ML20127C657

From kanterella
Jump to navigation Jump to search
Heatup & Cooldown Limit Curves for Normal Operation,Zion Units 1 & 2
ML20127C657
Person / Time
Site: Zion  File:ZionSolutions icon.png
Issue date: 07/31/1992
From: Chicots J, Meyer T, Munoz Frances Ramirez
WESTINGHOUSE ELECTRIC COMPANY, DIV OF CBS CORP.
To:
Shared Package
ML20127C650 List:
References
WCAP-13406, NUDOCS 9209100011
Download: ML20127C657 (61)


Text

{{#Wiki_filter:7 WESTINGHOUSE' PROPRIETARY-CLASS 3 WCAP-13406 HEATUP AND COOLDOWN LIMIT CURVES FOR NORMAL OPERATION FOR ZION UNITS ) & 2 M. A. Ramirez J. M. Chicots -July 1992 Work Performed Under Shop Order CVPP-139 Prepared by Westinghouse Electric Corporation for the Commonwealth Edison Company i Approved by: Mm 6) I i T. A. Mey;er, Manager Structural Reliability-& Plant Life Optimization WESTINGHOUSE-ELECTRIC CORPORATION Nublear and-Advanced Technology Division P.O. Box 355 Pittsburgh, Pennsylvania = 15230-0355

  • 1992 W'estinghouse Electric Corporatior-All' Rights Reserved 9209100011 920901 PDR ADOCK 05000295 p-PDR

_..._..--,..~ _.._._ .-._._..u;.-.-,-,..--.__,

t i 1 4 TABLE OFtCONTENTS I 4 Section 11111 3 f391 - List of Tables ) 11-List of Figures-a i :- .iii 1. Introduction 1 1. 2. i Location and Identification of Beltline Region 1 Materials 3. Definition and Source of Material Properties for All Vessel Locations 4~ i i 4. Fracture-Toughness Properties 4-5. Criteria for Allowable Pressure-Temperature i-Relationships 7 _6. Heatup and Cooldown Pressure-Temperature l'mit Curves i '10 s 7. Calculation of Adjusted Reference Temperatures 11 4 4 8. References

~

40 t i. 9. Appendix A : Data Points for Heatup.and Cooldown-Curves o, i i-l i-i i 5 g i t I' i l- . ~.....

LIST OF TABLES Iable lille P_Lqt 1. Materials Data From B&W Integrated Surveillance 5 Capsule Program Used In Developing Zion Units 1 and 2 Heatup and Cooldown Curves 2. Zion Unit 1 Reactor Vessel Toughness Table 6 (Unirradiated) 3. Zion Unit 2 Reactor Vessel Toughness Table 7 (Unirradiated) 4. Summary of Adjusted Reference Temperatures at 1/4T and 3/4T Locations of Zion Unit 1 Seltline Region Materials for 14, 20, 25, and 32 EFPY 14 4 5. Summary of Adjusted Reference Temperatures at 1/4T and 3/4T Locations of Zion Unit 2 Beltline 4 Region Materials for 14, 20, 25, and 32 EFPY 15 6. Calculation of Adjusted Reference Temperatures for the Limiting Reactor Vessel Material Bounding Zion Units 1 & 2 - Cire. Weld WF for 14 EFPY 16 7. Calculation of Adjusted Reference Temperatures for the Limiting Reactor Vessel Material Bounding Zion Units 1 & 2 - Cire. Weld WF for 20 EFPY 17 8. Calculation of Adjusted Reference Temperatures for the Limiting Reactor Vessel Material Bounding Zion Units 1 & 2 - Circ. weld WF for 25 EFPY 18 9. Calculation of Adjusted Reference Temperatures for the Limiting Reactor Vessel Material Bounding Zion Units 1 & 2 - Circ. Weld WF for 32 EFFY 19 11

LIST OF FIGURES Fiaure

lilla, LLat 1.

Location and Identification of Materials Used in the Fabrication of Zion Unit 1 Reactor Pressure Vessel 2 2. Location and Identification of Materials Used in the Fabrication of Zion Unit 2 Reactor Pressure Vessel 3 3. Reactor Coolant System Heatup Limitations (Heatup Rates up to 20*F/hr) Applicable to Zion Units 1 & 2 for the First 14 EFPY 20 4. Reactor Coolant System Heatup Limitations (Heatup Rates up to 40*F/hr) Applicable to Zion Units 1 & 2 for the First 14 EFPY 21 i 5. Reactor Coolant System Heatup Limitations (Heatup Rates up to 60*F/hr) Applicable to Zion Units 1 & 2 for the First 14 EFPY 22 6. Reactor Coolant System Heatup Limitations ~ (Heatup Rates up to-100*F/hr) Applicable to-Zion Units 1 & 2 for the First 14 EFPY-23 7. Reactor Coolant System Heatup Limitations (Heatup Rates up to 20*F/hr) Applicable to Zion Units 1 & 2 for the First 20 EFPY 24 B. Reactor Coolant System Heatup Limitations (Heatup Rates up to 40*F/hr) Applicable to Zion Units 1 & 2 for the First 20 EFPY 25 9. . Reactor Coolant System Heatup Limitations-(Heatup Rates up to 60*F/hr) Applicable to Zion Units 1 & 2 for the First 20 EFPY 26 10. Reactor Coolant System Heatup Limitations (Heatup Rates up to 100*F/hr) Applicable to Zion Units 1 & 2 for the First 20 EFPY 27-11. Reactor Coolant System Heatuo Limitations (Heatup Rates up to 20*F/hr) Applicable to Zion Units 1 & 2 for the First 25 EFPY 28 12. Reactor Coolant System Heatup Limitations (Heatup Rates up to 40*F/hr) Applicable to Zion Units 1 & 2 for the First'25 EFPY. 29 13. Reactor Coolant System Heatup Limitations (Heatuo Rates up to 60*F/hr) Applicable to Zion Units 1 & 2 for the First 25 EFPY 30 iii

LIST OF FIGURES (CON'T) Fiaure Title Etag 14. Reactor Coolant System lleatup Limitations (Heatup Rates up to 100*F/hr) Applicable to Zion Units 1 & 2 for the First 25 EFPY 31 15. Reactor Coolant System Heatup Limitations (Heatup Rates up to 20*F/hr) Applicable to Zion Units 1 & 2 for the First 32 EFPY 32 16. Reactor Coolant System Heatup Limitations (Heatup Rates up to 40*F/hr) Applicable to Zion Units 1 A 2 for the first 32 EFPY 33 17. Reactor Coolant System Heatup Limitations (Heatup Rates up to 60*F/hr) Applicable to Zion Units 1 & 2 for the First 32 EFPY 34 18. Reactor Coolant System Heatup Limitations (Heatup Rates up to 100'F/hr) Applicable to Zion Units 1 & 2 for the First 32 EFPY 35 19. Reactor Coolant System Cooldown Limitations (Cooldown Rates up to 100*F/hr) Applicable to ,on Units 1 & 2 for the First 14 EFPY 36 20, Reactor Coolant System Cooldown Limitations (Cooldown Rates up to 100'F/hr) Applicable to Zion Units 1 & 2 for the First 20 EFPY 37 21. Reactor Coolant System Cooldown Limitaitons (Cooldown Rates up to 100*F/hr) Applicable to Zion Units 1 & 2 for the First 25 EFPY 38 22. Reactor Coolant System Cooldown Limitations (Cooldown Rates up.to 100'F/hr) Applicable to Zion Units 1 & 2 for the First 32 EFPY 39 iv

1. INTRODUCTION Heatup and cooldown limit curves are calculated using the most limiting value of RTNDT (reference nil-ductility temperature) for the reactor vessel. The most limiting RTNDT of the material in the core region of the reactor vessel is determined by using the preservice reactor vessel material fracture I toughness properties and estimating the radiation-induced ART NDT-RT 1s designated ss the higher of either the drop weight nil-ductility NDT transition temperature (NDTT) or the.emperature at which the material exhibits at least 50 ft-lb of impact snergy and 35-mil lateral expansion (normal to the major working direction) minus 60*F. RTNDT increases as the material is exposed to fast-neutron radiation. Therefore, to find the most limtting RTNDT at any time period in the reactor's life, ART NDT due to the radiation exposure associated with that time period must be added to the original unirradiated RT NDT. The extent of the shift in RTNDT is enhanced by certain chemical elements (such as copper and nickel) present in reactor vessel steels. The Nuclear Regulatory Commission (NRC) has published a method for predicting radiation embrittlement in Regulatory Guide 1.99 Rev. 2 (P.adiation Embrittlement of Reactor Vessel Materials){ll. Regulatory Guide 1.99, Revision 2 is used for the calculation of RTNDT values at 1/4T and 3/4T locations (T is the thickness of the vessel at the beltline region). Recently, new materials data has been obtained from the Babcock and Wilcox (B&W) Integrated Surveillance Capsule Program applicable to both Zion Units 1 and 2. Thus, a new evaluation using this data to determine the most limiting material in the beltline region and the corresponding RTNDT values at 1/4T and 3/4T has been performed. This report summarizes the results of this evaluation and presents the new heatup and cooldown curves generated based on the results of this evaluation. i LOCATION AND IDENTIFICATION OF BELTLINE REGION MATERIALS The beltline region is defined to be "the region of the reactor vessel (shell material including welds, heat-affected zones, and plates or forgings) that directly surrounds the effective height of the active core and adjacent regions of the reactor vessel that are predicted to experience sufficient neutron irradiation damage"[2]. Figures 1 and 2 identify the location of all beltline region materials for Zion Units 1 and 2, respectively. 1 w-4 (1004) o* 87805-5 g l - I 2W- - + - ._ w JJ _ /[(SA-I?se (Ouser 18%) a f w-154 (Inner IE%) I carss-2 /W Shen [(C3795-2 'W-4 (Ouser 6I%) BTEk5-1 I w -4 180* ,W-8 meer 39%) c tw-e m(Ouser st%) Inter. Sheet eer3es)

  • / ','r

-(core udsene) s = w-< ocas) o' ' N W-70(1005) = - w-enom ooos) 87823-t /*"'"(bM "hj e w-ts4 0aos: zw. _ _ + - w W -8(1005) W -6(toDE) l C3799-2 tw tower shog I Figure 1. Location and Identification of Materials Used in the Fab of Zion Unit 1 Reactor Pressure Vessel.

-) l .I i h 'l 4 W-70 (100%) - o' 88006-1 1 i l (' .I av + w / 'i i D 4 ,s, l .L y, w-200 (m) ] Beoe-1 I ~ % g,,, Be006-t w-70 t toom / 88040-1 i g_g g g3 Inter.Shes. (caeukspennei w-mitoon) n. i N SA-t79 (1004) 8805-1 w-29 Bolh (1004) /= **("s.J" L

    • 'h j 270*f t

W-t w-a i toom -./ w-a tioom f C4007-1 1W Lower Sheu a Figure 2. Location and identification of Materials Used in the Fabrication of Zion Unit 2 Reactor Pressure Vessel..-.

i-3. DEFINITION AND SOURCE OF MATERIAL--PROPERTIES FOR ALL VESSEL LOCATIONS Fast neutron irradiation-induced changes in the-tension, fracture, and I impact properties of reactor vessel materials are largely dependent 'on chemical composition, particularly in-the copper concentration. The variability in irradiation-tra. ed~ property changes, which. exists in general,-is compounded by the variabilitv of copper concentration within. the weldmc sts. In order to address the variation in chemistry,. Babcock and Wilcox has given. Commonwealth Edison new materials data for Zion Units 1 and 2. The new material data applicable to Zion Units 1 and 2 is shown -in Table 1 and 3 was transmitted to Westinghouse via letter dated May 21. 1992, writtca by Commonwealth Edison Materials Groupl33 This new material data was used to determine the limiting beltline material bounding-both Zion'Unitsil and 2 and was consequently used to generate the heatup and cooldown limit curves bounding both plants. 4. FRACTURE TOUGHNESS PROPERTIES 4 The fracture-toughness properties of the ferritic material in -the reactor coolant = pressure boundary are determined'in accordance~with the NRC kegulatory -Standard. Review Plane 43. The_ pre-irradiation fracture toughness properties for the' Zion Units 1 and 2 reactor-vessel materials I are presented ~in Tables 2 and 3, respectively. t 1 h l: .4-- -,_,,,_..a

..~ ,.,.m. _.m.._m. -~ _ _._ _.. _. -.. --.4 t 6-YABLE 1 MATERIALS DATA FReal BW INTEGRATED SURVEILLA8tCE CAPSULE PROGRAMI33 USED IN DEVELOPING Zl0N UNIIS I AND '2 NEATUP AND COOLDOWN CURWE5 . Weld Metal Initla g gg * ' Chemistry Factor - Copper-Nickel {

(*F)

WF-70 .+18(2) 20 (2) 14' 174 (2) .35 (2) .59 (2) [ 2.- M -200 - 5 (1), 20 (1) .14 162 (3)

.24 (I)-

.63 (1) ?. a. i F SA-1769 - 5 (1) 20(1)' '14 19S (3) .26 (1) .61 (1) .:? - WF-154. (l)- 20.(1) 14 116 (3) .31 (1) .59 (1) l i i -(l). 8AW-1803. Rev.~ 1,:" Correlations for Predicting the Effects of Neutron Radi4 tion an Linde 80 submerged Arc Welds"..May 1991. (2)1 R.J. Tamminga et.s t 'to T.J..:Kovech. " Zion Station Units I and 2 Revised initial Ri and RT Values for Reactor Pressure gy pg$ Vessel Listing Weld Metal.WF-10", Chron #185582 May 11.1992.- i (3) T.L. Baldstn' to A.G. Panagos, " Task.145. Report of RTMDT. Values for Zion Units.I' and 2 for 15 EFPY", Babcock and Welcox letter. ESC-421. May 14. 1992.

  • Per Reg. Guide 1.99. Revc.2 ' Position'2, the 28*F GA value may be divided by 2 'because credible surveillance data e ists.

l 4' f

u. v e ga. .4- --+>=.=4 a.- 44 m. ,.44 m E .ac. .M+s masA4 .A a 4 4 u4 4.- w4 TABLE 2 ZION UNIT I REACTOR VESSEL TOUGHNESS DATA (UNIIRADIATED) N MRTERIAL Ce Rt P MOT ~ I L 5 NOT (,(*F) (*F) g y g,t g) C090E NT-MAT 30. ITPE (I) (I) (I) (*f) T CLO5URE MAS SM 09094-2 A533. CL. I .I4 .55 .012 20 90 30 17 CLO5URE MAS SES. C5086-1 .09 .54 .014 to 32 10 103 CLO5pBE M AS 355. 88793 3 .09 .52 .012 10 53 10 96' CL95MRE LEAS RME 123W323 A500. CL. 2 .69 .010 I 55 *I 26 55 96 VE55EL RANEE 3239236 .06 .68 .004 IF *I -2 7 131 IEETIID2RE 213600-1 .12 .68 .009 I 60 *I 27 60 79 IEET NOIRE IT360s-2 I 60 *I .11 .67 .009 41 60 s2 IEET N0lRE 2T3592-1 .10 .66 .011 60 *I 103 60 77 I IEET N0ZRE ZT3592-2 .11 .67 .010 I 60 *) 51 60 62 i SUTLET N022LE 213592-3 .II .64 .010 - I 60

  • I 60 60 86 0UTLET NBZRE 2T3592-4

.11 .68 .009 I 46 *I 16 46 85 CUILET E0ZRE ID600-3 .10 .57 .011 I 60 *I $2 60 62 OtiTLET Nel2LE 2T3600-4 .11 .68 '.011 I 60 *I 46 60 >63 /n UPPER N0ZZLE $NELL 123v426' .06 .75 .005 10 43 to 115 LOWER Nel2LE DGELL-IV3300 .06 .83 .008 20 72 20 87 INTER. $NELL C3795-2 A53M. CL. 1 .12 .49 .010 -10 70 10 85 INTER. SHELL 87835-1 .12 .49 .010 -20 65(Actual) 5 115 (Actual) LSER SELL 87823-1 .13 .48 013 -20 56(Actual) -4 115.5 (Actual) liber SELL C3799-2 .15 .50 010 -20 80(Actual) 20 !!6 (Actual) I 'SSTTON IEAS TilAA$. ties IT3779 A508. CL. 2 .09 .71 010 10 60 to 92 30TTqui sEAg sigt 37777-I A53B, CL. I .62 015 -30 33 -21 84 INTER. TO LOWER SIELL IbI i SAW .32 .56 017 0(a) EIRTil WLS SEAN E78 0 ) INTER. SHELL LIBE. I WL5 SEAR W4 'I SAW .29 .55 .013 0,} g 0 INTER. 5MELL LIBE. IELS 5051 W8ggg SAW .29 .55 013 0g*g 0 LOWER $NELL LIBI6 IdI MELS SEAfl WS O *I I 5AW - .29 .55 013 0 I (a) ESTifulTES UsinG METN005 0F 18.5.181C altsmE6-oe00. BRANCH TECHNICAL POSITION MTER 5-2. Jutt.1981 2 (b) WLS WIM HEAT NO. 72105 AND LINDE 80 TLUI LOT No. 8669 (c) WLS WIRE petAT NO.' Sil862 AsE LilI0E 80 ELUE LOT NO. 4597 (4) WELO WIRE HEAT NO. 8T1762 ANO LitIDE 80 FLUI LOT NO. 8632

l TABLE 3 - ZION UNIT 2 REACTOR VESSEL TOUGHNESS DATA (UNIRRADIATED) T W FTp, 35 m RT "A"5 NRTERIAL Ce NI P m0T m0T ESMBENT MAT NO. TfPE (1) (1) (1) -(*F) (*r ) (*F) h,gg j CLO5URE LEAS SIDE 89094 1 A5338.CL. 1.14 .55 .012 -20 71 11 72 ELO5URE MAS 588. C4787-IA .13 .62 .006 0 30 0 88 CLO5URE NEAS SES. C5086-2 .09 .54 .014 30 45 30 88' 12 *I -13 12 los I CLO5URE NEAS FLAME 12468600 A508. EL. 2 .08 .70 .010 I VE5SEL FLANEE 2V-965 .12 .74 .010 - 60

  • 33 60 79 g,

IE LT 5022LE 2T4007-2 .11 .70 .009 48(a) 12 48 378 i IEET NO22LE 2T3ee5-1 .11 .58 .012 60 43 60 82 INLET N022LE 2T3005 .11 .56 .011 43 31 43 1s, _ IE ET N022LE 2T3085 .11 .56 .012 60 48 60 >se GITLET NO22LE Zv3930 .12 .66 .010 58 20 58 93 48((a) OUTLET N022LE 2V3930 .11 .65 .011 15 48 >so a) CUTLET IIO22LE 2V39M .12 .67 .011 55 28 55 - 84 60(a) GUTLET N022LE 2T3 ABS-4 .11 .57 .013 41 60 7 61 h UPPER N022LE $NELL 293940 A500. CL. 2 .07 .62 .000 10 65 to 106 LGhER N022LE SELL 2V3055 .09 .66 .008 to 70 10 eso INTER. $NELL 90029 1 A5338. CL.1.12 .51 .010 -10 - 82 22 81 INTEd. 5NELL C4007 1 .12 .53 .010 to 82(Actual) 22 94(Actual) liber 5 ELL 80006 1 .12 .54 .010 10 68 to 89 LOWER $NELL 88040 1 .14 .52 .000 -10 62 2 92 00 TION IIEAS TR4115. RING 3V-433 A500. CL. 2 .09 .76 .010 0 43 0 87 30TTON NEAS gupE C4007 2 A533B, CL. 1.12 .53 .010 -20 60 0 72 INTER.- 10 LetER SELL SIRIN E LS SEAfd $A1769(b) 5Alf .26 .50 .019 0(a) 0 INTSR. SNELL LS E.. NELS SEAN5 W 29,g SAW .23 .63 .019 g IO,I 0 LatER 5NELL Laus, WLS SEANS W70g,I 5AW .32 .56 .017 IO,I 0 (a) ESTINnTEs 951Ns ETN00 0F u.5.Nac Nutts.0e00 sRANCH TEClellCAL POSITION NIEB 5-2, JULY.1981 3 (n) ute ulRE HEAT NO. 71249 ANO LINDE 80 FLUX LOT NO. 8738 (c) WLO WIRE HEAT NO. 72102 AND LIMOE 80 FLliZ LOT NO. 8650 i (4) WLS WIRE IIEAT 100. 72105 ANO LINDE 80 FLUE LOT NO. 8669

R I-5. CRITERIA'FOR ALLOWABLE PRESSURE-TEMPERATURE RELATIONSHIPS l _The ASME approach for calculating the allowable limit curves for various heatup l and cooldown rates specifies tht the total stress intensity _ factor, Kg, for I the combined thermal and pressu.e. stresses at any time during heatup-or [ cooldown cannot be greater than the reference stress intensity factor, KIR' { for the metal temperature at that time, KIR is obtained from the reference-i fracture toughness curve, defined in Appendix.G to the ASME Code [5). The l Kgg curve is given by'the following equation:. j-KIR = 26.78 + 1.223 exp [0.0145 (T-RTNOT.+ 160)) (1) p V where L l ~ KIR = reference stress intensity factor as a-function of the metal-I temperature T and the metal reference nil-ductility temperature }- RTNDT 7 Therefore, the governing equation for the heatup-cooldown analysis is defined i ir. Appendix G of the ASME Code [5] as follows: 1 C*Kgg + KIT I KIR (2) l' where t-KIM = stress intensity factor Lcaused by membrane -(pressure) _ stress i f l KIT = stress intensity factor caused by the thermal gradients 4 KIR = function'of temperature relative to-the RTNDT of the material C = 2.0 for level A and Level-B: service limits C -= 1.5.for hydrostatic and leak' test con'ditions during_which the e reactor core is not critical 4 6-

i. e

....-..-.m.,- .. ~... -... ,.__.,-__.-.....~-.-.,._..,-,-..,m.,-

At any time during the heatup or cooldown transient, Kyg is determined by the metal temperature at the 7 of the postulated flaw, the appropriate value for RTNDT, and the reference fracture toughness curve. The thermal stresses resulting from the temperature gradients through the vessel wall are calculated and then the corresponding (thermal) stress intensity factors, KIT, for the reference flaw are computed. From equation 2, the pressure stress intensity factors are obtained and frora these the allowable pressures are calculated. For the calculation of the allowable pressure'versus coolant temperatur:. during cooldown, the reference flaw of Appendix G to the ASME Code is assus;ed to exist at the inside of the vessel wall. During cooldown,.the~ controlling location of the flaw is always at the inside of the wall because the thermal gradients produce tensile stresses at.the inside, which increase with increasing cooldown-rates. Allowable pressure-temperature relations are generated for both steady-state and finite.cooldown rate situations. From these relations, composite limit curves are constructed for each cooldown rate of interest. The use of the composite curve in the cooldown analysis -is necessary-because control of the cooldown procedure is based. on the measurement of reactor coolant temperature, whreas the limiting pressure'is actually dependent on the material temperature at -the tip of the assumed flaw. During cooldown, the 1/4 T vessel location is at a higher temperature than the fluid adjacent to the vessel 10. This condition, of course, is.not true for the steady-stato situation. It--follows.that, at any given reactor coolant temperature, the AT developed during cooldown results-in a higher value of l KIR at the 1/4 T location for finite cooldown rates than for steady-state operation. Furthermore, if conditions exist so that the increase in K IR exceeds KIT, the calculated allowable pressure during cooldown will. be-greater than the steady-state value. The above procedures are needed because there is no direct control on temperature at the 1/4 T location and, therefore, allowable pressures may_ i unknowingly be vio' lated if the rate of cooling is decreased at various intervals along a cooldown ramp. The use of the composite curve eliminates ~ this problem and ensures conservative operation of the system for the er.tbe cooldown period. 9- { - ' ~ ~ ~~~'~

4 Three separate calculations are requircd to determine the lictit curves for j - finite heatup rates. As is done in the cooldown analysis, allowable pressure-j temperature relationships are developed for steady-state conditions as well as finite heatup rate conditions assuming tha presence of a 1/4 T defect at the inside of the wall that alleviate the tensile stresses produced by internal i } pressure. The metal temperature at the crack tip lags the coolant temperature; j therefore, the Kgg for the 1/4 T crack during heatup is lower than the KIR j for the 1/4 T crack during steady-state conditions at the same coolant temperature. During heatup, especially at the end of the *ransient, conditions i may exist so that the effects of compressive thermal strestes and lower KIR's do not offset each other, and the pressure temperature curve based on j steady-state conditions no longer represents a lower bound of all similar j curves for finite heatup rates when the 1/4 T flaw is considered. Therefore, both cases have to be analyzed in order to ensure that at any coolant-4 temperature the lower value of the allowable pressure calculated for 3 { steady-state and finito heatup rates is obtained. 4 The second portion of the heatup analysis concerns the calculation of the 4 pressure-temperature limitations for the case in which a 1/4 T deep outside j surface flaw is assumed. Unlike the situation at the vessel inside surface, 2 the thermal gradients established at the outside surface during heatup produce stresses which are tensile in nature and therefore tend to re'inforce any pressure stresses present. These thermal stresses are dependent on both the rate of heatup and the time (or coolant temperature) along the heatup ramp. Since the thermal stresses at the outside are t,nsile and increase with increasing heatup rates, each heatup rate must be analy*/d on-an-individual basis. 4 i Following the generation of pressure-temperature cu ees for both the s-state and finite heatup rate situations, the final limit curves are proout.d by constructing a composite curve based on a point-by-point comparison'of the j steady-state and finite heatup rate data. At any giver erperature, the allowable pressure is taken to be the lesser of the thn" values' taken from the l curves under consideration. -The use of the composite. curve is necessary to set conservative heatup limitations because it is possible for cenditions to exist wherein, over the course of the heatup ramp, the controlling condition switches f from the inside to ib outside, and the pressure limit must at all times be based on analysis of tae most critical ce terion. . i 1 ,..,, - + ,e. ..m --.---c_,_ ,-.m, ,, ~. - ~ ~,, .,_<.m _ _ _,

i t Finally,the1983Amendmentto10CFR50AppendixG[2]hasarulewhich 4 addresses the metal temperature of the closure head flange and vessel flange regions. This rule states that the metal temperature of the closure flange j regions must exceed the material RTNOT by at least 120'F for normal operation when the pressure exceeds 20 percent of the preservice hydrostatic test pressure (621 psig for Zion Units I and 2). The minimum allowable temperature is based upon the limiting initial RTNOT h the vessel and closure flange regions of Zion Units 1 and 2. Table 2 indicates that the initial RTNOT of 55'F and 7'F occurs in the closure head flange and vessel flange, respectively, of Zion Unit I reactor vessel. Table 3 indicates that the, initial RTNOT of 12*F and 60*F occurs in the 4 closure head flange and vessel flange, respectively, of Zion Unit 2 reactor vessel. Therefore, using the most limiting initial RTNDT value of 60*F, bounding Zion Units 1 and 2, the minimum allowable temperature of this region s determined to be 180*F at pressures greater than 621 psig. These limits are less restrictive than the limits shown in Figures 3 through 22. 4 6. HEATUP AND COOLDOWN PRESSURE-TEMPERATURE LIMIT CURVES I i Pressure-temperature limit curves for normal heatup and cooldown of the Reactor Coolant System have been calculated using the methods discussed in Section 5. Figures 3 through 18 contain the heatup curves for 20,-40, 60 and 100 'F/hr for 14, 20, 25 and 32 EFPY, respectively, applicable to both Zion' Units 1 and 2. Figures 19 through 22 contain.the cooldown curves up to 100*F/hr for 14, 20, 25 and 32 EFPY, respectively, applicable to both Zion Units.1 and 2. Margins of 10 *F and 60 p.sig are included in these-figures _t'o' allow for possible instrumentation errors. Allowable combinationsiof temperature and pressure for specifin temperature change rates are below'and to the right of thel 11mit lines-shown in Figures _3 through 22. This is in addition to other criterialwhich must'be met before the reactor-is made critical. --I1 ,. ~. -.... .m.. .- 4-.m. .~..,-,,,;,,..-,,,,_..,-_._,, ^

The leak limit curves shown in Figures 3 through 22 represent the minimum temperature requirements at the leak test pressure 3pecified by applicable codes [4,5). The leak test limit curve was determined by methods described I in 10CFR50 Appendix GI23 and the Standard Review Plani 4}. ) l The criticality limit curves shown in Figures 3 through 22, specify pressure-temperature limits for critical core operation to provide additional margin during actual power production as specified in 10CFR50 Appendix GI23 The pressure-temperature limits for core operation (except for low power physics tests) are that the reactor vessei must be at a temperature equal to or higher than the minimum temperature required for the inservice hydrostatic test, and at least 40'F higher than the minimum pressure-temperature curve for heatup i and cooldown calculated as described in Section 3. The maximum temperature for the inservice hydrostatic leak test bounding Zion Units 1 and 2 reactor vessels i is 352'F, 367'F, 377'F and 389'F for 14, 20, 25 and 32 EFPY, respectively. A vertical line at these temperatures on the a pressure-temperature curve for 14, 20, 25 and 32 EFPY, respectively, intersecting a curve 40*F higher than the pressure-temperature limit curve, constitutes the limit for core operation for the reactor vessel. Figures 3 through 22 define limits for ensuring prevention of nonductite l failure for Zion Units 1 and 2 reactor vessels. l 7. CALCULATION OF ADJUSTED REFERENCE TEMPERATURE 1 From Regulatory Guide 1.99 Rev. 2III, the adjusted reference temperature (ART) for each material in the beltlino is given by the following expression: ART = Initial RTNOT + ARTNOT + Margin (3) mitial RTNDT is the reference temperature for the unirradiated material as defined in paragraph NB-2331 of Section III of the ASME Boiler and Pressure Vessel Code. If measured values of initial RTNDT for the material in questicn are not available,. generic mean values for that class of material may be esed if there are sufficient test results to establish a mean and standard deviation for.the class. ARTNOT is the mean value of the adjustment in reference temperature caused by irradiation and should be calculated as follows: ARTNDT - [CF)f(0.28-0.10 log f) (4) To calculate ARTNDT at any depth (e.g., at 1/4T or 3/4T), the following formula must first be used to attenuate the fluence at the specific depth. f(depth X) " fsurface(8 ) (5) where x (in inches) is the depth into the vessel wall measured from the vessel clad / base metal interface. The resultant fluence is then put into equation (4) to calculate ARTNDT at the specific depth. CF (*F) is the chemistry factor, a function of Copper and Nickel content. Chemistry factor values for the welds were obtained from the B&W Integrated Surveillance Capsule Program per letter from Commonwealth EdisonI33. These values are shown in Table 1. Chemistry factor values for the base metals (plates and forgings) were obtained from Table 2 in Regulatory Guide 1.99, Revision 2[II, using the corresponding Copper and Nickel content for each l material. Applying the methodology described in Regulatory Guide 1.99, Revision 2Ill to determine the Adju'ted Reference Temperature (ART) for each beltline regien s material, it was found that the circumferential weld seam WF-70 in Zion Unit 1, between the vessel intermediate and lower shell, was the limiting material bounding both Zion Units 1 and 2. ART values for the circumferential weld WF-70 were evaluated at 1/4T and 3/4T locations using chemistry factor values l provided by Commonwealth Edison from the B&W Reactor Vessel Integrated i Surveillance Capsule ProgramI33 The results of the ART values at 1/4T and 3/4T for all materials in the beltline region of Zion Units 1 and 2 are presented in Tables 4 and 5 respectively. Note the ART values shown in Tables 4 and 5 were obtained using chemistry factors from the Regulatory Guide 1.99, Revision 2, tables. The ART values using the new B&W materials data from their Integrated Surveillance Capsule Program are shown in Tables 4 and 5 with an

  • as a footnote.

Sample calculat: ens of adjusted reference temperatures are shown in Tables 6 through

9..

IABLE 4 $UMMARY OF ADJUSTED REFERENCE TEMPERATURES Ai I/41 AND 3/4T LOCATIONS OF ZION UNIT I BELTLINE REGION MATE FOR 14, 20, 25 AND 32 EFPY 14 EFPY 20 EFPY 25 EFPY 32 EFPY v RT AT RT ND' AT Ri Af RI AT NOT i Concorent 1/4T (*F) 3/4T f*F) 1/4T [*F1 3/4T (*F1 1/47 f*F) 3/47 (*FI !!4T f*F) J/47 f*F) C h c.- Weld W -154/5A-1769

  • 167 125 183 137 193 la6 204 156 (Upper to Inter.)

Inter. Shell B7835-1 64 64 91 70 96 14 101 79 In*er. Shell C3795-2 123 102 130 108 135 112 140 IIT i Long. Veld WF-4 9 0* 165 121 179 138 189 146 201 155 4 tm Weld VF-4/WF-8 165 127 119 138 189 146 201 155 4 9 180* Cire. Weld VF-70

  • 206 161 222 175 232 184 243 194 (Inter. to Lower) iover Shell 87823-1 1D0 77 108 84 Ill 89 118 94 tower Shell C3199-2 138 Ill 147 119 153 124 160 130 Long. Weld VF-8 9 90*

165 127 180 138 189 146 201 155 tong. Veld W-8 9 270* 165 127 180 138 189 146 201 155 RT values calculated using new materials data from the B&W Integre, ' 3arveillame Capsule Program NDT

1 iA8tE 5 SlMMARY OF ADJUSTED REFERENCE TEMPERAllSES AT 1/4T AND 3/4T LOCAi!ONS OF 2!0N latti 2 BELTLINE REGIO FOR 14. 20. 25 AND 32 EFPY 14 EFPY 20 EFFY 75 EFPf 32 EFPY RT A RT AT RT AT Ri AT NDT NDT Component 1/4T (*F1 3/4T (*F) 1/4T (*F) 3/4T f*F) 1/4T (*F] 3/4T (*F) 1/4T (*Fl 3f 47 ( *s-) Circ. Weld W-200

  • 161 121 175 133 184 141 195 150 (Upper to Inter.)

Inter. Shell B8006-1 123 102 130 108 135 112 140 117 Inter. Shell B8040-1 127 102 135 109 141 114 147 120 g Long. Veld W-10 0 0* 158 123 112 133 ist 141 192 150 m 8 Long. Weld VF-10 9180 158 123 172 133 181 141 192 150 Cire. Weld SA-1769

  • 199 149 216 164 228 174 240 186 linter. to Lower)

Lower Shell C4007-1 109 86 117 93 122 98 12S 103 Lower Shell E8029-1 135 114 142 120 146 124 152 129 Long. Weld WF-29 9 90* 157 122 171 133 181 140 191 149 L wg. Weld WF-29 9 27D* 157 122 171 133 181 140 191 149 RT values calculated us tog new materials date from the BfN Integrated Surveillance Capsule Program. MDT

{ TABLE 6 4 j CALCULATION OF ADJUSTED REFERENCE TEMPERATURES FOR THE LIMITING REACTOR VESSEL MATERIAL BOUNDING ZION UNITS 1 & 2 - CIRC. WELD WF FOR 14 EFPY t Reaulatory Guide 1.99 - Revision 2 4 14 EFPY j Parameter 1/4 T., 3/4 T Chemistry Factor, CF (*F)(a) 374 374 { Fluence, f (1019 n/cm )(b) 0.492 0.179 2 1 t Fluence Foctor, ff 0.802 0.543 i j ARTNDT CF x ff (*F) 139_ 94 i j Initial RTNDT, I (*F) 18 18 Margin, M (*F) (C) 48.8 48.8 Revision 2 to Regul. tory Guida 1.99 I i Adjusted Reference Temperature, 206 161 i ART = Initial RTNDT + ARTNDT_+ Margin 4 1 (a) Chemistry Factor value was provided by Commonwealth Edison from the B&W l Surveillance Capsule ProgramI33. See lable 1. 4 19 2 (b) Fluence, f, is based upon fsurf (10 n/cm, E>l Mev) = 0.8166 at 14 7 EFPY, The Zion Unit I reactor vessel wall thickness is 8.441 inches at the beltline region. J-L (c) Margin is calculated ~as -M = 2 [og2+c_ a ) ' 5.. The standard deviation for the initial RTNDT margin term (og) is 20'F. This value was provided by Commonwealth Edison from.the B&W L integrated Surveillance Capsule Program (3), also shownfin Table l. The standard deviation for ARTNDT'.(8 ) is: 14*F for weld A metal, since credibleisurveillance data exists from the B&W Integrated. Surveillance Capsule Program. 16- -,9=.

o. + ma

,v,repr-.,.7,-- v,--r-.g.m-w.--ve--- .=r -ry-=-.me-n 3-+--,e- --y-w ,gw .-v--+y-rwy-vvcev.--v-v--y--- v'<e., www,9=,,-' r-r'f v s'WW -mm r' s wer e tue m * -ew'gr

  • N-r - h '

TABLE 7 i CALCULATION OF ADJUSTED REFERENCE TEMPERATURES FOR THE LIMITING REAC i VESSEL MATERIAL BOUNDING ZION UNITS 1 & 2 - CIRC. WELD WF-70 -FOR 20 EFPY Reculatory Guide 1.99 - Revision 2 20 EFPY Parameter 1/4 T 3/4 T Chemistry Factor, CF (*F)(a) }74 174 Fluence, f (1019 2 n/cm )(b) 0.676 0.24S Fluence-Factor, ff 0.890 0.619 ARTNDT CF x ff-(*F) 155 108 Initial RTNDT, I ('F) 18 18 Margin, M ('F) (C) 48.8 48.8 Revision 2 to Regulatory Guide 1.99 Adjusted Reference Temperature, 222 175 ART = Initial RTNDT + ARTNDT_+ Margin (a) Chemistry Factor value was provided by Commonwealth Edison from the B&W Surveillance Capsule ProgramI33 see' Table 1. 19 2 (b) Fluence, f, is based upon-fsurf (10 n/cm,-E>l Mev) _1.121 at 20 tFPY. The Zion Unit I reactor vessel n11 thickness is-8.441 inches at the beltline region.- (c) Margin is calculated as, M = 2 [og2+y 2 0.5. The-3 standard deviation for the. initial RTNDT margin term (og) is 20*F. This value was provided by Commonwcalth Edison frem the B&W Integrated Surveillance Capsule ProgramI3I, also shown in Table 1. _The standard deviation for ARTNDT' (8 ) is 14*F for weld A metal, since credible surveillance data' exists from the B&W Integrated Surveillance Capsule Program.

2 1 TABLE 8 j CALCULATION OF ADJUSTED REFERENCE TEMPERATURES FOR THE LIMITING REACTO YESSEL MATERIAL BOUNDING ZION UNITS 1 & 2 - CIRC. WELD WF FOR 25 EFPY i j i Reaulatory Guide 1.99 - Revision 2 25 EFPY l Partmeter 1/4 T 3/4 T j i j Chemistry Factor, CF ('F)(a) 374 374 Fluence,f(10l9 n/cm)(b) 0.829 0.301 2 Fluence Factor, ff 0.947 0.671 l ARTNDT - Cl x ff (*F) 165 117 p Initial RTNDT, I (*F) 18 18 Margin, M (*F) (C) 48.8 48.8

{

Revision 2 to Regulatory Guide 1.99 l jt Adjusted Reference Temperature, 232 184 j ART Initial RTNDT + ARTNDT + Margir.. i (a) Chemistry Factor value was provided by Commonwealth Edison from=the B&W s Surveillance Capsule ProgramI3}. See' Table 1. ~ (b) Fluence, f, is based upon fsurf(10 n/cm E>l Mev) - 1.376 at 25 19 2 EFPY[6). The Zion Unit I reactor vessel wall thickness is 8.441 inches at the beltline region. 4 (c) Margin is calculated as, M = 2 (o;2 +, 2 0.5 -The 3 standard deviation-for-the initial RTNDT margin-term (ag) is 20'F. This_value was provided by Commonwealth Edison from.the-B&W-Integrated Surveillance Capsule ProgramI33, also shown in Table 1. The-standard deviation for ARTNDT' (8 ) is 14'F for weld - 4 metal, since credible < surveillance data exists from the B&W' Integrated Surveillance Capsule Program. ' v +- ec,,,rn-, w-, 9,- -r+e v er+

  • P Ma-w 9e -e et e, e w*v wv'-= r v t'w+<

$e-M-- we +=*-vv- '*w*c -fqb '*a'v+ --ew% +---wer--+-%e e - w"a-- W ' e

TABLE 9 CALCULATION OF ADJUSTED REFERENCE TEMP VESSEL MATERIAL BOUNDING ZION UNITS 1 & 2 Reoulatory Guide 1.99 - Revision 2 Parameter 32 EFPY _1/4 T_ 3 /4 T___ Chemistry Factor, CF ('F)(a) 2 174 j74 Fluence, f (10I9 n/cm )(b) },o44 o,379_ Fluence Factor, ff ...*****.*********************.**********************1.012 0.732 ARTNDT - CF x ff (*F) 176 127 Initial RTNDT. 1 (*F) 10 18 Margin, M (*F) (c) 48,8 48.8 4. ..****...........**......**...***v.......****** **..*************.......** Revision 2 to Regulatory Guide 1.99 Adjusted Reference Temperature, 243 194 ART - Initial RTNDT + ARTNDT + Margin (a) Chemistry Factor value was provided by Commonwealth Edison fro Surveillance Capsule ProgramI33 See -Table 1. (b) Fluence, f, is based upon-f 19 2 EFPYt6' surf (10 n/cm, E>l Mev) = 1.732 at 32 The 7h n Unit I reactor vessel wall thickness is 8.441 at the beltline region. (c) Margin is calculated as,-M = 2 (0 2 1

  1. , 2 0.5 The 3

standard deviation for the initial RT NDT margin term (cy) is 20*F. This value was provided by Commonwealth Edison from the B&W Integrated Surveillance Capsule Program (33, also:shown in Table 1 standard deviation for ART The NDT* ('A) is 14*F for weld metal, since credible surveillance data exists-from the B&W Integrat Surveillance Capsule Program.' 1 9 4 l RATERIAL PROPERTY BASIS 4 CONTROLLING MATERIAL: CIRCUMFERENTIAL WELD WF-70 { INITIAL RTNDT: 18'F 1 j ART AT 14 EFPY: 1/4T 206*F = 3/4T 161*F = 4 2500 7;,.3 m f!;; i ! i ; i

i,

i, i ! i . 4 i i i i ! 3 I i iij IJ l i > iii i i i t i + t i ; l' i ll ' (! i i i !,1! i I i ! t i i LEAK TEST LIMIT ! il II~ i t/i < i i ! j i i e ii e i 3,50 'I

1

/ i i. i i3 i y r r , i j 1 i >i i l !I i i ii / i i ii ( a i i > e. I' l-

  • f 4
  • i i

ti l I i i i 2000 I I-i!* l'i i t i!t i j

I I

it ! I e ! i

i..
I

/ i i i iil i I i ii i 1/. i/ t 1 i UNACCEPTABLE il [ / i ,750 i , i CPERATION r t/ i i i j i i

iii i i a

) if if e # i ii I i ! ! ! t 'I I f iI ( i. 1 i 8 i ! i ! I i iI i/ / I i ^ 1500 0 ' l ' ! i i ii ? Y / i; !'ii 4 m 5 l i l i i l / ,' /i ACCEPTABLE OPERATION-g 1250 l HEATUP RATES / i i j l o + i UP TG e i i i -20'F/HR w 1 i E 1000 j o / W i + / t / _U 750 1 i i ' I i i O i i i i f l 5 CRITICALITY LIMIT / ( 500 L BASED ON INSERVICE HYDROSTATIC TEST 7 i TEMPERATURE (352*F) l FOR THE SERVICE 250 l PERIOD UP TO 14 EFPY t i ; ii i ! + !i. l 0 O 50 100 150 200 .250 300 350 400 450 500 i lNDicATED TEWPERATURE (DEG.F) l Figure 3. Reactor Coolant System Heatup Limitations (Heatup rates up to 20*F/hr) Applicable to Zion Units 1 and 2 for the First 14 EFPY (With Margins of 10*F~and 60 psig For Instrumentation Errors) i=

MATERIAL PROPERTY BASIS CONTROLLING MATERIAL: CIRCUMFERENTIAL WELD WF-70 INITIAL RTNDT: 18'F ART AT 14 EFPY: 1/4T - 206'F 3/4T = 161'F 2500 w e i3 i, i, i ti i-> if i ! ii, i,, i i i !! ! i 11 1 1 ! ii! i i ,1 i. , i, it i 4 ii i. 4 it! ii iri LEAK TEST LIMIT 'i " 50 'i ' 'I i i '/' ~

i..i j

f , i i i ! i !!/ i I i1 ' i ~ iii i i i i! I If ! / i e li i ! t._ i 2000 l ', 'l l ll l 'l / i l 4/ jl, i i i: i i i i i i i y'_ l '/' i / !/ i Z T ~ UNACCEPTABLE / >l i i i i i i,: 1750 i i OPERATION 1 ! s i a, I f li i l i i if / f I i iI i i 4 i / / i j! ii I i ^ 15 2 l,' l l / / ACCEPTABLE

  • i E

i i i i i i / / i OPERATION : i i i1 4 ! i r / i g 1250 HEATUP RATES / / !l l i o

  • UP TO

/ f i' i h l

40'F/HR

/' 'l .E 1000 / i l,' o / ' i i W / i I I. / 750 1 l / o i /' CRITICALITY LIMIT f i f l BASED ON INSERVICE HYDROSTATIC TEST 5*00 f TEMPERATURE (352*F) 7 FOR THE SERVICE I i i PERIOD UP TO 14 EFPY i 250 l l l i,, r i i + i i ! 1 ' 8 1 i + 0 0 50 100 150 200 250 300 350 400 450 500 r INDICATED TEWPERATURE (DEG.F) Figure 4.- Reactor Coolant System Heatup Limitations (Heatup rates up to 40*F/hr) Applicable to Zion Units 1 and 2 for the First 14-EFPY (With Margins-of 10*F and 60 psig For Instrumentation Errors)

~ i MTERIAL PROPERTY BASIS k CONTROLLING MATERIAL: C]RCUMFERENTIAL WELD WF-70 ] INITIAL RTNDT: 18'T i AR1 AT 14 EFPY: 1/4T - 206*F i 3/4T = 161*F 4 2500 7;ca 3 l i s ~"* f I 'l ~ t t i f I f i 2250 l LEAK TEST LIMIT l l l-7 1 i l i i ~ r a I I J k t I l I w i e 6 e i I i T ) l j l l t i 1 j i i [ / i i 1750 I UNACCEPTABLE / / i OPERATION r -ACCEPTABLE / / OPERATION G 1500 / / g r r / !/ i 1 ( / g 1250

HEATUP RATES-

/ /l o 4 i UP TO / i l h j60*F/HR / l_ E 1000 l l [ / j i l 8 l l ! / i 0 o i f i 750 CRITICALITY LIMIT 1 E / BASED ON INSERVICE i i 5 i i HYDROSTATIC TEST i / i F TEMPERATURE (352*F) 500-l T l FOR THE SERVICE / PERIOD UP-TO 14 EFPY i 4 4 250 l [ 3 4 i i I 0 -4 i 0 50 100-150 200 250 - 300 350-400 450 500 lNDICATED TEWPERATURE (DEC.F) Figure 5. -Reactor Coolant System Heatup~ Limitations-(Heatup rat'es up to-60*F/hr) Applic21e to Zion Units L1 'and 2 for the-First 14 EFPY. (With Margins of 10*F and 60 psig For Instrumentation. Errors) 22 ! ~. .tg g -e ,-s- ,.sp-t--- &t-y-te,--r+'7 ra4 9 tm,

  • -p

---.v-,n-w

MATERIAL PROPERTY BASIS 4 CONTROLLING MATERIAL: CIRCUMFERENTIAL WELD WF-70 INITIAL RTNDT: 18'F ART AT 14 EFPY: 1/4T 206*F 3/4T 161*F = 2500: 7 m.m i i a;;i ,iir i i i i i i i [ v i + i i i i i i ! i i I i l i ! i i r j i , i i _i i ! I ,! t i i ih iiIt i 1 i s e i e ii ii i 4 LEAK TEST LIMIT

r/I i
  • bii

/ i i i ;i 4 i it i i i ., y

      • 0 6

i j I! I fl i i ! t i i l I ! ! J l f f i 1 i 4,_ iii i i I i ii _ I i 1 1 t ! ji if I ii!I f i i p ,j ,i e i d / ' il i 2000 i i t ii i f f l i j J t I i ~ / / 1750 l'll l UNACCEPTABLE i / '/ ACCEPhABLE OPERATION. l 'l' 'l l l l l,i OPERATION i j i li ii t /- !./ I f ' ! G 1500 l ',. ll ,' i.! ',!/ ll[ !l i 4 i i t, i f, a ' g, i. i i i if i if i i %.e j j l t I / e i 1 ! g 1250 l HEATUP RATES / / o UP TO / M i / -f g 100'F/HR ii i r 4 i. i E 1000 / [i li!! O I i I I l /l l CRITICALITY LIMIT O 750 BASED ON INSERVICE r HYDR 0 STATIC-TEST-E l i i l TEMPERATURE (352*F) .f i / FOR THE SERVICE 500 l / PERIOD UP YO 14 EFPY-f i i i s. i 4 i i i i i 250 l l l l i 1 i i i i i l { i i ? l i g i l 0 4 e i s 0 50 100 150 200 250 300 350 400 450 500 INDICATED TEWPERATURE (DEC.F) Figure 6. Reactor Coolant System Heatup Limitations (Heatup rates up to 100*F/hr) Applicable to Zion Units 1 and 2-for the First 14 EFPY (With Margins of 10*F and 60 psig For Instrumentation Errors).....

i i i MATERIAL PROPERTY BASIS 4 4 CONTROLLING MATERIAL: CIRCUMFERENTIAL WELD WF-70 INITIAL RTNDT: 18'F A' i AT 20 EFPY: 1/4T - 222'F n 3/4T - 175'F 25c0 aya ,, 3, , 1, ii

i.,

,, /p i i i i i i i ilI ! i ! l ! i ! 'l i i i/ ! i i i i. z 3 i ! i /i /. . i /! !, + t i i i ! t l i fj1Jl i i /s a i i LEAK TEST LIMIT 1 . i i_ir ~,/ i ,,5 0 i ! I i 4 i i ! 1 i/ i l' i !/ i t t ! i I i i i i i l i i i i ?/- I / i if I i i ! 4 ! ( i i i i i i 1 / i / ! i / i i ! e a i < t i i i! i l I! ! J 1 ! 2000 ! i t i i i i ./ i i !/ ! i

i i

i 1 i! / i ! ! I f ! ! I .t ? I 1 1 1 i i. 3 l , li' l#! l' UNACCEPTABLE . !! / ! >[ 1750 4 l l, l_,,l l OPERATION l l l' / ! /l ACCEPTABLE - i ii i i i i 4 1 i i . ! if i ! /; OPERATION I i i i i i i i 1 l

  • i i t

i ) if, i if ) ^O 1500 i i' t

  • 8 t

t I *

  • j i

! i [! i i f! i e f I g s e 4 ii! i! i j i i if I i if j .i+l i i A e i +* i iI i 4 1 i t j i i 1 I /j l fji j w r .,s i e i if i er ,i j j [t lll l UP TO / l l, l u 1250 HEATUP RATES: / / i i iii i 4. .!i 20'F/HR / i ! i i w f 3 E 1000 i 1 i i, /- l llll 0 / CRITICALITY LIMIT 1 i i i BASED ON INSERVICE 2 750 l / HYDROSTATIC TEST n TEMPERATURE (367'F) i / .'-, FOR THE SERVICE 500 i PERIOD UP 10 20 EFPY i i i e i I I 4 e 250 l l l i i t i e f i I i 4 4 k i i h 0 O 50 100 150 200 250. 300 350 400 450 500 INDICATED TEWPERATURE (DEG.F) Figure 7. Reactor Coolant System Heatup Limitations (Heatup rates up-to-20*F/hr) Applicable to Zion Units-l' and 2 for the First 20 EFfY (With Margins of 10*F and 60 psig For-Instrumentation Errors) -2 A..

MATERIAL PROPERTY BASIS CONTROLLING MATERIAL: CIRCUHFERENTIAL WELD WF-70 l INITIAL RTNDT: 18'F i ART AT 20 EFPY: 1/4T 222'F 3/4T 175'F 2500 g i y,2 3 i j, 4, ; _i i

ii, 3, 3,

,i ; 1 4 i ! 4 i i i i t i I~i 5 ~ i i i ! ! ! i ! i f ! / i . 4 + l ! I ,.4 6 f i l l l LEAK TEST LIMIT l ll l }'4-Q i ! ! i iI 1 i e + a t _j

s!

S 0 t_ .] \\ i 1 i t: i 1-J i i

e i

i i p II: !li - ~f li i i, 2 I i !F s i e i} i I _t R 1 t/t i II! ~ i i i f I l !/ 1 /I I I e i 2000 ( l l ij / i i t i i i i! iii j i j f. '/f 1 i j i i 4 i I ___ }. I l I/. /_ j i l' 3 i UNA'CCEPTABLEi_ 1750 i I /i I r i , i -4 4 i n,z. r, .i id_., OPERATION I' ' i 'I ' 4 ii 4 I 6 1 .i l!!l l /! ! ! lLACCEPTABLE i l l ,/ id/ ^ -OPERATION i i ! O 1500 i i l i ~ 1 i 1 e i ( , i i i ! i / ! i i i e-- i 4 i ! i ? t t t 1/ i/l i i+ t ~,I i > i v i 6 iil 4 J 1i ! I i i i iiii i j t w 1250 HEATUP RATES i / /i i i i i i ~ a L + i / / iii1 UP TO 3 l t i t' i O 40'F/HR 'i i i i,iie>i E 1000,. i f 1 i r -m L_ [j l l o w /, 7 e i, E 750 -CRITICALITY LIMIT J' l -BASED ON INSERVICE 't /' l l T HYDR 0 STATIC TEST i '00 + ./ TEMPERATURE (367'F) ~ FOR THE SERVICE j i f PERIOD UP TO 20 EFPY i j i i i i

250, l

l l i i 4,1 i. f t l t 0 i i O SO 100 150 200 250 300 350 400 450 500 .lNDICATED TEWPERATURE (DEG.F) Figure 8. Reactor Coolant System Heatup Limitations (Heatup rates up to 40*F/hr) Applicable to Zion Units 1 and 2 for the First 20 EFPY (With Margins of 10'F and 60 psig For Instrumentation Errors) - 1 l -,-~-,.,e-, -,,e, v r --r ~s mer -,vr- ---~+w.-~rw ..n a n,-- e

MATERIAL PROPERTY BASIS CONTROLLING MATERIAL: CIRCUMFERENTIAL WELD WF-70 INITIAL RTNDT: 18'F ART AT 20 EFPY: 1/4T 222'F 3/4T 175'F = 2500 n m ,i 4,;i 3

i ; ;

j i i !ii i! ! i i i ! i i i 11 ! ! i i e i i i i ii

1 i

! i i i i i (i jj i iJ i i j! I 4 - t I i i ! 'i i[ ~ i i _1 i i i i ii } _ i i I r _i_ } /! I i ii 4:50 ~~'ll!, 1 I i / I i #/ i if i , LEAK TEST LlHIT,Ui: i _i a ,, i ! i ! 1 !~ i i i .i i ii ! l DJ > t ! J 4 1 i i>j i I i i ! i I i i ! T i i e / >/ i / 1 i i

.. ;,e i

t i v j jii +i!.. i i i J i4/ i ,1 4 1 i 9pCO 1 1 i I i i i i / i If i i i,; Il ! i'i_ i,,, i 1 i i rr i., ,r .,i

i i i

>1 1 i ! ! ! i tr i./ i, F l i ii4 4 6 i I i i I __. f il 1/! !

,iI

- i i ,' i ry .i / UNACCEPTABLE E.

i. ~

yi i g 3,' i i lll' ll' H OPERATION Fj ! l f l l l/] ' ' ACCEPTABLE i 1+ a>ii i , i ii i . 1 i ii i i i ! 6 r r i i OPERATION i ! i i i t 6 I i $ i i /_ / i i a o gg l i ? 8 t ,, 32,

/

/ ! ! ! s I i t i i i i i !. i, i ! 1I f / i. i ! i i i l g ! ! i8 i t ' ! I j } ' i 3 ! ' /I i / iiij a t I t i 4 ! t ! Vi i / I i i I i ! I ' ' I I I jjj / I/ i t w 1250 a i HEATUP RATES d D i i a UP TO i / i 0 i i + iie i 1 60'F/HR / ,i ii,, E 1000 l l / jA iii 1 i H _O j jY O ~ 750 5 e' CRITICALITY LIMIT 5 BASED ON INSERVICE /; l l l / l TEMPERATURE'(367'F) HYDROSTATIC TEST ,00 i o FOR THE SERVICE PERIOO UP TO 20 EFPY i i 250 i _, l i i + t l O' 0 50 100 150 200 250 300 350 400 450 500 J- , INDICATED TEWPERATURE (DEG F) Figure 9. Reactor Coolant System Heatup Limitations (Heatup rates up to 60*F/hr) Applicable to Zion Units 1 and 2 for the First 20 EFPY (With Margins of 10*F and 60 psig Fcr Instrumentation Errors) i i l l

ILATERIAL PROPERTY BASIS CONTROLLING MATERIAL: CIRCUMFERENTIAL WELO WF-70 INITIAL RTNDT: 18'F ART AT 20 EFPY: 1/4T 222'F 3/4T 175'F 2500 z y,p u

i ;

, ;, i ,i; 4 ; i j i ; ,,, i ;,,

i i

i i !! I I i i ! i 1 4 i i i i I ' iif Il ! ! i i t e i l i i i

  • i t i t i i,-

I i i.i- ! ! 1 . t i ! /!II_ w./ ' !s i . 50 i i. . 4 t i ,i l ,' -! LEAK TEST LIMIT _,iiii i d,34 i i - i !/ . > 2 ,i,i i r i c _ j ,iif i i i

11 Qi 5

' i I = ? !$ i

  • i i il i

! /i * /. I i i i ! ia ' i ( 1 i i i t il 'l ! 1 !/ i i i ~ s i e i i i ii i i i i i i i ! ) i t I' i ! I ' I I . Ii /i i i t iI i i i ! ! i i i'I i ii/ I i J l i i i! i iii f i

  • 1 t t

i i i ! /__. _' / 6 ! e t .i i

  • ! +

+ 1 t i i !! 31 / I i ! i air i ! i

i i

i i i i i _ t ! I i ! ii[ l! f I I r i i iP ,750. 3 i ii ! i i i llO__i;,! ll:, OPERATION / /: l OPERATION UNACCEPTABLE i ' ! /

  • ACCEPTABLE i I~; i

! I*i l i i i t t i r e t / ) l 3 i i 1500 ' i i ' t'I e ! t i i i i a t

  • i i I i

i i ' i i l i! ' ! I fl / t { t 4 6 i i! ,t ii i s i l /i 7 ! i ! i {~ i e

  • ! ( i i

e ( a I ii } } i i i ii i 5

  • i I

8 ,/- / I ( f i /i f e ( ) i i i 4 1250 f' i HEATUP RATES / i : i UP TO ! I i i i i i ' f ii / 100*F/HR . / it ! i i ' i ) i 1000 i i i / / i i ' .' s t i i tui! / ! i i i I 1 i i i i i + i i ! t il i I / 750 i CRITICALITY LlHIT l i / l ! HYOR0 STATIC TEST BASED ON INSERVICE i / 500 TEMPERATURE (367'F) f FOR THE SERVICE i i f + / 4 i i i PERIOD UP TO 20 EFPY f i 250 i i ; l I q i i i,e i ) t' a 1 i i~ 0 t s O 50 100 150 200 250 300 350 400 450 500 INDICATED TEWPLRATURE (DEG.F) Figure 10. Reactor Coolant System Heatup Limitations (Heatup rates up to 100*F/hr) Applicable to Zion Units 1 and 2 for the First 20 EFPY (With Margins of 10*F and 60 psig For Instrumentation Errors) MATERIAL PROPERTY BASIS CONTROLLING MATERIAL: CIRCUMFERENTIAL WELD WF-70 INITIAL RTNDT: 18'F ART AT 25 EFPY: 1/4T 232*F 3/4T 184*F 25C0 j gy g g i,,, 37, !M 1 i i ! I ii ! j i - i !i

! !4 iii

! iI

  • i i

fi ; il l it i l 1 i i 4 _1 Ii 1 'i! !/ i i ! ' / / 4 i e

    • 50 h

LEAK TEST LIMIT ~j l /! i f i }!. i i r'. 4r i 1 ! f,,J i. l'

/

/ i Ii, i i I i_ I 4 1 ./ e

  • /

! Ii !] ! in ) i i ! + i ' t i ! i > 1 8 i ! I f'i i i ! / 1 /! ! / ! i I i ii i ' i 4 ' i il Iii l j '000 I' I i I is ! i i i 3 I i i# i i ! i i i ! i i i li j i }/- ii'/ 3 i i fi i i l I ' I ] . Il MM! I ! ! j 4 . t 4 6 1 1 6 l l 6 !I I {l i - i! ! i. ' UNACCEPTABLE 175C-l ,ll,' [l,'_'l[,' l OPERATION t' i i /! /! ' oi r 1 i . o i i Y'-f l l li! i 1 ii ACCEPTABLE - i i .j i ll l ll /j ll/jl OPERATION i ^ 1500 'i)' J i ! ! L! t 1/ !/ ' >i i ' i O i iii i ! i 8 a 4 y, i ! t 4 4 I - A 6 !/ 3 tri i! it i i i i s, i i g 1250 j l1 j'__ f. i V i i i 1 i / i.., i i _ i

i!

i i i i i/ t /i ii ll l },,. I HEATUP RATES _ / I i 3 i 0 l,!! }! lq 20'F/HR / j l UP TO 11 + i ' ll E 1000 lli l M ,l' / l',, o ii i i i 1 ii W i il ii 1 6 L ii e i / ii i i. 3- - i f 750 ll l j 'i i l l ( c [ i l .,,i j"f i i i i ) y 500 l l' i d- , 3 CRITICALITY LlHIT i BASED ON INSERVICE l' '50 i i - HYDR 0 STATIC TEST TEMPERATURE (377'F) l FOR THE SERVICE PERIOD UP TO 25 EFPY i i 4 i 0 i i i i 0 50 100 150 200 250 300 350 400 450 500 i! i 1NDICATED TEWPERATURE (DEC.F) Figure 11. Reactor Coolant System Heatup Limitations (Heatup rates up to 20*F/hr) Applicable to Zion Units 1 and 2 for the First 25 EFPY (With Margins of 10'F and.60 psig For Instrumentation Errors) -28

4 1 } i MATERIAL PROPERTY BASIS i CONTROLLING MATERIAL: CIRCUHFEREN11AL WELD WF-70 j-INITIAL RTNDT: 18'F ( i ART AT 25 EFPY: 1/4T 732'F 4 3/4T 184*F = j 2500 g y m 3 i i i 1 iii t,i i_i ! i ) iiii 1 1 i! i i _2 Iil Ill ;i i lii! 3 ii,i i I l4__ ' Il 11 = j ' ! ' ' _l.- j i j i i +.i t i i i 1. 8 f1 _/t t 2250 l' -FYLEAKTESTLIMIT' n i ii a i 3 ; ii c 6 i e i, i 7 I 3 fi i i f I i i3 /I .I/ ! !I i3 _1 1 1 i ) ii i i +1 3 4 1 I ! !/ i a ji i I / t 1 i i 4000 i, i i i f 1 ! l 9, / ia i,i I in i ei j i ii i i 1 i + / il ly i i t i i ! i I UNACCEPTABLEc I 1750

'i ll'

.i! l OPERATION !/ [. ACCEPTABLE i l ,i ii t 4 e - in OPERATION i 4 3 i i , : i i i ! i i; i i i i iI i i i / n/ G 1500 l l l l ll 4/ / _. i i ! i i j g i 4 t/- / i e g i i 4 t i i 1 i t / e i, i i i + i 4 s i g 1250 i HEATUP RATES / 4 iii~ / / i*'e S UP TO / l l;, O 40'F/HR f i i .i E 1000 / l l ll o / i i w I / 1 8 j / i i l / I ' I t 4 g z f CRITICALITY LIMIT / BASED ON INSERVICE i l 3 HYDR 0 STATIC-TEST 500 i l TEMPERATURE (377'F) j i- </ FOR THE SERVICE l PERIOD U.P TO 25 EFPY-i i 250 i i i i i t i i i i i. i i i i } 0 l { 4 i i

  • I 0

50 100 150 200 250 -300-350 400 450 500 4 lNDICATED TEWPERATURE (DEG.F) Figure 12. Reactor Coolant System Heatup Limitations (Heatup rates up to 40'F/hr) Applicable to Zion' Units I and 2 for the First 25 EFPY (With Margins of 10*F and 60 psig For Instrumentation Errors) a -w-, vv,

r MATERIAL PROPERTY BAS 15 CONTROLLING MATERIAL: CIRCUMFERENTIAL WELD WF-70 INITIAL RTNDT: 18'F ART AT 25 EFPY: 1/4T - 232*F 3/4T = 184*F 2500 rig % ,,3 i4 i

i
i g

..i i. I i f ! Ij i i 'I i_ i a 1 i, i i ! I t i i ./ ! ./ ! ii! !li; I LEAKTESTLlHIT'l! I j/!/~!ili 2250 i i j

jg,g i j i

i

  • 8 I f1 I I !

I i I! 'I !f i i I i 4 11 / l .f i i, '4 Ii / 11-s i i 2000 l ll, i _i / l / ! l !? i ii i . 3,1 i i i i i e i r UNACCEPTABLE if i i I i i -i i / i I i i i i! 1 1750 l;l! OPERATION j '/ ,, /; i i i

i !.

if i/ ACCEPTABLE r i ! i

i. i i r

i i ii1r' ' OPERATION i i i ei i / ^ o I500 i ' i i i i i t i i 1 i /!!1 ! i m j t ' t I I i 4 l / / i i a i i tii t / r i i i i i i i/ / i w 1250 HEATUP RATFS

  • v i

5 UP TO / l i 60*F/HR ~ 1 i w / i E 1000 l / l i o W 1 4 /i i ?> i.4 e i 750 ) / i CRITICALITY LIMIT E l /

e BASED ON INSERVICE.

~ HYDROSTATIC TEST e i 500 l / TEMPERATURE (377'F) i FOR THE SERVICE i PERIOD UP TO 25 EFPY. t 250 l l ,i i i O 0-50 100 150 200 250 300 350 400 450 500' lNDICATED_TEWPERATURE:(DEG.F) Figure 13. Reactor Coolant System Heatup Limitations.(Heatup. rates up to 60*F/hr) Applicable to Zion Units 1-and 2 for the First-25'EFPY (With Margins of 10*F and 60 psig For Instrumentation Errors) P __,___L.. .._._..,_-.c

MATERIAL PROPERTY BASIS CONTROLLING MATERIAL: CIRCUMFERENTIAL WELD WF-70 INITIAL RTNOT: 18'I ART AT 25 EFPY: 1/4T 232*F 3/4T 184*F 25cc, m, m 1 ; , ;3 i ,ii i 1; e i i I j* j 1 I i ) i ,il i6 i *' 3 l i! ifl l7 I il I 2 ! i !! i li

  • .'ti
  • o t

L I !' LEAX TEST LIMIT !' i /, llj!'! l l' ' I 2250t i l l

i'i -
i

!i i ! i i ri

!/

i i ,L;_ >i o i, s ir it i '1 t ? I 4 1 I Li 'l l 2000 -! l !l !ll l' ) l i ,i i i i ii_ 1 1 i i i il 1 i I i i i i i f f i i' ' UNACCEPTABLE 1750 'l i l ' OPERATION ~ j' l/' ,l l i i 1, i i 4 4 i i i i r r i i 4 l', !l l ll l l i / /, ACCEPTABLE i ,500 o / v! OPERATION i i i i i i r 1 A ! ! t ! i I ,i / /8 i %s' i a i e i i i e f / g 1250 l l ll i HEATUP RATES / / l 8 i UP TO / / O 100*F/HR / / l E 1000 i / l o !i i i w f ! i / I , i r 5 750 i i, i E / l CRITICALITY LIMIT i 5 i BASED ON IN3ERVICE / i l / HYDROSTATIC TEST 500 f' i TEMPERATURE (377'F) i FOR THE SERVICE f PERIOD UP TO 25 EFPY 250 l l i f l f 0 i O 50 100 150 200 250 300 350 400 450 500 lNDICATED TEWPERATURE (DEC.F) Figure 14. Reactor Coolant System Heatup Limitations (Heatup rates up to 100*F/hr) Applicable to Zion Units 1 and 2 for the First 25 .EFPY (With Margins of 10*F and 60 psig For Instrumentation i Errors)._.

MATERIAL PROPERTY BASIS CONTROLLING MATERIAL: CIRCUMFERENTIAL WELD WF-70 INITIAL RTNOT: 18'F ART AT 32 EFPY: 1/4T 243*F 3/4T 194*F a 25co m y,w , i j, , i i,

; ; i i
1.,,,,,

, i.i ,,, i i !, ,,/, i, 4 ~i i4 ii i i i ! i ! ii ! . i! ! if i i s /t i ,, i D i ji j!i i i f i ~ i i i 1 2250 i H i [l l l [- 4 LEAK TEST LIMIT-l/ li/ { l /' l l ! _i i / ( i j /i ; i i ~ ! I _[ j i t f ! I ' ! l !/ ! !/! i il i I i i i i +. ! ! e i s, i i Il ! '/' t !/ + i I i! I i I .. i 5 iI ! I 5 i ! t / i f I i L '000 ! i d +ii t i ! i___.! l . 4. i ! i ! l l ! /e I ii i ! l g! r a i i i !/ i ! ii i f f r t ,l e , i i ii i 3 73c %, 'i ,i ..r / Y ! ! i 1 ~ /

_ UNACCEPTABLE:

l I, /, t- ,4 i. / i OPERATION i f/ : ' i i i < ' i !!ll l. I i l! !'! l/~ './ - ACCEPTABLE ir!, i ^ 3 0 1500 i I OPERATION V / i j i ' I I I i 1 i t t i j l./ I l g t ( i i t t i ! ! / e A f

  • ?

i I i t i i 1 i i/ i I 6 i / i ; i i i i ' I i l 1 { 6 6 i !!l! w 1250 / !/ I I HEATUP RATES l' V i ! l

UP TO 4

/

l,

_20'F/HR E w 1 i i E 1000 l l'l l f / i!. i ' L O l ! ' i i W .4 / i i i ,/ e 1 1 i 1 i !I u 750 . i.' i i o i i i ii E i i t i e CRITICALITY LIMIT 500 l lll l BASED ON INSERVICE HYOROSTATIC TEST i !ii i ' TEMPERATURE (389'F) FOR THE SERVICE 250 l PERIOD UP TO 32 EFPY 0 p I t 0 50 100 150 200 250 300 350 400 450 500 INDICATED TEWPERATURE (DEG.F) Figure 15. Reactor Coolant System Heatup Limitations (Heatup rates up to 20'F/hr) Applicable to Zion Units 1 and 2 for the First 32 EFPY (W,ith Margins of 10'F and 60 psig For Instrumentation Errors),__.

MATERIAL PROPERTY BASIS CONTROLLING MATERIAL: CIRCUMFERENTIAL WELD WF-70 INITIAL RTNDT: 18'F ART AT 32 EFPY: 1/4T 243*F = 3/4T 194*F = 2500 3 ; gwp i, 3 i,, i ! i i i ii 1 I i I i i !/ i !I i i A !f !i!. i j t i t i iii i il i ! ll j /! i Il 4 ! t i i ' ? ! 1 / i f ! t /!,i+ I t ' 2250 - W l I LEAK TEST LlHli ~i / ! il I' i ' ' t 8 i .1 _ 4 i ! 'l!/ lI / ll! l 7 i ! ! 1 1 1 It t t/ I l 5 ' _,l, i t I i ili i ' il _

  • i i 2000 i

llj,l ll, ,,4 i 4 i is ,it i , 4 ii 3 Ii i f I l

  • i
  • i il i/

i ~ 1750 lll ll! l,! OPERATION i

/

i l/ UNACCEPTABLE-- I i i ai

i i!

.f f ACCEPTABLE i, i i - i i i i i a i ii OPERATION . i i ! i i w 1250 UP TO f.5 / i40*F/HR / i + Q / i i!! f b } iT E 1000 / 'll ow i / i 1 7 i 2 750 o 5 ?. i 1.i i e CRITICALITY LIMIT "*00 BASED ON INSERVICE HYDROSTATIC TEST !i TEMPERATURE (389'F) FOR THE SERVICE 250 PERIOD UP TO 32 EFPY i

iii, i

i ,ii, 8 3 t t i i O O 50 100 150 200 250 300 350 400 450 500 INDICATED TEMPERATURE.(DEC,?). Figure 16. Reactor Coolant System Heatup Limitations (Heatup rates up to 40*F/hr) Applicable to Zion Units 1 and 2 for the First 32 EFPY (With Margins of 10*F and 60 psig For Instrumentation Errors) '

EATERIAL PROPERTY BASIS CONTROLLING MATERIAL: CIRCUMFERENTIAL WELD WF-70 INITIAL RTNDT: 18'F ART AT 32 EFPY: 1/4T - 243*F 3/4T 194*F 2500 r ;.ym

;, c i
i,

i;, i i, 3 , ) i i ' il i i i iii l ! ! /! ! + 4 ! ! I r i ___ __ i ! i i i I i i i 4 e i _i l 'I i : i i: i i i f I { i i i i ~ 4 LEAK TEST LIMIT'ii ,V i i i/ i i / if i f ii 4 ll .' [ / / ll ~ t-i i i ; i i 4 i ! i i r

/

1 i i- ! i' I I I. f_ f fi i !/ i i 3 i ' g n g, i i 1 / ! */ i i i _3 i i i i ) f i i 1/ I / 'l i+ i i i i i +t i ! I J U + i. i i i i i i n i ii i i I UNACCEPTABLE i i l' .I 1750 l l l l l l,; l OPERATION l / l. !/, l,l i 4 +i i <' i - / i I/' i i i i ii i i i i i/ ACCEPTABLE i i i I i A i r' ' ' ^ OPERATION 15C0 e i . + i i i i i i.P r i g i i ! i

  • i i

i i i i it 4 i r' / A 8 ' 'ii i f I l d i! i 8 ! f f I i 1 i 1250 i i HEATUP RATES T e i

i if

/ 5 UP TO

;,i

/ g i i 60'F/HR i i j ic w i i / i 1000 l l / l l i i c W i i i i / 3 i, 750

H'Y~

e f i ! i ./ ! i ,00 CRITICAllTY llHIT e i BASED ON INSERVICE HYDROSTATIC TEST TEMPERATURE (389'F) 1 250 l l l FOR THE SERVICE PERIOD UP TO 32 EFPY i 1 i i f i 0' i i i O 50 100 150 200 250 300 350 400 450 500 INDICATED TEWPERATURE (DEG.F) Figure 17. Reactor Coolant System Heatup Limitations (Heatup rates up to 60*F/hr) Applicable to Zion Units 1 and 2 for the First 32 EFPY (With Margins of 10*F and 60 psig For Instrumentation irrors) MATERIAL PROPERTY BASIS CONTROLLING MATERIAL: CIRCUMFERENTIAL WELD WF-70 IN!TIAL RTNDT: 18'I ART AT 32 EFPY: 1/4T = 243*F 3/4T = 194*F 2500 7 py,m, 3 ij; i,,, i ; i i i; i i.ii i f i 1, 1 i .i! ! ! i I ii f i 'ii e I i ii !/ ! f i i il,,!, ii ! ' i I l 1 i! i t i i Il!, '.j(/j i_ j !j i! i i, i, i i i.. /i i, 1 M

i i

!i lI i i i LEAK TEST LlHIT ii ! J iy ~, y4 vii '*O i i i ;i I i/ 4

i Ii i 4 iii I

I 1 I! t l i il 'IT~ Ii iI6 4 1 ' ii r 1 ! t +i I _ I i > 11 i, ' L'l - ~, ' - -, 4 ii e it i i 4 i i i i f I i i/ii i, iih li h J Ai1 .e000 i ',f 1 i ,i, ,. i i,1 i 1 , i i ,,iii T .~ i, , ii i i i ! iii i i ! l l iiilil i ! Il / ! i

  • i l
UNACCEPTABLE-
i zl!

l! l / !! l' 4 1750 i,i; ,,,i i - - 4 OPERATION i i if i i ! i y i i i, > i i ! zi' it i + il l l l l l ll ll l / l / ACCEPTABLE i o 1500 h'! !. if OPERATION ^ i/ +/ i i if G i! i i i ! ! i i i i*! ii i i i ii l i ei i/ '/ A i i l i e ~ ll'l i !' .HEATUP RATES l '/ / lj i g 1250 ii i i UP T0 i / /- i i S ll l l'l

100'F/HR

/ /' l,', U i y i i i i i! / / i i i4 E 1000 l lll /! l l l t- / e i i i / ii w i i 4 4 / i i. ii I i / i i i L> 750 ,/ l, o i z y I i ! i ! f. CRITICAllTY LlHIT 500 j / BASED ON INSERVICE ii / HYDROSTATIC TEST l ./ ~" TEMPERATURE (389'F) ,5 i FOR THE SERVICE "0 l l j, PERIOD UP TO 32 EFPY i t I I I i I i i i 0 50 100 150 200 250 300 350 400 450 500 INDICATED TEWPERATURE (DEG.F) Figure 18. Reactor Coolant System Heatup Limitations (Heatup rates up to 100*F/hr) Applicable to Zion Units 1 and 2 for the First 32 EFPY (With Margins of 10*F and 60 psig For Instrumentation Errors) t t

=-._. _ - i i 1 MATERIAL PROPERTY BASIS 4 4 CONTROLLING MATERIAL: CIRCUMFERENTIAL WELD WF-70 i INITIAL RTNOT: 18'F ART AT 14 EFPY: 1/4T 206*F = i 3/4T 161*F i i 2500-7,ga n l ,i, , i, i , i i i i i i ,i,3 i i. 3, i ! i + ! l ! i !I f I i iI i 4 5 ! is i t i! !i i i i ! i i !. ! i e i i i. i i i if i i ! i i ! !! i I f i i 8 ! ! I iI i If f i I i I } i i } i i ! s 4 i i i '.250 1 6 i l t ! f 4 i i i i i i i i I i i I i ,, 1 i ! i I t i ~.] i I i e ! I l I# # f

  • I 8

i i ) 2000 l l l' !j l ,' { / l l 1 l' i 8 i I ' f 4

i i

i 11 4 j i ii.i i UNACCEPTABLE i

i -

i + i i i ! i i i i 1750 OPERATION . /' '.I 1 i e i ii i iii i i i 8 i (__ I i i i ' i +i1 ! i i i ! i i i i iii i I ! I i! s 6 l f I i ) i, e o ' 5 C ^- 4, i ',! ^ i ' i' } i i ? ' > i t i i !,' i * ! i i '1 [t !i g, 4 ! i ; i i i i i + 8 ii. i /. i i< i a ! i ii i i e i ( f i y 1250 l !j i ii i i i [ j 'jj; 3 i l' i E ACCEPTABLE lli; a. 1000 i OPERATION ii,. b ,7 O i i w Y b b 4 E i i i r u 750 ll $g

j_

e i m 3 z 4 i my i m. .COOLDOWN RATEL i w/ 500 'F/HR- "w"

  • lIi t i i

i o / i 0 i i ! ! m- --o gn + sv 14, _.-r-- 40 ,50 j i f -~ 60' 1 i -- 100 l L-ie i j_ l i i 0 i 1 0 50 100 150 200 250 300 350 400 450 500-I i i INDICATED TEMPERATURE-(CEG.F)~ Figure 19. Reactor Coolant System Cooldown Limitations (Cooldown rates up to 100'F/hr) Applicable to Zion Units 1 and 2 for the First 14 i EFPY (With Margins of 10'F and 60 psig For Instrumentation Errors) e ~ ._...~.,m_

MATERIAL PROPERTY lLAILS CONTROLLING MATERIAL: CIRCUMFERENTIAL WELD WF-70 INITIAL RTNDT: 18'F ART AT 20 EFPY: 1/4T 222'F 3/4T - 175'F 2500 gym i ; i I i, i 1, i i ! t i i f _I i i l i i i i ! ! ! i i i I i ! i { 5 s > t ! i om _COOLDOWN RATES i ! i own ii ! 500 .*F/HR s"w 3 i e e i. 0.1 e i m-e / i ! 4 20 ' "-Y 4-- 40 v i 6 '5"0 s i i 60 i + 100 l l ' [! i 0 O 50 100 150 200 250 300 350 400 450 500 INDICATED--TEWPERATURE (DEG,F) Figure 20. Reactor Coolant System Cooldown Limitations (Cooldown rates up to 100*F/hr) Applicable to Zion Units 1 and 2 for the First 20 EFPY (With Margins of 10*F and 60 psig For Instrumentation Errors).

-~ 4 MATERtAL PROPERTY BASH CONTROLLING MATERIAL: CIRCUMFERENTIAL WELD WF-70 INITIAL RTNDT: 18'F j ART AT 25 EFPY: 1/4T 232*F 3/4T-184*F = i 2500 7,o m g i i 1 j 1 i i i f i i i i i i i i i i i i ! I Jl i i i i j i i4 e . e i i t i e i , i ,4 , i s s t 6 i i i i i i 6 i i A i l if i !I i i i ! ! i ' "-- O I i i! ii i i 4 i i i i i i iil I' i I i i 4 i ., i, ! i , t 4 ij r i, 1 ii i , i !I e i i i i i if; ii! i 4000 1 i i e i iii i i 1 >d i i if i i i

i 1

,I ,i i f i,,i i i i i,; i i 4 ,i iiti i i, i i e if i is,i si'! UNACCEPTABL" !I f ! 1750

ll ll, lll OPEPATION l

/, il ll, i,, i i s iyi i + i 1 i 1 i ii! i i! i i i i! / i ii .i i. 4 i ii i i,i i i! i i t i 1 -- i m ,,i, i.i s o 1500 e i i,i i i i j

j

.i ,i ,,i, , i ,,j i, f 1 i i iii ,! i i ! i4 i i f i i ,,,i i a. ,-,ii i ei 4,ii i, j e i; i ,,i i i i,i, v i ii, i i i i if .i , i i i w 1250 l 5 / ACCEPTABLE b ' ' ' 1-. E t i / OPERATION E y i ii = ! i E 1000 l' ,' ll' l / t ,'/ l l o i i i LJ f I i ! I i i i Fi i i i ii 2 0-E'. 750 ,' 4 . i d 1 om O iil l l l 5

C00LDOWN RATES "n7 fj% (

i i i m

  • F/HR i

,.,0 0, wm i 0 i ' ' ' s""w A* ^ i i i,' i.' 20 / i y g w y f E ~1 6t> m @ W--p"'- -[ l 100 T D P"P , i ! ;i t-T,. i 4 ii i , i, i

. ri Ob1 i

I D, ',C ' 'I i 50 100 150-200 250 -300 350 4 ')0 - - 450 500 i 1. INDICATED TEWPERATURE'(DEG.F) Figure 21. Reactor Coolant System Cooldown Limitations (Cooldown-rates up to 100*F/hr) Applicable to Zion Units 1 and 2-for the First 25 EFPY (Witt Margins of 10*F and 60 psig For instrumentation- -Errors) 4,. ---na c , v a e-a,,,,n-. -a,s-~.--- n---..,o

MATERIAL PROPERTY BASIS CONTROLLING l%TERIAL: CIRCUMFERENTIAL WELD WF-70 INITIAL RTNDT 18'I ART AT 32 EFPY: 1/4T - 243*F 3/4T 194*F 2500r, g n i . i 4 i i iii i! i-, i ii i i ! 4 4 -,iii,ii3 4 i ! t i 4

  • * *i iI e

i i ! i i i ! ,,i, t i i i i i i i i f i iii i ,i t i i t : i - iieff i. i i i 1 '**0 4 I i t i l 1 i I j ! Il i 1 ! I i 'h ' i ' ' t ! I t i i i i i i i 1 i i 1i i i ! j a i , i i i i j i i i i, i 4 6 i i I ! 1 ii i i i 6 i l i ' I i, 4 ! If f, 2000 i i i 8 1 i 4 ) !i' i t i ' i i e i! i i e i,

  1. 1 it ! !, ! i i

,i i 4 1 I.' t l If Il l l lt i 4 , y, i,, ,, 1 ; i ii i , i diI ! ! ! j t i i 1750 1 - i UNACCEPTABLE if, i i J i i, i . i OPERATION i +ii i ; i i, ~, i

1. U i

i i i s T ~~ a i i d i i ! [ _I {! I l ' I l f'II 1_, i, i i i i f f j !/' i j ! } } l 1 i i i i if i,,,, i i Ii i,} g.$g t i i i i i i i lii i i !, t i t / !. I i i 4 i . 1 4 i i i i i,i i i, ,6 i, m i ' i 8 3 ' ' i i! i i ) ) i 4 ii l i i / i i i

  • I i f i

i i i / l # i j l i i e . 'fi 3 ' I i i ) f. i e w 1250 iii t i a i i iii i t i /t i! y l lli! i 4, - ii ACCEPTABLE ~

/

l OPERATION ~ y f t 8 E 1000 l 'lll 1/i i i

ie i

/ j ll'H o ! !ii W '4 + r i i g i ii 4 i i i - , i i a 7=* i, i i i i ! a i I /* i i' ) gyr'. i ; i> ~ (C00LDOWNRATES ff lll t /M/ t t ji ,*F/HR 500 /ww - M' 0- 's/^e , i ii .sAr y, 1 1 _.,___, 2 0 - f i f 40 W / i i ;i 250 60 i ,i i_ j, j ll 100 h. i i t 0 i ei O 50 100 150 200 250 300 350 400 450 500 i IN0iCATED TEWPERATURE (DEG.F) Figure 22. Reactor Coolant System Cooldown Limitations (Cooldown rates up to 100*F/hr) Applicable to Zion Units 1 and 2 for the First 32 EFPY (With Margins of 10*F and 60 psig For Instrumentation Errors) p

8. REFERENCES 1. Regulatory Guide 1.99, Revision 2 " Radiation Embrittlement of Reactor Vessel Materials", U.S. Nuclear Regulatory Comission, May,1988. 2. Code of Federal Regulations, 20CFR50, Appendix G, " fracture Toughness Requirements", U.S. Nuclear Regualtory Comission, Washington, D.C., Federal Register, Vol. 48 No. 104, May 27, 1983. 3. Comonwealth Edison Letter, " Materials Data for Use in Developing Revised Zion Units 1 and 2 Reactor Pressure Vessel Heatup and Cooldown Limit Curves", by Thomas D. Spry, et al., dated May 21, 1992. 4. " Fracture Toughness Requirements", Branch Technical Position MTEB 5-2, Chapter 5.3.2 in Standard Review Plan for the Review of Safety Analysis Reports for Nuclear Power Plants, LWR Editle., NUREG-0800, 1981. 5. ASME Boiler and Pressure Vessel Code, Section III, Division 1 - 2 Appendixes, " Rules for Construction of Nuclear Power Plant Components, Appendix G, Protection Against Nonductile Failure", pp. 558-563, 1986 4 Edition, American Society of Mechanical Engineers, New York, 1986. 6. WCAP-10962, Ravision E, " Zion Units 1 and 2 Reactor Vessel Fluence and RTPTS Evaluations", J.M. Chicots, et al., December 1990. 7. WCAP-11247, "Heatup cud Cooldown Limit Curves for the Comonwealth Edison Company Zion Units 1 and 2 Reactor Vessel", H. Gong, et al., August 1986. -

h APPENDIX A DATA POINTS FOR HEATUP AND C00LDOWN CURVES (With Margins of 10*F and 60 psig for Instrumentation Errors) 4 1 5

CWE-COM 20 DEG-F/HR HEATUP RL'G,Gu!DE 1.99.REV.2 WITH MARGIN 05/15/92 THE FOLLOWING DATA WERE CALCutATEDFOR THE INSERVICE HynROSTATIC LEAK TESI MINIMUM INSERVICE LEAK IEST TEMPERATURE ( 14.000 fFPf) PRES $URE (PSI) TEMPERATURE (DEG.F ) 2000 332 2485 352 PRE 55UPE PRESSURE $7RE$$ 1 5 K1M (PSI 3 (PSI) (PSI SO RI.IN.) y, 2000 22234 92837 w 2485 27468 115765 E m.

.m.. m._.,, I -CWE.-CON 20DkG-F/HRHEATUPREG. GUIDE1,99.REV.2 WITH MARGIN 05/15/92 COMPOSITE CURVE PLOTTED TOR HEAIUP PROFILE 2 HE ATUP RAIE(5) (OE G. f /NR ) 20.0 = -IRRADIATION PERIOD

  • 14'000 EFP YEAR $

FLAW DEPTH,= (t-AOWIN)T INDICATED INDIC AT E D ' ' INDICATED INDICATED INOICATED INDICATED TEMPERATURE-PRESSURE ' TEMPERATURE PRESSURE L IE MPE RA TURE 'PRESSUGE .(DEG.F) .(PSI)' (DEG.F)' (PSI) - (OEG F ) (PSI) 1 85.000 424.28 21 185,000 526.04-41 285.000 958.00 2 90.000! 426.64 22 190.000 .536,06-42 290.000 1000.16 3 95.000 426.80 23 195.000.' 546 84 43 .295.000 1045.48 4-100.000 '427.42 -24 200.000 558.42 44 300 000 1094;17 5 105.000 430.74. 25 205.000' '570.73 45 305.000 t144.94 6-110.000-434.76 24 210.000 584.12 46 310.000: 1897.11 7 115.000. '439.86 27 215.000 598.51 .47' 385.000 8253.04 8 120.000-444.88 28 220 000 613.95' 48 320.000 ,1313.00 t - 9 125.000-448.79 29 225.000-630.45 49 ~325 000 1377 25 30 130.000 453.00 30 ' 230.000 648.34 50 330.000 1446.26 . 31 -235.000 667.-38 51 335.000 1520.18 31 835.000 -457.58-12. -140.000,- 462.37 32' 240.000 688.04 52 340.000 1599.38 13 145.000 ~467.59 33 245.000 710.20 53 345.000 1684.26 1 14 150.000 .473.21 34 250.000-733.93-54' .350.000 1775.04 i 15 155.000 479.14 '35 255.000 759.37 55 .355.000 1872 25 16 160.000 485.63 36 260.000-786.97 56 360 000 1975.97 4 17. tCS.000 492.60 .37

265.000' 816.37 57

,365 000 2087s26 .18 170.000 500.I1 38

270.0001 848.15-58 370.000 2205.69 19 175.000-

,508,17-39 275.000 882.21 59" 375.000 2332 66 '20 180.000 516.84-40 280.000: S18.76, 60 380.000 2467.81 4 tu ~ 1 4 k .g 9 - ? I i-i T 1 n em vw. ~ o m w

.m_ m -_ .._m. .._-..,.m. ._mm.._.- a _._... _.... _,..,._.._... u.._ CTE-COM 40 DEG-F/ttR HEATUP. REG. GUIDE 1.09.REV.2 CITH MARGIN 05/t5/92 COMPOSITE'. CURVE' PLOTTED'FOR HEATUP PROFILE 2 HE ATUP RATE (S ) ( DE G. F /HR ) 40.0 = IRRADIATION PERIOD.= 1.14.000 EFP YEARS ~( FLAW DEPTH + (1-AOWIN)T. INDICAiED INDICATED INDICATED INDICATED INDICATED INDICATED TEMPERATURE-. PRESSURE -TEMPERATURE PRESSURE T E MPE R.t iURE PRESSURE (DEG.F)J (PSI) (DEG.F ) (PSI) (DEG.F) (PSI) 1 '85.000 't29-"tS'

.28

'185.000 513.23 41 285.000 958.00 2 90.000-M .22 -190.000 527.05 42. 290,000 -1000.16 i 3 95.000

  • t9-9?

23. . 200.000' C58.24 44. 300.000 1094.17 195.000 542.08 43 295.000 1045.48 l' 5 105.000" 6%/M 25 4 130.000-486-444 -24 205.000 570.73 45 305,000 t146.49 i 6 110.000 404.78 -26 210.000 584,92 46- '310.000' 1995.44 7-115.000 '405.83 . 27 215.000 598.51 47 3t5.000 .1247.45 8 120.000-- 408.07 28 220.000 9 125.000 di1.49 29-225.000' ' 613.95 48 320.000 1303.25 630,45 49 325.000 1363,08 ,.to' 130.000, 415 74-30 230.000 648.34 Ss 330.000' s427.t1 t t.. 135.000 420.99 31 235.000 667.38 51-335 000 1495.74 '12 - 140.000 426.76' 32 . 240.000 688.04- . 52

340.000 1569.33 4

13 145.000- .433.31' 33 ' 245.000, , 710.20' 53 345.000 1647.88 14 150.000 -440.60' 34-250.000 733.93 54: 350.000 '448.67; 35 . 255.000- - 759.37 55 355 000. 1732 50 15 - 155.000 s 1822 69 t 16> 160.000~ 457.40 "36u 260.000 786;97 56 360 000 .1919.40 17 165.000- '466.94 .37 18 '170.000 477,t1-l38 . 265.000 E16,37 57 365:000 2022;33 270.000' 848,15 .58 370.000 -2132.79 '19 ' 175.000 488.27 39 .280.000 918.76 .59, 375.000 2250.61 275.000 892.28 20. 180.000 500.26

. 40 GO 330,000 2376.31

. 3:e LJ 4 k' b w 9 g .) y V t- --m - 'uv

7 ._...m ---m. ...... m r ir ~CWE-CD84 60 DEG-F/HR HEATUP REG. GUIDE-f.99 REV.2 WITH 9tARGIN 05/15/92 cot 4POSITE-CURVE PLOTTED FOR HEATUP PROFILE 2 HEATUP RATEis) (DEG F/NRi 60 0 <r IRRADIATION PERIDO =- 84,000 EFP YEARS-FLAW DEP!H =..(t-AOWIN)T + INO!CATED - INDICATED-. TE84PERATURE PRESSURE' . INOICATED ItOICATED INDICATED INOICATED ' T E 84PE R A T URE PRESSURE ' T E 84PE R A IURE PRE S5t#R E (DEG.F ) ;

(PSI)-

- (DEG.F ) (PSI)

10E G. F )

(PSI) 1-85.000 494-9a 22 .190.000 467.25 42 .290.000 1000_16 2 90.000 eftt-98 29 l195.000 479.68 '43 '295.000 1045.48 3- '95.000-M -. 24 '200.000 493.23 44 300.000 1094.17 4-100.000 399-901 g,A 25 '205.000 507.89 45 305.000 t146.49 5 ?105.000 999-96 26 210.000 523.56 46 310.000' t197.19 6 110.000 300-04 . 27 215.000 540.62 47 315.000 1245 68 7 115.000 999-ts, 28 220.000 558.98. 48 320.000 1297.61 8 120.000 383.66-29 -225.000 578.63 49 325,000 13'53.27 9 125.000 '383,65 30 230.000 599.98 50 330 000 ~ 8 412. 984 t to 130.000. 384.72 . 3 2 '. 240.000. 647,31 . 5t' 335.000 1476 82 31 235.000 622.67 11 135.000 386.94-52-340.000 1545.37 12 140.000~ 390.04-33 24S.000 673.63 '.53 345 000 1698.64 . 13 145.000' "394.11 34 250.000 702.10 54 350.000 1696.89 14 150.000 -398.96 35 -255.000 732.54~ 355 000 1781.08-15 -155.000 -404.67 36 260.000' 765.21 360.000-1870.83 16 160.000 419.'13 37: 265.000 800.51 - 57 365.000 1966.79 17 165.000 .418.43 38 270.000 838.29 58 370.000' 2069 26 ' 98 170.000 '426.50 39 275.000 878.85 59 375.000 : 2178.93 19 - 175.000 ~435.33 40 280.000' 918.76 60 ' .-380.000 2295.93 . 20. -180.000 -445.06 ' 41 285.000-- 958.00: Et-385.000-2420.60 . 21 185.000 '455.71-a Mi s i I. }l' s -8 4 ,r-- y 4 + .c ~ - = r re+m

_1,_, .-y. _m_.. .. _....~... _ _ -. ..m. ~, _ m._ .. ~._. I' Ct'E-COM. tOO DEG-f /HR HE AIUP EEG. GUIDE ' t.99.REV 2 *JITH MMGIN 05/t5/92 COMPOSITE-CURVE PE0ffED FOR HEATUP PROFILE.2 HEATUP RATE (5) (DEC F/Han = 100 O IRRADIAslON PER OO = 14.000 EfP YEARS, ft.AW DEPfH =-(t-AO'ilNil INDICATED-INDICATED INDICAIED INDICATED INDICAIED INDICATED TEMPERAIURE PRESSURE - TEMPERATURE ' PRESSURE T E MPE R A TURE PRESSURE (DEG.F ).. (PSI); . (DEG.Fl' (PSI) (DEG F ) (PSI) 1 85.000:

  • f+-98 22

-190.000 372.96 43 295.000 805.37-2 90.000' 499-99 '23 195.000 380.57 44 300 000' 847.81 3 3' 95.000: Mee-06 24

200.000 3a9.14 45 305.000 893 36

'4 100.000' 999-06 25 .205.000 398.65-46 310.000 942.24 I 5' '805.000-383.24 26 210.000 409.13 47 315.000 994.5% 6 -t10.000 373.11-27: 215.000 420.64 48 320.000 ^ ti11 2S 1050.84 7 115.000 ' 364.78 - 28. '220.000 433.12 49 325.000 8 120.000 357.84 .29 l225,000 446.82 50 330 000 1175.91 + 9. 125.000' 352.38 30 230.000 461.71 53 335.000 1245.ts 10 130.000 348.1 - 31- -235.000-477.77-52-340 000 1319.40 <ti 135.000 345.07 32 240.000 495_26 53 345 000 1398.79 -- i 12 140.000 343.06 33' .245.000-514.19 54 350.000 1483.86 13 145.000 342416. 34' 250.000' 534.51 55 355.000 1574.79 14 150.000 342.12 35 255.000 556.58 56 360.000 -1672.04 15 - 155.000 343,03 .36-260.000 580.23 57 365 000 1776.03 16' 160.000 344.72 37 '265.000. 605.87' 58 370 000 IB86;e8 17 165.000 : 347:35'- '270.000 633;3t 59 '375 000 2005.42 .' 3 8 - 18 170.000 350.80 39l 275 ")OO 662.99-60 380.000 -2138.77 19 175.000 "355.09-40 - '280.000 694.82 61 385,000 2266.15 20 180.000. 360.20^ 241 '205.000- ~729.00 62 390.000 2388.95 2: 185.000 .366.16 42 290.000' 765.73 r m } ' t e ,.a 2 h

CWE-COM HEATUP CURVES REG. GUIDE t.99.REV.2 WiiH MARGIN 05/15/92 THE FOLLOWING DATA WERE CALCULATEDFOR THE INSERVICE HvDROSIATIL LEAK TEST. MINIMUM INSERVICE LEAK TEST TEMPERATURE ( 20 000 E F PV ) PRE SSL'1E (PSI) TE MPE R A TURE (DEG.F) 2000 341 2485 367 PRES 5URE-PRESSURE STRESS 1.5 K1M (PSI) (PSI) (PSI SQ RI.IN ) 2000 22134 92837 N 2485 2746S 195765 t I;

.n.. . ~ ~ 1^ J i i .t 4 J 4 2 5 t - i. j a N i m. N a NO O 4 ^ 3 ww OmeNNNmemecNMcMm@*Ne* f

  • 3*
  • 5Mm4MNm@@Me5NWMm@Nm@

< 3== @ c n N = N'w o @ M n e w m e @ m O e 'r m u+e =e4 =- e m w

  • mw05eamm@@@4ANe

$$~ ***bgC DCC=NNISIONNNE O 4 6 ~" N w Om a unc

== w w @O40eOcomOmococod, o a g hgo m O*-NNMmwwcc@@mmee m a-NMMMMMMMMMMMMMMMMMMMM ~~

  • C

~ M, w c, W > e, m, S e= c e e c o c c o @ @= @N M NMwcWhemO a 4 a + t 0 a ww-NWNOM5MM-mmvom@O W M.e.o.N.N. O. M N.O.m.M.m.e.m @ e M - O O + -a* . O. w. >. w. M. 4 ga 2 3 uem m@ce@60MNMm>@@emmevWO =e4 0 - N M =r e rm e m - N $" w - o c o c c c c e c @ @ @T @ e O M m e

  • w e.

O 4 @ @ e ore m e e m a w 2 Z -4 I h' .cy 'k N 3 N unc-w .- w w '.0 c cocomOcodoeO(Ocon4-c4c - a em 0--NNMmevcMWemkaem i w = ZI-

  • N N N N N N N N N N # d N N N N.N N N N -

s 2 s

w O

0 .e a a s, 14 4 < w 14 ~ > 3 N M g @ @ P= e m Q u= N M T M @ b e m O w N - W

== 4. ' N N N N N N N N M M M M M M f") M M M 9 4 4 i Q '4 w-Z ~I R. .T m .a 6. .m-- tw 10' ww MMWOvkme>@@comO@~m- = a ~.--. - =..

e..

.. N.. W. - N. M. e. W. N. N. W.. .-Nw ag g. '2- . vee. ce=mOcOTeNbNMNe@Nm .M = w. w-e== =e4

  • =NNMMwv9mcWWWmemm Q

3 Qw-4 TW994TTv4TTTT994vv- .4 00 - Z 3.- -3 4-Q4

== 4 - y. e 4 .w'a* - 4 - 3 ww w-m a.4-ce- -w - 7 y a O.- + + *

  • -+-

+ + - -- >= 4 -ww m e cOcococo g -;; - g 3te = gage::cccc::moconomOc ceesttee t .- O - oo =w e - 43 =. I~. . 40 '1%4 id - - M. g.J ' y y l ~ h e, ,an A7' t ,~o. s

~, 4 k i i J A 'k 1. + G I e i I j..

r N

l' m a %c N co O Om m NNm e e r wm em w c w w wW me-ww - a ~. 8 8 8 m w e m. >. N r. m. e m. m. N = - m. e. e. W - go. veo e c r-N - m N w o m m e-w e e r m e c N m ~ea.-emsewswocNewwN--~Nww sw. m e m o o..*..N m m..er w e u s. e. m O - N m 2 tu .ee ..NNNN d ~ a 9 W 1 .Qu j vao b becobococ boc c c b. ~ww ~ +1 e O--NNmm*w ower-mem m 2 3.s 2 m nommmmmmmmmmmmmmmmmme l E w o 3

o m w c e 8 e m O - N m v c W o e m 0 - N m -1 w

wwwwwwweocccccccceaww ( e b ~ w c-i n ww O c - m e e. n e- - m m w o m e o m m - C O =- m a

e.==. v. o. m. m. o. m. >. O. o m. m. e. m e. 0.,. 8. e.. n.

g . 3., 2 3 vee O m w o o m o n e O m e-w w e n e e w w o -ea m O - m ar c r-e m - N w w e c m c e

  • w e -

0 4 ow -wecocococewwwwer>mmee a w 4

2. m

. o. i 3 g' I w Om h" N a N -vac ? - ' w -ww o cocOcocom cocococo -A w . a o s.o - m 0--NNmmew cowemeem 2X =

    • NNNNNNNNNNNNNNNNNNN g;

w

== w - c. -m. o. o,- 2 M-t' m' -a w . 4 .w

a. > - -

~ NeweenemO=NmwowmemO~N 1' 3-NNNNNNNNmmmMMMmfinneww ' w. n= : a j- 'o . w ? y.. 4.w.

== i' . :,' w : m ~, "D 9' 1 rr _ - $ f.. a w _ a. w JO ww- ' sism> N = - e v o c o c c o m m a m e- .- a. c Nw w g 3.; C. '-W. e.e N .- m a -i o.ve. en... 4* w w w e. O. s. m. ' i N m. . e _: >. - ~2-ee Wav .v. e s. - 0 9 m m m m m 0 0 O

  • ram *Nmve09e*OWm-mmem 4_

w -e-.- > - O _ 0 0.- ow .trewehnmenwwwww*Nmwwown 3 w w v v ar v e _m -.e L Z. cr - a .u -a ' o. g - . a - a. W 2- .a. >,.ww. w-m . a - c. -om-I - h i 1 w- ~ ua0: o

== w w e 2- - =.*<w.-. cao.e o coc cocom o-m. 0.. = o c o c o m N. N m m w w owwe e s. Q;

e
n. Q Z3w w==e.====*=

- e,r,=, u-

o.: c

=w W- -,: g2 e 1 Q(_ D-E =J u's U mm r 5" N m e c w h o m O *= N m v e m m e m O = 4 i -- ....enN-A8-M MMi MS i t. '(_ + c. .,., ' - - -,,.... - +, ... h r I,' .e.'.ue-#.u,.. .4 e ne -,,- %. w. A w om..w a-, iz 4'.- 4, -,, +

~ .w n ~ .n. - _, ~ IL 4 l l J ? }._ P i 'N t-5 Nc Ne Q. cww m e n n m,3 v e 5 e m o m c o m - m N N O

==3.* - F S m. T e. *. M. m, m, @

  • m. *. *". @. e. 9 4 M @ Q g3 vom e m n - m e m s O m m = 1 m o v o n== * =

== c 4. c Ci 4 @ w m g m @ O M w a m P'* W @ @ m e * "' g m a O O..= =m n m,w *t. c= @..@. m ao m O== n v - jww n= Q e e= *

  • n n n N -

= Q,, g W O2 c o c o c o c o c O c o c o c. c o -ww co aY q. c - 0--nNmenvoewwme ee mo u a-mmmmmmmenennennmmmmen- -{ 0. w C v,c,o,m,e,,e C = n m e c w b e m O'- n m e wo cccccccccowwwww. t .c 1 w = -4m - 3 WN-MOcWemenkwweOM-COO ww o

== a. - W e m c o.m.W,e m.o m O.n *.* M @ c.w.e.m. 43 + 2 b-

v. e m cem-coevnevemo OmmWOW

==

m c w c. vowem*rewomance v80we

c a w 2 Qt wwteveccoowesemmmesem- {' 4 - ~ C. ..I-w = cm N n vao.. w

== w w - cocococ com cocococco - t 's Q 4 1*c. MOO *=NN-nnnnannannnna@mmeemm M94 c@ w n n a n n n a -, g.. w =w -o + m- ' m & W m 4 4 Q.-$'_ ~ mwocham nannnnnRn*nnemannn*=nM,- N m v c w m e in O,, - 2 a i-w > ' w P ' m y 1 - Q-4- w. 8 w Q O.. E' 8 = 7 w - O 2, w ii - a =. = <>w o-Mw nec@m m m w w i m Q. N >= - 43 a n. W. m. o. m. W. O.m v w. v. a v. -- .w e L to 2.- Vem 14 CoatWOcocammwe-l- ': 'w- - e== .== W Q. q r->>>>eemmOO-nm D- .O - 3: Qww 'r L. ' m J OO . 2 Qt l ') M M M M M M M M M T T T v 4 i - 3 Q...Ca 4 .==Q. 't -v -. &= W i tlL ' D ww w-Qc ' Q. -. t -s om rs: 1 ;; si: s.al.al.l.aa.a.aa.a.a.aa.a.a.a..a.a.a.a L 8 l g- -.w 'yao

  • ( -w a.

.=ww e e cocococom cococOe ,3-

== gw O ch e W

o eg.. g 3.o.,. e e=.O.=..=..n.,n e n w ge = = = c.
e. m m. e e

...= - = = = .u.. OO '~w-g <3 7., a M4 C 2.J .. : Q,== en. N 6 w e W S e m O

  • n. m.v. c e. o e m O = n

,=. nnn A9 ,w...- e

v. erw.v.w*--

--t-n-y, v.=T v*'av-+w e -etf *5 -7 =*+'i -+w.5-r 4 4 %+ 1' eV* 4-o w w. - 4 - = +xv t--- W ! su-' .* E

(=-v'm*&

s m et e-t +t + re e "~ i e A tr

t ue 2 -seO ( - Sw 'e-unneennemocoe,$<-e-nwenowmum,menenn 033 WWWWWWW4ss6seimo nose -es --oooggnmen-omm8'ncis,m.- .k a$ ' -nome o. ~ -~~ DC NONIEkSN 8 w .Ca 23.sshadisaesissiessii,8,s xi = n n n e n n e n n e n n n n n. n n e n. g O w ceremo-nneeW6mmo-Nmwe Q TT9Tv@@40dOdC@@@@@@@W W Sw a-c e n - n n e., n m o w e n e m 8 u n, o m. .nen....enmen-~ ownwn 2 b N sE b b b'E u @ cow-em5sch-$bbbsnNNE -ra O 4 -n ese-no 9 nnnnnnTT94TNTO@@@monw8n Qww E

E

@@@MM I g -a3 N N gag t g E E889*R*RR2023882*SSRi8 - - ~ n n u n n n u n n n n n n n e n n.,., w 5m o enn e

1"h A 4 A N-MTOWhemO a nununenne-nnvewmemO,*nn,e W - L nnnnenens ..O U w* v g 8 ' 4. - d e g-ff3 = s 'bw ~,o ><w<- m q -a o n o-

  • - m a in D<h n ri-o i di W <e <

t w w -m e e mne. .E USG-s,i n r,- r hati WemNuomW 4 %.e$-M, w w w

dWeJ4eS,

- e.s <- ne nnnnnn*W Q' 3 - ein r w 4 9 4'i Mli'iti ti1115tili fi n n ti M f*J n n we B 48 -2 y . w_ 3 w a- >>w 3 a 4 ou ~. =- zes';gsgesassssssjassssss rt -5 3 53 9%

  • 2;;D"0"33 *22tC*Sa

.u o o -w. a. A <3 > = - Led ~$ %4 3-Q R.8 O O .w 9 gm ge gum go-go fig A10 .n..

~ -- ~ ~ - CWE-COM 20 DEG-F/HR HEATUP REG. GUIDE 1.99,REV.2 WITH MARGIN 05/t5/92 THE FOLLOWING DATA WERE CALCULATEDFOR THE INSERVICE HvDRUSTATIC LEAK it SI. MINIMUM INSERVICE LEAK TESY IEMPERATURE ( 25 000 EfPv) PRESSURE (PSI) IEMPERAIURE (DE G.F ) 2000 357 '2485 377 PRESSURE PRES $URE STRESS 1.5 K1M (PSI) (PSI) (PSI 50 RI.IN.) 3> 2000 22234 92837 e 2485 27408 115765 e 6

. -. _ ~. .+. .--..w sn 4 i.

[

'CWE-COM'20 DEG-F/HR HEAIUP. REG. GUIDE t 99.REV,2 WITH MARGIN 4 05/15/92 COMPOSITE' CURVE.PLDTIED FOR HEATUP PROFILE 2 Hf.ATUP RATE 45) ( DE G. F /HR ) 2t L O = IRRADIATION PERIOD = 25.000 EFP. YEARS FL AW DEPTH = (t-AOWINIT INOICATED INDICA TE D ' ' INDICATED INDICATED ' INDICATED INOICATED 1EMPERA1URE PRE $$URE 1ENPERA1URE PRES $URE EtMPERA1URE PRES $URE (OEG, F ) - f(PSI) ' 1DEG. F ) (PSI). - (DEG. F ) (PSI) 1 '85.000

  • te-98 23.

195.000 499.69 45 305.000 916.70

90.000'-

'4tt-00 M.d 24 200.000 507.72 '46 '3to,000 955.79 2 '3 95,000

  • e9-99 205.000 516,36

'47 -395,000 997.79' 4 100.000 409.15-26 '210.000' 525.52 48 320.000 -1042,92 5 105,000 491.28 27 215.000 535.50 49 325 000 1091.42 6 -110.000 413.90 28 .220.000 546.23 50. 330 000 1142.4i i-

7 115.000 f417.47 29 225.000

>557.77 51 335.000' t194.34 s 8 120.000 421.39 '30. 230.000 570 03 52 340.000 8250.03 9 825.000

425.87 31' 235.000 58 3.~ 3 7 53 345.000

'1309.70 -10 130.000 ~430.58. -- 32 240.000 597.71 54 350.000 83'3.53 11 135.000

435.85 3 3 '.

-245.000 613.09 55 355.000 1442.29 I 12 140.000- '44%.06 -- 34 250.000' 629.53 56. 360.000 1515.73 13 145.000' 444.68 35 255.000 -647 34' 57 365.000 1%94.64 14-150.000 448.57 36 260.000 666.30' 58 370 000 1679.Or 15 155.000 '452.76 -37 265.000 686.89 59 375.000 1769.41 16 160.000-457.26' 38 270.300-708.96 60-380.000 .t866.13 17: 165.000 462.to 39 275.000 732.60 '69' 385 000 In9.64 18 170.000 467.30 50 280.000 .758.08 62 ~ -390.000 2080.23 19 -

175.000-D472,89 41-285
000.

785.43 63 395.000 2196.29 20 '180.000 478.80 '41 290.000' .814 71 64 400.0001 2344.45 21 185 000 485,26 ' 4'A 295.000-846.40 65-405,000 2458.94 22 190.000 492.21 44 300.000 880.30 3= a e-* e e a t + 4 + t b q-S F -g s .~ 4 i 1-2- z

.m ,........~._.y..,. ..~... _.m ,____...,.~-.....,_.__..._m._.. _...m m.... m.. .m. _. ..s CCE-COM 00 DEG-F/HR HE010P, REG. GUIDE

1. 99.REU.3 OI T H CDARGIN 05/15/92 1

' COMPOSITE CURVE PLOTTED FOR HEATUP PROFILE 2 HEATUP RAIE(S) (DEG f/HRI'* '40.0 IRRADIATION. PERIOD * ~.25.OOO-EfP YEARS + F t. AW DE P T H = (t-AOWIN)i' = i-INDICATED : INDICATED.. TEMPERAIURE- ' PRESSURE- . INDICATED ]NDiCATED INDICAlf0 ' INDICATED TFMPERATURE PRES $URE T E MPE RA IURE ' : PRE SSURE. (DEG.F )

tPSI) 3(DEG.F).

(PSil ' t DEG F ) (PSI) 400-M]' '23 '195.000 480.60 45 305.000 916.70 t '85.000..

  • te-98 2

90.000 - 24 '100.000'

492.20 46-310.000 955.79 3

, 95.000 N ' g g,125 205.000 "504.78 47 385,000 997.79 -4 .800.000.. 39t-91 26'

210.000 518.14.

48 320 000 1042.92 5< '105.000.' W l- .27

215.000-532.59

'49 325.000 ,1C91. 4 2 - i 6 110.000 989-9 0 28 220.000 546;23 ' 50 330.000 tt43.53 ~ 7.

i15.000

.385.69 29 225.000. 557.77 51 335.000 1193.11 8 .120.000-386.52-30 230.000 .570.03 - 52' 340.000?. L1244,90 9 '125.000 388.47-31-235.000 583.37. 10 130.000 z 39i.13'- 32' '240.000 597.7t ~ 53

345,000 1300.31' 54 350.000 1359.75'

+ -t1-135.000' 394.55, 33 J245,000-613.09. 55 ' 355,000 1423.33' i; 12 't40.000 '398.52. . 34 '250.000 .629.53 56' 360.000-9491.67 13: 145.000 .403.12 .35 255.000 647.34 57 ' 365.000 1564.75 147

150.000 408.2e 36 260.000-666.30 58 370.000'

'1643.08-4. 1 I5 " .155,000 413.89 37- "265.000.. '686.89 59. 375.000 1726.98 1-16 '160.000 -420.07 '38m = 270.000 : 708.96 . 60-380.000 1816.71-i~ 17: .165.000 '426.86 39 - 275,000-1758.08 ' 62 390 000 '20t5.31 732.60 68 385.000 1912.64 '18 Lt70.000 434.09-40.. 280.000-I' 19 175.000: 442.06 41 .285.000 785.43 63 395.000: 2124.88

20-180.000

-.450.63. 42 290.000 814.71 - 64. 400.000 '2242.04 [~ 28 1985.000a 459,92 43 295.000 846.40 65, 405.000; 2366.93' 22 190.000 469.9i.- 44 300.000 880.30 w 3'. U j. I... T d' t j-t k 9 t i 2 .s. 1 i l a - 1 s.

_.m _,,... _,..--... _ _.-...... -. _.., _.. ~. _.. _._.. __._m,m._.. -.m-m.m.m..~-. m. .m. l i 4

CwE*COM 60'DEG-F/HR HEATUP REG.GulOE 1.99,Riv.2 WITH MARGIN F

05/15/92 4 i ' COMPOSITE CURVE PL' offed FOR.HEAIUP PROFILE 2 L pt ATUP RATE ( 5) (DEG.F/HR) 60,0 = i. LIRRADIATION PERIOD.=al 25 000 EFP YEARS Ft.AW DEPIH = {t-AOWINIT lr j ' INDICATED -INDICAIED ltKllC AI E D,INOICAff0 F INDICA TE D INOlCAIED P 7 EMPER ATURE _ : PRE SSURF. . TEMPERAIURE PRESSURE . TEMP 8RATURE. PRESSURE ' (OEG.F)l -(PSI). -(DfG;F) (PSI); e ( Dt G '. F ) t PSI 9, t '85.000 M 123 195.000 426.C% 45 305.000-916i70 2 90.000' 400-99 200.000 435.59 46 <310.000: 955.79 ' i 3 95.000 ~ M '25 - 205 000 446.03 '47 1315,000 997.79 .4- .100.000 Set-t7 '26 '210.000 457.31 48

320.000 10424S2'

'37332,M,dl 27 5 ~105:000' l 6 910.000' 39tH4 28 - 4 215.000 ~469.50 - 49 325lO00-

1091.42;

'220.000.. 482.53 ' 50 330.000 9i43.53 ?: '7-115;O00 - . SethSt 29 - 225,000 496.70 51 335.000-t195.42 8. 120.000 SE P H .30 230.000 511,97 52 '340 000 1243.60 c 1. 9 .425.000 869-4rG 31 235.000 528.29 53

345 000 1295.'18 4

10 130.000 1362.41. '32 240.000 545.98 l tt-135.000-363.20-- 33-245.000' 565.02_. . 54 350.000 1350.48. ' 55 355.000'_ 1409.68 }? 12-140.000 ~364.74 34 250.000 585.38 56 360.000.' 1473.12: 93: 545.000 i367.101 35- '255.000 607.42 ' 57. "365.000: 1549.13 I 14 ^ 150.000 370.-to'-

36

'-260.000 630.95 i. 15 155.000 373.81 37 E265.000; 656:4t . 58- '370.000 ? 1613.90 - 375.000

1691.77'

.16 '.160.000 - 378 03.'

38

'270.000 .683.62 . 61 385 000. 9864.20 60 380.000-9 7 7 5 '. t 5 17. 16S.OOO '382.99 39-275.000-712.84 18 170.000 388.53 40 l280.000 J744.45 - 62 390.000

i. 1959.64

+ 19 175.000' T394.73' 41-1285.000-778.22 '63' .395.000: 2061.5t F 20; 180.900.

401.53
42-5290.000 814.46 64c 400.000

. 2170.24 2s-185.000 1409.02'- 43 .-295 000 846,40.- 65: 405.000

l. -

\\. 22 190,000 1487.17:.

44 300 000.

880.30- ' 66 '410.000 ~ 2286.36 2410;1C' . 33 t s-4i A s 4 e I e ) _ g,:- i t 7 4 i. i

1..

,d ( a .Tl t 4 .+y-

m. ;

1 g = -c r' -He ~ r r e. 4 - s c .%.t ,..___m. t .m. ...m.m

CwC-COM 100 DEG-F/ttR HEAIUP REG. GUIDE t. 99.RE V. 2 WI Tit MAmiGIN 05/t5/92 COMPOSliE CURVE PLOITED FOR HEAIUP PROFILE 2 ttE IUP RATE t S D (DEG f/tiRI 100.0 = IRRADIATION PERIOD 25. 000 E F P VEARS = F L AW DEPit! = ( t-AOWIN)! INDICATED INDICATED INDICA!ED I ND I C A I E D INDICAftO INDICATED fEMPER61URE PRESSURE 1E MPE RA tuRE PRESSURE 1E MPE R A t ORE VRE$5uul (DEG.F) (PSI) (DEG f) (PSI) (DEG F) 1PSIi t 85,000 414-481 24 200.000 343.75 46 316.000 737.81 2 90.000 6 25 205.000 350.15 47 3t5 000 775 65 3 95.000 33W 26 210.000 357.27 48 320 000 816 29 4 100.000 3h 27 28"J OOO 365 17 49 325 000 859 93 5 105.000 366-91 28 220.000 373.86 50 330 000 906.78 6 110.000 338-25 M. 0a 29 225.000 383.32 59 335.000 957.08 7 115.000 Set-91f = 30 230 000 333.73 52 340.000 1011.05 8 120.000 339.75 31 235.000 405 08 53 345.000 1068.88 9 925.000 333.50 32 240.000 417.41 S4 350 000 t130 87 10 130.000 328.35 33 245.000 430 7e 55 355 000 t197 24 51 135.000 3t4-92 34 250 000 445 20 56 360 000 1268 40 12 140.000 32 tit? 35 25%.000 460.88 57 365 000 4344.54 13 145.000 'StS-07 36 260.000 477.70 58 370 000 1426 05 14 150.000 St?-t2 37 265.000 495.99' 59 375 000 1513.la 15 155.000 317.19 38 270.000 515.70 60 380 000 6606 49 16 160.000 317,'38 39 275 000 536.03 61 385 000 1706 44 17 165.000' 318.32 40 280.000 559.72 62 390,000 1812 97 18 170.000 319.93 41 285.000 584.22 63 395.000 192G.38 19 175.000 322.24 42 290.009 610.73 64 400.000 2048.08 20 180.000 325.20 43 295.000 639 tt 65 405.000 2155 51 21 185.000 328.84 44 300.000 669 59 66 410 000 2262.99 L 22 190.000 333 14 45 305.000 702.54 67 415 000 2377 46 ( 23 195.000 338 14 w t.TI f ~

CWE-COM 20 DEG-F/HR HEATUP. REG. GUIDE.l 99.REV.2 WITH MARGIN 05/15/92 THE FOLLOWING DATA WERE CALCULATEDFOR THE INSERVICE HVOROSTATIC LEAK IESt. MINIMUM INSERV.CE LEAK TEST IEMPERATURE t 32 000 E F P V ) PRESSURE (PSI) 1EMPERATURE (DEG F ) 2000 368 2485 389 t PRESSURE' 'PRTSSURE STRESS f 5 KIM '(PSI) .(PSI) (PSI Su RI IN.3 2000-22234 92837 01 2485 27468 315765 + .l 4 .-m._

- ~.. ~...... ~ ~.. . ~ - ...:n. 4 3+_. e 1 i. 3. t 1' i_ 'i 1 Q N m i N i e = i O c- ~ Oe O,e.m,@,W-c o m n,0,0 -W e N o. W 4.- ww &. W Q. .. N O.p. @ m,M.N N,@ m..M.,,@

  • 3.*.

qg i. vee -hem-mO-@,6,8*5@ =e4 5gmemomemmcNmNc, ,MNen,- , cWmN 95~ " 033 $2DC 3N8DI$kann 4 -' c -a g g. s, Q$ - b $ $. $ $ $ $. $. $. $ $. $ $, $ $. $ $. $. $ $ $ $ $. - 1 .ggo j Coococcocconococce 004' -ww a gac --NNmmwwoo@@mmeete O* g .3-m m m m m m n e m m m m m m m m m m g,,,- a

==w. s 4 - O 8 @ m, e, m O - N m, c @ m e m O - m m, c W h _ w O ,cD@cececce@@@@@@@@ d 4 1. .e ll - 2-e Q = a ww - m, e n-m m o v e c m =, N W e m m, m h, O m, ' 3 .g. g.

  • - ct -

.g 3 ... -. O. m, e, O. O. *< N m. e. @ m.. W. o o m. ~ w 3 vee O n e, m m m,,8 0, m c N, @e a n to - e e e 3 -ea ,m,m O

  • N m common eONomOm gw-eccommocc@@@@@eme64m
5..

5 2

n w

1 N. OG z ' -N-umO w ~ww C00000 m,0 @ O 0 0 0 0 0 e e 0 0e e - J. Cro OO--NN m- ,cce@ne m 2 b -ZX-NNNNNNNNNNNNNNNNNNNNmM e o.m- ~ '. e _a m e w Q. at o w g

3. '

a. ,@ @ M g @ Q w n m q @ @ k e S Q e. n,M,q @ 3O 3. ' c, N N N N N N ri m m m m m m m m m,, w. g -O L.w "T* g.. -O- . O-3. w = m "*m

=

Op.me,moeOneNmO*mmge,m, m-N ww 'P '4- ~_Q M> h2^ ,O-* Mmm@eNSWh*e NW-' Z U h N,88N@ E ON,0 O O,,,,,- N, N, N, n,,, Y, h,

  • Lb O @ N Y,, c, o,,, c,. e, m -

4 .g O - e a. s.co 3w-m- .N-a Q4- --4 w e w 3*. . O >;ww - w w g g og. I n:. w _ e,. - ugO.........,............... > w o. - 928 age gocococoegoccOOOege_ ::cccc .c==ttee.e- -ww m .gi <a V, O C-w- = e 4 43 f: W 3-M4 ,3_ 1" ' 3.A U . fJ

  • = w

- N M,c @ > e m O

  • N. m.,e @ m e..m O - N m

= nnnn A17. - ....w....

Nm e N 8 oww ocoWM-onW3hosenenmebom gg,* covoww-mweioNNecogw>no veo

  • ws-mo--ew-wenenmee-,o

~ok Owennnenewohwnomen $$~ ***33CCEDC2103EE3$g*nw nN"" o n ~ ow C5 2"$ e$$$$$$$$$$$$$$$$$$$$$$ 5$= anassis S s _ n n n n n n n n n$ s s a e s s a s s,s e N a, = nnnnnnnn ww, = w 0w demo-Nnwc@nemo-NngcQ&e o wwne@cee@@ccc@@@@@@@@@ + = ~ ~ 2 g o a ww mesmonween-wkmennnNwomb $$2 "'*"E9**90~"9"**'*.98"'" a 3 vee memNemnemowmeN--nW-eme= I -e4 ebeo-Nwesemonw@eonomons 4 = wwwC@O@@@@@@@@@@N5bbeem = -a 3 N Q$ 5 $$$$$$$$$$$$$$$$$$,k$$$$ N a vac N U h2= bbbNkNk$hNb$h$kNk$k$bbb ~$o m = NNNNNNNNNNNNNNNNNNNNnnn ae ~- Q 3 w 4 b I a wm@hmmo-mnwownemo-Nnece o o NNNnNNnonnnnnnnnwww www 0 ~ L 4 w -F" c w w w A k P a ct o 5 M 3 Ow 7.<ktst-oih'wsecnewnnonoom-we N 4 o nw =ma <ti

  • cmosomnoNONONNom.

5 U.$ $3~e S 'edenwd$wE <s o<n< r n~nmeemmo8Neomo,em -es --Nng e g o 3 Qw-5t=flO nnnnnnnnwwwwwwwww I _SS, OE-R w w km o ww w w a a om W-;~ S"S coegooooeoc..9 :"00022gooconocoe oe 8 23 @n ~ .S$*CO**** u o 0 -w e 4 43 w N U$ '3 o @d U U ww h NC.NND$hnn~$n ~ A18

CWE-COM 60 DEG-f/ttR HEA10P RE G GUIDE 6.99.REV.2 Wtitt MARGIN 05/15/92 COMPOStiE CURVE PLOT TEO FOR HE ATUP PROF ILE 2 ftEATOP RATE ( S t (DE G F /HR ) 60 0 = IRRADIATION PERIOD

32. 000 E F P VEARS

= FL AW DEPitt * (t-AOWIN)T IN01 C A T E D INDICATED INDICATED IND I C A I E D IND I C A I E D INDICAIED TEMPERATURE PRESSURE IEMPERATURE PRE 55URE IEMPERAIURE PRES $URE (DEG.F) (PSI) IOEG.f ) (PSI) (DEG F 1 (PSI) 1 85.000 4 ++-43I 24 200.000 414.37 47 315.000 907.50 2 90.000 40&-66 25 205.000 423.25 48 320.000 046.08 3 95.000 3et-52 26 210.000 432.77 49 325 000 987 40 4 100.000 3 W 47 27 215.000 443.16 50 330 000 103t.76 5 105.000 369 46 M 28 220.000 454.37 51 335.000 1079.43 6 I10.000 Set-M 29 225.000 466.47 52 340.000 t130 61 7 915.000 359-95 30 230.000 479.40 53 345.000 8 120.000 356-45 31 235.000 493.46 54 350 000 ~ 1184.42 9 125.000 954-64 32 240 000 508.59 55 355.000 1282.37 123e 69 10 130.000 354.14 33 245.000 524.76 56 360 000 1336.78 11 135.000 354.41 34 250 000 542.29 57 365.000 1394 88 12 140.000 355.38 35 255.000 561.16 58 370 000 1457.24 13 145.000 357 tt 36 260.000 581.30 59 375.000 1523.90 14 150,000 359.42 37 265.000 603.13 60 380 000 1595.42 15 155.000 '362.39 38 270.000 626.42 68 385.000 1671 85 16 160.000 365'89 39 275.000 651 64 62 390 000 1753 69 17 165.000 369 98 40 280.000 678 56 63 395 000 1848 24 18 170.000 374.59 4 285.000 707.64 64 400 000 1934e94 19 175.000 379.71 42 290 000 'f38.79 65 405 000 2035.11 20 180.000 385.43 43 295.000 772.89 66 410 000 2141.88 21 185.000 391;76 44 300.000 807.30 67 415 000 2255.98 22 190.000 398 65 45 305.000 838 49 68 420 000 2377.72 23 195.000 406.19 46 380.000' 871.77 3= c-5

N 3 N c. N A O O W8Mc@Tm*WMNmm-wemTmMemo ww

  • ma
e. m O M @ M. i h o w m O. N O. N. m. O 6 c e. n c h -

43= ved mWNQ@@m@mMMm@@m@NTTCT@@ =ca N @ O c e. T e c - e c n o e m e m o n n M w @ Qww M m m m m m m O *

  • m. M. w *e c @ ~ m O
  • n n e O

.a

=

~~nnNnn =& w C2 v30 dcocOMomocOMOMOc MdMded aww a E" 1 = NNMMwTcc@@Smemmm O--NNM 4C 3 MMMMMMMMMMMMMMMMTTTTTTT R ~~ N w Q emO*NMTc@ memo-NMwecommo 74@dc@@@c@@c@@@@@@@@@@b w 2 = O O 2 ww m@5mNam=TMcWMMemO@OTmkw M =Q*

n. =. @ m m. @ e @ m. N o. m. T. N. N. N 6 M. @ m m = @

q a qs. 1 O Vee New-mememnemenomOMSM=nv ~ea MMvec@mem*NMcomOMc50Mem I 4

  • 5ww MMMMMMMMMTTTTTTd4@cWW@@

w w 3 1 =g = 3 N w Om N m. ggo c o c o c o c o c o n o c o c o m o.c coc w ww l w QaQ O**NNMMTvec ~n-nnnnnnnnnnn@n@mmmmme O=~ n nhunnnMMMM = ww O e W 2 2 0 4 4 = w Q A > Q O c@bemO*nMTc@ memo *nMTc@N

  • a NnunNMMMMMMMMMMTTTTTTTT O

4 m p w w w q U E r 2 J l U O - a 4 N ww N$4 e@ n

  • T@ce*05mNe@cMMM w

0 Mw maa gg. (. n. .@,. O. i.@ O. W. e o. m W N e c. o. n. O. T T. O. e g w = p T 2 vee a-OCO e@eO i hsmonceNN a w 4m =+L- + e QDy t% t% e e n - t)OOOe

  • =Nn I

Q 3 Cww t e OMMemMe@m 11MMMMMMMMM l N w CO 22 t w a Q4 =4

== 0 W 2* w ww w i Q M 4-Q2 w -= ogo +a -ww woc OcocomOcococococco X = WW QLQ e m m.. =.* n N M M..w v e c. @. @. b. o. m m. m. m.. O _O ~3 U Q O -~w e a 43' N 5 MM n O ua U U ~%

  • N M T m @ 5 m m O..- n M T m. @. e..m m. O - N M T nnnnn A20 p

C#dE-COM COOLDOWN CURVES EEG. GUIDE 1.99.REV.2 Ulitt MARGIN 05/95/92 THE FOLLOWING DATA WERE PLOliED FOR COOLDOWN PROFILE 9 -( STEAUv-SIAIE COOsDOWN I 1RRADIATION PERIOD 14.000 EFP YEARS = FLAW DEPTH

  • AOWIN T INDICATED INDICA I E D INDICAIED INDICATED INDICAIED INDICATED TEMPERAIURE PRESSURE 1EMPERAluRE PRESSURE T E MPE R A IURE PRESSURE (DEG.F)

'(PSI) (DEG.F ) (PSI) (DEG.F) (PSI) t 85.000 424.28 21 185.000 526.04 41 285.000 958.00 2 90.000 426.64 22 190 000 536.06 42 290.000 1000.16 3 95.000 429.17 23 195.000 546 84 43 295.000 1045.48 4 100.000 431.80 24 200.000 558 42 44 300 000 9094 17 5 105.000 434.72 25 205 000' 570.73 45 305 000 1946 49 6 110.000 437.87 26 210.000 584.12 46 390 000 1202.65 7 115 N)O '441.25 27 215.000 598.51 47 395.000 1262.86 8 120.400 444.88 28 220 000 613.95 48 320 000 1327 32 9 125.000 448.79 29 225.000 630.45 49 325.000 1396.76 10 130. OC,1 453.00 30 230.000 648.34 50 330 000 247t.01 It 135.000 457.51 31 235.000 667.38 59 335.000 1550.70 12 140.000 462.37 32 240.000 688,04 52 340.000 1636,13 13 145.000 467.59 - 33 245.000 710.20 53 345.000 1727.57 14 150.000 473.21 34 250.000 733.93. 54 350.000 1825.53 15 155.000 479.14 35 255.000 759.37 55 355.000 1930,13 16 160.000 485.63 36 260.000 786.97 56 360.000 2042.39 17 165.000 492,60 37 265.000 816.37 57 365 000 2161 95 18 170.000 500 11 38 270.000 848.15 58 370.000 2289.96 19 175.000 508.17 39 275.000 882.21 59 375.000 2426.51 20 180.000 516.84 40 280.000 918.76 3= to >a a 6-.-..__.m.

. -..... ~...-. -~ - ,-; ~ - -..., -. ~.~n... .. ~. + ~ ~ -.-... ... ~. - - - - - - -., unw .w. .s. -.a.n. ax~ t ri1 4 CWE-COM COOLOOWN CURVES REGL. GUIDE t.99.REV.2 WIIts MARGIN 05/15/92 THE FOL LOwlNG'DA TA WERE PLOT Tf D F UR COOLDOWN PROF lt E 2 ( 20 DEG-F /.HR COOLDOWN 4 ' IRRADIATION PERIOD 84.000 EFP YEARS' = FLAW DEPiff = - AOWIN T 2 c. 4 s d i INDICAffD 1NDI C A T E D INDICATED INDICATED . f 7JD I C A 1 F D. INDICAi(O TEMPERAIORE, PRESSUNE 1(MPERAtuRE PRESSURE (Df G.F ) (PSI) (DEG F ) (PSil (DEG. F ) (PSl! if MPE RAltJRE - PRE SSURE 1 25.000 . 38ti14: -16 160.000 444.08 30 230.000 616.52 2. 90.000

383.45-17

'165.000 451.39 31 235.000 63G.93 3 95.000 s 385.97, '18 '170,000 459.24 32 240 000 658.98 4 100.000 ~388.68' . 19 175,000 467.72' 3'8 ' .245.000 ,682.61 5 105.000 ,391.63 20 180.000 476.73 34 '250 000- .-708.12 6 'I10,000: 21-185,000' -486.57 35 -255.000 735.49 7 '115.000. 394.79. .22-190.000 497.14 '36 260.000 764.84' 398.22' T 8' 120.000 i-401. 9 i s 23 L195,000 50s.54' 37-265.000 796,65 9 .125.000- .405.92 24 '200.000. 520,79 -38 270 000 830,68 4 10 -130.000 410.21' '25 '205.000-533.90 39s 275.000 867 23 11 135.000-414.87' '26' '210.000-548.11 40 .280 000 906 52-1 4 12 140.000 419.88 27. 215.000 563.4%

41 285.000.

948;78 13 145.000 425,29 .28 220.000 579.74 41 '290.000 994.20 14 150.000' 15 "155.000 ~ '431.03 '29'- -225.000 597.48 43-295.000 1043,06. 437.,32 4 3m N ,i' N 1 l i' .a b { i:: i

':, f

+ 1 i - 1 ' ?. i- 'J [ I, 1

. =.. L;rE-COM COOLDOWN CURVES EEG. CUIDE t.99.CEV.2 UITH M?.RGIN 05/15/92 THE FOLLOWING DATA WERE PEOliED FOR COOLDOWN PROFILE 3 ( 40 DEG-F / HR COOLDOWN ) IRRADIATION PERIOD = 14.000 EFP YEARS FLAW OEPTH = ADWIN T INDICAIED INDICATED INDICATED INDICATED INDICATED INDICATED TEMPERATURE ' PRESSURE TEMPERATURE PRESSURE TEMPERATUME PRESSORE (DEG.F) (PSI) (DEG.F) (PSI) (DEG F) (PSI) 1 85.000' 337.09 16 160.000 401.82 30 230.000 585.05 2 90.000 339.38 17 165.000

  • O9.49 31 235 000 607.05 3-95,000 349.90 18 170.000 417,75 32 240 000 630.55 4

'100.000 344.55 19 175.000 426.69 33 245.000 656.05 5 105.000 347.53 20 180.000 436.22 34 250.000 683.39 6 110.000 350.73 23 185.000 446.63 35 255.000 712.69 7 195.000 354.23 22 190 000 457.83 36 260.000 744.47 8 120.000 358.00 23 195.000 469.93 37 265.000 778.53 9 125 000 362.11 24 200.000 4P2.85 38 270.000 815.11 10 130 000 366.53 25 205.000 496.91 39 275.000 854.53 1I 135.000 371,35 26 210.000 512.04 40 280.000 897.09 12 140.000 376.46 27 215.000 528 26 41 285.000 942.73 33 145.000 382.09 28 220.000 545.83 42 290.000 991.75 34 150.000 388.16 29 225.000 564.78 43 295.000 1044.34 15 155.000 394.74 32 to 0d i 4 l-;

CWE-COM COOLDOWN CURVES REG. GUIDE t.99.REV.2 WIDI MARGIN OS/tS/92 THE FOLLOWING DATA WERE'PLOliED FOR CDOLDOWN PROFILE 4 ( 60 DEG-f / W LOOT OOWN ) . IRRADIATION PERIOD = ..f4.000 EFP YEARS FLAW OEPTH = AOWIN.T INDICATED INDICATEC ' INDICATED INDICATED aNDICATED INDICATED TEMPERATURE' PRESSURE ~ T E MPE RA TURE PRESSURE TEMPERAIURE PRESSURE-(DEG.F)- (PS' ) (DEG.F) (PSI) 1DEG.F)~ (PSI) 1 85.000 1291.87 15 155.000 -351.35 ' 29 225.000 532.35-2 90.000 294.14 . 16 '. 160.000 358.80 ~ 30 230.000 '554.24 3 95,000 '296.67 4 100.000' 2299.40 . 97 165,000-366.88 23s 235.000 577.79 18 170.000 3'*5 53 32 240.000 2 33' 603.14 5 105.000 5302.36 19 175.000- -384.99 245.000'

630 48 6

880.000 305.42' 20 180.000 7 115.000 309.20 21 185.000-. 395.18 34 250.000 659.91 40s.23 35-255.000 691.61 8 '120.000' 313.07 22-190.000 418.13-36, 260.000 725.68 9 125.000 '317.30' 23 195.000 '430.92 37 265.000 762.40 to 130.000 1321.88 -24 -200.000.. 444.80 '. 38 -

270.000 802.to 11.

135.000 326.88 25 205.000 459.88 39 275.000 844.69 12 940.000 '332.28 26 210.000 475.87 40' 280.000 890.51 13 145.000 338,16 " 27 215.000' 493.34 4I- '285.000 939.43 14 150.000-344.45 28 220.000 512.16 42 290.000 992.87, 33 N i !I; [ p, E- .g- ,k A.a=-. Lm.-ib- " " - ~ ^ ' ' ' ^ -^#'

!!iif> IhLhi. . f ',l 3 g 7 ![:I ii! i eI If [ lr! i-tt. I:

k?!;;!

r[ t, m t -r v e w + m t. a r ~ w w 2 9 9 / 5 s 8 / p 50 O EE 763* 555739532 s fR) 693,e702125532 AUF e CSS 9429385584446 ISP 69258t5938384 DE( 4455566677889 NR (P I E 1 DR + e EU) 0000000000000 + w IIF 0000000000000 O AS 0 0,0,0 0 0 0 0 0 0 0 0 0 D 9 CE: I f. f 5050505050505 L 1 O DP 4 N a (D 2334455667788 O s 2222222222222 C I[ T R + H / r F 9042.345678901 3 2333333333244 G E D ~ 00 1 D ( Eg 52268809922531 N TR) AUI 0453062744,6241 I G CSS 20990147285446. R 5 ISP 67780123568024 A DE( 22223333333444 H E. NR t IP H I T F O E !t R OR P EU) 00000000000000 2 t T F. 00000000000000 N AA 00000000000000 W W CRG E. O IEE 50505050505050 = D DP N M (D 56677889900112 L 199 11111122222 9 O IE . 9 O S T C R 1 A R f E O v 56799012345678 D F 1152 P ,1222222222 I U D F G E E f G. f 0 = O 0 0 E L C P D 4 EE 64127004963671 S E 9 706,45939449834 IR) v E R AUI V E CSS 70258159494074 R W =I ISP 90000151223445 U DE( 12222222222222 C A DN NR T OI IP . N A IW W D RO . O EA. E D G P DR' L N = EU) 0 0 0 0 0 0 0 0 0 0'0 0'0 0 O N O W OH. T T F. 00000000000000 I C O IT CRG 00000000,000000 AA L TP IEE 50505050505050 M L AE DPD 899008 12233445 O O !D NM( 118 31111111 C F O IE AW - I E E W H R. L A I C T IF 12345678901234 8 1111 >w1 J - ( r z! l- ~ i; 'j t . l4 4il!)li ..i !

  • i lf

,it I, i ' ,1 - a Ii ( L!i! it

1 4

Iv t L t' ttI i)i ) ti! ! r?l5rf t,?i r ?[, f;I b if i: <hL 5 a n n 29 / 5 1 / 50 O 03922331698676509946 (E iR) AUI 7 7 7 9 4 5 5 5 6 9 7 2 3,4 0 4 0 3,9 7 C$S 65729399'l26612O46528 ISP 59494952964322235s9 9 dei 99900192334567e90124 NR 18 911111 811 t IP 12222 I Y D4 N 00000000000000000000 - I*.' w If 00000000000000000000-I O AA 000000000000000000,00 D CRG L IEE 50505050505050505050 O DPD 90019223344556677889-O Nte( 23333333333333333333 C IE ~. T E T A I S 34567890t234567890 2 44444445S55555555666 v D A E ~. T S D 26203737193409608'3100 ~ ( EE N TR) AUI 73552703,7053389604743 I G CSS 765567037397668285A60 ~ R i ISP 01234578912468o358t48 A OE( 5555555556666677"J7s88 M E R t L lP H I T F I O E W R DR-P EU) 00000000000O000000000 2 N T T F. 00000000000O000000000 AA V W CRG 0 0 0,0 0 0 0 0 0 0 0. O. 0 0 0 0 0 0 0 0 0 E O IEE 05050505050h050505050 R. D DPD 990011223344556677809 t nae ( 112222222222222222222 . 9 O IE 9 O S' T C R 1 A ~ R E ~. E O V 234567890123456789012 D F I P 2222222233333333.33444 U D F ~ G E E T T 0 G O 0

0. -'

.E L . R P 0' D 658603569687660090619 EE S E 2 TR) 09915065,60657213882,26 E R AUI V E R W. CSS 891469147148272728529 4i ISP 11 2222333444556677899 U DE( 444444444444444444444 C A ON NR T OI IP' .N A ,l W W D RO O EA E . D G.P DR L N. EU) 00000000000000000000'0 O .N . O W OH I T F. 000000000000000000000 I AA C O IT CRG 0000000000000,00000000 L 7P IEE 50505050505)-505050505 M L AE DPD 899001122334'455667788 O O ID Nt( 11111111111111 1511 e C F IE ..DAW T . E E RA , W H RL - C T IF t23456789012345678e09 111111 1 I 1 t.22 >NG t .i

d 1 i 1 n* C'; b e.

g; oonnencee.n--.,~~,,-,em,n onen wee ~oa see nn e-nee 5mwe,n,,w-o

-ea gg-eewwanneneegme, e .e o -a z o' x*!.n$$$$$$$$$hhhhhh 5 8 s eesssseessasose 9% nnnnnannnnnXnn v ~ s n n w e w n e e o,- n n,,e,w nnnnnnnn,, d 5 on $s CRC'K$5"8AS3Eo8 ~ z 0 3*J o s n,c, s s e e w ~~e s e s s 3 n,n,, oew* e,Secc.ws a n -ca n = o-- ee X w Za ~" 5 8 os $$$$$.$.h.$$$$.k.$.$$. r, van 8 ~rs SRR20SE8892RRRR 91-


unnannun a

o e o e "i E" w ~.mo-an ces.co. o ---nnnnunnnnnnn a 3 S0 Eg d G t a o -w n - e n,n,c e,,,- - n,- e w n -=- enn ne o --,oo, $hh NN"8ddNRENN,d,5$2%, n 82 E!-- nnnnnonnnn ,v, 3 o ao 8 g E' oW s s s; 5 ? ? s. f.s. t al. l.a.a. a a. a. a. a. a. s. u o -- vao sie ageggomococonoco s -a -w e 5 g as a - ::cecessees U w o -w h,3 i 4 m w w 3 I ad u -w -nn.cenemo gg.cg A27 w, u...:.

1 i' t 2 9 / 5 1 n / 50 D fE 945225689380864 f R) 703480400593771 AUI CSS 23483902521 4991 SP 680258147459384 l DEt 556666777888990 NR 1 IP ) E N DR W Eu) 00000C000000000 O Tt 00000O0 00000O000000000 F. D AA 00000000 L CRG O 050505050505050 IEE O DPO 445566778899001 C NM( 222222222222333 IE R T H / 234567890123456 F 333333334444444 G E D 0 4 D 4 EE 92O398166010372 N 1RS 3 2. 'J. 910 6 91.. 239 2I 1 I +0I G 5S 630765446815063 R 3 . SP 890012345689124 A . t( 331444444444555 M E 6Pk L IP H I T F I O E W R DR P Eu) 0O0000000000000 2 TtF 0O0000000000000 W Aa. 0.O.0 0 0 0 0 0 0 0 0 0 0 0 0 V CRG E O IEE 5G5050505050505 R. D DPD 6778899001 82233 L NM( 18 1 1 1 1 122222222 9 O IE 9 O S T C R 1 A R t E O v 789012345678901 D F 119 I P 222222222233 U D F G E E I 0 f G O 0 E L 0 R P D 0 EE 94878637842930o2 S E 2 TR) 97670521386619,t6 E R AUI V E CSS 9935803692605950 R W

  • 1 I

SP 2333344445566678 U DE( 3333333333333333 C A DN NR T OI IP N A I W W D RO O EA E D G P DR L N e EU) 0000A00000O00000 0000"00000?00000 O N r O I OH AA TI W F. C O IT CRG 0 0 0 0 0 0 0 0 0 0. O. 0 0 0 0 0 L TP IEE 5050S05050505050 M L AE OPO 8990O11223344556 O O ID hM( 1I11 11111111 1 C F D IE AW T E E RA W H RL C T IF 123456789o123456 t111111 MN0 ) ! xE 1-N

CWE-COM COOLDO W CURVES REG. GUIDE 1.99.REV.2 WITH MARGIN 05/95/92 THE FOLLOWING DATA WERE PLOliED FOR COOLDOWN PROFILE 4 ( 60 DE G-7 / HH COOLDOWN I IRRADIATION PERIOO = 20.000 EFP vfARS FLAW OEPTH = AOWIN T INDICATED INDICATED INDICATED INDICATED INDI C A T E D IND IC A T E D T E MPE R A t uRE PRESSURE IEMPfR4TURE PRESSURE TEMPERAluRE PRE 550RE (DEG.F ) (PSI) (DEG. F ) (PSI) (CEG F ) (PSI) t 85.000 284.26 16 160.000 336.07 31 235.000 509.72 2 90.000 285.96 17 165.000 342.42 32 240.000 529.85 3 95.000 287.86 18 170.000 349.22 33 245 000 55t 72 4 900.000 289.92 19 875.000 356 68 34 250 000 575.12 5 105.000 292.22 20 180.000 364.72 35 255 000 600 54 6 110.000 294.70 21 185.000 373.45 36 260 000 627.73 7 115.000 297.45 22 190.000 382.78 37 265.000 657.21 8 120.000 300.42 23 195.000 392.98 38 270 000 688 82 9 125.000 303.65 24 200.000 403.97 39 275 000 722 86 10 130.000 307 '9 25 205.000 4t5.88 40 2a0 000 759.48 tt 135.000 31I.07 26 210.000 428.71 41 285 000 799 15 12 140.000 315.27 27 215.000 442.50 42 290.000 841.66 13 145.000 319.86 28 220.000 457.45 43 295.000 887.44 l t' 4 150.000 324.82 29 225.000 473.61 44 300 000 936 64 l 15 155.000 330.23 30 230.000 490.91 45 305.000 989 64 i 3= ru W-a

N. s* s 8 0 We=NeoNemem ww sneocneess-$c. -a-ee 003 g g -,. $'m m e o w - -,- - h a =#6 , -cenene ,, c c o w e e n s e n e,

== ~ c0 i

2.'gh'Rgg??_?9{l88 8

.v=o B" S h.5 - N??3$ Gi2ile- ~~ x NnNNN m s ~ u: v mw 54 - N n w e e n e s o.,.. n, w nannnnanne J E 8 5 ~ .O. NOooemon-coseS, m -=- o-*--ownew-oN o b bhe w==N@@WbNMeweON' bemcNO* s e =e4 wec@Mem W Qww NNNNNNNOMMMMMTV E w 42 a =4 w = 0 w 3 2 O2 3 vaQ w o -ww Ococonom Ocom 3 Q Q4Q @@bbeemm

    • NN s

Za= O

=====***NNNNNNN -w m Q = k 3 w W o a enemO*NMwcWhamo Q w = 4

==a*NNNNNNNNNNM g C .m ~ 0. - o Q g E E O o ww o-o-nssnm s.. w N

  • M*

Q W 9. m. e. M.

  • N N T,@ * * @ @

w a gg. w U@A m NW@mN .NW*W*N. a 3 s> -ea e mmemo O==NNMM 3 Qww

            • NNNNNNNNN O

4 02 63 = Q= -4 2 e =3 3 Q 20 8 wg w Om ES2 $.$$$$$.$.$.$.$E.$.$.$$. 8 I az y o== ugg a >4 aww m e 0c00040m o X s ew QAQ # m

  • =NNMm Q

Q =Q 23w w e e w w w w e =g g o u w c =w =we e 43 W W E4 3 % QJ U =w

  • N M T @ @ m e m O
  • N m,w e A30

.-__..m.

Ih!l5 r. ?i k 'tiIt' E[I!LL I!)'!! - t i! .i [: l I 6 r. l 2 9 / 5 1 /50 D EE 009922339 6es676509946 TR) 377714555,697234040397 AUI C5S 065721399326682046528 ISP 8159u9895296432223588 DE( 8999'10912334587890124 6 NR 4 1111481111 12222 IP ) E DR 4 EU) 000000000000000000000 W T T F. 000000000000000000000 G AA 000000000000000000000 O CRG 050505050505050505050 L ItE O DpD 008 22334455667788990 1 O Nn( 333333333333333333334 e C IE T E T A T 456789012345678901234 S 444444555555555566666 v D A E T S D ( EE 926203737593409608310 N TRJ 673552703705338960474 I AUI G CSS 976556703739766824546 R 1 ISP 9092345789f2468035814 A DE( 455555555566666777788 M E NR L IP' H I T F t O E s t R DR P EU) 000000000000000000000 2 TTF 000000000000000000000 .N AA. 000000000000000000000 v W CRG E O LEE 505050505050505050505 . E. D ) PD 9001 12233445566778899 M8( 122222222222222222222 e L 3 O IE 9 G S T C R 1 A R E E O V 345678901234567890123 D .F 222222233333333334444 P I U D F S. G E E T T 0 G O 0 E L 0' . E P EE' 4165860356968766009061 D 5~ . S .E 2 TR) 6309915065606572138822 E R AUI V E CSS 46891469*4714427272852 R f =. i lSP 1111222233344455667789 . U. A DN MR 4444444444444444444444 a ) E1 C . T OI IP-i . N. A I W W D RO O EA E - D G P DR L N = Eu) 000000000000000O000000 O N W OH T l F. 000000000000000O000000 O . I CRC 000000000000000O.00000,0 AA C O II L TP IEE 505050505050505O505050 . t s L AE DP O . O ID N M (D 899001122334455&677889 111111 111111t111111 C . F O IE AW T t E RA ~ w H RL . C T IF 123456T890f23456789082 1 t11111111222 .a* 3Le-i l 1' l 3 i!ii}i' J 4(i< 1, 5-

7 I
ik.

il lI jl 2 9 / 5 1 / 50 D 5225808433829365 EE T R) 0770060364279252 AUI CSS 8545706324843610 SP 791 3580369260494 I DE( 556G667777889990 NR 1 P I 4 E N DR w E U) 0000000000000000 o TT F 0000000000000000 D AA 0000000000000000 t CRG 0 5050505050505050 IEE 0 DP N M (D 45566778899001 1 2 1 2222222222233333 IE R t H / 34567890s2345678 33333334A4444444 f G E D 02 D N 6472950342837105 4 EE f R) 607O709331602357 I AUI G C5S 8496207655579268 R 2 A lSP 1 223455678901346 )4 4444444444455555 EI M E tR t IP H t I F I O E W R DR P EU) 0000000000000000 n 2 0000000000000000 TIF N AA 0000000000000000 V W CRG E O IEE 5050505050505050 R. D DP N M (D 6778899001121334 L 1 111 111222222222 9 O IE 9 O S T C, R t A R E E O W 7890123456789012 D F 111 P 2222222222333 I U D F G E E T 0 I G O 0 E L 0 R P D d EE 5982146578666235 S E 2 TR) 9419903854607705 E R AUI V E CSS 0245702470;70493 R k =I ISP 7777788889990001 U DE( 3333333333334444 C A DN NR T OI IP N A I W W D RO O EA E D G P DR L N = EU) 0000000000000000 O I N TI F. 0000000000000000 O W OH AA 0 0 0,0 0 0 0 0 0 0 0 0 0,0 0 0 C O CRG II L TP IEE 5050505050505050 M L AE DPD 899001 1223344556 O O ID NM( 0 11 1111 11111 1 C F D IE AW T L E RA W H RL C T IF 1234567890l23456 1I 1111 1 53 36 .~ Il l

2 9 / 5 9 / 50 D (E 0063807059762580 f Rt 32438350651 60550 AUi CSS 32247300a5214981 SP 46802588 471 59384 I DEI 5556666777888990 NR 1 P I i E N DR W EOp 0000000000000000 O 0000000000000000 I IF D AA 0000000000000000 L CRG O IEE 5050505050505050 O DPO 45566778899008 8 2 R INM( 2222222222233333 C L I H / 3456789012345678 f 33333334444J4444 G E D 0 4 O 4 lE 4637696605613483 N lRP 389451 4392454457 AUI I G n ICSS 4952975434570495 R 3 SP 7789901234568902 '2 E( 3333344444444455 L E P R H IP L I T F I O E U R DRu4 0000000000000000 P f 2 0000000000000000 I lF N AA 0000000000000000 V W CRG E O IEE 5050505050505050 R. D DPD 6778899001 822334 L NM( 1222222222 1 1 8 1 8 1 9 O IE 9 O S I C R 1 A R E E O V 78909 2345a789012 O F 11 1 2227272222333 I P U D F G E E T T 0 G O 0 0 E t C P D 5 DE 2816090899075264 S E 2 fR) 1529993753608931 E R AUI Y E CS5 67902W7925825949 R W =7 I SP 22233'.3344455566 U DE( 3333333333333333 C A DN NR T Ol IP N A I w W O RO O EA E D G P DR L N = EU) 0000000000000000 N I O 0000000000000000 I O - OH

2. I 7 0000000000000000 A

C O' CRG IT IEE 5050505050505050 L TP M L AE DPD 8990011223344556 O O ID NM( 11 1114 118 1111 C F D IE AW T E E RA w H RL C T IF t234567890123o56 1 111t 11 >wM .h;? t l

CWE-COM COOLDOWN CURVES REG. GUIDE t.99.REV.2 WITH MARGIN 05/15/92 THE FOLLOWING DATA WERE PLOliED FOR COOLDOWN PROF ILE 4 ( 60 DEG-F / HR COOLDOwN I 1RRAOIATIDN PERIDO = 25.000 E F P YEARS FLAW DEPIH = ADWIN i INDICATED INDICATED INDICATED INDICATED I NDIC AI E D INDICATED TEMPERATURE PRESSURE T E MPE R A T URE PRESSURE S E MPE R A f URE PRE 55uRE (OEG.F ) (PSI) (DEG. F ) (PSIl 90EG Fi IPSI) .t 85.000 290.12 17 165.000 329.07 33 245 000 508.80 2 90.000 281.51 18 970.000 334.91 34 250.000 528.96 3 95.000 283.07 89 175.000 349.28 35 255 000 550 86 4 900 000 284.77 20 ISO 000 348.09 36 260 000 574 30 5 105.000 286.67 2t 185.000 355.55 37 265 000 599.75 6 110.000 288.73 22 190.000 363.60 38 270.000 626.98 7 115.000 291.02 23 195.000 372.34 29 275.000 656.52 8 120.000 293.51 . 24 200.000 381.69 40 280.000 688.16 9 125.000 296.26 25 205.000 399.90 41 285 000 722.26 10 130.000 299.23 26 210.000 402.91 42 290 000 758.93 tt 135.000 302.46 27 215 000 414 83 43 295 000 798.66 12 140,000 30G.Of 28 220.000 427.67 44 300.000 841.23 13 145.000 309.90 29 225.000 441.48 45 305.000 887.08 14 150.000 314.10 30 230 000 456.45 46 310.000 936.36 15 155.000 318.69 31 235.000 472.64 47 3t5.OOO 989.44 16 160.000 323.65 32 240.000 489.97 I t 2, h) Ak O

2._.m m.~ m. .. _. _ -. _.....,....._ ~..... _. _ 5 9 4 i ? I f "m + N Ne O r O ww m*e@memmN@@weco

M

g3w c m. m M e. 9.M.4 0 0 * @ @ e.e u#m m*wokkmM**w OWN _g g. ,T @ m,o* c e @* @ @m M w e., wm Mov ~~eee

== = w QM O U3C~ W =ww OcoconococonceO O Ogo 49ec@@mbeammOO* O 2aw NNNNNNNNNNNNOMM V mww k NMwe@ memo-NMwe@ = MMMMMMMM 994494T w Q 8 = Q mkweNOOOceme@ m ww ~ a.= D. O

  • e h M N. @ b O. n. s. w.@. h.

2 e 43 s = vee eNe@ewww SNNMOm a e met --Ni4NNNNNN MMM@MM-Mwwe@ hem

  • Mw em 4

Oww M I w 22 w =% Z .= .w O w = 3 a 03 Umc w o =ww cOcce Ococom W Q C4Q @Mbee

  • =NNMM W

ZEw <* * * * * *

  • N N N N N N N N

-- m O =w Q e u 2-4 W w O > Memo *NMwe@hemO* w. w-

      • NNNNNNNNNNMM t

O A =q c w - Q' .w W O. O _. - w w. - 3 4-O e ww MeweO*ceMMOmemeN' W-N w g 43= N.e. m.@.w 9,h.N.* N.h w @ w a @ .w-Wee we@e Nwk M Owawm - 3 A WM'~ ' weA esem emm O

      • NN.

e 3 Qww-

          • =**NNNNNNNN.

U 4 02 ZR Q= ma 2 4 m3 3 Q 30 ' O - we w Q 4 03 = 8 s EE N i $$$$$$$$$$$$$$$$ O' O =* ' Umc s wa-www e e comOc @ eCe E-w dw. 04Q.e m O**nN M 9ec O O-- =Q. 2Xw. O' w Q =w - e 43' p -- w-w e4 3 I ts U-ww N M w e @ b e m O.* N M w e d. e A35- ...a.. k -s-'e er ic e, e M iet-r v e e-- y smM -P ws M-es:e e 4-s s.e t w arw Fr-- y V*r-' ar -r = by 3-.w+-- -e, Fw-@

  • "r+qW r

4 e? - er + t th4' eye ' y aw y w. r rw7i9

K I 4 ) O s 4 s 8 O mhogC@m*@N=e*wowenwMmm ww ~3= wh@QwN,@MwkwwwOceMa@Om =ee e*h@habO@wNbe@OmebeO*w gr= Seg==ee::w: n~ ,ensne O~wo-mmeghee czees:I -aa N -s = 0 I 3$2$,$$$$$$$$$$$.$.$$$k$.$$$$ van mt=O bb@k$k$kNh$3$kkk$hhb,b, ~* OO nemnnnnnnnnnnnnnnnMw u w w 4 @@MemQ*NMe@@bemC*NMwe@ >e

  • wwee@@d@@@@@@@@@@@@@@

0 4 e d O = 2 wk--mmowecM*wkhemMmhwo ww @ web--O.peCO*NMe@hw@hom = eg. O 4 Vee MONewMmMe>Og ON--mW~ek a = -ea emmO-Nmwe@em W Qw= w w w o @ m m e c c c e @ @h w @ e O N m S O 2 w +2 @@@b>>be w =4 s. ~ = 0 w 3 4 04 3 vgg w 0 cocomococom comocchCe =ww m O 040 SOO--NNMmew w ZE= ce@wheemm m O "NNNNNNNNNNNNNNNNNNNNM =w m O e U 2 4 E w w O > Mwe@ memo =NmweenemO* O b NNNNNNNOMMMMMMMMMw,Nme = 4 T,e 3 0 w 0 ,= w > M d $g O a O N ww N-OONen-Nmem-Nno-Omomm W w M ~3* w e M m. @. w.w,W.m.M m m.m.h h.@ b

  • e.O.w N w

g 43 w veA =Nwmbe*Mee. k 3 ew =e4

          • =NNNN M@OM>=@O@*Ms O

Mmwwwec@@hk qw-wwwwww wwwww www,,wwww v < Oz .= = O= =g 1 i g 4 =M 3 O NO 8 wg w OE I 5 $. 3 E $. $. $. $. $. $. $. $. E. $. $. $. $. $. $. $. E. $. $. $. E. E 8 y O => yao s ma =ww egegg!."NUCC I=g$33CEffg omocceCo cQcomoe h do k3 O O U 4 0 -w a <D W w a4 3. Z Ms O . >== b ' N M w m @ b e m O

  • N m e c W 5. e m O = N
    • =www.

..gnn A36 i 1.

2 9 / 5 1 /50 D tE 74396628479029851 t RI 59652341 4304094 1 1 AUI C5S 30991496569545079 SP 79025792581 593827 IDE( 55666667778889900 NR 1 1 IP I E N DR w EU) 00000000000000000 O IIF 00000000000000000 D AA 00000000000000000 CRG L O EE 50505050505050505 O IDPD 566778899008 12233 C Nu( 22222222233333333 W If I t / 5678901234567890: F 333334444 44444455 G E D 0 2 D 9 EE 686848121 67403386 N TR) 092906,85872688655 I AUI G C5S 26274O75322235827 R 2 I SP 1 1 223 ~45678901 245 A DE( 44444444444455555 M E NR L IP H I I F I U E W R DR P EU) 00000000000000000 2 00000000000000000 I IF N AA 00000000000000000 V W CRG E O 05050505050505050 IEE R. D DPD 778899001 2233445 1 9 O S INM( 122222222222 L 111 1 1 9 O E T C N t A R E E O V 89092345678901234 D F 1 1222222222233333 P I U D F G E E i 0 l G O 0 E t 0 R P D 2 EE 75662086496237002 5 E 3 IR) 471 639 E R AUI .90374347435 V E CSS 78013569136925937 R w =i I SP 66777777888899900 U DE( 33333333333333344 C A DN NR I OI P I N A I W w D RD C EA E O G P DR L N = EU) 00000000000000000 O N TIF 00000000000000000 I O W OH AA. 00000000000000000 C O II CRG L TP IEE 50505050505050505 M L AE DPD 89900112233445566 O O D NM( I 11111111111 111 C F D IE AW T E E RA W H RL C I IF 12345678901234567 1 181119 1 =O 3LN rl llI'

m CWE-COi4 COOLDOWN CURVES REG. GUIDE 1.99.REV.2 WITH MARGIN 05/t5/92 IHE FOLLOWING DAIA WERE PLOT TED FOR COOLDOWN PROF IL E 3 4 40 DEG-F / tW COOLDOWN ) INRADIATION PERIOD = 32 000 Ele VEARS FLAW DEPfH

  • AOWIN i INDIC A T E D IND I C A I E D I ND I C A I E D INDICATED Ifd)lC A I t D INDICATED 1EMPERA1URE PRl55URE 1EMPERA1URE PRE 55Uut itMVERAfURE PRt55URE

( DE G. F ) (PSI) (DEG.f) (PSI) (CEG f ) (95ft t 85.000 322.40 t8 870 000 367.07 '95 255.000 538,20 2 90.000 323.58 19 175.000 372.17 4 260 000 556.77 3 95.000 324.90 20 180 000 377 59 .s f 265 000 576 68 4 100.000 326.33 21 185 000 383.56 38 270 000 59J 24 5 105.000 327.92 22 190.000 389 98 39 275 000 621 34 6 810.000 329.63 23 195.000 396.94 40 280 000 646.35 7 115.000 339.53 24 200 000 404.44 41 285.000 673 13 8 120.000 333.58 25 205.000 412.56 47 290 000 702.11 9 125.000 335.84 26 210 000 429.30 43 295 000 733 la 10 130.000 338.27 27 215,000 430.67 44 300 000 766 55 ft $35.000 340.94 28 220 000 440.85 45 305.000 802.68 l 12 140.000 343.77 29 225.000 451.86 46 310 000 841.40 f 13 145.000 346.92 30 230 000 463.70 47 385.000 883 09 14 150.000 350.32 31 255 000 476 40 48 320 000 927.87 15 155.000 354.03 32 240.000 490 17 49 325.000 976 05 86 160.000 358.03 33 245.000 505.05 50 330 000 1027.83 17 165.000 362 38 34 250.000 521.03 3= w C3 h 5 1

lIll ,Ill ) 2 9 / 5 1 / 50 ~ D 459G75226395670 EE 1 T R) 5083S423492t 01. 69 AUI CSS 4* 24729892980535 SP 8024691 478 483727 I DE( 4555556667778899 NR IP P E M DR w E U) 0000000000000000 o T if 0000000000000000 D Aa 0000000000000000 L CRG 0 0505050505050505 IEE 0 DPD 5566778899008 t 22 ( NM( 2222222222333333 IE m I t / 4567890 23456799 3333334444444444 f G E O 06 D ( EE 90497f8082357568 A P TR) 041 3043901 96,2854 I AUI G CSS 8 628520888803617 R 4 I SP 223345667891 2356 A DE( 3333333333344444 M E NR L IP H I T F I O E W R DR P EU9 0000000000000000 2 0000000000000000 ITF N AA 0000000000000000 V W CRG E O IEE 0505050505050505 R. D DPD 778899001 1223344 L NM( 1 1 1 1 1 1 2222222222 9 O IE 9 O S T C R t A R E E O V 8901 234567890123 D F 1 122222222223333 P I U D f G E E T 0 T G O 0 E L 0 R P D 2 EE 4250284603345891 2 S E 3 TR) 124839881S2137572 E R AUT V E C$S 6789124698 4703716 R w = 1 ISP 7777888889990008 1 U DE( 22222222222233333 C A ON NR T Dl IP N A I w W D RO O EA E D G P DR L N = EU) 00000000000000000 N O I O W DH T I F. 00000000000000000 AA 00000000000000000 C O IT CRG L TP I(E 50505050505050505 M L AE DPD 89900112233445566 O O IO NM( 1 1 11111 1 11119 1 C F D IE Aw T E E RA w H RL C T IF t2345G78901234567 1 11 111 1 1 D)m0 4 tl ~

a a -8 .![: 88:3?3456 ';P48P s,e _r s,a : a, s.s.e i.e g n =.c e : _9 _ n,, s or [ E!:lillltsfillistil ses sgsg%;;geg g0 era .ss -o.s 8 _f_t snan nantn e ?s 2 ARA %AR?'"";#40* a 8 !s::4::498:05;*;8:3 s war ax: s sseggen::: gg-nunnnnanna nenne -a 5 .o$ ali 55 !!!!!!!!!!!!!!!! ~ ess:.ssssggggssgsgss-

  • g She *;ete--nn~nnnn;;.

R-8m ~ v-a s -! ~ esea:::::::::axa a e: s 53-1 $ i ![: 384:;;;8:R:S;RR9 s... s,.e r.e s s : s s. : :. :. :. n a" n n: e 8s n -. u -

  • 85 it E L E B, -. O m

L 3" 3 Ez Id $$$$$$$$$$$$$$$$ s :t use s -g ms-Stofags gss s sisgss

  • s.::a a.c.

e2 5 c u -S. ~ 1 1 ES-u

  • N M,0 W h m m o,. N n,. c e A40

>}}