ML20072J701

From kanterella
Jump to navigation Jump to search
Forwards List of Auxiliary Sys Branch Open SER Issues Per 830623 Meeting & marked-up Draft FSAR Pages Responding to Issues
ML20072J701
Person / Time
Site: Limerick  Constellation icon.png
Issue date: 06/28/1983
From: Bradley E
PECO ENERGY CO., (FORMERLY PHILADELPHIA ELECTRIC
To: Schwencer A
Office of Nuclear Reactor Regulation
References
NUDOCS 8306300200
Download: ML20072J701 (51)


Text

.

9 PHILADELPHIA ELECTRIC COMPANY 2301 M ARKET STREET P.O. BOX 8699 PHILADELPHIA. PA.19101 CDW ARD G. B AUER, JR.

'
  • ":.*,i" .s.6 CNG ENE J. BR ADLEY assocsava sessena6 couns.6 DONALDhbAMMEN RUDOLPH A. CHILLEMI G C. MIRM H ALL T. H. M AMER CO RtaELL PAUL AUERBACH

.ss,s,. ...... 6.o .s.' June 28, 1983 CDW A R D J. CULLEN. J R.

THOM AS M. MILLER. J R.

IRENE A. McF2NN A Assistant co nse6 Mr. A. Schwencer, Chief Licensing Branch No. 2 Division of Licensing U. S. Nuclear Regulatory Commission Washington, D.C. 20555

Subject:

Limerick Generating Station, Units I&2 Information for Auxiliary Systems Branch (ASB)

Reference:

Meeting Between ASB and Philadelphia Electric Company, June 23, 1983 in Bethesda, Md.

File: GOVT l-1 (NRC)

Dear Mr. Schwencer:

Attachment A is a listing of open issues which were discussed with ASB at the referenced meeting. Also attached are FSAR page changes being made in response to the issues as indicated below:

Issue No. FSAR Change

1. A revised response to Ques tion 410. 76 and 410. 78.
2. A revised response t o Que s tion 410.10.
3. A change to FSAR Section 3.5.1.4 and FSAR Table 3.5.4 and a revised response to Que s tion 410.12.
4. A revised response to Que s t ion 410.16.
5. A revised response to Question 4 10.19.
6. A change to FSAR Section 5.2.5.2.1.5.
7. A revised response to Que s tion 410.37.
8. Addressed by the changes being made in response to Issue 3. above.
9. A revised response to Que s tion 410. 74.
10. Addressed by the changes being made in response to Issue 3. above. 36M2j
11. A revised response to Question 410.89. t/

8306300200 830628 PDR ADDCK 05000352 E pop

'P i

With these changes, all the open items should be closed out except for Issue 3. Also attached is a revision response to Question 410.5.

The information contained on these draft page changes will be incorporated into the FSAR exactly as it appears on the attachments, the revision scheduled for August, 1983.

Sincerely,

}

Eu ne . B adley HDH/gra/72 Copy to: See Attached Service List i

I i

l i

l

'h cc: Judge Lawrence Brenner. (w/o enclosure)

Judge Richard F. Cole (w/o enclosure)

Judge Peter A. Morris (w/o enclosure)

Troy B. Conner, Jr., Esq. (w/o enclosure)

Ann P. Hodgdon. (w/o enclosure)

Mr. Frank R. Romano (w/o enclosure)

Mr. Robert L. Anthony (w/o enclosure)

Mr. Marvin I. Lewis (w/o enclosure)

Judith A. Dorsey, Esq. (w/o enclosure)

Charles W. Elliott, Esq. (w/o enclosure)

Jacqueline I.~Ruttenberg (w/o enclosure)

Thomas Y. Au, Esq. (w/o enclosure)

Mr. Thomas Gerusky (w/o enclosure)

Director, Pennsylvania Emergency Management Agency (w/o enclosure)

Mr. Steven P. Hershey (w/o enclosure)

Donald S. Bronstein, Esq. (w/o enclosure)

Mr. Joseph H. White, III (w/o enclosure)

David Wersan, Esq. (w/o enclosure)

- Robert J. Sugarman, Esq. (w/o enclosure)

Martha W. Bush, Esc. (w/o enclosure)

Spence W. Perry, Esq. (w/o enclosure)

Atomic Safety and Licensing Appeal Board (w/o enclosure)

Atomic Safety and Licensing Board Panel (w/o enclosure)

Docket and Service Section (w/o enclosure) i i

l i

0 chm M A s/23f83 LIMERICK GENERATING STATION LIST OF OPEN SER ISSUES - AUXILIARY SYSTEMS BRANCH i .

.l. - The applicant has not provided a complete discussion of the protection of -

safety-related equipment from internal flooding (SRP Sections 3.4.1 and ~

9.3.3).

2. The applicant has not provided an adequate discussicn of the protection from internally generated missiles (SRP Sections 3.5.1.1 and 3.5.1.2).
3. The applicant does not have a tornado and tornado missile protected ultimate heat sink and emergency cooling system (SRP Sections .3.5.1.4, 3.5.2, and

~

9.2.5).

4. The applicant has not provided the results of a complete pipe break analysis (S_RP Section 3.6.1).
5. The applicant has not provided an acceptable response to the AE0D generic

~

letter dated May 5,1981, " Safety Concerns Associated with a Pipe Break in the BWR Scram System" (SRP Section 4.6).

6. The applicant has not provided drawings of the Primary Coolant Pressure Boundary Leakage Detection System (SRP Section 5.2.5). i i
7. The applicant has not provided the results of a light load d. rop accident

_(SRPSection9.1.4).

- 8. .The applicant has not proviced an acceptE.ble response which verifies that the spray pond pump ho,use can withstand the impact loads of tornado missiles (SRP Section 9.2.1).

l, 9. The' applicant has no[ provide'd a commitment to-perform air quality testing

' on the primary containment air gas system after each initiation of the backup air system at the next refueling outage (SRP Section 9.3.1).

L - .. . .

. 10.

- The applicant has not provided the results of an analysis which verifies that the air intake and exhaust louvers, manholes covering safety-related equipment, ancf." doors with safety-related equipment behind th,em can withstand

! the impact loacings of tornado missiles (SRP Sections 9.4.1 and 9.4.5').

11. The applicant has not provided the results of an analysis which demonstrates that the main steam piping up to and including the turbine stop valve will l not fail as the result of a safe shutdown earthquake (SRP Section 10.3.1). -

. th E t_ig 00ES710N 410.76 (Saetion 9.3.3) ..

2 In accordance with Standard Review' Plan Eection 9.3.3, Part III, [

demonstrate that a failure of the non-seismic Category 1, j non-safety grade portion of the equipment and floor drain system j (EFDS) will not compromise the capability for safe shutdown .

b3cause of failure of more than one redundant safety related t train due to flooding for the following reasons: l t

a. Failure of the EFDS to remove the flood water f'om an r 4 enclosure containing safety rel,ated equipment. Consider flooding caused by a high energy pipe break, moderate energy pipe crack, and rupture of non-seismic Category I  !

piping vessel or tanks;

b. Backflow in the EFDS due to check valve or other failure causing flooding of one safety related enclosure from equipment or piping failure outside of this enclosure.

"- .~-

RESPOR% AJA%eD'

)

x. - -

.k' ..m

{

, ,- e

'e*

~- :  !, O~ ;_ . ...

2 . .

??{' .- - -ll.; r. .i..

Aks .?,67:.':~ !,L:; ld '.. :; * ~,2 yg --

7 -.

P= "

  • DRAFT

& o,sc b 4'O 76 - .

wmg.e w* eme.i % -#

e m- -

VmptcAmmu- L U 9%pnL%<.

MM &typ__

11M"pA"MW~

E14

/p M a.

WJ1e u

m, W-

. _g]A- w - M A

., s aa. p. .

GRdi4!L _ _,7 tam /h 4 '

+ ._

_ Aotd . . . .

.Ma

&_ _knt yplua _ V j' h f}g ]4aoa JWN,

. 4 ok.

mpgg4~1gp9yn ESj a-

_ ap-w _

xen, s,

. _ aap '

.-- _: n . 3ec5 +&udo, a 1Axk.6_M%~

s_ssE ptht

& psy4;gA k n& p %, W .

_- _ Ay_ac ';ger ,Ed EGeSem . awks m&

d/s%%y '

n s f EG_G5 s_ d .

pu.t

&&_Qu -.

. _TLQ f ay p Aglc

t lSSW 1-3A DRAFT _ _

.**,e.. -

e --

A viune m;cAc~m d-M g M a ta N . Ti _

L h n_ _

E3105_ y M . A eta m._ -

Eces L_ A mM_

nnym,-aes,_

_ w- m .t

_- _,k _L ' Ak.k4p>e~t _ Ab_ _ _ .

A~ Aka w A M, . Ant _ -_

~

.. p> esc h _ _

D - _

,w A4n aypekgaat 44 san.a M , M _

g y .ga p _4 &.J/we,h

_Wppac

._n g

th-p>e~t M _ ' M-y%yps us n m as W p u s~ f aJE D_G S

-nwmm _gg _ _ _ _

e _ _

Q W-gualucknab<-p>-kW.

1 m _ w w

. Ca DR any x) W h A msees mm M)W- Eees.6ang anyMpgpM&p% &tpA m.

.ak a m w out w j~

ad ad.

fm J~ba~ pk~~1cas "p y % ;*q~

aMd gw sse.

y f>* M kWfeM .

Issue t-4/9

=

D R A D. 1 l

/? M'

~

.- l. y m W

_m

-_(- -

e;w aA u k p a - h ;elu. m 1 M i

&to_ aK9_ 42_Q O jek~ca &g pa n-W f p~cL.

__ spry &;6 _: _ __ _

-Mh> wb .

M- M & W -5sse. pnryag

)MW

^

-tL

.n % p _~ ~ ss e._ _--

- W ,m -

$m

_ _ _ _ _ _ _ _ - _ _ _ _ _aacL_. _ pil top;tAeu h . _ _' A .-__._ _ - _. _- . . .

wy_ 4-n n __ _

y A

W & p_ 7 z_eA d w L g n .

, % 4 R p _.

LMaiuK K MM M1W

___;ckus2&S.aenyxvctmaAALnh munna _ sw

-rkja>"yc7%*dL MskskwAA>d"~,wO'A -

k ~

ge4 Supt 9-cptk-A cuAh w ay Ac duio g @ (yA Auch

_ wd. _ag&ds

. g mencso

___w.wa_

4 1ss e i-

  • DRAEt

_n ;er n _ _c m w p ae k -

hwagwh;elu 9q

- kaawv re kt my _-

Q-

._J'k ' . . &_hf J>at A . . - _ - .

pek ,Lw<t -

~

.m ouen

;ejar J

__2 - Q3xaxeq a.

y W p y ., m s e _

, ,.eg.a.# .... -e, ---u.a- mee.a. -h--.*

-=p*==~++u.w-we e.+-me -mea.-*-de-+-----*--- -es* --v- --

-.'--*me =*--.emmee-e-- ---ei--- -.--==- -- h -i - w4- -

-- .--- -. ~,--.----

e...-_..%+-m-se--- *.

w=

wea en mwhw-e-p-.ne--Nem-m-m **-+'v---m---- -e- . + - * * -

. > .-p.i,e.-- g am==-=--w--e-+e-- w.e .=me+==*.e. = - -

PN-=ww- + + +++-e w- + , . e. s*

  • mme-.-w a -g ,w. .aw,. ,,,,..,,m. , , , _ , , , , _ ,

-+ m e = . -

l _ _ - ..- . _ - .- - . - . . - . - - , - - ----

1%W 1-6h .-

t E ESTION 410 78 (Section9.3.5) ,

The FSAR states that level instrumentation is installed in the ECCS compartments to alarm on high water level and thereby notify the operator. During a safe shutdown earthquake all non-seismic Category I piping, equipment and instrumentation is assumed to fail, thus providing the potential to,f2 bod safety-related equipment. Provide the basit for not having flooding after a safe shutdown earthquake. -

RES9oe NTAO{ED:

0 0

l

~ ~

f 410. 7F i - , .$

^

onAFT N W/ 0 om zwpm

,x_-- -

s M d

'a,a a y La-t , ~ 1 % a x & % Lt. hsww  !

U aaeaast,o~ "'

M odoaA jdetect to GFR'kd i o M. _

GYLL/Ad>oo}p gtesy_r y9, myAnd all on~M m - W 0,& fx ~

1p2 a *)a,W,uva css % a m

~

pl6Lq accy_--.

, rug 0G>a41g_1 mw _

7C)LL_ dcn . M sutw&A -etudsoAks iloout am epsygg& cph

%x as tu nw >ac ~ '

__ _ Jppp<& ,

Lc d,. M .

,k. kfu b1G S AvLtnum^lo 5, GAL 4 M 4

>ao, all nu ~ >aua~a M dw Q fn rnanal c ,

m,M

( .- ,

E00 _dLAS

~

,AN- , ,_ p

_. 42w,s s~ w

  • )Lv_a $f>c,& ,A M.s~ ss u n n y_.

-_aa_ ffeksaev anyast

9 9 e isse-sh gem ou%a dap xk ~wwwe Au<*L xkwu 6 '

h  :

- &xL %%

b

  • JW

? O uZu~,A, f _Q

/ _ -.

su n sse

- $iuks!!tapg%+7kw_.

. w_ _

~r&+

us 0 Aw m. '

LwAfY, mm b

_GAdiwL$ r&%p&M aaanA - lpeALp - .

.,b,&cnitstify______

na~ g ag . _.

Tke alucknatw npAx,a 4pk Eces c.o_yA4 dw L&w aak kJu. mcta=u kJu Ece5 9L_aarawit dAakLM6LOl tat. l aluckpakowul hey sca%h&u5M%

~,+1w% tc cLt b am tJat nuud&xaut act jd twaa G-

$m nucL&ca2& u>dA. L%qutjnraa 6 accezdas9e

.PNkkxh 2hpaa3.

& viYwS& g lc cfR EO h .__HA W 2 6 5 /e m y, ,

rJ n sJa EEes G aa~ s A Lt._ _

Ik w o f .WrJa Mu1wk G-G$ut b - - -se

_ $ yy & t

isw.us DRAFT

~ ~2u m,a__

% esp

~c ~GQc3 T rA n<2+. . .

9 2.-. x 1 w _ ,1sce_c ~~

,.0

  • W _fMtc.,-,"19%

d w-ee

- me,m o

Me wee p w%e e

--aw-ee =

e.....%a . -,. -- ,

SO "9 l

i l

i-

<mw eme-

la s g-ih

/

DRAET LGS FSAR o

/ , -

/ OUESTION 410.10 (Section 3.5.1) i

/

Provide a discussion of an analysis for each rotating component -

/ which verifies that if an internally generated missile were generated; the casing would be capable of retaining the missile.

For each rotating component whose casing cannot retain the internally generated missile and the missile could damage safety-

' related equipment, provide (1) a discussion of the methods used to protect the safety-related train and its redundant train and other safety-related structure, systems and compenents in the path of the missile and (2) a drawing showing the component, 4

missile paths, means of protection for other equipment, and the redundant safety-related train. This applies to both inside and outside containment.

1. Verify that no secondary missiles will be generated from 1 any internally generated missile.
2. Verify that any internally generated missile from safety-related equipment will not affect the redundant .

safety-related train.

. 3. Provide the basis for concluding that "...other rotating components..., such as fans, do not have sufficient energy to (be)... considered missile hazards."

RESPONSE

j 1. The bases for considering it unlikely for rotating components, other than those identified in Section 3.5.1, to break through their casings and adversely impact safety-related equipment are the following: ,

hvnsd ,

A review of event reporte on file at the Nuclear Safety Information Center, Oak Ridge Nation 1 Laboratory, concerning failures of fans and missile generat on indicated that no fan failures have resulted in generation f missiles in safety-related areas of a nuclear facility. / ump failures resulting in generation of missiles, are considered more improbable than fan failures resulting in generation of missiles because pump casings are generally thicker than fan casings and pump speeds are generally lower than fan speeds. Even in the unlikely event that a rotating component does break through its casing, much of the component's kinetic energy would be dissipated in moving through the casing, thereby decreasing the probability of the component adversely damaging.a safety-23 OB 410.10-1 Rev. J77 pf/83

,- - - - - - - -w w -

.wg- , , - - -- g-y- p-mg-w-----.,---..,e,ru

-w-t wen twwi -wr--ws- --n'--

jssuet-a/]

}

~

DBAET /

s .

LGS FSAR -

related component. Therefore, generation of secondary missiles from the internally generated missiles described above is not considered credible. It is an even lower l

~

probability that a rotating component would adversely affect Il redundant safety-related systems because redundant equipment is generally located in different areas or separated by barriers.

Mdm hoc eM3 mhi.\est hem b<p pbmp5 h discussed in Section 3.5.1.

Potential missile sources identified outside primary containment are the residual heat removal and core spray pumps whose impeller sections are surrounded by concrete, and the HPCI and RCIC turbines whose missiles would be contained by their concrete compartment walls. These compartment walls ,

4 would also retain any secondary generated missiles. Failure of the recirculation pump or motor (located inside containment) would not result in damage to the containment or vital equipment, as discussed in Section 3.5.1.2. Other rotating components inside containment are unlikely to produce missiles capable of penetrating their casing.

2. As discussed in Section 3.5.1, the internally generated missiles described above will not affect the redundant safety-related train.
3. Tr.e bases for concluding that "... other rotating components ..., such as fans, do not have sufficient energy to (be) ... considered missile hazards," are the reasons discussed in Item 1 above e A 6% docxbj Wy, 5%EU b l

1 i

/

'Z.1 N l Rev. #f, M/83 410.10-2 ,

\ %Y { ~ )

i T

m e s smsehns'6.5.1 denh Hed w

~ap m, , e, u , % g

  • ex 3 uM hQ a i.n,gick ad'

. .. 3.

h\  %

p .a ns. c. c y m nt a ,s w is . . n .,

re.pvDhe. k yen (uJ ok hv., av sc.S ok ShkC(bd " r ctd'd gu'in:) es ' '

for ' Pedo %de, ub Se.w owhcc i eihe.d thd posdi,*c3 msss;Ic3 hem puwgs w1 6.ss (e.<33 c. pv.m7 ampehe x b B<bd &ggicdigo l od wm aumaagg% pna h b yma c ashgs . %e uwscu wscs puwqs ssS h ms which eac, .gnadi g Aosi 3 ed wh consVrkcYcd m e.cmedav,cc, w,ks % same tcmyizJ iwdb.shg cob e,d shx ,Ju d s c.s b se m s koA \ c d c & ? < A % J 1 o. y S Su On .he , - ,,~

, , . , , , , um,i+s p 4 7, y Y\ C QOb 0'Db' J sob u,casc+ea w 9 % 76 4s sxe, Aceoc ,

_ o

- ., , 4 I '

m 3

'g 4 s

  • il

,OS j .

I/W 87d&'LT&'$AL /AfTE6C/ff Gi= 'sfE/.Oc 4 GQc/)/'t?GWI.

'D- was hv, Ah v e<ib cd %d no hderndl g,ncccd d nees h w a couse toss 4 kne,m, oksngsgsam ry,<ca he sde sh ad % f . % pic 4 wrst'b** *"I " "'~#' " d h ensure thsT di essenkid si.3 6 s or c eneds ys e,

~

eAc row ,de, % w q vde.A g J p buu ;us fem pden&;d nyss;Io s m cce.s. L ,

J.n g caso d,ca o diced phh ex'ssYs pdbees;s c. podid w*,s;ic, . source

- A, '

15stt- L-4h -

J' , DRAFJ

,a.e,_+ ,1asso..m.

p 4ex h d m w sucs ca % #

~

im7ed g m ore h w x Mwde c e y w y c m ,.ust ; % & e rebshot ep;pown wi\\ be cnd.& b +4v1 sde AJ0ouw.

O

//

e A

i 5

,('

i 3  %

I

% \

/

m, .

n .

f __-

Iss e z . Sf;

_O_. pt u .Qfff

\dseA A.Cav%D - ..

hil JLvA? .ks loc hi in sJdy nl.hd eJ* s-<es .. na .....]ciU -. in Tdl* . Wo./*4>

  • l*~

rim lhe - .re.sion. wLy.. they. a uof.. u t/c erd . abe<ief . ef&cfr6Ld-

....wrulle!. . w kr&k

. .. ..yrpnen+ nesid .& . tJe rLhk,.Fu nay %,

- .._tke<e ...we . b < ace Acel ...eep><Je . t4-

. 7ckI d

_. .._.S~ ..hIJe n,wil<>. .E<. . eaeo.l ryifem1. %e

.... _. - barrieu.._. eoasi1f .. >L wlll.., 4/..<s . a 1 ee:by .~Lcck .

._.._.h hily..end.ie ... & .p % h-l -ru:k <J ve

..sJ&a,JI. y k r h pre <ent ydknj. A// <cLM Li. seed . .& ide iLA~n. are scy-h/ Jy

. ..deph arivi.d..Udv_. kA. .A.re #6e .ph,h./

%a4 e,-jamh -edd &

For. .b- py reLd.d

. . - . - r< fe ..s h +d. ~ n _,.r4. Ykey . m pe %,I, #e<< wiy avc JLt d<ywell. aen ..a,,1. wler. Ani. A d4 d~,,&Al was .--p ed> <-ed . ..f.c. _ M e f-i.. wLeeL

. . . . . . . . . . 6.+ 2ke_Aa .ildei. A u,+ M idCcic f

~

...- wk e-e<y + p en etra canny.

i e

- _ .--. . . . _ _ - . _ = _ . . _ _ . _ _ . . . _ _ . . . _ _ . . - _ _ . - _ . _ _ _ . . . _ . . - _ - . , . . . _ - _ _ - _ _ - - - _ _ _ . - . _ _ . - _ , . -

Tcble 4/A10-l hmpygs8 -

155W1.4/]  ;

=

fo+edral HVkl. % Airssilu -

,. n._gg gw wm . - . ---

CAN. scA ,1iin 5% yhkht B %O C) D ._ . . . .

s eny-\rt w - g x4 (->

yw .

11

_ _,, , c eV - st4- EM e hva b t Ett.

LD

\ M - 2.0 %  % L % v e ncl. 9 ,e m y.< 6 rs , ss a ,

-- ,y a -

ss j - . .. .

cAV-152 c ga yph  %  % s50 43 !

o gv- rdt wg use=* - e ssa (0 !

ww tW-2m bJ v encl. A v c.1.v ,. tc vs thi) i, - .. . - -

(,Q DM- \20 6 a.@ . ec% m c h % r &c>4 (D

~ - ~ -

C AN * \'t I Wt wcfn alc. ,4w J 15 10% l I

  • * *M  !.

I RV- 5"L2. Diamat p ancl. Ymh adveikd W., tidg

\AV- 2cl h i h Beev oA., g g,g ss ets (2 - -

t A+ 2ct  % 6 ansl.al~ Mpg  %, sss (Q NS t Av- 2eg 4tgg ecA wwe tw sis i xv - s a %s r ci,hha u. a t 6) l' cAv- g2a e.w g um a au s so+ LM -;

.0 AV-Il4 hgem A Mgg t ec4 LM

c. w - a a c.e a g  % sis te -

l l ,.

om-tis em w e e w.y~d 2.n r.e -

(t)

W c.,. g rw. w\ t. cow ts t*\}

L A N - 7.ct $

- %V - 2ea wec t ~mo T

% wiu L \s n i (c)

T P.MR. p pv.m Wiccetw 15 ITT (.c)

'l AN - 1b 4

  • s6 d.La W \\ \& k WCW . ._

z%

\ w-zit y - a ce.w. e c. (.4) mv-tso sc,s ,_ a m w. 6 = 2. AS

% N-ist  %%, v.c,w eet.r. ~ w e m. 43 .

. cas W .

OM-5"E % p hp'd,. bu %gg ,

(C) \

a%

. . - _ . - . . . .... - \ \

i  :

-' _- __ L ? _ '^ ~ ' '

~_:_ _ _ -

c ..

0

-v4 . 155te z 7/7

{,f(\N[bhy..g  % ~

TQlc t+li10'I ( u A)

ACf~ C'f Y WW

- . . . ' .Ne$ti I .

W Wd O h % M MAtc/QEqr M M e.ar%, S h W d. b

,styy'459,4 e we Sh hh GM y e lid k W%'s,6CMMC HTELM*Ly'eusesivity stissaE G E r'tA'4rse d AS Wof' foSTc4./if.s To occwl to/rh oTML MNurs.

W f M %*. b 1 M d e W e nm p * $d. Ok $ LA upMd gfm ws hM(r.(

b*E ALMd h%%5 . g h ~ A w pab M, u.w,N:.. 4%uAg N % c 9b R d M M ec w m k Q a.tk en, e.%

W pvv M ,%8 Mbdwe sg Lv.,. d .

bh MM *6 1/ '1_ v i 4 e i p hre. b -

4 a m. .. . _ _ _ . . __.

"~~ -

._ ..- e 64 P.

8 8.De ".._. 6 a m .NW N .

. 4-

.aM. m W

, , m e s.

...em. g. . , ,

  • . ee

I M OE k -t/7 9/0,/2

- w ifnS FSAR  ;

) JeffMe**0$Y WrifOhfMkf f is 4.11 x 10-H per year, which is well below the acceptable value of 10-7, demonstrates that Limerick conforms with the 4

intent of the guide.

3.5.1.4 Missiles Generated by Natural Phenomena Only torn' ado-genet. ted missiles have been considered. Missiles used in the design are listed in Table'3.5-4. The structures designed for these tornado missiles and the systems protected are listed in Table 3.3-2. Table 3.5-8 provides information on the i characteristics of these barriers. Additionally, emergency 4

service water and RHR service water systems yard piping is protected by burial and separation of redundant Icops.

The spray pond system is not provided with tornado missile protection per se; however, it is designed to accommodate postulated multiple failures during tornado events. Limerick has J

four 50% capacity networks that are independent and can be individually damage-isolated. Only two networks are needed for a safe shutdown of both units. Missile failure of one network with

, a single active failure of another or (multiple) missile failure

of two networks still permits safe shutdown. Furthermore, the only single active failure that can cause the loss of a spray network is the failure of a network valve to open due to valve

, operator failure. This is only a temporary loss, since the valve 1 can be manually opened so that, in reality, two spray networks can be lost by tornado missiles as well as by the singl.e active failure of the valve motor operator without affecting the ability of the ultimate heat sink to perform its safety function.

Limerick is in conformance with Regulatory Guide 1.117, " Tornado Design Classification," regarding systems to be protected from tornado missiles except as discussed above where unacceptable damage to unprotected spray networks is not considered credible.

3.5.1.5 Missiles Generated by. Events Near the Site The nearest possible train explosion accident and its consequent missiles are considered to be the most severe missile-generating event that could occur near the site. The postulated missiles resulting from such an accident considered in the design of structures protecting safety-related systems are listed in Table 3.5-5. Missiles resulting from truck, industrial, and pipeline explosions would be less severe and therefore are not considered. As demonstrated in Section 2.2, there is no potential for missiles from ship or barge explosions or military installations. Descriptions of the railroad, its location relative to the plant, the railroad explosion, and explosions from other sources are given in Section 2.2.

] ..

es 3.5-17 Rev. /, (4/82

TABLE 3.5-4 - -

i TOPNADG-GENEP.ATED MISSILE PARAMETERS '

IMPACT RINETIC WEIGHT t.P FA VELOCITY ENERGY

_ _---__MIESI M lilb1_ ift*1 imehillitlassi ll.t-Abst $

i /, Wood plank [4 in. x 12 in.

i x 12 f t) 200 0.333 300/440 6.01 x 10s ni i 7., Steel pipe (3 in dia x I

10 ft, schedule 40) ,Y 78 0.063 100/147 i 2.62 x 10* 8

3. Automobile :::t c. ; R m 25 ft -icr . c.. 0) - 4000 20 50/13.5

)  %~C See Note 2) 3.36 x IOS I

)

t/, Steel rod (1 in. dia x g 3 ft) 8 0.007 216/317 1.25 x 109 ' I

.,y, '

Utilitv pole (13-1/2 in.

,'- dia x 35 f t, not more 1490 t 1.266 144/211 1.03 x 105 than 30 ft above all 4 grade elevations within I

, one-half mile of the ' I plant) q l

I

  • w ~ - --- M
A staat pre a a.dk - , , 2,s- .zs, r

I ire, saa.Ra eo> i,,pi, nuio 7 3 fee /yr}e C/2k. dk X EIV

  • l0' y93 .ff/ /49/z//

is e, seLeAle e) - - . . - - -

[

asu(areainyc h rteaedres Aree Jeen arrece/4r 7he el?e*ef.crfaar/As J **/7.

2. bkeriedws reyi.ef /eryk e/tb
  • F*t/*k/N/**N wirt/$ ar7%rre Tare 25'<h'eyN

-4<<//.r.fe't y -relafa/.r?%4es. 4/r <d7}-ee/<7<'/'imdeer Am 1eev mm<rO< the ef/a//rze <~44} /e/c As a,fa .ro'ab<d/r~d/ezd-A whe#~Ve /

1sc el4 ,

tum a-3/7 DRAET LGS FSAR QUESTION 410.12 (Section 3.5.1)

Your tornado missile spectrum does not conform to the guidelines of the standard review plan (NUREG-0800 July 1981) Section 3.5.1.4 nor does it conform to the guidelines of standard review plant (NUREG-75/087, y 1980) Section 3.5.1.4. Revise the FSAR to include the fell ing tornado m'issiles at all elevations:

1. steel rod, 1 inch diamter x 3 feet long, weight 8 pounds  ;

(velocity = .6 x total tornado velocity);

2. steel pipe, 6 inch diameter x 15 feet long, schedule 40, weight 285 pounds (velocity = .4 x total tornado velocity);
3. steel pipe, 12 inch diameter x 15 feet long, schedule 40, weight 743 pounds (velocity = .4 x total ,

velocity);

and to include the following tornado missiles at all elevations up to 30 feet above all grade elevations within 0.5 miles of the

) facility structures;

4. utility pole, l'3.5 inch diameter x 35 feet long, weight 1490 pounds (velocity = .4 x total tornado velocity);

and

. 5. Automobile, frontal crea 20 square feet, weight 4000 pounds (velocity = .2 x total tornado velocity)

RESPONSE

Limerick was originally designed for the three tornado missiles listed below: wood plank ~(4 in. x 12 in. x 12 ft), steel pipe (3 in, diameter x 10 ft, schedule 40)', and an automobile (not more than 25 feet above ground). /"

This by the NRC at the construction permit stage, June 1974. design basis was acceptegg#ffI/"

jT i JE The exterior walls and roof thicknesses have been evaluated for the tornado-resistant enclosures listed in Table 3.3-2 and are capable of withstanding all of the missiles listed in the ;i:>c 7aI/ S 3,f-yq ::t i;r . The 4000 psi strength concrete walls and roofs have minimum thicknesses of 24 inches and 18 inches, respectively 3 (Table 3.5-8). This exceeds the minimum acceptable missile

) barrier thickness requirements specified in Table 1 of Standard Review Plan (NUREG-0800, July 1981). section 3.5.3.

~

2b og 410.12-1 Rev. yf, 71/83

4m lum A-4/7 rsg=3 ggy QAO.\L - . ..._

_ . _ ___. _ . _ e .

=m- ==mm. -*e

,.e.- --. .-

. -e

' The,_desip_ bas _m_sobseroem41 _opdd4_as e hum _iw Refwiwg3_%e.L AR y Aindode. _ _

%e. Eiu&isaes 3is%Labuem. %e._syckcoml -

missh 4 mwkss_h:,_toeemasseswus_wu/ - .

expvidtd b_7 mMbm_h_mM%k --

u- 4. _ _

,m ee emmo,ms-e

e. e- meek a hw-a

., , g.-. ,--w ,, e .-ee.,e.-..w.- -.4- - .. e.

e -

wm ac -

wemy m. mumm--e-m- e-e.-e- mem--e -+ee, -= -

m m e-e m eem +mee,,

l ,e  %%me e.- , .

e.e-w-m-.w-mmmee womus . wm.me me.em.e-~.-

-_-e o .e . -o, - - - - - .en.-- --~. - n e.m y, mie--.w-e.ee.m e me%.. ma +-' ' *--*= = * -*'- -n- - ==

_ -%m-e -mum-.m-n - ,umsi._,.we e w-._eem m m- e # -e-e w= = - - - - m.-..wr e- - - e e-r m-g-ein--. -e - e. -, ,me- .---* =--w4w+-me a wwe .h,

- e, - -- . - -.--noqm.e e -s- -w=- --e-e- e e+m e. -n.eer- w- .-we -.u---e.-e me. e -N-e.-wea --

+ --e -* *-

me -

--a6 48--**-e--e .-----=p.m--- ~.en ew-es-e =w-au e - - -

  • == -
  • m'=*N-***"-=eenhMmem -- Nm e-- -.4e.e- - - - . - , - ,. -w.e *-.--e -e=w, eumu- we+-*=* * * * - - -

ew -'=r = usw =

mmmew ee--- -+- =w --ee- i-- e -, .%-ee e m-ehw mew'-= w

,e -

_ w ay- -- we. e ma-- ---' + ewe * *^='h-h -

,,. m, - _ - m,g. p- ---,y we- - - - - - - - - -w-w.- - - e- -

1ssm 3 -s/7 LGS FSAR

$HRY $ _

'P . ; ..- ;; ';'-d e.,~r--':, t'- d;; ;

~)

. t: ; - t ; ;;. - - f ; t-j -

n ese clo es eb e gne to w hst th h s

,'e e gn o a tih' in a iti s he gin the

< si ss . le . as nca e" t clu i hes ad on wo sil ..

T d ign in c -

ri _.

[ t he

.^
..l',

o'

, .,/0 01', , ::- - _g:.- 2 .1' e Ic ver i [ _ t: .__:2 " . . .ca . !_p__ .::

>g ,,- su. u,.a.- ._r su. 2.. . ..s -..,..-y pl_'ng,s th

$. u n,.

ft 2-1 r eel pe , e.a or o-Q l 1

.o st e s

.els . cer e

in t aly d t.

df (e.

o

.,m is es ol

.g.

r ,

ral i o ) a yz for orn s s, e ab ity to ad s 1s of thr ugh o e

.ea es ve ly

  • pac ng fet e t om ent a pre ti af b" - i_  : ..;.du d,.ff L1;.t., 10 ..  ;..i .

I b,..r .., r___r r

a. The total area of the nontornado-resistant features that have safety-related components located behind them is extremely small compared to the total area of the tornado-resistant portions of the enclosures.
b. To penetrate a nontornado-resistant feature and travel a sufficient distance to impact a safety-related component, a missile would need to strike the feature at a perpendicular angle.
c. Much of the missile's kinetic energy would be dissipated in breaking through the nontornado-resistant feature, which reduces the possibility of the missile adversely damaging a safety-related component even if it strikes
one,
d. Redundant safety-related components are normally located in different areas of the plant or yard or are separated by walls so that a single tornado missile would not damage both redundant systems.

$MSC/

5 .

Rev. 17, 02/83 410.12-2 l

6

' ~

l % CE 3 6/7 vu v! AFT

_lsseck1 -.. . .

- **88' N

N -

m m p e % h d m s Jvs hew endosocesh been_desiped_4o w%dowd 4e 1 - sch sleet .- .

_ _ rod,_4ie olili3 y _. 4 4 ne 6-inch deeldix; -

e mnd 4b 17. 'mckpiw inddith b 46 ocipal_4 tee destp_Joasis missiles. Ts,_ces' is in ateord w 46 % sbubd revieu; , '

phva_(.MLW2EC, -o&b do) ICB\). _

e*- ---e -e .-.-

h m m,m.

e --m---a- -, ,o

---e.-.

w- e.=mm - -m-. m-_ .

e

, m

- - - = -e==p. ---'

. . - . . m.e.--e ew% =mm- *+n===-=en-g ,_, , , . , go.,

eme e m m m. me-ee eea+ + + + - + -----m 'ee-**---'e+*w**=

m- ,-

- w+e +wmi.e,-. -

9v- w-m*w w e *-Ne em.h* * = = -

  • - *- *=-"" " "- ** ' " * *
  • mm- e.--eawemc. -*m.g-- N-. h-+ w***~^-*h- = * ~ + N ""' * ""

4,. ,, . ,,

% +- e.--.-._w-p= +- - v = , * - *--' +-" " * +

mew o wm . _----.a..,-w-. *ym*- e

e. e+ m M-s,+mme,. see en_= = * = -N=*-emmi== mew ehe* ** N' ' - * * * '"'"N " '- ~*' " * * ^ * ' * * * **"-

_ _ _ _ _ _ - - - _ _ _ _ . _ _ . -- - _ _- ua - - '""

tssue 3 -7/7 4/O./2.

i DRAET '

I w str.T "k .

. -- y

.I-I , _ _m 3. .prebab.l'iP3 _ o( *ay e.f_.Iks.. obe.ve

,i + . , , . e . ., , n . t >

r,. & e.ns anr .f  % . p . ~ . ny,

_.-J shwekores[ nd .s g e e t(ic a tt 3 de siy.J 4. be

. v esidd A .k. a beve missiles ) ,,J tLe. '

a m ,.13 ,- ,. a . 3 ..p3..<.u.s ._,_ a ,

.r o .L 04 . [e sk ota .. u pre oA.c a, a c.. w d .J . l .o .{., A e. ._{.It eu A3 v e . >.a n .

Lssxt.5

. E o t..& m L. i pva q) b.I c~,:.4 a e i -3 ..n Eus.J. u

.c. a s. a m,s6 t,i 1. , t, a TA6e4 S f'*' L . . #rJ tLe se pene.bfim./ iepact c>e ik e opu.- y ~. .t n.e_ 4w n .e . s e . y. .t st , Ja.s f ils eb ,.s ir,elvJ i,3 m. a ket e c.,v ,s ud v \ve pil y..{ . Oe r [. A . 3, ' " +L t , .m ik.4 s e, - s sgot u __2.$t3- << t.1,4 c. mp 4, ey

. . L. ,$.J . J , _J r. y would n,F ocew 4. 11 1 <.J s J L. . sy s t.- . .u J . ** (* sLW/m .ces s b<

~' '

2 ek:. o A Qsh ...uio - . g .u .. A JA J.._ si % I ds

+

_.44kWe kaijure...

s

..o. ..

%g IS% 4 -_lf_$

2 LGS.FSAR 4 ..

( OUESTION 410.16 (Section 3.6.1)

Provide drawings of typical high energy piping which shows all anchors, jet impingement barriers, postulated break locations, ,

wall penetrations, and references to general arrangement drawings j which show the~1ocation of each section of piping. Provide i isometric drawings if they are available. Provide the missing FSAR tables referenced in Section 3.6.,1 of the FSAR. l l

RESPONSE

I Drawings showing typical high energy piping for the HPCI steam I' supply (portion outside primary containment) and the RCIC steam supply (portion outside primary containment) are presented in Figures 3.6-22 and 3.6-26, respectively. These typical high energy piping drawings show all anchors, wall penetrations, and postulated break locations. These two systems do not have any jet impingement barriers. The HPCI steam supply piping stress levels and pipe break data are listed in Table 3.6-14, and the RCIC steam supply piping stress levels and' pipe break data are listed in Table 3.6-16. The general arrangement drawings that show the location of piping are referenced in Section 3.6,1. The general arrangement drawings for the HPCI steam supply line and for the RCIC steam supply line are referenced in Sections 3.6.1.2.1.7 and 3.6.1.2.18, respectively.

The tables and figures provided with Revision 20 are listed as follows, along with the schedule for completion of.the remainder of the missing tables and figures.

iussRT (D .

n dot e ' % e M k S b "^

  • P 4 ' 4'b '

a puk eis respm. -

410l16-1 Rev. g, yI/83 i

155ue 4-ys

m. m. n m-c.c.

ikl % e.t 9 { !.,

.- 9,17..Mj s?e.

.-t Db . .- .

._ Nkk .

.Ms_ re.sgeese, W w&_ wee. b el. % 4 cos

~

se mayeu  %,m, bee.Sx. Awa,\gsts _can _be. -f.-Gemeb _

wh_ SSL9._ALL_%b._.HmA TeebEu,_Iw _Ac.c.ecb A 'PosMew An.e ,

IVLE_3-\ . h._p'9c br.e <* _ chase.w ,_.is _%_betsw:. l

.eC h e. u S U . . s b .s e q qt. g h e s's h _9RQ ._ j leeng wdme_%4_.

. [ __...A%&rsm% : _ __ . _ _ .

_a. . we_a.a . na u_sa

. . CO M.%d.NM. .hM 4%Sh3h S (F160Re..Q4Dh-1),

2. TemperAmpceR\e. eV. .Wst w9a 'coq-

._ . Act me.4 _S e Lsu % . 4be9, _% Nt," 9

3. %sse _9 c . h .e, R.h WrA .ce+4 -

. m A L Ae w ta.g Abr .b _<m. (yueA4,

.al.p. -e .

toMneh Gn s e c. b s E \ eG' he W9 ESAR. _ _ _ _ . . _ _

+._eeg D empo ee .e .ee e. e.,..i.w-# e-- , ..-.m* *. .

J r-. . . - , . . - .

.e- _ _ , _y, .._. ,.

1%506 4-MS

&f([ STEAM GIUE B RGatC (N HPCI CdutM ntEUT' STEAM Laut ,

T~ent. 5475*E-m HPCI PUMP ROOM 102t(,95fa.

g Tser. sis *F Pge r,

) 9_'i g;m 17 EL.177 p,g, g y,

\ J_ V = 26,000 FT 3 LJALL H&fGMT 2 8.'6 E r Pess. IV.7ps= p to , a A.tca lyu rP i sL l A = 121 FT2 C = 0.77  ;

- -1r HPCI PIPING AREA- tsS4p, fir *r O18VEL= 201 3,370 FT3

  1. '"' *
  • W Act. M EIG HT' Ib ET 2 M ft h PstEW. /Y.7/ g p tuo st; ARE A A = 137 FT2 C = 0.69 BOP @ 0.1 PSID 1 r ISOLATION VALVE 7eup 120*f COMPARTMENT g, yoy, g ,g gg,gy, 39 p p O21VEL.= S3,800 217 FT3 ,g pm fy,g a gb=v 2L7
  • A = 150 FT2 200A4 Hr.s AU ira &GO LMt.

SFADE ELO*C ^* '

C = 0.76 toogte oct fueesttA*AW

'I u n povo to u uvM N U7 s l' c_o vo tu o4 G .

STEAM VENTING T&*1 P. I20*f

. TUNNEL R H- #'

EL. 241 IJAtc #4sss +r f oFr, V = 4,425 FT3 FRE 3. IV 7t ari. gg , g i

A = 145 FT2 C = 0.67 BOP @ 0.25 PSID 1 r ATMOSPHERE l l = LO OEFFICIENT  ; LIMERICK GENER ATING STATitih l

V = FREE VOLUME FIN'AL SAFETY ANALYSIS RE* ORT l

BOP = BLOWOUT PANFL __

E4VIRCMMtEMTA(CCHDITICMS A4b CbMPIATME+JT bt@5 ton l'ba HPCI STEAM SUPPLY LINE BREAK FtGUREdw es M10.16-1

- ~ = = mww m m m="p m Ak__

3n I .

LGS FG 61410.16 1

! H PCI STEAM SUPPLY LI NE BREAK

- IN H PCI COMPART MENT f

TE f1PE RATuR E T RANS I E NT Py 8 2 .

! g o. 1 1 p l ,%

. 8 a eu j N . . . d i ^ i. ;

i g ~

is

.1 f ..

/

8 ... - - ^ e P _A O

.O ,. ' '

02 2.00 4.00 6.00 8.00 10.00 12.00 14.00 16.0 i,

TIME (SEC) nr l

.y Los F L Q 4\0 4 -3 ,

i HPCI STEAM SUP PLY LINE BREAK  ;

IN HPCL COMPARTMENT PRESSURE TRANSIENT -

Q

~

17 .  ;

Sh I

, 2 H m is  ;

m n.o w' i I

l EN. f a~

Q.

F \ \ , [ m V

$- Y &

w im 4m em em em um um as '

j, TIME (SEC)

o" ' -

f '. :a ^

]%OC- 5 - l/ )

LGSe%iSAR -

(

OUESTION 410.19 (Section 4.6)

Provide the information requested in our generic letter dated May 5, 1981 regarding the AEOD report entitled, " Safety Concerns Associated with a Pipe Break in the BWR Scram System."

RESPONSE -

A response to the AEOD report entitled " Safety Concerns Associated with a Pipe Break in the BWR Scram Systems" NUREG-0785 and the superseding NUREG-0803 was given by a letter from J.S. Kemper (PECo) to R.L. Tedesco (NRC) dated February 8, 1982.

.. 22'ti n, PECo participated in the BWR Owner's Group -

subcommittee on this subject and endorses the report of that subcommittee, subsaitted to t?ie NRC as GE topical report NEDO-22209.- p .

4 g , ,, gg,, , ., .

f[('19 &l O.dtJ . b Y'-L W W '~ V

u , aec a a s w % +, 8 v ~ ~ 0 + ,- a, d os * ' ' ' ' ' ' " "" '

&<p,aiton$c,e,u q '. a s u s c ~s & f af n " ~ 5' " "" """ A" 'Wk '

o, 410.19-1 Rev. /, jf/jVI e -r-- v- 7 r - - . _ , , , , , , ,

LGS FSAR g g g t/l

,h 3 -[ nam h Air flow through the monitoring cystem is assured by

(

crea 16. The air sample is surveyed tha suction created by a vacuum pump.

by the Geiger-Mueller tubes in the sampling chamber for itsThe air sample is radioactivity content. The level of' through the same containment penetration.

rcdioactivity is recorded in the main control room in counts perThe corresponding minute. The range is from 10 cpm to 10* cpm. Particulate and iodine concentration is 10-6 to 10-2 pCi/cc.

monitors are not provided due to the substantial limitations of their usefulness as described below.

It The noble gas monitoring equipment is shown in Figure 11.5-1.

is not designed to be operable following an SSE.

Rcdioactivity level indication and alarms for loss of sample flow, high radiation, and downscale Activity levelare provided in indication locally the and in control the main control room.

i ,

room is provided on a strip-chart recorder to provide trend information.

The operability of the sensor and the electronic circuitry can be A verified during operations from the auxiliary equipment room.

check source is supplied with the monitor. Sample connections .

are also provided to facilitate additional samplina for Icboratory analysis. ggggg The radiation monitordwill be calibrated in accordance with Technical Specifications requirements (Chapter 16).

The reliability, sensitivity, and response times of radiation monitors to detect 1 gpm in one hour of reactor coolant pressure The boundary (RCPB) leakage will depend on many complex factors.

major limiting factors are discussed below. .

5.2.5.t2.1.5.1 Source of Leakage

a. Location of Leakage -- The amount of activity that would become airborne following a 1 gpm leak from the RCPB will vary depending on the For leakexample, location aand the coolant feedwater pipe temperature and pressure.

leak may have concentration factors of 100.to A steam 1000may line leak lower than be a recirculation a factor linelower of 50 to 100 leak. in iodine and particulate concentrations than the recirculation line leak, but the An RWCU noble gas concentrat}dns may be comparable.

leak upstream of the demineralizers and heat exchangers may be a factor of 10 to 100 higher coolant' Differing than downstream, temperatures except for noble gases.

and pressures will affect the flashing fraction and Thu_s, an partition factor for io. dines and particulates. airborne concentr 1b Ob 9.2-34b Rev yf, (H&83 mee.T O . is, capW of beig c41crtdeA dorgpe

z. . -

.- j.y - , ,

tssos 7- 1/9 -

~

LGS FSAR .

-. i. .. .' .

.w M ; yt .,

  • 'j:-
i'*.4,,. .

..a ,

tv_msTION 410.37- (Section. F. YL2; f.t'.4) H .: .a scik. 70 P.Q ..w:W.E .w;. m Ala. "i .

i .-

n~. w v ,<< ~

o'.
.".::~ar-};?} 9;.: < 'v~: .'
. \_. _. ': L::.

Verify that the nazimum potential kinetic energy resulting fres.:'RQ r ' ;f ll dropping each object of less weight than:a spent fuel-assemb

- will'not exceed the~ effects of the fuel handling accident *'. W W. h 5

4 described in Section 15.7.4 of ~the FSAR Provide a list. 5f'alfT ?T'. u'.7 ,; .

~

91 ' objects considered and a .discussion ,..r/ of the analysis!s9.~-;

.g 2;,y ;= 9 T . ^^1  : ~_ _ - [ _, N.j W?

itsSPONSE

/7s m4d ju. % Aircm of +'s desp ksa M M y Acd/c.Jtw .Su a n M.7 4, Y& main kinske y af n die y d

-f4 - Ibs . A rcw%)

.kr bA i.s t 7, 000 heu- be.a, m rab v4 a'ekro v'ne d/k+-

dyr of lo o,b li" Yhv ew peMal h4 A c4 crui# b l @ 4 -rm B eL< 14

  • l<>7L i <. /47 G IcheNe M y JL &//rwy wenm%s

_ - . . . . . . . ....miy Aug Eh ~

G be.e.,, rueAd t .

j._.. ..._,..

t

DRAET ..

' "* 7-

  • l I

6 Ne /od wCcA

,  %' pas / n r . # 4.- .too /Ar

, w -deaakp a. Ugh- kinelte. yy .

L a fa./ h~ nl

~

- l5 hpy.e.a m

.sp.e ) .k.f. 6Ds ,

vsL.e is knd n

.. < pohlhd 9J /Ti000 4+-lbs eA. Yh.

leeA <+ & mxximu ,, hW- k2g O JYL rec.br M ,s m cm a-J r.e w % .

4leruu4v cm (& ) *h w Hh of is U loats em</ oe, spe.J- M wlg4. Irssa g MO ikt . l

@wt ID nswoTdh.R410 57-1

~  % ' Hgu ' I&s q duubp n UgW kixeke cayy L .~ dnppa

~

Kap hf. 4% }p.nk A p M.4 9'es af &M axin hM

&'y Myn are lis M , rJ-ak k v4 e of Y4 h 4 4 .sps  !

A V6 sp L./ core- or /x V4  !

Sai poot a appnpacJe .

~

l

(_'

~ '

kJRAF T .

.ss* 2-su .

9= k bd A) w NL +b 'ei up$ % of k'4 a. / k mr 'InkJ m m yno.sy.s,

~ ~

14 peMal %yefYd. _

w ay sw //g4 /eso

& .1oo p&s k /ns L

' ur4M L merc-17,cvo -ff-Mc k hbr min dep b&y w fu: L & wc-es A c a<., . L / w dep m J v4 JsNay ki, w o ur do< ou ~

iv m .

1) DE /& /r wak / e>L, k, +/< ref a 'y p/dferm b f: F.

/& k ou A ova V4 rp a 1)&L -EJ p-est.

m/ Gr. de k #~, cs 1

a) &A /md is ck7vc v le. Ap & V4 14 InJ i;r

,cs).

en .

    • em. .e e < , e. em e e e .4..

e em.

  • S O *s l

1 1

_ m ,

M R61.Cm o m foTEuriAl autNY, Fr-ms

--. .. Wr.,thobuve want.

rng. -

. - - - . _ _ _ LoAb. wt Pb!1109, gescdr H%4r

. _ L8 .

0) AI M RIEL BuubLE OR buwmV BunouE 900 e2 I, o oo 29,000 DLc.kr Ewksw ow reJ>< % sya t M post ]

C2 ) m)-VEuCL STCRAGE EACW (oOO g I, co o S 3, o oo

[f4wEg plah-, bW roA d12 4s cerr ]

(3) 5727th1 U W E P1.ct $

/2Mrnu/NG 7EOL Lj$Q l6,OOQ 33 ggg

[0ch Ehchesw cm r&//w ~/, core ] .

\

m,e h

e 6

DRAFT

~

1ss o w A v

% is M S w 4 4h-up f a J-tgl4- lM cetvp will L m e<we. L 4Lu.

f 1'L. d'= up

%-1.c Ea2 bu-r-/Le b p b&

-Glicwi> mers:

G) '70. acM kiueke cewbpd d'ady Y-A Any of de ligLF /saAs aba will h less W %k msvim m po+LJid eqg A< 4e L.4& p p a~d

& 4- wk crv< v- 4Re. M.

wLk no M'm k<. be.ca m Ac.>

Y-C.$or14., En - 'ca M 04 Ye

& 4MA Le sirpJfr*cM & 5 .L w b

4ek'.d<-e. vt YL'r re43iv9 /p>7e, n rGuc I

m.

l 1

isse mus

~

DRAF_T _

S vet <J

~

(k 3 4 losAs wit /

c- 4 .h '

? ~~ /csa, Vk~ m an'm m byL/ (i e . 1%

~ ~ '~~

A,C J yd ^ ~ /d wi// n w a r.s. M 7L mn w v{c. re&d4y F/w b <' %

of YO rvach welf, .ns 97/4s4/c).

Is. 7 y a~ ][~o ['

~

Q) As ks w d in &n ..

a.

-/ia./ W a.a & 4 60/,

repr&y -fully ss% 0 f Mc.

ruv24 7 R:c,n p r M . Mi

-fiwv pm%b an nac m s R o.

o~

~ ~ ~ ' ~

d+sy c / _ // f l/ loaf D+ M g Eved W w GJ M ) ail nL us h f

u aAAET -

.sse ssee

.- los./ eerup , 44. i> rye.k/ M cu as.s.r6 mer

. wtM evere.fi 44. rs/> e Olsshs e a.sg7 *

. J. , 'T

-G  % ~ spe.,J k / 4 N Q eCnf.

of 4.inad wyg n ad k <su,44

@) M Q ynu.Js eGr L& s p.,/ f a / o r

  1. hype / / coal le,j. V4 f d s,4~ yc rac 4, cm fp p4 or ok impseAs A4 ,.s)
  • We4 a cM Av91 - e %d my wh% 4- cs-a. kJ -L%,

hwf 6 1 .

l l

~ ~

DRAET -

LS5W 7-B/e I .

wweto.s7-i t,- d d ~U/

TNe tk<er *IqV" heb  ?

he %M ei ky kb pc< k 9.dcliw cal-Idaa

& pna6 otl2- eki a<e pe<G<~d wk, A de-ahle M the c%b d

.by,n %e d;c&i ~til n.f accrd' the e ei i & the sel kb au,f,,f kiu:Lcd ta Sedten . )r, 7. of f4a FM/,

I e l

l

.e 1 .

I i . . . . .

l

. [

/ -}

L

~.

pay _ 1%% 9 - t/f

.n

. d 5 LGS FSAR I i

(

I OUESTION 410.74 (Section 9.3.1) l Provide a discussion of the maintenance and periodic testing program for each instrument air system to assure compliance with the requirements of ANSI MC11.1-1976. Specify the maximum time '

between testing of the compressed air system in the discussion.

RESPONSE

Limerick is.in compliance with the requirements of ANSI HC11.1-1976 as discussed in the response to Question'410.73.

(PcnG ')

The primary containment instrument gasasystem is shown in Figure 9.3-2. The refrigerated dryers located downstream of the moisture separators cool the gas to a dew point of 340F at 105 psig. The cutlet filter is a coalescing type designed to remove 99.99% of all particles 0.03 micron in diameter and large~r (oil, water vapor and solids). All piping and equipment downstream of these f11ters is copper, bronze, or stainless steel'. Periodic monitoringofthedryeroutlettgeraturewillensureprperair quality. {bticulite le is =ML be VM f. k le n 'h *

  • 1 0 W i d Tab '

' The instrument air system is shown in Figure 9.3-1. In hdItion to supplying instrument air to various plant equipment, this system also serves'as a backup to the primary containment A nstrument gas system G The instrument air system is provided -

Nejf with desiccant dryers that dry the gas to a -400F dew point at ,

p 105 psig and filters that remove 100% of all particles larger than 0.9 micron in diameter. The filters will be switched to the parallel set of filters every six months and the elements will be i replaced yearly. The need for desiccant replacement is indicated when the local visual moisture indicating gel turns from blue to pink. In addition, excessive dryer outlet noisture is alarmed both locally and in the main control room. T.'.e ine tt m..ent sic systear vim-be tested once each ref ueli.7g ry le-to-ver-14y-sir l

qv&1ity cc,mp1ience with-ANSI _NC11,-4-4 9Mrr

'KSeN

~

\

Q FiI?ecs_ e _ oS__fcoi E! y S ltr an o( fc"Ine -

esec M 1 aum alLhe patih LaL4%e -

y%cansekof_%_1 w cts _sy d n un+L%Jas%ek e

. L y12Jav_asen un be.--prov'kIAL ak- -

h.ded 4e-yWe leveIS 6L Wibba$e? M d hy

-_q p syphenx_qem -tp % Wbe--

+ - . ..a 4

T 22 9,-z./z 4

N

) . -

as d rd.s >  :~ss 7at_a kikftLie_k aire ws wn sa" pea a.un y :nchviLd afeth ver .&eL2.l?ek+ L. d e w _ f aa Lia_y r oiI ceNel $f Sf.ccLEWdg ..

Pasu A lexA wilLGe3 esEeLAK$.T- t4he HG - ,

less W% ssec we .-l k d. swle J p'oids. # be .__ l w;Lbe

+ekteL_%e_cacL ze%im_ , v cycle

s. ,

n' RAFgf .

W+w *ee4N===- ==W

- _ =.---..-------w.,  %

k

~. -

GF, ese -- =

...w -

l i

.=

3 S

) ..-

_ __ nme---- *

-.w Smem -- emm wmes --emo--.-m+ y .h 4 y - ,----r < - - - - - $

. ,j .

IE SV E n1-l[L -

+ ,.

l

~

OL'ISTION 410.99 (Section 10.3)

DRAFT Verify that the structure which contains ,the main steam piping up to the main stop valves, is seism.ic Category I. Furthermore, verify that no non-seismic Category I piping or appurtenances are located above the main steam piping and associated valves which i could damage the main steam piping and appurtenances during a cafe shutdown earthquake. -

EEWE MA@t .

e U

I l

a O

b 1

l

iswe n-t/s

% w oo.n .

DRAF1 _.

'M - nw y psoas te,A A >a % a ,m>.ch a sece_1 _ .

~2  % m z+p -

, y , , , -

,b N, Y A)<Lbv<^3. GA.L kna~tJA s>- a W,Y_W, . - _. eI M .W Amwadou gtk rd  ?

s ua m u n a a a n ;e- & g,quhwgat na._ 36-m as p%Ajo ais-a_Qkteg59.4.s aa w.s.a. xjua diseuk<a,a J p s.

g e sa, W W tat @

A /nad.hI- aa.c a A- %,;e4%p >co xht;du nty_painu a~ t __

A?LWasom&;tlua.,ntef pasw

-aam- % papj~ ssE. _.

Ch n d. A t n b e n s, & n ,T l t. A rt c &ru b E i cttu box-so OA.L ODahuct a>o & EA as di>acuua 6 >/uha 3.e2. I sr a-AW LQJLtkmUL L ,

e YuaL pLaruk 0 _ .JJ A Ktsm &L Le uboct4da s. aL y ,amLi ,fa gfu'h,)tr4cek ,

o Q o,& d

%b d.,4c,,WLt M W _fna.mdQa.c e t

' don tecbi,

,b ~, cat 4L,k Y w,u- ,1/n42l

$s _

_pu.g_..__ 5

/ '

L L_. .MZ&% -

=

L

.- . . nsoe w 33 aw$ et w&k, h fu/rxa.LN ob_s du %cau A+m_ AG

~~

< avah G 6

& A n " Mu .

~

m-spe.wsm

-m- <nmm . w m e-E mw . em o

e. .-me,we-ee x%w e WN M-me.weau-. -.e-we--- - se.

-e.

eNWe =

emsmemm..yw

-me

- . + -*

=im.

8 9

c .

DRAET mS FSme ase OUESTION 410.5 (Section 3.4.1)

For those non-seismic Category I vessels, pipes and tanks located outside of buildings, discuss the effect of failure of these items and any potential flooding of safety related structures, -

systems and components. Provide a similar discussion for non-tornado protected vessels, tanks and piping.

RESPONSE

The failure of non-seismic Category I and non-tornado protected tanks, vessels, and major pipes located outside buildings (Table 410.5-1) will not adversely affect safety-related structures, systems, and components as discussed below.

Tank Failures The location of tanks in the yard area is shown in Figure 3.8-58.

Failure of the tanks on the west and south sides of the power plant complex (Table 410.5-1, items 1 through 5) will not cause potential flooding of safety-related structures, systems, and components. Any flooding due to a failure of these tanks will be contained within seismic Category IIA earth dikes, which will remain stable under both static and dynamic conditions. The design of the earth dikes is discussed in the responses to Questions 240.4 and 241.14.

The tanks on the north side of the power plant complex (Table 410.5-1, items 6 through 9) do not have seismically designed containments around them. Failure of these tanks could cause local flooding. This flooding would not adversely affect safety-related facilities for the following reasons:

a. Surface drainage in this area will drain water towards the Schuylkill River and Possom Hollow Run before it can reach the power plant complex.
b. ' Seismic Category I electrical cable and duct banks l l' located in the vicinity of these tanks are adequate, as discussed in the response to Question 410.6.

l

(%scN ~

Failure oolino Tower Basin Wall (Table 410.5-1, items 10 &

I asCW /

TW er ant mple is tec e ,tr , I oci d to b T e o ig as y o ow a 1 e ae y I e r di wh' h w re in s e nde eth ta a d ami

c nd 'i n ad t te i e .a en >t in t -

'a torn do e_- ect . T. is e 11 e 3deau e fo.,the.)j [

l '13 OB i

410.5-1 Rev. Jd, p'f/83

6

~ . . . m d' -

, \ D M

$%Vk u+ {' LGS FSAR

\0.5 ?.f ons uct to 1. 2 .0 ,w cn i 1.2d

/

ee- n g er an e' nra wa at o te a in Ti pr ec e e nd rom e t- as cent li of e cool' t r gt so er un ry s 'n '

urec

.4- and .4-6 T run fp ter of ter ro. ye li g er as' wi e mi a t a se t s m eci 't i s s own n igu s 2. 4 d2 5. oo a r m e li to _r as 11 un est cwa e uy ill iv.r w' h r in t po pl t pl .

Te e s, 'c Ca e o ec ca cb s d ct nks e e in t vi 'nity of e ng ower bas' a d qu ,

disc sed i . nse_ o o st- n 4/n. - , /

I Failure of Circulatina Water Conduit (Table 410.5-1, item 12)

Failure of the conduit within the yard area between the cooling tower basin and the turbine enclosure will cause flooding of this area. Water from the damaged conduit will erode the soil cover and flood the yard.

The runoff pattern will be similar to that shown in Figure 2.4-4. 3 The seismic Category I electrical cable and duct banks and valve pits, located in this area are adequate, as discussed in the response to Question 410.6.

l In the most severe case, all the water from the cooling tower '

basin could drain through the damaged conduit into the yard area l

between the cooling water pumphouse and turbine enclosure and cause flooding of the condenser pit. However, safety-related systems and components would not be damaged, as discussed in Section 10.4.1.3.3. See also the response to Question 410.92.

Failure of Maior Yard Pipino Failure of any of the pipes identified in Table 410.5-1, items 13 through 17, may cause local flooding. However, the intensity and volume of water ~ discharge from any of the pipes is less than that of the cooling water conduit failure discussed above and would not cause damage to any safety-related facilities Soil erosion caused by failure.of these pipes is discussed in the response to Question 410.47.

~

w, l

\

l l

'Rev. 18, 03/83 410.5-2

s er. y DRKFTu,s &

as w wa., td be w  ;

~pc f cu c+he s&dy dded s fr-cf- as,..s ys k s ,or. u pach dae b s k L ,: 9 e,

    • M . .- mee..

.* 88 5 "* * = 6 59h.m er w , .e _ m e p.m.4

-*Neeege. m a m e,,,op..

- - - * += == -. -.. . . -.. . _., .., ,,_ , , , , , , _

""*P *6 - **6-e ee me. + a g e.mmm. .mg .e 6-ee , , ,,

  • Nhee 4w-e..m.m. e d'** *= -4 *N u.e= .e.o . . , , , . . .

e w ...,gw,m, , _,

7 mme . .o..

  • * -- 6-"8W h 6.O g , , , , _ _ _
  • -. P M- @ m ek* We-'am+y e wee mh e - O

' * *

  • w .*m o ap.w ng.mm e.

"**M" " . W e e e ,,,,m ,

"'* - - = = = = . . - - .. ... ___ , _ , _ _


.- *e-= - - = . .

"" 8"-*' W e8*4* WO db4 e.r m eom ..m, ,, ,

~ DRAFT 93 pac <t B The G,%c of the &c,lta, To ~c< Tjnsia m d ~ ;t/

act abc<iely a FFeof safdy relded strnd <cs,,ydent,

.e,J t, panedi as haunch bdow, The rama FF p ain of h<  % the co ok,,, fower b uin w 4l Fr.dse -ilt de sin;h<

h 6d .cnused by ;Jc-a g ,<~, y m y N s n ni

. . ik ~n in Rp-wi 2. 4 'l a d 2 +-T sicif J the flood der k- Pke t00Lp hve< louin wo.,tl <- m a ~y . % the pour pin,+ aup/cr 7ke we,sf c.ae flos/ c ud*c 1 &< +be p c-ce pl,,.! ca~plu wo id Is e . cre.hrl Ly a 5,;La

,F FLe i~n ele af ria w ,+ ). cochn ,.

. - . h ~c< hans wn/l. Fe<_ thri ase ; s po< hen of tke e o oliay +. ~er but8 . nd<< wouid Ebv }ow.ali

- the +ud,ta e enclosu<e Alti,oayL Scme li-ifed t-<bine cac61-<c floodiy m<y ocene ,tke<e wo-td be

..no. impact ou e M y - <ci d e d co ~ p e n e n kt.

ne sein.t c..+cpyI eledenI c4/e . aJ J k b..,Ks ud vn!ve - p;h Iecde<l h fke

%Mmnmm .g e e ccc kuy +o-w baan ne

~

ndegadely p<dech) ce dtreasted ia rke res,u->e ko quedron yto. d .