J  :- .

h

~ '

N "

9 i

i.

1 1 ! !

, tr f i,i .

I i 1

i , i , + i  !

l  ? i i 1 i  !

' r I l l 3

i e 8

O 5 10 15 20 25 30 35 40 45 AVERAGE PLANAR EXPOSURE (GWd/ST)

Page 33 of 52 RBS CVCLE 9 COLR Revision 2 ;

l I

FIGURE 18. LINEAR IIEAT GENERATION RATE (LHGR) LIMIT VERSUS AVERAGE PLANAR EXPOSURE GE8B-P8SQB334-1IGZ-120M-4WR-150-T 1

15

! 3 k i i i 1 1

i 1 I . s i i l i t I I i I ! 1 i i 1 l i i i !  ! l l ., i i i i i i !

i i  ! ! i I t i i I  ! I i

! I ! ;  ! ' I hI ik i i i ,

_4_g i i i i ;

1 4  !\  ; i . , i i > ; i i

_ w'  : . t i i Vi i '

i i t

i i I

i 1

h l 4 ,

, i i  ; j r >

M: ' 4 '~

~ 13 s' .

$ 4{ I ' .I  !

p b" ~

i _ i i '

) ,  ! i Z T C 12 s F 91

> _.' i g , .

.+ ,

W _ Nux  ; , z ,

2 ,

~

l W

h g3 -.- '

! \: ._

1 .

F l l -rX:si !

4 .,_ '

4 W '

Z _n 1 1 , 3

! i 4j. .

~

(E 10 i i As' _._

~

Z .r TT i M.M-4 a

i n= , ..

1 r~- .~f i , ,

2 i

i . 7 1

f ,!

1 i i i x i  !  ! i i ! , r i i 2 .

! 1 I i f i Ii  ! I I i I 1 i ,_

l i i r i <  ! l 8

O 5 10 15 20 25 30 35 40 45 AVERAGE PLANAR EXPOSURE (GWd/ST)

E Pagg 34 of 52 RBS CYCLE 9 COLR Revision 2 FIGURE 19. LINEAR HEAT GENERATION RATE (LHGR) LIMIT VERSUS AVERAGE PLANAR EXPOSURE Gell-P9SUB354-14GZ-120T-146-T 15 I i I l 4, I 'N  :

I ' i  ! t i i i I i I T i ! 1 l I M i I+ i ~*~ I i i i r i Ii iii 1M %I ' i' Mi i !I ii i i i l i I i 14 - - -

-M5 * '

g

f C- .

ti c . . . -t i

.L,d4  ! 'i) 1 I I I I I Ns l . ,

#  ; 1 I f 1 I I 13

~ " ~

~~ 'y -- . . . , , , ;1 t p

m

's . '

! +4-4--+ -+-4 ,

i i s

4 I  !

k! Qi i ..: i i

12 -

g I y ,, .

+--o-11 E z f- .

O *-

-l p - . Q: s. ,;

m &

4 '

Y '

E 10 W -Vr , i i----

z , .

N !k h 2 1 '% I i 1 i i  !  !

p. g .. ; ,. I 4. .:

h  ; :T "#

't ; ; w i t r j 7k l , I g !v 1

i I i 1 j ,W 1I E ~.

I

-*- w ~ . %,5- '

z ' ~

~"\ w~

3 ,

-A -+

I

, 1 , 1 o,

, i i : .

r 1

. . x-ai: 1 -

1 i r i

, i, i i ,

i i. i . I

_t

^

. , , H l i i 3 ,

"i . i 1 I

, I. r 6

i i I I i I

  • ~ - b , ,

j M+ *

! '  ! i 1, ' f I ' I . .

I .I 'Tb i  !

0 10 20 30 40 50 60 AVERAGE PLANAR EXPOSURE (GWd/ST)

1 l

Page 35 of 52 l RBS CYCLE 9 COLR Revision 2 FIGURE 20. LINEAR HEAT GENERATION RATE (LHGR) LIMIT VERSUS AVERAGE PLANAR EXPOSURE Gell-P9SUB354-13GZ-120T-146-T 15

. -+-o--. , -.e- -

E i I 1 ? I i i i

-.e- : 4.

14

\.g: "

\l..

- -H ^l

^\ ~ i+  ! ,~

,3 JE  :.1 m i 2 .

- t' ,

s ,

~

.g: a-: -

w~; 1 E

7 _-_. rp i

~

1+-~ -

l 3E 12 ~\

x - .

2 -+I-- ,- ..

(.

.:++=*--+-

e+ M-+ 4

~

h

$N_. . e __

p -

Tj m.

10 Y - +~

y -

- \T 1 s',

O _ . .

T;,

g _. -- -- :

g .- ., g:.

z -.

7%7 + _

$8

~

"-~~

z 3

i

.: A.

- i

\3

4.  ;

-g+ i 7

_ a

~x.A:

e e-n 6

1 n . .m

4. , , ...

~* ~ ""-~

_+ ,- ,

1

-+=-2 e  :++

5

"- A:

0 10 20 30 40 50 60 AVERAGE PLANAR EXPOSURE (GWd/ST)

Page 36 of 52 RBS CYCLE 9 COLR Revision 2 FIGURE 21. LINEAR HEAT GENERATION RATE (LHGR) LIMIT VERSUS AVERAGE PLANAR EXPOSURE gel 1-P9SUB353-10GZ-120T-146-T 15

! I i  ! i  ! t l I i a 1 ) i  ! i I I ' ' ' l I E i  ! l j i i  ! i i 1 14 .M. ,

+  !\

! i i j  ! i !

' '*' L I .

13 ~

~

.+

.M -

3 12 'Es - "

til  !

n -w k.

  • 11
  • Z ~

~

O _

n%s :

p + "

.m X: +

_g 10 ' - \!

h r C'

s' **

4 '

L1J _

O Y .+

>g '-

+ -~

z +=g.

% \%

h8 V z

.,J X

_,_ ;^

& \i. -

1 i i i

'+

- $_\. x.g

.\;

1  ! ! . j I I

! ! 1 i! l  !  !

E I I I I ' I

h. .y; i

pi . + +-

5 O 10 20 30 40 50 60 AVERAGE PLANAR EXPOSURE (GWd/ST)

Pags 37 of 52 RBS CYCLE 9 COLR Revision 2 FIGURE 22. OPERATING LIMIT MCPR (MCPR )y VERSUS CORE FLOW FOR GE8 AND gel 1 FUEL (EXCEPT gel 1 CYCLE 7/ RELOAD 6 FUEL)*

1.700 1

l i F ii , , , l ll i I ' ' ' ' '

l l l5 l4 L _

,4

l. ,  :: .  : '  !:' i ,

i ! . i I i i +

i ! i i i i i ' ' '

1.600

! !i l

i  !'

T!'I '

!!A  !'

t I -

1 1

) i! i i i .i . ! i I e i! l  !

i  ! 1  ! ' i .  ! 1

!  ! i I  ! i .  ! l L

i  ! I i f + i i  ! i I i i' i i

-i,, ..'!

i

+

i 3

4 i i i1 m , i

, i i 7 , i i ,  ; , , ; i

. i

~ i ; , , j ; i r" -

1.500 ~

< (1.47 i

i i i

~ ! i

, , i i

i

,' i i l

, i , i !

I

' i , j l

, i 4 . _

i 1 1.41 i L 4  ! .

, ~ .

y '

{1.37

, ,. f g, m, 1

. ,i i

g , .

-y 128

-T '

' + !i '

h127

' 1  ! ' ! ! .1.27 ii ' '  ! i

~~ '

, i 1 . .

! !  ! i i 1.200 ' ' '

i .

! 4 i  !  ! .

n i i ,  !  ! ! i ,

i i

_1

. i i i i  ! . 3 i

! +

f i

- I ' ' ' '

fi f , l h. lI i i ! i i i i i ,i i ; i i 1.100 '

. i i i i  ! i 1 i i 4 i [ [ i i ,

! i l I i I~

r i i i i i. ; i i i

- . .  ! 1_,,_.

. 1 I i i

+

{ 6 e i >

i I

i i i ' i i

i <

i i ; i  ! r a i I f  !  ! !  ! I i ' ' '!

i t

_  ! I i ;4 l 1.000 20 30 40 50 60 70 80 90 100 110 CORE FLOW (W), % OF RATED CORE FLOW l

1

  • These values must be increased by 0.01 during single loop operation.

i

~

Page 38 of 52 RBS CYCLE 9 COLR Revision 2 l

FIGURE 23. OPERATING LIMIT MCPR (MCPR )r VERSUS CORE FLOW FOR gel 1 CYCLE 7/ RELOAD 6 FUEL" {

1 1,700 1

1 !  ! J  ! !'  ! I i  !

!  !  !  ! I i ! l  ! 1I I  ! I I i liI  !  ! l  !  ! I l

1i i i iii t i i i e i i 7i ii' 7 f I-'

~

! i i  ! -

! Ii i i i i i i . Fi i ;ii i i -  ! I i i i ^ I~ i i i ii T- i ii T,i.

I i I 1 62 !! I !! ;JI- I i i I!!l_ .

i j

i i ! ! 'b\LL i ' '

t : !

I' 1 I

! I J

 !! i i

i i

1.600

._1. '

-y_'!. . 4.-  ! ! : 4_.-  :; ' ' ' '

! J.J. I l!!!

! i l ,!

i i i' 4 i !! '

I ! i t I I,_j L

! !!  ! i I

!n i ! ' I ; i ! ! i  ! ! ! I a.

i i

! !8 '!) g1.56 1 ! '

I l!

! i i  !

!  ! .. .l_i -  !

! !i

i. !' !' i!

'!  ! - I f '

! _! i! l I l  ! t <

l l L.;._ l. 8lI! I i i  ! ! l 8i!  ! ! !

_ _ . ! _' 7 1' ' l '1  ! .i l ii! i  !  ! i !-

\ '52 T' ~ i 1 iI!' l i .Y' _ *

' I i

, i i 6 i  ; i 4 i i i I i ,-

1.500

~ \' ' ' i * ' i ' ' ' ' i ' i ' '

. .J...L_; ;_  ! - !

' ' f ' ' ' '

_.L.L '

_.1 148 .L_L  !!! i i ' i ' '  ! .'

i i> l i i I i '

! t.

  • ~

'  ! {~*t'-

M  :

i-

- -.N ET~--

j i e i i i '

i h

~~

i i i . 1 43 l li, !lb i i i

~

E i '-*-~ T + f i - i 1 ii: i i i ~~I- '

T.----

' i', .w-.,?@Q  ::-

i

! ii! i t iiI ' i . i i .!

i ;

i i  !

, 4 i i i , i L. i,,, , , , ,

.31 42

' , , , i , .2 ,_ i i ,ii i , , ,

1.400

, , , ,, i , .. i , , i i , i , i , .

' i i i ii i i il I 6 ! { l l i [ i lI I

" ~ ~ -

' i i i l . 5ii '

~'T i i [ i j i i l i l Il

~ , i i" i i i i i i i i I~  ! ii i ! j ,

i ! l

~~ ~ i ~'

i r

, i i, ^i i i J T' i ~7 i i i i i ! ii. .

i ;,i i IT l 4 i i j Tj  ; j i T- TTT i- i ! T~T-g"I i _ i_.

.i i i i i

' i i i i l i i

i

- i ii-i I i , 7' i, i i

iii! I a i i i .l i  ! i;i ii i i  ! ! ,

I i1 .

.i e i i i i i  ! ! ! I i > i ' I i t i iiii  ! I i gi!

1 TT , i,i i ~i i . i i , i i iii i ;i. I i i i i*

1.300  !

,. r  !

i

' i !  ! t '  !  ! I i  ! I i >

! I '  ! !  !  ! i I i i i 8 i i l t  !  ! t >

i ! it i i  ! I i i i i i i i i i i i

~

i i ' '

i  !

i  ! i i l i i

.L . _L ,.

!ii  !

~

l i i I . i l ,  !! I i i

j6 I  ! !I i !  !

, ! ! I I l  ! ' .! .1_

! I i i  ! i . . i i i I i j i i i

- I 'i t i i T1 i i i

'T

, 1 i j i -

i , -i T ,

i i i i i

. -I . , . f I l I 3 h i

I I

20 30 40 50 60 70 80 90 100 110 CORE FLOW (W), % OF RATED CORE FLOW

  • These values tuust be increased by 0.01 during single loop operation.

Pags 39 of 52 RBS CYCLE 9 COLR Revision 2 FIGURE 24. OPERATING LIMIT MCPR (MCPRp) VERSUS CORE POWER )

FOR GE8 AND gel 1 FUEL (EXCEPT gel 1 CYCLE 7/RF6 FUEL)* l 2.100 _,_. ,

-+-+;-

_ , _  ! 1

N"

_.C

~*--"

l. _.,

~*-~, *-*~ .

-+-+-*--+- '

- - ~

2 02 -

w. .-.t- ~ + -*._.;,w . . , -

- - + - + - - - * - -+

2.000

~

~ -

_ _. : ..! \ 7 - ~

-+-

+> 50% flow R.-

_  : . _ ._4 - .

+-~

+<= 50% Flow Wa a_ :-+- *--* 1.94- . -*  ;
=- *n Jrr.= - '

M ' , *~-* ' 1[ 90 1.94 .+-+- _

+-

1.900 -

S

(._ : \.4_+ -

W

-*- -j --+

._g - _. 1 _ _  ;

__,4

-+-+N--*- ~ - -

y + ~ - - - - - -

V-

- + -~-

g q_ _ - - -+--

=r . _ _ - -

a .y 1 3 797_ . , . _4 -_, . _

g =

~

._ _ - _._ 1.76 = _

-* r

~

--~-~. i ^~ ~.__.2 7%= _ _ . ~  : _;_ ~-i M--'-+ -

~ ~ - - -

rK*: q 1.67 *-'- '

~~ '

~ *~-- --*

g

n. .- -*-" _ - m

_+ _

1.

.+N s,

,+ ; -

A.1.600 '-*~-V g - - -x- . -.

_,_. ,7.1.57 *-C

^

= -+ "" r 3 ~

~~

g

~

_ . _ j A'

1.500

_ _-- ~

-S, s*Y -

~ ~ - , _

p_ y- - g__

_ ._4_ ; -k" ~*--

1.400

._.-_.= _. 2_.___ \= -

t ~_

---._ g - --

._. _~ -4

+

.g 4_.- '

_ , . - - -  : ~+-

.-_ . _ . _ . . ~ -.:--  :

g A--.-b 1 28 1.300

~

__._. _1.32 g # . _ . +

' 1 27 -*-

._. r ..- . ..- =; C

~

a += ~

~~ ~~'

127 =C2 2;

=

~

L2e --

-*'.=- a==e--- --.e---.*_

+-

._._. _ _; =  ; _ . _ _ -

-*-++

-:_. _. c l _ : ; -+- __ _;_._.. >._ t . _ . _ .

_,_,--- -- - . - - + . _; - - - - -

3_,_,_ . _ , t ;_ __.

10 20 30 40 50 60 70 80 90 100 110 THERMAL POWER, % OF RATED THERMAL POWER These values must be increased by 0.01 during single loop operation.

n' age 40 of 52 RRS CVCLE 9 COLR Revision 2 FIGURE 25. OPERATING LIMIT MCPR (MCPRp) VERSUS CORE POWER FOR gel 1 CYCLE 7/ RELOAD 6 FUEL

  • i l

2.300 ~ - ~~

aa 4 -*-~_

...,_ . .. w .7.  ; . 2- _.

d _ C .+ ;

{ Q '_ $ ~ ~ * -

~*___.

2.200

~-

_-  ;-- m ~

-x --

~

j"-i. _ E*-*

r_f+ Y;217 [ -* i_ ._ '

  1. > S0% flow ~%~5

, 4' . -

.-.~.~-r _4-

_, 2 ~ * -

  • _( [ . h_._ ._.4_+"* # _

_ 2.09 m 2.09 :-. +, ..

^ g _h % 'N

^

  • ~

.. 4 ,_ :

~~*-* ; _ ._._._2.

q~

~__

}W-- g  :{

2.000 -

X -

mi; -N7_'- :1_, _.,_

!k

+-

_._ D_ $gg :_ . :--*h Z

j,ggg - . _ .._:. ,;391._ _ N-

_ -_.-.g ;_,.__._

. ___._. 2 [ L~.-

.g g _

g 1.800

]1.82t :- ..

~*-:

2._._

~

~

g ._._.

--" =\

Q _.-.n - _ _ -

U ~

v a: 1.72&

= ~ ~

M 1.700 k- " - - - - -

._ , , _ , _ _ i - . . _ - - - -

1.600 T."]

M'.' _:_i.-._._ __

~ ~ ^*

.- L _ . _ _ .

-~:

. g*- .-*-- ,_

1.500 1.47 -*--

-._ _~- .-_

.;_  : r. .r.- -- - - * -

-- 1.43 .

~~

--*~

%  : 142 :~-

1.400

~

~--

142 := .-

1.300 " ^ ~ ~'~~ ~

. ---- --. u__,_

. 4. -

_Pd-4 i

~

" ~ ~

1.200 10 20 30 40 50 60 70 80 90 100 110 THERMAL POWER, % OF RATED THERMAL POWER

  • These values must be increased by 0 01 during single loop operation.

l Page 41 of 52 i RBS CYCLE 9 COLR Revision 2 l

FIGURE 26. LHGR AND MAPLHGR MULTIPLIER VERSUS CORE FLOW 1.1 I

!!l  !. I I I II! Ii i! II I *i Il l

! . i I !i~ !i I i jl T I l l I II I s

! I i j lI l i I I l ii iiii iIIT Ii l i lil I iil II !!  !!! III  !!!! 00'O d 1'.0 00 U 0' 9f 70; 1.0 0 i!!! lI! II il l! ~  ! .

I I -

ilii lii Ij i iI i . I/I- I  ! j ii it i! iI Ii  ; ! !i!l . Vi l i l I i 1 i ;

0.9 I i i !

i i i i i i ii ff09080T l j j l ll 1 iI t

! lI i I g i li 4 1 . i > } ii 71 iI i !ii jiI ; j ij - i lj j e i , , .- i  : i r0 8340 7-  ; ;jp , , ; ij 7 jj j 2: - i ,,r  : - 4--

i ' j ' '

,,ji

'- i !;' iI I J 0.8 - I ' 4 1_'__! /_  !! I i'!  !! ii lIL I j !:

a m_.. - l

/ J',! '  ;

!. '> i'!!  !!I! !L !iL y !ii  ! .

' i/i '

i; ii! !  !!ii iili Ii  ; ; !

$ $ 'i. 4 i i

_/i i  ! ;il i !ii! i;ii .I i ii

u. 0.7

' I 7'  ! ' i !I I ' !I I I II IIi DC i , i >

i /! , i i i ' !i i!  !

i !  !! i , i I iiii ii'l  ! '

! r(0.6630 L dit II I! l!!I IIlI i

8 ii I '

'/ .

i >

! d l ; !_ .IIIl  !

id

' ' ' I ' '

0.6 l r  ! I i i 4

!l t ! iI  !! ! ! !i  !  !!Il Ii iii! l 4_ i i ' I Tiii i !! . !l! Ii  ! Ii!! .3 I l l !4 l 1 -  ! ) i l! !' I! ! I IJ  ! !l l l! l ii

! i ,: 0.5330 p g j, j;; i jj ;i; , jj j j 0.5 i '

'.  ! II !I Il l I I i ~! I Ii I II ! I

! l ! I I i i i j i l l I l1I I I } i':

!! ! ! ~li! l U ._J I I I I

!i .__ Iiil i i i ,

I ll i liii i lii l li l ll lE i!.

I I I ';  ::

0.4 I I I II I I ! I I I' 20 30 40 50 60 70 80 90 100 110 CORE FLOW, % OF RATED CORE FLOW

E Page 42 of 52 RBS CYCLE 9 COLR Revision 2 FIGURE 27. LHGR AND MAPLHGR MULTIPLIER VERSUS THERMAL POWER 1.1 1i_

_ l II l l

!I i il l l 1 i i  ! l l l ll l i I

! '! 1.000b I.0000d_10000 1

1.0 I II I A I I A

3

!i!! !I I! I Ii I/  ! !!!

IIi i!!! -

ll 1 / ll!  !!!

!!I il i i! l / IIi  !!Ii Iii li!  ; it l I ll / lii ii: ! l 0.9

' ! I II I I !I I  ! I! l / I' '  !

iit : 1 11 I i t I i iil l l !l l '/ l l l1l 'I l t I iIl  !

l i i ii iii /, j !li i !ii ll ! lli[

% 4 i i

! ,  ! !i jf0.8500 i l!

$ ) )

l

.I .! ll / Ii l

'I I i li! i 30.8 I ! ' i l I I I ' / I ! I I l 'i A i  ! I I IIl i i i/I l Il 'I i j l t j  ; i l1 I l  !! i I

/l l i i ll i ii i iit

.a ii ' <

i !I ii i/ ll l l i' i Iii 5

i i

!iI !

I iII

!! / II I II,!

II!

._11 10 I ' I I! - II I '

$.7 . _ _ l!!  !!! ! Iil/[0.7b05I  !  !!i  !!!!  !

t 5

!  ! 'll III I II II! '

1i I'ii  !!!l ll/ l I  !!I l  !!.

! iiii lij ii/i Ii i 1!ii i;!,

0.6 lI II II I/ lI  ! !I iI I IIii  !

i ii  !! i  !!! /!!! I I  !!! !  !

>IIl l l I

.d I!  ! II

! 'i l l l l/[0.5622 b Il ,i l I l l l l  :

_'0 4988 -

!!I! NI I!

II III I

II

!I I II I 0.5 -

l II I 30ib88 I I !

!! ! I II ,  ! !Iii I  ! l! !l i i

!i l I I I j jj ii  ! i l1 t i i ! l l l I ii l !

lll i ; II i j ilI l l l li; 0.4 lI i I l I II I III I III l{'

20 30 40 50 60 70 80 90 100 Core Power (% Rated)

Page 43 of 52 l RBS CYCLE 9 COLR '

Revision 2 FIGURE 28. MONITORED REGION BOUNDARY (CASE 1) l l

120

)

110 - ,

l l

100 i 90 - l 80 4 .

E 3 70 a:

d, 3 60 A

2 50 5!

j .-

40 -

[-

30 _

20 10 - L- -

0 0 10 20 30 40 50 60 70 80 50 100 110 Core Flow (% Rated)

Page 44 of 52 RBS CYCLE 9 COLR Revision 2 FIGURE 29. MONITORED REGION BOUNDARY (CASE 2) 110 - -- - -

100 90 -

80 -

70 6

" 60 l d I 5

0 50 i

40 30 -

20 -

10 - -

0 0 10 20 30 40 50 60 70 80 90 100 110 Core Flow (% Rated) t

Pags 45 of 52 RBS CYCLE 9 COLR Revision 2 FIGURE 30. APRM FLOW BIASED SIMULATED THERMAL POWER-IIIGH SCRAM SETPOINTS AND RESTRICTED REGION BOUNDARY (TWO RECIRCULATION LOOP OPERATION - CASE 1) 120 110 . .

100 ._.

90 80 g h_ NominalValue }

e i ,

E7 I Albwable Value b

$ 60 f

TLO Restricted Region

.l 0 l l Boundary High Endpoint

n. ,

l 50 S Setup Scram O _

NS Non-Setup Scram 40

- Ns _

RR Restricted Region 30 jW ,

20 .. .

10 ._. .

0 0 10 20 30 40 50 60 70 80 90 100 110 120 ALIGNED DRIVE FLOW (% rated) l l

l

l l Pag 3 46 of 52 RBS CYCLE 9 COLR Ravision 2 FIGURE 31. APRM FLOW BIASED SIMULATED THERMAL POWER - HIGII SCRAM SETPOINTS AND RESTRICTED REGION BOUNDARY (SINGLE RECIRCULATION LOOP OPERATION - CASE 1) 120 110_, . .

l 100 _

90 _

i

' 1 80 NominalVabe  !.

-i,-

g _. Albwable Vabe j 70 .

i g

y / !o SLO Restricted Regbn  !

uJ 60 -

/ *

} Boundary High Endpoint l

h n.

S Setup Scram l

y 50 NS Non-Setup Scram b {

40 d RR Restricted Region l

-W *

/

30 fit 3C . .

20 -. . - .

10 0

0 10 20 30 40 50 60 70 80 90 100 110 120 AlJGNED DRIVE FLOW (% rated)

{

Paga 47 of 52 l RBS CYCLE 9 COLR i Rsvision 2 i l

l FIGURE 32. APRM FLOW BIASED SIMULATED THERMAL POWER- HIGH I l

SCRAM SETPOINTS AND RESTRICTED REGION BOUNDARY l (TWO RECIRCULATION LOOP OPERATION - CASE 2) 120

)

1 110 l

./{. . \

100 90 -

80 ._. j Eo y 10 -

j

$ _ NominalVabe f oc l l80

- Allowable Vabe {

o 0-

!o TLO Restricted Region g5 Boundary High Endpoint i 40 ./.

7s~ .

S Setup Scram  ! )

\

g l NS Non-Setup Scram RR Restricted Region  ; I s# l 20 -

10 _. .

l l

0 0 10 20 30 40 50 60 70 80 90 100 110 120 ALIGNED DRIVE FLOW (% rated)

Paga 48 of 52 RBS CYCLE 9 COLR Rsvision 2 FIGURE 33. APRh1 FLOW BIASED SINIULATED THERNIAL POWER- HIGH ,

SCRAh1 SETPOINTS AND RESTRICTED REGION BOUNDARY I

(SINGLE RECIRCULATION LOOP OPERATION - CASE 2) 120 110._ . . ..

100 90 ._.

l 80 ee f 70 _

d. _ Nominal Value I

60 . _

E - Albwable Value i y 50 -

0 SLO Restricted Region [

@ Boundary High Endpoint l

  1. ' S Setup Scram

-~Ns-

~

NS Non-Setup Scram 30 '

RR Restricted Region 20 -

10 ._.

0 -

0 10 20 30 40 50 60 70 80 90 100 110 120 ALIGNED DRIVE FLOW (% rated)

Page 49 of 52 RBS CYCLE 9 COLR Revision 2 FIGURE 34. APRM FLOW BIASED NEUTRON FLUX - HIGH ROD-BLOCK i

SETPOINTS (TWO RECIRCULATION LOOP OPERATION - CASE 1) l 120 110 - -

100--.. - - --

90 _. . _ _ ..

80 ...

~ ,

~~

_ NominalValue j

! 60 _. - Albwable Value I

E S Setup Rod-Block l o

l 50 -

NS Non-Setup Rod-Block 40 .

l 30 dNE , , .

20 ._. . . ~.

I 10 .- . - _ -- - - -

l 0

0 10 20 30 40 50 60 70 80 90 100 110 120 Aligned Drive Flow (% rated)

F P:g3 50 of 52 RBS CYCLE 9 COLR R; vision 2 l

FIGURE 35. APRM FLOW BIASED NEUTRON FLUX - HIGH ROD-BLOCK SETPOINTS (SINGLE RECIRCULATION LOOP OPERATION - CASE 1) 120 -

110__ . . .  : .

100 _..

90 ._.. .

80 ._.

~

NominalVabe at 60 ._. .

- Albwable Vabe o

I S Setup Rod-Bbck 3 50 o

NS Non-Setup Rod-Bbck 40 _ .

n._

30 gNsM , _ ,

20 _. . . .

10 _ . .

0 0 10 20 30 40 50 60 70 80 90 100 110 120

{

Aligned Drive Flow (% rated) l 1

l Pag 3 51 of 52 l I

RBS CYCLE 9 COLR Revision 2 FIGURE 36. APRM FLOW BIASED NEUTRON FLUX- HIGH ROD-BLOCK SETPOINTS l (TWO RECIRCULATION LOOP OPERATION - CASE 2) j 120 1

110 ._..

100._ . . _.

90 _ ..

/

80

$ 70 -

60 _ .

S NominalVabe E 50 ._..

- Allowable Vabe 40 ._..

S Setup Rod-Bbck 30 5 ..i.. NS Non-Setup Rod-Bbck w

20 .- - - -

10 ._.. ..... . ,.

n-0 10 20 30 40 50 60 70 80 90 100 110 120 Aligned Drive Flow (% rated)

Pzgs 52 of 52 RBS CYCLE 9 COLR R3 vision 2 FIGURE 37. APRM FLOW BIASED NEUTRON FLUX-IIIGH ROD-BLOCK SETPOINTS  ;

(SINGLE RECIRCULATION LOOP OPERATION - CASE 2) 120 l

l 110 . -

/

100 _

l 90 _ ..

/

/

80 l l

I T 70 3

- 60 I

l_ Nominal Vabe o 50  ;

Albwable Vabe 40 .i S Setup Rod-Block

-s~

30 m NS Non-Setup Rod-Bbck ZsN I 20 ._. .

10 0

0 10 20 30 40 50 60 70 80 90 100 110 120 Aligned Drive Flow (% rated)

.__