ML20127C664
ML20127C664 | |
Person / Time | |
---|---|
Site: | Zion File:ZionSolutions icon.png |
Issue date: | 12/31/1990 |
From: | Lau F, Lordi T, Meyer T WESTINGHOUSE ELECTRIC COMPANY, DIV OF CBS CORP. |
To: | |
Shared Package | |
ML20127C650 | List: |
References | |
WCAP-10962, WCAP-10962-R02, WCAP-10962-R2, NUDOCS 9209100012 | |
Download: ML20127C664 (108) | |
Text
, . _ _ _ _ . _ - , . _ . . _ . _ . _ , _ _ . . . _ . _ _ . . _ _ _ _ _ . . . _ _ _ _ . _ _ _ ._ _ _ _ . .
$ WESTINGHOUSE CLASS 3 i
i WCAP-10962 7 Revision 2 i
l.
- j. i ZION UNITS l AND 2 REACTOR VESSEL
i t l J. M. Chicots !
E. P. Lippincott !
i- -M. A. Weaver K. R. Balkey l i
1
- a e
Work Performed for Co monwealth Edison Company- '
. December 1990 n >
APPROVED:d APPROVED: d / d I
Tl A. M( f. L. Lau, Manager Structu/yer, Mariager a1 Materials an Reliability Technology Radiation. Engineering and Analysis .
, APPROVED: /M k b -Im
! /I. A.: Lordi, Manager . (j ~
'- Reactor Coolant Systems- ,
Components Licensing l- WESTINGHOUSE ELECTRIC CORPORATION' Nuclear and Advanced ~ Technology Division P.O. Box 2728
=
Pittsburgh,-Pennsylvania 15230-2728 e 1990 Westinghouse Electric-Corp. ,
e
-- 4414s/121 3 0 10 poKOO
{
P- ,
. . .... _,- ,- - . - , . . - - , . . - . . - . . . - . - . , . - , - , , . , . + . . - . . . . - , , . . . .
WESTINGHOUSE CLASS 3 TABLE OF CONTENTS PA3E, TABLE OF CONTENTS 11 LIST OF TABLES lii LIST OF FIGURES vii
- 1. INTRODUCTION
- 1. 1 The Pressurized Thermal Shock Rule
- 1. Method of Analysis 5
- 2. Fast Neutron Fluence Results 5
-8
. III. MATERIAL PROPERTIES
- 1. 40 2.
Location and Identification of-Beltline Region Materials 40 Definition and Source of Material Properties for-All- -40 Vessel Location-
- 3. Summary of Plant-Specific Material Properties 42 IV. DETERMINATION OF RT
. VALUES FOR ALL BELTLINE 47 REGION MATERIALS "'*
- 2. Discussion of Results 48 V.
CONCLUSIONS AND RECOMMENDATIONS 53 VI. REFERENCES 56 VII. APPENDICES A. Power Distribution A-1 B. __
Comparison of Zion Plant Specific Fluence Calculations B-1 With Surveillance Capsule and Cavity Measurements C. Wald Chemistry D. RT C-1 PTS Values of Zi n Units 1 and 2' Reactor Vessel D-1 Beltline Region Materials-wwmmo i. -
g3-
- UESTINGHOUSE CLASS 3 LIST OF TABLES
- .P,,,aJL' II.2-1 Maximum Fast Neutron (E>1.0 MeV) Exposure at the Pressure 11 Vessel Inner Radius - 0' Azimuthal Angle - Zion Unit 1 11.2-2 Maximum Fast Neutron (E>1.0 MeV) Exposure at the Pressure 12 Vessel Inner Radius - 15' Azimuthal Angle - Zion Unit 1 11.2-3 Maximum Fast Neutron (E>1.0 MeV) Exposure at the Pressure 13 Vessel Inner Radius - 30' Azimuthal Angle - Zion Unit 1 II.2-4 Maximum Fast Neutron (E>1.0 MeV) Exposure at the Pressure- 14 Vessel Inner Radius - 45' Azimuthal Angle Zion Unit 1 4
11.2-5 Fast Neutron (E>1.0 MeV) Exposure at the 4' Surveillance Capsule Center - Zion Unit 1 ~
15: ,
11.2-6 Fast Neutron (E>1.0 MeV) Expcsure at the 40' Surveillance Capsule Center - Zion-Unit 1- 16 !
t
~
11.2 FastNeutron(E>1.0MeV)'ExposureatthePressureVessel - 17 Upper Circumferential Wald - 0' Azimuthal Angle - Zion Unit 1 11.2-8 Fast Neutron (E>1.0 MeV) Exposure at the Pressure Vessel 18 l' Upper Circumferential Weld - 15' Azimuthal Angle - Zion Unit 1 11,.2-9 t Fast Neutron-(E>1.0 MeV) Exposure at the Pressure Vessel 19 Upper Circumferential_ Weld - 30' Azimuthal Angle Zion Unit 1-11.2-10 Fast Neutron (E>1.0 MeV) Exposure at the Pressure Vessel 20 Upper _ Circumferential Weld - 45' Azimuthal . Angle - Zion Unit 1- r f
11.2-11 Maximum Fast Neutron-(E>1.0 MeV) Exposure at the. Pressure- 21 Vessel Inner Radius 0* Azimuthal Angle - Zion Unit 2 -
11.2-12 Maximum Fast Neutron (E>1.0 MeV) Exposure at the Pressure- 22 Vessel Inner Radius 15' Azimuthal Angle - Zion Unit 2 .
11.2-13 Maximum Fast Neutron (E>1.0 MeV) Exposure at the Pressure 23-Vessel Inner Radius 30' Azimuthal Angle =-' Zion Unit 2 11.2-14 Maximum Fast Neutron (E>1.0 MeV) Exposure _at the Pressure 24 Vessel Inner Radius 45' Azimuthal Angle - Zion Unit 2 *
!!.2-15 Fast-Neutron (E>1.0 MeV) Exposure at the-4' Surveillance 25 Capsule Center - Zion Unit 2__
!!.2-16 -Fast Neutron (E>1.0 MeV)' Exposure at the 40' Surveillance 26 Capsule Center - Zion Unit 2
- II.2-17 Fast Neutron (E>1.0 MeV) Exposure at-the Pressure Vessel _ -
27-Upper Circumferential Weld - 0' Azimuthal Angle - Zion _ Unit 2 3
m..mino is ggg_
- *, ., e,.,o,,,, .,w,-.w.- ,,---.w~.,.,.%,w,,---, em ..%.. v-.. v ,e .- r ,,w.,.-~ v , ...#..e. .-.,-~.-,.---~,..v.;em.rw ,.~,,..ew,,,*r-.,1e,-~,.--.m-
l UESTINCHOUSE CLASS 3 LIST OF TABLES (continued)
Pace II.2-1B Fast Neutron (E>1.0 MeV) Exposure at the Pressure Vessel 2B Upper Circumferential Weld - 15' Azimuthal Angle - Zion Unit 2 11.2-19 Fast Neutron (E>1.0 MeV) Exposure at the Pressure Vessel 29 Upper Circumferential Weld - 30' Azimuthal Angle - Zion Unit 2 11.2-20 Fast Neutron (E>1.0 MeV) Exposure at the Pressure Vessel 30 Upper Circumferential Weld - 45' Azimuthal Angle - Zion Unit 2 11.2-21 Calculated Reference Radial Distributions of Fast Neutron 31 Flux (E > 1.0 MeV) Within the Pressure Vessel Normalized to Inner Radius 11.2-22 Zion Units 1 and 2 Relative Axial Power Distribution 32 Averaged Over 12 Cycles 111.3-1 Zion Unit 1 Reactor Vessel Beltline Region Material Properties 43 111.3-2 Zion Unit 2 Reactor Vessel Beltline Region Material Properties 44 IV.3-1 Zion Unit 1 RT Values PTS 49 IV.3-2 Zion Unit 2 RT Values PTS 50 A.1-1 Core Power Distributions Used in the Plant Specific A-3 Fluence Analysis - Zion Unit 1 A.1-2 Core Power Distributions Used in the Plant Specific A-4 Fluence Analysis - Zion Unit 2 B.1-1 Comps.rison of Measured Average Fluence Rate B-6 (E>l mV) With Calculation w..newe ;y
WESTINGHOUSE CLASS 3 LIST OF TABLES (continued)
?*H C.1-1
- ,n Unit 1 Intermediate and Lower Shell Longitudinal C % ls Chemistry From WOG Matsrials Data Base -
Wire Heat Number 8T1762 C.1-2 d 7 ion Unit 2 Interme'iate Shell Longitudinal Weld Chemistry C-3 From WOG Material-Data Base - Wire Heat Number 7b O2 C.1-3 Zion Unit 2 Beltline Circumferential Weld Chemistry from C-4 WOG Materials Data Base - Wire Heat Number 71249 C.1-4 ,
Zion Unit 1 Beltline Circumferential Weld and Zion Unit 2 C-7 Lower Shell Longitudinal Weld Chemistry From WOG Materials Data Base - Wire Heat-Number 72105 C.1-5 Zion Unit 1 Upper to Intermediate Shell Circumferential C-16 Weld Chemistry From WOG Materials Data Base - Wire Heat Number 406L44 C.1-6 Zion Unit 2 Upper to Intermediate Shell Circumferential C-19 Weld Chemistry.From WOG Materials Data Base - Wire Heat.
Number 821T44 D.1 RT PTS Values for Zion Unit 1 Reactor Vessel Beltline 0-3 Region Materials a't Fluence = 1.0 x-1018 n/cm2 .
0.1-2 RT PTS Values for Zion Unit i Reactor Vessel Beltline- 0-4
-Region Materials at Fluence = 5'.0 x 1018 n/cm2 D.1-3 RTPTS Values for Zion Unit 1 Reactor Vessel-Beltline- 0-5 RegionMaterialeatFluence=1.0x1Mkn/cm2 mwmma ie y
~
WESTINGHOUSE CLASS 3 LIST OF TABLES (continued)
.P.,ajte, 0.1-4 RT Values for Zion Unit 1 Reactor Vessel Beltline D-6 PTS Region Materials at Current (9.72 EFPY) Fluence D.1-5 RT Values for-Zion Unit 1 Reactor Vessel Beltline D-7 PTS Region Materials at End of License (25 EFPY) -
Projected Fluence Value 0.1-6 RT PTS Values for Zion Unit 1 Reactor Vessel Beltline- D-8 Region Materials at 32 EFPY - Projected Fluence Values D.2-1 RT Values for Zion Unit 2: Reactor Vessel Beltline- D-9 PTS Region Materials at Fluence = 1.0 x 1018 n/cm2 0.2-2 PTS Values for Zion Unit 2 Reactor Vessel Beltline RT D-10 Region Materials at Fluence = 5.0 x 1010 n/cm2 0.2-3 RT Values for Zion Unit 2 Reactor Vessel Beltline 0-11 PTS Region Materials at Fluence = 1.0 x 1019 n/cm2 D.2-4 RT Values for Zion Unit 2 Reactor Vessel Beltline D-12 PTS Region Materials at Current (10.19 EFPY) Fluence).
D.2-5 RT Values for Zion Unit 2 Reactor Vessel Beltline' D-13 PTS Region Waterials at;End of License (25 EFPY) -
t Projected Fluence Value D.2-6 -RT Values for Zion Unit 2-Reactor Vessel Beltline PTS .D-14
!:egion Materials at'32 EFPY - Projected Fluence Values uu.mina to yg ..
UESTINGHOUSE CLASS 3 LIST OF FIGURES PAGE
!!.1-1 Zion Reactor Geometry 33 11.2-1 Maximum fast Neutron (E>1.0 MeV) Fluence at the Beltline 34 Weld Locations as a Function of Full Power Operating Time - Zion Unit 1 11.2-2 Maximum fast Neutron (E>1.0 MeV) Fluence at the Beltline 35 Weld Locations as a function of Full Power Operating Time - Zion Unit 2 11.2-3 Maximum Current and Projected EOL Fast Neutron (E>1.0 MeV) 36 Fluence at the Pressure Vessel Inner Radius as a function of Azimuthal Angle - Zion Unit i 11.2-4 Maximum Current and Projected EOL fast Neutron (E>1.0 MeV) 37 Fluence at the Pressure Vessel Inner Radius as a function of Azimuthal Angle - Z m Unit 2 11.2-5 Relative Radial Distribution of Fast Neutron (E>1.0 MeV) 38Flux and Fluence Within the Pressure Vessel Wall Zion Units 1 and 2 11.2-6 Relative Axial Distribution of Fast Neutron (E>1.0 MeV) Flux 39 and Fluence Within the Pressure Vessel Wall Zion Units 1 and 2 111.1-1 Identification and Location of Beltline Region Material 45 for the Zion Unit N,o. 1 Reactor Vessel 111.1-2 Identification and Location of Beltline Region Material 46 for the Zion Unit No. 2 Reactor Vessel IV.1-1 Zion Unit 1 - RT p73 Curves per PTS Rule Methodology 51 IV.2-1 Zion Unit 2 - RT PTS Curves per PTS Rule Methodology 52 A.1-1 Zion V' nits 1 and 2 Core Description for Power A-5 Distribution Maps m..mine io ygg
.~ .. ..
WESTINGHOUSE CLASS 3 SECTION I INTRODUCTION The purpose of this report is to update the reference temperature for pressurized thermal shock (RTPTS) values for the Zion Units 1 and 2 reactor vessels to address the Pressurized Thermal Shock (PTS) Rule.Ill Conflicting data on Babcock and Wilcox reactor vessel drawings for the Zion units was recently discovered which impacts the location of some of the reactor vessel beltlineregionwelds.I23 New neutron exposure data has recently become available from the Zion surveillance capsule and ex-vessel dosimetry program that changes the projected neutron fluence and RTPTS values. Finally.
United States Nuclear Regulatory Comission (NRC) accepted chemistry ;sluos for the limiting Zion reactor vessel welds, which are higher than those used in the original Zion PTS submittal, are applied to complete the update of the RTPTS values.
Section I discusses the Rule and provides the methodology for calculating RT PTS. Section 11 presents the results of the-neutron exposure evaluation assessing the effects that past and present core management strategies have had on neutron fluence levels in the reactor vessel. Section !!! shows the location of the Zion Unit 1 and 2 reactor vessel beltline region materials, and includes a definition of the chemical and mechanical properties for these materials. -Section IV provides the RTPTS calculations for the present, projected end-of-license and end-of-life fluence values.Section V gives conclusions and recommendations. References for this report are provided in Section RT VI with detailed information related to the neutron fluence and PTS calculations being given in Appenoices A through D.
1.1 THE PRESLURIZED THERMAL SHOCK RULE The Pressurized Thermal Shock (PTS) Rule was spproved by the U.S. Nuclear Regulatory Commissioners on June 20, 1985, and appeared in the. Federal Register on July 23, 1985. The date that the Rule was published in the Federal Register is the date that the Rule became a regulatory requirement.
m .mumne i
e
_ _ _ _ _ _ _ _ _ :)
G WESTINGHOUSE CLASS 3 The Rule outlines regulations to address the potential for pressurized thermal shock- (PTS) of pressurized water reactor (PWR) vessels in nuclear power plants that are operated with a license from the United State;; Nuclear Regulatory Commission. PTS events have been shown from operating experience to be
-transients that re ult in a rapid and severe cooldown_in the primary system coincident with a high or increasing primary system pressure. The PTS concern arises if one of these transients acts on the beltline region of a reactor vessel where a reduced fracture resistance exists because of neutron irradiation. Such an event may produce the propagation of flaws postulated to exist near the inner wall surface, thereby potentially affecting the integrity of the vessel.
The Rule establishes the following requirements for all domestic, operating PWRs:
Establishes the RTPTS (measure of-fracture resistance) Screening Criterion for the reactor vessel beltline region 270'F for plates, forgings, axial welds 300'F for circumferential weld ' materials 6 Months From Date of Rule: All plants had to submit their present -i RT PTS values (per the prescribed methodology) and projected RT PTS values at the expiration date of the operating -license. The date that this submittal had to have been received by the NRC for plants with operating licenses was January 23, 1986.
9 Months From Date of Rule: Plants projected to exceed the PTS Screening Criterion had to submit an analysis and a schedule for implementation of 3 such flux reduction programs as are reasonably practicable to avoid reaching the Screening Criterion. The data for this_ submittal _had to have been received by the NRC for plants with operating licenses by April 23, ll 1986. I!
. au.mim io g J
WESTINGHOUSE CLASS 3 Requires plant-specific PTS Safety Analyses t > ' a plant is witain 3 years of reaching the Screening Criterion, incWding analyses of '
alternatives to minimize the PTS concern.
Requires NRC approval for operation beyond the Screening Criterion.
For applicants of operating licenses, values of the projected RT PTS are to ,
be provided in the Final Safety Anai, sis Report. This requirement is added as part of 10CFR Part 50.34.
in the Rule, the NRC provides guidance regarding the calculation of the toughness state of the reactor vessel materials - the " reference temperature for nil ductility transition" (RTNDT). For purposes of the Rule, RT is NDT now defined as "the reference temperature for pressurized thermal shock" (RTPTS) and calculated as prescribed by 10 CFR 50.61(b) of the Rule. Each NRC licensed PWR must submit a projection of RT PTS values from the time of the submittal to the license expiration date.
This assessment had to be submitted within 6 months after ths effective date of the Rule, on January 23, 1986, with updates whenever changes occur affecting projected values. The calculation must be made for each weld and plate, or forging, in the reactor vessel beltline. The purpose of this report is to update the RT PTS
"'I"'S for Zion Units 1 and 2 because of the change in location of some ci the reactor vessel beltline welds, new neutron exposure information, and the use of higher NRC accepted chemistry values for the limiting welds.
1.2 THE CALCULATION OF RT PTS In the PTS Rule, the NRC Staff has nelected a conservative and uniform method for determining plant-specific values of RT PTS at a given time.
The prescribed equations in the PT!. rule for calculating RT PTS are actually -
one of several ways to calculate RT NDT. For the purpose of comparison with the Screening Criterion, the value of RT PTS f r the reactor vessel must be calculated for each weld and plate, or forging in the beltline region as given below. For each material, RT PTS is the lower of the results given by Equations 1 and 2.
m..mo.o is 3
's.. _mmm.,.__--__
WESTINGHOUSE CLASS 3 i
'T Equation 1:
0 RTPTS = I + M + (-10 + 470(Cu) + 350(Cu)(Ni)) f .270 Equation 2: l l l 0
RT PTS = I + M + 283 f .194 where ,
, 1 = the initial reference transition temperature of the unirradiated material
! measured as defined in the ASME Code, NB-2331. If a measured value'is not available, the following generic mean values must be used: 0*F for welds made with Linde 80 flux, and -56'F for welds made with Linde 0091, 1092.and 124 and 4
ARCOS B-5 weld fluxes.
M = the margin to be added to cover uncertainties in the values of initial RTNDT, e pper and nickel content, fluence, and calculation procedures. In Equation 1, M=48'F if a measured value of I was used, and M=59'F if she generic mean value of I was used. In Equation 2, M=0'F if a measured value of I was used, and M=34*F if the generic mean value of I was used.
Cu and Ni = the best estimate weight percent of_ copper and nickel in the j material, f = the maximum neutron fluence, in units of 1019 n/cm2 (E greater than or equal to-1 MeV), at the clad-base-metal interface on the 5 side surface of the vessel at the location where the material in question receives the highest fluence for the period of service in question.
1 x
- = . . . - - . . - . - - . . - . . . . -- , . . . _ , . . . , . - . _ - . . - . . ,.-
. . . _. ._ . .=
WESTINGHOUSE CLASS 3 SECTION 11 NEUTRON EXPOSURE EVALUATION This section presents the results from the Westinghouse evaluation of the fast ,
neutron exposure of the Zion Units 1 and 2 reactor vessels for Commonwealth Edison Company. The use of adjoint importance functions provides a cost effective tool to assess the effects that past and present core management strategies have had on neutron fluence levels in the reactor vessel. In particular, the adjoint methodology has been used to assess the effect of the introduction of low leakage core management sc(wes in both units.
11.1 METH00 0F ANALYSIS A plan view of the Zion Units 1 and 2 reactor geometry at the core micplane is shown in Figure !!.1-1. Since the reactor exhibits 1/8th core symmetry only a 0*-45' sector is depicted. Eight irradiation capsules attached to the thermal shield are included in the design to constitute the reactor vessel surveillance program. Two capsules are located syumetrically in each quadrant at azimuthal positions of 4* and 40' from the reactor core cardinal axes as shown in Figure !!.1-1.
In performing the fast neutron exposure evaluations for the reactor geometry, two sets of transport calculations were carried out. The first, a single computation in the conventional forward mode, was utilized to provide baseline data derived from a design basis core powor distribution against which cycle by cycle plant specific calculations can be compared. The second set of calculations consisted of series of adjoint analyses relating the response of
~
interest (neutron flux > 1.0 MeV) at several selected locations within the reactor geometry to the power distributions in the reactor core. These ad oint importance functions, when combined with cycle specific core power j distributions, yield the plant specific exposure data for each operating fuel i cycle.
m..mu "
5
WET,TINGHOUSE CLASS 3 The forward ..snsport calculation was ccrried out in R,0 geometry using the DOT discrete ordinates code (3) and the SAILOR cross-section library (4). The
! SAILOR library is a 47 group, ENDF-BIV based data set produced specifically
~
for light water reactor applications. Anisotropic scattering is treated with aP3 expansion of the cross-sections.
The design basis core power distribution utilized in the forward analysis was derived from statistical studies r' long-term operation of Westinghouse 4 o;,op plants. Inherent in the development of this design basis core power distribution is the use of an out-in fuel management strategy; i.e., fresh fuel on the core periphery. Furthermore, for the peripheral fuel assemblies, a 2e uncertainty derived from the statistical evaluation of plant to plant and cycle to cycle variations in peripheral power was used. Since it is unlikely that a single reactor would have a power distribution at the nominal
! +2a level for a large number of fuel cycles, the use of this design basis 3
distribution is expected to yield conservative results for actual out-in fuel loading patterns. In cases where low leakage fuel management has been employed, the design basis results wi" 'a even more conservative.
The adjoint analyses were also carried out using the P3 cross-section approximation from the SAILOR library. Adjoint source locations were chosen at the center of each of the surveillance capsules as well as at m.itions at four angles in the reactor cavity. These positions were rela m i positions at O', 15', 30', and 45' on the vessel inner surface at the clad-base metal interface using the design basis forward analysis. The adjoint calculations were run in R.e geometry to provide power distribution importance functions for the exposure parameters of interest (neutron flux > 1.0 MeV). Having the adjoint importance functions and appropriate core power distributions, the response of interest is calculated as:
R0'#R 6
- I (R,0) F (R,0) R dR de where:
Rg,g = nesponse of interest (# (E > 1.0 MeV)) at radius R and i
az.muthal angle 0.
uu m ma,o 5
S WESTINGHOUSE CLASS 3 I (R,3) = Adjoint importance function at radius R and azimuthal angle 6.
F (R,0) = Full power fission density at radius R and azimuthal angle 0.
It should be noted that as written in the above equation, the importance function I (R, 0) represents an integral over the fission distribution so that the response of interest can be related directly. to % spatial distribution of fission density within the c< actor core.
Core power distributions for use in the plant specific fluence evaluations for Zion Units 1 and 2 were taken from the design of each operating cycle for the
~
two reactors. The specific power distribution data used in the analysis is summarized in Appendix A of this report. The data listed in Appendix A represents cycle averaged relative assembly powers derived from the cycle burnup for each assembly. Therefore, the adjoint results provide a fuel cycle averaged neutron flux which, w%n multiplied by the fuel cycle length, yields the incremental fast neutron fluence. The adjoint methodology includes effects due to fuel enrichment and burnup on fission neutron yield, energy per fission, and fission neutron spectrum.
The transport w>hodology, both forward and adjoint, using the SAILOR cross-section library has been benchmarked against the Oak Ridge National Laboratory (ORNL) Poolside Critical Assembly (PCA) facility as well as against the Westinghouse power reactor surveillance capsule data base (5). The benchmarking studies indicate that the use of SAILOR cross-sections and generic design basis power distributions produces flux levels that tend to be conservative by 7-22%. When plant' specific power distributions are used with the adjoint importance functions, the benchmarking studies show that fluence predictions are within + 15% of measured values at surveillance capsule locations.
M les/1312010 7
f WESTINGHOUSE CLASS 3 11.2 FAST NEUTRON FLUENCE RESULTS Calculated fast neutron (E >1.0 MeV) exposure results for Zion Units 1 and 2 are presented in Tables 11.2-1 through 11.2-22 and in Figures 11.2-1 through 11.2-6. Data is presented for each unit at four azimuthal locations on the inner radius of the pressure vessel at the axial elevation for maximum fluence
. and at the location of the upper circumferential weld. In addition, the fluence is evaluated at the center of each surveillance capsule.
4 The plant specific neutron flux and fluence levels have been adjusted to take :
into account correlations of the calculated flux levels with available measured data for the : on units. This has been carried out to meet the requirements of ASTM Standard E853-87 " Standard Practica For Anelysis and Interpretation of Light-Water Reactor Surveillance Results, E706(IA)[6]."
Data from 4 surveillance capsules from Zion Unit 1,'3 surveillance capsules from Zion Unit 2, and cavity dosimetry from both units are included in the correlation. The description of tFis evaluation is presented in Appendix B.
The conclusion of the analysis indicates that the flux and fluence values calculated by the adjoint methodology should be adjusted upward o, 0%. All values in Tables 11.2-1 through II.2-20 contain this adjustment.
Plant specific maximum neutron flux and fluence levels at 0*, 15', 30', and 45' on the pressure vessel inner radius are listed in Tables 11.2-1 through 11.2-4 for the first 11 completed fuel cycles of Zion Unit 1 and projected for cycle 12. Values in these tables are applicable for the maximum axial fluence point at each azimuthal angle for the intermediate and lower shell plates and for the circumferential weld between these plates. A comparison of the plant specific fluence levels with the design basis fluence levels' predicted using the generic 4-loop core power distribution at the nominal + 2a level is also included in these tables. Similar data for the center of surveillance capsules located at 4* and 40' are given in Tables 11.2-5 and 11.2-6,
{
respectively.
Tables ".2-7 through 11.2-10 present data similar to Tables 11.2-1 through II.2-4 adjusted for the axial location of the circumferential weld between the upper and intermediate shells. These have been adjusted according to the uusmtwo g
WESTINGHOUSE Cl. ASS 3 specific axial power shapes for each individual cycle. Similar data for Zion Unit 2 is contained in Tables 11.2-11 through II.2-20.
Graphical presentations of the plant specific fast neutron fluence at key 4
locations on the J essure vessel are shown in Figures II.2-1 and 11.2-2 as a i
function of full power operating time for Zion Units 1 and 2, respectively.
For both Units 1 and 2, pressure vessel data is presented for the 45' location on the intermediate-to-lower shell circumferential weld as well as for the O' longitudinal welds (see Section III.1). Data from Tables 11.2-7 through 11.2-10 can be used to obtain similar information for the upper-to-intermediate shell circumferential weld for Zion Units 1 and 2, respectively.
In regard to Figure II.2-1 and 11.2-2, the solid portions of the fluence curves are based directly on the cycle specific evaluations presented in this report.
The dashed portions of these curves, however, involve a projection into the future.
Since both Zion Units are committed to a consistent form of low leakage fuel management, the average neutron flux at the key locations ovt:r the low leakage fuel cycles was used for all temporal projectionse In particular, the neutron flux average over cycles 9 through 12 was used to project future fluence levels for both Units 1 and 2.
The fluence projections in Figures II.2-1 and 11.2-2 have been carried out to 32 effective full power years. However, since RT
> PTS data corresponding to the license expiration date must be supplied to the NRC in response to the Pressurized Thermal Shock Rule, the fluences corresponding to the license expiration date are indicated in Figures 11.2-1 and 11.2-2. An 80% capacity factor was assumed for operation beyond Cycle 12 (including the seventh refueling outage) for each Zion Unit.
It should be noted that implementation of a more severe low leakage pattern would act to reduce the projections of fluence at key locations. Connonweal th Edison has expressed the intent to implement further flux reduction after Cycle 12[7), which would make the projections of vessel exposure in this document conservative. When such changes are implemented, evaluation of the RT PTS values will be updated to reflect the revised fluence projections as required by 10CFR50.61, a u,mme g
WESTINGHOUSE CLASS 3 In Figures 11.2-3 and II.2-4, the azimuthal variation of maximum fast neutron (E > 1.0 HeV) fluence at the inner radius of the pre m re vessel is presented as a function of azimuthal angle for Units 1 and 2, respectively.
Data are presented for both current and projected end-of-life conditions. In Table II.2-21 and Figure 11.2-5, the relative radial variation of fast neutron flux and fluence within the pressure vessel wall is presented. Similar data showing the relative axial variation of fast neutron flux and fluence over the beltline region of the pressure vessel is given in Table 11.2-22 and is shown 4 in Figure 11.2-6. The axial variation of fluence for each unit depends on a number of factors including core design and reactor operating mode. Values in Table II.2-21 represent the average over the first 12 cycles for each unit assuming full power operation to the fuel burnup.specified in the fuel design j report (see discussion in Appendix B). A three-dimensional description of the fast neutron exposure of the pressure vessel wall can be constructed using the data given in Figures II.2-3 through II.2-6 along with the relation e(R, 0,Z) = e(0) F(R) G(Z) i i
where:
e (R,0,Z) =
Fast neutron fluence at location R, 0, Z within the pressure vessel wall e (0) =
Fast neutron fluence at azimuthal' location 0 on the pressure vessel inner radius from Figure II.2-3 or II.2-4 F (R) =
Relative fast neutron flux at depth R into the pressure vessel from Figure 11.2-5 or Table 11.2-21 G (Z) =
Relative fast neutron flux at axial position Z from Figure II.2-6 or Table 11.2-22.
Analysis has shown that the radial and axial variations within the vessel wall aro relatively insensitive to the implementation of low leakage fuel management schemes. Thus, the above relationship provides a vehicle for a reasonable evaluation of fluence gradients within the vessel viall.
w <.ms m t o 19
WESTINGHOUSE CLASS 3
. TABLE ll.2 ,
MAXIMUM FAST NEUTRON (E > 1.0 MeV) EXPOSURE AT-THE PRESSURE VESSEL INNER RADIUS - 0* AZINUTHAL ANGLE - ZION' UNIT 1 CYCLE -CYCLE- CUMULATIVE i IRRADIATIOil CUMULATIVE AVERAGE FLUENCE RATIO TO CYCLE TIME IRRADIATION FLUX INTEGRATED DESIGN NO. S 2 2 TIME-EFPY (n/cm -sec) (n/cm )- BASIS (a) 1 3.84E+07 1.22 6.721E+09 2.581E+17 0.76 -
2 2.90E+07 2,14 7.027E+09-- 4.619E+17 - 0. 78 :
3 2.16E+07 2.82
' 7.900E+09- 6.325E+17: 0.80 4 2.37E+07 3.57 7.117E+09. 8. 012_ +17 0.80 5 2.56E+07 4.38- 7.855E+09 1.002E+18 0.82 6 2.45E+07 5.16 -7.404E+09- 1.184E+18 '0.82 7 2.80E+07 6.05 6.987E+09 1.379E+18 '0.82
- 8 2.19E+07 6.74 6.066E+09 1.512E+18 0.80' 9- 3.30E+07 7.79 6.114E+09 1.714E+18 0.79.
10 2.52E+07 8.59 6.188E+09 1.870E+18- 0.78
, 11 3.59E+07 9.72 6.465E+09 '
.2.102E+18. 0.78
- 12 3.53E+07 10.84 5.203E+09 2.286E+18 0,76 25.00 5.993E+09 4.962E+18 0.71
~32.00 5.993E+09 6.286E+18 0.70 9 2 (a) Designbasisfastneutron. flux =:8.84x10~n/cm-secatI3250NW th' i
e u u.mimo io 11
. . - . . . _. - . - - ._--.-..-.._...a--.-. , - . _ . . , . . . . . . , ...-..-- -... .- - ,,,
WESTINGHOUSE CLASS 3 TABLE 11.2-2 MAXIMUM FAST NEUTRON (E > 1.0 MeV) EXPOSURE AT THE PRESSURE VESSEL-INNER RADIUS - 15' AZIMUTHAL ANGLE - ZION UNIT 1 CYCLE CYCLE- CUMULATIVE IRRADIATION CUMULATIVE AVERAGE FLUENCE RATIO TO 1 CYCLE TIME IRRADIATION FLUX INTEGRATED DESIGN 2 2 l NO. S -TIME-EFPY (n/cm -sec) (n/cm ) . BASIS (a) 4 j 1 3.84E+07 1.22 1.085E+10 4.168E+17 0.79 j 2 2.90E+07 2.14 1.132E+10 7.450E+17 0.80
- 3 2.16E+07- -2.82 1.287E+10 1.023E+18 0.83
- 4 2.37E+07 3.57 1.162E+10 1.299E+18- 0.83
[
4 5 2.56E+07 4.38 1.292E+10 1.629E+18 0.85 6 2.45E+07 5.-16 1.235E+10 1.932E+18 0.86 l 7 2.80E+07 6.05 1.009E+10 2.215E+18- 0.84
!, 8 2.19E+07 6.74 9.615E+09 2.425E+18- 0.83 9 3.30E+07 7.79_ 1.021E+10 2.762E+18. 0.81 10 2.52E+07 8.59 1.025E+10 3.020E+18 0.81-I 11 3.59E+07 9.72 9.614E+09- 3.366E+18 0.79-12 3.53E+07 10.84- 8.940E+09 3.681E+18 0.78 l .
- 25.00
- 9.754E+09 8.038E+18 0.74'
- 32.00 _9.754E+09 1.019E+19 0.73 I (a) Design basis fast r/2utron flux = 1.38 x 10 10 n/cm2-sec at -3250
- MW th' 3
L f
l uu.n n uo i.
12 e---og1--g----as g w >'r'--d9 *-'-*'a f*'S-t- v -WM'* t+NTP-er-- **W +- 4*W7-e=r>+P -
P'*?W *'*T4<-*M# 9'
- WESTINGHOUSE CLASS 3 i
TABLE 11.2-3 MAXIMUM FAST NEUTRON (E > 1.0 MeV) EXPOSURE AT THE PRESSURE VESSEL INNER RADIUS - 30' AZIMUTHAL ANGLE - ZION UNIT 1 CYCLE CYCLE- CUMULATIVE-IRRADIATION CUMULATIVE AVERAGE FLUENCE RATIO TO CYCLE TIME IRRADIATION FLUX INTEGRATED. DESIGN, NO .- S 2 2 TIME-EFPY ('n/cm-sec) -(n/cm ) 8 ASIS (a) -
1 3. 84 E+07 -- 1.22 1.333E+10 5.117E+17 0.77 2 2.90E+07 2.14 1.346E+10 9.021E+17 0.78 ;
3 2.16E+07 2.82 1.630E+10 1.254E+18 0.82 4 2.37E+07 3.57 -1.512E+10- 1.613E+18- 0.83.
5- 2.56E+07 .4.38 .1.581E+10 ~2.017E+18 0.85 6 2.45E+07 -5.16 1.580E+10 2.404E+18 -0.86-7 2.80E+07 6.05 9.082E+09 2.659E+18 0.81-8 2.19E+07 6.74 1.170E+10- 2.915EC8 0.80 9 3.30E+07. 7.79 1.081E+10 '3.272E+18 0.77-10 2.52E+07 8.59. 1.103E+10- 3.550E+18' O.76 11 3.59E+07 9.72 1.036E+10- 3.921E+18 0.74 12 3.53E+07 10.84 1.091E+10 .4.307E+18 0.73 25.00 1.078E+10 9.120E+18 0.67 32.00 1.078E+10 .1.150E+19 0.66 (a) Design basis fast neutron flux = 1,72 x 1010 2 n/cm sec at 3250 MW th' w..mino io 13
,1
_ _ _ _ _ _ - _ . _ - - - - - - - - - - - - - - - - - ^ ' ~ ^ ^ ^ ^ ^ ~ '
WESTINGHOUSE CLASS 3 TABLE 11.2-4 MAXIMUM FAST NEUTRON (E > 1.0 MeV) EXPOSURE AT THE PRESSURE VESSEL INNER RADIUS - 45' A2IMUTHAL ANGLE - ZION UNIT 1 CYCLE CYCLE- CUMULATIVE IRRADIATION CUMULATIVE AVERAGE FLUENCE RATIO TO CYCLE TIME RRADIATION FLUX INTEGRATED DESIGN NO. 2 2 S TIME-EFPY (n/cm -sec) (n/cm ) BASIS (a) 1 3.84E+07 1.22 2.032E+10 7.801E+17 0.77 2 2.90E+07 2.14 2.048E+10 1.374E+18 0.77 3 2.16E+07 2.82 2.552E+10 1.925E+18 0.82 4 2.37E+07 3.57 2.368E+10 2.487E+18. 0.83 5 2.56E+07 4.38 2.418E+10 3.106E+18 0.85 6 2.45E+07 5.16 2.467E+10 3.710E+18 0.86 7 2.80E+07 6.05 1.346E+10 4.087E+18 0.81 8 2.19E+07 6.74 1.783E+10 4.478E+18 0.79 9 3.30E+07 7.79 1.580E+10 4.999E+18 0.77 10 2.52E+07 8.59 1.640E+10 5.413E+18 0.75 11 3.59E+07 9.72 1.547E+10 5.968E+18 0.73 12 3.53E+07 10.84 1.678E+10 6.560E+18 0.72 25.00 1.611E+10 1.376E+19 0.66 32.00 1.611E+10 1.732E+19 0.65 (a) Design basis fast neutron flux = 2.65 x 1010 n/cm2 -sec at 3250 MW th'
.m.mino ic 14
i
' WESTINGHOUSE CLASS 3 TABLE II.2-5--
FAST NEUTRON (E > 1.0 MeV) EXPOSURE AT THE 4
SURVEILLANCE CAPSULE CENTER - ZION UNIT-1 CYCLE CYCLE- CUMULATIVE IRRADIATION CUMULATIVE AVERAGE FLUENCE RATIO TO CYCLE TIME IRRADIATION FLUX INTEGRATED-- DESIGN
'NO. S 2 2 TIME-EFPY '(n/cm -sec) (n/cm ) BASIS (a).
1 3.84E+07 1.22 2.242E+10 8.609E+17 0.831 2 2.90E+07 2.14 2.347E+10- 1.541E+18 0.85-3- 2.16E+07 2.82 2.633E+10' 2.110E+18- 0.88 4 2.37E+07 3.57 2.367E+10 2.671E+18 -0.88 5 2.56E+07 4.38 2.609E+10 3.339E+18 -.0.89 6 2.45E+07 5.16 2.443E+10- :3.938E+18 0.90 7 -2.80E+07 6.05 2.408E+10 4.612E+18 - 0.90 -
8 2.25E+07 6.74 2.021E+10 5.066E+18 0.88-9 3.30E+07 7.79 2.083E+10 .5.754E+18- -0.87 10 2.52E+07 8.59 2.020E+10' 6.263E+18- 0.85 11 3.59E+07 9.72 . 2.204E+10 7.054E+18 0.85 12 3.53E+07 10.84 1.671E+10 ,7.644E+18- 0.83 25.00- 1.995E+10 1.654E+19- 0.78 32.00 1.995E+10- 2.095E+19- L0.77 2
(a) Design basis fast neutron flux i 2.70 x 1010 2 n/cm -see ai 3250 MW th'
-,..,m i.
13-
_ - _ - - _ _ _ - _ _ _ - - - - b
-- - - .. - .. .. .. . . . ~
WEST!NGHOUSE CLASS 3 L
3-
} ..
TABLE-11.2-6 3
1
?
FAST NEUTRON (E > 1.0 MeV) EXPOSURE AT iHE 40'
[ SURVEILLANCE CAPSULE CENTER --Il0N UNIT 1 4
CYCLE CYCLE- CUMULATIVE IRRADIATION CUMULATIVE AVERAGE FLUENCE RATIO TO i CYCLE TIME IRRADIATION FLUX INTEGRATED DESIGN-NO. S 2 2 j TIME-EFPY (n/cm sec) (n/cm ) BASIS (a)-
i 1 3.84E+07 1.22 6.972E+10 2.677E+18 0.83 i 2 2.90E+07 2.14 7.022E+10 4.713E+18 0.83
! 3 2.16E+07 2.82 8.826E+10 6.620E+18 0.88-l 4 2.37E+07 3.57- 8.178E+10 8.558E+18 0.90
!. 5 2.56E+07 4.38 8.318E+10 1.069E+19 0.92 6 2.45E+07 5.16 l 8.521E+10 1.277E+19-' -0.93 j 7 2.80E+07 6.05 4.528E+10 1.404E+19. 0.88-
[ 8 2.19E+07- 6.74 6.079E+10- 1.537E+19- 0.86
{ 9 3.30E+07 7.79 5.317E+10 1.713E+19 :0.83 10 2.52E+07 8.59 5.532E+10- 1.852E+19 0.81 I 11 3.59E+07 9.72 5.224E+10 2. 04 0E+19 -- 0.79 l 12 3.53E+07 10.84 5.714E+10-p 2.241E+19 0.78-p -25.00. 5.447E+10 -4.674E+19- 0.70
- 32.00 -5.447E+10- 5.827E+19 -0.69-(a) Design basis fast neutron. flux =
- 8.41 x'1010 n/cm2-sec at 3250 MW th*
i-a u.imm in '
16
. _ . . . _ . _ . ~ . . . . . _ . . _ , _ . _ . _ . _ , . . _ ..,:... _ .. - .. = .
WESTINGHOUSE CLASS 3 TABLE 11.2-7 FAST NEUTRON (E>1.0'MeV) EXPOSURE AT THE PRESSURE VESSEL-UPPER CIRCUMFERENTIAL WELD - 0* AZIMUTHAL ANGLE - ZION UNIT 1
' CYCLE CYCLE-- CUMULATIVE
{ IRRADIATION CUMULATIVE- AVERAGE FLUENCE i- CYCLE TIME IRRADIATION FLUX INTEGRATED i 2 NO. -S TIME-EFPY 2 4
(n/cm sec) (n/cm)
! 1 3.84E+07- -
1.22 3.441E+09 1.321E+17
- j. 2 2.90E+07 2.14 5.987E+09 3.058E+17
[ -3 2.16E+07 2.82 4.797E+09 4.094E+17
- 4 2. 37E+07 - 3.57 5.080E+09 5.298E+17
! 5 2.56E+07 4.38- 5.334E+09- 6.663E+17
[ 6 2.45E+07 5.16 5.364E+09- 7.977E+17 j 7- 2.80E+07 6.05 4.971E+09- 9.369E+17 j- 8 2.19E+07 I
6.74 4.189E+09-- -1.029E+18 9 3.30E+07 7.79 4.149E+09 :1.166E+18 I
w 2.52E+07 8.59 4.184E+09- 1.271E+18 11 3.59E+07
{ 9.72 4.668E+09- 1.439E+18_ :
12 3.53E+07 10.84- 3.874E+09 1.575E+18 25.00 4.219E+09 3.460E+18-32.00 4.219E+09- 4.391E+18 i
l a
b t
4414s/121300 10 4 v- e . - - + . , - - ,,,+..,,-r-wo .e.,v e- .m... rs+,...,.w. , y ,~,,,-,,w .,ww ,,ie.-rw,w-> ed
WESTINGHOUSE CLASS 3 TABLE 11.2-8 FAST NEUTRON (E>1.0 NeV) EXPOSURE AT THE PRESSURE VESSEL UPPER CIRCUMFERENTIAL WELD - 15' AZIMUTHAL ANGLE - ZION UNIT 1 CYCLE CYCLE- CUMULATIVE 1RRADIAT10N CUMULATIVE AVERAGE FLUENCE CYCLE TIME IRRADIATION FLUX INTEGRATED NO. S 2 2 TIME-EFPY (n/cm sec) (n/cm ) 1 3.84E+07 1.22 5.557E+09 2.134E+17 2 2.90E+07 2.14 9.643E+09 4.930E+17 3 2.16E+07 2.82 7.817E+09 6.619E+17 4 2.37E+07 3.57 8.296E+09 8.585E+17 5 2.56E+07 4.38 8.772E+09 1.083E+18 6 2.45E+07 5.16 8.949E+09 1.302E+18 7 2.80E+07 6.05 7.182E+09 1.503E+18 8 2.19E+07 6.74 6.639E+0S 1.649E+18 9 3.30E+07 7.79 6.929E+09 1.877E+18 10 2.52E+07 8.59 6.931E+09 2.052E+18 11 3.59E+07 9.72 6.942E+09 2.301E+18 12 3.53E+07 10.84 6.657E+09 2.536E+18 25.00 6.865E+09 5.603E+18 32.00 6.865E+09 7.119E+18 uiu,iaineo ig
WESTINGHOUSE CLASS 3 TABLE 11.2-9 FAST NEUTRON (E>1.0 MeV) EXPOSURE AT THE PRESSURE VESSEL UPPER CIRCUMFERENTIAL WELD - 30' AZIMUTHAL ANGLE - ZION UNIT 1 CYCLE CYCLE- CUMULATIVE IRRADIATION CUMULATIVE AVERAGE FLUENCE CYCLE TIME 1RRADIAT10N FLUX INTEGRATED NO. S 2 TIME-EFPY (n/cm -sec) 2 (n/cm ) 1 3.84E+07 1.22 6.821E+09 2.619E+17 2 2.90E+07 2.14 1.147E+10 5.946E+17 3 2.16E+07 2.82 9.897E+09 8.084E+17 < 4 2.37E+07 3.57 1.079E+10 1.064E+18 5 2.56E+07 4.38 1.074E+10 1.339E+18 6 2.45E+07 5.16 1.145E+10 1.620E+18 7 2.80E+07 6.05 6.462E+09 1.800E+18 8 2.19E+07 6.74 8.078E+09 1.977E+18 9 3.30E+07 7.79 7.337E+09 2.219E+18 10 2.52E+07 8.59 7.456E+09 2.407E+18 11 3.59E+07 9.72 7.479E+09 2.676E+18 12 3.53E+07 10.84 8.127E+09 2.963E+18 25.00 7.600E+09 6.357E+18 32.00 7.600E+09 8.035E+18 wa.num ,a 19
i WESTINGHOUSE CLASS 3 TABLE II.2-10 f FAST NEUTRON'(E>1.0 MeV) EXPOSURE AT THE PRESSURE VESSEL UPPER CIRCUMFERENTIAL WELD - 45' AZIMUTHAL ANGLE - ZION UNIT 1 i i CYCLE CYCLE-
- CUMULATIVE IRRADIATION CUMULATIVE AVERAGE FLUENCE CYCLE TIME IRRADIATION FLUX INTEGRATED
- NO. S 2 2 TIME-EFPY (n/cm sec) (n/cm )
- i. .
1 3.84E+07 1.22 1.040E+10 3.994E+17
- 2 2.90E+07 -
2.14 1.745E+10 9.055E+17' {= 3 2.16E+07 2.82 1.550E+10- 1.240E+18 4 2.17E+07 3.57 1.690E+10 1.641E+18
- 5 2.56E+07 4.38 1.642E+10 2.061E+18 6 2.45E+07 5.16 i 1.788E+10 2.499E+18 j 7 2.80E+07 6.05 9.579E+09 2.767E+18:
i 8 2.19E+07 6.74 1.231E+10-i -3.037E+18 '
- - 9 3.30E+07 7.79
- -1.072E+10. 3.391E+18
- 10 2.52E+07 8.59 1 109E+10 3.670E+18-l 11 3.59E+07 9.72- 1.117E+10 4.071E+18 t 12 -3.E3E+07 10;84- 1.249E+10 4.512E+18 25.00 1.137E+10 9.591E+18-
) 32.00 1.137E+10 1.210E+19 I 1 4 4 l i ' p u u.iisim io 20 i.
- . . . . - ~ . , .- . . . - - - . . . . . . . - ....~..-...,.,n.,,i.-. ,. .- '..,.....-u.
11 WESTINGHOUSE CLASS 3 TABLE II.2 ' MAXIMUM FAST NEUTRON (E>1.0 MeV) EXP0$JRE-AT fHE FPESSURE VESSEL 1 INNER RADIUS 0* AZIMUTHAL ANGI,E - ZION UNIT 2 i CYCLE CYCLE- CUMULATIVE IRRADIATION CUMULATIVE AVERAGE FLUENCE RATIO TO CYCLE TIME IRRADIATION FLUX INTEGRATED DESIGN NO. 2 2 S. . TIME-EFPY (n/cm -sec) (n/cm ) 8 ASIS (a) 1 4.10E+07 l'30
. 6.721E+09- 2.757E+17 0.76 2 2.43E+07 2.07- 6.845E+09- 4 420E+17 0.77
- 3 2.52E+07 - 2.87 7.043E+09 6.199E+17. 0.77-4 4- 2.18E+07 3.56 6.412E+09 7.595E+17- 0.76 5' -2.97E+07 4.50 7.439E+09 '9.801E+17 0.78 6 2.46E+07 5.28 6.943E+09 1.151E+18 -0.78 7 2.46E+07 6.06~ 6.326E+09 1.307E+18 0.77 8 3.28E+07 7.10 5.220E+09' 1.478E+18 0.75 9 3.19E+07 8.11 5.178E+09- 1.643E+18- 0.73
, 10 3.42E+07 9.20 6.489E+09 1.865E+18 0.73 l 11 3.13E+07 10.19 6.260E+09 2.061E+18 0.73- ! 12 3.76E+07 11.38 5.322E+09 2'261E+18 .0.71 25.00 5.812E+09 4.759E+18 -0.68
~32.00 .5.812E+09'-- 6.042E+18 0.68 o s (a) Design basis fast neutron flux = 8.84 x 109 n/cm2 see at 3250 Mk th' u ,<.ns,m sa g3 , . - . ~ ~ . - . - . - . . - - - - . . , . . - . - _ _ _ . . _ - . _ _ . . . . , _ - . ~ . . . . - . - _ . . . - _ _ _ _ . - .. _ - - _ - . -
S WESTINGHOUSE CLASS 3 TABLE 11.2-12 MAXIMUM FAST NEUTRON (E > 1.0 MeV) EXPOSURE AT THE PRESSURE VESSEL INNER RADIUS - 15* A2IMUTHAL - ANGLE - ZION UNIT 2 CYCLE CYCLE- CUMULATIVE IRRADIATION CUMULATIVE AVERAGE FLUENCE RATIO TO CYCLE TIME IRRADIATION FLUX INTEGRATED DESIGN NO. 5 2 2 TIME-EFPY (n/cm -sec) (n/cm ) BASIS (a) j 1 4.10E+07 1.30 1.085E+10 4.453E+17 0.79 2 2.43E+07 2,07 1.094E+10 7.111E+17 0.79 3 2.52E+07 2.87 1.142E+10 9.995E+17 0.80 4 2.18E+07 3.56 1.113E+10 1.242E+18 0.80 5 2.97E+07 4.50 1.206E+10 1.599E+18 0.82 6 2.46E+07 5.28 1.056E+10 1.859E+18 0.81 7 2.46E+07 6.06 1.002E+10 2.106E+18 0.80 8 3.2BE+07 7.10 9.199E+09 2.408E+18 0.78 9 3.19E+07 8.11 8.904E+09 2.692E+18 0.76 10 3.42E+07 9.20 1.024E+10 3.042E+18 0.76 11 3.13E+07 10.19 9.279E+09 3.332E+18 0.75 12 3.76E+07 11.38 8.816E+09 3.664E+18 0.74 25.00 9.309E+09 7.664E+18 0.70 32.00 9.309E+09 9.720E+18 0.70 (a) Design basis fast neutron flux = 1.38 x 1010 n/cm2-sec at 3250 MW 4 th' f 22
WESTINGHOUSE CLASS 3 - TABLE 11.2 . MAXIMUM FAST NEUTRON (E > 1.0 MeV)' EXPOSURE AT THE PRESSURE-- VESSEL INNER RADIUS - 30' AZIMUTHAL ANGLE -ZION UNIT 2-CYCLE CYCLE- CUMULATIVE IRRADIATION CUMULATIVE AVERAGE _ FLUENCE RATIO TO CYCLE TIME 1RRADIATION FLUX INTEGRATED DESIGN NO. S 2 2-TIME-EFP_Y '(n/cm sec) (n/cm ) 8 ASIS (*) 1 -4.10E+07- 1.30 1.333E+10 5.466E+17 0.77: 2- 2.43E+07 2.07 1.265E+10. 8.539E+17 0.76 3 2.52E+07 2.87 1.462E+10 1.223E+18 -- 0.79 4 2.18E+07 3.56 1.523E+10 1.555E+18
-5 0.80 2.97E+07 4.50 1.544E+10 2.013E+18 ,0.82 i 6 2.46E+07 5.28 :1.127E+10 2.290E+18-- 0.80 ; -7 2.46E+07 6. 06 .- 1.160E+10- 2.575E+18 0.78 8 3.2BE+07 7.10 1.147E+10 .2.952E+18 0.77 9 3.19E+07 8.11 1.117E+10 -3.308E+18 10 0.75 3.42E+07 9.20 1.116E+10 3.690E+18 -0.74-11 3.13E+07 10.19 9.754E+09 3.995E+18 12 0.72 3.76E+07 11.38 9.751E+09 4.362E+18 0.71 25.00 1.046E+10- 8.857E+18: 0.65 32.00- 1.046E+10 1.117E+19- -0.64.
4 (a) Design basis fast neutron flux > ?.72'x 1010 2 n/cm -sec at_3250-MW th' ui..mmio 23
3 WESTINGHOUSE CLASS 3 l d TABLE 11.2-14 ' ! MAXIMUM FAF.T NEl' TRON _(E > 1.0 MeV)-EXPOSURE AT THE PR j VESSEL INNER RADIUS -'45' AZIMUTHAL ANGLE - ZION UNIT 2- ' i CYCLE CYCLE- CUMULATIVE ' IRRADIATION CUMULATIVE AVERAGE FLUENCE RATIO.TO CYCLE TIME $ 1RRADIAT10N FLUX INTEGRATED DESIGN [ NO. S- 2 2
- TIME-EFPY (n/cm isec)
(n/cm ) BASIS (a) 1 4.10E+07- 1.30 2.032E+10 I 8.334E+17 2 0.77 2.43E+07 2.07 1.914E+10L 1.299E+18 0.75
- i. 3 2.S2E+07 2.87 2.286E+10- 1.876E+18 -0.78
! 4 2.18E+07 3.56 2.415E+10 2.402E+18 0.81 l 5 2.97E+07 4.50 '2.440E+10 i- 3.125E+18. 0.83-6 2.46E+07 5.28 1.675E+10 3.538E+18' 7 O.80 2.46E+07 6.06 1.744E+10 3.967E+18 0.78 ! 8 -3.28E+07 7.10 1 1.706E+10- 4.527E+18- 0.76 9 3.19E+07 8.11 1.709E+10 5.072E+18 0.75 10 3.42E+07 9.20 1.676E+10 5.645E+18-11 0.73 l- 3.13E+07 10.19 l'. 445E+10 ' 6.097E+18- 0.12 i- 12 3.76E+07 11.38 1.470E+10 6.650E+18 0.70 ' 25.00 1.575E+10 1.342E+19- 0.64 32,00 1.575E+10 4 1.690E+19~ 0.63 i-e (a) Design basis fast neutron flux = 2.65 x 1010 2 n/cm sec at.3250 MW th' ( g-5 M14a/12180010 24 m *-n-, ,- , w ,, e' ,-w- m ~ e, r, - me --em-, am ma e + < - w s e- vr e + w ese- v n- =v re-oe-ren>--- --+sev- w e. v.o,e-w p -v re -m w o e - n e-tw wsrg
WESTINGHOUSE CLASS 3 TABLE II.2-15 FAST NEUTRON (E > 1.0 MeV) EXPOSURE AT THE 4' SURVEILLANCE CAPSULE CENTER - ZION UNIT 2 CYCLE CYCt.E- CUMULATIVE IRRAOIATION CUMULATIVE AVERAGE FLUENCE RATIO TO CYCLE TIME 1RRADIAT10N F LUX INTEGRATED- DESIGN. NO.. S 2 2 TIME-EFPY (n/cm -sec) (n/cm ) 8 ASIS (a) 1 4.10E+07 1.30 2.076E+10 8.516E+17 0.77 2 2.43E+07 -2.07 2.126E+10 ~1.368E+18 4.78-3 2.52E+07 2.87 2.174E+10 1.917E+18- -0.78-4 2.18E+07 3.56 1.920E+10- 2.335E+18 0.77-5 2.97E+07 4.50 2.298E+10- 3.017E+18 0.79 6 2.46E+07 5.28 2.180E 10 3.553E+18 -0.79
-7 2.46E+07 6.06 1.949E+10- 4.033E+18- 0.78 8 3.28E+07 7.10 1.536E+10 -4.537E+18 0.75 9 -3.19E+07- 8.11 1.538E+10 5.027E+18- 0.73 10 3.42E+07' 9.20 2.009E+10' 5.714E+18 0.73 11 3.13E+07 - 10.19 1.978E+10 6.333E+18 10.73 12 -3.76E+07 11.38 1.602E+10 -6.936E+18 0.72-25.00 1.782E+10 1.459E+19 .- 0. 69.
32.00 1.782E+10 1.853E+19- :0.68-(a) Design basis fast neutron flux = 2.70 x 1010 2 n/cm -sec at 3250 MW th' 4414s/121W.10 3_-
WESTINGHOUSE CLASS 31 TABLE 11.2 FAST NEUTRON (E > 1.0 MeV) EXPOSURE AT-THE 40' SURVEILLANCE CAPSULE CENTER - ZION UNIT 2
-CYCLE CYCLE- CUMULATIVE- !RRADIATION CUMULATIVE AVERAGE FLUENCE RATIO TO -CYCLE TIME IRRADIATION FLUX INTEGRATED DESIGN NO. - S 2 2 TIME-EFPY -(n/cm sec) (n/cm ) BASIS (a) 1 4.10E+07 1.30 6.090E+10 2.498E+18 0.72 2 2.43E+07 2.07 5.737E+10 3.892E+18 0.71 3 2.52E+07 2.87 6.905E+10 5.636E+18 0.74 4 2.18E+07 3.56 7.317E+10~ 7.229E+18 0.77 5- 2.97E+07 4.50 7.398E+10- 9.423E+18~ 0.79 6 LI 2.46E+07 5.28 4.960E+10 1.064E+19 0.76 7 2.46E+07 i 6.06 5.175E+10 1.192E+19 0.74 8 3.28E+07 7.10 5.051E+10 'l.357E+19 0.72-9 3.19E+07 8.11 5.081E+10 1.519E+19 0.71-10 3.42E+07- 9.20 4.958E+10 1.689E+19 0.69 11 3.13E+07 10.19 4.256E+10 1.822E+19 0.67-12 3.76E+07 11'.38 ~ 4.341E+10- 1.985E+19 0.66 25.00 4.659E+10 3.988E+19 0.60' 32.00- 4.659E+10- 5.017E+19 O.59 8
(a). Design basis fast neutron flux =-8.41Lx 1010 2 n/cm -sac at 3250 MW th'
.m.euu.o io -
26-
,f 'j
WESTINGHOUSE CLASS 3 TABLE 11.2-17 FAST NEUTRON (E>1.0 MeV) EXPOSURE AT THE PRESSURE VESSEL UPPER CIRCUMFERENilAL WELD - O' AZIMUTHAL ANGLF - ZION UNIT 2 CYCLE CYCLE- CUMULATIVE IRRADIATin" COMULAilVE AVERAGE FLUENCE CYCLE TIME IRRADIATION FLUX INTEGRATED NO. S 2 2 TIME-EFPY (n/cm -sec) (n/cm ) 1 4.10E+07 1.30 4.060E+09 1.665E+17 2 2.43E+07 2.07 5.918C+09 3.104E+17 3 2.52E+07 2.87 5.47?E+09 4.487E+17 4 2.17E+07 3.56 4.853E+09 5.543E+17 5 2.96E+07 4.50 5.530E+09 7.183E+17 6 2.46E+07 5.28 5.374E+09 8.506E+17 7 2.46E+07 6.06 4.946E+09 9.723E+17 8 3.28E+07 7.10 3.873E+09 1.099E+18 9 3.18E+07 8.11 3.960E+09 1.226E+18 10 3.42E+07 9.20 5.016E+09 1.397E+18 11 3.13E+07 10.19 4.901E+09 1.551E+18 12 3.76E+07 11.38 4.237E+09 1.710E+18 25.00 4.529E+09 3.656E+18 32.00 4.529E+09 4.657E+18 ) wa.ne wo gy
.. - I
WESTINGHOUSE CLASS 3 TABLEL11.2-18 FAST NEUTRON (E>1.0 MeV) EXPOSURE AT THE PRESSURE VESSEL ; UPPER CIRCUMFERENTIAL WELOL- 15' AZIMUTHAL' ANGLE - ZION UNIT 2 CYCLE- -CYCLE- CUMULATIVE IRRADIATION CUMULATIVE AVERAGE FLUENCE CYCLE TIME- IRRADIATION FLUX . INTEGRATED-NO. - S 2 2 TIME-EFPY (n/cm -sec) (n/cm ). 1 4.10E+07
- 30 6.557E+09 2.690E+17 2- 2.43E+07 2.07 9.460E+09' ~4.989E+17 3 2.52E+07 '2.87 8.879E+09 7.231E+17 4 2.17E+07 3.56- 8.423E+09 9.064E+17-5 2.96E+07 4.50 8.963E+09 1.172E+18 6 2.46E+07 5.28 8.177E+09 1.373E+18 7 2.46E+07 6.06 7.835E+09 1.566E+18 8 3.28E+07 7.10 6.825E+09 -1.790E+18
-9 3.18E+07 - 8.11 -6.810E+09 2.007E+18 10 3.42E+07 9.20 7.914E+09: 2.278E+18 11- 3.13E+07 .10.19 7.265E+09 2.505E+18-12 3.76E+07 11.381 7.019E+09 2.769E+18-25;00 _7.254E+09 .5.887E+18 32.00- '7.254E+09- '7.489E+18 I'
u u.nvmaae - 2g
- - - _ - - _ _ - - _ = _ = _ _ - - _ .
WESTINGHOUSE CLASS.3' TABLE II.2 ,FASTNEUTRONlE>1.'OMeV)' EXPOSURE-ATTHEPRESSUREVESSEL UPPER CIRCUMFERENTIAL WELD - 30*-A2IMUTHAL-ANGLE - 2:DN UNIT CYCLE ECYCLE- CUMULATIVE. IRRADIATION CUMULATIVE- AVERAGE FLUENCE-CYCLE TIME IRRADIATION. FLUX INTEGRATEDE NO. 2 2
.S TIME-EFPY (n/cm-see) (n/cm) 1 4.10E+07 1.30- 8.049E+09. 3.302E+17 2- 2.43E+07 2.07 1.094E+10 '5.959E+17: '
3 2.52E+07 2,87 1.137E+10 8.829E+17-4 2.17E+07 3.56 1.153E+10 1.134E+18 5 2.96E+07 .4.50 1.148E+10 -1.474E+18 6 2.46E+07 5.28 - 8.727E+09 1.689E+18 7- 2.46E+07 6.06- 9.068E+09- 1.912E+18 8 3.28E+07 7.10- 8.508E+09 2.191E+18 9 3.18E+07 8.11- 8. 546E+09.- 2.464E+18 10 3.42E+07- 9.20- 8.630E+09 2.759E+18-11 3.13E+07 10.19. 7.637E+09 2.998E+18-12 3.76E+07 11.38 7.764E+09 3.290E+18 25.00 8.152E+09- .6.793E+18 ; 32.00 8.152E+09 - :8.-593E+18 4 j i i
UESTINGHOUSE CLASS 3 TABLE 11.2-20 FAST NEUTRON (E>1.0 MeV) EXPOSURE AT THE PRESSURE VESSEL UPPER CIRCUMFERENTIAL WELD - 45' AZIMUTHAL ANGLE - ZION UNIT 2 CYCLE CYCLE- CUMULATIVE IRRADIATION CUMULATIVE AVERAGE FLUENCE CYCLE TIME IRRADIATION FLUX INTEGRATED NO. S TIME-EFPY 2 2 (n/cm see) (n/cm ) 1 4.10E+07 1.30 1.227E+10 5.034E+17 2 2.43.+07 2.07 1.655E+10 9.057E+17 3 2.52E+07 2.87 1.77BE+10 1.355E+18 4 2.17E+07 3.56 1.828E+10 1.753E+18 5 2.965+07 4.50 1.814E+10 2.291E+18 6 2.46E+07 5.28 1.297E+10 2.610E+18 7 2.46E+07 6.06 1.364E+10 2.945E+18 8 3.28E+07 7.10 1.266E+10 3.361E+18 9 3.18E+07 8.11 1.307E+10 3.777E+18 10 3.42E+07 9.20 1.296E+10 4.221E+18 11 3.13E+07 10.19 1.132E+10 4.575E+18 12 3.76E+07 11.38 1.171E+10 5.015E+18 25.00 1.227E+10 1,029E+19 32.00 1.227E+10 1.300E+19 ui .nontio 30
WESTINGHOUSE CLASS 3 TABLJ 11.2-21 CALCULATED REFERENCE RADIAL OISTRIBUTIONS OF FAST NEUTRON FLUX (E > 1.0 MeV) WITHIN THE PRESSURE VESSEL NORMALIZED TO INNER RADIUS RADIUS 2 NEUTRON FLUX (n/cm -sec) (cm) 0 Dec 15 Deo 30 Oeo 45 Dec 220.27 1.0000 1.0000 1.0000 1.0000 (PVIR)(") 220.64 0.9774 0.9779 ~ 0.9763 0.9771 221.66 0.8848 0.8897 0.8876 0.8855 222.99 0.7589 0.7647 0.7633 0.7557 224.31 0.6413 0.6441 0.6450 0.6374 225.63 0.5368 0.5397 0.5438 0.5344 226.95 0.4477 0.4500 0.4544 0.4427 228.28 0.3717 0.3743 0.3787 0.3672 229.60 0.3088 0.3103 0.3142 0.3034 230.92 0.2553 0.2566 0.2609 0.2500 232.25 0.2114 0.2118 0.2154 0.2057 233.57 0.1734 0.1743 0.1781 0.1687 234.89 0.1437 0.1434 0.1467 0.1378 236.2; 0.1176 0.1176 0.1207 0.1126 237.54 0.0962 0.0963 0.0988 0.0912 238.86 0.0784 0.0787 0.0805 0.0737 240 19 0.0635 0.0632 0.0651 0.0584 241.51 0.0511 '0.0501 0.0518 0.0454-242.17 0.0483 0.0469 0.0486 0.0420 (PVOR)(a) 252.39 0.0425 0.0404 0.0431 0.0339 (Cavity) (a) PVIR is the Pressure Vessel Inr.er Radius at the clad-base metal interface. PVOR is the Pressure Vessel Outer Radius, w .nvm ,o 31
WESTINGHOUSE. CLASS 3 TABLE 11.2-22; 1 1 i j- 210N UNITS-1 AND 2 RELATIVE AXIAL-POWER DISTRIBUTION AVERAGE 0 OVER 12 C"CLES(a) j DISTANCE FROM CORE BOTTON ZION- ZION (FT) UNIT-1 UNIT 2 l --- j- -0.0 0.375 0.343 0.6 0.787- 0.767 1.2 0.982 0.976 j- 2.4 1.077 1.076 i 3.6- - 1.095 1.097 4 4.8 1.102- -1.070 j 6.0 1.103: 1.104 j 7.2 1.097- . 1.058 n 8.4 1.080
- 1.044
- 9.6 1.044 1.052 10.8 0.908 - 0.911 11.4 0.713 0.711 5-12.0 0.347- 0.315 i
l s (a) Weighted by fluence at .45' (maximum' vessel exposure location). . t ? i I $~ e
~
4 I 4'
- .4i..i m m ia
- . 32 y a g --e - e ,-, - -
- 4. , , ,- ., .,% ...myp,.M.,,-%-.,,,w+ e.gv,4.--tw,~n.,-y,--,n og , ye.--.. > ,,.,-p,w ., w w w ,-.s,- , , v s4
WESTINGHOUSE CLASS 3 ! FIGURE 11.1-1 ZION REACTOR .EOMETRY i O' g, CAPSULES) g s, v. w. 2 J
' / ACr A ' og k(q,( '
7 400 CAPSULES) T U, .X, Y J
/ 458 A
A M ' %,to
/ f -
I
,,, ,,~ ,,,,, /
n
~
7 . , , ,
/ / ' / 'I y /
ij ./
/ /
W I '
/ /.
T // p r j/ l uu.eno is 33 w w+,. -m-, ,-ea w ,,33..y,- f -tt+'9 r*"r *P* r1-vt
WESTINGHOUSE CLASS 3 FIGURE 11.2-1 MAX 1WUN FALT NEUTRON (E>1.0 MeV) FLUENCE AT THE BEL 1LINE WELD LOCATIONS AS A FUNCTION OF FULL POWER OPERATING TIME - ZION UNIT 1 4 te+020 - l i 5 ' g te+019 - N umn ' E 8 I co $s E l 3 1e+018 - j - E 6 : l 1e+017 ' '! ' ' ' ' O 5 10 15 20 25 30 35 Cumulative Irrodiation Time (EFPY) t u i..mi
- 34
li WESTINGHOUSE CLASS 3 FIGURE 11.2-2 j NAXIMUM FAST NEUTRON (E>1.0 MeV) FLUENCE AT THE BEL WELD LOCATIONS AS A FUNCTION OF FULL POWER OPERAT 3 ZION UNIT 2 i i i 1*+020 , ,, , , , , e 1 4
? e' 8
t- g C , e i . I r s ,e s i i e i e e 45 D ' i e
.. w 1
O 8 1 s
' 1e+019 - '
tn 8 . I , e '- e
- u m t O .
' e : a ' U .* e n^ !
- .a / l -
- u. '
o5 s i 3O i i-
~5 te+018 - '
- E I a : o . e ! e i t 4 e k e
, e' 1'
.,-- ,e . I e O I ' '! te+017 ' ' ' ' ' 0- 5 to 15 20 25' 30 35. Cumulative Irrodiation Time ~ (EFPY)_- t l 44:e.seiesoio. 1 35 1
,ve.....-,p..-. --v,,e :-,,.-- - , - - - . , , - . . ..m.,,.,,,-.,-,g.,,,-.-,,,,..,-,,,y,.,,,,.ww-.m- , -.,,,,,,p,,. ,,.w9 1, sw g- -, -.w-y w c ,- 9 9 . ,,,wy <
WEST 1NGHOUSE CLASS 3 FIGURE 11.2-3 MAXIMUM CURRENT AND PROJECTED EOL FAST NEUTRON FLUENCE AT THE PRESSURE VESSEL INNER RADIUS AS A FUNC OF AZIMUTHAL ANGLE - ZION UNIT 1 S. _ : _ .1 . - L N t;.:d . @ [f" Li ' - . i l r.E .. __ b d .n. Nh . E gl'.:. - 1.p*'l 4 +? g= h] 1n 4 - I j-.g _ . g_ c.c ;c ;g - } --*m T: - : .; ; :. g.g , -g q q p.; i-'r r*t- .. 1 _ :. :s. F. . 5":5.rfi T :'910 2 ir . .
'fM$i G2 -9 J;i-L=r .?rr 3._. 'r:-~-~ 7E :::
3,
- -9.NE:1NNNN5NE~DN'N[
._.7 bb]N_552$h5 M'51s ' - ~ ~@ -e ._., 4----
_4 -4 C'~*:. T en
, p-- - -[b* y T , ._.-- y"l jwMhk w;. =-__ : =_
d
.__ f ld " -_ _
x g _
... ~mamg _ _ ass u mm- _e id m
g 3: R_ a { q. f ._.= - .gkh -.L Q, g 19'.'~ = z:=. = :] & -4 &
..~-
a w w - - y' '5NN4fT 5 7~m EFE 55W@:N Ni5-h$p 5 ' trirE5=== p p -. -i ::,): - _
- f- F-:
g **l'. : _ g, hg. n u-q.gT"ur-_--- =-: __ ====;:- ~ : , _ 1
.:w z.; : ;;
2 z. - - - N:@@ =rr V .; ?f-
- 1 g _ _ . _ = , _ . _ . - -u _._ _- m -- - - .2- -
__ _.__ s %. _ _ _ _ _ _ _ _ .. _ , . ::2 . ,__.a_
}WY___.. _- ._ c. . . . _ __.-
1;;- n w -
} -= 5f f &&}_-- :Q& ./ ; _ - 3 [_ m' = - _j&__ .r 5_'
n :=t - 3;. :. + g
.: r::=~;-- (, 9 35:v V-Q w . u}'~- l ~ =4 l jf W :x:: zs .=-i - :- 'f 9-g _a; :g 4_ . , l': L . .M 5 it.:n.ss: R ._;g, ~
g' ' L.:_: ' . . - Ei s-i. i.b:J- a.it:A.i;:_E.2 ~ g 'THC-
- ._i.._ __ .2.u :; ':22, .: L;L :_:; 2:. . 9dshi-iw --
n;-
,__------___C5 Y5- _ _'- . _ _ ~ _ ~ L 'z ' '.= 'Gh~_. = . _ , ~.T _' *=. G2~; ':; ,h;-; ; :ii .
W X.---~- iQ] _
? *~
f.- _ _ . _ _ _ _ _ . c"*""*~f.- . . _ _ _ . _ _ _ _ { %Y ' ~ . - W _.__ _ ,g y-~ ; -- ~ 3,__ --Z~[ m 3 --
?-
d - - ~_mi-~ N _ a m- ~n . 4' - - -e I i w- .. ., C
~ Y[.*. . '~,.'..~. . '
t-- t j - ---
.,. s ~.,4 gle ' .j.- _~ , mm - = <+g=:a g= g m -i--- -. _ _= '- z : .gy g : il - ,.i.d_ E- ;j .s-yh 'i g. -4 .: 4 .:j i . ;;la ,,;. .
43 _ggpuj-g g _w . y i M 1~$hs 5 5-N M $ hEs-N=I-5 pg3 . - 7 * < p ,.a _ _ g y _ . . _ - 4
- 'dN[d-MM _
M Q i' AE. NhhM.i; 7Qgi_
-._.,__2
_n:~!~; r .
.,,=n._a-___ _ \.'^ ~ ^ ;~_.-.;,-_,-, ' IG 99_ TM & - = = -=. ._
4 [MRJ5C{5'y T:EEO 9.?:^{F.AWYT g{T_y fRii'yj 7:L{ 2-spj$q'#ET2.MQW'Q Wij Q?I q; 4.g,--I7 -
'F4 Lu g2:2E i.'. i. ! .. .
N5_5N -h -5N C'8;5b55M5N5522 5==T:h ~i;E-- ggpgg--.; g r y :.p:;3 mpEW- . ;4 Ei'5Nb-- $.-E " E== . --- [25 :. i--; - s
~- -===. = __=.. w = gy . _ - . . . .=w .
y- , = g-
-_ . ~ < ,--
_.3 __ ;m = _ _g w w w =. _3 --= __ g- m_ _7**'".'"~.**. a= __ I _ .. I ._w-t __e-i>69e _ _ ee.e% i
; _ _ eae.m.m imb i _-.. . _
0 I 10 20 30 40 50 AZIMlJTMAL ANGLE (deg.) w .mo 36 i 1
.j
a a . .,_a- _ _ ..u as .-w-.. ok-e.d.._mi3 4 .---_h- - - - . - - - - . - - .*. h - - p A - - e. - ,5 s._-. WES?!NGHOUSE CLASS 3 FIGURE !!.2 MAXIMUM CURRENT AND PROJECTED EOL FAST NEUTRON FLUENCE AT THE PRESSURE VESSEL INNER RADIUS AS A FUNCT OF AZIMUTHAL ANGLE - ZION UNIT 2 s.. [t __ - 7 '+ a E =_z_ -- : :Li. ! -- u
=1 : 1 i n ci , a t 4 j _- :-: _
f4 ,_ i h. h I E. a e : m 111 r - ~2 1,= - 7 m u. w:.- =m =n====.- =g._g=g.=- =;=, == : g = m =.$ == .g: i: n.== - ,: m s:.+ 55 -i: i ~ '
. . - =. -- . . -.a.y. x -=.~ . + l.- !- - ~~ . * - v 3- -' .: =.= :.:: .- ._~~=:q:= = - -. . - ~ _ _ g:_: L=. .-- ==.53 _q3::~ '=_ h- ^
t=- = M _ m w . __ i __ M.w === . e-p i =;s- u rwr , _ _CCC . M
-j N- - "*~' "
i i_-- e sb .,b_merno**~ --
. > V f .- - .w ::9 fry; 7- ;'=
ar ,.wr5 c-- % ;. g - :Q E jfz :: =?3'y = ;. . i~'f5.-= =51..j E_,: p==}.'E -i ' ^ Am xqL=T t;4== ; ; .m: - L=3 % '.f-T'.}:= l . 4 =#e+w W=r-w=wite=M
' g_
r -. . . . -
=e=r =nasitA m-siiesm .t+= =
- }:h&.- u : :N ' i ~~
S-
-~ - _ _ . . . , ..= -__
3 g
~ =.2. .. -
a.;_;=A r s8 w+: m ._ _ nI w -= ayr ._n.__...=g -w. . .__d: r = === =-: is# y=Y f--iniM _. . _ _ .::,. . -'-a - ;1 ' r y . s =-2. ur, r.4:--T-- v==% E== F w p_ p_%._s Edi% y ?-+ := f~:- : . . ?r & : =.Q. m_
- . 5-5i = L51 i++ =b. .: : c;. .r. = =- :f-i'zf: + -ik'=-{ .5kh.:_=Lj.f:.-~ 3y f : ~z - . .-
a g .,:_-=__.=.-_ =. f m-.=
==x=.=_=._ =__ =.=: =t_.
- . =.
_ .. . _ _7.__a_3_____ . ,m. _=.j g.._ _ - 1 _ j --; - - - k. . :, . . - u__ _ a :
--s . .t- -%iEUii 7
e .._ ,. _.. - .-. lW h e +m- 4'Wak h m _ s p-N-g grangae._ pg4> ew --
.m g ;~'r m. .K-J r - -j 4
- n. ummam s.gyyy ym d2g .@- - _p2y 5:- .j:ii 'igEY gmy g44M Wh~ 6 ypSyC . y y ' pM-: p;-~.:iQ p. 4 y~. f - ,;
y
. -a.. .:. :::N-IZ$.33:5245 __.. = $'_f35E P $Nf-I O.[b [.Z + ..-- = _ . . . ~ . - - - - 55 M =25 5[r*- _l-fli i+
u- -- g - - . - . -
---+.2,,;,.=-. .. .; '=." - L* rn ---
g -- 4 MJ i M?- m= ne=am+#2: a=E 3.51
..._7, fmaMW g C3.hH 5~=:? ^ - 54$E %=== = 25ER C =:Q ?mmw=5= aap=p W.i '4U ci;IV .
Q.'::=[Q^Ly'=L**'Q:==-~-Q M'h 3 f V =;~y-?k '; mm.. ___..:.__=_mg _ mum.2]'
._ c__ _acywgg f" ?:b_
1 - y--
. + .. . ~ . . . . =,,_s m w . . . . . _ . =[ '
i
~ .
- i. ___ _
'"~~O Z
__ - ~4.- 2 , w M e mesm. W I I 10N ~i O 10 20 30 40 50 AZIMJTHAL ANGLE (deg.) m..wm is 37
WESTINGHOUSE CLASS 3 i FIGURE !!.2-5 i RELATIVE RADIAL DISTRIBUTION OF FAST NEUTRON (E>1. AND FLUENCE WITHIN THE PRESSURE VESSEL WALL ZION U
~ ' '
g,, T ?. k. 9.0
'- .,,. M: :-A.,i--. > --e. } , - . . _ . _ . -,. - ~ - -
9._^ {'-d EE..n...s.. ~~ _Zi EE _ _ _ _ _ L' .__,
? ..__.- _g _
t.. 2-1
.A ' l 1 .
I 1 I I I 1 I . I 1 I I I I I I
' I l 1,0_ ..
1 ! I
, , , ,, 2 +~; - ....-n. ,.-.,.__,1- -e.7 -
y ,, . =. --w=a w ' = m u + e j .- ; .w 'g m y _'- . m n p :; n w :m = a m n v = = = zca g _. = 8 -- e, 5- x_y
, -e . ' =
lkl
; . . - . ~ . .. . .. _ .w g =..
g,- _ _.-3 1/4 Tm
. .m. -- _ ..=
i_1H=T -. w _.& I+. E
~' - w_ * .Q g 1 1/2 T- T "._._
1 1 s 1 1 I 1 1 X t ', i I
- l i I N '. I
' _ . _ L I i I i I !
1 4 I I
' l 0.1. . ' ' I iX 1 l
S ,j .:- _ t g,, --_.tc - 1, . .+F-'-
.gy's :'~':15;ii
- y. 4 5: L
. .-?.' -. - ,' .o
- 2. u \
- ', M : _ : .
t .aa h ..:-
=d: -
- h. 5 "_.u - q :; -~~~ ~ =
l x: . 3,4 _ =_ - s.,, g _ 'g " R w y,s 4,.gr. - EW= : i ;
+L ;
- a. -
. .__; *~ ,--am --
1 ==:=,s? - qgg3 a sep '-;. .see,c.: - 2
- g ., i.u%.m,4? ., EinEg N;; i .-. ..- i:q E511pi..;1mu=r;=i n . . _ . _ . . _ _ _ . .; - y=w;~
l
;_ _3-z -- r ~
1-1 l ' Y I 1 I i I 1 1 1 0.01 i i i i ! 1 l i I i 0 2 4 6 8 1 10 12 14 N lt N 12 DEPTH INTO THE PRESSURE Vt55ft-
.....i.
38
.a._-- -4w--- .
e Am m .4.e.e_an-..a 4__.-m2 ..-4a-&2--.me se .-_.6 a-e m-u au.--. ,_a eam n nr.*sde - 6 a - 44a4. - A w. .,_.m..-a. +h 4------4->-------- 4 4 i UESTINGHOUSE CLASS 3 4 FIGURE 11.2-6 , RELATIVE AXIAL DISTRIBUTION OF FAST NEUTRON (E>1 AND FLUENCE WITHIN THE PRESSURE VESSEL WALL ZION l ) l k g - ,Nff$ ~d[:[ ~ ~ hii kE;* h r 55hhE 55% 5 5 $ $15 D i:'hi I l T*~ - ~ i I E l 1Lc. y 3 -
, ** r ; s... - _ + w'==5EtiililSiit *5 i t., F#EEi n x ~-~ : A Or + ~ 1=,:M + 4 LG i:, M us- 1 s a ziE* .
i l a.. 7 ' } . '
# a=4::. e : b,E - e e Am Viti Essi= E==ua 5555= f=iM = s :dHin A$k W #G=f O '
t...=======_g----- 3: I i C a ,, ..
.I sama - -
3 ;.,. ; ; , . - ..
- d a 0.1 .
, g p.
- 4. . ~
P I j g .... . + - - - g . EMER*: - - - e ,n. J.eum' = M. I i ;.a. . . S d'EM M P s 41.U JM1 0:29?cienisEsp;g=eg g t=i= M g=#88st35 3 4 ; ., m A- ; . . 4 3 , bldit;*hEjr.n. - c.r .: . ) " .
. n.
23 5 c : . :. E-E85r 5:rsisr :~c iri bagrii iEiiEh i E: 15 d.
. , esde;.;e E
! 4..Essuiisis5Esssss=== - h l j -
" '' i .
m isssasE=- r , i I
.. ll l . m.
- 8. l F. ,
g, t r- * '. =4
,_ m .;=.m. . . . -. ,
s_ s' .
.g . ., . h iJt:sf. .- a._ . . c.. . eensu, s-{ - W$es i - .e . ;. Tf3 if5 i ? :. -: ;. : ::: . .g wag I' '
n.+ iE le E :3 n .. : hi 3 41Ei='. ansi 15+s: a s a s; a g is=._ig.ggg
~ =g %
M E
;;;;;;;s._._..
[ gg,,___._.__..__..__..___._.__.___._._.._______..____.__
- 100 +200 -100 0 100 I 200 300 Dis 7 met rnan coat MIDPLAnt (cm) -
I so4emetato to 3g
WESTINGHOUSE CLASS 3 SECTION !!! MATERIAL PROPERTIES For the RTPTS calculation, the best estimate copper and nickel chemical composition of thty reactor vessel beltline material is necessary. The material properties for the Zion Units 1 and 2 beltline region will be presented in this section. 111.1 LOCATION AND IDENTIFICATION OF BELTLINE REGION MATERIALS The beltline region is defined by the Rule [1] to be "the region of the ' reactor vessel (shell material including welds, heat affected zones, and plates or forgings) that directly surrounds the effective height of the active core and adjacent regions of the reactor vessel that are predicted to experience sufficient neutron irradiation damage to be considered in the selection of the most limiting material with regard to radiation damage." Figures 111.1-1 and III.1-2 identify and indicate the location of all beltline region materials for the Zion Units 1 and 2 reactor vessels. 111.2 DEFINITION AND SOURCE OF MATERIAL PROPERTIES FOR ALL VESS Material property values for the shell plates, which have been dockt.ed with the NRC in Reference [8), were derived from vessel fabrication test certificate results. The property data for the welds have also been docketed : with the NRC in Reference [8), however, the weld properties cannot be used in ! the same direct manner as the properties for the plates. Fast neutron irradiation-induced changes in the tension, fracture, and impact properties of reactor vessel materials are largely dependent on chemical composition, particularly in the copper concentration. The variability in irradiation-induced property changes, which exists in general, is compounded by the variability of copper concentration within the weldments. To address the variation in chemistry, Babcock & Wilcox (B&W) performed a reactor vessel beltline weld chemistry study of eight B&W vessels, including Zion Units 1 and 2, and reported the results in BAW-1799 [9] for the Westinghouse Owners Group (WOG). The scope of the work included etilecting ws.mtwe 4g
WESTINGHOUSE CLASS 3 existing sources of chemistry data, performing extensive chemical analysis on the available archive reactor vessel weldments, and developing predictive i methods with the aid of statistical analyses to establish the chemistry of the reactor vessel beltline weldments in question. In addition to the B&W report BAW-1799, the WOG Reactor Vessel Beltline Region Weld Metal Data Base was used. The WOG data base, which was developed in 1984, contains information from weld qualification records,-surveillance capsule reports, the B&W report BAW-1799, and the Materials Properties Council (MPC) and the NRC Mender MATSURV data bases. For each of the welds in the Zion Units 1 and 2 beltline region, a material data search was previously performed using the WOG data base. Searches were performed for materials having the identical weld wire heat number as-those in the Zion vessels, but .any chination of wire and flux was allowed. For all of the data found for a particular wire, the copper, nickel, phosphorous and silicon values were averaged and the standar3 deviations were calculated. Although phosphorous and silicon are not needed for the PTS Rule, they are provided for the sake of completeness. The information'obtained from the previous data base searches for the original PTS submittal (10) is found in Appendix C with the exception that some source descriptions have been changed to reflect recent changes to Babcock and'Wilcox reactor vessel drawings-(2). In particular, data has been included for-the upper-to-intermediate circumferential welds for both units. When the results of the material data-base searches were previously evaluated, it was found that a large scatter existed in the measured as-deposited copper values for the data obtained for weld wire her.t 72105, which is associated with the WF-70 weld seams, and weld wire 71249, which is~ associated with the-Unit 2 girth weld. Preliminary RTPTS calculations showed that the submerged arc welds fabricated with filler wire heat number 72105 were limiting in - regards~to PTS for both Zion Un_its 1 and 2 reactor vessels. Although a statistical materials program was previously developed to address-the-large-scatter in the copper content (10), Commonwealth Edison has chosen to use the uu mmoio 41 L i
i UESVINGHOUSE CLASS 3 NRC accepted chemistry values from BAW-1799 [9] for this limiting weld (i.e., 0.35 wt.% Cu, 0.59 wt.% Ni). The chemical composition values for heat 71249 have already been addressed via evaluations of reactor vessel materials data for Turkey Point Units 3 and 4 (see Reference (11]). 111.3
SUMMARY
OF PLANT-SPECIFIC HATERIAL PROPERTIES A summary of the pertinent chemical and mechanical properties of the beltline region plate and weld materials of the Zion Units 1 and 2 reactor vessels are respectively given in Tables 111.3-1 and 111.3-2 along with the references for this information. The initial RTNDT value of O'F, which is shown for all of the Zion Units 1 and 2 reactor vessel beltline weldments, is the generic mean value defined in the PTS rule [1] for welds made with Linde 80 flux. The data in Tables 111.3-1 and 111.3-2 are used to evaluate thePTS RTvalues for the Zion Unit 1 and 2 reactor vessels, m..mino is 42
- _ _ _ _ _ _ _ _ _ _ _ - - _ _ - - _ _ - - - - - - . i
WESTINGHOUSE CLASS 3 TABLE 111.3-1 ZION UNIT 1 REACTOR VESSEL BELTLINE REGION MATERIAL PROPERTIES Cu Ni I (Wt.%) (Wt.%) ('F) Source Intermediate Shell Plate C3795-2: 0.12 0.49 10I "I Ref. (8) Intermediate Shell Plate B7835-1: 0.12 0.49 5 Ref. (8) Lower Shell Plate B7823-1: 0.13 0.48 -4 Ref. [8] Lower Shell Plate C3799-2: 0.15 0.50 20 Ref. (8) Circumferential Weld - Upper to Intermediate Shell WF-154/SA-1769, Heat No. 406L44/71249, Linde 80 Flux 8720/8738 0.31/ 0.59/ 0 Ref. (9)/ 0.26 0.60 0 WOG Reference Data Base Raf. (9) and Re.. (11)(c) Circumferential Weld - Interined. to Lower Shell WF-70, Heat 72105, Linde 80 Flux 8669: 0.35 0.59 p,f,gg) (0.32)(d) (0.56)(d)0(b) -(WOG Material Data Base). Longitudinal Welds - Intermed. & Lower Shell WF-4/WF-8.. Heat No. 8T1762, Linde 80 Flux 8597/8632: 0.29 0.55 0(b) p,f,(g) Notes: (a) -The initial RTNDT value for this plate is estimated according to Branch Position MTEB 5-2 (12) (b) The initial RTNDT values for the welds are the generic mean value defined by the PTS rule [1] for Linde 80 welds.. (c) Agreement exists between References (9) and (11) and the.WOG Material Data Base for heat 71249. (d) Although a statistical evaluation (10) developed the chemistry values 1 shown in parenthesis,-the higher'NRC accepted values from BAW-1799-(9) were used.
...ruiu. sp 43
WESTINGHOUSE CLASS 3 TABLE 111.3-2 ZION UNIT 2 REACTOR VESSEL BELTLINE REGION WATERIAL PROPERTIES Cu Ni 1 (Wt.%) (Wt.%) ('F) Source Intnrmediate Shell Plate B8006-1: 0.12 0.54 -10(a)_ g,f,(g) Intermediate Shell Plate B8040-1: 0.14 0.52 2(a) Ref. [8] Lower Shell Plate B8029-1: 0.12 0.51 22(a) Ref. [8] Lower Shell Plate C4007-1: 0.12 0.53 22- Ref. (8) 1 Circumferential Weld - Upper to Intermed. Shell WF-200, Heat 821T44, Linde 80 Flux 8773:
-0.24- 0.63- 0(b) Ref. (9) and WOG Material Data Base Circumferential Weld - Intermed. to Lower Shell- SA-1769, Heat 71249, Linde 80 Flux 8738:
0.26 0.60 0(b) WOG Material Data Base, Ref. (9) and Ref. [11)(C) Longitudinal Welds - Intermed. Shell WF-70, Heat 72105,-Linde 80 Flux 8669: 0.35 0.59 Ref. (9)-
.(0.32)(d) (0.56)(d)0(b) (WOG Material Data Base) longitudinal Welds - Lower Shell WF-29, Heat-72102, Linde 80 Flux 8650:
0.23 0.63 0(b) Ref.-(7) Notes: (a) The' initial RTNDT value for these plates are estimated according to Branch Position MTEB 5-2 (12). (b) The initial RTNDT values for the welds are the generic ~mean valiJe defined by the PTS rule (1) for Linde 80 welds. (c) Agreement exists between-References-(9) and (11) and the WOG Material Data Base for heat 71249.- (d) Although a statistical evaluation (10) developed the chemistry values shown in parentheses, the higher NRC accepted values from BAW-1799 (9) were used. w .. m m an 44 (
-- -- - l
l t Location and identification of Materials Used in the i i I i z Fabrication of Zion Unit 1 Reactor Pressure Vessel WF-4 (100%) 0* I B7835-1 r F.7 T j 270- +-
) .! . 'O "Y m x M-154 (Inner 82%)
1 /[(SA-1769(Outer 18%) 8 U 4 d Os -}- d 87835-1 C3795-2
- 5
'WF-4 (Outer 61%) C 5 / [g WF-4 g g(Outer
[(C3795-2 61%) 180* .WF-8 (Inner 39%) F & (WF-8 (Irvier 39%) Inter.She8 7
~ "
(Core A4@ianel 9 a C . l WF-4 (100%) 0* O w N WF-70 (100%) 87823-t WF-8 Both (100%)
/ '" M 799 2 - .__ 7 . so i 'r d ; J- WF-154 (100%)
270-
~ +- 90*
WF-8 (100%) WF-8 (100%) i C3799-2 1 180* ' Lower Shell
Location and identification of Materials Used in the l Fabrication of Zion Unit 2 Reactor Pressure Vessel i
; WF-70 (100%) 0*'
P 88006-I e h 270* + 90* J %_! so1/r 1_ f M-200 (100%) h 88040-1 y y
$ intermed Sheg 88006 2 WF-70 (100%) ~ ~
180 WF-70 (10C") "' b n T ',## (Core @ne)
. = 1. WF-70 (100%) 0*
w
% SA-1769 (100%) ' 88029-1
- WF-29 Both (100%)
cd*
. t- Sasa(B.J:' 1 so : ,r J 270* " ' 2 -t- t 90* ~ WF-154 (100%)
WF-29 (100%) WF-29 (100%) C4007-1 180* Lower Shen
, WESTINGHOUSE CLASS 3 SECTION IV l DETERMINATION OF RT PTS VALUES FOR ALL BELTLINE REGION MATERIALS i Using the methodology prescribed in Section I.2, the results of the fast neutron exposure provided in Section II, and the material properties discussed ' in Section III, the RT PTS values for Zion Units 1 and 2 can now be
- determined.
] i IV.1 STATUS OF REACTOR VESSEL INTEGRITY IN TERMS OF RT VERSUS FLUENCE PTS RESVLTS Using the prescribed PTS Rule methodology, RTPTS values are generated for all beltline region materials of the Zion Units _1 and 2 reactor vessels as a u d esu r the to va a pe te n p di D for
- all beltline region materials for both units.
- Figures IV.1-1 and IV.1-2 present the RTPTS values for the limiting l longitudinal weld, circumferential weld and shell plate of the Zion Units 1 and 2 vessels in terms of RTPTS versus fluence
- curves.: The curves in these l figures _can be used:
o to provide guidance to evaluate fuel reload options in-relation to the NRC RT PTS Screening Criterion for PTS (i.e., RTPTS values can'be readily projected for any options under consideration, provided fluence is'.known), and l , o to show the current, end-of-license,-and end-of-life RTPTS_ values using, ) actual and projected fluence values. The current life at end of cycle 11 for both units is 9.72 EFPY for Zion'1 and 10.19 EFPY~for Zion 2. The end of-license life is approximately 25' EFPY for both units based on-current informat'.on, and 32 EFPY. represents the end-of-design life for both Zion units.
*The EFPY can be determir d using Figure 11.2-1 for Unit 1 and Figure 11.2-2 for Unit 2.
w<.nv *
- 47
__ - ,- _. 4-. , __ - -._ ,
WESTINGHOUSE CLASS 3 Table IV.3-1 and IV.3-2 provide a summary of the RT values for all PTS beltline region materials for the lifetime of interest. IV.2 DISCUSSION OF RESULTS As shown in Figures IV.1-1 and IV.1-2, the welds are the governing locations for both reactor vessels relative to PTS. All RT PTS values remain below the NRC screening criteria through end of-design life (32 EFPY) with the exception of the intermediate-to-lower shell circumferential weld for Zion Unit 1. Although this limiting weld is currently projected to exceed the applicable NRC screening criterion of 300*F using the higher NRC accepted chemistry values for the WF-70 material, Commonwealth Edison has expressed the intent to implement further flux reduction after Cycla 12 such that the RTPTS value for this weld will remain below the screening criterion through 32 EFPY (7). l 4414s/121300 10 g I
WESTINGHOUSE CLASS 3 TABLE IV.3-1 RT p73 VALUES FOR ZION UNIT 1 RT Values (*F) PTS Present End-of-License End-of-Life Location Vessel Material (9.72 EFPY) (25 EFPY) (32 EFPF) 1 Intermediate shell 116 131 136 I plate C3795-2 l 2 Intermediate shell 111 i 126 131 plate B7835-1 3 Lower shell plate 107 124 .129 B7823-1
, 4 Lower shell plate' 143 163 169 i C3799-2 1- !
1 5 Upper to intermediate 216 256 i 269 shell'circumferential weld
- WF-154(a) /SA-1769 i
- 6 Intermediate to lower shell 256 308 323 j circumferential weld WF-70 t
7 Intern.ediate and lower shell 179 210 220 longitudinal wel'ds-WF-4/WF-8 Note: 9 (a) Only values for weld WF-154 are given.. Weld:WF-154 contains'the more controli:ng material properties and is located at the inner portion of the-c reactor _vesse1~ wall. w..mim io - _49
WESTINGHOUSE CLASS 3 TABLE IV.3-2 RT PTS VALUES FOR ZION UNIT 2 RT Values (*F)
, PTS Present End-of-License End-of-Life location Vessel Material (10.19 EFPY) (25 EFPY) (32 EFPY) 1 Intermediate shell plate 118 133 138 B8006-1 2 Intermediate shell plate 121 138 144 B8040-1 3 Lower shell plate B8029-1 129 143 148 4 Lower shell plate C4007-1 130 144 149 5 Upper to intermediate shell 185 216 226 circumferential weld WF-200 6 Intermediate to icwer shell 205 240 251 circumferential weld SA-1769 l
7 Intermediate shell 207 245 257 longitudinal welds WF-70 8 Lower shell longitudinal 156 181 189 welds WF-29 l l l wa.m,m ,o 5n
. _ _ _ _ _ _ _ _ _ _ _ - .-- ~
UESTINGHOUSE CLASS 3 Figure IV.1-1 210N UNIT 1 - RT PTS CURVES "ER PTS RULE NETH000 LOGY 350
~
325 NRC RT Screening Value - Circumfe PTS ial Weld E NRC RT e PTS Screening Value - Pla s and longitudinal Welds ; limiting 250 Circumferential Weld 225 200 US NLongitudinalWelds 12 - KEY
\ Limiting Plate A - Current Life ( 9.72 EFPY)
IG) B End-of-License (25) using actual
- and projected fluence values 75 S End-of-Life (32 EFPY) using actuall and projected fluence values T
- 25 i , , i ii,,I i i i i i iiil i
E Y naxr, emos / d ' 4414t W S4010 g
1 WES?!NGHOUSE CLASS 3 Figure IV.2-1 ZION UNIT 2 - RT PTS CURVES PER PTS RULE NETH000 LOGY 350 I!S NRC RT PTS Screening value - Circumferential Welds NRC RT PTS Screening Value - Plates and ' Longitudinal Weld 22 - Limiting L noitudinal W 225 s
"~
2(X)
*b u rential Weld &= ~
125 XEY A current Life (10.19 EFPY) E. . klimitingPlate 5 End-of-License 25 EFPY) using l actual and proje(cted fluence va 3 e End-of-Life (32 EFPY) using actual and projected fluence values 25 - 0 M8 g . auxt, runus / of ' ' l 4414sm13eo to ( 52 L 1 1
WESTfNGHOUSE CLASS 3 SECTION V CONCLUSIONS AND RECOMMENDATIONS Calculations have been completed in order to update the RT PTS values for the Zion Units 1 and 2 reactor vessels to me6t the requirements of the NRC Rule for Pressurized Thermal Shock (1). This work entailed a neutron exposure evaluation and a reactor vessel material study. Detailed fast-neutron exposure evaluations using plant specific cycle by cycle core power distributions and state of-the-art neutron transport methodology have been completed for the Zion Units 1 and 2 pressure vessels.- Explicit calculations were performed for the first-12 operating cycles of both units. For both units.-projection of-the-fast neutron exposure beyond the current operating cycle was based on continued implementation of low leakage fuel management similar to that employed during cycles 9 through 12.- In regard to the low leakage fuel management already in place a't the Zion Units, the plant specific evaluations have demonstrated that:for the. low leakage case the avarage fast neutron flux at.the 45* azimuthal position has been reduced by a flux reduction factor of 1.3 relative' to that existing prior to implementation of low leakage. This location represents the maximum fast neutron flux-incident on the reactor pressure vessel. At other locations on- , - the vessel, as well as at the surveillance capsules, the impact of low leakage . differs. It should be noted that significant deviations- from the present -low leakage -schemes will affect the exposure projections beyond the current operating cycles. Commonwealth Edison has expressed the-intent to implement further flux reduction after Cycle 12 [7), which would make the projections of vessel exposure in-this document conservative. When such changes become definite.- evaluations of the.RT PTS will be updated to reflect the revised fluence projections ~as required by 10CFR50.61. w .mim ie
-53 i
WESTINGHOUSE CLASS 3 l The fast neutron fluence values from the plant specific calculations have been adjusted in accordance with measured fluence levels derived from neutron dosimetry contained in the four surveillance capsules withdrawn from Zion Unit 1, the three surveillance capsules withdrawn from Zion Unit 2, and cavity dosimetry measurements in Cycle 9. Based on these measurements, the calculated fluence values were increased by an inclusion of this average bias of 8%. It is estimated that inclusion of this average bias results in conservative extrapolations to end of-license and end-of-life values. Material property values for the Zion Units 1 and 2 reactor vessel beltline region components were determined. The pertinent chemical and mechanical
' properties for the shell plates remain the same as those that have been i
docketed with the NRC in Reference (8). The weld material properties that were evaluated are consistent with those recommended in repw t BAW-1799 [9), even for those weldments made with weld wire heat number 72105. Although a statistical materials program was previously developed to address tne large scatter in the copper content of weld wire heat number 72105 (10), Commonwealth Edison has chosen to use the NRC accepted chemistry values from BAW-1799 [9] for this limiting weld (i.e., 0.35 wt.% and 0.59 wt. % Ni). Using the prescribed PTS Rule methodology, RTPTS values were generated for all beltline region materials of the Zion Units 1 and 2 reactor vessels as a function of several fluence values and pertinent vessel lifetimes. For both reactor vessels, all the RT PTS values remain below the NRC screening criteria for PTS using the projected neutron fluence exposure through a 32 EFPY end of-design life with the exception of the intermediate-to-lower stell circumferential weld for Zion Unit 1. The most lin.iting values at end of-license (25 EFPY) and'at 32 EFPY are 308'F and 323'F, respectively for
- this Zion Unit 1 circumferential weld. The most limiting RTPTS values for Unit 2, which are associated with the intermediate hell longitudinals welds, are 245'F and 257'F at end of-license (25 EFPY) and 32 EFPY, respectively, l
ws.m,m so 54
WESTINGHOUSE CLASS 3 Although the Zion Unit 1 limiting weld is currently project << _. the applicable NRC screening criterion of 300'F using the higher , ccepted chemistry values for the WF-70 material, Commonwealth Edison has expressed the intent to implement further flux reduction after Cycle 12 such that the RT PTS value for this weld will remain below the screening criterion through 32 EFPY [7). t m..n n =a i. 55
wSi!NGHOUSE CLASS 3 SECTION VI REFERENCES
- 1. Nuclear Regulatory Comission,10CFR Part 50, " Analysis of Potential Pressurized Thermal Shock Events," Federal Register, Vol. 50, No. 141, July 23, 1985.
2. Commonwealth Edison Letter from R. A. Chrzanowski to Dr. Thomas E. Murley of the U.S. Nuclear Regulatory Commission, " Zion Station Units 1 and 2 Reactor Vessel Weld Configuration NRC Docket Nos. 50-295 and 50-304," March 23, 1990.
- 3. Soltesz, R. G., Disney, R. K., Jedruch, J. and Ziegler, S. L.,
" Nuclear Rocket Shielding Methods Modification, Updating and Input Data Preparation Vol. 5 - Two Dimensional, Discrete Ordinates Transport Technique " WANL-PR(LL)034, Vol. 5, August 1970.
4.
" SAILOR RSIC Data Library Collection DLC-76." Coupled, Self-Shielded, 47 Neutron, 20 Gama-Ray, 3P , Cross-Section Library for Light Water Reactors.
- 5. Private unpublished data of Anderson, S. L., Westinghouse Electric Corporation.
6. ASTM Sta.idard E853-87, " Standard Practice for Analysis and Interpretation of Light Water Reactor Surveillance Results, E706(IA)", Annual Book of ASTM Standards, Volume '.2.02, 1989. 7. Commonwealth Edison Reactor Vessel Integrity Meeting with V. S. Nuclear Regulatory Comission Staff, Rockville, Md., March 6,1990. 8. Commonwealth Edison letter from D. E. O'Brien to Mr. A. Schwenur of the NRC, " Zion Station Units 1 and 2 NRC Docket Nos. 50-295 and 50-304," September 7, 1977. ui..mino i. 56
WESTINGHOUSE CLASS 3 q_ 9. B&W Owners Group Report, BAW-1799. "B&W 177-FA Reactor Vessel Beltline Wald Chemistry Study", July 1983.
- 10. Furchi, E. L., et al., " Zion Units 1 and 2 Reactor Yessel Fluence and
, RT Evaluations" WCAP-10962, December, 1985. PTS i
- 11. NRC Letter Docket Nos. 50-250 and 50-251, " Evaluation of Reactor Yessel Materials Data for Turkey Point Plant Units b and 4 Reactor Vessels", from S. A. Varga to J. W. Williams, Jr., of Florida Power and Light Company,
.. April 26, 1984.
, 12. NUREG-0800 - U.S. NRC Standard Review Plan, Branch Technical Position 5-2, '
i . Revision 1. July 1981. i
- 13. Kellogg, L. S. and Lippincott, E. P. " PSF Interlaboratory Comparison,"
Proceedings of the Fourth ASTM-EURATON Symposium on Reactor Dosimetry - [ Radiation Metrology-Techniques, Data Bases,-and Standardization. NUREG/CP-0029, 1982. i 1 1 t 4 I unwwme se 57
WESTINGHOUSE CLASS 3 APPENDIX A POWEP OISTRIBUTIONS Core power distributions used in the plant specific fast neutron exposure analysis of the Zion Units 1 and 2 pressure nssels were derived from the following Westinghouse and Commonwealth Edison fuel cycle design reports. Fuel Cycle Unit 1 Unit 2 1 WCAP-7675-R1 WCAP-7675 2 WCAP-8616 WCAP-8881 3 WCAP-9114 WCAP-9246 4 WCAP-9356 WCAP-9458 5 WCAP-9568 NCAP-9687 ( 6 WCAP-9859 WCAP-9959 7- WCAP-10047 WCAP-10282 8 NFSR-0020 NFSR-0024 9 NFSR-0035 NFSR-0037 10 NFSR-0048 NFSR-0052 11 NFSR-0058 NFSR-0065 12 NFSR-0076 NFSR-0079 A schematic diagram of the core configuration applicable to Zion Units 1 and 2 is shown in Figure A.1-1. Calculated cycle averaged relative assembly powers for each operating fuel cycle of Zion Units 1 and 2 are listed in Tables A.1-1 and A.1-2, respectively for assemblies centributing to the vessel exposure. These values were derived fr'om the cycle burnup for each assembly as tabulated in the above listed reports. On Figure A.1-1 and in Tables:A.1-1 and'A.1-2,.an irtentification number is assigned to each fuel assembly location. In performing the adjoint evaluations, the relative power in the outer row of assemblies (1-4',9,10) was increased by 5% to account for known biases in-:the analytical or design prediction-of power'in these peripheral assemblies.
.4i..mi m is -
A-1
- l j
WESTINGHOUSE CLASS 3 l In each of the adjoint tvaluations, within assembly spatial gradients * (relative pin by pin powers) have been superimposed on the average assembly power levels. For the peripheral assemblies, these spatial gradients also include adjustments to account for analytical deficiencies that tend to occur near the boundaries of the core region. u:..mimo A-2 _ _ _ _ _ _ , _ _ _ _ . - - . _ - - - - - - - - - - - - - - " - ' - - ' - - - - - - ~ ' - - " "
TABLE A.1-1 CORE POWER DISTRIBUTIONS USED IN lilE PLANT SPECIFIC FLUENCE ANALYSIS ZION UNIT 1 Fuel Cycle Assembly 1 2 3 4 5 6 7 8 9 10 11 12 t 1 0.74 0.93 . 0.95 0.89 0.98 0.90 0.91 0.57 0.58 0.55 0.83 0.45 > 2 0.81 0.94 0.98 0.90 0.97 0.93 0.94 0.83 0.77 0.75 0.81 0.57 , 3 0.70 0.88 0.93 0.85 0.96 0.94 0.91 0.79 0.86 0.90 0.76 4 0.60 0.70 0.75 0.70 0.78 0.753 0.75 0.36 0.40 0.44 0.48 0.40 de 5 1.01 1.05 0.87 0.84 0.90 0.455 0.86 0.73 1.04 0.97 1.04 1.14 0.98y 1 6 1.01 1.17 1.22 1.17 1.17 0.89 1.05. 0.95 1.20 1.22 1.16 1.15 M 7 0.98 1.03 0.97 0.93 0.98 1.16 1.03 0.87 1.21 1.00 1.13 0.97 P l i 8 0.99 1.18 1.15 1.14 1.19 1 07 1.03 1.14 1.10 d 1.08 m; I 1.16 1.05 9 0.85 0.95 1.01 0.99 1.05 1.02 0.54 0.94 0.85 0.71 0.75 0.67 " > 10 0.51 0.61 0.72 0.69 0.70 0.72 0.31 0.43 0.36 0.38 0.36 0.42 11 1.17 0.97 0.82 0.84 0.80 1.06 0.83 1.05 0.82 1.12 1.06 1.06 12 1.12 1.03 0.84 0.88 0.90 1.13 0.94 1.07 0.91 1.07 0.94 1.08 13 1.15 1.03 0.06 0.88 1.30 1.10 1.21 1.22 1.26 1.19 1.24 1. a
- 14 1.07- 1.17 1.18 0.97 0.99 0.98 1.00 1.02 1.03 1.04 1.14 1.13 15 0.94 1.04 0.99 1.14 1.05 1.12 1.06 1.04 0.94 1.24 1.18 1.19 16 0.99 0.91 1.13 0.97 0.80 0.95 1.01 0.99 0.87 1.12 0.95 1.02
. . ...m i m ,.
l' TABLE A.1-2 CORE POWER DISTRIBUTIONS.USED IN:THE PLANT SPECIFIC FLUENCE ANALYSIS ZION UNIT 2 Fuel Cycle Assembly 1 2- 3 4 5 6 .'7 8 9 10 11 12 1 0.74 'O.90 0.86 0.58 0.92 0.82 0.58 -0.49' O.45 0.85 0.% 0.49 , 2- 0.81- 0.91 0.88- 0.83 0.92 0.93 0.85 0.50 0.54 0.70 0.71 0.60 .@ 3 0.70 0.85 0.83 0.84 0.90 0.86 0.80 0.78 0.74 0.84 0.71 0.78 1 5 4 0.60' ' 0.66 - 0.65 0.67 0.70 0.44 0.44 0.44 0.41 0.49 0.39 0.40 5 1.01 O.88 0.87 0.78 0.90 0.88 1.18 0.86- 0.91 1.00, 1.07 1.04 N 6 1.01 '1.10 1.19 1.17 1.14 1.10 1.17- 1.14' 1.15 1.20 1.18 1.16 E-L 7. 0.98 0.89 0.94 0.92 0.91 1.14 1.10 1.18 1.04 1.03 1.10 1.09 M m I "
~3 0.99 :1.09 1.14 '. 1.15 ,1.08 1.07. 1.12. 1.14 1.09 1.10 1.05 1.04 9 0.85- 0.87 0.94 0.97 0.% 0.87 0.91- 0.91 0.77 0.68 0.65- 0.60 10 -0.51- 0.56 0.64 0.70 0.70 0.40 0.41. 0.39 0.40 0.40 0.33 0.34 11 1.17 - 0.80. 0.92 0.99' 1.06 1.09 1.20' 1.04 1.06 1.06 1.19 1.C3 12 :1.12 0.95 1.00. "0.99 0.97 0.98 1.06 1.18 1.15 1.07 1.19 1.11 13 1.15 0.86 1.09 1.01 1.16 1.18 1.24 1.27 1.31 1.26 1.11 1.27 14 1.0? O.88 -1.12 0.97 -0.93 1.15 1.01' 1.13 1.06 1.09 0.97 1.17 15 0.94 0.82- 1.01 1.02 0.90 0.91 1.04 ,1.08 1.24 1.23- 1.12 1.19
, 16 0.99 i 0.82 1.07 1.15 1.10 0.96 1.05 0.94 ;1.04 1.03 0.80 - 1.01
.u.. m i m i. ~_._.. . _ . _
WESTINGHOUSE CLASS 3 Figure A.1-1 Zion Units I and 2 Core Description for Powar Distribution.; Maps 1 r 1 2 3 4 5 6 7- 8. 9- 10 11 12 13. 14 15 16 17 18- 19 20~ 21-22 23 -24 '25 1 26 27 28 29 30 4 31
.]
m..ma.o io
-A-5 .)
WESTINGHOUSE CLASS 3 APPENDIX B I COHPARISON OF ZION PLANT SPECIFIC FLUENCE CALCULATIONS WITH SURVEILLANCE CAPSULE AND CAVITY MEASUREMENTS In order to obtain the best estimates of the fast neutron exposure of the two Zion reactor vessels, a detailed comparison was made with available measured data. This data consists of analyses of four surveillance capsules removed from Unit 1, three capsules from Unit 2, and cavity dosimetry from both Units irradiated in Cycle 9. In addition, cavity dosimetry was irradiated in Unit 2 for Cycle 10, but the analysis is not yet complete. However, the Cycle 10 data were used to check the consistency of the Cycle 9 data. All seven surveillance capsules were located at positions symmetrical to 40 degrees and thus are close to the maximum fluence positions on the vessel at 45 degrees. The cavity dosimetry was located at azimuthal angles of 0, 15, 30, and 45 degrees. Table B.1-1 shows a comparison of the average flux (E > 1 HeV) for each of ~ the capsules. The values in this table are taken from the following sources: Zion Unit 1 Surveillance Capsules: Capsule T originally reported by fattelle in BCL-585-4 and Reinstalled by Westinghouse in WCAP-9890 (1981) Capsule U reported in WCAP-9890 Capsule X repcrted by SWRI in SwRI-7484-001/1 (1984) Capsule Y reported by B&W in BAW-2082 (1990) Zion Unit 2 Surveillance Cap'sules: Capsule U by Battelle in BCL-585-4 Capsule T by SWR 1 in SwRI-6901 (1983) Capst.le Y and updated analyses of capsules U and T by Westinghouse are reported in WCAP-12396 (1989) < Cavi+y Desimetry: Unit 1 reported in WCAP-11691 Unit 2 reported'in WCAP-11962. B-1 j
WESTINGHOUSE CLASS 3 The values used for this analysis were all checked for consistency and the capsule data was reanalyzed to attempt to generate a consistent set. Specifically, the reanalysis in WCAP-12396 was used for Unit 2 and a similar reanalysis was performed for capsules T, U, and X of Unit 1. An updated evaluation of the cavity dosimetry data was also performed using consistency checks with cavity dosimetry data from similar plants. In general, these reevaluations improved the agreement between the measured results and the calculations, leaving the remaining deviations of the measured-to-calculated (WC) ratio as shown in Table B.1-1. It should be noted that in the e,alysis of capsule Y of Unit 2, a consistent discrepancy with measurement = in Unit I and with calculated reaction rate atios was observed.- It was concluded that the most likely source of this
< icrepancy was the failure to remove the surveillance capsule legs during 3
stallation as specified by the print. This results in the capsules being f cated at a radius of 212.12 cm instead of 211.41 cm. This causes a shift in h Me calculated fluence at the 40 degree capsule location of 0.874 and a shift at the 4 degree capsule of 0.926. These factars were included in the comparisons in Table 8.1-1 and in Tables 11.2-15 and 11.2-16. It should be noted that this assumption results in a higher (conservative) estimate for the neutron fluence at the vessel. After making the as amption about the capsule locations in Unit 2, the capsule data indicate that the bias with calculation is nearly the same in the two Units. This conclusion is not-supported as well by the Cycle 9 cavity dosimetry result, and therefore, the Cycle 10 data were checked to get an indication of its consistency. The Cycle 10 cavity data appears to fall about ' midway between the Unit 1 an'd Unit 2 Cycle 9 results. On the basis of this preliminary analysis, it is concluded that the difference between the cavity dosimetry results can be attributed to uncertainty in the results. Therefore, it was concluded that it is appropriate to determine a calculational bias by averaging over both Zion Units, i m..n m.o a B-2
WESTINGHOUSE CLASS-3
- The capsule data for both Zion Units indicates a trend from a higher calculational bias for the early cycles to better agreement for-the later cycles. No single explanation for this trend could be found, so it is probable that it is a_ result of the contributions-of several factors. These cre discussed below:
- 1. Changes have occurred in calculational methodology and data that result in differences in calculated power distributions. -Early cycles of Zion are thought to have a' slight low bias (~5%) in the powers in the outer assemblies. This bias was corrected after Cycle 4. In addition, the later low, leakage cycles do noc seem to have the same issue with bias in-the outer _ assemblies. These considerations could. account for part of the bias of the early M/C ratios relative to the_later ones, but it obviously.
does not explain the total ~ trend.
- 2. Since the surveillance capsules integrate exposurs;over the entire reactor-irradiation history, the fact that the later capsules indicate much lower.
- total fluence would indicate a very substantial reduction in fluence in the later cycles. For example, the difference between the Unit I capsule X and capsule U results would indicate a dramatic flux reduction in Cycles 5 and 6 which has no basis in the reactor loading change. It is-concluded, therefore, that the difference between the capsule _results cannot be used as a good indication of the later_ cycles, 'and therefore, some of this difference is due to uncertainties in the' measurements or calculations. This_ conclusion was checked by investigating the-consistency of the iron reaction rate results relative to the expected values. The iron results are sensitive mainly.to only the last cycle before withdrawal because of the 312 day half life of the reaction _
product. The iron results are consistent with the values in -Table B.1-1
-and thus oppport the conclusion that the calculated cyc', fluence values L
are not_ grossly in error. 4 i._ l
- m..,uum io B-3
. . _ . . - _ . . , _ _ - ~ ~ , - ~ , , _ . , , . . . . . _ ~ . - . . _ _ . - , _ . _ , . _ . _ . ._ . . . , , _ _ _
WESTINGHOUSE CLASS 3
- 3. The integration of exposure in the later capsules is highly dependent.on the results from the fission monitors. These results depend on making appropriate corrections for competing fission reactions. In addition, the fission results require either a chemical dissolution for analysis or substantial self-shielding correction. Observations of consistency of results from other surveillance capsules indicates that the spread in results from the fission monitors is greater than for the other reactions.
Thus, it is possible that the later capsule results could have experimental errors which led to the lower measurement results.
- 4. In some plants, differences up to 20% have been noted between supposediy symmetrical positions. Such differences could arise from differences in fuel, difference in centering of the reactor internals from the center of the vessel, or out-of-roundness of the internals or vessel. Such dif-ferences could contribute to the differences in capsule results and the similarity of the two Units could be a coincidence.
- 5. The early measurements by BNL and SWRI were not as well documented as later measurements. In addition, these measurements occurred before an interlaboratory round robin that checked the accuracy of the counting laboratories was completed in 1982 [13). Therefore, some systematic measure- ment error may be present in these results. The later results by SWRI, Westinghouse, and B&W appear to be more consistent.
- 6. The cavity dosimetry is biased high relative to the later capsule results. At present, work is going on at Oak Ridge National Laboratory to develop updated iron cross sections and better calculational methods to improve the prediction of cavity dosimetry results. Preliminary results indicate that less attenuation of the high energy flux is calculated with the new cross section sets compared to the Sailor cross section set and this would improve the agreement between the Zion measurements and calculations. However, further work is still needed to accurately calculate the cavity flux at 1 NeV. Therefore, no credit has been assumed in this analysis for the fact that the cavity calculations are probably biased low relative to the inside of the vessel.
wnma g.4
^
WESTINGHOUSE CLASS 3 4 7. Other variations .in the reactor not taken into account-in the calculation can also affect the-results.- Such variations can arise from the dif- , forences-in cycle-lengths from the fuel design _ reports, load'following. effects due to control. rods or other differences, or differences in water temperature. _These effects are not considered to be greater than~1-2%. in view of the above considerations, it was concluded that the most ~ prudent-course is to take an average of the_ data to determine a bias _ factor to. apply-to the calculations. First, the cavity data was averaged for each Unit since the differences between the various angles fall-within the probable error in ' the M/C ratio. Then -the two cavity' averages were avcraged with the_7 surveillance capsule results. This puts a high' weight on all_the capsule
- results which is felt- to be appropriate because of their: proximity to the-l- maximum vessel fluence point.
The capsules were all weighted equally because ' of the uncertainty in the measurements. This approach yields a conservative result compared to placing a higher weight on the later capsules. 4 The end result.of the averaging of the data is a bias of 1.08. This-factor has been applied to all the flux and fluence calc;1ations in Tables II.2-1 p through 11.2-20. 4 l i L
) ~
i
..,nimo in B-5 , .m., ,.,c,nm,- ,-- i,,y.,. ,- , . - - , .....y -
I j WESTINGHOUSE CLASS 3- i Table B;'. Comparison of Measured Average Fluence Rate (E > 1 MeV) with Calculation-l Measurement Cycles -Average e(E > 1 MeV) p Location Irradiation Measureo Calculated M/C Zion 1 Capsule T 1 7.47E10 6.45E10' Capsule U 1.16 4 - 5 1-4 8.43E10. 7.04E10- 1.22 Capsule X 1-6 7.12E10 7.26E10 0.98 Capsule Y 1-10 5.78E10 6.33E10 & 0.91 Cavity 0 9 -2.94E8 2.41E8
-1.22 Cavity 15 9 4.39E8 3.83E8: 1.15
! Cavity 30 9 5.12E8. 4.31EB 1.19 Cavity 45 9 .5.53E8 4.96E8 1.11
- . Cavity Average 4
1.17 1 Zion 2 1 Capsule U 1 6.47E10 5.64E10 1.15 Capsule T 1-4 6.84E10 5.96E10 1.15 l- Capsule Y 1-10 4.99E101 5.41E10 0.92
- Cavity 0 9 2.34E8 :2.04E8' -1.14 -l
- -Cavity 15- 9- 3.58E8 3.33E8 1.08 i Cavity _30 9 4.57E8 24.44E8 1.03 Cavity 45 9_ 5.51E8: 5.36E8 i
1.03 F : Cavity Average 1.07 i Average of 7 surveillance capsules and i- 2cavitydosimetryLaverages 1 1.08 J l m..mma io B-6
WESTINGHOUSE CLASS 3 APPENDIX C WELD CHEMISTRY Tables C.1-1 through C.1-6 provide the weld data output from the WOG Material Data Base. Given are the searches of all available 6ata for the wire heat in the Zion Units 1 and 2 reactor vessels beltline region. The pertinent material chemical compositions are given, along with the wire / flux identification. The mean chemistry values and the population standard deviation are then calculated. The mean values of copper and nickel are used in the RTPTS analysis unless otherwise noted. Weld Chemistry Data Source and Plant: AN1 - Arkansas Nuclear 1 BAW-1799 - Babcock & Wilcox Report Number B&W - Babcock & Wilcox COM - Zion 2 CR3 - Crystal River 3 Cu - Weight % of Copper CWE - Zion 1 ESA - Emission Spectrographic Analysis , FLA - Turkey Pcint 4 FPL - Turkey Point 3 MATSURV - NRC Mender MATSURV Data Base MPC - Materials Properties Council Data Base Ni - Weight % of Nickel OC1 Oconee 1 P - Weight % qf Phosphorous RGE - Robert Emmett Ginna RS1 Rancho Seco 1 SC - Surveillance Capsule Si - Weight % of Silicon TMI - Three Mile Island 1 VIR - Surry 1 WEP - Point Beach 1 , WMQR Weld Metal Qualification Retest WQ - Weld Qualification C-1
I
-i
! WEST 1NGH00SE CLASS'3 i TABLE C.1 ! ZION UNIT 1 INTERMEDIATE AND LOWER SHELL LONGITUDINAL' WE _ FROM WOG MATERIALS Ot.TA BASE - WIRE HEAT NUMBER 8T1762 t mm n.ou=== w unmu.nna. m==umu====.n=t mu li 11RE W!RE FLul FLUt WELDCHER Cu at
... mnumumm P
( Af - TYPE li PLMT DESCRIPf!CN TYPE LOT NfA SOUKE l 0216 til7M m_-MO-#! . Ll HE M B432 h,W 0.200 0.410 0.00f 0.330 CR3 !NTER SMLL L M i CWC INTER 54LL Lan6 i CW LOWER 5 4LL Lon6 l fM1 INTER 54LL L046 0270 811762 VIR LNER 54LL LM m-4-N! LINK 00 8333 N,W i 0.180 0.610 0.017 0.430 Oct L M R 54LL L0u6 -* 4 0271 ff1762 m-no-at LinM to WP #0Z2LE 10 INTER S ELL 8450 W,4 ' O.103 0 A50 0.004 0,390 Aal INTER $4LL LM M1 L M A 54LL i:N6 0333 tit 7M PN-80-41 LINM N CR3 INTER SHCLL LONG ! 8397 h,4 0.170 0.330 0.017 0.510 CW INTER S ELL L m6-0334 Ifl7M m-no-ul L!nN N v!R LCER $NELL LON6 8333 94-1791.W - 0.160 0.600 0.017 0.430 - DCI L0dA 5 4LL L M 0337 971762 m-MO-Ni LleM 90 EP - 40 m E TO INTER SHELL-
'5396 BM-1799,W 07728717M m-M0-41 L!hM to 0.220 0.600 0.013 0.430 - CR3 L M A $4LL Lon6 1571 . pu-1799.N 0.220 0.436 0.011 0.460 i- sean sts.dev. 0.179294%.34714N.013714 0.45406
- 0 m . m m . . m ... m m m . m . m m .. . . m o . m m mm.m .. m m . m.040232 0.078647 0.003187
..m.m-mom....m ..mo 0.049618 i m.m 4
J G
*Since these values are limited to the weld metal qualification test reports, report BAW-1799 recommends that a'mean value of copper equal'to 0.29 wt% with a standard. deviation equal to 0.07 wt% be applied because a bias exists in the retest of similar-type welds.
4
**BAW-1799 recommends that a mean value of nickel equal to 0.55 wt% be applied .
- u u.wmo ia C-2 1
b
,,..w,.m , -an-, -avr-,- , , - .-
WESTINGHOUSE CLASS 3 TABLE C.1-2 ZION UNIT 2 LOWER SHELL LONGITUDINAL WELD CHEMISTRY FROM WOG MATERIALS DATA BASE - WIRE HEAT NUMBER 72102
._m .. _= m - - m ... m m . .. ... m . .. ....o m .. m ..
II W!RE WIRE FLUI FLUI ELDCEM Ca ut NEAf P St Plani st$titP1104 TYFE TWE LOT DATA SOURCE 021772102 RN-al0-a! LINDE 80 8650 8W,WG 0.160 0.270 0.017 0.420 Con . 4essee g [ HELL L0h6 R$1 INTIR SWELL L M Rtt toutR M LL L M 0245 72102 Re-MO-a! LINOE 80 8479 IW.WG 0.210 0.530 0,022 0.470 0764 72102 P4-M0-N! L!nDE to 8654 IAW 1791,WSA 0.!!0 0.630 0.015 0.420 %- COM INELL L N R$1 INTER Si(LL LCN6
.....L R$t LOWER $ HELL LCM , ,, ...-. ~ . ~ ...~. ... ~ .
seen 0.193333 0.476667 0.018 0.436667 ste.dev. 0.028848 0.1858
--.mm m. ..mm...... .... ..mmm...mm. m.... ---mm.o.........-....m...m.....
0.003606 0.029868
*BAW-1799 recommends that a mean value of copper equal to 0.23 wt% with a standard deviation equal to 0.07 wt% be applied based upon the retest of weld metal qualification test samples for similar welds. **BAW-1799 recommends that a mean value of nickel equal to 0.63 wt% be applied.
m..,oe nen a C-3
. ~
WESTINGHOUSE CLASS 3 t TABLE C.1-3 7 ZION UNIT 1 UPPER TO INTERMEDIATE SHELL 'CIRCUMFERENTIAL W ZION UNIT 2 BELTLINE- CIRCUMFERENTIAL-WELD CHEMISTRY 3 FROM WOG MATERIALS-DATA BASE - WIRE HEAT NUMBER 71249 18 Witt WIM RUI FLUI WEL500 Ca Nt P $1 , NEAT TYPE PLM1 DESCRIPTION TTPE LOT DATA SOURCE 0!!t 71249 m-MO ul LINN to 8738 W,W 0.!?0 0.660 0.021 0.450 CDR INTER TO LCER SMLL 022371249 CR3 m-no-N! LINM N 8445 W,W N0Z2LE TO INTER SHELL 0.210 0.570 0.021 0.520 RA INTER TO LCWER $4LL FPL INTER TO LOWER SHELL FPL SWyEIRAmCE ELD RGE 40Z2LE TO INTD SHE R 024171249 EP 440-Ni LINM N 8449 N.m INrER TO LCdA $ DER
- 0273 71249 Me-MG-ul Link H 0.!!0 0.550 0.012 0.410 9457 h,W dite 71241 m-MO-ul - LINK 00 0.230 0.550 0.020 0.510 FLA SWVE!LLANCE ELS 845 FPL,$C 0.310 0.570 0.011 0.440 RA INTER TO L0d t 54 LL FPL .INTU TO LD ER IkELL-FPL SURVE!LLANCE ELD RK NCZ2LE TO INTER SHER 0297 71249 M40 N! LINK 90 4437 FLA,$C (P INTER TO LOWR SHELL 0454 71249 m-no-ut LINN 80 0.300 0.600 0.014 0.500 FLA slave!RANCE WELD 6445 Bad-17tt,ESA 0.160 0.550 0.019 0.540 FLA
' INTER TO Loutt SNELL FPL INTH TO L0ER SHELL FPt. SutvtInA#CE'WL3 RE NCZ2LE TO I NER SELL 0455 71249 m-MO-#1 LINM 90 WP !NTG TO LOER SMR 8445 BAv 17tt,ESA 4.150 0.540 0.018 0.550 RA INTH TO LOWH SHER FPt INTER TO LOW R S M R FPL SURVElu MCE ELD RE NC22LE TO_ INTER SHELL 0454 71249 m-a0-n! L!nX to EP !ETER te LGE R $4 R 145 IAW-1799,ESA 0.100 0.550.0.0!? 0.540 FLA - INTER TO LOW R 5 KELL FPL INTERTOLOWERSHELL FPL SWVEluMCE dLD RE NC2:LE TO INTER 54LL 045771241 m-MC-NI LlaM to - WP 8445 INTER TO LOWER SHER IM-17tt,ESA 4.190 0.540 0.011 0.410 FLA .' INTER TO LOWR SMLL FPL INTER TO LOWG SHELL FPL SURYE!RMCE WELD RE N02ZLE TO INTD 5 4 LL 0458 71249 W-54E L! s t 30 KP INTER TO 1.0ER SHELL 0643 BM-1799,ESA 0.150 0.550 0.020 0.600 RA INTER TO LOWER SHER FPL INTER TO LCER $NELL FPL SURVE!LLANCE ELD d uinaimio C-4
1 WESTINGHOUSE CLASS-3 TABLEC.1-3l(continued)I ( 4
~ RK N0ZAE TO INTER 1MLL i- 0459 71249 m-81Hi! LINGE to h45 (P INTER TO LOWS SMLL-IAW-17tt,ESA ' . 0.l70 0.14 0.019 0.620 FLA - INTH TO LO"154LL FPL INTER To b s P'.L *PL IUtvEILLANCE .
RK _ NCZA E TO INTER M R M60 71249 w a0-N! LINK M B445 WEP . INTER TO LDER SHELL IM -t m ,LSA 0.2 M 0.5u 0.020 - O.6 M + FLA. INTER 70 LMR MLL -
- FPI, ; INTER TO LCER MLL FPL Sumi!LLANCE ELS
' R$E N0:2LE TC INTER SHELtl-M61 71249 EP NIH0-# t - LIN8E M 9445 INTD TO LMA SHER = 9
- 1799,ESA . 0.2% 0.3 % 0.019 0.6M .
- FLA. INTH TO LMA SHELL i FPL INitt TO LONU M R -
- FPL SURVt!RANCE dLa-
!- RK . N02 R I TO 1470 M LL-8 42 71249 EP- INTD TO LOWD SHELL 4 m-R0-W1 LINK M B445 Mt-t m ,ESA 0.230 0.520 0.017 - 0.620 FLA_ INTH TO LOWER $WLL - - FPL luip TO LOWER SHELL FPL suave!RANCE WLD.- 4 RK N02A I TO INTD ' HELL 0 %3 71249 ' EP m-80-ut LINK M 8738 INTD 10 LONER S K R-
-1 telm,E$A - 0.310-0.6% 0.021 0.550 -_ CM j- INTER TO LodR MR MM 71241 m-@N! LIM M 87M . . SM-1799,tSA = 0 "O 0.M0. 0.021 0.130 = CR3 N02AI TO INTER SHER CM - -INTH TO LOWER SMLL N371449 M-80 N! LINDE M CR3 8731 NO22R' TO INTER SWER let!1:$A ' O.tM : 0.6% 0.020. 0.560. . CDR . INTER TO LMR MLL MM 71241 d m MO-ul LINIE M 8730 ~CR3 . N02AI TO INTER MLL Mh-tm,ESA _ 0.200. 0.M4 0.021 - 0.560 :
CDR -INTER TO LCdt SMR M67 71249 *HO-N! LINK M CR3 is0ZAt TO 14712 SER - 87M ' NW-1799,EM 0.200. 0.640 3.ett; 4.150. _- CDR . "1NTER 70 LOWR Out 11241 ,CR3' m-NO-41 LINK M 37M le1799,EM W ZA t 70 laid M LL .
- Het 71249 ' 0.310 0.6 L% 0.020 - 0.560 ' .CDR .. INTER . 70 ' MR MR-m-atHI! . LINK M 87M
' CR3 NQZAt TQ INin SWELL-MW-1799,EM 0.203 0.M4 .0.020 q 0.330 ' COM = INTD TO LMR MLL M7011249 ..
s ! M-80-#1 LINK M . CR3 : NQZZLt TO INTD M LL-1738 . B&1799,tk 4.200 0.630 0.021'. 0.330 COM . . INT (R TS LOW R M LL . M11 11249 . m-HIHI! LINIE N - 8730 CR3 NCZ2LE TO INTER 3HER BM -t m ,ESA 0.270 0.630 0.020 " 0.330 - COR : INTER TO '.MR M1 ' 47271249 l M H S-#! ' LI M 00 mt ' S W .,tt,ESA CR3 . N0ZZLI TO INTER $* ELL' 0.240 0.620 0.019 0.130 CDR ' INTH TO LMR MR" M73 71149 IING=Et LIM OS - 0730 - . CR3 N0Zat 70 Initt MR 9 & t?99,t u 0.2 % 0.620 '0.000 1 0.360 i COR: (UTER 70 LOWR SCR CR3.- 402A t 10 INTER M LL - L I t i u n.mim io C-5 t
- v - m--, -, - , , -. ,1 ru e e e- r . ,.I ,,
5
.\
p WESTINGHOUSE CLASS 3
-TABLE C.1-3 (continued) 1 0474 71249 M 40-WI LIEN M 8734 Me-1799,ESA 0.2M 0.620 0.0N 0.570 M7171249 COM - INTER TO LCviR 34 R mM-N! (10( H 8734 tt3 M16 71241 8 4 1799 ESA - 0.200 0.620 0.020 - CDR 0.5 %N022LE 70 INTER PER + 90-41 LINM M INTO 'O L M D 54 ELL 3738 CR3 8 4 1799,E5A 0.170 0.620 0.019 0.560 NO22LE TQ ikTER 54R M77 71241 C3 m-90-N! UNM 90 INTER TO LOWR 34R 8736 CR3 W 1719.E5A 0.290 0.630 0.0 N 0.570CM MO2*LE 'O ! Mitt $4R M73 71241 14TER TO L 3 D S4 R M-90-41 LlHE to 8734 CR3 I W 17??,ESA 0.300 0.630 0.021 0.1% N0ZAt 70 th!FR SMR t0R M19 71249 IMTER TO LMK 54LL m m0-#! LtHE M 1734 CR3 IM-1799,ESA 0.140 0.630 0.020 0.540 ' NOZa ! TO INTER $k(LL MSC 71249 COM . INTD TOLCER SM R w a0-Mt LICE 80 8731 CR3 B & 1799,13A 0.290 0.6 M 0.020, 0.570 N02n t 70 luftR 5*En Mal 71241 m-M0-t1 UNM 90 *0M L INTER 70 '. E9 $4LL 8738 CR3 BAW 17tt,($4 0.290 0.620 0.011 0.3W NO2AE TO !W!ER $HER CCM het 71249 t.tTER TO L0dA MR M-404l t:NDE H E734 CR3 B e l m ,t3A 0.310 0.6N 4.020 0.!60 L14 uCZAt TO INitR $4R 383 11249 INTD TO LMR 54R -
M 40-Mi LINM M 8738 CR3 N0ZZLE 70 INTER 54LL M 84 71249 S & l799.t3A 0.200 0.6N 0.0N Q.110CW Inta TO LOWD SHELL m-MO-Rt LinM 90 8738 CR) t e l7tt,ESA 0.2M 0.430 0.4tt 0.5M 4022LE TO INTER futu 044! 71.569 CDR . trip TO LOh!R $4LL m-MG-MI LIN M 80 8734 CR3 B e l m ,t3A 0.270 0.430 0.018 ' O.550 Con WatTOIN7054R M64 71249 Initt TS LCWD M R m-no-al LinM M 8738 CR3 BAbl799.tSA 0.310 0.630 4.010 0.560 uC2A I 70 INTil 54 R M 87 11249 CD M M041 UNM M - Inta TO L M R $4LL 8738 tt3 l e l7tt,E3A 0.310 0.434 0.011 0.540 20Zal TO INTER SHELL. 48811241 CDR INTER TO LCWER M R m-MO-ut LINM M 8730 tR3 l e t??t,t3A 0.290 0.630- 0.018 0.540 h02AE 10 INTER SHER 077371249 CM m-MG-N! UNK to INTER TO LCwtR M R 0775 7124? 8 92 W -t m ,WE CR3- n022LE 10 ! Nip M R m-MO-NI UNM 80 9445 0.200 0.$70 0.021 0.430 FR.$C 0.330 TLA INTER TO LCWER SHELL FPL . INTER TO LC M R M R FK -SulWEILLANCE WELD 077671249 OSE - ' N02A1 TO INTD ida m-M0-41 LINE M 943 FPL,3C EP 0.340 !NTER TO LMR $4LL RA - [NTER 70 iC WR M R FR . INTD TO L0eD MR FPL ' SURvt!L U NCI MLO O M 71249 RM m-MG-Et t!WE Il N022LE TO INTER M LL 9445 FPt SC ' WEP 0.320 !NTER TO LCWER ?HER FLA l' InitR 10 L0dl $4LL FPt L INTIR to LDktt SHE R FPL SUMEILLANCE hELO RAE N022LE TO IN!D SMR eene Mr :Ntp ratowl M R std.dev. user 0.26044 0.6023010.01f143 0.556905 0.053511 0
._ sus .nsus uusussumasun .as.M0353 ue r - 0.002193 0.047003 -_u uunnunun.nu 4414s/001W 10 -
C-6
, _ _ _ - - ~ ~
o WESTINGHOUSE CLASS 3 TABLE C.1 ZION UNIT 1 BELTLINE CIRCUMFERENTIAL WELD AND ZION UNIT 2 INTERMEDIATE SHELL LONGITUDINAL WELD CHEMISTRY FROM WOG MATERIALS DATA BASE - WIRE HEAT NUMBER 72105
. Ilm4Afm m m W!RE WIRE r#C-m m m . m m m . - - - - = = = m m m .. . . m . .. m FLUI ifPE FLUI ELDCER Cu Ni P li PLnNT
- LOT DATA K$CRIP^'CN 1
... .- 10VRCE - _ . . . . _ _ ... ~ . . .... . ... .... . ..
021812105 m-+NI ... . LINK B0 tut IW,We 7.270 0.460 0.014 0.480 CCM
- M 1 ;.. . A CR3 luTER TO L M R SHE L CWE INTER TO LMR 54RL -
FLA NC22LE !O INTER 1 4Lt. CC3
!NTER.TO LOWER SW R R$1 LMR $4LL LON6 -
027472105
' m- S t! LINK to tm h,WG TRt M2:LE TO INTER SMR '
0.300 0.480 0.0M 0.540 COM SURVE!LLANCE ELD CE SGVElLLME bn2 QC2 3'#it!LLME dLD 0294 72105 m-no-N! LIC E 90 8773 CE SC DC3 SLRVEIRAact vn: 0.350 0.570 0.020 0.68) COM SURWILLANCE WRD Cd SURVE!LLEE vRD Oct 53VEILLANCE hR D 0295 7E105 m-NO-N! LIC E 80 8773 COM,5C OC3-SLRVE'" uCE dLD i- 0.290 0.550 0 ^?? 0.470 1 CCM ' Sam ACF hal l CW SURVEIRANCE Wnt OC2 040372105 SWVE!LLeCE MLO ! m-@N! L!RK 80 8H1 CC3 SURVEIR ANCE WELD BAW-1799,ESA 4.430 0.590 0.021 0.650 Con * ;Z M , i^, ! CR3
!NTER TC LOWER SNELL CW INTER 70 LCWER SHEL FLA l NC22LE TD INTER SHE R . OC3 i INTER TO LOWER 5 4L:.
R$; LOWER Sell L M 040+ 72105 m-RO-N! LINK 00 849 TRt NC22LE 1. JfER 34 R W-1799.ESA 0.4M 0.590 0.0M 0.600 - CDR
- Li : :.. .E CR3 INTER 70 LMA $* ELL
-CW .. INTER TO LOWER 54LL FLA - N02 LE TG INTEA SMR L CC3 infer 70 cCER $* ELL RSI L0ER SM R ;0N6 040572105 MN-40-N! t.!NSE 10 .849 . W -1799,ESA 0.400 0.590 0.0 M 0.600 TRI N0ZZLE TO INT!R Swat.
COM * %; :. ..... l CR3 INTER TO LMR SHER CWE- INTER 70 L M R $NE R FLA . 402 LE T3 tuTER $4R- ' OC3
!NTER 70 LMR SHELL -
- Intermediate Shell Long.
wowm io C-7 l l
.WESTINGHO')SE CLASS-3' TABLE C.1-4-(continued) 1 Ril L'MR $4LL LCNE 0 44 72105 m-a0-NI LINDE to TN1 -8H9 BAu-1799,ESA 6.3% 0.590 0.019 0.540 01. *~N02AE- --TO INTER 54LL ~^
CR3 INTER TO LMR DELL . M INTD TO LCWER Mu i FLA N02A E TO INTER SHELL DC3 INTER 70 LCER DCLL R$1 L M R SHELL LONG OW772105 TRI u-e-N! t!NDE 10 8649 IAW-1799,ESA 0.350 0.5W 0.018 0.530 NCIAE 70 INTE9 PELL ' CCM *;:i' 0 2L .2% ' tR1 - INTER TO LMR $4LL CW INTER TO LCER MLL FLA NO2AE TO INTEL PELL 0C3 INTER TO LCd8 BELL , R$1 LOWR MLL L;N6 0608 72105 m-MO-NI LINDE 90 TN1 NC2A E 10 INTER M tt 8649 BAW-1799,E3A 0.350 0.580. 0.010 0.5W COR *:.t": MLL M CR3 INTER TO LCwER SMLL CW INTER TO LDER SELL FLA N0ZZLE TO INist SnELL-0C3 INTER 70 l.04 R SHELL R$1 L M P SHELL L0uS 0 49 72105 M-@-N! LINDE 80 TN1 N02AE 10 INTER MLL 1669 BAW-l?99,ESA 0.390 0.500 0.011 0.550 ' COM *L?? iM LN CR3 '!NTER TO LOWER SHELL CE INTER to LO WR SHELL FLA NO22L! TO INTER 54LL CC3 INTER TO LCAR SHELL ' R$1 LCER MLL LC4 0410 72105 NN-MO-N! TRI- NO2 A E TO th!ER M LL LINDE 90 GHf BAN-1799,ESA 0.370 0.5 M - 0.018 0.54 COM
- L in it; _:S CR1 INTER 70 LCd R $NELL..
CW INTER TO L M R M LL FLA N0:2LE TO INTER !KLL CC3 INTER T: LCnER N R All - LMA MLL LONE 0411 71105 M-MO-N! LINSE B0 fat- NO2EE 10 Ik?ER 54LL Gut 94W1799,ESA- 0.340 0.590 0.018 - 0.530 . COR * ~ ' '"" ' ~ CR3 INTER TO LOWER SHELL-CE !NTER TO L M R SaELL FLA NO22LE ?Q IN!!R EWELL OC3 INTER TO L M R M LL RSI ~ LOER SHLL LtN6 ~
' TM1 NCIAE TO INTER 54LL
- Intennediate Shell Long.
i L uu.mimo io C-8
- - - . . -. =- ..
WEST 1NGHOUSE CLASS 3 TABLE C.1-4 (continued) 1 0412 72105 m-MD-N! LINK to 4 8649 IAt-1799,ESA 0.460 0.590 0.018 0.530 CM
- i;;; e. ce=6-
- CR3 INTER TQ L0d 8 $ 4LL
> CWE INTER TO LC d R 3 DELL FLA 40 AE !O INTER Sata DC3 lNTER TO L M R 5 4LL 4 R$1 L0dR SHELL LN 041372105 u-90-41 TRI . %Z1E TO !NTER 14d LINDE 80 4649 4Au-1799. IIA 0.470 0.600 0.018 0.520 CDR * ' ~~ " ' ^ ~ ^ CR3 INTER TO LCE R 3 dell. CWE INTER TO L0eER $4LL FLA 40ZA E TO INTER 3 4 R X3 !NTER 70 MWR Se' ELL R$1 L M R SHELL L M TN! hCIR E TO IM'IR Swt a 0414 72105 u-no-Ni LINK 00 8e69 BAW-1799 E5A 0.470 0.610 0.017 0.4M CM * ^ ^^ ^ - i CR3 INTER TO LCeER imELL CW INTER 70 L0bER SkELL RA N0ZZLE TO INTER $4 LL-a
. OC3 INTER TO LOWER SWE R 851 t0WER E4LL LONG -
TR1 MOZZLE TO IMTER S E R 0415 72105 u-40-N! (INDE 80 8669 Ba-1799.ESA 0.490 0.610 0.018 0.490 CM * ~^ - ^^ ^ ' ^^ tR3 INTER TO LMR $4LL CWE lNTER 70 LOWER SELL fl,A 40Za t TO INTER M LL OC3 . INTER TO LMR 54LL Rll L M R SM LL L N 0416 72105 u-MO-N! LINK 00 8649 TML he:A!ToinfiRinta BAW-1799.ESA 0.470 0.610 0.017 0.460 CDR
- LC.- ,0 .M CR3 INTER TO L0dR thELL C4 lNTER TO L M R isELL -
FLA - N3 AE TO' INTER ist u OC3 INTER 70 LM% 54LL R$1 LCER 14LL LCN6 0417 72105 m-MO-N1 LIN K to TRL MO:A E ?$ IM'it ire R - 8649 IAW-17tt.E5A 0.440 0.600 0,011 0.4M CDR *'.M"~ C, M CR3. INTER TO LMR i4LL CWE INTER TO LC d A 1 HELL , FLA - NO AE TC ':4TIA 34LL DC3 INTER TO L M R ihELL R$1 LOWER SHELL L M --
' TR1 NCIAE TQ (MTER ikE R 041872105 IEHRH11 LilBE 80 8773 BA8-1719,ESA 0.354 0.5M 0.023 0.6M ~ CDR SURVE!LLANCE dLO CWE SURVEILLANCE sELO
- Intermediate Shell- Long.
a mwo.mo io - C-9 i
WESTINGHOUSE CLASS 3 4 TABLE C.1-4 (continued) OC2 SW Vf!R ANCE eELD 0419 72105 - m-a0-#! LINK M tm OC3 ~ SLRvtlu2CE WED ' 44W-1799,tta 0.360 0.!N 0.022 0.440 CDR ' -SURvt!LLMCE WLO C4 50Rvttu ANCE ELO DC2 SUR d !LL MCE d LD.. M20 72105 m- + 4! LINX 80 8773 CC3 SURvt!LLANCE WLD fAv-l?tt.CSA 4.350 0.5M 0.021 0.630 CDR 1:.Rvt!LLAaCE ELO CWE . SURvt!RANCE WR D-OC2 SuRd!LLANCEhR3 042172105 OC3 m-M0-mt LINDE M'- 8773 $2VIILLAWE dLD 8A6-l?tt,tSA 0.360 0.5H 0.023 . 0.6M con suevt RLAmCE dio CW SURvt1REE dLO 0:2- 53vt!LLA4CI eRO M22 72105 M-SNI LINDE N '8773 OC3 -SURvt!LLAmCE WELD 84W 1719.E14 ~ 0.m 0.5M 0.021 0.600 . CCR SURVE!LL M t sk a f4- SURvt!LLANCE W LD s GC2 $Utvi!LLANCE stLa M23 72103 4-M0-N! LIN K B0 8m SAW-litt,tlA -0.360 0.570. 0.022 ' O.H0 OC3 3JViluANCE WELD COM SURYtfuANCE ELD CW - $@vt!LLANCE WLD
- Oct - SURvtInut! ELD M24 72105 m-MO-N! LINM 90 8m '- OC3 SLRvtInAact ELD 8AW-1791.ESA 0.370 0.5 M 0.018 ' O.340 CDR GWyt!RANCE El.D CE $3vt!RMCI WLD CC2 $URYt!LLANCE E LD M 25 72105 M-@MI L!NK 80 8m - 0C3 SURviluMCI snD BAW-1719 tSA 0.350 0.610 0.017 0.130 CDR $#VE!LLOCE dia
' CW $@'ittuAaCI WR3
- Oct - SURvt!LLANCE dLD M2672105 M-@tt L!nM 30 8m OC3 SURYEluA4CE dLD las-l?tt,tSA 0.370 0.600 0.011 0.560 COM 50RvtluAEt ett$
CE . IURVttu ANCE KLD
. 0C2 -Suh t!t A4CE etL3-M27 72105 m-MO-NI LINX M 8m OC3 SURvilu ANCE btLD IAW-17tt tSA 0.330 0.620 0.011 0.540 i
COR Suavt!LLHCI dLD i. CE SURvt!LL MCI wa 0-i' . 0C2, SURVE!LLAMCE dLO. 329 2 05 m-MO-N! LINN N tm . OC3 . $@viluAmCE WLD 64W-17tt.tSA 0.320 0.590 0.011 0.5M - COM SURvtInAmCE dLa . CE Sdvtin ANCE ELD Oct $39tIRAuCE WRD M2172105 , . . IIHG41 LINE $$ 8m _ OC3 SURYt!Ltht! wtL2 - NW-17?f,ESA 0.320 0.590 0.0 h 0.5M
- COR :- SURvt!R ANCE dLD Cilt SURVtlLLANCE htil l
I-au.amie C-10
WESTINGHOUSE CLASS 3 TABLE C.1-4 (continued) GC2 SURyt!RMCE WELD 0410 72105 m MO-#! LINDE M tm OC3 b l799,ESA 0.320 0.594 0.015 0.560 CM suRVEILLANCEWELD Sa vt!LLANCE WELD Cilt - SavtluAmCI dLD OC2 4431 72105 SURvt!LL MCI HELD m-90-N! LINK M 8773 CC3- SURvilu A*Cl WELD t h-1791 ESA 0.310 0.590 0.015 - 0.5 SURVE!LLMCE % - COM HELD Cd SWWE!aAact dLD Oct
- 0432 *2105 SWVE!RANCE WELD 4-40 41 LINK to 8773 CC3 SWVE!u ANCE bELD lA&l?"7,ESA 0.300 0.5M 0.016 0.560 Con SWVE!LLAaCE = ELD-CE 50Rvilu ANCE E LD DC3 041372105 SWVE!LLHCE dLD M-a0-P! ting M im CC3 SWyt!LLamCI dLD IM 1791.ESA 0.310 0.5 H 0.016 0.5% tM luavt!n n CE E LD CE SWWE!nMCE ELD OC2 SWYE!uMCE wet,D '
0434 72105 m-M0-u! LINK to CC3 SWVEIRANCE KLD 8 m ~ 3 4 -t K f,ESA 0.320 0.580 0.016 0.590 t2- SURVE!u amCE ELD CK SURvt!RANCE WELD 3C2 0435 72105 SWvt!RANCE ELD m-90-4! Link 90 8m OC3 IM 17tt,ESA 0.310 0.5M 0.011 0.600 SURvE!n AmCE WILS COM SW VEIR MCI WLD CWE - SURVE!RANCE WELD QC2 043A 72105 n 90-N! ;.!N;I M SWVi!LLANCE WLD 8m BA4-!?tt,ESA 0.310 0.580 0.017 4.590 OC3 - SW Yttu ANCE ELD CDR SbtytluuC1 WLD CUE SURVEinANCE WELD ' 0437 *2105 Oct SURYt!RMCI dLD u-90-t! L!nN M 8m OC3 W 1799,ESA 0.300- 0.5M d.017 0.590 SWVtlunNCE ELD Con Sutvt!LLANCE WELD CE SURYt!RAuCE WELO 0428 72105 Oct SURVilu ANC1 WLD - m-90-N! LINK M tm OC3 4 1799,El4 0.310 0.5M 0.017 : 0.590 SURVEIRAmCE ELS COM SWVi!LLMCE VELD - Cut SWVt1LLANCE dLD 0439 72105 OC2 SLRvtla M CE WELD m-MC-#! LIMet M tm DC3 BAe 1799,E54 0.300 0.? M 0.011 0.610 $UvttuANC1 diD - tM iuRyt!LLAnt! WELD. CE SURVtidAact WELD 0440 72105 OC2 tuRVEIR AmCE utLD leHIB41 LIN E It 1773 OC3 BAW1799,ESA 0.290 0.590 0.016 0.5% . SURvtIn AmCI d LD CJR SURVEIRANCE WELD CEE SURvitu ANCI dLD l
. ui...w in C-ll
WESTINGHOUSE CLASS 3 TABl.E C.1-4 (continued) 4.
< Oct $URVCILLamCE Ela 0441 72105 M40-41 LINE N 8773 OC3 SWVi!RANCI ELD IM-1799,ESA 0.280 0.5M 0.014 0.550 Con SURVEILLAmCI ELS CE SW VEILLANCE ELS OC2 IURVEIRANCE WEi.0 0442 72105 4-a0-41 LINK 80 3773 QC3 SURvilRAmCI MLB lu-1799.ESA 0,300 0.5M 0.016 0.560 Can SURVEILLANCEWEL)
CE lyRVEIRAmCE WELD QC2 SWWILLANCE ELS 0443 72105 M40-N! ~ LINE #0 8773 - OC1 SWVE!RANCE ELD 1 4H-17tt,ESA 0.300 0.5M 0.016 0.540 CM IURVEILLA4CE ELD - CE IW VE!n MCI WCLS
'1C2 S c yt!R ANCE ELD 0444 *2105 .
M-MO-n! L!sE N OL3 SWytlRanCI ELD 8773 IAs 17tt,ESA 0.270 0.5M 0.024 0.770- CM Sa vt!R ANCE WELO' CE SWVEIRANCE ELD CC2 SWyt!RANCE ELD 044572105 M-RO-41 LIHE 80 8773 3H-1791,ESA DC3 SURVEIRANCE ELD 0.304. 0.5M 0.023 0.690 CDR SURVEIRANCE ELD 4 CE SURvtILLANCE ELD < QC2 SURvt!RANCE WELA 0446 72105 n w o-m! L!nN 90 .1773 OC3 SURVEtLLANCE ELD IM-1799 ESA 0.310 4.!M - 0.02t . 0.440 COM Savt!LLMCf KLO CE SW YEIR ANCE ELS ' DC2 0447 72105 SWVEIRANCE ELI i M-M0-nl LtnM M 3773 OC3 SavtlRAmCE EL8 3AW 17tt,ESA 0.320 0.580 0.012 0.640 CDR SWYEIRANCE ELD CE SURVEIRANCE HELD QC2 SURvt! R Antt kELD 044672105 M-MO-m! Link M 8773 CC3 SURVEILLANCE bELD 4Ad-1799,ESA 0.2M 0.570 0.018 3.6M CDR SURVE!LL MCI WELD CE SWvtIRANCE ELD
' DC2 0449 72105 IURVEIRANCE ELO M-MO-N! LIGE N OC3 8773 BW-17tf,ESA 0,300 0.580 0.017 0.590 SURVtlRMCI ELD CDR SURVEIRANCE EL) tE SURVE!R MCI WELD Oct SURVi!R UCI WELD 0450 72105 M MD-41 LluE M 8773 003 ' - SURvt!LLANCE ELD 34-17?f,ESA 0.tM 0.570 0.016 0.570 CDR SURvt!R ANCE Er.:
CE SURvt!R ANCE E LD OC2 SURYt!RANCE ELO - 0451 72105 leHD41. LIEC M 8 713 OC3 SWVilRANCE ELD SM-1799,ESA 0.294 4.500 0.017. 0.600 COR. SURVEIRANCE WELD CNE SURVEIRMCI ELO u nwooiseo io C-12 i
WESTINGHOUSE CLASS 3 TABLE C.1-4 (continued) ( - 0452 72105 m-16-41 L!aet M DC2 SURWILLMCI KLD tm lu-1799,tsA 0.300 0.5M 0.016 0.600 OC3 SWVI!LLANCt WLD CDR SURYt!LLMCE MLD tW SWVilLLANCE ELD Ott Spyt!tLMCI utLD 045372105 m-no-u! LINK M tm OC3 SURWILLMCI WLD BAW 17tt,tSA 0.tM 0.5h 0.011 0.600 00n SUA 4!LLA4CI ELD -
.W SURVEIRANCE stLD 45173103 Oct - SURVilu ANCt dLD -
H-MO-41 'Llu0t M C773 OC3 =$URVilLLANCEWELD MPC Cl,0Ct.5C 0.360 0.5 M 0.0ct 0.650 C3 SWVi!LLAmE WLD CE 33Vt!LLANCE ELD M59 7t105 CCI tut'ittnAntt sin - m-M0-#1 LlaK M tm OC3 St,Avt!LLANCE ELD MPC,08,0C3,$C 0.300 0.1 M 0.017 0.610 COM
!URvt!LLANCE dLD CE SURViltLANCE btLD Ott SUAWluANCt WLD CM4 72105 m-MO-41 t!NK M 8m CC3 S WWE!LLANCt dLD 3
NPC,08,CF3.SC 0.290 0.100 0.021 1.000 ' COM 1 33 Yttu aact utLt CE SURVE!LLAmt! WELD Oct 12VE!LLAmCE ELD M7372103 m-MC-#1 Ll4K B0 BM CWE.SC OC3 SURVEIR ANCE WL5 0,216 0.130 0.017 0.619 COM IURVttRANCE ELS -- CE SWYttuANCE ELD Ott SURYt!RAaCE ELD M 71 72105 m-M0-#1 LINat 90 8m CWE,SC OC3 $URyt!LLAntt ELD 0.270 0.570 COM - SURvt!RANCE wtLD CW SURvtlu MCt ELD Oct 04 H 72105 SURWILLANCE htLD m-no-al L!nN N - 8773 CW $C 03 5URYt!LLAsC1 w!L3 0.218 0.345 0.010 0.H1 COR SURVttuANCE stLD CWE SURVttuMCE WLD - Oct SURVE!LLAuct dtD
% 81 72105 m no-NI LIN8E N tm CE,5C DC3 50Rvitua#CE ELD 0.t10 0.690 Con. suRytin MCE etLD CW SURYt!LLMCI WLD 3C2 0662 72105 "URVEtuANCE htLD m-MO-41 LINBt M tm CW,3C DC3 0.tu 0.560 SW VE!LLANCE nLD tan SWYtlLLANCE WLD CE SURVE!LLANCE WLD-OC2 M83 77103 AtVE!LL MCE ELS NHG-St UM 30
- tm CW,SC 0.260.0.540 0C3 - - $URVttuAmCE ELD
- COM SURW luAntt WLD CWE SURWinANCE etti w..minio C !
i
WESTINGHOUSE CLASS 3 TABLE C.1-4 (continued) ' OC2 SWyt!LLANCE EL3 068+ 72105 m-ON! LIUE N 003 SURVEILLANCf Eli . 8773 CE.SC i 0.240 0.150 COM SW Vi!LL MCE ELD CWE- SURYflLLANCE ELD Ot2 SLAVE!LLMCE btLD i 0685 72165 m-no-a! L!ny H Cr.3 SilRvt!LLANCE btLD t?73 CWE,5C 0.260 0.530 CCM S wit!LLANCE WiD CWE $#VEluANCE ELD ' Oct ! @ Vi!LLANCE ELS-0686 72105 CC3 m-RO-f! LlaK 80 4773 CE,5C 0.2 H 0.560 SURVE!LLANCE L'!LD COM SWVEIR Antt E L2 CWE $3Yt!LLAmCt ELO - OC2 - SURVE!LLANCE WELD 064772105 m-no-a! LIUE H 003 SURVEluutt ELO 8773 CWE.SC 0.25A 0.540 C3 SWVt!LLANCE htL3 CE SLRVEILLAA"! WELa - OC2 SURVEIRMCI ELD 06M 72105 m-M0-ul LINM N 8773 CC.1,$C 0.1 % 0.520 OC3 $URVE!uMCE EL3 COM SURVE!LLANCE ELD CWE SURVtlLLANCE ELD - 0C2 SLRVET. LANCE ELO 0e H 72105 m-+N! 9 03 Sbtyt1Ri.NCE ELD LIUE N 8773 COM,5C
- 0.230 0.520- C2 $@vt!LLANCE ELD CE SURVtiLLMCE ELD QC2 SMyt!LLAaCE ELD 0690 72105 0C3 m-MO-41 LINK H 8773 CCM,5C S W Vt!LLANCE ELD 0.260 0.530 0.024 0.520 COM $3 vElu ANCE bELO CE SbEVE!LLANCE WELD CC2 SURVilu 4CI Ett 0611 72105 m-W-#! LINDE N 8773 COM,$C CC3 SURVE!LLAm;E ELD 0.230 0.540-C3 SWyt!LLMCE HELD t
CE - SURVE!LtMCI ELD CC2 SURVEtu ANCE =ELO Oett 72105 003 m-M0-#1 L!st to 8773- CDM.Sc SURVtIn Antt tL3 4.250 0.530 - C?n Si,Rvt!RMCI ELD
' CE - SURVi!LLMCE ELD .
' CC2 .S Wit!R MCI utLD 0613 72105 m-no-u!' L!OE N 8773 COM,5C OC3 SURyt!LLANCE bELD 4.310 0.520 0.024' O.270- COM SURvt!n ANCE BEL 3 CE ' SURVt!LLANCE ELD-OC2 SLRvt!LL MCI WELS 06% 72105 IGHG4it LINE N DC3
-8773 C3.SC SWVt!!LAaCE ELD - 0.210 0.4H - COM SWVE!LLAntt ELD Cut SWVEIRMCI ELD m4.e m in C-14 r y + y ee- ,-w%_--- e gr- e- w e m--tw-g4m - e e Te- ,-y y- y
WESTINGHOUSE CLASS 3 TABLE C.1-4 (continued) Ott SURVilLLANCE ELD 0695 72105 m MO-N! . LinDE N OC3 SURVElu nC t Wit) 8773 C3,5C 0.250 0.550 0.026 0.490 - C3 SURVE!aMCE Ela CWE SOViluANCE nEL) 002 SURVilR M t Will 0696 72105 BC3 SURVi!R MCI h!LD m-90-t! LICE 80 8773 CLd,5C 0.230 0.470 COM SURVEILLACE HELA CWE SURVi!R E E uttl
-Oct SWViluME ELD OC3 SU9Vilu AmCE WELD 069772105 m-M0-41 LICE 80 8773 CDM.SC 0.220 0.520 COM SURVita MCE hELO CWE SURVilu M E WELD-CCE -SURVIILL M E HELD 0698 72105 m-90-t! LINDE 80 C2,5C GC3 SURVilLLEt blJ 8773 0.200 0.560 COM S3 VE!RANCE bell CWE SURVEIR AE E WEtt OC2 St9ViluANCE WELD 0714 72105 m-MO-N! U!tM 10 CC3 -S@vilLLANCE kELD ;
8773 COM SC 0.270-0.330 COM - SURVEIRACE WELD Cut SURVilLLamCE ELD OC2 SURVilnAntt E l 0715 72105 - m-R0-Ni LICE 80 CC3 SWYttuAutt En - 8773 COM,5C ' . 0.260 0.540 C3 . SURVE!LLANCE ELD CWE SURVilu ANCE E LD CC2 -SutvitLLhCE ELD 0744 72105 QC3 SURVEIRANCE WELD m-MO-N! LINDE80 8773 MPC,D8,0C2- 6.3+0 0.600 0.C13 COM SURVila K t WEL5 CE $$VE!uhCE =E: GC2 S$vilu AC E atL! 3'52 72105 m-na-Ni LICE B0 OC3 SURVi!LLHCE wnD 8669 BAW-1799,WGA 0.340 0.580 0.019 0.110 COR ** ' " ' ' CR3 121tR 10 t0WER SnE R Cut INTER 10L0htRSHELL FLA- NCCCI.E TO INTER SkELL 303 INTER 10 1.0EER SatLL R$1 LOWtt Skt R LC46 0733 72101 1R1 Oth! iD INTER S* ELL m-M0-NI LinM N 86M - 5AW-1799, WOR 0.300 0.610 0.017 0.580 '
- 0754 72105 m-M0-h! LINM N - 8773 84W-1799, WOR 0.6M 0.590 0.021 0.370 C05 SWVtla hCE WILS CE - SURVilh ANCE tLD CCE - SuRytRLEt utLD 0774 72103 MHWHtt LINE M - QC3 Sdvi!Lt hCE etLD 8773 MPC,H.0C3 0.290 0.5M 0.017 COM SURYtILLANCE WELD CE- SURYtRLEE Ell GC2 - SURVERLAnCI FRS DC3 ' SURVi!RANCE va#
uas sto.g,.. 0.3167914.56319f0.0184710.584545 0.0664 % 0.060299 0.002767 0.08935 enn uss in uun usunusuu= ==uusunuuuuu= ==== =========== u ===== u== = ua n= = =unusa su m un u s *
- s -
** Intermediate Shell Long.
Note: Commonwealth Edison has chosen to use the higher NRC accepted cliemistry values from BAW-1799 [9), / u u.w w. C-15
~ ~. . . . .
I WESTINGHOUSE CLASS 3-- 1-5 s TABLE C.1-5 s DONUNIT1UPPERTOINTERMEDIATESHELLCIRCUMFERENTIAL WELD CHEMISTRY FROM WOG MATERIALS DATA BASE - WIRE HEAT NU u-10 ulet W!E FLM unen.n = ==neu.nu====unuoun.nu uuu.un.un.uuuu FLU 1 WELK6 Ca ni NEAT TYPE TYPE P si PLMT KSCRIPTION
~ LOT NTA -
, _ $03CE 0227 R M _ . _ . .-- . - . . . . m-MS-u! L! alt M 8754 W,M 0276 4htu + M0-41 LluK M 0.210 0.3M 0.020 0.430 37N W,W i 0.t00 0.590 0.015 0.450 CE NCZ:Lt TO luTER SE R Ott 'i 02M 404LM m-n(Hil L!let M R$1 tm WIS,K 0.250 0.590 0.014 0.330 luTER TO L M R SNEu Mt SWvt!LLANCE ELD
- R$1 "
3 SURVE!u mCt WEL# 033B 604LM WII 4 u-n0-el - LittE N lett gepl7tt,us SUMILLMCI ELD 0.228 0.340 0.004 0.600 Mt luTER TO LOWER SHELL i
- 0339 MM m-NO-#1 Llup( M OCl 8m let7tt,M SURYElu ANCE WELB 0.190 0.590 0.016 . 0.420 Mt SURvt!LLMCI ELD R$1' SU M !d ANCE ELD 0%0 M M m-a0-at List M uts hal W-l?tt,tM 0.310 0.5 % 0.015 0.310 $URYt!RANCE E LS
- M1 - luTER TO LOWER $N(u c54146LM m-ND-#1 Llutt M K1~ 8400 BM-17tt,tM 0.320 0.5 M 0.0 SURvtluAut! WEll
.0.510 21
. luTD TO L0iG SNER 0542 6MLM end-#! . Lint M DCI $URyt!LLANCE ELS hai IM-1799,tM 0.310 0.5M 0.015 . 0.520 - M1 luTER TO LOWR SNELL
, W3 44LM wa0-u! Llust M OCl 8448 $UnvEILLANCf ELD
- te1799,tu 4.330 0.600 0.013 0.310
- Mi ~ luTER TO LO S $N(u 0%4 26LM W MO-el List ( M OCl 4681 SUME!uANCE ELS l@t7tt,tM 0.310 0.600 0.013 0.310 MI INitt TO LOWt.R SELL m3 W6LM M-MO-#1 Llutt M OCl 9448 SW VE! DANCE EL3 W -1799,tSA 0.320 0,3 % 0.014 0.310 - Asl l luftR TO LDER SHER 05u M6LM m-40-u! List M hag .Mu-1799,tl4 0.320 0.5M 0.014 0.500 DCI lutytlu ANCE ELD Mt luTD TO LOWER SHELL 0%7 46LM Oct M-MlHil- LIWC M 9681 SURvtiLLANCE ELD Met 7tt,tu 0.344 0.5M 0.013 0.350 -Mt^
' luTER TO LOWER $NELL G84MLM leHRHil Llutt M OCl 948B SU M lu ANCE ELD 3 84p i m , Eld 0.300 0.600 0.016 0.300 j' Mt . luTER TO LOWER SELL ' mt 44LM m-MlHit LIME N . OCl SuntlLLANCE EL3 ~ 8648 tekt199,EM 0.310 0.600 0.016 _0.370
- Mt . tuTER TO LOWER SHER 05704MLM
#EH R Hit LI ME M I&dB QCl- SURVEtuMCI ELD i 3 Holm,EM 0.300 0.500 0.016- 0.564
',. M1- tuTER TO LOWS SHER - - 0571 4 6L M l~ IIH>t! LIM N. . 86M Mel199,tu : 4.300 0.500 0.017 0.364 Oct - SuntluMCI WELD Mt - luTO TO LOWER $NELL 0572 W6LM EM M IB 84M Me!799,tM 0.300 0.500 0.014 0.564 GCl SWYt!LLANCE ELD Mi -- tuTO TO LOWER $NELL Kl $U MElu ANCE E LO 4 f
- w. .m.
C-16 I
. _ _ _ - . . . . , , . _ . - . . . . ~ - . . . , - - ...- - - - _ . _ , . . . -- . -
l WESTINGHOUSE CLASS 3-TABLE C.1-5 (continued) 0573 W R u m-at-e! L!st M 8488 Ih-17tt,tlA 0.310 0.5K 0.017 0.570 M1 INTO TO LOWU S C L 0514 4mu m-n0-al L!st M SWI OCl SURVEILLANCE WELS SAW-1799,ISA 0.310 0.5 M 0.016 0.570 M1 . INTER TO LOWER SELL 0575 4mW MH10-41 LINK M OC1 SmytluMCI KL3 8648 le-1791,tSA 0.320 0.5M t.0!? 0.570 Mt INIU TO LOK R SNELL c576 WRH m-m0-a! L!sK M 001 SUAW !u amCE ELD , 1681 S & l7tt,tSA 0.330 0.590 0.010 0.5M Aal !afu TO LDER SELL 0577 44L4 _ m -MO-u! LINK M OCl SURvtllLANCE ELD B448 B e l m ,tSA 0.330 0.5M 0,015 0.5M 21 INTH TO LDER SELL 0578 W R u mHIO-NI ~ LINE M OCl SURyt!LLamCE ELD - Best t e l m ,tSA 0.34 0.590 0.016 0.550 Mt INTD TO L0ER SELL 0579 6MH m-MD-a! Link M 001 lett B e l m ,ESA 0.3M 0.590 0.015 0.5% SURvt!LLANCE ELD M1 luTER TO LOWU SER 0500 WRu m-NO-a! L!aK M OCl $URyt!LLAstt G 3 8440 SM-1799,t1A ' 0.300 0.500 0.016 0.530 Amt INTH TO LCER SHELL - 0541 46LH M-NO-El L!upt M 0C1 $URYt!LLANCE ELD - 8773 B e l m ,tle 0.2M 0.590 0.016 0.4M M1 ' SUtt!LLAaCl E D
- R$1 . Suht!LLANCE ELD 0582 4%LH v!S Suht!LLANCE Ell m-MD-al LINE N tm le-1799,E$A 0.270 0.H0 0.018 0.5M Mt SURYEILLAACE G 8 R$1 SURYE!u ANCE WEL3 0503 4mu m-M0-a! L! net M ' WIS SURVE!uAACE E l sm : M7h,.5A 0.270 0.590 0.018 0.544 Mt tusviluAmCTWELA R$1 SURWILLANCE ELI 0544 48R44 W!I MHIO-N! LIGE N 8773 LAW-1799,tlA 0.270 0.590 0.016 0.5M SURvtluANCE'. WELD - Mt Suht!LLAstE ELD R$1 SURYt1LLMCI E3 0545 4M4 m-M(Hi! LISE N WIS Sm l & 17tt,ESA 0.270 0.500 0.014 0.40 - M1 SURE!LLANCE G8 SW Yt!LLANCE ELD R$1 SURYtlLLAact G A
'_ 0584 WRM WIS m-MO-al LI NE to tm SURYt!LLMCE ELD ' DAW-t m fl4 - 0.300 0.500 0.015' O.500 ANI SWV(IRMCE ELD R$1 S WVittLANCI ELD 0587 H R H M-MO-NI LIGE N WIS SURVtlLLANCE WELD 8773 t e l m ,tSA 0.290 0.500.0.016 0.510 21 SURVE!n ANCE G 3
- R$1 $Uht!LLMCE Ell 0504 WRM MH4Hil LINE N tm le-l m ,15A Ull -Suht!LLANCE m 3 A 0.500 0.016 0.5M MI $UHttuANCE E D R$1 SURVf!LLMCE ELD 06M W6LH Wil MHIH( . LI M 30 SW S&W, Wit SURE luANCE m l - 0.220: 0.5M 0.024 0.600 M1 INTil TO LDER SELL -
0437 W4L H MHD4 (M 39' ItGB 64PC,85,0Cl,3C 0.300 0.590 0.016 0.54 OCl $Uht!LLANCE ELD 1 M1 INTO TG LOWU SER t i-OC1 SURytttLAmCI ELD ' i r u u.mim. ie C-17 t i
t WESTINGHOUSE CLASS 3 TABLE C.1-5 (continued) WO4MLH IIHIFN! - LIE N 8773 MPC,DB,M15C 0.!M 0.5M 0.016 6.510 21 SuRvtlamCE utti R$t SWyttupCE ELD - W3 4EH WIS SURvt!LLpCE utta WH10-41 'lllSt M m3 - #C,II.P11,5C 6.tM 0.5M 0.016 0.510 21 $URvttumCt wtLD All . 5URvtIRANCE ELD
#15 S'JRviluMtt ELD -
0743 4 4 % m-no-41 LIMt M 9600 #C,08,0Cl 0.320 0.590 0.016 21 INTER TO LOWER SHELL Oct 0747 4MLH M-MO-4! L!E N 8773 MPC,OS,M1 0.130 0.570 0.005 Amt SURVE!aANCE WELD SURvt!LL HCE Ett . R$1 SURVE!n MCE ELD W!$ SURVttu MCI d L8 0753 4MH M-MO-a! LIE M 8488 SM tMt, Wet 0.310 0.5 M 0.025 ' O.720 WI
- INTER TO LOWER SELL 0754 4MH X1 SURVi!LLMCI d'l m-MD-u! LIE M 8720 W-t?tt, WOR 0.260 0.6 % 0.011 0.4N CW NCZ2LE T1 INTER SELL QC2 -
0757 4MLe MIHIO-al LIE M Rtt ' tuttR TO LOWER satLL 8773 W 1799, WOR 0.270 0.6M 0.014 0.390 21 . SURVEILL uCE W LD All Sl;RVEILLANCE ELD 0831 6ML44 M-Il0-41 LINK M W15 - Sultvt!LLMCI WLB
-5688 Milully,0C1 - 0.320 0.500' O.014 0.600 M1 luTER TO LOWER SE LL OCl Sultvt!LLANCE ELS -
seas sti.hs. 0.28775 *0.587727 0.016091 0.52t?62 0 04143 0.007428 0.003%10.050915
-m.m.m.m.m . ....m .. . m m x . m o m m m . m m .. . . m m . m m m .
riote: Although a value of 0.29 wt.% Cu is shown, Comonwealth Edison has chosen to use the more conservative value of- 0.31 wt.% Cu from 3AW-1799 [9]. i.. m i m io C-18
1 WESTINGHOUSE CLASS 3 i
- l. -
TABLE C.1-6 - ZION UNIT 2 UPPER TO INTERMEDIATE SHELL CIRCUMFERENTIA 1-4 CHEMISTRY FROM WOG MATERIALS-DATA BASE - WIRE HEAT NUM un- . II --=.mu==..u- = - -=. WINE W!E MI ; Flut ELDCER Ce Ni P maman=nuunneu NEAT TYPE TYPE Si . PLMT - t;5CRIPTION LOT NTA SOURCE 0M0 92114 M-NO-#1 L!HE to 5754 l e ( m .ESA 0.264 0.620 0.016 . 0.5M MI N0ZM TO INTER SELL 421821)H & #0-41 LI E 80
- 8754 B W-t m ,ESA 0.270 0.6 M 0.013 0.4M ~ANI til INTER 10 L0dn M n
! N022LE TO INTD $NER QM2 Nif44 m-MO-al LINK M Hg B754 ' l e t m ,ESA INTER TO LOWER M R 0.tM 0.620 0.011 0.5M
. Mt NO22'E .
TO IN*ER MLL - t OM3 HITM W MO-Ni LINDE N 0754 Hi INTER 10 LDE R $NE R l e t m ,ESA 0.290 0. m 0.014 0.400 M1 N022LE TO INTER M u . ' Cut 821Tu m-no-a! _ LINK M -Hi 8754 t e l m ,ESA -0.210 0. m 0.014 0.4M INTER 70 LOWER SHER M1 NO22LE TO INTER M R OMS Itifu m-M0-N! LINK N Hi 8754 INTU TO LCWER SELL - B e t m .ESA 4.220 0.630 0.014 0.4M ut- NO2 M TO INTER SHELL - i 0626 6211 4
. m*N! LIkN N 8754 ~
iM t m ,ESA 0.230 0.630 0.014 0.410 Dil INTER TO LOWER $NELL :
- Mt- NO22LE 10 INTER SELL
%27121Tu Hi m-M0-41 LINN N INTER TO LOWER SEL; 8754 " him,ESA 0.220 0.630 0.014 - O.410 3
- . Mt . .N0;2LE T0 INTER M LL M28 N1TH '
meal L!W N i 8754 . HI INTER TO LOWER SELL l e t m ,ESA 0.!!0 0.630 0.014- 0.400 M1 N0ZZLE TO INTER SHELL M29 3217% m*NI LINK W W I M ,ESA 0.200 0.640 0.013 ' O.410 _ =-Mt Hi - INTER 10 LDISt SNE Q 1754 442 Nifu NOT M TO INIER M u
- m*NI LINE N - Hi luiER TO LOIER $ ELL -
1754 - APC,H ,001,5C 0.210 0.630 0.014 0.410 - 21 0719 8211H NO22LE 10 (NTEP -iMELL . M-no-al LINK N 8754 BAW-t m ,WR Hi INTER 10 LOWER SHELL-i 0.270 0.430 0.012 0,400 0760 921T H M1 - NO2M TO INTER SNELL
- W M0-81 til10E M .8754 Hi IMi!R 7010WG $NELL pelm,We ~ 0.2% 0.40 0.014 0.410
, Mt3 8tlT4 at. ICZM TO luin SELL m-40-41 LINBE 80 8773 Milisiv,0C3 DB1 ' INTH TO LOWU SHER 00ft StlTH 0.tM 0 H 0 0.010 1 0. m . CDR- N0ZM 70 INTD MR w n0-al LINDE N OC3 NO22LE TG INTER SHELL 8574 - MI5Laiv,M1 - 0.210 0.410 0.013 0.430 seas _ ' ste.dev. 0.230H 7 0 W 9333 0.012733 0.t M
.sumummunnmu.un-- -na un u- 0.030tN 0.807998 0.0013f7 0.037577 t
i 44 tes/06146010 C-19 4
. . , , c., - ~ , - . , --,,,,n-.,,-v,., <,--n,, ,--,---,ar,,-- + - ,v,-- ,-,a ,, ma- , - - .- e - w-
-WESTINGHOUSE 1 CLASS-3 APPENDIX D l
RT VALUES OF ZION UNITS 1 AND 2 PTS REACTOR VESSEL BELTLINE REGION MATERIALS l i D.1- ZION UNIT 1-l
- Tables D.1-1 through D.1-7 provide the RTPTS values, as a function of both l constant fluence and constant EFPY (assuming-the projected fluences values),
!- for all beltline: region materials of the Zion Unit 1 reactor vessel. The l RTPTS values are calculated in accordance.with the PTS rule, which is - Reference [1] in the main body of this report. The vessel location nurbers in the following tables correspond to the vessel materials-identified below and- ' in Table-III.3-l'of the main. report. \
- Location Vessel Material -
1 Intermediate shell plate C3795-2 2 _ Intermediate shelliplate 87835-1
~
3 Lower shell plate.87823-1 4 Lower shell plate C3799 5 Upper to intermediate shell:circumferential ., weld-WF-154*/SA-1769-6 Intermediate to11 ewer shellicircumferential' . weld WF-70 7
. intermediate'and lower shellLlongitudinal welds WF-4/WF-6 i
Note: .
- Only values for weld WF-154 are given. . Weld WF-154 contains the more controlling materialLproperties and isflocated at-the-inner of the reactor' vessel wall. '
l
. m . i m io D-1 i -
- __ - _ m.- +-L , -,##... e- w -
. * ,yh p. .-g ,,vwe- r --g w u4,,Ty--1, 4 sow.,e g
a< - VP^TINGH00SE CLASS 3 0.2 ZION UNIT 2 Tables 0.2-1 through D.2-8 provide the RT values, as a function of both PTS constant fluence and constant EFPY (assuming the projected fluence values), for all beltline region materials of the Zion Unit 2 reactor vessel. The RT PTS values are calculated in accordance with the proposed PTS rule, which is Reference [1] in the main body r# this report. The vessel location numbers in the following tables correspond to the vessel materials identified below and in Table 111.4-2 of the main report. Location Vessel Material 1 Intermediate /shell plate B8006-1 2 Intermediate /shell plate 88040-1 3 Lower shell plate 88029-1 4 Lower shell plate C4007-1 5 Upper to intermediate shell circumferential weld WF-200 S Intermediate to lower shell circumferential weld SA-1769 i 7 Intermediate shell longitudinal welds WF-70 1 8 i Lower shell longitudinal welds WF-29 a 3 4
+
4 d
. m .,* *
- 0-2
j- , i UESTINGHOUSE CLASS 3 4 TABLE.D.1-1 1 j RT j PTS VALUES FOR ZION UNIT 1 REACTOR VESSEL BELTLINE REGION MATERI FLUENCE = 1.0 x 1018 n/cm 2 i ) i a i ,_ FLUENCE LOC PLANT CU NI RTNDT
- l. ..... ........ ..... ..... ..,-.. ...... VALUE......... x 1.0E19 .RTPTS
- 1 CWE 0.12 0.49 10 ACTUAL 0.1 94 '
- i. 2 CWE- 0.12 0.49 5 ACTUAL- 0.1 89 '
l 3 CWE 0.13 0.48 1
-4 ACTUAL 0.1 -83 4 CWE 0.15 0.50 20- -ACTUAL 0.1 115 1 5 CWE 0.31 0.59 0 j GENERIC 0.1 166 6 CWE 0.35 0.59 0 t GENERIC 0.1 181
! 7 CWE 0.29 0.55 0- GENERIC i 0.1 157 1-4 1 k 1 1 T 4 e + i i i I i
- I t
1, a ws. w w o n.3 4 / r . - , - - . . .~.,,.~.,m._,_.... _,---....-.# .-...._v,,_. , , . - _ , - - . . , ~ . ,, .,--,v_-
,.._~--,,,.,e-
WESTINGHOUSE' CLASS 3 TABLE D.1-2 RT PTS VALUES FOR ZION UNIT 1 REACTOR VESSEL BELTLINE REGION MATERIALS FLUENCE = 5.0 x 1018 n/cm 2 # i i LOC FLUENCE i PLANT CU NI RTNDT VALU x 1.0E19 j 1 CWE
..... ..... ...... .....E . ......... ......
RTPTS 0.12 0.49 10 ACTUAL 0.5 } 2 CWE 0.12 114 0.49 5 ACTUAL 0.5 109 3 CWE 0.13 0.48 4 4 4 ACTUAL 0.5 -104 CWE 0.15 0.50 20 ACTUAL j 5 CWE 0.31 0.5 140 0.59 0 GENEP.IC 0.5 225.. 6 CWE 0.35 0.59 0 GENERIC- 0.5- 247 7 CWE -0.29 0.55 0 GENERIC 0.5 210
\
44146M190010 D=4-
WESTiHGHOUSE CLASS 3 TAB 1E D.1-3 RT PTS VALUES FOR Z10N UNIT 1 REACTOR VESSEL BELTLINE MATERIALS FLUENCE = 1.0 4 10 19 n/cm 2 LOC FLUENCE PLANT CU NI RTNDT
..... ........ ..... ..... ...... .VALUE x 1.0E19 RTPTS 1 CWE 0.12 0.49 10 ACTUAL 1 125 2 CNE 0.12 0.49 $ ACTUAL 1 120 3 CWE 0.13 0.48 -4 ACTUAL i 117 4 CWE 0.15 0.50 10 ACTUAL 155 5 CWE 0.31 0.59 0 GENERIC ~,, 259 6 CWE 0.35 -0.59 7
0 -GENERIC 1 lu6 CWE 0.29 0.55 0 GENERIC- ' 241 a i..=ii.o i. D-5 __ - . -- . - - l
WE5flNGHOUSE CLASS 3 TABLE D.1-4 i RT PTS VALUES FOR ZION UNIT 1 REACTOR VESSEL BELTLINE MATERIALS CURRENT = (9.72 EFPY) FLUENCE FLUENCE LOC PLANT CU NI RTNDT VALUE x 1.0E19 RTPTS 1 CWE 0.12 0.49 10 ACTUAL 0.5968 116 2 CWE 0.12 0.49 5 ACTUAL 0.5968. 111 3 CNE 0.13 0.48 -4 ACTUAL 0.5968 107 4 CWE 0.15 0.50 20 ACTUAL 0.5968 143 5- CWE 0.31 0.59 0 GENERIC- 0.4118 216 6 CWE- 0.35- 0.59 0 -GENERIC 0.5968 256 7 CWE 0.29 0.55 0 GENERIC 0.2102 179 1 l l l i i I i I e r i j w vo6tt0010 g.g k J
WESTINGHOUSE CLASS 3 TABLE 0.1-5 RT PTS VALUES FOR ZION UNIT 1 REACTOR VESSEL BELTLINE MATERIALS END OF LICENSE (25 EFPY) - PROJECTED FLUENCE VALUE LOC FLUENCE PLANT CU NI RT'iDT VALUE
..... ........ ..... ..... .... . ...... x 1.OE19 RTPTS 1 0.12 CWE 0.49 10 2 CWE ACTUAL 1.405 131 0.12 0.49 5 ACTUAL 1.405 3 CWE 0.13 126 0.48 -4 ACTUAL 1.405 124 4 CWE 0.15 0.50 20 ACTUAL 1 405 163 5 CWE 0.31 0.59 0 GENERIC 0.959 256 6 CWE 0.35 0.59 0 GENERIC 1.405 305 7 CWE 0.29 0.55 0 GENERIC 0.496 210 l
i I i w.. iuo i. D-7
~ . . - . _
WESTINGHOUSE CLASS 3 TABLE D.1-6 RT PTS VALUES FOR ZION UNIT 1 REACTOR VESSEL BELTLINE REGION MATERIALS (32 EFPY) - PROJECTED FLUENCE VALUES FLUENCE Icc PLANT CU NI RTNDT VALUE x 1.0E19 RTPTS 1 CWE 0.12 0.49 10 ACTUAL 1.76 136 2 CWE 0.12 0.49 5 ACTUAL 1.76 131 3 CWE 0.13 0.48 -4 ACTUAL 1.76 129 4 CWE 0.15 0.50 20 ACTUAL 1.76 169 5 CWE 0.31 0.59 0 GENERIC 1.21 269-6 CWE 0.35 0.59 0 GENERIC 1.76 323 7 CWE 0.29 0.55 0 GENERIC 0.629 220 i i l l l 1 us .mimo D-8.
dESTINGHOUSE CLASS 3 t TABLE 0.2-1 P RT PTS VALUES FOR ZION UNIT 2 REACTOR VESSEL BELTLINE REGION MAT FLUENCE = 1.0 x 1018 n/cm 2 1 LOC FLUENCE PLANT CU NI RTNDT VALUE x RTPTS
----- -- ...-- ---.- ----- ---- ------ --.1.OE19 .------ ------
1 COM 0 12 0.54 10 ACWAL 0.1 95 2 COM 0.14 0.52 2 ACTUAL 0.1 94 3 COM 0.12 -0.51 22 ACTUAL 0.1 106 4 COM 0.12 0.53. 22 ACTUAL 0.1 107 5 COM 0.24 0.63. O GENERIC 0.1 143 6 COM 0.26 0.60 0 GENERIC 0.1 149 7 COM 0.35 0.59- 0 GENERIC 8 COM 01 181 0.23 0.63 0 GENERIC 0.1 139 . 1 5 l-l l l l . l - 4414' A100010 . 1 g.g.
?
dESThiGHOUSE CLASS 3 4 TABLE 0.2-2 RT PTS VALUES FOR ZION UNIT 2 REACTOR VESSEL BELTLINE REGION MATERIALS i FLUENCE = 5.0 x 1018 n/cm 2 i i 4
- FLUENCE LOC- PIANT CU NI RTNDT VALUE x 1.OE19 RTPTS
) 1 COM 0.12 0.54 10 ACTUAL 0.5. 115 i 2 COM 0.14 0.52 2 ACTUAL 0.5 117 3 COM 0.12 0.51 22 ACTUAL-j 0.5 126 4 COM 0.12 0.53 22 ACTUAL ' 0.5 127 5 COM 0.24 0.63 0 GENERIC 0.5 188 1 6 COM- 0 26 0.60 0 GENERIC 0.5 1.97 7 COM 0.35 0.59 0 GENERIC 8 0.5 247 COM 0.23 0.63 0 GENERIC 0.5 -182 i i I h i ) i 4 4 u u.mina ie - D-10. __ , . __ _ . . . _ . . - - .. -~ -- - -~ * - - -
F WESTINGHOUSE CLASS 3 TABLE D.'2-3 RT PTS VALUES FOR 210N UNIT 2 REACTOR VESSE BELTLANE MATERIALS FLUENCE = 1.0 x 10 9 n/cm LOC FLUENCE PLANT CU NI RTNDT VALUE x 1 COM 0.12
..... ...... ...... ..1.0E19 P,TPTS 0.54 10 ACTUAL 1 127 2 COM 0 14 0.52 2 ACTUAL 1 131 3 COM 0.12 0.51 22 ACTUAL 1 138 4 COM 0.12 0.53 22 ACTUAL 1 139 5 COM 0.24 0.63 0 GENERIC 1 215 6 COM 0.26 0.60 0 GENERIC 1 226 7 COM 0.35 0.59 0 8
GENERIC 1 286 COM 0.23 0.63 0 GENERIC 1 208
)
l I l l m4.mim is D-11
, , , ,r-e ~
WESTINGHOUSE CLASS 3 TABLE D.2-4 RT PTS VALUES FOR ZION UNIT 2 REACTOR VESSEL BELTLINE REGION MATERIALS CURRENT = (10.19 EFPY) FLUENCE FLUENCE IAC PLANT CU NI RTNDT VALUE x 1.0E19 RT"TS 1 COM 0.12 0.54 10 ACTUAL 0.6097 118 2 COM 0.14 0.52 2 ACTUAL 0.6097 121 3 COM 0.12 0.51 22 ACTUAL 0.6097 129 4 COM 0.12 0.53 22 ACTUAL 0.6097 130 5 COM' O.24 0.63 0 GENERIC 0.4575 185 6 COM 0.26 0.60- 0 GENERIC 0.6097 205 7 COM 0.35 0.59 0 GENERIC 0.2061 '207 8 COM 0.23 0.63 0 GENERIC 0.2061 156 4 l uu.msm to n.12
,y - ., - - , ---w,--,--_. .-v,~.y..+.- -m,,,,y,m. ,,w, . . , , - ,,-,+,---,y,,. .,wr.y. e ,
~
q WESTINGHOUSE CLASS 3 TABLE D.2-5 ' RT PTS VALUES FOR ZION UNIT 1 REACTOR VESSEL BELTLINE MATERIALS END OF LICENSE (25 EFPY) - PROJECTED FLUENCE VALUE I4C FLUENCE PLANT CU NI RTNDT VALUE x 1.0E19 RTPTS 1 COM 0.12 0.54 10 ACTUAL 1.342 133 2- COM 0.14 0.52 2 ACTUAL 1.342 138-3- COM - 0.12 0.51 22 ACTUAL 1.342 143-4 COM 0.12 0.53 22 ACTUAL 1.342 144 5 COM 0.24 0.63 0 GENERIC 1.029 216 6 COM 0.26 0.60 0 GENERIC 1.342 240 7 COM 0.35 0.59 0 GENERIC 0.4759 245 8 COM 0.23 0.63 0 GENERIC 0.4759 181 i t l i m..miseo io D-13
-m-- e,m--e --gy vr--ere3w ,g,-g ,,-,--ew ,yw -- -w w y w,g ee,a -
w p, , y vaer we v m, vr , m s m, w- ew .
, WESTINGHOUSE CLASS 3 1
TABLE D.2-6 ' RT PTS VALUES FOR ZION UNIT 1 REACTOR VESSEL BELTLINE REGION MATERIALS { .(32 EFPY) - PROJECTED FLUENCE VALUES 4 FLUENCE - LOC PLANT CU NI RTNDT VALUE x 1.0E19 RTPTS 3 --... .__..... ..... ..... ....-- ...... ____ ... ...... 1 COM 0.12 0.54 10 ACTUAL 1.69 138 i 2 COM 0.14 0.52 2 ACTUAL 1.60 144 3 COM 0.12 0.51 22 ACTUAL 1.69 148 , 4 COM 0.12 0.53 22 ACTUAL 1.69 149 i 5 COM 0.24 0.63 0 GENERIC 1.3 226 i 6 COM 0.26 0.60 0 GENERIC 1.69 251 , 7 COM 0.35 0.59 0 GENERIC 0.6042 257 i 8 COM 0.23 0.63 0 GENERIC 0.6042 189 . i l } } } W b b d ui..mi m io 0-14 a}}