ML20154B561
ML20154B561 | |
Person / Time | |
---|---|
Site: | Hatch |
Issue date: | 05/13/1988 |
From: | GEORGIA POWER CO. |
To: | |
Shared Package | |
ML19302D606 | List: |
References | |
NUDOCS 8805170233 | |
Download: ML20154B561 (34) | |
Text
e S. Operatina Cycle - An ep3 rating cycle is the interval between the end of one scheduled refu] ling outage and the end of the next subsequent scheduled refueling outage for the same unit.
T. Prinnry Containment Intearity - Primary containnent integrity sha' exist when:
- 1. All penetrations required to be closed during accident
. conditions are either:
i a. Capable of being closed by an OPERABLE containment
)
automatic isolation valve system, or
- b. Closed by at least one manual valve, blind flange, or deactivated automatic valve secured to its closed position, except as provided in Table 3.7-1 of Specifi-cation 3.7.0.
- 2. All equipment hatches are closed and sealed.
- 3. Each containment airlock is OPERABLE.
- 4. The containment leakage rates are within the limits of Specification 4.7.A.2
- 5. The sealing mechanism associated with each penetration (e.g. welds, bellows, or o-rings) is OPERABLE.
U. Protective Action - A protective action is an action initiated by the protective system when a limit is reached. A protective action can be at e channel or system level and is essential to the accomplishment of a safety action.
V. Protective Function - A protective function is the monitoring of one or more plant variables or conditions and the associated 1
initiation of intrasystem actions which eventually result in protective action, j
W. Rated Thermal Power - Rated thermal power means the reactor is operating, at a steady state power of 2436 megawatts thermal.
This is also referred to as 100-percent thermal power.
X. Reactor Mode - The reactor mode is established by the Mode Switch position. The switch positions are REFUEL, SHUT 00WN, START & HOT STANDBY and RUN; thus the four possible reactor modes are: Refuel Mode, Shutdown Mode, Start & Hot Standby Mode, and Run Mode.
Y. Reactor power Operation - Reactor power operation is an operation with the Mode Switch in the START & HOT STANDBY or RUN position with the reactor critical and above 1 percent of rated thermal power.
HATCH - UNIT 1 1. 0-4 Proposed TS/0198q/060-0 8805170233 380513 PDR ADOCK0500g3gi P
m o
- BASES FOR SAFETY D ITS _
1.2 REACTOR COOLANT SYSTEM INTEGRITY The reactor coolant system integrity is an important barrier in the prevention of uncontrolled release of fission products. It is essential that the integrity ci this system.be protected by establishing a pressure limit to be observed for all operating conditions and whenever there is irradiated fuel in the reactor vessel.
A. Reactor Vessel Steam Dome Pressurt
- 1. When Irradiated Fuel is in the Reactor The pressure Safety Limit of 1325 psig as measured by the reactor vessel steam dome pressure indicator is equivalent to 1375 psig at the lowest elevation of the reactor coolant system. The 1375 psig value is derived from the design pressure of the reactor pressure vessel (1250 psig) and coolant system piping (suction piping: 1150 psig; discharge piping:
1350 psig). The pressure Safety Limit was chosen as the lower pressure resulting frcm the pressure transients permitted by the applicable design codes: ASME Boiler and Pressure Vessel Code,Section III for the pressure vessel and USASI B31.1 Cnde f or the reactor coolant system piping. The ASME Boller and Pressure Vessel Code permits pressure transients up to 10 percent over design pressure (110% x 1250 = 1375 psi':). and the USASI Code permits pres-sure transients up to 20 percent over the de@n pressure (120% x 1150 = 1380 psig; 120% x 1350 = 1602 psig).
The pressure relief system (relief / safety valves) has been sized to meet the overpressure protection criteria of the ASME Boiler ani Pressure Vessel Code,Section III, Nuclear Vessels, lhe details of the overpressure protection analysis showing compliance with toe ASME Boiler and Pressure Vessel Code,Section III, Nuclear Vessels is provided in the FSAR, Appendix M, Sunenary Technical Report of Reactor Vessel Overpressure Protection. To determine the required steamflow capacity, a par 1 metric study was performed assuming the plant was operating at the turbine generator design condition of 105-percent rated steam flow (10.6 x 10* pounds per hour) with a vessel dome pressure of 1020 psig, at a reactor thermal power of 2537 Mw, and the reactor experiences the worst pressuriza-tion transient. The analysis of the worst overpressure transient, a 2-second closure of all main steam line isolation valves neglecting the I direct scram (valve position scram) results in a maximum vessel pressure (bottom) of less than 1375 psig if a neutron flux scram is assumed. In addition, the same event was analyzed to determine the number of installed valves which would limit pressure to below the code limit. The results of this analysis show that the eleven installed relief / safety valves were adequate even if assuming the backup neutron flux scram.
HATCH - UNIT 1 1.2-3 Proposed TS/0194q/060-69
BASES FOR SAFETY LIMITS ?
1.2.B. References i
- 1. ASME Boiler and Pressure Vessel Code Section III. !
t
- 2. USASI Piping Code, Section 831.1. i
- 3. FSAR Section 4.2, Reactor Vessel and Appurtenances Mechanical Design.
- 4. FSAR Section 14.3, Analysis of Abnormal Operation Transients. !
i
\
l i
t i
l f
i i
l l
\
j HATCH - UNIT 1 1.2-5 Proposed TS/0194q/060-69
. o
- s LIMITING CONDITIONS FOR OPERATION SURVEILLANCE REQUIREMENTS 3.6.M MAIN STEAM LINE ISOLATION 4.6.M MAIN STEAM LINE ISOLATION VALVES
- VALVES
- 1. Valves Recuired to be 1. Surveillance of Operable pt erablt Valves During reactor power operation. Surveillance of the MSIVs Start & Hot Standby Mode, shall be performed as follows:
arid Hot shutdown Condition, two Main Steam Line Isolation a. At least once per operating l Valves (MS!Vs) per main steam cycle, the MSIVs shall line shall be OPERABLE, except be tested for simulated as stated in Specification automatic initiation and 3.6.M.2. Closure time.
- 2. Operation with inoperable b. The isolation time of Valves each MSly shall be determined to be in the event that any MSIV 2 2 seconds and 1 8 seconds becomes inoperable, operation when tested pursuant to may continue provided that Specification 4.6.K.
at least one MSIV is main-tained OPERABLE in each affected c. At least once per week, main steam line that is open the MS!Ys shall be and either: exercised one at a time by partial closure and
- a. The inoperable valve (s) is(are) subsequent reopening.
restored to operable status within 8 hours9.259259e-5 days <br />0.00222 hours <br />1.322751e-5 weeks <br />3.044e-6 months <br />, or
- b. The affected main steam line is isolated within 8 hours9.259259e-5 days <br />0.00222 hours <br />1.322751e-5 weeks <br />3.044e-6 months <br /> by use of a deactivated MSIV in the closed position.
- 3. Shutdown reouirements if Specification 3.6.M.1 and 3.6.M.2 cannot be met, be in at least the Hot Shutdown Condition within the next 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br /> and in the Cold She?down Condition within the following 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br />.
The MS!Vs are Group 1 Isolation Valves (See Note b of Table 3.7-1).
HATCH - UNIT 1 3.6-10e Proposed TS/0199q/060-0
, .a 1
l I
j I
I (THIS PAGE INTENTIONALLY BLANK) l l
l l
l l
1 l
l l
l l
HATCH - UNIT 1 3.6-10f Proposed TS/0199q/060-0
, o -
= BASES 3/4.6.L. SNUBBERS (Continued) 4
- i The service life of a snubber is evaluated via manuf acturer input and information through consideration of the snubber. service conditions and associated installation and maintenance records (newly installed snubber, l seal replaced, spring replaced, in high radiation area, in high temperature I area,etc...). The requirement to monitor the snubber service life is 1 included to ensure that the snubbers periodically undergo a performance !
evaluation in view of their age and operating conditions. These records will provide statistical bases for future consideration of snubber service ;
life. The requirements for the maintenance of records and the snubber i service life review are not intended to affect plant operation.
3/4.6 M MAIN STEAM llNE ISOLATION VALVES j Double isolation valves are provided on each of the main steam lines to minimize the potential leakage paths f *om the containment in case of a line break. Only one valve in each line is required to maintain the integrity of the containment. The surveillance requirements are based on i the operating history of this type valve. The maximum closure time has i been selected to contain fission products and to ensure the core is not uncovered following line breaks.
References:
I (1) Report, H. R. Erickson, Bergen Paterson to K. R. Goller, NRC, October 7, 1974.
Subject:
Hydraulic Shock Sway Arrestors.
)
(2) NUREG/CR-3052, ' Closeout of IE Bulletin 80-07: BWR Jet Pump ;
Assembly Failure," Published November 1984.
- (3) ' General Electric BWR Licensing Report: Average Power Range Monitor, I
Rod Block Monitor, and Technical Specifications improvement (ARTS) ,
Program for Edwin 1. Hatch Nuclear Plant Units 1 and 2,*
NEDC-30474-P, December 1983.
3, (4) "Edwin 1. Hatch huclear Plant Units 1 and 2 Single-Loop Operation,"
NE00-24205, August 1979. ,
i l
)
a 1
d i
l l
1 i
i 1
HATCH - UNIT 1 3.6-32 Proposed TS/0199q/060-141
o LIMITING CONDITIONS FOR OPERATION SURVEILLANCE REQUIREMENTS 3.7.A.2. Primary containment Inteority 4.7.A.2. .eck Testina to Verifv a'
r mary Containment Intearity
- a. Except as stated in Specification 3.7.A.2.b. Primary containment integrity primary containment integrity shall be demonstrated by the ,
is required: following test procedures:
(1) Prior to withdrawing l a. Tyn; A Testo - Integrated Leak control rods for the Rate Test ( LRT)*
purpose of going critical.
Primary contair. ment integrity is (2) Whenever the reactor is l confirmed if the leak rate does critical, not exceed the maximum allow-able leak rate. La . of 1.2 (3) Whenever the reactor water l Weight percent of the contained temperature is above 212*F air per 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> at the peak and fuel is in the reactor test pressure.
vessel.
(1) Type A tests shall be performed i.
under the program established in Appendix J of 10 CFR Part 50 (Reference 1),
i 1
i P
La - Maximum allowable peak pressure test leak rate - 1.2 weight percent per day Lt - Maximum allowable reduced pressure test leak rate '
Lam - Measured peak pressure test leak rate - values are subject to change with each ILRT performed Ltm - Measured reduced pressure test leak rate - values are subject to change with each ILRT perforned l Lac - Allowable operational leak rate for peak pressure tests - values are subject to change with each ILRT performed :
Lto - Allowable operational leak rate for reduced pressure tests - values '
are s;bject to change with rJch ILRT performed (All leakage rates measured in we',nt percent of contained air per 24 hoars) '
P a - Peak test pressure - 59 9.ig Pt - Reduced test pressure - 29.5 psig l
HATCH - UNIT I 3.7-2 Proposed TS/0196q/060-137 1
. o 4
LIMIT _ING CONDITIONS FOR OPERATION SURVEILLANCE REQUIREMENTS -
4 3.7.A.2. Primary Containment 4.7.A.2.a.(1) Tvoe A Test-Integrated Leak Rate
. Intearity (Continued) Test (Cont' nued) !
(a) Prior to initial unit i
- b. Exceptions to operation the ILRT shall Specification 3.7 A.2.a be perfornwd first at the !
are' allowed to: test pressure, P t of 29.5 !
psig and then at the peak !
(1) Perform low-power physics pressure, Pa . of 59 psig tests at atmospheric pressure to obtain the measured f
at iow-power levels not to leak rates L and Lami exceed 5 MWT, and to respectively.tm (2) Perform inservice hydrostatic (b) Subsequent leak rate tests
' or leak testing with reactor shall be performed without coolant temperature greater preliminary leak detection than 212'F and all control repairs of the primary rods inserted, containment structure (other than for the correction of at which time primary containment structural deterioration) 1 integrity is not required. immediately prior to or during ,
the teit, at a pressure of
- c. If these requirements cannot approximately 29.5 psig.
be met, restore primary containment integrity within (2) Leak repairs to testable 1 hour1.157407e-5 days <br />2.777778e-4 hours <br />1.653439e-6 weeks <br />3.805e-7 months <br /> or fulfill the components, if necessary to requirements of Specification permit integrated leak rate 3.7.A.8. testing, shall be preceded by local leak rate measure-ments where possible.
' The leak rate difference prior to and af ter repair 1
i when corrected to Pt shall J
be added to the final in-tegrated leak rate result.
1
' (3) Closure of the containment isolation valves for the purpose of the test shall be accomplished by the means provided for normal l operation of the valves. I a
(4) The test duration shall be for i a minimum of six (6) hours and for a period sufficient to establish and verify that the leak rate is at or below i allowable standards, (Reference 2).
}
1 i
i HATCH - UNIT 1 3.7-3 Proposed TS/0196q/060-0
, s
- O LIMillNG CONDITIONS FOR OPERATION SURVEILLANCE REQUIREMENTS _
4.7,0.1. Surveillance of Operabit
, i Valves (Continued) '
i
- b. At least once per operating l
, cycle the reactor coolant '
system instrument line ex,ess ;
flow check valves shall be !
tested for proper operation.
[
- c. At least once per quarter ;
all normally open power , '
operated isolation valves (except for the main steam line power-operated iso-lation valves) shall be fully closed and reopened. l t 3.7.0.2. Operation with inoperable Valves In the event any isolation valve 3'
specified in Table 3.7-1 becomes inoperable, operation may continue provided that at least one isolation valve is maintained OPERABLE in each affected penetration that !
is open, and either:
- a. The inoperable valve (s) is (are) restored to OPERABLE status '
within 4 hours4.62963e-5 days <br />0.00111 hours <br />6.613757e-6 weeks <br />1.522e-6 months <br />, or i
- b. Each affected penetration is j
isolated within 4 hours4.62963e-5 days <br />0.00111 hours <br />6.613757e-6 weeks <br />1.522e-6 months <br /> by use of at least one deactivated ,
automatic valve secured in the isolation position, or ,
i
- c. Each affected penetration is isolated within 4 hours4.62963e-5 days <br />0.00111 hours <br />6.613757e-6 weeks <br />1.522e-6 months <br /> by use of ,
i at least one closed manual valve i or blind flange.
- 3. Shutdown Reauirements if Specification 3.7.0.1. and 3.7.0.2.
cannot be met, an orderly shutdown shall be initiated and the reactor l shall be placed in the Cold Shut-down Condition within 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br />. '
i i
I HATCH - UNIT 1 3,7-14 Proposed TS/0196q/060-0 i
( =
TABLL 3.1-1
- I PR 1 MARY cot. I A * * ,t N T iSOL AIION VALVLS MtiCH y HEC [lVE A PHee4ARY CONIAINMENT ISOLATION SIGNAL o
1 9
isolatson Nussbe r o f Powe r Maximum No t1ma l Action on
]
Group Ib) Valve Identification idlfe)
@pratt dJalves Inside Outside Ope ra t i ng Position i n i t i a t i eeq Time (sec) fal Signal fal_
a 1 Main steam l ine d ra i n 1 1 1$ C SC (821-f016, 821-IO19) 1 Heactor water sample line i I $ 0 GC (B31-F019, 831-F020) 2'88 Drywe l l pu rge inist 2 5 C SC (T48-f307, 14?-f308) 28 Drywe l l ma in ex haus t 2 S C SC (T48-I319, 148-f320) 2 Drywell exhaust valve bypass to 2 5 C SC standby gas treatment (148-f341 T48-F340) 2 Drywell nitrogen make-up line 1 5 C SC (normal upe ra t ion)
," li48-Fi18A)
Y 28'8 Suppression chamber purge inlet 2 5 C SC m" (148-f309, 148-r324) 28'8 Suppression chamber main exhaust 2 5 C SC (148-F318, 148-F326) o 7
O V
O we 4D CL
--4 en O
t.n 43 O
m O ,
9 A
M W
/- .
/
/
TABLE 3.7-1 ( Con t'd )
- I
> PH I MARY CO?.i A I NME N T ISOtAllON VALVES WilCH N
X
.7LC[lVE A PP,sMARY CONTAINMENT ISOLATION SIGNAL e
e C isolation Number of Powe r Maximum Normal Actson on 3
-4 Croup tbl Valve identificati_qn (d)fel Ope rale _51 _j(_a l ves Ope ra t ing Position initiating inside Outside ilme IsrS1 fal . Signal fa) l
~
? 8.,-0, A.sa lyzer A Torus Sample O 2 5 C SC Line
( P33-F006, P33-f 014) 2 H,-0, Ana lyzer A Drywel i Sample Line O 2 5 O CC
( P33-f 002, P33-f010) 2 H,-0, Ana lyzer A Return Line O 2 5 O CC (P33-7004, P33-1012) 2 H,-0, Ana lyzer 8 Torus Sample O 2 5 O CC Line (P33-f007, P33-7015) 2 H,-0, Ana lyzer B Drywe s ? Sample O 2 5 C SC Line (P33-F003, P33-F011)
% 2 H,-0, Ana lyzer B Return Line O 2 5 0 GC i (P33-f005, P33-f013) sw 2 f ission Products Monitor Sample Line O 2 5 0 CC (D11-f0$1, D11-FO$3) 2 fission Products Mo .itor Return Line O 2 5 O CC (011-FO$O, D11-FOS 2) o 7
O T3 a
(A s
O a
Us O
O A
~
4D
TABLE 3.7-1 (Cont'd) '
x 2* PRIMARY CONTAINMENT 1501 AllON VALVf S MIICH Nx HECEIVE A PRIMARY CONIAINMINT ISOLATION SIGNAL _
e C isolation Number of Power Maximum Normal Action on O Group Ope _rajed__ya l ygs ope ra t ing Position initiating
--e (b) Valve ident i f ica tion _LdJ f el inside outside Time (sect (a1 Signal (el
~
l 2 Suppression chamber exhaust valve 2 5 C SC bypass to standby gas treatment (148-f339, 14S-I338) 2 Suppression chamber nitrogen 1 5 C SC make-up l ine ( no rma l opera t ion)
(T48-F1180) 2 Drywell and suppression chamber 1 5 C SC nitrogen supply line (inerting)
(148-f103) 2 Drywell and suppression chamber nitrogen 1 $ C SC make-up iine (normal ope ra t ion )
N (T48-I104) 8 2 Drywell equipment drain sump discharge 2 15 O CC y (C11-foi9, C11-f020) 2 DryweiI r Ioor d ra i n sump d i scha rge 2 15 O CC (C11-f003, C11-f004) 2 Tir Guide Tube 1 each NA C SC (C$1-J004) line
{c) Dryve i 1 pneumatic system 2 5 0 CC (PTO-FOO2, PTO-f003) m o
o en, n
El s
O w
on O
m O
O
TABtf 3,7-1 (Cont'd) *
[
--e PRIMARY CONTAINMfMI ISOLATION VAEVES WHICH RfCESVE A PRIMARY CONIA8NHLNI ISOLAllON SIGNAL S
c isolation Number of Power Maximum Normal Actson on 2 Croup Ope ra t ed Va l ves Ope ra t i ng Position Initiating Q (b) Valve identification (d]Le) Inside Outside ilme fsect fal Signal fal
[
6 RHR reactor shutdown cooling 1 1 24 C SC suction ( supply)
([11-F008, [11-f009) 6 RHR reactor head spray 1 1 20/12 C SC (E11-f022, E11-1023) 3 HPC8 - turbine steam 1 1 SO O CC
([41-f002, E41-f003) 4 RCIC - turbine steam 1 1 20 0 CC (E$1-7001, E$1-f008) 5 Reactor water cleanup from 1 1 30 0 GC recirculation loop (C31-f001, C31-f004) 4.a
- 2 Post-accident sampling system supply 2 $ C SC 7 (B21-F111, B21-F112)
CD 2 Post-accident sampling system return 2 5 C SC (E48-f122, E41 -F 121 )
2 Co r6 Spray test sinc to suppression i each $0 C SC poo! Iine (E28-TOISA,B) m 7
G V
0 a
s to U1 o
m O
b
~
to
TABLE' 3.7-1 (Cont'd) h PRIMARY CONTAINMENT ISOI.AilON VALVES WHICH y R[C[lVE A PRIMARY CONTAINM[Ni IS01AT ION SIGNAL x
9 C Isolation Numtrer of' Power Maximua Normas Action on 2 Croup Ope ra t ed Va l ye_} Opera t iswj Position Initiating Z QJ Valye_identificatforLjd]fel In ude Outside Time Lyccl fal Ei.gna l fal
" l 2 HPCI turbine exhaust vacuum breaker 2 16 0 GC (E41-l'111, [41-T104) 2 RCIC turbine exhaust vacuum breaker 2 16 0 GC (t$1-f105, L*>1-F104) 2 forus drainage and purification 2 12 C SC sucLion (G51-f011, C$1-F012) 2 RHR d rywe l l spray I each 11 C SC
([11-f016A,B) line 2 RHR test line to the suppression 2 each 110/26 C pouI SC Iine
( E11-f 024A,8; E11-f0?SA,B) 2 RHR to torus spray header 2 each 10/26 C (L11-f02TA,B; L11-f028A,B) SC iine 7
2 RHR heat enct4 anger to One suppression poo8 2 each 22 C SC iine
@ ([11-F011A,B; Ell-f026A,8) m 7
O T3 O
an ID CL s
.o Ln D
N O
CM O
~
4D
T ABt [ 3.F-1 (Cont'd) ~
[
--4 PRIMARY CONIAINMENT ISOtATION VALVES WillCH n HtCEIVE A PRIMARY CONTAINMENT ISOtATION SIGNAL X
e c Isolation Numtier of Power z Group Maximum Normat Action on Operated Valves Ope ra t i ng Position Q (b) Va_ lye Identificationj dj{el inside outside Time _{Jec) fal Initiating Signal fel 2 RHR discharge to radwaste l 1011-r049, (11-1040) 2 20/32 C ~ SC 2 Torus ventilation exhaust 2 2 5 C SC (148-F332A,8; 148-F333A,B) 2 Orywel l ventilation emhaust 2 2 5 C (148-f334A,8; T48-F135A,B) SC 3 HPC8 pump minimum flow 1 11 C
([41-f012) SC 3 H PC I pump suction 1 84 C SC (E41-8042) 4 RC8C pump minimum flow 1 11 C
([51-f019) SC w 4 RCIC pump suction e 1 33 C
~u (LSt-f031) SC e
er T
3 O
T3 n>
CL
~4 m
N S
.o U1 D
O m
O e
w N
to
. o -
. Table 3.1-1 Primary Containment Isolation Valves Which Receive a Primary Containment isolation Valve Signal These notes refer to the lower case letters in parentheses on the previous page.
NOTES:
- a. Key: 0 = Open SC = Stays closed C = Closed GC = Goes closed
- b. Isolation Groupings are as follows:*
l GROUP 1: The valves in Group 1 are actuated by any EfLt of the following conditions:
- 1. Reactor vessel water level Low Low Low (Level 1)
- 2. Main steam line radiation high
- 3. Main steam line flow high
- 4. Main steam line tunnel temperature high
- 5. Main steam line pressure low
- 6. Condenser vacuum low
- 7. Turbine building temperature at the steam lines high GROUP 2: The valves in Group 2 are actuated by any fat of the following conditions:
- 1. Reactor vessel water level low (Level 3)
- 2. Drywell pressure high GROUP 3: Isolation valves in the high pressure coolant i $ ttion (HPCI) system are actuated by any one of the following conditions:
- 1. HPCI steam line flow high
- 2. High temperature in the vicinity of the HPCI steam line
- 3. HPCI steam supply pressure low
- 5. Torus room differential temperature high GROUP 4: Primary Containment Isolation Valves in the reactor core isolation ;
cooling (RCIC) system are actuated by any one of the following conditions:
l
- 1. RCIC steam line flow high !
- 2. High temperature in the vicinity of the RCIC steam line j
- 3. RCIC steam line pressure low
- 5. Torus room dif ferential temperature high ,
{
The M51Vs described in Specification 3/4.6.M are Group 1 Isolation Valves. l HATCH - UNIT 1 3.7-19 Proposed TS/0196q/068-129
, . l Table 3.7-1 *
(Concluded)
I Primary Containment isolation Valves Which '
Receive a Primary Containment Isolation Valve Signal GROUP 5: The valves in Group 5 are actuated by any gn.1 of the following t conditions
- 1 1
- 1. Reactor vessel water level Low Low (Level 2) i 2. Reactor water cleanup equipment room temperature high
- 3. Reactor water cleanup equipment room ventilation dif ferential temperature high i 4 Reactor water cleanup system dif ferential flow high
- 5. Actuation of Standby Liquid Control System - closas outside valve only
- 6. High tenverature following nonregenerathe heat exchanger -
closes outsida valve only ;
J GROUP 6: The valves in Group 6 are actuated by any M. the following
)
conditions: -
- 1. Reactor vessel water level low (Level M
- 2. Reactor vessel steam dome pressure Im t ,. :issive l
- c. Requires a Group 2 si nal or a Reactor Building venttiation high radiation isolation s gnal
- d. For redundant lines, only one set of valves is listed. Other sets are
. identical except for valve numbers, which are included. Valve numbers are
{ listed in order f rom within primary containment outward for each j line. ,
i
- e. Primary Containment Automatic Isolation valves may be opened (utilizing the manual override switches) under administrative control on an !
intermittent basis during accident or transient conditions (not :
l necessarily limited to those in the FSAR) to mitigate the consequences of i the accident or transient. Locked closed valves may not be opened during ,
accident or transient conditions when the valves are required to be closed. !
l
?
1 i
l i
l, d
i i
e
, l I
HATCH - UNIT 1 3.1-1ga Proposed TS/0196q/104-12g
~
REACTOR COOLANT SYSTEM 3/4.4.7 MAIN STEAM LINE ISOLATION VALVES LIMITING CONDITION FOR OPERATION 3.4.7 Two Main Steam Line Isolation Valves (MSIVs) per main steam line shall be OPERABLE with closing times 2 2 seconds and s 8 seconds.*
APPLICABILITY: CONDITIONS 1, 2 and 3.
ACTION:
With one or more MSIVs inoperable, operation may continue and the provisions of Specification 3.0.4 are not applicable provided that at least one MSIV is maintained OPERABLE in each affected main steam line that is open and either:
- 1. The inoperable valve (s) is restored to OPERABLE status within 8 hours9.259259e-5 days <br />0.00222 hours <br />1.322751e-5 weeks <br />3.044e-6 months <br />, or
- 2. The affected main steam line is isolated within 8 hours9.259259e-5 days <br />0.00222 hours <br />1.322751e-5 weeks <br />3.044e-6 months <br /> by use
- of a deactivated MSIV in the closed position.
Otherwise, be in at least HOT SHUTDOWN within the -next 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br /> and in COLD SHUTDOWN within the following 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br />.
SURVEILLANCE REQUIREMENTS 4.4.7.1 Each of the abova required MSIVs shall be demonstrated OPERABLE by verifying full closure with closing times 2 2 seconds and s 8 seconds l when tested pursuant to Specification 4.0.5.
4.4.7.2 Each MSIV shall be demonstrated OPERABLE during COLD SHUTDOWN or REFUELING at lease once per 18 months by verifying that on a containment isolation test signal each automatic isolation valve actuates to its isolation position.
4.4.7.3 Each MSIV shall be demonstrated OPERABLE prior to returning the valve to service after maintenance, repair, or replacement work is performed on the valve or its associated actuator, control, or power circuit by cycling the valve through at least one complete cycle of full travel and verification of specified isolation time.
The MSIVs are Group i Isolation Valves (See Table 3.6.3-11 l l
HATCH - UNIT 2 3/4 4-19 Proposed TS/0197q/104-0
- {l 1ii p
u o g r t n g n i eer E e dhu M v itd I l c
T) a l ced s v aate Nd h
u ngge an iono 55 11 55 00 22 00 22 c a ni p Tc a mito Ae e ri LS Oi e .h d bd eume.
S tst o e I
ae stts r v gi oo el ns)nl paiaR oVzbAy c
i Sae tnl tFmb aoin S
- hiteeso E ttuthet V 'P a(ttv L U sl i ld A O l odmnae V R aserivr G 11 11 22 22 nI ne -i N g etedu O E i1 pnseq I
V n s oiose T L o p hor 1
A L
A y i nuentl O
t ooba ce 3
. S a n ir tGyntda o r 6
l o
I s o i a ao e em e s or ldks l
t 3 T N v i a ece E E l
l sasotov
_ M a o o i eriLl B N V g s 7vtm a r r.l ni A I A o n a I
fo aol .v T
T s h e 4. v c te ynh N e i
c g 4 O
t s r ,/nel et C lv a i a 13ovii l
D h - iirsn a o e r ttane
_ 'Y R
V i
s p m
c s 2.oaasah
__ A n i
3.totet fl rsrw u D
_ M ' o e S 3assc s I
R
' i n p cii e r n P 's t a iL n m ei fci nnoo e
i u l biimttt i
v l
a S o e r actdoni l
s l D n Teaaned a i p i pm (dn V m t a ,Sor io R n a n r tescc E n i S e D 2. n u d n c B o a m U
M i r r p r 3.iAnoat ui n N
t D e i o 3dt tee la m t u o en)ihi D o )
a q l nbesdts N s d a 69 e 11 W 90 E 90 F 34 oimen n A e 12 12 00 irnhor a I t 00 e 00 l 00 l 00 tciccor t S FF o FF l s FF l s FF asat t N
ic e - - t - - wvee ee - - cetits O l n 18 c 11 wv 11 idnwner I t e i 22 a 33 yl 11 yl 11 f oseco T a D a 8B e 8H ra GG r a GG isC in C m (
M 22 R 22 DV 22 DV 22 cV eset N o eI yd n u n U t pS ri a q e F u . . . . . SMarred A 1 2 3 4 $ mrtsi E eeie nc V ehrvroc L STPooca A . *
- V A * *
( 8 C a j -470 (3 _z~~4 -
n J L %D3s 0)s PC._ N m oVOmmC 4n.%
t CC co.
.3" 3 cic lj illl ' fi lli
s ' n c
)
1 3
r3 o
3
- a. e 2l p b u ma o g eT r t n t g n i if eer o e dhu e E v i td M l c e b.
s i al ced (2 T) vaate s u an l m Nd hngge ae On 04 00 5555 00 c a ni p nt I o 12 22 55 amito igi Tc e ri Ae eume.se LS ehd bd e OI S
tt o ees &
a sttsr(
I r gi oou +
ens)nl pi a R css 0, o zb Saer A y e C, s tl ain it F m b p B, v hteesolA S
- tuthetl1 E ( e9 V P s (ttvldw6 i e L U l dmnaeyN A O aerivrr-
) V R 2222 33 nne id1 -
d G ** ** 1111 getedu 2 e N i p n s e qh 8 u O E s o i o s e g2 n I V hori i T L nentl hm t A A oba ce o n L V o rar f o O ityntda C S e a
( I s
e laao m dksil 1 T v o l eceva ssotov n E
N l e
r ieriLlRg 3 a vtm aHi 1
- V u rl ni
.vRs 6 k
- s s oaol f 8 n s fvc tef) 3 A ) e o e ynho1 T d v i r s ,nel et E N e l t P e 1 ovii el L O u a a iirsnde B C n V l l lv A
T Y i
t n s o i a
V a 2.ttaneov aasahme L
R n I t 3.otet l rsrwI(
A o io n n 3ssc sC M C t n e o iie rnPw I ( a i rs i e nnooLo R
s a
r ee t l ci i L P lo fv a bimttte e s D fl l atdonihw v i ia o Taanedto l r DV s m (dn L a y BB e BB I
,o r i of V a g sn R
E n r dd p nn a nn n dd uo e n
2.tesccow udnc o B
M i o S aa h c
aa ot ri Ta i
L 3.AnoatnL 3t ui teeia no U t t AA x AA l n)6 hit N a n E oo m nesdtsar D
l o
e 68 m 1 2 t 16 12 ts 9012 01 11 a
e 00 23 omen nuo N s n 00 a 00 i i nhofat 2222 t 00 ticcorc)
A i i a
- H e FF l m FFFF l
- ee - - - -
S FF aat ta1 N c - - ctits -
t 11 11 wt 8888 I 11 i nwnern3 O i n 11 R 11 ys 4444 C 44 fosecoo.
. I t o EE H EE ry TT1T P EE i C in p3 T a C 22 R 22 DS 2222 H 22 ce esetu.
C m yd n u n 3 N o priaqed U t Sa rredee F u . . . .
mrtsisl A 6 7 8 9 eie ncob E ervr ocl a V SPoocaCT L
A .
V A
- 8 E42 s h-[ '
C[5 -4 "* u); a8a_ 0 3 3 7nO3OsoO T vt
. C 3 3 ad cC4C3 4ws.3 Csjc
,)
4 i ' I ' 4 ; li!l ;1
. ~m TABLE 3.6.3-1 (Continued)
SE PRIMAHY CONTAINMENT ISOLATION VALV(3
--e
[?
~" ISOLAllON TIME VALVE FUNCTION AND NUMBER YALVE CROUP *8 8
(Seconds) e _
c: A. Automatic Isolation Valv3J (Continued)8** l 2 i l} 10. HPCI Pump Minimum Flow Line isolation Valve to 2E41-F012 (c) 10
., 2E51-F008 4 20 S
- 13. Reactor Water Cleanup System Isolation Valves 00 2C31-F001 5 30 32 2G31-FOO4 5 30 cn la '
e o
o u
O vi to Q.
--4 N
O O
J:m o
([ 8*8See Specification 3.3.2, Table 3.3.2-1, for i solation signa l s that operate each va lve g roup.
1 C3 8 *
- Prima ry Containment Automatic ;sols tion valves may be opened (utilizing the manua l
' ~ override switches) under administrative control on an intermittent basis during accident i' or transient conditions (not necessarily limited to those in the FSAR) to mitigate the i CD consequences of the accident or transient. Locked closed valves may not be opened during accident or transient conditions when the valves are required to be closed.
7 888The minimum flow valve closes when HPCI flow is established or when the HPCI turbine stop valve
~l and/or steam inlet valve indicates closed. These HPCI turbine valves automatically close when the HPCI system is shutdown.
888The minimum flow valve closes when RCIC riow is established or when the RCIC turbine steam init.
valve indicates closed. The RCIC turbine steam inlet valve automatically closes when the RCIC y system is shutdown.
4
TABLE 3.6.3-1 (ContinuedI ~
3: PRIMARY CONTAINMENT ISOLATION VALVES
-4 n ISOLATION TIME 3: VALVE FUNCTION AND NUMBER VALVE CROUP8 ** (Seconds)
A. Automstic Isolation Valves (Continued 1***
C 2, 114 Drywell Vent and Purge System isolation
-4 Vaives 2T48-F307 6 5 2T48-F308 6 5 2T48-F103 6 5 2T48-F1014 6 5 2Tf8-F118A 4
6 5 2T48-F1188 6 5 2T48-F324 6 5 2T48-F319 6 5 2T48-F320 6 5 2 T 48- F 3'40 6 10 2T48-F341 6 10 2T48-F334 A 6 3 2T48-F334 8 6 3 2T48-F335 A 6 3 2T48-F335 8 6 3 k
A
- 15. Drywe l i Pneumatic System isolation Valves .-.
m N
e 2P70-F002 6 5 O 2P70-F003 6 5
- 16. Fission Products Monitoring System isolation Valves 2011-F050 6 5 2011-F051 6 5 2D11-F052 6 5 y 2011-F053 6 5 o
E a
Y N
8 a
S S
En co
'**See Specification 3.3.2, Tabic 3.3.2.1, For isolation signals that operate each valve group.
8 *
- Pri ma ry Con ta i nmen t Au toma t i c i so la t i on va l ve s may be opened ( u t i l i z i ng the ma nua l override switches) under administrative control on an intermittent basis during accident or transient conditions (not necessarily limited to those in the FSAR) to mitigate the consequences of the accident or transient. Locked closed valves may not be opened during accident or transient conditions when the valves are required to be closed.
TABLE 3.6.3-1 (Continued 1 I
j PRIMARY CONTAINMENT ISOLATION VALVES N
1 ISOLATION TIME VALVE FUNCTION AND NUMBER VALVE CROUP'*8 (Seconds)
A. Automat ic I solat ion Va lves (Continuedli'8 2
a -* 17. Torus Clean.sp Vacuum Orag isolation Va lves ro 2G51-F011 1 15 2G51-F012 7 15
- 20. H,0, Sampling System isolation Valves w
) 2P33-F004 2P33-F012 10 5 10 5
?
na 2P33-F002 10 5 2 P33-F010 10 5 2P33-F006 10 5 2P33-F007 10 5 2P33-F014 10 5 2 P33-F015 10 5 2P33-F003 10 5 2P33-F011 10 5 2P33-F005 10 5 2P33-F013 10 5 l
l T
o Eun i O CL 3
2 1?
o '*8 See Specification 3.3.2, Ta b l e 3. 3.2.1, t **8 for isolation signais that operate each valve group, Primary Containment Automatic isolation valves may be opened (utilizing the manual
- c. override switches) under administrative control on an intermittent basis during accident or transient conditions (not necessarily limited to those in the FSAR) to mitigate the consequences of the accident or transient. Locked closod valves may not be opened during accident or transient cos.ditions when the valves are requi red to be closed.
l II! l lI
)
1 3
3 3
l e
p b u a o
r g T t n .
g n i r) eer o1 e dhu -
E M
v itd
- b. 3 I
l c
T) al ced 13 s vaate Nd u an m3 hngge e On c a ni p te I o 00 4 amito il Tc Ae 55 55553333 2 e ri b LS eume.ea O( ehd bdeT S tt o es a stts(f I
r gi oo o ens)nl l pi a R o zb A y c an a.
i Saeg1 tl tFmhi 8
ain sm S
- hteeso e E 8 tuthetet (ttv ri V P s i ldu L U l dmnaese A O aerivrse
) V R 00000000 1 nne ies d G *
- 11111111 1 getedur(
e N ipnseqp u O E soiose n I V h o rl D, i T L t A A nentl l C
n oba cee, L V o rwB o O i
tyntday, C S e rA
( I laao m dksd1 1 i o l ece 9
- k ssotovh6 3 E i eriLl gN M
- vtm ai-
- 6 I
N
- rl ni oaol fvc tea 8
.vh1 2 _
3 A j ynh 2 T d e ,nel eta _
E N e n e 1 ovii im _
L O u i g iirsnvo _
B C n L r r A i u n 2.ttanea a s a h yf T Y t t P o
- 3. l rsrwarl R n s i otet A o e d t 3ssc spa M C T n c iiernSn _
I ( as u nnoo g _
R w e S le ci i ei _
' s o tv bimtttrs _
e l nl g atdonio v F ea n TaanedC) _
l VV i m (dn 1 a m ,o r i or _
v es l oo n los _
R E n te sv oi oe Cv 2.tesccol udnc e B
M io yl Sa Pt a na l
3.Anoatnv 3t ui teeiL noe U ABAB wV y V AB t nl n)ihit(
M a oo o nesdtsa l
an 55 is 89862233 dn 8 omen nuw D o ro 11 si 33123333 to 0 i nhofato N s pi 00 s 33333333 ui 0 ticcorcL A i St FF em FrFFFFFF ht F aat ta a - re - - - - - - - - Sa - ctits w N c el 11 pt 88888888 l 1 inwnerno O i ro 22 ps 44444444 Ro 1 fosecooL p TI t os EE uy TTTTTTTT Hs E i C in a Cl 22 SS 22222222 Ri 2 c esetuw C m e yd n u n o N o p ri a q e s L U t . . .
F u 1 2 3 Sarrede
- A 2 2 2 mrtsisa
, E eie nco
. V ervrocl r L SPoocaCo A .
8 8
- V A * *
- 8 c 43 g r:r e j=4 3 s
- j=- n u%# c e n$ -
v m$
ms ooO .a 4sNooE.$
' hp 3 oico
p u r o
r g o t n t -
g n i c eer a E e dhu e M v itd r I
l c
T) al ced w s vaate o Nd A 55 4 hngge u an l On N 8 canip r I o Tc amito e e ri Ae LS O( ehd eume.ht bdi S tt a stts o ee I
r gi ooy ens)nlb pi a R c ozbAy d i Saee tl tFmbt 3 ain a S
- hteesou E tuthett V 8P s i (ttv c L U lda A O ldmnae
]
V R aerivrs d G
- 66 3 nne ii e N getedu u O E i pnseql n I V soiosea i T L horw t A A nentl a n L V oba cer o O i o rd -
C S tyntdah -
( t I
laao m dksi e -
1 T
N e
v o
ssotov l
ecew 3 E l i eriLl c M 8 a vtm ai.
6 N " V rl ni I ' oaol .vte ar 3 A ) n e fvc temu E
T d o v ynhos N e i l ,nel etts L O u t s a 1 ovii ue B C n a e V - i irsnar A v p T Y i
t l
o l n 2.ttane aasahP R n s a 3.otet l rsrwIl A o i V io Tl M C t 3ssc s e I
R
(
b e n a Ii ern nnoo.y w P s o io lo le ci ipr e r t s bimtttId v P a i atdoniT l Taaned h a e r
lo n m
,o r i ooi (dnfg V s o R o i i 2.tescclh _
n E c t udnc B
io n f c 3.Anoatar M
U t i
ie u 3t ui teea nwo .
S _
N ge l n)ihirl .
la nv e 94 p 2 nesdtsde D o il R 02 m 4 omen nhv N s sa 33 u 0 inhorate A I rV m Ff P F ticcoril e u - - - aat tw r N vl u 88 ctits O ic al c 44 I
C 4 1
inwnerne I t a
ra a TT P E fosecoot pa iC T TB V 22 H 2 in C m c esetuw N o e yd n u n priaqesl U t . . .
F u 4 5 6 Sarredee A 2 2 2 mrtsiss E eie ncos V ervrocl e L SPoocaCv A . *'
- V A **
c=a7c m3 ra
- C5-34 wN4 maoJ tO no . 4MNoosoONw$s8 T oeOutQ -
a 3 }
1
)j 1 ,i l i ' ,j:jl!
e a ensamme O
M C C =
0@b V43
-- e V -
'O
-OGU eed@
3 eC C@@@
eC=a E=MC L=
03E9 a
& T) &V a O 9 ewwm
@= OO Cmac-
=eg O Na4 h Me9
--dwda.
C h M deOWO-W 3MC@M
> w&W) e
.J =
VU 4 VECe@
d > g6->69 VI cc =e C Z e CM4V3E 3 O O GCOWFC C - O=0WCw
= W -> cO63
& (J et @ Caw a C > ae O O 0 U %.n O O M C NC wV eia O rs O C e
=
- E V mIC W =
- 9 e = COCO e Z e > eOwO3e m W -
- c 6 = .J - =
E O e >wE e.
@- Z M M > -C=
- = @ eO- .!<M O m ( > c >U at
> a -
O h c .l C W Z O en = CG=GMC
.s O > a 0>== U cc u -O e ==caC aaecoc l
(
w C W = ,
> d C O W e *, 4eWeaG E C =
9 > 1 '-6w63=
1 ( > =O W > - = OMOd C g WW W E
a w
e e
a 4 -
e O
es e
> C b
-ueLC)
CCCOe i
1 A a a
A -3 m C 3 U=
-Ed49)
c C U = C O a w O . 6 O = g QVOC=
M = 2C = b = 4 L eeCcVe W & O @ u e E wtC>
>J f5 * @ CCC 45 -
V OL =0 E =% LC = - CD 0 C &OMOOV W < 0 4 *
- O W e 3VCU G cc > W = 0 = E(( W = = 4COe&W Z - CD d4 0 =( h 3= Ce D E
- A UN4 e L*m --N e dOcb Z O EO C* @OO ho -A* aan Ca=4=c
- so LO 600 eg o e@A GOO @WVW#a O W C6 sw 66 66 66 Dww ECC CO Z < we ae ae e at ee e ee e C r 0 6 en 4 -J dN C *= Z Ch @ 4* O** NN -0006L O m k* 23 N =en 323 ew &
Z o
W CW bJ (>> OW >AA OAA M-Un C)C@b
- =N EN ONN kN 6NN ONN OwgoOg e Z O O C CD
> -J K CC .J Q M E O =C O ( CeOMM Z
D D
E huC3C9
==eFOU w ( . . . . . . ebbCD3 E
- N m # A @
E6ue=-
LJ =9 COO
> L>bOoC
.J AOOOe-( . - -
> C a w
w l
HATCH - UNIT 2 3/4 6-24 Proposed TS/00409/104-59 )
1 1
l l
- e 4
l 1
4 l
I m
& C C -
C@b VC3
=dV U
=UDV med@
3 eC C Q. @ @
eC=a E-do L-C3E9 *
.IV DV W O G edge
@= 00 Ceac-
=NE U
=ND MSG 4%
-dwED e
~C h M d@@do-w 3d4Cd-
> d wdd> e J C
=
-U0 4 > VECN@=
a > - Gk=> ke V 4 CD -m e Z > @dOV35 3 W GC#C70 C -O C O 0-OWCd
- > 0 > 4063 d 4 = -
CCd- e C M De UD C O e O 6C N >
O W - ACdu@d
0 C 90 C e W e E V4W-
> O -@uco e ~ e O - O Modo >e m
I W
Z C > d > g6-J-=
O > - -
>dE 4 E = C - g - d -4 g -C- >d C Z V = m > 0 0 >
= 0 > > d
. O m =4 w
3 C
-C C C - - C
>U Acc WCC O d 4 O CC-CMO W Z =
0 = @ > C =
J O d - -0 a > b d O>== V C U C d 4 n C ==Lec 4 0 o e -
=
3 e adeCGC
@ O d W >
K O M -
O > ~ G
=
O n@*nCU
=
(
w C C
O W
W
=a C d
4 6
W -beb)4 Od@d WWQ d E
a e
E 3
O>
g C O
V C D
--gbc)
E w 6 ) c= 9 e e m CCOOM A MO 0- =c
-e a O b a W - C#
60
=
-h e -Eddd>
MVOC==
- C = b a- O b C meCOVm 0 =Q a e= 9 a O E wVC) 1 W C C> d a e
> @
- O bw M 3 =
Ob =O C J 6em - Ow & ) e g WOMOQU g w ( 3 4 o e sVCo C > d *
- 4 CC V b a (comed i K n44 U =>- -C 3= C4 J
@ @ E d WDUL 3 Z Cem =se == NAN NN MAN DNm Ca-c=c Z O G3@ %CO On NNNN -mm and ach OnV&MG GOm -OO C> Gmmmm =OO 300 CD EOC CO O > =6 bww - 26666 gww ww -ww Z < -l o Os a W6 @ e e e s b I a Ve e eI s Ccobe
( J O >Mm bm JCCCC @"" @## O*"
~u006b Q =O "a # ed MO Z w Ww wwwNN cc>c e##ad CNN Ewwww -AA
-AA ECO d=de C)COLO
)
O -
- J b = t c c C#0004
> J Q > Z d' O Q =C O (
O cecde Z 3 AVC3CC I 3 Z 6- g e c V I w ( e . . . .
gbb@V3 I E N C S O
- N M E6de--
W w * * *
-O COO
> 6>bCoc J A0004-
> e .
i HATCH - UNIT 2 3/4 6-25 Proposed TS/0040q/104-59 ,
m
- J C C =
@@L V43
= +a u U
-UDD 85 e & G 3 mC Cmm@
- 0 C - a E-MO L-
@3EO .
IV AV
- O O d +a +2 e m- 00 a Cmec-
-eE U N44 h
= @ en @
= +3 w E c .
-C h '
@ **CO*o-W e 3 +a C @ *b -
.J w =ea +3 > e
-tU
< -> DECe@-
,=< > @ 6 - > 6 ea e @
es
> CC =e
@ ** @ t 3 E '
C E >
3 C - C aCeW70 C =
e Q C = O d @ *3
- > > == Cob 3
- J (J +* @ C +# - e C C e a 85 0@
O O O - O LG M =
0 A C *3 V 85 **
.O.
+J e 8B C C e e = d E V .E e -
- b- - =@UCO !
e Z O @
@ #0**C>d m 6a e -> @6 .J - =
C > +8 5 e E == == == 4 == C - > *a
@. Z V >
. =
0 * @
eo-. o m ( 3 O W C C C
>U ea @ C
> C > @ =
> O hCC W E - W = > - -O C O - C e* O
.J O *s @ e =
- a e
+a C>== V CD O C > > e @ C e > e ==LeC
( 0 - > > 0 +3 - ** ** e C W C
> > O e C - = C C O 85 et W ft E O
% w > C e +8 g O e -6eb)=
4 =0 0 > e a = =
C +a @ W C 1 a C *J - ** 3 4 weo W3
- e o e +8 C C L e C
--@LC E - - -
e O O & =
C CCooe A ** *a O -O = G e O- =@
a O =
= E *a +a +8 >
es W O +a 3 C e +8 euoC==
w O
= W + e L +- == 0 85 it C @ V e5 W
-O - +a 3 E wDC>
et C O e - C M Cb E
>J - 0 C
- W C C 0 CD **Oeout
=0 W 4 *a
=
+a 0 CD
= - CD > c CD - a 3DCO O e > @ +a E = 4 C O e d +4
@ o +a . 6 L . ..U 3( 3- Ce E
a 4 3 Z
Z O
cm3
- * = * =
3 WM-Om 04 34
-Ce WO = = * * =
@4
=#
-b((
C*N 3
Wa e ho a *= +8 Ca-C-@
+3 C C L O d V +3 e a O
> Cw6
- aOC Eww aw C Omm Om t66 66
- d @ @ ao eg o ECC CO es m m tw 64 CCObe 2 4 @ee 3e e Ee ae s )t e 3e as =0WObb
( J @ CO to a *= c= 3* ECC EC Oc a e= de 4 *J +3 9 O C44 eA a* 344 34 W44 3 N E W 6>=>= 0WW W 3>=>= 3> 3>> -W GW
+8 - +3 M >
O -
+a N N -NN EN ONN ON LNN ON LN C)CDLQ
- - O = e e O A O OdCUC4 H 2 m g > > > O -C O (
3 Z O @ W @ +4 W r O DVC3C@
O r -se@v
- ( . . . . . . . .
es Es u .t --u s
- z. a e @ ~ s O e -@
W *= w e- ,= e.
e e- N N Cou a
4>boyC l
( .
.c. o o u e - i
> e .
w HATCH - UNIT 2 3/4 6-26 Proposed TS/0040q/104-68
t e
.u-ame i
t i
m
+4 C C =
0@L VC3
= ea t 0
-UOV N n ea O 3 mC C@@@
eC=a E-MC L=
G3EO e CV DV ed O c e +a ea a w~~ OO CWaC-
-4E O
-N44h M49
-asE4 e
=C h e *aO@d0-w 3 *a r @ ea -
>J w +a +# > e
~ =VU
< VEC4C=
a V
> @ b = > 6 ea CC =g O E @ ** @ V 3 m 3 aCMC70 C -O C = 0 W D **
- > 2063
- J (a c C *a - e ae O@
C O O d O 6e O O c W h C *a t e +a
> > eO C e
- - E V4#- 5 e > e e -@O@O e Z > > MC*aO)#
w W C 6 = .J - =
- m. E a C C 0 > +# E e
@ Z V O O > -C= > +a e - c = = - eO- e 0 m ( 3 +3 *a m >g egC
>= C e e W > hC4 W Z = - - @ C O - @ +a O a o ** O O > C O>== V co o C e W - ==bdC
(
O = = 4 =C ** *a e C c =
4gWe4Q
>- O d > *a E w @ C @ n - L e 6 ) .-
< > 0 C - C a c ea C g . - - E O O anu a2
- e 4 *a 4 - W ==eLC E = > U C sa - CCC0m a a 3 y e U= =O a C n n - @ - E +a *a *a >
0 - O C estCC=
M =
C V e - 4eCDVe W *a O = E wtC>
E
> @ = D CC =@ 0L
- OnUUV
=0 us
.J
( -0
- a > a sa 3DCU O m - = 3 m +
C > W O 94 O C( 4 C O g as +a 3= Ce E - - > 4 ** *a 4a@pb D E Ce bN M mA4 N Z o onc =o bc E-- ho Ca-C-@
e m V +a n a
- -CQ bo Ce ** moLw O > aww sw -6 C66 Ecc CC Z ( EI a aew -I cs e ae Cr06e
-ooOLL 4 .J eaw 0m &CC O e=
O W-- we 6- 07.7 e g *a
+a = +a w aa O Z M QO 3O W 6 >= > 0W C)CO6O
)
O -
ENN bN KN +# N N 6 c:
- 4 O = 0 Ceeooa l > J 6 >= E Z O O -C Q ( O M O 4J W Z D XVC3CC D Z L=4UCD w ( e . . . . eLbCV3 E N M 3 e @ E L ad e = -
W N N N N N =C CUU a
L>bouc
( e A C O v e..
> m .
HATCH - UNIT 2 3/4 6-27 Proposed TS/0040q/104-68
I 8 4 4 l I
i I
-g .C.
a C@L p DC3 w
-MV U
e =UGD D e e +4 G
> 3 eC C@@@
e eC=a
> E = +a O L-a C C3E9 .
o O CD at w -
+a O @
w *a wwae a
e a m- OO e > -
CWaC-
. - O =eE O e e e N A( A c > = = MeC
> = +3 6 E D C C -C e O doCWO M > = .C y a -
3dCO&
>J c e w ed +a >
O -
C
-D 4 -
0 0 DECe@
a y *a e = Gb=>b V e *= +a Ce = i C 2 O *a G V 3 3 O O
e GCdW7
@ en C -
e C C=O*9
- H = m .C
. e &C6 eJ (J C -
E cCu-C C > p 4e O9 O O - C h C b O M =C e O sa hCdCe
= - -
> - es @O G ,
E c .g d
@ ea C =GUO e- > C C e -
e r -
0 0 ** d O ** O >
w e = = c c 6 J-
- m. E > d *a g L > +J E e
@ Z e e a 3 -C= >
. - W C ** = 3 W mO- .
m ( @ C O L W >Q *a @
> > =O y n +a O XCC LJ r - w a - a b Co-ou J 0 e 3 C a O>==
CD O > -e 6 g - ==bWC 4 0 ** a es e C g
> > m @ eeeer C e a 6 e m K -
C 3 6 6 -6m6)
( -O -
a 3 e O *a c w E Weo W E
- a e { ) -
d C
U ==@LC CCOO -
A
- a 3
-OOOOO e e #
O=
O * *a e 6 =
= E *a *a ao a
a e w c b .**. e a V *a V O C =
= CD L UOOO eeCCV w
e b 0 a @ '% E wtC W
=O C .... E C E CL =0 c CD a = CD CD CD CD 3 to CD -- CD 3O E > *a s +a -
a a ** c W O u . t W J e -- e **** ** * =
3DCU @>
CD 4 344 E C(((( C(( C( C( 4COeM>-
E > u 3 O O O *a 3=
aeoe>
C=e 3 CON C#cch =oO*N -mN .O
=N -O Z E Geh COO 44 eJO"~e *a e w *a f *a # C=-c=>
O 600 aCOOC eOOOO 900 40 mo @@ Dan X 0 - ww w w w t* -wwww -ww -w -w EDC C10 Z > % -e ee 3a e ae 3e t =a 3 CcObsoe 4 4 L'e =I -OOOO U~~we U"" U" Uw =uuobcC J eNN ONNNN 6mmmm 6mm 6M 6m e +6 +a r u E Q E CD CD AAA& = O co in C = co CD - CD = CD *a .- +a e o
-O W -NN NNNn CNNNN UNN UN ON C3Ceb )
- L C C 0 C O M C O O ea 0 M A C E E E % O -C W-O E C W C *a = b Z W D Z A.V.
6 C3Ce eyeee w w . . . . eLbtted o e N M # io E6ae- e W =t. CObu
> L> BOO-X
.A. OOOe(Wa
( .
> 0 .
w
. p ww HATCH - UNIT 2 3/4 6-28 Proposed TS/0040q/104-59
.n-
- ' a e
d C C -
@@L V43
- +a y a =
y U o -OCD w - e e +a @
w - m 3 eC
@ o @ C@@@
> ) eC-a
-m --
E - *a O e C 4 '-
> > @3E@
- C e CD D2 C ** O @
O > ^ O * *a +3 *
- m -
@~ OO
- a C w w CeaC-g
-O
- e -4K U
-- a ND4h O * > 0 Me@
w g w
- *a w A D
- e g .e. .=- C r
M C @ > +8 @ @ d O w
@ W > @ 3 *a & C +#
C - = C C w +a +s >
> - e O - - -V
.J - @ > - -
DECe@
< C M @6->6 a
V
> C - C e C C@ =
O -
O -
O @ +J O U 3
@ E - -
O -
aC*C7 3 0 +a C *e m +3 O-Oe@
C -
4 0 4 -
a CCb
-- > *a - -
- a a 4 C *a O @ C ** =
@ C Dg U@
C J @ m e C @ O 6 O O E *a - -
E A C +a D g O M 3 C -
3 mO @
w - 6 @ @ L ea E C ** E Dxa w w e 3 -C e ==CU@
e E C 6 -O e C +# 0 )
C @ b = .J -
M w - *J +8 -
> *a E e
- E e C e -C- >
@ Z @ C C *a @ @O= *
- = k - C **
m 4 3
- a g >u U@
> a e @ g E ==
hCC W Z W C @ = @ +#
O d 6 *a 3 b
a O) =
.) - @ 3 C --6mC cc Q a 6 e @ +# # @ ea +a e C @
< U a w E e @ 6 eaeec g
L 3 C > 0 -6e63 3 C b - -
U O +# @ *a
( C C a +3 4 AWO #
g = a= W @ > )
- *a +a - C 6 - -- @ L C O CCOO-E C U g -OOOO 3O C -
U-4 0 3 @ W O @ = E *a *a +a O e m ) =..= e e - A +a n O C -
w M
a a -00000 @Q 6
- a e g 44CQV E wgC W
E E b = .. a. - C CL =0 .
30 3 C CO C CD CD C CD o e +#@dOO@
M >
w .J a -a @ @ W 3VCO >
- *
- C ==** C * - @ ( C 0 4 8-c 4 CC C44 ~<<<< -4 > 0 3- Ce l E > 0 0 - -
@NN O o +a@@>
D -O -m2 OwNm 3 Cn == = D Ce>w C~~L-E E *a n sa C O ENNhk E2 600 4 *bb@ @ @ D +a n 1C I
O O 40
-w 400 eOCOO 90 smm OOOO E@C CO
- == 6 6 @6www Cw a66 @ wwww CcObe@
i E > 3I 3e s *a e e i e *a e B e 6 e i e s -UUObc I ( (a Q e= Q w o= W w e= a= w M e= so w e= 3 c= e= re e= gW sa Q l 6m bem NNNN A EAA W NNNN w=wd 1
E O -2 -CC Cccca OW 00 w WCCC C) COL l M ON UNN -NNNN
-O g
@ g
-N O ANN E
- NNNN OdeuC) -C l O E g Z g > A C e @ ea b-O hDC3C l
2 w L-479d
]
D 4bb@DW w r . . . . . .
E 6 +a e == 9 W
O N C > O ** N CUU
- * *=
~@boOX b>
a -A O O O e.W.
> 0 -
- l I
HATCH - UNIT 2 3/4 6-29 Proposed TS/0040q/104-68 j l
e M C C =
@@L V43
= +a D 0
-OGV ee&9 3 eC C@@9 mC-Q E -L-*a O 93E9
- CD DD ea O @
. n +a *a n
.a m- 00 CWaC-n -eE U c Nay h
> a - we9 m- e p
e
- ** w E a
-C na@OdO j
M . e 3 & 4 W +#
w e- C > w +a +b >
> 0 - - -V i
.J . e VECe9
(
M -e +# > @6-> 6 CO -
t = = C a C +# C D 3
@ Z a K O O e aCet7 3 O e d - -
C-OWG C - - * *a e 4Ob
- a w
(
W A =@ e @ @CM=
> ae U9 C J > = C O -
O b O O - Z - W e A C +b V e Q W 4 - - > eO @
w -
E- V4W K C @ C =@QD I
- e- C O C e O # 0 +# 0 >
e E O s - - C -
GLJ-m w g
- a w - > >sE e 1 E
~
a a
Z s
e sa C O C
e
-u. -C-eO= .
. =
O >U *a v M ( O C = 2 a hCC
> = m . 6 *a C - c C e - e +a bi E a - O
- e -0
- O>=~
a 0 - E a @ d ==0dC (D Q a @ s ** C *a C @ en +a C y
( V C 6 W c e =
> aaweC p > c - C $ - = =
- w to b )
E 3 - * - 3 0 e Owew
( .C W b d C > dWu d K o C @ +a -
O ==GbC
- W O
- 6 W =
C CCOO-E C -QQO 3C C = +b O U-L. O ** * = 0 e -
- E U +a +a o e s s s e s G u *a *a n o C -
w ** Q Q O @O @ +a C e aeC9V C 6 6 C g -
6 wDC .
w O C = * = a= 3 O E O Ob =0 +9 E ID C CD CQ da u 3 CD CD e a3 *aeeUuO>
E w
> "5 @ W b =m CD 3DCU >=
.J G = = = C = m . U +# .... .
cc (
> *a e
( ( ( -( b4 3 -
- 4<<< b(
( C O e +a - e 3*= Ce>
z - a .C e +a *aec> 4 3 C e- M Os 3 C CCN = - M A P- @ =C Ca=4-E E =#be EN h- =OO 233.93 =N U n D eu n 4 U O C00 es o eO -00 =00000 CM ECC CO@
O - a66w ow 66 ww cwwwww 66 cc06ecc Z P= Ee e e +b e Aee > e e e ee e -oy064y
( (J 3--- .- .a-e o-- ee----- Ee sa au GNNN 3 N V34 =NNNNN 3a +a-ad D Z O CD CO CD -W CW COO CQ 23 to CD CD 3 *= c)CCb)@
O O *aN N N ON 6N
,. m .e N N ENNNNN ON e u _ O8. abewo u O E
= 8 m E > Oe. a.e
=
3 w
Z b.DC3C.1
-e7@
w -
O M
,. e e
e-e Rbb@UdO u
-.o-.Coub w - - r- = .= e- L>bOOX=
.J AOOO4W(--
( .
> u . .
HATCH - UNIT 2 3/4 6-30 Proposed TS/0040q /104-68
9
- c TARLE 3.6.3-1 (Continuedl ,
2=
pj PRIMARY CONTAINMENT ISOLATION VALVES x
VALVE FUNCTION AND NUMBER c: C. OTHER ISOLATION VALVES (Continued)'**
2 1] 19. RHR pump suctlon reller valves
p, 2 Ell-F030 A, 8, C, D
! 2E41-F046 2E11-F097888
- 22. RCIC turbine vacuum pump discharge isolation valves
, 2E51-F028 1
! 45 2041-F049 1
Ch t e
! I$
i 1
o o
l5 m
m O.
-a om N
o O
4 C3 e 43 i
- j jk '*8Pr! mary Containment Automatic Isolation valves may be opened (utilizing the manual a
ao override switches) under administrative control on an intermittent basis during accident or transient conditions (not necessarily limited to those in the FSAR) to mitigate the consequences of the accident or transient. Locked closed valves may not be opened during 2 accident or transient conditions when the valves a re required to be closed.
1
' ' ' P re s su re re l i e r va l ve.
i
~
7 r
TABLE 3.6.3-1 (Continued)
$[ PslMARv CONTAINMENT ISOLATION VALVES
-4
[] VALVE FUNCTION AND NUMBER 8
C. OTHER ISOLATION VALVES (Continued)
C sc 24. H PCI exhaust drain isolation valves
[] 2E41-F022 2E41-F040 ru
RV'd' 2T49-f009 A, B
- 26. Core spray test line isolation valves 2E21-F036 A, B 2E21-F044 A, B
- 27. Control air to vacuum breakers isolation valve 2 T48-F 342 A, B, C, D, E, f, C, H,1.J, K, L
- 28. Torus to d rywe l l vaccum b r ea ke r a i r cyl inde r 2T48-F323 A,B,C,D,E,F,C,H,1,J,K,L ca
}; 29. Suppression ' pool purirication system suction line blind riange 2G51-DOO1 cn
[a 30. Suppression pool . vent and purge system supply line blind riange ro 2148-DOO6 31 RHR head spray isolation valve 2E11-F023'"
m o
V O
to L
-4 12 OO40q o
o o
J3 23
Primary Containment Automatic isolation valves may be opened (utilizing the manual C3 override switch 6s) under administrative control on an intermittent basis during accident -
j' or transient cor;d6 tions (not necessarily limited to those in the FSAR) to mitigate the en consequences or the accident or transient. Locked closed valves may not be opened during accident or transient conditions when the valves are required to be closed.
00 8 *
- Pressure relier valve.
' ' ' T he rma l re l i e r va l ve.
- *
- Deact i va ted a nd l ocked in the closed (isolation) position.
_ _ . _