ML20196J803
ML20196J803 | |
Person / Time | |
---|---|
Site: | River Bend |
Issue date: | 06/24/1999 |
From: | Law W, Leovines J, Vo J ENTERGY OPERATIONS, INC. |
To: | |
Shared Package | |
ML20196J801 | List: |
References | |
NUDOCS 9907080019 | |
Download: ML20196J803 (52) | |
Text
{{#Wiki_filter:'
- 8 Paga 1 of 52
, RBS CYCLE 9 COUR RIvision 1 RIVER BEND STATION, CYCLE 9 CORE OPERATING LIMITS REPORT (COLR)
PREPARED BY: dypff / f /gg tut) ate: [//7/9 Responsible Engineer REVIEWED BY: 0 Date: [// (( R$ew Engineer APPROVED BY: IMA Ec,3 o Ml Date: 2i f Manger - Safety & Engineering Analysis APPROVED BY: / Date: d if Director, Engineering River Bend Nuclear Station APPROVED BY: d) AN Date: gjdyM peilities Review Committee l River Bend Nuclear Station 9907090019 990629 PDR ADOCK 05000458 P PDR 9 d
Pag 3 2 of 52 RBS CYCLE 9 COLR ReWsion 1 TABLE OF CONTENTS INTRODUCTION AND
SUMMARY
... . .. .. . .. ....... .... . 3 CONTROL RODS. . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . 4 TECHNICAL SPECEICATION 3.2.1 ... . . . . . . . . . .. . . . . . . . . . . . . . . 5 TECHNICAL SPECEICATION 3.2.2.. .. . . . . . . . . . . . . . . . . . . . .. . 6 TECHNICAL SPECEICATION 3.2.3.... . .. . . . . . . . . . .. 7 TECHNICAL SPECTICATION 3.2.4 . . . . . . . . . . . . . . . . . . . . . . . 8 TECHNICAL SPECTICATION 3.3.1.1. . . . . . . . . . . . .. .. 9 1 j TECHNICAL SPECFICATION 3.3.1.3 . . . . . . . . . . . . . . . .. . . . . . . 10 l t TECHNICAL REQUIREMENT 3.3.1.1... . . . . . . . . . . . . . . . . . . . . . . I1 TECHNICAL REQUIREMENT 3.3.2.1 . . . . . . . . . . . . . . . . .. .. 12 REFERENCES . . .. . . . . . . . . . . . . . . . . . . . ... ......... . .. . . . . . . 13 APPENDIX A - ADMINISTRATIVE LIMITS . . . . . . . . . . . 14 i
- . > Paga 3 of 52
., RBS CYCLE 9 COLR Rsvision 1 INTRODUCTION AND
SUMMARY
This report provides Cycle 9 values for the following Technical Specifications:
- 1. ~ AVERAGE PLANAR LINEAR HEAT GENERATION RATE (APLHGR) limits,
- 2. MINIMUM CRITICAL POWER RATIO (MCPR) limits,
- 3. LINEAR HEAT GENERATION RATE (LHGR) limits,
- 4. FRACTION OF CORE BOILING BOUNDARY (FCBB),
- 5. REACTOR PROTECTION SY. STEM (RPS) APRM Flow Biased Simulated
_. Thermal Power - High Allowable Values, 6.' REACTOR PROTECTION SYSTEM (RPS) APRM Flow Biaced Simulated Thermal Power time constant.
- 7. PERIOD B ASED DETECTION SYSTEM (PBDS) region boundaries.
Technical Specification section 5.6.5 requires these values be determined using , NRC-approved methodology and r.re established such that all applicable limits of { the plant safety analysis are met. This report also provides Cycle 9 values for the following Technical l Requirements: J
' l. . REACTOR PROTECTION SYSTEM (RPS) APRM Flow Biased Neutron Flux Power - High Allowable Values and Nominal Trip Setpoints',
- 2. CONTROL' ROD BLOCK INSTRUMENTATION APRM Flow Biased Simulated Thermal Power High limits.
In some cases limits in the COLR differ from the limits in the core monitoring sysiem. This is semetimes due to limitations in the core monitoring system to model the actual limits, in which case the core monitoring limits may be more conservative than the COLR limit. In other cases the limits in the COLR are presented in less detail than in the core monitoring system. When these situations exist the core monitoring limits will be explained or be referenced by the COLR and will be made available to Operations. Figures 28 through 37 are being added as part of the implementation of stability related Technical Specification changes (Amendment No.106). The reload analyses were performed in accordance with GESTAR II and its applicability to Cycle 9 was confirmed by Reference 8.
' Note that for Figures 30 to 37, the Nominal Setpoints should be used for indicating the entry into a particular stability region as allowed and appropriate naions be taken prior to the entry 1
-
- Page 4 of 52 RBS CYCLE 9 COLR
, Revision 1 CONTROI; RODS The River Bend core utilizes both GE original equipment and ABB CR-82M bottom entry cruciform control rods. These Control Rod designs are discussed in more detail in reference 7.
REASONS FOR REVISION Revision 1 incorporated changes penaining to the core design in which all the once-burned bundles were replaced either by new bundles or by GE8 design bundles, due to the abnormal oxide build-up. An appendix is also included for
- information in the COLR, depicted in which are the administrative LHGR limits for the control of potential oxide build-up throughout Cycle 9 to within a specific level.
1 O
Paga 5 of 52 RBS CYCLE 9 COLR ReWsion i TECHNICAL SPECIFICATION 3.2.1 POWER DISTRIBUTION LIMITS AVERAGE PLANAR LINEAR HEAT GENERATION RATE (APLHGR) The limiting APLHGR (sometimes referred to as Maximum APLHGR, or MAPLHGR) value for the most limiting lattice (excluding natural uranium) of each fuel type as a function of AVERAGE PLANAR EXPOSURE is given in Figures 2 through 11. These values were determined with the SAFER /GESTR LOCA and GESTR-Mechanical methodology described in GESTAR-II (Reference 1). Core location by fuel type is provided in Figure I and is the reference core loading pattern in reference 3. These figures are used if alternate calculations are required. The limits of these figures shall be reduced to a value of 0.79 and 0.87 times the two recirculation loop operation limit when in single loop operation for gel 1 and GE8, respectively (Reference 3). Thermal power and core flow dependent multipliers are provided. The value of the exposure dependent limit is reduced by the value of the multiplier at a given offrated power or flow condition. These multipliers are independent of the single loop multipliers and are shown on Figures 26 and 27. The APLHGR limits in the core monitoring system are in more detail than the limits that appear in the COLR due to there proprietary nature. The core monitoring system has APLHGR limits for each lattice in a bundle rather than listing only the most limiting value for the entire bundle. Reference 4 lists the core monitoring system limits. I l 1
l F' age 6 of 52 RBS CYCt.E 9 COLR
. Revision 1 TECHNICAL SPECIFICATION 3.2J POWER DISTRIBUTION LIMITS MINIMUM CRITICAL POWER RATIO (MCPR)
The MCPR limits for use in Technical Specification 3.2.2 for flow dependent MCPR (MCPRp) (Reference 3), power dependent MCPR (MCPRp) (Reference 3) are shown in Figures 22 through 25. The most limiting value from the applicable MCPR, and MCPR,, figures is the operating limit. These values were determined with the GEMINI methodology and GEXL-PLUS critical power ratio correlation 1 described in GESTAR-II (Reference 1) and are consistent with a Safety Limit l MCPR from Technical Specification 2.0. The Operating Limit MCPR values in I Figures 22 through 25 must be increased by 0.01 during single loop operation. l l
)
l 1 l
Pag 3 7 of 52 RBS CYCLE 9 COLR
, ReWsion 1 TECHNICAL SPECIFICATION 3.2.3 POWER DISTRIBUTION LIMITS LINEAR HEAT GENERATION RATE (LHGR)
The limiting LHGR value for the most limiting lattice (excluding natural uranium) of each fuel type as a function of AVERAGE PLANAR EXPOSURE is given in Figures 12 through 21. These values were determined with GESTR-Mechanical methodology described in GESTAR-II (Reference 1). Core location by fuel type is provided in Figure I and is the reference core loading pattern in reference 3. These figures are used if attemate calculations are required. Thermal power and core flow dependent multipliers are provided in Figures 26 and 27. The value of the exposure dependent limit is reduced by the value of the multiplier at a given offrated power or flow condition. The LHGR limits in the core monitonng system are in more detail than the limits that appear in the COLR due to their proprietary nature. The core monitoring system has LHGR limits for each lattice in a bundle rather than listing only the most limiting value for the entire bundle. Reference 4 lists the core monitoring j system limits. Appendix A depicts the administrative limits for the GGE types bundles as identified by their serial numbers. These target LHGRs, although not required by l GESTAR (Reference 4), are in general more restrictive than the licensed LHGR l limits (Figures 19 to 21) and ensure the oxide build-up throughout Cycle 9 is I controlled within the analysis assumptions. The GGE fuel will be operated within the more limiting of the licensed LHGR limits or the administratively controlled LHGR limits included in Appendix A. l l l l l l
, Pagg 8 of 52 RBS CYCLE 9 COLR Redsion 1 TECHNICAL SPECIFICATION 3.2.4 POWER DISTRIBUTION LIMITS FRACTION OF CORE BOILING BOUNDARY (FCBB)
Restricted Region Boundary Note: The boundary ofthe Restricted Region is established by analysis in terms of thermalpower and corefow. The Restricted Region boundary is defined by the "non-setup" APRMFlow Biased Simulated Thermal Power - High Control Rod Block Setpoints, which are afunction ofreactor recirculation drivepow. The Restricted Region boundaries as a function of aligned drive flow are given in Figures 30 through 33 in terms of aligned drive flow. The aligned drive flow is calculated from the input drive flow using the relationship given in Table 1. Flow Biased Simulated Thermal Power- High Limits The APRM Flow Biased Simulated Thermal Power - High Scram setpoints as a function of aligned derive flow are given in Figures 30 through 33. The aligned drive flow is calculated from the input drive flow using the relationship given in Table 1.
- a. Case 1 - Normal Feedwater Heating Operation or Low Reactor Power:
Ty(at rated)2: Ty"(at rated)-50 F, and rated equivalent at off-rated reactor conditions. OR P s 30%
- b. Case 2 - Reduced Feedwater Heating Operation Ty(at rated)< TR"(at rated)-50 F, and rated equivalent at off-rated reactor conditions.
AND P > 30% Where: Ty is feedwater temperature in F, and P is reactor power in percent of rated.
l (
- Paga 9 of 52 RBS CYCLE 9 COLR l Reusion 1 TECHNICAL SPECIFICATION 3.3.1.1 INSTRUMENTATION REACTOR PROTECTION SYSTEM (RPS) INSTRUMENTATION I
, AVERAGE POWER RANGE MONITORS APRM Flow Biased Simulated Thermal Power - High Limits The APRM Flow Biased Simulated Thermal Power - High scram setpoint ! . Allowable Values are given in Figures 30 through 33 in terms of aligned drive flow. The aligned drive flow is calculated from the input drive flow using the , relationship given in Table 1. I
- a. Case 1 - Normal Feedwater Heating Operation or Low Reactor Power:
Ty(at rated)2: TR"(at rated)- 50 F, and rated equivalent at off-rated reactor conditions. OR P s; 30%
- b. Case 2 - Reduced Feedwater Heating Operation Ty(at rated)< TR"(at rated)-50 F, and rated equivalent at off-rated reactor conditions. j AND P > 30%
Where: Ty is feedwater temperature in F, and P is reactor power in percent of rated. l APRM Simulated Thermal Power Time Constant l The simulated thermal power time constant for use in Technical Specification Table 3.3.1.1-1, SR 3.3.1.1.14, is (Reference 6): l 6
- 0.6 seconds.
1 The maximum simulated thermal power time constant for use in Technical Specification surveillance Table 3.3.1.1-1, SR 3.3.1.1.14 is: 6.6 seconds
Pags 10 of 52 RBS CYCLE 9 COLR Reusion 1 TECHNICAL SPECIFICATION 3.3.1.3 INSTRUMENTATION PERIOD BASED DETECTION SYSTEM (PBDS) Monitored Region Boundary The Monitored Region Boundaries as a function of core flow are given in Figures 28 and 29. Restricted Region Boundary Note: The boundary of the RestrictedRegion is established by analysis in terms of thermalpower and corepow. The Restricted Region boundary is defined by the "non-setup" APRM Flow Biased Simulated Thermal Power - High Control Rod j Block Serpoints, which are afunction ofreactor recirculation drivefow. ; The Restricted Region boundaries as a function of aligned drive flow are given in ) Figures 30 through 33 in terms of aligned drive flow. The aligned drive flow is i calculated from the input drive flow using the relationship given in Table 1.
- a. Case 1 - Normal Feedwater Heating Operation or Low Reactor Power:
Ty(at rated)2 TR" "(at rated)- 50 F, and rated equivalent at off-rated reactor conditions. OR P s 30%
- b. Case 2 - Reduced Feedwater Heating Operation Ty(at rattd)< TR"(at rated)-50 F, and rated equivalent at off-rated reactor conditions.
AND l P > 30% ! Where: Ty is feedwater temperature in 'F, and P is reactor power in percent of i rated. l l l l 1 i i l
Paga 11 of 52 RBS CYCLE 9 COLR
. R:Wslon 1 TECHNICAL REQUIREMENT 3.3.1.1 INSTRUMENTATION REACTOR PROTECTION SYSTEM (RPS) INSTRUMENTATION AVERAGE POWER RANGE MONITOPS APRM Flow Biased Simulated Thermal Power- High Limits The APRM Flow Biased Simulated Thermal Power - High scram setpoint Nominal Trip Setpoints are given in Figures 30 through 33 in terms of aligned l
drive flow. The aligned drive flow is calculated from the input drive flow usmg { the relationship given in Table 1.
]
- a. Case 1 - Normal Feedwater Heating Operation or Low Reactor Power:
Ty(at rated)' y"(at rated)- 50 F, and rated equivalent at off-rated reactor conditions. OR P s 30%
- b. Case 2 - Reduced Feedwater Heating Operation Ty(at rated)< TR"(at rated)-50 F, I and rated equivalent at off-rated reactor conditions.
AND P > 30% Where: Ty is feedwater temperature in F, and P is reactor power in percent of J rated. i } 1 l i
- Paga 12 of 52 '
RBS CYCLE 9 COLR Revision 1 TECHNICAL REQUIREMENT 3.3.2.1 INSTRUMENTATION CONTROL ROD BLOCK INSTRUMENTATION AVERAGE POWER RANGE MONITORS APRM Flow Biased Simulated Thermal Power - High Limits The APRM Flow Biased Neutron Flux - High rod block Allowable Values and Nominal Trip Setpoints are given in Figures 34 through 37 in terms of aligned drive flow. The aligned drive flow is calculated from the input drive flow using the relationship given in Table 1.
- a. Case 1 - Normal Feedwater Heating Operation or Low Reactor Power:
Ty(at rated)2 TR"(at rated)- 50 F, and rated equivalent at off-rated reactor conditions. OR P s; 30%
- b. Case 2 - Reduced Feedwater Heating Operation Ty(at rated)< Ty"(at rated)-50 F, and rated equivalent at off-rated reactor conditions.
AND P > 30% Where: Tm is feedwater temperature in 'F, and P is reactor power in percent of rated. i l i i L
Paga 13 of 52 RBS CYCLE 9 COLR Revision 1 REFERENCES 1
- 1) NEDE-24011-P-A-13 and US Supplement, " General Electric Standard Application for Reactor Fuel," August 1996.
- 2) Letter, J.S. Chamley (GE) to M.W. Hodges (NRC), Recommended MAPLHGR Technical Specifications for Multiple Lattice Fuel Designs, March 9,1987
- 3) Jil-03431SRLR Rev.1 Supplemental Reload Licensing Report for River Bend Station Reload 8 Cycle 9" May 1999.
- 4) Jil-03431 MAPL, Revision i " Lattice Dependent MAPLHGR Report for River Bend Station Reload 8 Cycle 9" May 1999.,
- 5) Deleted.
- 6) Letter, R.E. Kingston to G. W. Scronce, " Time Constant Values for Simulated Thermal Power Monitor" GFP-1032 November 30,1995.
- 7) RBS USAR Section 4.1
- 8) Calculation NEAD-SR-97/032.RI,"RBS EI A COLR Input"
- 9) Calculation NEAD-SR-97/051.R0, "RBS EI A TRM Rod-Block Setpoints Definition". ;
- 10) GE Letter, GFP-1284, RBS-PPF G25.4.3, " River Bend Design Report and {
. GESTAR Report," June 11,1999.
I l l
p
- Pa0314 of 52 RBS CYCLE 9 COLR Reusion 1 APPENDIX A ADMINISTRATIVE LIMITS Group 1 Gmup 2 Gruup 3 Gmup 4 GGE024 GGE012 GGE016 GGE004,GGE008 GGE028 GGE040 GGE100 GGE020,GGE036 GGE032 GGE048 GGE104 GGE044,GGE052 GGE060 GGE076 GGE056,GGE068 GGE064 GGE092 GGE080,GGE088 GGE072 GGEll2 GGEll6,GGE132 GGE084 GGE120,GGE124 GGE140,GGE148 GGE096 GGE156, GGE164 GGE152,GGE160
)
l GGE108 GGE168 GGE188 GGE172,GGE176 GGE128 GGE192, GGE200 GGE180,GGE196 GGE136 GGE208 GGE220 GGE204,GGE212 GGE144,GGE184 GGE224, GGE228 GGE216,GGE232 KW/ft Group 1 Gesup 2 Group 3 Group 4 BOC to 2.074 11,18 9.88 9.44 7.67 GWD/ST 2.074 to 5.768 10,17 8.99 8.59 6.98 GWD/ST The above groupings of the GGE type (bundles Gell-P9SUB354-14GZ-120T-146-T, Gell-P9SUB354-13GZ-120T-146-T. and Gell P9SUB353-10GZ-120T-146-T) are categorized for the purpose of adannistrative control. Bundles identifications shown here correspond to the upper left quadrant. These are target LHGR for the control of oxide buildup and are more lindting than the license limits.
Paga 15 of 52 RBS CYCLE 9 COLF' Revision 1 Table 1. Aligned Drive Flow 100.652 A" - 29.996 A'" + 70.656 W-W" = 70.656 -(A'" - A") Where: W; = FCTR card input drive flow in percent rated, j i
= Aligned drive flow in percent rated, Wo A* = Low flow drive flow alignment setting, and j A'" = High flow drive flow alignment setting. I l )
i l i e 1 I
RBS CY LE CL Revision 1 FIGURE 1. REFERENCE CORE LOADING PATTERN
^
se @@ 90 GOD 500 l; mMMMMMMMm
- sE8MMMMMMMMs
- sMMMMMMMMMMMm
- MMMMMMMMMMMMM lLsM M ME8 H M M M M M M M Ms
- sMMMMMMMMMMMMHi i
- 8MMMMMMMMMMMMM8 )
- s M M M M M M M M M M M M H i '
- -*HMMMMMMMMMMMM*
- MMMMHHHHHHHHH
- "MMMMMMMMMMM*
': "HMMMMMMMM" 2 "HMMMMMH5 @@@@@@@@
l l l IIIII ast e 11 is is ir le 21 rs as er to si sa as si se 4: es es er *e si sa ss Fuel Type A= Gell P95UB40613GZ 120T 146-T (Cycle 9) F= Gell P9SUB353-10GZ 120T-146-T (Cycle 7) B= Gell-P95UB225 NOG 120T 146-T (Cycle 9) G=GE88-P8SQB33310GZ-120M-4WR 150-T (Cycle 4) C= gel 1-P95UB388-13GZ 120T 146 T (Cycle 9) H=GE88 P8SQB334-10GZ 120M-4%T-150-T (Cycle 5) D= Gell P95UB354-14GZ 120T 146-T (Cycle 7) !=GE88-P85QB33410GZ2120M-4WR 150 T (Cycle 6) E= Gell P95UB35413GZ 120T 146-T (Cycle 7) J=GE8B-P8SQB334-llGZ 120M 4WR-150-T (Cycle 6)
! 9
Pag 317 of 52 RBS CYCLE 9 COLR Revision 1 FIGURE 2. MAXIMUM AVERAGE PLANAR LINEAR HEAT GENERATION RATE (MAPLHGR) VERSUS AVERAGE PLANAR EXPOSURE gel 1-P9SUB400-13GZ-120T-146-T 13 i i
;=%
M
~
12 si 'I\ W i if is <
\si i i i
H :s i s , d ci2 < a" l i hs w j'g z / I 1 l, l l l Og , . F ' l, ! N I ,l \ W z
, i X 's W 10 e 'ss. .
0 ,, 1 . g
. . , i ; -sq .
6 i' l r l A Z !,1 l!l! ' I\ l a: : ! ! i t
- g i, bg >>
' +'
i! i i 'MiN Z ' ' 3 i 1 g 1 , i : 1 i e s
% 1 ' ! N t r
4 2 8 i, ! 1 l lA l 1 I b o, i, l i i ., ll 1 W < r i s r O i , i ! \I l i i t
! is , ;i W i i si i > : %+
3 l .
"3 ; ^. ! ,
il 1 56 k i l 3 , i i i i i
. ! ! i r I i ! i I l 5 1 1
0 10 20 30 - 40 50 60 i AVERAGE PLANAR EXPOSURE (GWd/ST) ! 1
Paga 18 of 52 RBS CYCLE 9 COLR ReWsion 1 FIGURE 3. MAXIMUM AVERAGE PLANAR LINEAR HEAT GENERATION RATE (MAPLHGR) VERSUS AVERAGE PLANAR EXPOSURE GE11-P9SUB225-NOG-120T-146-T 14 h i I
! . 5 I I i i 1 M i i i . i i i i t'd ! 'l 1 I 1 I I I T I I I i 1 i k [
uJ , % ; ; IyL! . I i I 1 I I
'%% 1 !
I I 12 Z . is O i i i > ! . i i i p i I 1 . I I I N
'1 I ! I . T . il I i .I ! i I 1 1 L . . I I 1 ;1 I I Z ! , i \; i ,
h I i . ! T h I ! f i 1 I 1 i W 10 i 's !
. I 1 . I l ! I ' i 1k .k g . ? i .. . i! l i\ ! . I . l i 1 I I I ! . . I 1 I I . I 1 1 ! ! I I I 'k 7 r i i }f '
i . , i [ , I k .
! j ! 3 I I r [ ;t i [ [ !3 i i y
_a .' . . . .. 1
. 1 ' l l i XI I I ! i I i 1 !
I I ! i i . . i5! 1 I k . I k i 1 khh ! .h ! I hI hk< h h i i I ! I T O. 8 I ! I i I I I .
's 1!
I i ! ! I h 1 . % i ! . i t k k k I I % 1 i
' u ' .I l I i a f f 1 I I l % l I I I I I I % I f I > w .
h i . i i . ! I I ! I I i I 1 . 1 I i %I . I ! I I 2 '1 I o , i . 1
; i N-H- i 5 l l . i l' l ; ; QQ i a I i I I i l I ! . I T l
1 I I I . I I ; I il iI l i 1 , h . ! I i ! i
! ; i t, i i ! l'i!i iii 1 ii i i i i i i iii iiiii 0 10 20 30 40 50 60 AVERAGE PLANAR EXPOSURE (GWd/ST) i
Pag 319 of 52 RBS CYCLE 9 COLR ReWsion i FIGURE 4. MAXIMUM AVERAGE PLANAR LINEAR HEAT GENERATION RATE (MAPLHGR) VERSUS AVERAGE PLANAR EXPOSURE gel 1-P9SUB388-13GZ-120T-146-T 13 i M 12 --
; ;f ;
N .__ _.
% !/ N g .e x i W l'N l h11 7' '
A ' i 'N l I i X
=
2 i'I
+ xilu W
O 10
.' !!\
w F l ! N h A z , x g i' l lX' 6 z i.
. i 1 i %+ i ,i i
3 ' I \ g ! ! . I i 4 l 4 i; !, l IXs ;,i - Z 8 ' ' i j . \?i 1 ! m l . It , x3 :l : W i, i L i i 1 i ! I i g7 ' '
!N <
x, l'i
. 1; ) ii I ' i si !N_.L_
i 4 ' E i, , 1 l 3 i E6 ' R , i i ii i 4 l' l l' 3 i i i i:-t-
, i i i 0 10 20 30 40 50 60 AVERAGE PLANAR EXPOSURE (GWd/ST) l i
l
Page 20 of 52 RBS CYCLE 9 COLR ReWsion 1 FIGURE 5. MAXIMUM AVERAGE PLANAR LINEAR HEAT GENERATION RATE (MAPLHGR) VERSUS AVERAGE PLANAR EXPOSURE GE11-P9SUB354-14GZ-120T-146-T 13 2 0 11 p ,
- i i = , ,
2 i 10 0 __m m_ _ y y I A i lu E t i i\ ' bg ' i l N' i 2 , , a , m g i l \ Z8 '-
~
5 a. W i i O ;
, l $7 ) '
i i - 4 l l 1 E l 3 l M6 k l l ! a
, , ! , i i 0 5 10 15 20 25 30 35 40 AVERAGE PLANAR EXPOSURE (GWd/ST)
1 l Paga 21 of 52 j- RBS CYCLE 9 COLR . Revision 1 i f FIGURE 6. MAXIMUM AVERAGE PLANAR LINEAR HEAT GENERATION RATE (MAPLHGR) VERSUS AVERAGE PLANAR EXPOSURE Gell-P9SUB35s'-13GZ-120T-146-T ! 13 . r, , , m 1. I ,i _ f, I i l 1
~
- i
.- w .
Q i E12 W l l 3 ; z , i l 0 11 ' p: i z i i 10 0 ,m _m_m __2 s r 1
+- ;-r -g 1 I g E !
I L E , , bg i, - i l 'sm , z , , 3, 3 i X ' ' E ! ! 'sN' i 4 l [i ii^ i z8 i 5
=
i W t i ! t 0 l l , r l l u 7 , , ; . ,
) ' 3 1
4 ; 1 E ,i l
- D ii !
36 l sa , i 4 l 1 3 i i l i ' 5 O 5 10 15 20 25 30 35 40 AVERAGE PLANAR EXPOSURE (GWd/ST) i l
1 l Pag) 22 of 52 RBS CYCLE 9 COLR Reusion 1 FIGURE 7. MAXIMUM AVERAGE PLANAR LINEAR HEAT GENERATION RATE (MAPLHGR) VERSUS AVERAGE PLANAR EXPOSURE gel 1-P9SUB353-10GZ-120T-146-T 13 1 l
$12 h '
Z O 11 p ;
+ ,
I !
= l Z l 10 0 , , ,
r 2__ i _ 2_ m_ , 7.r I 1 % ( E I l\ l 0 '* h i <
, i s
x 1 z 3 : !, ' N E .! I s ,
< ll l N~ ! I Z 8 5
o. i !. . I l IM t !i O l h7 m ; 1 t
*C i E '
I o ' ' ' 1 26 x g( I i l E l l, 1 l i 5 O 5 10 15 20 25 30 35 40 AVERAGE PLANAR EXPOSURE (GWd/ST)
P g) 23 of 52 RBS CYCLE 9 COLR ReWsion 1 FIGURE 8. MAXIMUM AVERAGE PLANAR LINEAR HEAT GENERATION RATE (MAPLHGR) VERSUS AVERAGE PLANAR EXPOSURE GE8B-PSSQB333-10GZ-120M-4WR-150-T 14 1 . g I I g i i! 3 33 sm > !I g ., s ..
- l ! '/ ! N ' i , ) . ,f \ l h 12 . ' ' l , l \
I Z wf 'sg , O x,1 m , F :- % . g f' '
'.k.%
I I I r I W 11
'N Z , ;; i 'q ; ; ;
w r 1 . i, si O ' ' I % ; F i , I l l
%1.
I
]
i+ ' ' ' W 10 !\ I Z i i i ! ir i X' i i g i i I I t! , b 1 i Z , i'i i ,i l l l X 39 . s, g ' l' i; i ! l l :1l i 4 i i . ! i lt Z !i
!1 . !
i l i! i I i ! i i i 's !
- n. 8 ' ' '
'l m . . li g i 1 1
1 I h i i, l ! i l s i i W
> 7 ; i ii . 's 3 ! ; !' ! i' ,
- s l !
3E i l l, ! ii i
-6 k !' " i i i i a ll i i 5
0 10 20 30 40 50 60 AVERAGE PLANAR EXPOSURE (GWd/ST)
y Pag 3 24 of 52 RBS CYCLE 9 COLR
~
Revision 1 FIGURE 9. MAXIMUM AVERAGE PLANAR LINEAR HEAT GENERATION RATE (MAPLHGR) VERSUS AVERAGE PLANAR EXPOSURE GE8B-P8SQB334-10GZ-120M-4WR-150-T 14 r 1 1 I Jb L 1 'J 't , i i I 113 f l \' 1
' l F 13 - '
l z - iv i [ 't i si i l> X i i i % i ii .1i I Ei I i 1 I .1 l I I I I f i 1 , h E - i i ! l .1 1 I 1 [ ! 1 l I i : 1 g I I 1 i I I . ! . I 1 1 1 I [ ] ; , ; I ! I I I I I I L I l l i I I I ! F l 'X ' l 5
^ ! I I I I I ilk l l .
i
! l ! ! I I 1m I I I I k i i i I1 I i I . * . . . I r .
I I I I .
, ! 't ! i ! [ . 1 * . I I i [ W [ f i~~
I - 1 I : 1L 1 I I ! l .1 I i ! 4[ 9 . . . . ' T. I
.I g I 1 I I ! I I I I I I I 1 1 'M' f I I 1 < l i I I i 1 1 I I I 1 I 1 1 i I 3 1 I i i I I I R I I R- 1 i .' l l' i 1 1 ,
W 8 i l 0 i i i i i , i ii > 1 . , l h, i i i
\.
i
!i !
u ,
, , ,z , 1 > i i i .
i I i . . i i i 1 i 1 i
< i r
i s i i i i r 1 r- , g 4 r 1 r 3 i 1 1 I, I 1 i 1 3 ' ' ' ' l 3 ; ! . l ll
. i I
g"" '. . ' . i . , 1 1 .
' ' ' ' ' ' ' ' ' l 6 !l i l l i i i - i i i ! l i 5 :
0 10 20 30 40 50 60 AVERAGE PLANAR EXPOSURE (GWd/ST)
Paga 25 of 52 RBS CYCLE 9 COLR , Revision 1 FIGURE 10. MAXIMUM AVERAGE PLANAR LINEAR HEAT i GENERATION RATE (MAPLHGR) VERSUS AVERAGE PLANAR , EXPOSURE GE8B-P8SQB334-10GZ2-120M-4WR-150-T 14 kkih k h I [ , 1 I i I 2 P N : I E I g j l j g i I I J l f I % { I I ; F 13 ' ' Ih I hN h I i 'k! f j
- u. ii i if i l ' ',, ---+
2E i 2N I l I L l
. hE h ! I i .! .1m i i I ! I i I [J I '
I I i 1 I ! I I I f F A i ! % i h E . IIh ! I I M, h i f{ I g r l' , r i X.' T i > > i i g I I i 1 i I i ! 1 .1 I . i
. r i I 1 I I i 1 1 I I '
I I I p I
! I. .I I
t . 1 .
. I i! i w
i 1 i i . I i I I i I I I 1, I I k k 1 . I I k i h 1 h E i . . l ;'i l !'
...I I i I I I I I I 1% 1 I - . . . . . s ' . 1 - . I i i I I I I Y lt I 1 I ! ]Bg T
I i i I ! l I 1 ! [ I [ i I i . i
; ; i I
l! l ! I X .1 l l l 4 9 ' 1 I I i i I I I I [ j f I I ,g ] I 1 j 1 1 I f i ' I I g s ! ! I i i
' i I 1 ! I I I ! R ! l l [ I h - 1 '
I ! i f I I I I I I I h r I i&
, I g i
l k l i W 8 h l I h f ! i ] [ h3 f a J i 1 1 i
,i1 1 I 1 . [ , , ,g j ,
2 I I I [ ] l [ g 1 [ N I ' I h I I I k f h ! h hk1 ! . f I I ! I I I I 1 I I I IE ii ii i i ' i' i > < 1 1 4 1 '
- s l' , ! l k h I i, j I 1 h ! l ! h I k 4 6 l
I . t .
. . . ! l ! I I I I i ,
I I I I I 1 [ l ! 1 [ f i i 1 . I I . I i iI I i f I I , ! I ! I I I i I I : ! 5 0 10 20 30 40 50 60 AVERAGE PLANAR EXPOSURE (GWd/ST)
Pag) 26 of 52 RBS CYCLE 9 COLR Revision 1 FIGURE 11. MAXIMUM AVERAGE PLANAR LINEAR HEAT GENERATION RATE (MAPLHGR) VERSUS AVERAGE PLANAR EXPOSU~RE GE8B-P8SQB334-11GZ-120M-4WR-150-T 14
. i I I ]
P' .'n. . i i2 F ! i 'E [ , j j g I 'A I I i 1 I [ F 13 I ' ' E I I % j ___
~ . I ! . ~X ,1m .
f" I . 1 . X I % I I i I s . .
" ,a I I I IX I I I I 1 .1 m 1 1 1 I Y X' I I i l 1 1 1 % g r , I E . . s.
I.
' f Xi ! L I I ! .M i I I I I l l l I I I E [ I i 11 1 1 1 1 5 g I h ' ./E ' '
l - T 5 1 i I Z TE I
. N.M ' '
W EI I I I k 1 I I I I I I I h f [ . I t ' i i I I i I gi q i [ i [
. . m I I I I I I [ 1L i I I . I r . . ilmg .I I I 1 I i i ] ] I y ]
g_P i ! I 2 I I f I i I 1 I
' k 1
j I I I I 1 i I I iI g I I I i ,,1 I 'k M I . i f I a I 1 1k I I I I I i 1 1 ! I ,3 [ !
. . . . g- . ]( I i i I I I ! i i ! I th h i i !
- i '
! . l g .
i I
. 1 i i I - I I I r ,g ] g i I y ! I ! ,
uJ 8 ! ' ' ! O i i> i ; ii i i ii ,
. ! i i , i i .i w lii ' i !! i , i i H- => I i i . , , I 4 i . i , i i i i . i ,
4 7 r i i i i i i i i i i i i s i 3 1 i i i
, i i i
i i. ,
. i 3 t , ! -e- t {'
T 3
- 1 I 1
1 I l i l i I l i i hI ] I ! l i 3 I I I . , I _ 1 _ E I I I I 1 I I I I I I i ' i 1 I I
. Ii . 1 I I ! f I I I i I 1 [ I 5i O 10 20 30 40 50 60 AVERAGE PLANAR EXPOSURE (GWd/ST)
I
. Paga 27 of S2 RBS CYCLE 9 COLR ReWsion 1 FIGURE 12. LINEAR HEAT GENERATION RATE (LHGR) LIMIT VERSUS AVERAGE PLANAR EXPOSURE GE11-P9SUB400-13GZ-120T-146-T 15 I I I I 1 I g M [ I I I i 1 I T J s ! I I I I k1 1 I g 14 - I I I I I I I I
' 1 X 1 I
I t y I I 1I I 1 I I I I I
;M I I f I - lm 1 L I , I I k I I I I 13 --
I I ! ! I 3 I i ! k I I I I I I 4 I T I I k ] g k I M 12 N 1 1 I I : 1 - 1 I 1 ! ! I i 1 I I I ? R: . I ; I I h-
' 1% 1 I I I I 1
I I I I [ l i I I Eh 1 I O ' '
, I I N: '
l ,
, I , ,
I I I I I g g I I I f I ' M [ ! I l .1m I I I 1 I 10 ~ N; W I L i I
'< 1 Z ' ' '
- 'mi
> i l
W '
\ ' i O L a :
I
'<a 1
F 9 '
'd g 4i 4 1 b ~ 'm k Q{ ,
Z l l
' I ,*,j i g j i
I l l' 1 1
'm 8 I 'd Z , , : I I . : r. , : , ] '
1 !
!I .
l
, i I I
1 Yil: .; 7 '< I I I
, - 'm I I I I I I I I I I I ! I I i I 6
- I , , 1 1 1 , I I I I i , i 1 1
; 4 , ,
1 I I I I ! I T 1 1 5 O 10 20 30 40 50 60 AVERAGE PLANAR EXPOSURE (GWd/ST) i l l t i l I
Pign 28 of 52 RBS CYCLE 9 COLR Revision 1 FIGURE 13. LINEAR HEAT GENERATION RATE (LHGR) LIMIT VERSUS AVERAGE PLANAR EXPOSURE GE11-P9SUB225-NOG-120T-146-T 15 ~ I i I I I I i 1 i I i i ! I I i I I I I ! i ! I I I I I [ I ; i r I i I i i [ l j j j i j i I I [ I
. ,uu . . I .
I , 1 I [ i I k j i i I I, j j g i y g I j i j 14 'i-I ^ L I I I I y I . 1 . I I M . . 1 . I . i ; I . I . [
] [ ! I I 1 'k I i l i I 1 1 ! 1 I i I I
[ 16 I I
. . . I E . . 1 . 1 . . .
I I I I ! lk I ! I 1 1 1 I [ _L 1 Z I 4 I
'., L1 I 1 I I M I I 1. 1. I i . . 1 . . .
1 1! . I i [ I I I I 1 I I I i 1 1 I I I I
; I .1 . Y . . . i . . . i ! l ! I 1 i L 1 1 I I I I I I
r L r M . I l i 1 I I i I L 1 11 . I I i . . 1 . .M I . I [ I I 1 ! I 1I L [ [ I I I .M i ! I 1 % I I I I I ! 1 1 1 . I I I I I 11 '- [ I I . . I [ . 1 . 1 I I l I I I I l I [ ] 1 l O 1 ! l I ! ! !
-. I I '1 , 1 I 1 'l i i I . . . 1 . I E: I . I I T
I i l i I 1 I I I I i1 I i i I I I 1 1
".%1 i . . f . I I I I 1 I . . 1 I I I . I . 1 .
I I I i I I 1 ! 1 I I I I I T I 1 1 . 'ti I I I i i i Ii 10 - I i I I [ k i i ! I I 5ii II i I i i i ! l Z I L 1 I I [ I % I I i'!1 ! . I
. i . . 1 .
h i i 1 I I I I I ! I 1
~
I I I I I ! I I . I i . . k I I I i l l .I 1 I I I. I .I ! 1m i ! 1 1 I ? g ,i d I I 1 I I 1I I I A I
. . . . . . i . .
i I f I I i ! I I I I I i l i I I '. lu I ! ' i 1 I . . . 1 [ I , . . . i . I s . . . . I I .I ! I I I I I I 1 ! I I I I I I I I I ! T I I I I . . I I I I I I 3 Y 'k M [ I i I I s I i*
. I . . . . . ! i 1 I . . 1 I a . I % I , I I I 1 1 I I .I I . i. 1 I I I i 1 1 I I I I 1 ! I I ! I s 'ts 1
M"" I . I 1 1 i : . . . I . I . . [ I , 'k i 1 ! i ! ! I I I I I I I i 1. 1. I I I I I I I 21 I ( l I I I I E! I &5 s .
. . 1 i . I i . i . . I % . ! I I I i t i ! ! I ! I i 1 ! I I I I I I ! I - 1 . . . . . i . . [ . . . I . .
1 1 1 I I ! I I 1 ! i l 1 1 I I I I 1 I l I i 1 1 I I I I I I f
]
I I 6
; i i i l,1 i i i ; li l l i i li + 1 1 1
[ l I
} ! I I I I I l 1 I I I 1 I , i. . I I 1 < , . , , 1 1 I 1 ,
5 0 10 20 30 40 50 60 AVERAGE PLANAR EXPOSURE (GWd/ST) 1 o
O Pag 9 29 of S2 RBS CYCLE 9 COLR Revision 1
)
FIGURE 14. LINEAR HEAT GENERATION RATE (LHGR) LIMIT VERSUS l AVERAGE PLANA ' EXPOSURE GE11-P9SUB388-13GZ-120T-146-T l 15 I i f I I I I I I I I 1 I I I I 1 i 1 i I I I ! I I I I I I I i i i T i i i i iI 1 1 i i iiI i i
]
i i r M i a . . . i l I ; . . . I . a I I I E i l ! I I I I I i ! i I l I ! I l I l 14 t
+' . m- .W I M!
I I I I I I I I I I I 7 i l I M I ' 1 . . . . . I I 1 , i I I
! ! I i T l I I I 1 1 i i I I l l I i l I i !
I % I I 1 I i . .% I . I L . I . . I . i i i I I I f I 'E I I ! I I I 1 I I i l I i [
>4 1 ! I
- 13. .'%
1 1 I I l .T I I I 1 I I I i I T . . ' 'L . . I . . I . . . . I I I i i ! i I I lk I I I i ! ] 1 1 I i f 1 I 1 M I I I % I 1 1 I I Ilt ]
. l . i .I . . . . i I . 2 .
I I 1 I f I I I .L , I I i ! I I ! I I I i I r
- : s: i r I i I I i I I I 1 '.%- I 12 . . . i r . . . sh I W
1 . . . I i i l 1 ! ' I I I I i 1 F I I I i1 I . - 1 i f i i ! I I L l t 1 .Y . t
. I I 1 . I : 1I . L 1 : I I i i I i h I I I. ! I i ! .4 - s!
I I I i r I I"- l [ ! 1 I I I I
' 1s . I I
- f' I i I 11 '
s
. I . 1 .I i . . . . ! 1 I I i I I % l I 1 i I I O ' ' < . . . . . i I Y16 I . . . . 1 I i I I I I i 1 l .% I I I I i f i y ; R i f I i . 1 t " .1 I . i I .I I.
i . 1 , . gI i i 1 i I I I I ! I I 2 I I T k 1 I I I I" I. ! I 1 10 '- M W I 1 I ! i 1 i I i I ! '. 1I I 1 i i 1 I I i i I I I I I f .% I I Z ! [ l I I r { a 1 [ l
. I I
[ [ [ [ ! I r I 1 . 11 : l I i I [ [ ] l { I
'tg I . I W "
I I I I I ! l I 1 1 j l i I i 1 I I I I % I I I l I [. I l
'1: ! I ! ' %',gl I I t I 1 . I I I
{.
- . . . L i . 1 . .
I J } ! ] [ [ } ! I [ ! l } [ [ [ g [ l { [ [ { { J R: I I I I 1 1 1 . M I f i I ! i.
. . , . i ! ! ! I 1 I I I i ! i ! I ! 1 ! I Y ! I 1 1 I r I @8 ! I T 1 . . . . . . I I I I i . I .
1 . I E . I i um t 1 I I .
. ! I . I I I 1 I T I I I I f I I I I I e l.I ! I i . . . i . i I . . . . . I . . s i f I I I I I I f I ! i I i ! I I I I 1 ! I 1 1 I ! I t% .I .I .[ r ]
1 . ! ' 1: 1 I 1 I I ! : 1 .
~ \' . i ; . . I i I I . . 1 ' nY .
I I I I I I .I i y 1 1 1 I ! ! I l ! .? I f l l 'i1 I I r I I I .I .I I I I 1 I I i 1 I ! l I .I I . I 1 1 i I ' I I I I I 6
; I I . I I . i . I . ,I I I I l l I l 1 I i ! ! I i I I I ! I 1 i ! ! I I , . . i+ 1 I I I I I I I .
I 1. I I I i ! i I I I I ! I I I I h I I O 10 20 30 40 50 60 AVERAGE PLANAR EXPOSURE (GWd/ST)
Page 30 of 52 RBS CYCLE 9 COLR ReWsion 1 FIGURE 15. LINEAR HEAT GENERATION RATE (LHGR) LIMIT VERSUS AVERAGE PLANAR EXPOSURE GE8-P8SQB333-10GZ-120M-4WR-150-T 15 i ; i i iiii iiii iN 14 I! I' ! .' ,'
! , , l ^
( h - , i Ps ; ; I l i s l I M 13 W
- i 3 s i s 3 12 A * -
s : x ' I i l A' W z l -
\ ; ; y W 11 O .,
1 F i X h '
\ i z ,.
3 . (E '
\
10 h i ! i 's i w z , U \ 't i 9
'l l i .1 ! i I 4 i ' I P 8
O 5 10 15 20 25 30 35 40 45 AVERAGE PLANAR EXPOSURE (GWd/ST)
Pagn 31 of 52 RBS CYCLE 9 COLR
~
Redslon 1 FIGURE 16. LINEAR HEAT GENERATION RATE (LHGR) LIMIT VERSUS AVERAGE PLANAR EXPOSURE GE8B-P8SQB334-10GZ-120M-4WR-150-T 15 iiii i ,ii X j4 Il l !l \ 4
\ ~ \ ! i 1 E 13 'N N
g xs Z ^ O 12 's F i i, Mi l i 'd 1x Z \ W g i i > l i ! g i i- , i
, i N! ;
6 l l' l\ l z ! i i
\ '
6 10 ,1 ,. Ni Z \ a -
, g i g ,i i i i i l i i m i ,
i 8 - 0 5 10 15 20 25 30 35 40 45 AVERAGE PLANAR EXPOSURE (GWd/ST)
. . 1
- Pag 3 32 of 52 RBS CYCLE 9 COLR ReWsion 1
~
i FIGURE 17. LINEAR HEAT GENERATION RATE (LHGR) LIMIT VERSUS AVERAGE PLANAR EXPOSURE GE8B-P8SQB334-10GZ2-120M-4WR-150-T 4 15 i i i ll i
! ! i i i , i if i i i i I I L 14 N \ ^ \
1 M 13 1 .
'N % 1 $ l , 'N z . '
ix 0 12 - F : i M' ' I N
's W l z s w i it c 11 ;
N ,
>- i i \ I l l b \ 'I!
x x , g I \ 'l ' g 10 .
. N.
z l l '4 I a Xs ' I
% I 9
l) I I l l'i i i i < l l', i,; , .; O 5 10 15 20 25 30 35 40 45 AVERAGE PLANAR EXPOSURE (GWd/ST)
Pag 3 33 of 52 RBS CYCLE 9 COLR
~
Revision 1 FIGURE 18. LINEAR HEAT GENERATION RATE (LHGR) LIMIT VERSUS AVERAGE PLANAR EXPOSURE GE8B-P8SQB334-11GZ-120M-4WR-150-T 15 l l i I ! I I I I [NL I i 14 !' I I !i\ !
! \s l j
E 'i I 3 \s ! g 13 '
q ,
1 W -
'g; i '
l F si i i\ : s . Z 1 il\ s I O 12 b !' ! ! N I i i I ,. r-I I s W ; l \s - Z , W I ' 11. h . 1 : . F l ..ll 'i l ll
@ 'i i z l '.i il E '
b 10 ' 1
's ; .
Z > > i ' t J l1 l
'I i i l1 e i
[i! i i
! I l ! ! ,
l i, l l
. 1 l I i i
i ' i 8 O 5 10 15 20 25 30 35 40 45 AVERAGE PLANAR EXPOSURE (GWd/ST)
Pags 34 of 52 RBS CYCLE 9 COLR Revision 1 FIGURE 19. LI$ EAR HEAT GENERATION RATE (LHGR) LIMIT VERSUS AVERAGE PLANAR EXPOSURE gel 1-P9SUB354-14GZ-120T-146-T 15 I I I I l T
! i 1 l hh l j j [ ] } j j l [ j j l 9 4 i f I I I I I 1 I ] I I l I I I I I I i I l l l 1 I I ! T s . I 1 . . f ].
I I I I i I I k I I f I I I I I I } [ 14 - -
%1 . I I I ] [ I I . X I I I i
I l I I 1k I kI l l h hI ! hi I i
-W1I . . I i . I T .
I 1 I I " f I L I 1 I .1 _ l I I ! I i i I i 1 1 I 1' I I I 1 1 I I I I L- I ! 1 I 1 1 I I M ! I . . i ! . . I I i e 1. ! ! ! ! i l l I I I I l 1 ' %J . . I . . I i . r . . I 1 i I I E i %I l I 1 I 3
! I I I I I I r [ t j [ s -i ! !! 1 !
M 12 -
! i [ r I j i i i h i I g I . s! .
i I i i r i I y 1 I
'M5.' l I l ! l i
I I 1 1 } 1 1 I I 1 L i I I i I
- 11 =
I i
'w1' i ! . 1 .I i ' I I I r
l
.I O
J . 1 I
. i . i . .
i i ILI I I I i 1 I I ! l I
,- ; 3 hh hI ! k tX l h i I h I hI [ ! !
10 - I I I f ! I i 5 1 1 1 1 I ! i Z - & ,
. . ; 'd I Q
I i I l ' % I I I .I i l 1 . . s I i . t iI I i I i ! 1 I 1 ! i I ! ! Fg I m : ' M ' sh . 'i I %I I
- . f1 I I I I I i I I h ! i hI 1 I I i I . . I 1:
I.? . , ! [ ' *~
! r ! ] .[ ] l I ! ! < ] l l 1 I ] I i g i [ l i I I ! % ! I . I t : I I I .r I.
2 . i
! I I I I I l 1 i i ! I I I I i l 1 1 i ! ! l * . . . I . 1 I r . .s . I .
I l 1 1 I i ! I i i i i i 1 I %I I I l I i 1 I 1 ! I ' I% > I r I I I %: 7 - ' -
. I . . I . . > I .1 . . . . '\:
I I I I ' I i i 1 i i I I I I ! l I -l I I I I I . . I . . . I . . . . I I I i I ! I I I I I 1 I I I I I I I i I I I I I I I
~
I . . . r . i i i . I ! i . i 1 1 1 I i 1 1 I I I t I ! I .I . I I i 3
. I i i I
I I I
. I I .
I 1 I i i I i l I I I I . I I I i f r f I I
. L . - . [ I I . 1 i . I I . 1 i f I I f I I l I I 1 I I I I 0 10 20 30 40 50 60 AVERAGE PLANAR EXPOSURE (GWd/ST)
I I e I L
Pagn 35 of 52 RBS CYCLE 9 COLR Redsion 1 FIGURE 20. LINEAR HEAT GENERATION RATE (LHGR) LIMIT VERSUS AVERAGE PLANAR EXPOSURE gel 1-P9SUB354-13GZ-120T-146-T 15 jg [ r l ; [ f [ { } j [ [ ; 9 g j j j , [ 7 I i
.I . . i 1 . 1 1 ! ! A I f I I l i I I I I I l I l 3 , } ] } [
M I .
. I . , I .1 .
1 I I i I i T i i I . l. I . ! !
] } f l { [ [ [ j 14 - - - - ; y !M %' . . 1 ; , ;1 .
I .[ l l I I I I I ' T
] i I I 1 I
[ ] ] 1 1 ' %1 1 . f . . , 7 ; I i I 1
,1 I I I ! I I I I l i 13 -
A t : 1 1
%. . 1 i i I I r I [ [ I l i ;
m 1 1 [ 1 7 I ! ' i I
! ! i ! I i r .s I I I 1 i I I i i r r I y ! f i i ih ' Q 44 'W.
( - - - Z - 1 o nW'a l
- H, ' ' ' '
. Y . I . . .
l r i . 1 i i 3 1 ' i 1I i i I I I ] t i I I I 1 s! . . . t .
' I I QL i i 1 I i I !
I I I i k i i I 1 I g s' 1 I 1 h i I i i I i [ t % l i i i i . I i 1I. 1 I I I I 1 l l ! } l I i l- 9 +=. ! > 1 1 1 I h h i h ! I i ! ! k i ' 1 i
. I i . . i . . . I I i s! . t .
I i i T I I ! I I I i I } l i I 1 I l 1 8 I I. .I II I - I 1 . i . . . i I . 1 . . I i ! i I I I I I I . 1 I .I I I I. I ' I r i 1
. I I . I . . 1 . 1 . . . . . . . .g I I I ! l I i i ! I I I i i ! I I I I I I I % ' I A I #
7 1 7 ; i ' I \! , +-- 7 - s-
. . I i . . 1 1 I I I . 1 I I I I e i I i l i ! J 1 ! I .I 1 i' T I
I 1 1 I f 1 1 I I i ! ! I I! I I i k i I i ! I i I i I I k i l I I I I 6 r . r . I I i* . . . 1 . . I f I I ! ! ! I I i , I I 1 ! I i ! ! ! I I I I I ! ! I . . . r 1 i I I I ! 1 ! ! i I i I i I , I > 1 I . i 1 I . . I .. f . r 5 O 10 20 30 40 50 60 AVERAGE PLANAR EXPOSURE (GWd/ST) i 4 1 i l
Pag 9 36 of 52 RBS CYCLE 9 COLR ReWsion 1 FIGURE 21. LINEAR HEAT GENERATION RATE (LHGR) LIMIT VERSUS AVERAGE PLANAR EXPOSURE gel 1-P9SUB353-10GZ-120T-146-T 15 i ' I ! ! i i l i ! I ii ! i I i I I Ia I i 1 t I I i I r . I.. 1 . I I ! l ! I I I 1 ! I 1 1 I T I i. 1. 1. r j j ] 1 I lf I k k k I hI h l 1 ! i h 14 - -- 1 . i I I I I
- li h i .1 .
i i I .
! i i I I kif I 1 ! ! t r
i hI
' I ..
13 , k' . I I ! ' i l I E
. ! ~ i 1 I I , 1! I ih ! I 1 5I ! ! I ~ s . I I I 1 12 -'
M - l'
! i i I I kiif I I I j
I h ! I 1 i
~
g; 7 M[ 11 - O : I I ! p i ;'1; I i i i i 1 1 li.i .
. s . 1 I I I I }% . i l. i l I I I r I gT ; [ ! ; y y i [ } ~
I I I Q 1 i I i i ! p I ! ' f I 2 1 1 1 1 . . . 1 t s . I 1 . . I ! I f* 1 I T I i i i I I I I 1! ! I I i T I I ! t I-
- p. 9 - 1 1
1 1 1 I I : 1" I ! ! I i i I i I T kk ! i ' I : s' : 1 I h 1 i l I I I i ] !%1 1 I I 2 I
- E [ +d .A ,
i h I h hk i 1 I h . I I . i 1 1 I . : 1 i s 1 I i ! 4 1 I i I I I ! I 1 ! i i r : D r rI 4' I ' s . I
- g -
I i. I i I
. . I . . . I I I 1 . . I\i i I i I i I I I 1 I I i i l I I i ' l ! . . . r r . . 7 . 3 .
f I I i I i i I I I I I ! I I i I I I I I- ( i I I I I I I [4 6
-: 1 i ~ . . . < 1 I.
l I I l. I I I . .
. I I i I I t I I . .
I I .l i f l
, r i i i l i i i i l i i i 4 Irr,, il i i i i i 1 i .
I i I I I 1 1
! 1 ! ' l' .
1 I l1I I I 1 I 1 I I 1 0 10 20 30 40 50 60 AVERAGE PLANAR EXPOSURE (GWd/ST)
Page 37 of 52 RBS CYCLE 9 COLR ~ Revision 1 FIGURE 22. OPERATING LIMIT MCPR (MCPRy) VERSUS CORE FLOW FOR GE8 AND Gell FUEL (EXCEPT gel 1 CYCLE 7/ RELOAD 6 FUEL)* 1.700 - ' f I i i e i I - ' i i I ! 1 I I i ! . I i i { i i P f
? i
- I i .
! ! t ! I i } l !
I i I i I i i , [ 1.600 '
' I f 1 . . f t : 1 g 1 ,
i i i + i i i i i ! i i ! ! i , !
! 1 . ! ! i , r i l' l', ' ! j j l i 1 ,
d,- ,1 1 1 I I t ! ! } l 3
? . t ! t ! .! . ! .ii i j , i i ! ! I ! I i ! i I ! l 4 I i ! l 1.500 .
I I - f 1 1 1 1 i ! ;! t t . i l i ' i ! ' '
. I I i i ! I i i ! I i i } i j
_ i t . 1.47 3
! i 1 ! I i i .I i i , ! !
t i l i - i I t i I ! i . ! , ! ! l I ! I I
- s. i ! i i i . e . I I i I i i ; i i
7xi i ,
~ i i T- i i i ; ' i i ,
A i, ! ie '
- 1 i i i i i i MI'#I ' .
' ' ' i ' ! ' ' ! ' ! ' i 1.400 h i f . 1 i . I e y i i '
{1.3h
! i i l; !'
a ' 3 m! ! 1 i ! i
~ i i Q i t ! !K i i i i i i i :
il E i , i i li iMi 33 1 1.300 ' ' '- ! ! WM .28 1 i I
' i ! i i 1 i i Mi * \ ,,,1 i i i! ' ' .M ii ' '
i i i i
! i I i 'N;' $1.27 + i i i
I '
~1 .27 a -
i i i . . i . i i i i ! I I i i ! ! { l -!' e 1.200
' r >
jiii i i i i _2._ i i ! i ' i i t l . i i i i 1.100 i 1 d ; i i l ; i,
- i. i ! I i !
' 1 I !
i i r i ; I ! I i I
~
i ; i
' i 1.000 20 30 40 50 60 70 80 90 100 110 CORE FLOW (W), % OF RATED CORE FLOW
- These values must be increased by 0.01 during single loop operation.
i
Pags 38 of 52 ' RBS CYCLE 9 COLR Redsion 1 FIGURE 23. OPERATING LIMIT MCPR (MCPRy) VERSUS CORE FLOW FOR GEli CYCLE 7/ RELOAD 6 FUEL
- 1.700
!I i i i ! l ! i i i i ! I i! _ ! I I i i !
l! l! l 5 i! I l I i i ! i ! ji i i i i . j l i i - - I i i !l', \.1.62 '
! i .
l !i _ i i 1.600 ' ' ' ~\l ' ' ' ' ' ' ' ' ' ' 'i i I ' ' !\l Il !! !Q t I i i ! i [ ii f i i ' i !\ I i i i i i I ii i ! \ l ! iT ! iI
! I i i l i'T 1 i' ' ! ' k .56 ii i s i 4 i i i l ' I i ! ! iY ~ !\ ! ! l ! I il i i i i !i t ! ! '\! I I i ! I ' i '
i i i ! I ! ' i
! ' ' h g1.52 r
- L
! i i i.-I
_ ! { i II iii i 8 'I i ,- i 1.500
' ' i ' ' ' ' '\ ' ! ' ' ' ' 7i i i i' ' ' i i ! * * * ' i i !N I I ! i 8 1 ' ! ! i ! ! ! ! ! i i i ' i i i i ! Ii!% 1 I I ' I I I i i I i 'L i!l ' k .48 f '
g i !I i i ! I i I ! l I g, ! 2 ' ! 6 t i i ! ! I N i ! ! I t ! ! L y i i f ! i i i > I I I h ' 4 i i i ! I i i ! i i i i l 1 i \ 1.43 j i ; j j i 3 i
!I '
i ! i i '% i i
! l ! l !
1l ,t i !I II ! I i i i 3 1.42
! I t !
i '
! ! 4 ! ' I I ' i '% -i!
1.42 i i i ! ! I i i i i i! ! e i i i
! i ; i i
1.400 , ;
! ! + ! I ' ' ! ! 1 i i I ! ! !
i ; i ! ! I i i i i i i i I i
! ! ! .._,L l ! ! l! i i i i!
i i iii! l 1i! ii i i i i i I ! i
! I! L!! ! ! i ! i i i <
i i i i i i i' .I i i i I !
' i ' ' ' ' i ' ' ' ' '
1.300 8 I I l ! i i i i i i j i i i
- i. i I
I i 1.200 20 30 40 50 60 70 80 90 100 110 CORE FLOW (W), % OF RATED CORE FLOW
- These values must be increased by 0.01 during single loop operation.
Page 39 of 52 RBS CYCLE 9 COLR ReWsion 1 FIGURE 24. OPERATING LIMIT MCPR (MCPR p) VERSUS CORE POWER FOR GE8 AND Gell FUEL (EXCEPT Gell CYCLE 7/RF6 FUEL)* 2.100 i r i i i
, -+-: .. 1 1 1 1 1 ' ' ~
i 1
- , H z ,
l " 22 02 1 i 1
!N1 . - i ' '
w -
> 1' . --o- > 50% Mow '! ww$ g194 it-e 1 '~
l i l b 4 o <= 50% Flow
- % .94 % ' 3 , 1 1.900 ~
1.90
-. .- .- % ~
- , ;-+-
1 m;1 i s 1 : : i, , , I
,
- bh \ w h ,
I 1 i 1 M;'ds .:
"N-t--
s: 1.800 W ~'
~ . , q 1.79 , _,_
N 1.762 " ' N! , ,
, : =
m
.x > > ~ ~ ' +- ~
1.700 '7 ' T;1.67.._._ i l i 1
'- J g,
- a. . .
--+ N,x :
r n.1.600 ' U i
' Z E , -i k,,1.57 ^
- s *:
s : 1.500 ! g s . I I
'~ '\? I ; 's i . .
1.400 1
- i 't i 's ,
i1
's & j ; r 1 ;1 ,
1.300 j,3
)
i 1 1
% ~ 1.27 CC 1 -
1.27 I T 1 1 1 I I T 1 1 I l 1 I 1 I , I I I I I I I I L I i i 1 l 1 , 1 , , 1 1.100 10 20 30 40 5,0 60 70 80 90 100 110 THERMAL POWER, % OF RATED THERMAL POWER
- These values must be increased y 0.01 during single loop operation.
1 . s . 1 Page 40 0f 52 RBS CYCLE 9 COLR ReWsion 1 l
~
l FIGURE 25. OPERATING LIMIT MCPR (MCFR )p VERSUS CORE POWER FOR gel 1 CYCLE 7/ RELOAD 6 FUEL
- l 2.300 __
-- , 1 1 ,
- r 4i, -i
'" ^
I I 1 y I ] k 4 2.200 ., i l:52.17 ; i 4> 50% flow
#:- = A. N" , , , I- o <= 50% Flow 2'100 2% +
3 m y2 __
. zz.__,_ +
s, , s ,
' ='- '
2.000 -
+
p, ; s4 N-
- x i i i i i r i i
e 1 94 ---' -+ 1,pl.h1 3~,h
~ ~
_ . _ s~
'-s ~ ',*1.82 t-i- ..
o.1.800 ._._ .- . a: =N y.
- a. +3 ,,
O ', E 1.700 (1.72 pp
- c l , i- - \i ' ,
^
1.600
- c. ,
'I i i 4; . ,
1 i
- $ 1
~
1.500 1.47 l I ! I 1 ( 4 1.43 , 1 N i i 1 1
.> ~ - 1.42~
d 1.400 1.42 1 g i 1 L [ f 1.300
- E I
^
i ~ ' 1.200 10 20 30 40 50 60 70 80 90 100 110 THERMAL POWER, % OF RATED THERMAL POWER
- These values must be inexased by 0.01 during single loop operation.
Paga 41 of 52 RBS CYCLE 9 COLR Revision 1 FIGURE 26. LHGR AND MAPLHGR MULTIPLIER VERSUS CORE FLOW 1.1 i 1.0 0.9f7b yLME00.-- 1'.0 Ob '1.b 0 ji
/
0.9 1(0.9080 f I if Y
& /i O jf0.8340 30.8 / IlI k l}
x / w / E / u.0.7 /l E /, \ \. o d0.6630 Z a j~
)
0.6 / I /
/
c .5330 0.5 lII l 0.4 l 20 30 40 50 60 70 80 90 100 110 CORE FLOW, % OF RATED CORE FLOW
, PrgD 42 of 52 RBS CYCLE 9 COLR Revision 1 - FIGURE 27. LHGR AND MAPLHGR MULTIPLIER VERSUS THERMAL POWER 1.1 i , i 1.0000 1.0000 ___1.0000 I
1.0 A A
!lI! !
l l/ i i ! / I I i / I
/
0.9 I /
!! Ii !!!! !l l! !l! V I l l ! i! ii! ! l! II Iii / i i i
ii i i ii ii ii i i I jf0.8500 T i l 3 II ! ! . ! I I !II !I I / I I I I 30.8
= i;i ti i ii i i i/
4 i. l l. i t. i '/ 3 .
, !!!! ! ./ l c iiii i = - -- -
r . i; i, > E0 IIII I ! I 0.7000 I I h z
.7 !I l/ I !! /
l lf i / , i 0.6 I / I I
/li /0.562$
j '
- 0.4988 0.5 -
- 0.4988 I
I i I 0.4 - 20 30 40 50 60 70 80 90 100 Core Power (% Rated)
. Paga 43 of 52 RBS CYCLE 9 COLR Revision 1 l
FIGURE 28. MONITORED REGION BOUNDARY (CASE 1) 120 - - r- - , - - - - - . -- . . r-110 * - * - - * - 100 - -
+- - - -i - ,
90 - - - - 4 - . , , i-80 , i- i- -
, t f- i- !-
b 70 + > +-.
- s. -
$ ?
l&;h. 5 60 <- k- '
-i- !-
Art ;' A "c Jit l 1 l o 50 -
$ l:sl n.Sd.
j-
'E $ 3f M Eis 40 < ~ $$?? bh {g >
i- - - j.- f-
@ l 30 - ~ .: ~ - -
j- -
^
20 - + - - - - - . 10 - - ~ - - - +-- 0 O 10 20 30 40 50 60 70 80 90 100 110 Core Flow (% Rated) . l l
Pigs 44 of 52 i RBS CYCLE 9 COLR Revision 1 i FIGURE 29. MONITORED REGION BOUNDARY (CASE 2) I 110 '- -- -- . . - - ~ 4 100 < i- i- i- - -i - - x
. 24 #!+q 90 - < b- . % -i- - i MtyheD is .vm d
vg:
;j,l;- ;+eg7 uqp'g w's a A' 4 r, :-
80 -
-+- - -
o ' [tjsyypg:p ,
. nK
- m. .-9 o y/g n g',;: w ;.g a :
. . 4, 9, 7.gs ,
70 :- - - =- -- ' ' w p g.-4 se.w4 - A
- ti n 3 . ]
h tSNyI$v$N ! is a ;ppcCr !
'.. l .3 . . . -<
- 6. 60 !
l
^.
nhilSM g .[4 . !, qqpg 45p g ,* , , ' . . e gp ; o 50 u ! m %g. - ; .. 4.. .
- a. p wy -
! 4 W&&T 40 - .4 - k"@hh5' . . - - - - - "fr .y +
30 - - - - - - - 2 20 - =- - - - 4 to -
+- i- < + - -i- - -
l 0 0 10 20 30 40 50 60 70 80 90 100 110 Core Flow (% Rated)
bs , f
- Pagn 45 of 52 l RBS CYCLE 9 COLR l Revision 1 i
FIGURE 30. APRM FLOW BIASED SIMULATED THERMAL POWER- HIGH SCRAM SETPOINTS AND RESTRICTED REGION BOUNDARY (TWO RECIRCULATION LOOP OPERATION - CASE 1) 120 110 _.. , , ,
..j.. , ; l l 100__ . . . : . . ..+..
1 90 , . , , . , , , , 80 .... . ...:... .
~
l Nomku Value I l y, 70 __.. g g . l
~ $ 60 . .. . . ...:...
O TLO Restricted Region l ,/ Boundany High Endpoint a. g 50 __.. .+.. S Setup Scram l 40 . I . . . . . . , . ;. . , NS Non Setup Scram 3'Ns RR Restricted Region 30 -QTIC l . ,
..+.. .
20 ._.. , , , , ...:... . l 10 ._.. . .. , . . . - . . . 0 0 10 20 30 40 50 60 70 80 90 100 110 120 ALIGNED DRIVE FLOW (% rated) i
Page 46 of 52 RBS CYCLE 9 COLR Redsion 1 1 FIGURE 31. APRM FLOW BIASED SIMULATED THERMAL POWER - HIGH I SCRAM SETPOINTS AND RESTRICTED REGION BOUNDARY (SINGLE RECIRCULATION LOOP OPERATION - CASE 1) I 120 110._.. . .
..+..
100 . , , , , . , , , l 90 __.. , , , , , , 80 ._.. , , _ NominalVabe g _ Albwable Vabe e { 70 . ,
- g o SLO Restr'sted Regbn p Boundary High Endpoint i
uJ 60 ._ . . . i- ' h ,I S Setup Scram o. g 50 .. , ' - - NS Non Setup Scram b 40 -- (( .. - -
- RR Restricted Region
\
30 ."u~~W. . * * ' ' ' ' 20 .
. 4.. . 4. .
10 ._.. . l . . . _ 0 - - 0 10 20 30 40 50 60 70 80 90 100 110 120 ALIGNED DRIVE FLOW (% rated) l l
Pagg 47 of 52 RBS CYCLE 9 COLR Revision 1 FIGURE 32. APRM FLOW BIASED SIMULATED THERMAL POWER- HIGH SCRAM SETPOINTS AND RESTRICTED REGION BOUNDARY (TWO RECIRCULATION LOOP OPERATION - CASE 2) 120 110._ . . . . . .; . . , ...;.. .. [ .- ..,.. 100 ._.. . . . ..:.. . . . 90 __.. , , , , . , , , 80 __... , .
. 4.. . .
D' e j, 70 ._.. . I g _. NominalVabe oc ~-" ' Allowable Vabe l - o A o TLO Restricted Region W g 50 ~~ "+" Boundary High Endpoint o O 40 -
-{r . - -
S Setup Scram _g NS Non-Setup Scram i
' ~
RR Restricted Region
?
20 ._.. . . .
. 9.. . , , i 10 __ . . . . , . . 4. . . . 4.. . . ,
0 0 10 20 30 40 50 60 70 80 90 100 110 120 ALIGNED DRIVE FLOW (% rated)
- e Pags 48 0f 52 RBS CYCLE 9 COLR Revision 1 FIGURE 33. APRM FLOW BIASED SIMULATED THERMAL POWER - HIGH SCRAM SETPOINTS AND RESTRICTED REGION BOUNDARY (SINGLE RECIRCULATION LOOP OPERATION - CASE 2) 120 110.... . . .. ,
..+..
100._ . . , , , ,
. .p . . . .p . . ..p. , , . . ; ...
90 .. .. , , ,
. .p .. , ,
80 ._.. , , . . j. . . ..i.. .. i . , .. j. . , 3 j 70 ._.. ,
. .y . . , , ..i.. ! ,
- f. _. NominalValue oc uJ 60 _... 4 . .; . .
3 - Albwable Value o n. y 50 __ . . ' O SLO Restricted Region
@ Boundary High Endpoint b ' ' ? S Setup Scram mW, ' . NS Non-Setup Scram 30 * .
RR Restricted Regbn 20 ._.. . . . . . .
.+..
10 .... . . .
..+.. ..+.. . .
0 , ; . 0 10 20 30 40 50 60 70 80 90 100 110 120 ALIGNED DRIVE FLOW (% rated) i i
F
. 4 , PagD 49 of 52 RBS CYCLE 9 COLR Revision 1 FIGURE 34. APRM FLOW BIASED NEUTRON FLUX - HIGH ROD-BLOCK SETPOINTS (TWO RECIRCULATION LOOP OPERATION - CASE 1) 120 110.... . ..h.. ,.
100._.. . ..
..+.. ..+.. .
90 _.. . . . ...:... . .. 80 .... .
..+.. ..+.. . $ 70 ._.. . ..;.. , 4 g _ NominalVabe 7 60 __.. . . .' . - Albwable Vabe Io S S Setup Rod-Bbck ..j..
l 50 ._.. . . . . . o NS Non-Setup Rod-Bbck 40 ._ .. ,. , , , C 30 .[E & , . . .
..+.. . . ,
20 ._.. .. . 1.. . . . . . . .. 10 .... . . . . . . ...:... ..+.. .. 0
. 0 10 20 30 40 50 60 70 80 90 100 110 120 Aligned Drive Flow (% rated) l I
- Paga 50 0f S2 RBS CYCLE 9 COLR Revision 1 FIGURE 35. APRM FLOW BIASED NEUTRON FLUX- HIGH ROD-BLOCK SETPOINTS (SINGLE RECIRCULATION LOOP OPERATION - CASE 1) 120 110_... , , ..;.. . . . . .
. 4. . ..;.. .
100.... . . ;. . 90 -... .
..h.. .
80 -_.. , , .. I 70 ~" j ' ' NominalVabe
~
ne
! 60 -- - . , - Albwable Vabe I
O S Setup Rod-Bbck I, __.. .. . . o NS Non-Setup Rod-Bbck 40 _ y a 30 -O . . .. .
. 9. . . ..
20 _ ..
..j.. s . ..;.. . 4. . , s , . .) . .
10 __ . . , , , , , .
. 9. . , ,
O i 4 i 0 10 20 30 40 50 60 70 80 90 100 110 120 Aligned Drive Flow (% rated) l i
a
.' Paga 51 of 52 4
RBS CYCLE 9 COLR Revision 1 FIGURE 36. APRM FLOW BIASED NEUTRON FLUX- HIGH ROD-BLOCK SETPOINTS (TWO RECIRCULATION LOOP OPERATION - CASE 2) 120 110-- . . . . + . . . .. .
..+. .
100__.. f .
..+.. . . . ..+.. ..+..
90 .... . .
.+.. . .
80 ._.. ..+.. . . .. .. f 70 _-.. ..L. -
..+.. .
E i$.
- 60 .... .
I . .; ..
.. i. .
E - NominalVabe l 50 ._ . . ..;..
.- Albwable Vabe 40 --- r- i- -
S Setup Rod-Bbck 9 T' NS Non-Setup Rod-Bbck 30 , JS. e . 20 __.. ...:... .. . . .. .. 10 ._.. .. 0 0 10 20 30 40 50 60 70 80 90 100 110 120 Aligned Drive Flow (% rated) J l
)
o d Paga 52 of 02 RBS CYCLE 9 COLR Revision 1 FIGURE 37. APRM FLOW BIASED NEUTRON FLUX - HIGH ROD-BLOCK , SETPOINTS (SINGLE RECIRCULATION LOOP OPERATION - CASE 2) 120 i 110.... . . . . . . . . . . 100 .... .. ; . . , , , s , , 90 __ . . . 4. . . . 1 80 __.. . '.' . .;.. . . . .
- l 1 70 ._. .- . .
li ( 6 )
- 60 ._.. . , ..;.. .
I O _ NominalVabe 50 ._ . . ,. . . . . .
- Albwable Vabe 40 ._.. . _ .
S Setup Rod-Bbck
-TW,!
30 . -L- , , NS Non-Setup Rod-Bbck a 20 -_.. . . . . . . . . 10 ._ . . . ..;.. ..;.. . .; . . ..;.. , 0 0 10 20 30 40 50 60 70 80 90 100 110 120 Aligned Drive Flow (% rated) an}}