ML20072C356

From kanterella
Jump to navigation Jump to search
Rev 7 to Sequoyah Nuclear Plant Offsite Dose Calculation Manual
ML20072C356
Person / Time
Site: Sequoyah  Tennessee Valley Authority icon.png
Issue date: 03/23/1983
From:
TENNESSEE VALLEY AUTHORITY
To:
Shared Package
ML20072C339 List:
References
PROC-830323, NUDOCS 8306210032
Download: ML20072C356 (81)


Text

. __

l O -

L i

9 9

'b SEQUOYAH  :

I NUCLEAR PLANT O P t

OFFSITE DOSE CALCULATION MANUAL 1

TENNESSEE VALLEY AUTHORITY O

wnwa%k P

4 SEQUOYAH NUCLEAR PLANT OFFSITE DOSE CALCULATION MANUAL i

()

A/ m EFFECTIVE PAGE LISTING REVISION 7 Page Revision TOC 1 Revision 5 TOC 2 Revision 7 1 through 2 Revision 6 3 through 4- Original 5 Revision 3 l 6 Revision 4 7 through 9 Revision 5 10 '~

Original 11 through 13 Revision 5 14 Revision 7 15 Revision 5 15a Revision 7 16 -

Revision 3 Table 1.1 (2 pages) Revision 4 Table 1.2 (2 pages) Original Table 1.3 (8 pages) Revision 4 Table 1.4 Revision 4 -

Table 1.4A '

Revision 5 Table 1.5 Revision 4 Tables 1.6 and 1.7 Revision 5

-Table 1.8 Original Figures 1.1 and 1.2 Original

. Figure 1.3 Revision 3 17 Original 18 Revision 2 19 Revision 7 20 Revision 6 21 Revision 7 22 -

Revision 5 23 through 28 Revision 7 Table 2.1 (3 pages) . Revision 7 Table 2.2 Revision 5 Table-2.3 (3 pages) Revision 5 Table 2.4 a-c Revision 5 29 Revision 7 Table 3.1-1 (4 pages) Revision 4 Tables 3.1-2 and 3.1-3 Revision 4 Table 3.2-1 (3 pages) Revision 4 Figure 3.1-1 through 3.1-6 Revision 4 Original ODCM 2/29/80*

Revision 1 4/15/80**

Revision 2 10/7/80**

l Revision 3 11/3/80, 2/10/81

! 4/8/81 and 6/4/81**

I Revision 4 11/22/82 (10/22/81, I~' Revision 5 11/28/81 and 4/29/82**)

l 10/21/82**

Revision 6 1/20/83**

Revision 7 3/23/83**

l

  • Low Power license for Sequoyah unit 1
    • RARC Meeting date

TABLE OF CONTENTS Introduction

1. Gaseous Effluents  :

Alarm / Trip Setpoints 1 1.1 1.1.1 Release Rate Limit Methodology - Ci/s 1 Step 1. 1 A. Noble Gases 1 B. Iodines and Particulates 4 Step 2 10 Monthly Dose Calculations 10 1.2 1.2.1 Noble Gases 11 Step 1 11 Step 2 13 l5 1.2.2 Iodines and Particulates 14 Step 1 14 Step 2 16 l5 1.3 Quarterly and Annual Dose Calculations 16 y 1,4 Gaseous Radwaste Treatment System Operation 16 1.4.1 System Description 16 1.4.2 Dose Calculations

~

16 O TOC-1

TABLE OF CONTENTS (cont'd)

2. Liquid Effluents 17 G,

1 2.1 Concentration 17 2.1.1 RETS Requirement 17 2.1.2 Prerelease Analysis 17 2.1.3 MPC - Sum of the Ratios 18 2.2 Instrument Setpoints 19 2.2.1 Setpoint Determination 19 2.2.2 Post-Release Analysis 20 1 2.3 Dose 20 2.3.1 RETS Requirement 20 2.3.2 Monthly Analysis 21 2.3.2.1 Water Ingestion 21 2.3.2.2 Fish Ingestion 23 2.3.2.3 Recreation 23 ll 2.3.2.4 Monthly Summary 25 2.3.3 Quarterly and Annual Analysis 25 2.3.3.1 Individual Doses 25 2.3.3.2 Population Doses 28 5

2.4 operability of Liquid Radwaste Equipment 28

3. Radiological Environmental Monitoring 29 3.1 Monitoring Program 29 3.2 Detection Capabilities 29 O

TOC-2

l. Gaseous Effluents

() 1.1 Alarm / Trip Setpoints .

Specification 3.11.2.1 requires that the dose rate in unrestricted areas due to gaseous effluents from the site shall be limited at all times to the following values:

1. 500 arem/y to the total body and 3,000 ares /y to the skin from noble gases.
2. 1,500 arem/y to any organ from radiciodines and particulates.

Specification 3.3.3.10 requires gaseous effluent monitors to have alarm / trip setpoints to ensure that the above dose rates are not exceeded. This section of the OCCM describes the methodol'ogy that will be used to determine these setpoints. .

i The methodology for determining alarm / trip setpoints is divided into two major parts. The first consists of backcalculating from a dose rate to a release rate limit, in Ci/s, for each nuclide and release point. The second consists of using the release rate limits to determine the physical settings on the monitors.

1.1.1 Release Rate Limit Methodology - pCi/s Step 1 The first step involves calculating a dose rate based on the design objective source term mix used in the licensing of-the plant. Doses O are determined for (1) noble gases'and (2) iodines and particulates.

Depending on the pathway involved, either air concentrations or 6

ground concentrations are' calculated.

A. Equations and assumptions for calculating doses from noble gases are as follows:

I Assumptions: '

l. Doses to be calculated are total. body and skin.

-2. Exposure pathway is submersion within a cloud of noble gases.

3. Noble gas radionuclide mix is based on the design objective

~

source term given in Table 1.1.

4. Basic radionuclide data are given in Table 1.2.
5. All releases are treated as ground level.
6. Meteorological data are expressed as a joint-frequency distribution of wind speed, wind direction, and atmospheric stability for the period January 1972 to December 1975 (Table

, 1.3). -

Revision 6

. J ,. *

.. <- . .m ,

  • w L . .: * . 6 manwm T s. s o s e.~ . a m .ose S m = ** As%~ e me- e s=*G u ~~ ' ' ~
7. Raw meteorological data consist of wind speed and direction measurements at 10m and temperature measurements at 9m and 46m.

ll

8. Dose is.to be evaluated at the offsite exposure point where maximum concentrations are expected to exist.
9. Potential maximum-exposure points (Table 1.4) considered are the nearest site boundary points in each sector.
10. A semi-infinite cloud model is used.
11. No credit is taken for shielding by residence.
12. Plume depletion and radioactive decay are considered.
13. Building wake effects on effluent dispersion are considered.
14. A sector-average dispersion equation is.used.
15. The wind speed classes that are used are as'follows:

Number Range (m/s) Midpoint (m/s) 1 <0.3 0.13

~

2 0.3-0.6 0.45 3 '.7-1.5 0 1.10 4 1.6-2.4 1.99

, ll i '5 . 2.5-3.3 2.88 6 3.4-5.5 4.45 7 5.6-8.2 6.91 .

8 8.3-10.9 9.59 '

9 >10.9 10.95

16. The stability classes that will be used are the standard A through G classifications. The stability classes 1-7 will correspond to A=1, B=2, . . ., G=7.
17. Terrain effects are not considered.
18. Environmental transfer data is consistent with NUREG/CR-1004.

Equations l

To calculate the. dose for any one of -the 16 potential maximum-exposure points, the following equations are used.

For determining the air concentration of any radionuclide:

~

Revision 6

9 7 1/2 f 9P (j,j)

Xi= (2/w) jk 1

.i x/uj )

exp (-A (mb) , ,

I zk"j (2rx/n) r j=1 k=1 Xi = air concentration of radionuclide i,yCi/m3 fjk = joint relative frequency of occurrence ofblowing winds in toward this windspeed class j, stability class k, exposure point, expressed as a fraction.

Qi = average release rate of radionuclide i,,pci/s.

p = fraction of radionuclide remaining in plume, Figure 1.1.

Izk = vertical dispersion coefficient for stability class k which includes a building wake adjustment, t . _ _ _

Ezk (O zk + cA w , w ere z s the vertical dispersion coefficient for stability class k (m), e is a building shape factor (c=0.5), and A is the minimum building cross-sectional area (1800 m 2), m.

uj= midpoint value of wind speed class interval j, m/s.

x = downwind distance, m.

n = number of sectors, 16.

A1 = radioactive decay coefficient of radionuclide i, s-1 2 wx/n = sector width at point of interest, m.

For determining the total body dose rate h

DTB : ) Xi DFBi (1.2)

}l i where DTB = total body dose rate, mrem /y.

Xi= air concentration of radionuclide 1, UCi/m3 DFBi= total body dose factor due to gamma radiation, mrem /y per UCi/m3 (Table 1.5).

r For dotcraining th9 ckin deco rato D3 = Xi (DFSi + 1.11 DFyi) (1.3) i where Ds = skin dose rate, mrem /y.

Xi = air concentration of radionuclide i,UCi/m3, DFSi= ski'n dose factor due to beta radiation, mrem /y per UCi/m3 (Table 1.5).

1.11 = the average ratio of tissue to air energy absorption occfficients, mrem / mrad.

DF Yi = gamma-to-air dose factor for radionuclide i, mrad /y per UCi/m3 (Table 1.5).

B. Equations and assumptions for calculating doses from radioiodines and particulates are as follows:

Assumptions

1. Dose is to be calculated for the critical organ, thyroid, and the critical age group, infant.
2. Exposure pathways from iodines and particulates are milk ingestion, ground contamination, and inhalation.

3 The radioiodine and particulate mix is based on the design objective source term given in Table 1.1.

4. Basic radionuclide data are given in Table 1.2.
5. All releases are treated as ground-level.
6. Meteorological data are expresssd as joint-frequency distributions (JFD's) of wind speed, wind direction, and atmospheric stability for the period January 1972 to December 1975 (Table 1.3).
7. Raw meteorological data for ground-level releases consist of wind. speed and direction measurements at 10m and temperature measurements at 9m and 46m.
8. Dose is to be evaluated at the potential offsite exposure point where maximum concentrations are expected to exiet.
9. Real cow locations are not considered.

_4 O

I

10. Potential maximum exposure points (Table 1.4) considered are the nearest site boundary points in each sector.

4

( ) 11. Terrain effects are not considered.

12. Building wake effects on effluent dispersion are considered.
13. Plume depletion and radioactive decay are considered for

, air-concentration calculations.

~

14. Radioactive decay is considered for ground-concentration calculations.
15. Deposition is calculated based on the curves given in Figure 1.2. -

! 16. A milk cow obtains 100 percent of her food from pasture grass.

17. No credit-is taken for shielding by residence.

1 Equations To calculate the dose for any one of the potential maximum-exposure points, the following equations are used:

1. Inhalation Equation for calculating air concentration, X, is the same as in the Noble Gas Section, 1.1.1.A.

For determining the thyroid dose rate:

i DTHI = 1 x 10-6 Xi DFIi (1.4) ,

i where:

l

DTHI = thyroid dose rate due to inhalation, mrem /y.

1 Xi = air concentration of radionuclide i,p Ci/m 3, 1

DFIi = infant inhalation dose factor, arem/yr per t

yCi/cm 3, (Table 1.7).

1 x 106 = m3/ cm3 conversion factor.

l t

i 5

EDTISION 3

2. Ground Contamination For determining the ground concentration of any nuclide:

i G

G i = 3.15 x 107 ik Q1 DR 1-exp -(At tb)d{ (1.5)

(2xx/n)Ai k=1 where:

4 G i = ground concentration of radicnuclide 1, pci / m * .

k= stability class.

ft = Joint relative frequency of occurrence of winds in s t ab ili ty class k blowing t ow a r d this exposure point, expressed as a fraction.

Qi = average release rate of radionuclide i, pCi/s.

DR = relative deposition r a t e , a-1 (Fi gu r e 1.2).

x = downwind distance, n.

n = number of sectors, 16.

2nz/n = sector width at point of interest, s.

A1 = ra di oa c t iv e decay coefficient of radionuclide i, yr-8 4

tb = time for buildup of radionuclides on the ground, 35yr.

3.15 x 10' = s/y conversion factor.

For determining the thyroid done rate from ground contamination:

l DTHG = (8,760)(1 x 108) G i DFG i (1.6) where:

4 DTHG = thyroid dose rate due to ground contamination, mr em/ y r.

1 1

1 G i= ground concentration of radionuclide i, pCi/m2 DFG i = dose factor for standing on contaminated ground, mren/h per pCi/m8 (Table 1. 8) .

8,760 = occupation time, h/ yr.

I 1 x 10' = pCi/pci conversion factor.

Revision 4 i

3. Milk Ingestion For determining _ the concentration of any nuclide (except C-14 and (v^} ' H-3)-in and on vegetation:

7 .

(1.7) fk 9 1 DR r 1-exp (-A Ei te)

CVi = 3,600 k=1 2nx/n YA y Ei B gy 1-exp (-A g t

, b)

PA y where:

CV. = concentration of radionuclide'i in and on vegetation, 1

pCi/kg.

k = stability class.

f frequency of this stability class and wind direction k = combination, expressed as a fraction.

Qg = average release rate of radionuclide i, pCi/s.

DR- = relative deposition rate, m-1 (Figure 1.2). 4 s x = downwind distance, m.

I n = number of sectors, 16.

2nx/n = sector width at point of interest, m.

r = fraction of deposited activity retained on vegetation (1.0 for iodines, 0.2 for particulates) .

A = effective removal rate constant, A . = A.+A is the radioactive decay bheffihieXt, hi Er.

i where A. ,

l is a measure of physical loss by weathering and A ,0.0023 h 1) for particulates and 0.0017 for iodines.

(A y =- 5 t = period over which deposition occurs, 720 h.

e Yy = agricultural yield,-1.l'8 kg/m2 . 5 B. = transfer factor from soil to vegetation of iv radionuclide i (Table 1.6). I A; = radioactive decay coefficient of radionuclide i, h 1 t

b = 3.07 x 105 time a h for buildup of radionuclides on the ground, (35yr).

Revision 5

P = effective surface density of soil, 240 kg/m 2, 3,600 = s/h conversion factor.

For determining the concentration of H-3 in vegetation:

CVT = 1 x 103 XT (0.75)(0.5/H) (1.8) where:

CVT = concentration of H-3 in vegetation, pCi/kg.

XT = air concentration of H-3, pCi/ma , 3 0.75 = fraction of total plant mass that is water.

0.5 = ratio of tritium concentration in plant water to tritium concentration in atmospheric water.

H = absolute humidity of the atmosphere, 9 g/m 8.

1 x 10s = g/kg conversion factor.

For determining the concentration of any nuclide in cow's milk:

CM i

= CV i FM; Qg exp (-Ai t f) (1.9) where:

CM1 = concentration of radionuclide i (including H-3) in cow's milk, pCi/L.

CV.1

= concentration of radionuclide i in and on vegetation, pCi/kg.

FM.1

= transfer factor from feed to milk for radionuclide i, d/L (Table 1.6).

l 1

l Revision 5

_ _ - - . = . _-

4 Qg = amount of feed consumed by the cow per day, kg/d.

- Af=

adioactive decay coefficient of radionuclide i,

[}

)

t g =;receptor, transport1.time day, of activity from feed to milk t 5 o

For determining the thyroid dose rate from ingestion of cow's

- milk:

i CM f DFING f UM (1.10)

DTHM = 1 x 108 i

where:

DTHM = thyroid dose rate due to milk ingestion, mrem /yr.

4 CM concentration of radionuclide i in cow's milk, g ='pCi/L.

, DFING. = ' infant ingestion dose factor, mrem /pCi, I j

1 (Regulatory Guide 1.109) 3 UM =_ infant ingestion rate for milk 330 L/yr. 4

-1 x 100 = pci/pci conversion factor.

j ( 4. Total Thyroid Dose Rate For_ determining the total thyroid dose rateEfrom iodines and particulates:

! (1*II)

DTH = DTHI + DTHG + DTHM

+

where:

f DTH = t tal thyroid dose rate, mrem /yr.

D THI = thyroid dose rate due to inhalation, mrem /yr.

4 D thyroid dose rate due to ground contamination, THG = mrem /yr.

DTHM = thyroid dose rate due to milk ingestion, mrem /yr.

The maximum thyroid _ dose rate calculated in this step will be used in_ step 2.

d

)

\

Revision 5

-. . - ~ . _ _ _ _ _ _ . . . . . _ . _ _ . . , . _ _ _ _ . , , _ _ _ ~ _ _ _ _ - ____. _.. _ _ . . - . -

Step 2 The dose rate limits of interest (10 CFR 20) are Total body = 500 mrem /yr Skin = 3,000 mrem /yr Maximum Organ = 1,500 mrem /yr Dividing the above limits by the appropriate dose calculated in step 1 yields a useful ratio.

Dose limit =

Dose step 1 R This ratio, R, represents how far above or below the guidelines the step 1 calculation was. Multiplying the original source term by R will give release rates that should correspond to the dose limits given above. Step 1 is redone using the adjusted source terms to ensure that this is the case.

Appropriate release rate limits in pCi/s for each nuclide and release point will be provided to plant personnel for use in establishing monitor setpoints. The setpoint for each gaseous effluent monitor will be established using plant instructions.

Release rate limit, principal gamma emitter, geometry, detector efficiency, and a safety factor are combined to give an equivalent setpoint in counts per minute (cpm). The safety factor ranges from 0.2 for systems without automatic isolation features and 0.5 for systems with automatic isolation features. The physical and technical description, location, and identification number for each gaseous radiation detector is contained in plant documentation.

1.2 Monthly Dose Calculations Dose calculations will be performed monthly to determine compliance with specifications 3.11.2.2 and 3.11.2.3. These specifications require that the dose rate in unrestricted areas due to gaseous effluents from each reactor at the site shall be limited to the following:

For noble gases,

1. During any calendar quarter, 5 mrad to air for gamma radiation and 10 mrad to air for beta radiation.
2. During any calendar year, 10 mrad to air for gamma radiation and 20 mrad to air for beta radiation.

For iodines and particulates,

1. During any calendar quarter, 7.5 mrem to any organ.
2. During any calendar year, 15 mrem to any organ.

g

~ - . . . - . - . . - . _ . --

b This section of.the 0DCM describes the methodology.that will be used

~

to perform these monthly calculations.

- Doses will first be calculated by a simplified conservative approach

.(step 1). If these exceed the specification limits, a more realistic calculation will be performed (step 2).

t

-1.2.1 . Noble Gases

. Step l' l

Doses will be calculated using the methodology described in this step.

If any limits are exceeded, step 2 will be performed. _

Equations and assumptions for calculating doses .from releases of noble gases are as follows:

Assumptions

1. Doses to be calculated are gamma and beta air doses.
2. The highest annual-average X/Q based on licensing meteorology for ground level releases'for any offsite location. will be used.
3. No credit is'taken for radioactive decay.

l

4. For gamma doses, releases of Xe-131m, Xe-133, Xe-135, Ar-41, and Kr-88 are considered..

) 5.

For beta doses, releases of Xe-131m, Xe-133, Xe-135, Kr-85, and ~

Ar-41 are considered. . 3 6._ Dose factors are calculated using data from TVA's nuclide library.

7. The calculations extrapolate doses assuming that only 90 percent of total dose was; contributed.

i 8. A semi-infinite cloud model is used.

9. -Building wake effects on effluent dispersion are-considered..

1

)

5

_ Equations For determining'the gamma dose to air:

t -Dy = (X/Q) 106 Qf DFy1 (1.12) j 15 '

0.9 '3.15 x 10'

! 1 1

4 Revision 5

.- - . . . _ . _ _ . - _ . _ - , . . _ - , _ . . . - , , , , . . . _ . . . _ . _ _ . _ . . ~ , . , ,. _ . . - , - - . . . _ - _ - __.-

where:

Dy = gamma dose to air, mrad.

X/Q = hi hest annual-average relative concentration, 5.13 x 10 s/m3 .

0.9 = fraction of total gamma dose expected to be contributed by these nuclides.

108 = pCi/Ci conversion factor 3 3.15 x 107 = s/yr conversion factor Qf = monthly release of radionuclide i, Ci.

DFy*. = gamma-to-air dose factor for radionuclide i, mrad /yr per pCi/m (Table 1.5).

This equation then reduces to Dy = 1.81 x 10 7 Qf DFy1 (1.13) j l5 i

For determining the beta dose to air:

DS = (X/Q) 108 Q f DFp. (1.14) l5 0.9 3.15 x 107 ,

I where:

Dp = beta dose to air, mrad.

X/Q = hi_ hest annual-average relative concentration, 5.13 x 10 b s/m3 .

0.9 = fraction of total beta dose expected to be contributed by these nuclides.

3 108 = pCi/Ci conversion factor 3.15 x 107 = s/yr conversion factor Q.1 = monthly release of radionuclide i, Ci.

1 DFp.1 = gamma-to-air dose factor for radionuclide i, mrad /yr per pCi/m 3 (Table 1.5).

This equation then reduces to:

Dp = 1.81 x 10 7 Q f DF pf (1.15) l5 i

O Revision 5 l

Step 2

\,,/ This methodology is to be-used if the calculations in Step 1 yield doses that exceed applicable limits.-

Equations and assumptions for calculating doses to air from releases of noble gases are as follows:

Assumptions

1. Doses to be calculated are gamma and beta air doses.
2. Dose is to be evaluated at the nearest site boundary point in each sector.
3. IIistorical _onsite meteorological data for the appropriate months from the period 1972-1975 will be used.
4. All measured radionuclide releases are considered.
5. A semi-infinite cloud model is used.
6. Radioactive decay is considered.
7. Building wake effects on effluent dispersion are considered.
8. Dose factors are calculated using data from TVA's radionuclide library.

O'. Equations Equations for calculating air concentration, X, is the same as in Air concentrations are calculated for

_Section 1.1.1, step the site boundary in 1, partsector.

each A.

For determining _the gamma dose ~to air D

yn =t, X ni DFyg (1.16) l5 i

where:

D = gamma dose to air for sector n,. mrad.

yn Xni = air concentration of radionuclide i-in sector n, pCi/m 3 DF . = gamma-to-air dose factor for radionuclide i, mrad /yr per 1 Tl pCi/m 3 (Table 1.5).

L,= time period' considered, yr O Revision 5

For determining the beta dose to air:

Dp n

=

t, x ni - DFpi (1,17) gg i

where:

Dp = beta dose to air for sector n, mrad.

n X"I = air concentration 3

of radionuclide i in sector n, pCi/m beta to air dose factor for radionuclide i, mrad /yr per DFsg = pCi/m a t, = time period considered, yr The sector having the highest total dose is then used to check compliance with specification 3.11.2.2.

1.2.2 Iodines and Particulates Step 1 Doses will be calculated using the methodology described in this step.

If any limits are exceeded, step 2 will be performed.

Equations and assumptions for calculating doses from releases of iodines and particulates are as follows:

Assumptions

1. Doses are to be calculated for the infant thyroid from milk ingestion and for the child bone and teen g.i. tract from 7 vegetable ingestion.
2. Real cow locations are considered for the milk pathway and nearest resident-locations with home-use gardens are considered for the vegetable pathway.
3. The highest annual-average D/Q based on 1972 to 1975 meteorological '

data for ground level releases will be used for ingestion pataway 3l 7 doses.

4. No credit is taken for radioactive decay.
5. Releases of 1-131 are considered for the milk pathway.

Sr-90 releases are considered for the vegetable pathway to the child bone. 7 Co-58 releases are considered for the vegetable pathway to the teen g.i. tract.

6. The calculations extrapolate doses assuming that only 90 percent of the total dose was contributed.
7. The cow is assumed to graze on pasture grass for the whole year.

Revision 7

i s

Equations A For d'etermining the thyroid dose from milk ingestion of 1-131:

U I

4 DTH131

  • 9131 - DF131 D/Q x 108 5 1

TO.9) 3.15 x 10' (1.18) where:.

. DTill31 = thyroid dose from I-131, mrem.

Q131 = m nthly. release of 1-131, Ci.

DF131 = I-131 milk ingestion dose factor to infant, 7.24 x 1011

. mrem /yr per pCi/m -s (Table 1.7) 2 D/Q '= relative deposition rate, 2.94 x 10 8m 2, 0.9 = fraction of dose expected to be contributed by 1-131, 3.15 x 107 = s/yr.

108 = pCi/Ci Equation 1.18 then reduces to:

DTH131 = 75.1 - Q131 1

For determining the bone dose from vegetable ingestion:  ;

Qs .DF s D/Q 108 (1, 79 )-

DBC" =

3.-15x107(0.9)

I 5 where:

DBC = bone dose to child from Sr-90, mrem.

s Q s = m nthly release-of.Sr-90, Ci.

DF = Sr-90 vegetable ingestion dose factor to child, s

1.36x1013 mrem /yr per pCi/m -s. (As per Regulatory Guide 1.109 and NUREG/CR-1004 methodologies).

D/Q = relative deposition rate, 7.32x10- m-2 ,

3.15x107 = s/yr.

l~ 108 = pCi/Ci.

l 0.9 = fraction of total bone dose expected to be contributed

'by Sr-90.

Equation 1.19-then reduces to DBC s = 3511.5-Q s i

Revision 5

. - . . . _ _ . - - , . ,. . . _ , - . _ _ _ ___ _ _ __. ,_ ,_ _ _. .._ __ _ _ ~ .- _- -_ .

4

, n .,

't For determining the gastrointestinal (g.i.) tract dose from vegetable

{

.ing'estion:

"' DF c D/Q 10 (1.20)

DGI T=9(0.9) c 3.15 x 10' ,

.r ~ ,

% ere

.\,, tract dose from Co-58, mrem DGIT = teen g.i. , ,

y ,

Qc = m nthly release of co-58, ci j ' ,

[ . DF = Co-58 vegetable ingestion dose factor 2 for the teen g.i.

,, c tract, 3.87 x 109 mrem /yr per pCi/m -s. (Regulatory 7

Guide 1.109 and NUREG/CR-1004 methodologies.)

2 D/Q = relative deposition rate, 7~.32 x 10 9 m 2.15 x 107 = s/yr 106 = pCi/Ci 0.9 = fraction of total g. i. tract dose expected to be contributed by Co-58

~

, Equation 1.20 then reduces to

~ .'i

  • q DGIT = 1.00 Q c g

4

,f k

4 t

4 f

/

Revision 7 I

[ _15a-

' I

. - -_~. -- - -

Stan 2 This methodology is to be used if the calculations in stop 1 yield doses that exceed applicable limits.

Doses for releases of iodines and particulates shall be calculated using the methodology in Section 1.1.1, step 1, part B, with the following exceptions:

1. All measured radionuclide releases will be used.

'2. Dose will be evaluated at real cow locations and will consider 7

actual grazing information.

The receptor having the highest total dose is then used to check compliance with specification 3.11.2.3.

1.3 Quarter 1v and Annual Done Calenlations A complete dose analysis utilizing the total estimated gaseous releases for each calendar quarter will be performed and reported as required in Specifications 6.9.1.8 and 6.9.1.9. Methodology for this 4

analysis is the same as that described in Section 1.1.1, except that real pathways and receptor locations (Table 1.4A) are considered. In addition, meteorological data representative of a ground level

' release for each corresponding calendar quarter will be used. This analysis will replace the estimates in Section 1.2.

At the end of the year an annual dose analysis will be performed by calculating the sum of the quarterly doses to the critical receptors.

O 1.4 Gaseous Radwaste Treatment System Onoration The gaseous radwaste treatment system (GRTS) described below shall be maintained and operated to keep releases ALARA.

1.4.1 System Descrintion A flow diagram for the GRTS is given in Figure 1.3. The system consists of two waste gas compressor packages, nine gas decay tanks, and the a ssociate d piping, valves, and instrumentation. Gaseous wastes are r e c e iv e d from the following: desassing of the reactor coolant and purging of the volume control tank prior to a cold shutdown, displacing of cover gases caused by liquid accumulation in the. tanks connected to the vent header, and boron recycle process operation.

4 1.4.2 Dose Calculations Doses will be calculated monthly using the methodology described in i Section 1.2. These doses will be used to ensure that the GRTS is operating as designed.

O Revision 3 1

- - - , , , , , . - - - , , , , + , , , - - . . . - - . , - - - - , - - - - - .

i A

. ENP l

! T&BLE 1.1 l

EXPSCTED AnnsAL 30GTINE ******** FROM QNE a6IT AT SAABOYAE NUru m m 4

L AD11LIARY CONTAINNENT TURBINE BUILDING j BU1131NG VSNT VENT VENT NUCLIDE 6.3(-10) 1.0(-8) 1.3(-8) l Te-125m 2.1(-7)

Te-127m 6.1(-9) 1.1(-7) 2.0(-8) 1.2(-7) 5.3(-7)

! Te-127

! Te-12De 3.1(-8) 4.3(-7) 1.3(-'I 3.6(-8) 2.8(-7) 8.3(-1) l Te-129 2.0(-4)

Te-131m S .6(-8) 9.1(-8) i l

2.2(-8) 2.0(-8) 2.7(-7) 7.-131 6 .0 ( -7 ) 2.0(-6) 2.1(-5)

Te-132 1.5(-5)

Be-117m 3.8(-7) 7.3(-4) 4.g(-9) 4.4(-8) 2.1(-7) 3 s-1 40 1.4(-7) a La-140 3.4(-9) 4.6(-8)

I 1.5(-9) 2.1(-8) 8.4(-8)

Co-141 2.0(-8)

. Co-143 9.0(-10) 1.6(-9) 7 .2 (-10) 1.4(-8) 4.1(-8) I Ce-144 pr-143 1.1(-9) 1.1(-8) 4.2(-8) ,

7.7(-10) 1.4(-8) 2.8(-8) I j Pr-144 1.2(-6) i Ny-139 2.7(-8) 7 . D(- 8) l 3

i l

l t

t I i

f i

i ,

b 4

1 i

I i

4 ,

.. 1 1.

I 4

1 f (Sheet 2 of 2) i I l 3

4 s I

f

p. .

('

s ~~

p

\d BMP

(

TABLE 1.1 EXPECTED A8BSAL BOUTINE mas mee pgGM ONE UNIT AT sanmo7&B P@(22&B PLANT i CGffAINNIBdT 751BINE BUILD 1hG Ac11LIAE7 vant veerr NUCLIDE BUILDING VENT 3.3(-1) 3.0(-1)

Er-83 m 4.4(-1) 2.3(0) 1.5(0)

Er-85 m 2.2(0) 1.2(0) 2.0( 0) 3.1(2)

E r-85 8.1(-1) 8.2(-1)

Er-87 1.2(0) 2.7(0) 4.0(0) 3.6(0)

Er-88 8.3(-3) 6.4(-2)

Er-89 2.8(-2) 2.6(1) 1.1(0)

Re-131m 1.7(0) 2.4(0) 3.7( 0) 1.6(1)

Re-133m 2.4(3) 1.8(2) le-133 2.9(2) 2.0(-1) 1.8(-1) 7.8(~2)

I le-135m 9.9(0) 4.4(0)

Re-135 6.8(0) 1.2(-1) 5.6(-2) 1.8(-2)

Se-137 2.4(-1) 6.2(-1)

Is-138 5.9(-1) 9.5(-3) 8.0(-4) 1.5(-5)

B r-83 4.9(-6) 1.7(-5)

B r-84 3.5(-4) 1.3(-7) 2.4(-7)

Br-85 1.2(-3) 1.3(-5) 6.9(-5) 1-130 3.6(-4) 9.2(-3) 4.5(-1) 1.2(-2) 2.6(-3) 1-131 3.7(-4) 1-132 1.7(-2) 3.4(-3) 1.4(-2) 1-133 6.5(-2) 5.0(-4)

I' 7.1(-3) 1.1(-4) 1-134 9.0(-4) 5.4(-3) 1-135 3.3(-2) 2 .4(-7 )

1.9(-9) 2.1(-8) u Rb-86 2.1(-2) 1.0(-4)

-Rb-88 1.6(-2) 6.4(-5) 5.5(-7) 1.1(-3)

Co-134 2.6 ( -4 ) 3.6(-5)

Cs-136 2.9(-7) 5.3(-5) 4.0(-7) 7.8(-6) 3.6(-7)

Cs-131 2.6(-7)

Cr-51 2.0(-8) 4.5(-7) 1.6(-8) 3.1(-7) un-54 3.2( ,7) 5.4(-7)

Fe-59 2.1(-8) 8.8(-8) 9.0(-6)

Co-5 8 5.3(-9) 2.7(-7) 1.6(-8) 3.1(-7)

Co-60 1.2(-7) 1.6(-7)

S r-89 7.6(-9) 4.3(-9) 8.4(-9)

Sr-90 2.2(-10) 8.9(-8) 1.5(-8) 1.2(-8)

Sr-91 4.7(-9) 8.2 (-9) e Y-90 3.8(-10) 9.1(-9) 7.4(-9) 4.1(-8) l4 Y-91m 7.0(-7) 1.9 (-6 )

T-91 4.4(-8) 3.6(-8) 3.0(-9) 2.4(-9) 7-93 2.1(-8) 8.4(-8) 2 r-95 1.3(-9) 2.2(-8) 8.4(-8)

Nb-95 1.1(-9) 1.4(-4) 1.0(-5) 3.0(-5) 1.0(-4) me-99 2.8(-5)

To-99m 8.9(-6) 4.2(-8) 9.8(-10) 1.4(-8) 8.4(-9)

Re-103 4.1(-9)33-106 2.2(-10) 1.4(-8) 2.8(-8) th-103m 1.1(-9) 4.1(-9) 2.7(-7) f Rh-106 2.2(-10) l I

(Skeet 1 of 2)

Revistem ,4

TA 1.2 )

BASIC RADIONUCLIDE DATA Half-Life LAMUA BETA GAMMA WASH Nuclide (Days) (1/S) T C (MEV/ DIS) (MEV/ DIS) (1/S) 1 TRITIUM 101 4.49E 03 1.79E-09 2 1 5.68E-03 0.0 2.86E-07 2 c-14 604 2.09E 06 3.84E-12 2 1 5.17E-02 0.0 0.0 3 N-13 702 6.94E-03 1.16E-03 2 1 4.91E-01 1.02E 00 1.00E-02 4 0-19 804 3.36E-04 2.39E-02 2 1 1.02E 00 1.05E 00 1.00E-02 5 F-18 902 7.62E-02 1.05E-04 2 1 2.41E-01 9.88E-01 1.00E-04 6 NA-24 1104 6.33E-01 1.27E-05 5 1 5.55E-01 4.12E 00 1.00E-04 7 P-32 1504 1.43E 01 5.61E-07 5 1 6.95E-01 0.0 1.00E-04 8 AR-41 1805 7.63E-02 1.05E-04 2 1 3.63E-01 1.28E 00 0.0 9 CR-51 2405 2.78E 01 2.89E-07 5 1 3.75E-03 3.28E-02 1.00E-04 10 MN-54 2508 3.03E 02 2.65E-08 5 1 4.17E-03 8.36E-01 1.00E-04 11 MN rf 2509 1.07E-01 7.50E-05 5 1 7.93E-01 1.76E 00 1.00E-04

, 12 FE-59 2604 4.50E 01 1.78E-07 5 1 1.18E-01 1.19E 00 1.00E-04 13 co-58 2706 7.13E 01 1.12E-07 5 1- 2.05E-01 9.76E-01 1.00E-04 14 co-60 2708 1.92E 03 4.18E-09 5 1 9.68E-02 2.50E 00 1.00E-04 15 ZN-69M 3007 5.75E-01 1.39E-05 5 1 0.0 4.15E 00 1.00E-04 16 ZN-69 3006 3.96E-02 2.03E-04 5 1 3 19E-01 0.0 1.00E-04 17 BR-84 3516 2.21E-02 3.63E-94 2 1 1.28E 00 1.68E 00 1.00E-04 18 BR-85 3518 2.08E-03 3.86E-03 2 2 1.04E 00 8.40E-01 1.00P-04 19 KR-85M 3611 1.83E-01 4.38E-05 1 2 2.53E-01 1.59E-01 1.0 a-11 20 KR-85 3610 3.93E 03 2.04E-09 1 1 2.51E-01 2.21E-03 1.00E-11 21 KR-87 3612 5.28E-02 1.52E-04 1 1 1.32E 00 7.93E-01 1.00E-11

! 22 KR-88 3613 1.17E-01 6.86E-05 1 1 3.75E-01 1.96E 00 1.00E-11 23 KR-89 3614 2.21E-03 3.63E-01 1 1 1.23E 00 2.08E 00 1.00E-11 24 RB-88 3713 1.24E-02 6.47E-04 5 1 2.06E 00 6.86E-01 1.00E-04 j 25 RB-89 3714 1.07E-02 7.50E-04 5 1 0.0 2.40E 00 1.00E-04 26 SR-89 3808 5.20E 01 1.54E-07 5 1 5.73E-01 1.36E-04 2.67E-07 j 27 SR-90 3810 1.03E 04 7.79E-10 5 1 1.96E-01 0.0 2.67E-07 4

28 SR-91 3811 4.03E-01 1.99E-05 5 2 6.50E-01 6.95E-01 2.67E-07 29 SR-92 3812 1.13E-01 7.10E-05 5 1 1.95E-01 1.34E 00 2.67E-07 30 SR-93 3813 5.56E-03 1.44E-03 5- 1 1.61E 00 6.28E-01 2.67E-07 31 Y-90 3916 2.67E 00 3 00E-06 5 1 9 36E-01 0.0 1.00E-04 32 Y-91M 3919 3.47E-02 2.31E-04 5 1 0.0 5.56E-01 1.00E-04 33 Y-91 3918 5.88E 01 1.36E-07 5 1 6.06E-01 3.61E-03 1.00E-04

34. Y-92 3920 1.47E-01 5.46E-05 5 1 1.44E 00 2.50E-01 1.00E-04 35 Y-93 3921 4.29E-01 1.87E-05 5 1 1.17E 00 8.94E-02 1.00E-04 36 ZR-95 4014 6.50E 01 1.23E-07 5 2 1.20E-01 7.35E-01 1.00E-04 l

m

(") TABLE J cont'd) [L.~}

,/

BASIC RADIONUCLIDE DATA Half-Life LAMUA BETA GAMMA WASH Nuclide (Days) (1/S) T C (MEV/ DIS) (MEV/ DIS) (1/S) 37 NB-95M 4115 3.75E 00 2.14E-06 5 1 2.85E-01 5.87E-02 1.00E-04 38 NB-95 4114 3.50E 01 2.29E-07 5 1 4.50E-02 7.64E-01 1.00E-04 39 MD-99 4209 2.79E 00 2.87E-06 5 2 3.96E-01 1.62E-01 1.00E-04 40 TC-99M 4314 2.50E-01 3.21E-05 5 1 4.85E-03 1.43E-01 1.00E-04 41 TC-99 4313 7.74E 07 1.04E-13 5 1 8.38E-02 0.0 1.00E-04 42 TC-104 4320 1.25E-02 6.42E-04 5 1 0.0 0.0 1.00E-04 43 RU-106 4407 3.67E 02 2.19E-08 5 1 1.01E-02 0.0 1.00E-04 44 TE-132 5223 3.24E 00 2.48E-06 5 1 1.00E-01 2.05E-01 1.00E-04 45 I-129 5315 6.21E 09 1.29E-15 3 1 4.02E-02 3.77E-03 5.00E-06' 46 I-131 5317 8.05E 00 9.96E-07 3 2 1.94E-01 3.81E-01 5.00E-06 47 MI-131 15317 8.05E 00 9.96E-07 4 2 1.94E-01 3.81E-01 5.00E-06 48 I-132 5318 9.58E-02 8.37E-05 3 1 5.14E-01 2.33E 00 5.00E-06 49 MI-132 15318 9.58E-02 8.37E-05 4 1 5.14E-01 2.33E 00 5.00E-06 50 I-133 5319 8.75E-01 9 17E-06 3 2 4.08E-01 6.10E-01 5.00E-06 51 MI-133 15319 8.75E-01 9.17E-06 4 2 4.08E-01 6.10E-01 5.00E-06 52 I-134 5320 3.61E-02 2.22E-04 3 1 6.10E-01 2.59E 00 5.00E-06 53 MI-134 15320 3.61E-02 2.22E-04 4 1 6.10E-01 2.59E 00 5.00E-06 54 I-135 5321 2.79E-01 2.87E-05 3 2 3.68E-01 1.58E 00 5.00E-06 55 MI-135 15321 2.79E-01 2.87E-05 4 2 3.68E-01 1.58E 00 5.00E-06 56 XE-131M 5412 1.18E 01 6.80E-07 1 1 1.43E-01 2.01E-02 1.00E-11 57 XE-133M 5414 2.26E 00 3.55E-06 1 1 1.90E-01 4.16E-02 1.00E-11 58 XE-133 5413 5.27E 00 1.52E-06 1 1 1.35E-01 4.54E-02 1.00E-11 59 XE-135M 5416 1.08E-02 7.43E-04 1 1 9.50E-02 4.32E-01 1.00E-11 60 XE-135 5415 3.83E-01 2.09E-05 1 1 3.17E-01 2.47E-01 1.00E-11 61 XE-137 5417 2.71E-03 2.96E-03 1 1 1.64E 00 1.94E-01 1.00E-11 62 XE-138 5418 1.18E-02 6.80E-04 1 1 6.06E-01 1.18E 00 1.00E-11 63 CS-134 5510 7.48E 02 1.07E-08 5 1 1.57E-01 1.04E 00 1.00E-04 64 CS-135 5512 1.10E 09 7.29E-15 5 1 5.74E-02 0.0 1.00E-04 65 CS-136 5514 1.30E 01 6.17E-07 5 1 1.01E-01 2.?OE 00 1.00E-04 66 CS-137 5515 1.10E 04 7.29E-10 5 1 2.52E-01 5.97E-01 1.00E-04 67 CS-138 5516 2.24E-02 3.58E-04 5 1 1 23E 00 2.30E 00 1.00E-04 68 BA-139 5615 5.76E-02 1. 39 E -0 4 5 1 6.54E-02 5.05E-02 1.00E-04 69 BA-140 5616 1.28E 01 6.27E-07 5 1 3.15E-01 1.95E-01 1.00E-04 70 LA-140 5715 1.68E 00 4.77E-06 5 1 5.40E-01 2.31E 00 1.00E-04 l

71 CE-144 5815 2.84E 02 2.82E-08 5 1 9.13E-02 3.29E-02 1.00E-04 72 PR-143 5912 1.36E 01 5.90E-07 5 1 3.14E-01 0.0 1.00E-04 73 PR-144 5913 1.20E-02 6.68E-04 5 1 1.23E 00 3.10E-01 1.00E-04 74 NP-239 9310 2.35E 00 3.41E-06 5 1 1.24E-01 2.08E 00 1.00E-04

O'

\~ ./

4 l 23 ssassag:03 :: 2 n 4d44444444444444 4 4 1;

  • 2
              • 9a*******

a ...co........... .

= ................ .

? d444444444444444 4 5

b 2 3 "

v E

9 .. 9 R g E

g D  :

a

.s...s.sssaa.ssa diddddddddddadad i ggg g

1 -

e*

P . j .. lI M 8 ,

R-e

  • b d g*. E. E. E. *. *. *. *. E. . E. E. $. 4.na E EE. E. 5.e, E.

d E E*j m , 58=

  • g('

8 3

W ~l ,

Y

" g Ef

  • O " , 2 g g is gg Ig, a if. E;E.s

. . . s. e..s E.

. 8 9..... . 8 8 s *.E. : . 3j2a d -  ; y3. -

.a

. d -

=

g g

E , g 5

g u

3 s

f.

EEEE..*.E.EE.EEE.E998 9

8 U8.h3R$

S s R R E

5  ! E g* nS B dg*

E  ?. sd444444444444444

ssssssssasoss4 : e .

8 E.g l "5 ".$

= ;t

s l 5 8 I.B 9 .=~ '

os 7

8............... 8 8 d g 4444444444444444 4 8 5 g Em"

  • d

. ,b g 3.l.

s s...............

Q ~4444444d444444d 4 s ] s- .j

-En d55 ,

E5 .

".3".

s.  :

d $$ I$ 838 8 i jIa.EEE.B 3.IR...IRI I g 3 E : W 4 l.5*

e

,jc 1.

, 4

.?l, ]

I I u,, ,

. } ~.

h

? ,

I I t .g 3

'v

$ SONS 23:3"ASSE23" : "

M d444444444444444 4  %

M

  • 2
, ****9***********

.ooooooooooooooo a 9

ooooooooooo8eoo. 3

? d444444444444444 4 5 3 u

R E

C 9

.5 = o o o o o E 2 2 5..o a 3 ggE e

a 3 a 4444444444444444 4 a 5

52

. .e 8

  • d

- g a

- . - E E@ 9g: , H23 2 -s g .: _= = se. ass: *====, = = s -

, E ga- -

et 4444444444444444 4 , e e Iw A E ed M

- . g d.'

I g#E E s

De a n s. 8- .

o

'%~

g ta e d 57 3283aooosa*25333 : E

!"I g #g

""##ddddddddd"#d #

a 5 5 0.q"I 5 E9

i. s d

~ -

a s'

. R ,

ng a 8e E

I l f5s f. 899989999998 ..o.99; 9.o.  ;. E I3 Eg

  • g o oooooo 2 .

k"R a

  • v R
  • R$

5

$ . m5 9  %

  • ega

-E  : s::ss.:s=:ss.oos : -

a  : 4444444444444444 4 5lB :ol 88 0o E 5 8 E a.

55 9 5 =a .5 1 aooooooooooooooo a 4444444444444444 4 B ' $ "n g 8 ll $2u e g el.,

o l ,E 8 O I

3**8**99*999=9999

o. ....oooooooo. .

$ o o 'e n 4 O

- h. . gag -

! e sU

-U

  • 8 WRE i s m.E.n.

.. .a.....gng 5 g

o@

._a .

R  :..a 4 .

I

\

~

4

..e w y 9 ~.,--v -

, ~ , - --- - , . ,

A I I G

d B 223:22*0:33:33 tq didddddddddddddd a 9 2

  • ********9*******
  • e oooo...oooooooo. o 9

3 o.a.oooooooooooo o a 444444444444444& 4 d

3 a

  • 5 9 ..

"R

  • g E e ......... 3.8.5. e o 3 a 4444444444444444 4 2 m e d sg s: - e*

A 2

a8.. - _ . , . _ . . . ..

E r "3 3  ;" 3 3...o  :: Bas 32 : E g

" g :d:- j a Ea 4d4444444444444d 4 5 d

  • s d; 8 $5e

- 1 s a

(.u s s

a ue. .'E. 9 da n a m; s

g sa e -

.o...s:::o:: : * ,I ,

5

.= R*i 3g daddddddddeddddd 4 5

e t

d E

,3 5

o s

E f 3a i 99.;984894:4988e9.  ;. EE3 :o.g o

g  ; e o . oo.ooooo. ,,, ag s- H E

. .3" e= ng l f; sasassssas9.seses oo.a.oooo. .ooo. .; s,i d-j  :.

8.g e

.-o o.

gaa as s

l  : oo.co.....oooooo a 6 ' d "t p

d44444444444d444 4 8 5 l o , ~ . gug-

. d.:-

u g

...Oooooooooooo.

al 444444444444444g g d b, g h

mg

  • d a 5

= a --g -

g 4 a i En- -

a

..!al gg ggg l,as M d  :

!in=a=-s===.!=g =

I P

-)

\

N. /

4 2"::::*0:03:400: 3 4

.dddddddddddddd44 d~ ,

  • 2
              • s********

oooooooooooooooo o e

caooooo8ao835aoa ;

a didddddddddddddd d a

- a v

$ . a a

g , R 3

S' iy 899ssee998989888 oooooooooooooooo o 9 5. ,. !

0 8 m

m

. =-< m.

8 a

[.

~d . . _ . . _ .

_e Em = -- x E g "d J O  : Co3co8 ::::::: = *y 5

g - $3 " Ea addddddddddddddd d g d

d g d. .

M E

5. Eu

('x > d,-

a n ne

_a f.-8 .' 0., "[

- g ag 2d .

av :: s=oo:::s::::= =a ql s o p

addddddddddddddd d ggE s

!U s a35 g

.g

= 3 3- Is

=

!  ; * , =8 a g a ' s  ; us==s::====:::::

4444444444444444 4 w so 5 $i" ag a

e3-sa s.

s a 9.qqqqsqqqqqqas".q q g gy $.g.g

-  ; .......o..... . ,

,a E

l ,. 8 E 8**.

EE5 s T 53:353.. assesses adaddedddddddddd 4 l, g, d g=g gng

- g u !,,

a= a.= g2 -- - .

=

d =a s e.

seessses.8-s88*8

=* *

  • s
  • nan
  • a dmE.

y

  • Bag <

4 sE

=I den- -

s i

~ =EREmann.:.35.Inl gg "*d a

5 j

.  : : d .-

)

v

4

/.

%/

.nmonenngan..-g-

't -

. . . o n o n o o o o - n e. . n - - a n ,

  • n n 1 99a*************

oooooooooooooooo o h ********.**9'**** k

- oooooooooooooooo o a a u g -

. . A.

g E

- B 9 .. 9 "

E C.

", o. :. . o. o. a. o. s. a. 2 3. :. :. :. . 0 oooooooooooooooo a

$. 8.

. .a a

  • 5 3 A 6 2 - A g

li a 3 =8 5 88 :: . u ElE E s *i a d 5,p EE* 998 EEEEE8 EE;8 ;

=$ -

a na v __ e.

. , a 3

. a a. B a g g '

  • 4 -

d 82 "I (e S E C.

d" n .

*

  • U jg 3 E
EEE.EEEEEEEE.EESEE

. oooooo .ooooo e h,k. I

$. y g -* .f g . ,g

  • 3 o

. v d * . gg

  • a

. 5 .R 8 a .

. w

.l so s

e s,. .  :..........

: : : : : : : : s. =. =. =. =. =. =. W s E , g.

j o . onoooooo-anooooo n

  • s
  • E E D v

5 a

$" . a=

o " *

  • at y
  • s o dg m

- T 3.n. :.ooooo. *. :. :. ". :. . *. :. .:. 2 3. :. 8 E *g .2 a m o,

ooooo
a . og U a g5 l_ Bo.o

.

  • s eis
  • 8 '
  • Sc3
  • 7  : ...
: ". *. . 3. . :. 2. 0. *. 2. :. 2. *. * .

8 5 W

. Cgg oooooooooooooooo n . -

  • E B,d=o c
  • 5 **:gs:s===:ssag:* a*:o E= *a3
  • gg d

. 9

  • 9 * * * *.* *.* .

q C55

~ v. 5 "R Y a . b 85n-  ;

s- q j ER o

.g

  • 9 a

5.$. mE".m".m".#. m . 5.R.IRI -ER

... g

- a w .

a E

V i

l.

s s

4 as:::::::::::::= = -

4444444444444444 4 " 4 o

e ooooooooaaaaaaoe o h 9'************** *

, oooooooooooooooo o m.

$ u a

a

.a

. g n -

a

- E a

v m

e=sesseesseeesse e oooooooooooooooo o 38=B, 3

s 9

e.

5 g$=

a. $

ln

~

a i

n y:~l eseesse:89:ssess ;

h* d gi oaoooooooooooooo 2 g

, 9 y o q 4 E g do R

8 iU l~,n 62

  • P1s,- s u ed- . - .

., l=*- a NA N E ld;; s4 3 o

"4 av  ::soooo========= a e

o d a g ls _g My o 5 ,g

444444444444444d 4 g)E 3

o na d 3 v

g 8 . lg a

! s- 8 a

i  :::=o== sana:ss== = = gee

- ag

  • to

, g y d444444444444444 4 $ j {. gg l H E me t

m

. 3=

.a d

,! i 99";99:9:"M 9;;" "

---ooo..o-.oooo. g Ell 5y-j g,

B,E o ~*

I,.s -

as s

v

::::::::::::sa : :

4444444444444444 4 Ia,g

,g d e-g"g

=

l . :

ess - E a= e.

=8ese:8 ess ass : 3.s *:

s sese8 o o 3 eas . eIsg-seg .

e

aI e v 85n o R ,g g- -

!II=ios!.!=!. Int, E

. 5. .g 4 g,!

l

{O d

\

t l

l -- - - - - - - - - - - -

s%

'\

N "22:220:2320:300 4  %

M d444444444444444. * -

O 2

e *oc.

9 9 '. *. *....

  • * * *. 9. .. a
  • 9..9 *.

I

? didddddddddddddd 4 a

- 3 u

$ . E I

g . E

~

E a B

= E

a 7

e

. . . . 9. *. *o * * * * * * *. *. 9 38 9-  : e.

sm aa

~

M gy = c 4

. Ed

3. g .

g -- , _.

"O 8  :: ........ 3.. 3.. U y w E g g -

8 "-

Y .: 4444444444444444 4 .

a< Rg 3 9

e g dg- a $ ed. "'Ea I C. I ' k-C$ e a B R g4 - , E a :* a j $.s^

J h

,  ;

  • 9 9 a * * *
  • E. E.. E.

........ . *. *. *.

  • W 2 dj
  • . 4g. g

- . g%

be

> g C gg

$8

  • d d

2 ,

n8

- s .

g

!g  ; E. E. E. E. .E.. E. *. *. .' E

. hI

~ E. U. E. E. E. E E E

- a- e a =a m

a g 24 2

8 g. *8 dg" 1

E.- 8 E. ". E. E. E.. E. E. .". 3.E. E. E. 8 4 5, Ell a ,. a $=!. g l $ ,. 8 Es a

9 , S.s '

ESB 3:8:038 3 ES : l" 5 N

,T 444444444444444d 4 .

'e' n s.

. e. e al.

o

  • E Mee-gIe.gmH-H---. 88. 8888888 3 d 8888.. .

.. d ,D.

S E C 5 4 <

~

  • d .- . 85 E d E d e

8 dM<I t

"

  • d .  :

! memon==.!n!.5ml g  : -

m I  : 9 .

O t

" 'd l

  • ".o
      • '. 3. **. "'. R. " **. **1 "* 3. **. "'!"!"". "! "*.

...n-o-n.ggenn.. g .

a oooooooooooooooo o k s**.****k'skkk*** a

.oooooooooooooooo k

S' g

iy 29889428;;;**984 :

aooooooooooooooo -

B l

x- ,

8 3:8 .

!~05 =i g. i "o".R2444:9499; oooooo- oooo. 9;. ; -

8 g

a d

,33

- E

_a q G s 18 ' Ia. g 5 e

(s< s- n@g- g  ::

d . H.e ,- -s s e s e n ,- -s o o ,,o o- .- ,- 3. n 5

o--ooooo . .- s

- au aB- E a

s9 s E- , s a a

'* 5 i 99999999;;.;.;R;99

. oooo . .oo-- "x -38 E a I

- 3. *u

=

n 3

- aa

,,.n..1-.g....,..o... .-,n ,

oog.g

l

. .. -ooo-...-ooo- , .5- .

- a B no a*

8 g5

- . - as

-1 c. 3. 0. 2. :. 2 0. 0 0. . . :. :. :. :. 3. ' .- g 5 d -

gg

oooooooooooooooo . g ,,

. D. a o a

...-o...-.  :

  • o -

g" 3332323233.g... o.33332 o Og o 35 .

34 -

. . . I .

- g I

W N. -

. a

  • I.. ....a

..as . .as . .a..n,g

.al E. .

m. .. = 4a .,

E =

V y rP -,---r----.wr y,e e,-

SNP TABLE 1.4 SEQUOYAH NUCLEAR PLANT LAND SITE BOUNDARY DATA

  • Sector Distance (a) I/Q ( a/ ms) D/ G (m-2) 4 N 950 5.13(-6) 1. 2 9 (- 8)

NNE 2,260 1.94(-6) 5.2 8(-9)

NE 1,910 2.33(-6) 6.33(-9)

EN E 1,680 -

1.12(-6) 2.64(-9)

E 1,570 7.11(-7) 1.46(-9)

ESE 1,460 7.92(-7) 1.5 8(-9)

SE 1,460 9.17(-7) 2.41(-9)

SSE 1,550 1.34(-6) 3.23(-9)

S 1,570 2.37(-6) 4 .18 ( - 9 )

SSw 1,840 4.51(-6) 9.26(-9)

SW 2,470 1.3 8(-6) 2.63(-9)

WSW 910 2.93(-6) 3.86(-9)

W 670 3.63(-6) 3.74(-9)

I WNW' 660 2.49(-6) 2.44(-9)

NW 660 2.85(-6) 3.67(-9)

NNW 730 3.96(-6) 6.59(-9)

  • All release points treated as ground level.

O Revision 4

Table 1.4a REAL RECEPTOR LOCATIONS NEAREST HOME-USE MILCH" RESIDENT (m) GARDEN (m) ANIMAL (m)

SECTOR

~

1344 1344 4219 N

2812 2812 4531 NNE NE~ 3438 3438 5625 ENE 2187 2187 --

E 1812 2656 --

1812 2031 2344 i ESE SE 1719 2062 --

SSE 2250 2344 --

S 2375 2375 2250 2750 3594 SSW i SW 2969 3438 --

WSW 1469 2062 -

W 938 938 --

WNW 1812 1812 1875 NW 1188 1188 2031, 5781 (goat)

NNW 781 1875 2438 (goat)

a. All are real cow locations except where noted otherwise.

l i

l l

O V Revision 5

SMF 1AER 1 J

. naa_m y h uss FQE - -

210H IM :#; 2 "A*"8 DFB1 DFva DFSS _

DFB8 Kr-85 m 1.17(+3)* 1.21(+3) 1.46(+3) 3.86(+3)

Kr-85 1.61(+1) 1.69(+1) 1.34(+3) 3.83(+3)

' Kr-87 5.92(+3) 6.05(+3) 9.73(+3) 2.01(+4)

Kr-88 1.47(+4) 1.50(+4) 2.37(+3) 5.72(+3)

Kr-89 1.66(+4) 1.59(+4) 1.01( +4) 1.88(+4)

Xe-131m 9.15(+1) 1.53(+2) 4.76(+2) 2 .18( +3)

Xe-133m 2.51(+2) 3.17(+2) 9.94(+2) 2.90(+3)

Xe-133 2.94(+2) 3.46(+2) 3 . 06( +2) 2 . 06( +3)

Xe-135m 3.12(+3) 3.30(+3) 7.11(+2) 1.45(+3)

Xe-135 1.81(+3) 1. 88( +3) 1.86(+3) 4 . 84( +3)

Xe-137 1.42(+3) 1.4 8( +3 ) 1.22(+4) 2.50(+4)

Xe-13 8 8.83(+3) 9.00(+3) 4.13(+3) 9.25(+3)

Ar-41 8. 84 ( +3 ) 9.76(+3) 2.69(+3) 5.54(+3)

1. area /y per pCi/m8 arad/y per pCi/m*

O' 2.

3. 1.17(+3) = 1.17 x 108 O Revison 4 i

TABLE 1.6 NUCLIDE SPECIFIC TRANSFER DATA

  • NUCLID,E . HALF-LIFE  : RETENTION Bh( ) FM g(f) v TRITIUM 4.49E*03 4.70E-01 4.80E*00 1 1.30E-02 2 C-14 2.09E*06 4.70E 5.50E+00 1.20E-02 3 N-13 , 6.94E-03 4.70E-01 7.50E*00 2.20E-02_,_

4 0-19 3.36E-04 4.70E-01 1.60E+00 2.00E-02 5 F-18 7.62E-02 4.70E-01 6.50E-04 1.40E-02 6 NA-24 6 33E-01 4.70E-01 5.20E-02 4.00E-02 7 P-32 1.43E.01 4.70E-01 1 10E+00 2.50E-02 4 8 AR-41 7.63E-02 4.70E-01 6.00E-01 2.00E-02 9 ,CR-51 ___ 2.78E*01 '4.70E-01 2.50E-04 2.20E-03 10 MN-54 3 03E*02 4.70E-01 2.90E-02 2.50E-04 ,

11 MN-56 1.07E-01 4.70E=01 2.90E-02 2.50E-04 12 'FE 4.50E*01 4.70E-01 6.60E-04 1.20E-03 13 C0-58 7 13E*01 4.70E-01 9.40E-03 1.00E-03 14 C0-60 1.92E+03 4.70E-01 9.40E-03 1.00E-03 15 - ZN-69M 5.75E-01 4.70E-01 4 00E-01 3.90E-02_ _

16 ZN-69 3.96E-02 4.70E-01 4.00E-01 3.90E-02 17 BR-84 2.21E-02 4.70E-01 7.60E-01 5.00E-02 18 BR-85 2.08E-03 4.70E-01 7.60E-01 5.00E-02

' 19 .KR-85M .1. 8 3E-01 4.70E-01 3.00E+00 2.00E-02

.s KR-85 3.93E+03 4.70E-01 3.00E*00 2.00E-02 21 KR-87 5.28E-02 4.70E-01 3.00E+00 2.00E-02 22 KR=88 1.17E-01 ~ '4.70E-01 3.00E*00 2.00E-02~~

23 KR-89 2.21E-03 4.70E=01 3.00E+00 2.00E-02 24 RB-88 1 24E-02 4.70E-01 1.30E-01 3.00E-02 25 -RB-89 1.07E-02 4.70E-01 1.30E-01 3.00E-02 26 SR-89 5.20E*01 4.70E-01 1.70E-02 1.40E-03 27 SR-90 1.03E*04 4.70E-01 1.70E-02 1.40E-03 28 SR-91 4.03E-01 '4.70E-01 1.70E-02 1.40E-03~~~

29 SR-92 1.13E-01 4.70E-01 1.70E-02 1.40E-03 30 SR-93 5.56E-03 4.70E-01 1.70E-02 1.40E-03 31 Y-90 2.67E*00 4.70E-01 , 2.60E-03 1.00E-05 32 Y-91M 3.47E-02 4.70E-01 2.60E-03 1.00E-05 33 Y-91 5 86E+01 4.70E-01 2.60E-03 1.00E-05_,

34 Y-92 1.47E-01 4.70E-01 2.60E-03 1.00E-05 35 Y-93 4 29E-01 4.70E-01 2.60E-03 1.00E-05 S 36 ZR-95 6.50E+01 4.70E-01 1.70E-04 5.00E-06 37' N8-95M 3.75E+00 4.70E-01 9.40E-03 2.50E-03 38 N9-95 3 50E+01 4.70E-01 9.40E-03 2.50E-03 39 MD-99 2 79E*00 4.70E-01 1.20E-01 7.50E-03 I

40 'TC-99M 2.50E-01 4.70E-01 2.50E-01 2.50E-02'"~

41 TC-99 7.74E*07 4.70E-01 2.50E-01 2.50E-02 42 TC-104 1.25E-02 4.70E-01 2.50E-01 2.50E-02 43 RU-106 3.67E*02 4.70E-01 5 00E-02 1 00E-06 44 TE-132 3.24E.00 4.70E-01 1.30E*00 1.00E-03 45 I-129 6 21E+09 4.70E-01 2.00E-02 1.20E-02 46 1 131 ~ ~ ~ ~8 05E+00 '4.70E-01' 2.00E-02 '1.20E-02 ~~~

47 MI-131 8.05E+00 4'.70E-01 2.00E-02 1.20E-02 i

48 9.58E-02

'I-132 4.70E-01 2.00E-02 1.20E-02 49 MI-132 9.58E 4.70E-01 2.00E-02 1.20E-02 50 I-133 8.75E-01 4.70E-01 2.00E-02 1.20E-02 51 MI-133 8.75E-01 4.70E-01 2.00E-02 ___ _.,1.20E-02___,

52 1-134 3.61E-02 4.70E-01 2.00E-02 1.20E-02

, 53 MI-134 3.61E-02 4.70E-01 2.00E-02 1.20E-02 54 I-135 2.79E-01 4.70E-01 2.00E-02 1.20E-02 55 MI-135 2 79E-01 4.70E-01 2.00E-02 1.20E-02 56 XE-131M 1 18E+01 4.70E-01 1.00E+01 2.00E-02 57 XE-133M 2 26E+00 4.70E-01 1.00E+01 2.00E-02.

58 XE-133 5 27E+00 4.70E-01 1.00E+01 2.00E-02

, 59 XE-135M 1 08E-02 4.70E-01 1.00E+01 2.00E-02 60 XE-135 - 3.83E-01 4.70E-01 1.00E*01 2.00E-02 61 XE-137 2 71E-03 4.70E-01 1.00E+01 2.00E=02 62 XE-138 1 18E-02 4.70E-01 1.00E+01 2.00E-02 63 CS-134 7.48E+02 4 70E-01 1.00E-02 8.00E-03_,_

64 CS-135 1 10E+09 4.70E-01 1.00E=02 _.

65 8.00E-03 1

CS-136 1.30E+01 4.70E-01 1.00E-02 8.00E-03 66 CS-137 1.10E+04 4.70E-01 1.00E-02 67 8.00E-03 CS-138 2 24E-02 4.70E-01 1.00E-02 8.00E-03 68 BA-139 5.76E-02 4.70E-01 5.00E-03 4.00E-04 r 69 BA-140 1 28E+01 4.70E-01 5.00E-03

' 4.00E-04._

70 LA-140 1 68E+00 4.70E-01 2.50E-03 5.00E-06 l 71 CE-144 2.84E+02 4.70E-01 2.50E-03 1.00E-04

! 72 PR-143 1 36E+01 4.70E-01 2.50E-03 5.00E-06 73 PR-144 1 20E-02 4.70E-01 2.50E-03 5.00E-06 74 NP-239 2.35E+00 4.70E-01 2.50E-03 5.00E-06

Reference:

NUREC/CR-1004 Revision 5 l

TABLE 1.7 INTERNAL DOSE FACTORS 1 -

INFANT THYROID t

O Inhalation 1 Cow Milk Ingestion 2

' mrem - cm8 ' ' mrem -

m 2 -s' Radionuclide , yr iiCIa i yr pCi, H-3 6.47 (+8) 3.53 (+9)*

Te-132 2.79 (+8) 3.50 (+7) 1-131 1.48 (+13) 7.24 (+11) 1-133 3.56 (+12) 1.52 (+10)

  • Unit for H-3 is mrem /yr per pCi/cm3
1. Based on Regulatory Guide 1.109 methodology with an infant breathing rate of 1400 m 3/yr.
2. Based on Regulatory Guide 1.109 and NUREG/CR-1004 dose methodologies.

I O

1 d

Revision 5

TABLE 1.8 EXTERNAL DOSE FACTORS FOR STANDING ON CONTAMINATED GROUND (arem/hr per pC1/m4)

Element Total Body Skin H-3 0.0 0.0 C-14 0.0 0.0 NA-24 2.50E-08 2.90E-08 P-32 0.0 0.0 Cr-51 2.20E-10 2.60E-10 Mn-54 5.80E-09 6.80E-09 Mn-56 1.10E-08 1.30E-08 Fe-55 0.0 0.0 Fe-59 8.00E-09 9.40E-09 Co-58 7.00E-09 8.20E-09 Co-60 1.70E-08 2.00E-08 Ni-63 0.0 0.0 Nr-65 3.70E-09 4.30E-09 Cu-64 1.50E-09 1.70E-09 Zn-65 4.00E-09 4.60E-09 Zn-69 0.0 0.0 Br-83 6.40E-11 9.30E-11 Br-84 1.20E-08 1.40E-08 Br-85 0.0 0.0 Rb-86 6.30E-10 7.20E-10 Rb-88 3.50E-09 4.00E-09 Rb-89 1.50E-08 1.80E-08

('N s_s/ Sr-89 5.60E-13 6.50E-13 Sr-91 7.10E-09 E.30E-09 Sr-92 9.00E-09 1.00E-08 Y-90 2.20E-12 2.60E-12 Y-91M 3.80E-09 4.40E-09 Y-91 2.40E-11 2.70E-11 Y-92 1.60E-09 1.90E-09 Y-93 5.70E-10 7.80E-10 Zr-95 5.00E-09 5.80E-09 Zr-97 5.50E-09 6.40E-09 Nb-95 5.10E-09 6.00E-09 Mo-99 1.90E-09 2.20E-09 To-99M 9.60E-10 1.10E-09 To-101 2.70E-09 3.00E-09 Ru-103 3.60E-09 4.20E-09 Ru-105 4.50E-09 5.10E-09 Ru-106 1.50E-09 1.80E-09.

Ag-110M 1.80E-08 2.10E-08 Te-125M - 3.50E-11 4.80E-11 Te-127H 1.10E-12 1.30E-12 Te-127 1.00E-11 1.10E-11 Te-129M 7.70E-10 9 00E-10 Te-129 7.10E-10 8.40E-10 Te-131H 8.40E-09 9.90E-09 Te-131 2.20E-09 2.60E-06 Te-132 1.70E-09 O I-130 I-131 1.40E-08 2.80E-09 2.00E-09 1.70E-08 3.40E-09

TABLE 1.8 (cont'd)

EXTERNAL D03E FACTORS FOR STANDING ON CONTAMINATED GROUND (arem/hr per pC1/m2)

Element Total Body Skin I-132 1.70E-08 2.00E-08 I-133 3.70E-09 4.50E-09 I-134 1.60E-08 1.90E-08 I-135 1.20E-08 1.40E-08 Cs-134 1.20E-08 1.40E-08 Cs-136 1.50E-08 1.70E-08 Cs-137 4.20E-09 4.90E-09 Cs-138 2.10E-08 2.40E-08 Ba-139 2.40E-09 2.70E-09 Ba-140 2.10E-09 2.40E-09 Ba-141 4.30E-09 4.90E-09 Ba-142 7.90E-09 9.00E-09 La-140 1.50E-08 1.70E-08 La-142 1.50E-08 1.80E-08 Ce-141 5.50E 6.20E-10 Ce-143 -

2.20E-09 2.50E-09 Ce-144 3.20E-10 3.70E-10 Pr-143 0.0 0.0 Pr-144 2.00E-10 2.30E-10 Nd-147 1.00E-09 1.20E-09 W-187 3.10E-09 3.60E-09 9.50E-10 1.10E-09 fN s,y <

Np-239 I

I f

\

v

o r

^

i d o

N w/'

I o.

' o i o 1

I )

i I

- / .e l, O I _.c.

r e o

' E l E =

- l c=

W s.

> U w 8 i*

)I' 9b o a e -

i e

  • t
  • ? l.

_N ,$

! i i w a o -

i- z E

- < o H 9

i. l l 9 o 0 o l l l a -

o - w -

~

a-8

. 6 4 I I cc w H = ;;

W .9 S 2 Ug D 'E.6 J o A O ,t o

i 4 E5

! l 5~

i E di fI

! [ fI -

i l,

t e i i  :

. . i ,

d

,r'x o o. c. N o m e m. N r i & O o o o o o' o o 6 3Wnld NI DNINIVW38 NOI.LOVUd

FI6W4g 1.2 l \

\

%d

/

10-3

- .i

. i e s iTi 6 . .. .

. . j i 3 i  ! 4 .e . .,e .._ , e .

I e l 6 i !! . . t I l ! I i - ll t t I II'ii i i e iie1.

I l l ll- I i  ! I lili; i i I i!'i !

ll l lIlllIl! l  ! }!IIII I I i I

.I i.: n i  ! .l i..n n 10-4 1

  • I'n

I e .

a s . . ..

y i i .

+:li, X i .

g i i i ! !ill! \ t '. : .

$ l !!  !!! l \ 'l, E

e I

i :II' ' ,l 1 '

$ 10-5 I l.! I i i .

I i!

I r~ss;;;

A s x_j o . . .

g g ,

i *

. i g

a 5

i ,

i.i -

x  ;

\

l l  ! ! il'll '

I  :

.  ::iti s iI t l ! lli 1 i

I l .

I:l:: i>  !

.i i

$ l ll lll l

!'j'II.' '

10-6 l 3 i i' l .l -

  • i i i.m

i .' .'  :

6 T

, i 1 a f , i li i , . . ,  ! . . I 8

ilii - .

I  !  : i i iiI! - - -

t ' ' .! '

l ' i: ;I l , i i

10-7 ,l  : i i ;3ij' . - - '

O.1 1.0 10.0 IC'i.0 200.0 PLU?.1E TRAVEL DISTANCE (KILO *.iETERS) n

)

Relative Deposition for Ground Level Releases (All Atmospheric Stability Classes)

2 .-A m- --waa ss4..--4 a . am e,_w_4m. --4* . - - . - 4. -m =.mme--+ 4 mm-+4 - --m.wa a,+%24 - a - a -. A- a m_.. - 4 .=

4 4

4 r

1 i -1

~ a- )

i' n E  ;

, ) B

+

e -

l' r. r g ,

2 i: 2. m 1-e**- oN 1

sn w

ip 2 >

A en

. . C*

t

" ~

$I 1 r db o f

AE y i -

t

/sr

! \ I 4.L)

  • l 1

(

, $P db

'4 : n m_ s .

4 je' -

s .e 5 ,

(fi -

I.s 1

(*h- qp qp db db u

s: e, a I 4' s e

1 o

db db

,b py-

,s N -N

,s ..s .

1 .- gi

,, ',. W. We  :,

p

't ',. [e. 5) L 34 M r

l l

-,----n ,-_n,,-,-----,,-...-.,--n, , _ _ .. . . - - . , - - - - ~ . - - - - - - - , - - - - - - - - - . - . - - . .

. _ ..._._ __ _ - . _. ---_..-._m. __ __ . _ . _

'2.' ' Liquid Effluents Concentration O ~2.1 2.1.1 RETS Requirement

~

Specification-3.11.1.1 of the Radiological Effluent Technical 4

j' > Specifications (9ETS), requires ~that the concentration of radioactive material released at any time from-the~ site to unrestricted areas shall_be limited to the Maximum Permissible Concentratien (MPC, attached _as Appendix I) specified in 10 CFR 20, Appendix B, Table II,.

- Column 2 for nuclides other than dissolved or entrained noble. gases.

For dissolved orgentrained noble gases, the concentration shall be

{ limited to 2x10" pCi/ml total activity.. To ensure' compliance, the.

following approach will be1used-for each release.

,- 2.1.2. Prerelease Analysis Most tanks will be recirculated through two volume changes prior to; sampling'to ensure that a representative sample is obtained.. Because of their size the high. crud tanks, non-reclaimable waste tank, and cask decontamination tank will not necessarily be recirculated through

! two volumes._ An_ appropriate recirculation time for these tanks will i be determined by a one time' test. The tank will be recirculated and ,

periodically sampled for suspended particulates during'the test. The~

appropriate recirculation-time will be the time that the suspended i _

particulate concentration reaches' steady state. The condensate demineralizer waste evaporator blowdown tank'cannot be recirculated.

However the contents'of the tank will be under-administrative control

() and.could be transferred-to the distillate tanks prior to release.

Prior ' to' release a grab sample will tus analyzed for eachi release point for the concentration of-each radionuclide.

n i

C .= C (2.1) 1 4 .

. i=1

.here:

w

(

l C- = total-concentration in the liquid effluent at release-d point j, UCi/ml. ,

i, C = concentration of radionuclide i, pCi/ml.

1 i

!. ~

_... _._..-...._., _.. _ .~-_ ~,._.__ _.__ _ . _ - .__ _ _ ._ _ _.. _ _ _ _ _ . _ _ - - - -

2.1.3 MPC-Sum of the Ratios The sum of the ratios (R ) for each release point will be calculated by the following relatio ship.

C C C ( * }

=

A

+

B

+

1 n

. . .+ . . . +

R) MPC C MPC A B 1 n where:

C = undiluted effluent concentration of radionuclide i, as determined in Section 2.1.2, pCi/ml.

MPC = the MPC of radionuclide i, as specified in Section 2.1.1, p Ci/ml .

R = the sum of the ratios for release point J.

There are 4 possible liquid release points into cooling tower blowdown.

1. Steam Generator ) )( " Cocling Tower Blowdown = F
2. Steam Generator)
3. Condensate Tanks) 4 Radwaste Tanks 7 o r The sum of the ratios at the diffuser pipes must be i l due to the releases from any or all of the above sources. The following relationship will assure this criterion is met:

l

+ + f4(Rg-1) 1F f)(R)-1) f2(R2-l) f3(R3-1) + (2.3) where:

f),f2'I3'#4 = the effluent flow rate (gallons / minute) at the respective release point determined by plant personnel.

R),R2,R3'"4 = the sum of the ratios of the respective release point as determined by Equation 2.2.

F = minimum dilution flow rate for prerelease analysis (cooling tower blowdown, gallons / minute) = 15,000 gal / min.

For releases into the cooling tower blowdown line, additional mixing is assumed to occur in the diffuser pond when SQN is operating in 2 Helper or Open cooling mode.

O l

l

bq The results, from field. tests conducted in September 1979, are expressed in terms of relative concentration r: '

r'= 9.9x10 5 -(F +. f y + f 2 + E 3

+

f4) 6 Equations 2.3 then becomes 9.9x10 s (p + g +g 2 + f 3 + f4) f1 (Ry -1) + f2 (R2 -1) + E3 6 (2.3a)

(R3 -1) + f 4(R4 -1) i F 2.2 . Instrument Setpoints I

2.2.1 Setpoint Determination The setpoint for each liquid effluent monitor will be. established using plant instructions. Concentration, . flow rate, dilbtion, principal gamma emitter, geometry, and detector efficiency are combined to give an equivalent setpoint-in counts per minute (cpm).

The physical and technical description location and idantification number for each liquid effluent radiation detector is contained in plant documentation.  ;

The respective alarm / trip setpoints at each release point will be set .

is directly f " "" " '"'"' r"e" lated 'i C) Equation 2.2, will not exceed 1.f'"""""'"kheR' 4

the total concentration calculated by Equation 2.1. An increase in 4

to ' M the concentration would. indicate an increase in the respective R .'

AlargeincreasewouldcausethelimitsspecifiedinSection2^.'lli;to be exceeded. The minimum alarm / trip setpoint value is equal to the release concentration, but for ease of operation it may be desired that the setpoint(s) be set above,the effluent concentration (C3). 3 That is, '

(

S = b. -

C (2.4) '

J J J .. _

\ $ g[

or i t

\

S.  ;

b. = J -

J C.

J K where: n s ss S. desired alarm / trip setpoint at release point j.

=

J b = scaling factor to p"ievent alarms / trips due to i' variations in'the effluent concentrations at rc.l ease

'i.

point j .

C. = total concentration in the liquid effluent at release J point j specified by Equation 2.1, pCi/ml.

f_s}

Revision 7 t

3 i

- - ,,.A

The R used in Equation 2.3a must also be scaled by the corresponding scale d factor. Equation 2.3 and the corresponding alarm / trip setpoints b come 6

9.9x10 5 (F + f t +f 2 f

3 +f4} f1 (by R y -1) + ,,

f 2 (b 2 R2 -1) + f3 (b 3 R3 -1} + f/.D4

_. t R4 -1) i F (2.5)

~.

S by =1 y (2.6) c 1' -

3, h d' b 2

i, ,' . '

(2.7)

-C '

2 s S

s' b

3

= '

(2.8)

} C 3  !

S b4 =4 (2.9) c4 For example, for 2 release poir.ts, minimum dilution flow and no diffuser pond dilution this becomes, fy (Sy x Ry )-1 +f 2 (82xR)-1 <15,000 (2.10) 2 C

.k ' ~~. _2 -

2.2.2 Post-Release Analysis A post-release analysis will be done using actual release data to casure that the limits specified in Section 2.1.1 were not exceeded.

A composite N st of concentrations (C ), by isotope, will be used with the actual liquid radwaste (f) akd dilution (F) flow rates (or volumes) during the release. The data will be substituted into 1 Equation 2.3 to demonstrate compliance with the limits in Section a 2.1.1. This data and setpoints will be: recorded in auditable records Qyplantpersonnel. .

2.3 Dose N

2.3.1 RETS Requirements ,

Specification 3.11.1.2 -of tile 'Nadiological Ef fluent Technical Specification (RETS) requires;that the dose or dose commitment to an individual from radioactive mhterials in liquid effluents released to unrestricted areas from each reqctor (see Figure 2.2.1-1) shall be limited: -

. a. During any calendar quarter to 11.5 mrem to the total body and to 15 mrem to any organ, and ~'

I

]

Revir. ion 6 r

4 =

h

' a

n. ,

1 s.

A

(.Q c g..

y d.;, . ,\ .

c s., .p. ;During'any calendar. year to'1 3 mrem to the total body and to 1 10 97  ;;garen'to*a,ny organ.

. -f a

(;W-v,,Toensurecompliance,cumulativendosecalculationswillbe f

d at ppast once per m'onth according to the following methodology.

$ ,,t .-.

'^

7'3 .

Monthly Analysis N 1

, y 12. 3.,2 3 4, j M .Princtpal*Yadionuclides will b'el.used to conservatively estimate the contribution to the cumul.ative dose. If the projected dose 4

it' J,.mnthly,dt.he

'exce'dde above limits, the methodology in Section 2.3.3 will be

<' fm lesented. '

3

y , .. 4

' T e 11 ndcli' des (listed below) contribute more than 95 percent of the i

~ / dose to the total body and the two most critical organs (bone and gastro-

' '/' intestinal tract (G.I. tract)).for both water and fish ingestion and -

j r

sh,oreline r,ecreation.

./

~ I n .2 '

./f f* H-3 P-32 C9-58 C6-E0 Sr-89 rf Sr-90 Nb-95 1-131 Cs-134' Cs-137 '

7

./ , Fe-55 ,

~.

l,

/ i 4: .A co:lse'rMative calculation of the donthly dose will be done according

,'x to the following procedure. First, the monthly operating report _

' containing the release data will be obtained and the activities t'

,' . r91eased of each of the; above elevsn radionuclides will' be noted.- Thia 3
. infobinatiori will then be used in the  ;

following calculations.= .

  • y ;. .

rc '

c2.3.2.1; _ater Ingestion The dose,T'.

i

?

! to an individ'ual from ingestio'n of water is described by the following equation.: '

r 1 i

,' 11 F

5 D.= 1 i I IJ, rem (2.11)

J , tJ5 (DCF)13

-i=1 l

i Revision 7

where:

th Dj = dose for the j organ from eleven radionuclides, rem l j = the organ of interest (bone GI tract and total body).

.95 = conservative correction factor, considering only eleven radionuclides.  !

th DCF.IJ . =organ cri tical ingestion dose commitment lfactor for t he J of adult or child from the i radionuclide rem /pci, see attached as Table 2.1.  ;.

th 1 31. = monthly activity ingested oft fthe i radionuclide by the ll critical age group for the j organ, pCi. ,S I

gj is described by ,

l ij = Ai V ij (30) ,pci (2.12) ll Ed (7.34 x 101") il;l where: i A.8

= activity released of i th radionuclide during the month, pCi.

Vgj = maximum individual's water consumption rate corresponding I 5

to the age (Adult: 2000group mL/d,selected for the Child: 1400 critical mL/d; DCF}..3 above Regulator Guide 1.109) 30 = days per month lO 3 F = average river flow at Chickamauga Dam for the month (cubic feet per second) d = fraction of river flow available for dilution (1/5) I 7.34x1010 = conversion from cubic feet per second to milliliters per month.  !

The dose equation then becomes  !

i 11 l

, ii Dj = 2.15 x 10~6 (V x DCF)ij xA j, mrem (2.13) l5 F

i=1 considering the conversion factor from rem to mrem.

Revision 5

2.3.2.2 Fish Ingestion U The dose to an individual from the consumption of fish is dpgeribed by 1

Equation 2.11. In this case the activity ingested of the i radionuclide (113) is described by

= A B f M g3 , pCi (2.14) 1 i 1 ).

Fd (7.34x1010) where:

th radionuclide during the A activity released of i g = month, pCi

= ef fective fish concentration factor for the i th radionuclide 5  ;

B i

pCi/g, see attached as Table 2.2.

pCi/mL M ij = amount of fish eaten monthly by maximum ind'ividual corresponding to age group selected for the critical DCF above (Adult: 1750g, Child: 575g; Regulatory Guikd1.109).

F = average river flow at Chickamauga Dam for month (cubic feet per second) 3 d = fraction of river flow available for dilution (1/5) 7.34x101" = conversion from cubic feet per second to milliliters per month.

The dose equation then becomes j 11 5

D 3 = 7.17x10 F * [A f=1 l

B i (M DCF)13, mrem (2.15)

Considering the conversion factor from rem to mrem.

2.3.2.3 Recreation The total body dose to an individual via the shoreline recreation pathway is described by the following equation. For this calculation, the total dose is estimated based on a calculation for Co-58, Co-60, Cs-134, and Cs-137. These four nuclides are expected to contribute l over 95 percent of the recreation dose. l' 7

4 D= 1 [(RDCF)g - (. - 67], mrem (2.16) 8760 l' 1=1 Revision 7 i

,r Where:

D = dose to the total body from plant releases, mrem l I conservative correction factor for considering only k* = 4 radionuclides th RDCFf =radionuclide shoreline recreation dose commitment (mrem /yr per pCi/cm ) 2 . factor for the i See attached table

2.3. (Note

For Cs-137, the dose commitment factor for its daughter, Ba-137m, is assumed.)

th (f = concentration of i radionuclide in shoreline sediment (pCi/cm2 ), as described by the following equation (based on equation A-5 in Regulatory Guide 1.109).

(t = 100 RIILg Cg W [1 - exp (-A f t)] (2.17)

Where:

100 = transfer constant defined in Regulatory Guide 1.109 RllL i = radiological hal f-li fe of t he i th radioisotope, days, I from table 2.1 l

th C. = concentration of i radionuclide in the Tennessee River, pCi/mL. C f = A g/(F d - 7.34x1010)

A activity released of i th radionuclide f = during the month, pCi F = average river flow at Chickamauga Dam for the month, cubic feet per second d = fraction of river flow available for dilution (1/5) 7.34x1010 = conversion from cubic feet per second to milli-liters per month.

W = shoreline width factor (0.3 for a lake shore, per table A-2 of Regulatory Guide 1.109)

= decay constant of the i th radionuclide A*.

= 0.693/RHL g t = buildup time in sediment, assumed 15 years, per Regulatory Guide 1.109 67 = assumed monthly exposure time for maximum individual, h

= 500 h (* 10 h/ week) 0.4 (fractional exposure for yr worst quarter) + 3 (months / quarter) 8760 = conversion from year to hours.

Revision 7

The dose equation.th'en becomes (2.18)

D'=k(0.0823ACo-60.+ 0.0013 Aco-58 + 0.0218 ACs-134 +

0.0356 ACs-137)

I

'2.3.2.4 Monthly Summary If these calculated monthly doses exceed limits specified in Section 2.3.1, then a more accurate and-complete calculation will be done as described in Section.2.3.3. An. annual check will be made to ensure

.that the monthly dose estimates account' for at least 95 percent of the dose calculated by the method described in Section 2.3.3. If less 3 t

than'95 percent of the dose has been estimated,~either a new list of principal isotopes will.be prepared or a new correction factor will be used. The latter option will not be'used if less than 90 percent of the total' dose is predicted.

2.3.3 Quarterly and Annual Analysis A complete analysis utilizing the total estimated liquid releases for each calendar quarter will be performed and reported as required

- in section 6.9 of the technical specifications. This analysis will replace values calculated using section 2.3.2 methodology and will also include an approximation of population doses.

2.3.3.1 Individual Doses.

The dose to the the j th organ of the maximum individual from m nuclides, D j , is described by 5 m D j= D ijk, rem (2.19) 5 i k=1 i=1 m 2 5

=

[(IDCF)ij xlik) + [(RDCF)ijk

  • bik Tk $] (2.20) i=1 k=1 k=3 where:

= th organ from the-i th radionuclide, ,

D ijk dosetotg-j via the k exposure pathway, rem.

J = the organ of inte' rest (bone, GI tract, thyroid, liver, total body, and skin.). '

l k = . exposure pathway of interest: (1) water ingestion, (2) l fish ingestion, (3) shoreline recreation, (4) above-

- water recreation, (5) in-water recreation.

Revision 7

th (IDCF)g3=ingesgondosecommitmentfactorforthej the i radionuclide, rem /pCi.

organ from For the combination of pathways considered and the nuclide mix expected, the maximum exposed individual will be an adult or child.

Table 2.1 is a list of ingestion dose factors for the two age groups.

th I radionuclide, ik = via the ktheactivgyingestedofthei exposure pathway, pCi.

Ify=CV1n (2.21)

For the fish pathway 112 = C 11BM (2.22) th Cf= concentration of the i radionuclide in the Tennessee River, pCi/mL C

f = Ag /(F gd) (2.23) th Af = release activity period, released pCi.

of i radionuclide during the Fg = total river flow at location 2 during period, mL. 5 1 = location of interest (for dose to the maximum individual the first down-river exposure point is used. For the population dose, various down-river locations are used to account for the total exposed population. Table 2.4a gives the river location of public water supplies; tables 2.4b and 2.4c give the boundaries of the various reaches in which concentrations are calculated for the fish and recreation pathways.)

d = fraction of river flow available for dilution (1/5 above Chickamauga Dam, 1 below the dam).

V = average rate of water consumption per Regulatory Guide 1.109.

For maximum individual:

Adult - 2000 mL/d Child - 1400 mL/d For average individual (population):

Adult - 1010 mL/d Child - 710 mL/d n = number of days during the release period, day.

th Bi = bioaccumulation factor for the i radionuclide in fish, pCi/g per pCi/mL, from table 2.2.

7 Revision 7

4 r

1

) M = amount of fish consumed during the period (fraction of year times the annual consumption rate per Regulatory Guide 1.109.)

For maximum individual:

Adult - 21 kg/yr Child - 6.9 kg/yr For average individual (population):

Adult - 6.9 kg/yr Child - 2.2 kg/yr th

-(RDCF)13k=recreationgsecommitmentfactorfggthej organ t

from the i radionuclide via the k pathway; mrem /yr per concentration (&ik) in medium; from table 2.3.

Eik = the concentration of the i th radigguelide in the environ-mental medium pertaining to the k pathway.

For above-water and in-water pathways bik

  • Ii5 =C 1 (2.24)

For the shoreline pathway, a 15-year buildup in the 5 s sediment of the lake is assumed (per Regulatory Guide 1.109 equation A-5).

(13 = 100 RHLtCg W [1-exp (-Af- t)] (2.25) where

' 100 = transfer constant as defined in Regulatory Guide

-1.109.

th RHLt = radiological half-life of the i isotope, days, from table 2.1.

W = shoreline width factor (0.3 for a lake shore, per L

table A-2 of Regulatory Guide 1.109. )

th radionuclide A1 = decay constant of the i

= 0.693/RHLg .

t = buildup time in sediment, assumed 15 years, per Regulatory Guide 1.109.

Tk=assumpgexposuretimeofmaximumindividualfor the k pathway

3) shoreline 500 h/yr ($10 h/ week)

Os 4) above-water 1800 h/yr (6 h/d, 300 d/yr) l 5) in-water 920 h/yr (6 h/d, for five summer months) 7 Revision 7 l

l

$ = fraction of annual exposure for each quarter 1st Quarter Jan.-March 0.1 2nd Quarter April-June 0.3 3rd Quarter July-Sept. 0.4 4th Quarter Oct.-Dec. 0.2 2.3.3.2 Population Doses The total dose from all 5 pathways to the j th organ of the population, A d,

from m nuclides at n locations is described by n 5 m A

  • O j ij kt (2.26) 2=1 k=1 i=1 n 5 m

= D ijkE P

kf (2.27) 5 1=1 k=1 i=1 where th a ij kt = dgge to the j organoftggtotalpopulationfromthe pathway at location E.

i radionuclide via the k D

f.k1

= d se to individual as described in section 2.3.3.1 3 at location A.

P th k2 = number of people exposed via the k pathway at location 2, from table 2.4.a-c. The population is assumed to consist of 71 percent adults and 29 percent children (from Appendix D, Regulatory Guide 1.109 - the value for children includes teenagers).

i 2.4 Operability of Liquid Radwaste Equipment Specification 3.11.1.3 of the Radiological Effluent Technical Specifications requires that the liquid radwaste system shall be used to reduce the radioactive materials in liquid wastes prior to their discharge when the projected dose due to liquid effluent releases to unrestricted areas (see Figure 2.1.1-1) when averaged over 31 days would exceed 0.06 mrem to the total body or 0.21 mrem to any organ.

Doses will be projected monthly to assure compliance.

O 7 Revision 7

l 1

I I

l l s

u u

en N ,,, l J. N L N e ,, J. e l N I e pl f l d. a clo<N> ,lo. peo.,, o o m o c o p o o o o o,2 a p o p o p o o o m a am o

.l e l,,,,, P= n,oN oLo s,=i, ,n aisohomoi.o o ainoo .l ,L ., J, e j, W ,

/em e v ir e e ee ep e4 e eae jrssepe:seTsF+eo, t i e i e e ' i TeTi ie eee l e 4 J u inJ lJ IJ lJ laJ i e a iie WIJ bl W

\ .} U bJ Ink inA 8d W l J bJ inJ bJ u $J laJ lJ InJ b8 laJ b 63 W laJ bJ W hJ W m O' e IP O O F1 ee o se e N laJ 4J 1mJ leJ InJ IJ lee InJ lal OoooP i= ee W N laJ 1J la3 the laJ SJ laJ IJ lad e4 4* sm IPl in *

  • se din 80Ft@e4is e W e=o ol=e@

(/ og d W ' o o P= g6 ee l= FBse d 4 4 na 8'I a 44 @ tz P= i p $0 I P'l $d W 13 l'1 f N Ir3 o qi se f.

u u >*F1N o<eSetoo**

tu o u .J ae ee eek3 EeI. o. f.e ee4a9=P1iO e e e eN e .ee oe e1 O tol'e e bleP= e I. es* * *

  • e o e e e o e e e e i*o13 nD ie og I'l e l'* #9 14se<4 e411Ni4e<P ** <P em iD ee aeN*eNe)Nl'18944

. e e e e e 4 . e e a e le e e e u 401 G N ' P e4 < 4 96

" es I og (1 Pt

- - I D e4 I to I'd N 4NEn M e 19 N l'W e e 89 ae ne<P to iz o 13 N .Pe<wo<r e < 016 43 P= i= in I= to i= If3 i = Pt < P th <P en 81 f* d r e l eli l u i 3 e n N ei N O 8l O P1 ' 's= ao-u uonoono4= aoono'scomooa-ao'so<3o<=aco<noiso > noco<>o<>o<>o<en e ) g ) $ l l ) g o aimossooai g p g l 9 9 18 0 I e e g 3 0 p g l 3 l g g g ) t

'" u tu4 0 8 4 4 8 9 9 9 3

$ B l Q .J LaJ bJ las 9

$'8J inJ bJ laJ ha J Lad bI isJ ba laa lJ bl inJ lJ laJ lJ W bdlaJ lee IJ laJ IJ las lpJ Ins iJ4J 4J l

laa iJ las iJ Ine isJ lJ InJ qJ 69 u laa he tsf kJ InJ J Lad y JP1N=0tss. m @ P1 N P= n o $' se < D N i

  • rs NNe<= ce i p N ** q= P1 si e= D tu <P o & EP p o <4 e9P =0 eiN og D m

i u

, u u o e n es ce J deleineenrie, P e .n p p N er N E EP 4P P= lh o=e '4 o o se 11 o I=n13 na 44 4011Oq4N PNqi G4 (d N 4 o ipn<r th $ o10eie Ut 4'4

, y p= e e t se e e e e e je e e e je e e e e e l6 e e e e e l* e e e e e e e le e e e e e e o e e e e e e o e e e o e e

, u 3 N pd og y1 P1 r) N i= e4 4 e4 m ** ' 4 e4 4N N N tr ed id 9% 17ooe<4 ee I'l e Imsii4we<4es11Nt't %D i4N<p P1 qW srl ieNe4es4 $8 44Nad v'= 1 6 LS r p P't Iw@irO81 e ei P IP* eti u e 89 N P1 N DM MnMe 1N P P3 4ein e P to 'Jo N<PeiWoee<0 ift iP P= I = eft l e go I'= P. I

. U Q o 03 o 23 o 's o o $3 o 3 o p'd oe <m o 3o'3o o15oooooiBo o'3o83o o o13o o43o43o43 o 13 o i3a13 O U em 9 8 9 0 8 9 9 0 0 0 e e le t 9 0 0 8 8 8 0 e 9 9 B e i 9 0 1 0 I $ 9 9 l 5 g 1 0 I I I e i e 1 0 )

aJ laJ b8 h laJ J ks bJ LaJ IJ laJ as laJ 'ad laJ bJ lJ laJ kJ lJ ha lJ laJ LA las laJ 4J laJ be kJ l Lai l J laJ lJ La# 1 J laJ qJ la.a lJ laf 6J eJ U

= u 6: n u em.) N laJ

- (nJ ena las er n e e n o = w n N * >= na P-eN43o N wei=e en N p - ir wi e i p ,o N intaJ in - o <. ewe oe <s - in E u D- o e N p ce F E n GC F3 e4 n in D N e N O 0% P fa i Ptce i3 e o og l'1 a le 89 ll140 i 4 gO I1o NIP 5 NI4e ee te N 'P o iD P19 O '1 O' iL Os I'd je e e e o e e e e e e e e

(,s u g e e e ,e o je e e e e e e e e e e e o e o e e e e e e e e e e o e e e e e e o e e e U =N e4 4fl F1 N '*** "*** n ** d e4 '* N nN P se -4 O' '2oise'4 e4 'ieiP' P1 i4 ** i4 es 11Nq'1 %D iid P= P1 ie Pl iWNad e4 <4eigN e u l u e o s0 i W ad W ** N11 89 iid N < 41h 49 g6 '1 N 'W u = e si N P1 N sr si N Ft 1 P1 MN 9 f( N s1 sopo 1N No 2o P e1 iy Pi so' N.r ce <4 N i4 N i9 P1 so otsoisoboi3o'3ois uuupopo opo ;s u aoao s o 42 0 saiso< moi <2o oi3ci uW t # f if 8 9 # 8 B 9 8 8 8 9 8 9 B + je

  • I $ 1 9 3 0 0 8 1 0 0 i e i z aesc 9o '0 t e I l e 1 0 l 0 l 8 I 8 8 laa l J I.J bJ l nJ laf IJ

?' u et laJ kJ inJ bJ W laJ (9.JJ 4$laJ kJ J kJ be laJ b le J LaJ J IaJ 1 J kJ J LaJ InJ bi IJ laa IJ laJ IJ IJ Ni c e o ,ada6J rtWNIJmne 4 J 6.J LJ IJ W i rJ laA I od Je4~ InJ ,IJ. laJ i n in

== upoNon=-weena>o n n e e in eJ r e o o <= o com-NN-4oo- Pepoon' e<:i ee - uI oenNN "= IP W ee fa O Pe D5 P We4e r* e

  • a '2o Po P1 o 4 N F3 P= o P o l = sp p so es te o 'oN10 N e fan M e e e P1 'c u u pie e e e ee e e e le ee o e [e o je e e e e *
  • 8 e e ge oge e o je e e o e e e e ;e e e e e e le e e e e e le P.e =g P D u L9 N N e4 in N r @ e me N e a4 N es N e4 %D 1m 75o 3o w P1 r1 N og el= og 44N se .y ed iy eie si es 44e<4 g6
  • u i j i i
s. u I i f P P= P o d'e at 31 e o e n N e l N ** n e N n e n e P taf i3 o N e i 3 e* b P1 O e l '= %D i n e 6J p *Wl W

a u

u o u o n n u oF3s3 e N N F1 og ln W op o t's o u c o o p p o o p o sooopopo opopococo' s u o'= FB uco . c o sm o o p o 's me u LJ 0 9 I I g 0 8 8 9 0 0 gl 8 9 0 18 0 8 3 5 0 I B e *

  • 0 e i le
  • I 0 it I 4 9 I p 8 0 0 0 W I I B I e I I B U il* kJ bJ LJ laJ LaJ laJ iaJ laJ aJ laJ lad k=J InJ J ha3 b8 laJ (d 16 b aJ l g,J l,,a lad laJ bJ l l bJlaJ 68 O W iaJ IJ lad bJ LaJ 1.J i u c~ m e4 O c e n' le> c elaJo LaJ so t=J ~ e4 laJ aa5=J 4 J LaJ.to N su-eN P= 2ouNNeGo e o n e4f4 o N y, o e sJ cec bJ aJna um o n < < in r= c e. InJ N L 80 e nn 4

u g} o N in K N P G.e p e4 pc @ n p F3 N e PD '1 tP tr F* IP sd le he se eoe e gg om og gm N in p e. 44 pe N .1 e e4 o 4,0 >=

9 ao '3 e :e e F1 e ua e ese e e .. . e e le e4 e e e te e e

  • 3**e o 63 ed. F1 o e to e se e e .. e * *
  • e e e e e *
  • a N P= e. i og s n n - in N P - eNe--= e' *** *eaNas e =c il n <
  • e ' o ew n-nn<re =w<* e n1 N 4o n
  1. 4 l u 1 N e.eN in a l 4 e l e o

3 = aeN 81 N 0 ai n N e e an e en N n e n o n gg 3 O b N yg its at o er c = go r= c , o J i ge = in b n e P= 1to e eiF1 e e e r1 ag i as u E3 O O o $3 O A et t) o O E3 83 o o f3 E3 83 p CD $3 o 3 a p D 43 o D o o o O O o o p o 43 o 43 o o o p o 1:1 o Q o o O p a $3 6 *E E 8 8 9 8 4 4 't i 8 e 10 9 0 8 tl 0 18 I I O 's I e 9

  • 9 8 0 18
  • tl e e 5 e e 9 DJ Ji 1lsJ 0 0 e t ,e 3 J b's 6 0 6 0 0 p 6 e t i se la., y las b L; w 'she S.A 4.s tu ha ta8 b.f la> la/ 4 J la' tal k h.* k laJ La8 a.4 nnJlaJ bJ La' 4 J La' l=J laJ 4.J W $mJkJ IaskJ J LaJ daJ I J LJ las J Ra# GJ LaJ bJ W s' laJ bf P.4 e.-.,- as D J W D e9 C e4 e %D D O IB. P* i 'd P= C3 O =0 1 N PP e4 % e
  • e.* E =d O o
  • Eb to

< p.a #1inlaeo =N o o seree P= 0. r N 8rt in e ce J F1 as ae r= e4 O N e* * ;s o u - p p ps at h we ti.s *=. 8e a e fa * * ' is e e

n. e e e e= e i. . v. ee ee ue1 e. eWlee e s oe e le w es u O.e e e e e ese v e o s.e e. e.4 u. ee e ele e e e e e e e e e e e ee e e te gy p e e ce e. e e4 e t po. N *N e x s le. w e r- u N 4N enN 3 O sesN ae.c- e n oN'= o n n r e4 e e ae
  • in N N 1 -e N e= et j l l f"N. w < > l s 6 9 89 P8 98 e8 he es e e e up g o J sri . p s g a.r3 O ar es t (im gas p as p gg p w no us e rw is ges s'm e g =g, se f l E e. ,.J e e sw F1 et Le e ht e P3 e g p og O ;3 U p D b u 's o p 1

f a < LJ O CD $3 o O 3 O r3 O p D G0 p0a9O BCD Q D O $3 O O O "3OOE3(JO$3O$3Opu B B B B B 8 9 9 9

  • 0 9 9 19 9 8 9 jf G 0 0 't I e e 3 3 O $J Cs O O 3 O 0 4OgO g8 e e B .4 0 's t 8 8 jf

\ .s es < ZJ t e e e t # 7 .# # 8, 9 J LaJ saa la' $J .F l 3 laJ La na taJ InJ hJ LJ Isa he U

= I , w b la.s inJ 61c a c O ew to NNoe 84 W $aJ Is sa e La3 n

L'aJ laJ n' >{c.a w taJ lad O reIaJ N ,b3 e la.J3LaJ o o n' l.a.J. I JNlaJ e naJis Qle laJOtaJ arnaJ >=laJNRa.j P O laJDnaJ inlaJe &as e olaJEtaJ u laJ e e 4,J =laJas laJp: W N e e er oc n e e 4 O 2* ln e N N de P O e e 43 n p P= N Le etsa ** [O ee it' e sLeO 63.'O.f. seeeofee=ese O e.gh .. 1.; ee . . D.' 89 . ele e e f3 e I. e4e De CD e,.C3 K: N. e. C. ~C. N... a'l . ln. f* e e e,e e e e se e e e e e le e e e e is e3 .eo o- em Nereeb- e n o 4 l- N e e n N oO c' FD N r- Me 4m 9N =0 A ** N N 60 m Me * $3 ao * $c *e*

c as l l es - ele N oe o e c o in 3 O es n n e o O e o g- se n e se ,a --n - P= e e N w bn o e e in e no T

o

< m -, e en e nn o in npQ 3 O 43 O i 3 O 3 3O 3 et p p O.

-<>.C. $9 O. O. P. O. f5 r3 O. L.J O. 3 U. GJ O. .. . D eO i B.3 O. p . O. 3 O. $3 U. 3 O. p D D O.v ew (3 OJ O. C.3 O. e i ei i e i 'e 3

. i is e J i. .a,L,u L.ia.id w w w . e u w LJ w

,J w (J .J w w

3 an et r p e.e u w tra N pe n == O == N w so -* W % O 6e N b. e o O O 8'S pe N ar is P- O se >= N P= 43 O in i,0 aP # N O ** s'

.WvvLw L+i

i. J i

I.a e iw4 e cwww .-..a.

'J

!i e l O

  • e 9 e p =*

$3 Q $3 JwL 3 e 60 O'J uow

  1. e= i9 ' te r)7

< ;r in h Oi.e. t'.i e4e e ... .4. f *. . ,e. D. e.4 3. D. D. . f. F. E. if. T. pl . n. O. P.=Ii. e. .EP. s2.i. p f. n. 3.*T.* N. .e. e. P. O. er. @. ' r. sw . N.

C at > O. tJ. N. P. a* - - p L.e.,e.

.~e. Ne - - f .e n n a r N , N 3u c- N r NeN- $N ,o -. N~pc e -e , - . -e Ne -

< 1 1 i i i i i l l er i i N

<-eeNnN nnnNn N N k n es n @N c O e< e n N n ta e N - N e< N ~ e M N e< N N n in n e N n

  • c 3OOOOO N sc ON

<et

.Lt: r3 O p O p C "'t O p D ps N 3 O $3 O pg we p O rp D gS rf p o p D f4 O 3OpOhO eee eee e ae e e a e e e 2 *3 O i c3i iOto O eO is p r*i O,eC1 e r1

,e CS e e :s e !. e i e is i e i ee : ,e ei e ie. e e : e e je ee e W LJ LJ LJ La LaJ laJ laa ld W W laJ LaJ tal B.J LaJ ,J 68 lJ U LJ la! aJ la? IsJ 1 J LJ IaJ J laJ inJ la8 Y bJ af laJ laJ LaJ LJ laJ aJ inJ

<yfr. e a e n e=J L' LJ r LJ O RaJ e= elafOl,aJ a a rNweuO a a O *'~ v O a O N e ne n J 1.J laJalsJ LJ L.aJ

-rO<N ~ P= p e O O a N or ~ ** e 3e >

l'=  % em 3 ee n n *< <r O n.

at I

< L O. %C. n. ,f= oce f#. #.9%D e f3. .e. af.9 gn e O [#. h. I.* **.  :*. (D. . e= et. ti O. e. 89 . e4e 98'.1 . se. % . N. . e J. e. n. r.t e e r. e. I'. i** Io *e 4. e. *. N. F. P* . N. O. ll.*

.e a .c e. .Ne n e ,e e e< >= e Nn 7 o e e. n e eN eN Ne 4 P* NN Cn *N N s=6 9e 9e N 04 4e d **

  • n0 e er g
  • E l f

et enW 7

em @# D prl Pr1 e 6 89 ** e "1 AeDC W 3OOn nc s'. O Pt n 4 e 24 N a4 4 %D '= 10 % e r P* *O O & jn CD Ce n 3OpO 3O 3030 30 30p0 30 3

< ODODODODOOOOO OOPO 3O 30 30 30 ee

., i. Oi O e O P eO i p e O e Qis Q e e e i e i e i e i + ++e i e 3 i O. i eie e i e i ee i e e ie ie i eie i l et .;* %.i ld '.i s e.J w et.J J n.J J fiaJ 'al laJ JW .aJ oe,s.s.

te ebe W baJ td af u LJ las .I w l.a.J ht an' J w laJ V la J W .3 U J LJ aJ IJ LaJ aJ iaJ J LaJ W la.! m a n n o.J W N : r ~og. J J laJ SJ.re re e cJ no o :3 P- ne n .n rN .a O n

< n .n e O c n g N ,e o e e= r- N 3 a ..

@ 8*=

e 'JN-e e N O ar N >4 e fC O J e* 4 af C C3. se. @. r=. ?.

<g . nr.e e= f. *. .P.t .@ . .le P3 N I. ee 3e0'e6e se eO N. *e* 3. O. 3. 't. N e e. 3. @. be. e.d av. e 3 e e. 4. O. 4. N. e e e e e e e e . e e . 2* %D. e tw N lm a lN N te sq e >= irt n e P4 N se e N 3O :3 e5 9N "7"* N P- P- Mn ** W n *. '1 J rN * *

  • Ne nN '9 - n asl . i l 1 I I I m

.J g,9 I ., L N L _.- N30L N L_N _, L L N~

COQg#

ee .g4

  • e lt 9 9 . 4 9 + i 'e 9 e+

Ly+ cL_, ~ L.

i 9 8 OpO e 94

  • N N - e - O 30 30 i 8 # e i e6 3 3O

- N ;

3 9

3 e

3 i

3 e

d.3 3

+ 4

. 3 0

, O e e N e i,, .-

3 0 3 a t e + t 3O 3O e 4 g g g

&,O O , OO m O g

O O 4 4 c

g> W qaJ l w tea lad 6 J b 6 4 iaJ tm l.aJ aaJ aJ laJ N LaJ aJ i J tal .J aJ laJ af LJ,bJ - nas maJ W LaJ J ea. aJ .J mJ LaJ aJ LaJ aJ laJ g gg y w e, L J .ts.J nene ce o r3 - e = ne 9 laJ o e .a.J3 c3 2 .kJ .a.Jc n -aJ .La.# . hg < la gj

~ N. c,ed .r taJ vN n P= - = - 9 e= r r .eaJ n e n O ,o N ,,

=w Jo r. ., es hc.

. . e. n. e.m. .. n e O o-e e e e e ce <3. .1 e. r. =. . O. N. e.

z NO 3O P W ta C r

== r.>e e e e e e e e e o e, e Ne e O. n. 50 a.. N. %. *. In. n. e. is. oe ei,e, e

e e =< Nn ** e !e N ' ' = - 9 ** AN 9- se - N -4 >= e4 9 c. sw og n- 9 '4 -4 O *1 4 r e r= q en n w y *N eg o. e.

2l l 1 ** 9

.u..g gg .;vrmPm O l F E' E" E E E 9 In @E nE JK e4

% me se N eN =.e @d. P= J O PS @

  • In +e Jn e in 9O n sa 'O F O ad N 3 we 9N 9O *O n ** *e ?e 3O 3m 3 in r3 O. r,ee

,J era r. N NM til O ld t in O @@ C *C %D %D G P* II' e ir 4C EE 53 e We T' 0' LP P iP P 0' 0'  : (P* 7' e Pe r*- ** O P4 O I

\

4 u e i e 9 0 8 4 e a e e e i e e e e e e F'e*i e e i s e e s i e e a ee e'e e e e e '"i e i e e 9 e e i 9 e og i ew P4 a e.4 g

.c w o uo -- ae ew vs a ra ze r aJ m an za z ac >> > s- > se r cm m cm uo L.J u ;J :2 az Iz r is

\. d/ 2 J r iJ < =a ar Z Z WE 3 tk be. W WU FF WN N *E "E E I2 hf 3C hf E EE A i/3 A I/3 N NZ EE E& "" k EE E IK E dif E< L.a L

Revision 7

table 2.1 (

nued) Sh=t 2 of (

()

tsECEIDE HAEF-EIRE DJSC C urITMEhi FACs.t$ --- (EEP/UCID

("<

g uRT; 3 ---

._T ~-- -

C61EL AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA C CCCC C CCCCCCC CCCCCCCC CCCCCC CCCC CCCCC C CC CCCC CC C C C Ph GI IRAEi Im elu s ui aE eu r LIVtn 80Mt ua iRati i ru RUT u suist 6u6i i. i v d 3.11E-06 6 71E-05 4.51E-06 2.29E-04 6.47E-02 3.11E-06 6.70E-05 4.51E-06

2. 7 2E+ 0 0- 2.29C-04 6.47E-02 30-122 v.suCTDz i .1 *DU n a . a ED u a s.97E-us 2.i3ruS5 5.isE-s2 e.19E-Go i.16E-G5 5 M 7E= 07-su-12g )6 02E+01 z.s:L-va 3 80E*00 5.45E-04 7.00E-02 6.13E-04 2.95E-04 5.45C-04 7.0 0 E-02 1 19E-04 6.13E-04 2.95E-04 s S0-127 1 5.saE+cF 2. 6 + F0 3 1.~ 0 7 E; 02a;c

~ 1.19E-q -14 0 43 .55E-04 9. 71C;G 1.14E;0M!F0EW3.20E' 0 3 T.52C-03 3.0 9E-UF

~TE125M 2.3FE-05 3.55E-05 4.71E-04 1 84E-02 3.26E-04 1.01E-04 1 27E-04 TE-127 ~ 3.92E-01 1.10E-04 6. 68E- 0 3 A.15'-05 7.78E*87---

'T.'? ? C; 0 3 2. 2 7 C;3 27.~7 3 G 3rv.7 5 E;C 4 2.4TE;U3 z.R9E-U2 2.24E;ue m. vat 513 3.43E-23 TE127M ~I UTF6'l- 1.1PE-05 1. 34 E -0 4 8.34E-03 9.56E-05 3.18E-05 3.74E-05 "+

4 86E-02 3 14E-05 2.37E-05 2.41E-C5 7.n5E-06 TE-129 1.1F0 2-~S~. 7 9C;D 2 3.9'T;DFr;42E-0 5 4 m E;03 s.nrt;U2 m st-uz,a.sst-uz s .snE-v 5 TE129M 3.34E+01 p.23E-06

'8.30E-05 4.36E-04 6.35E-05 2.47E-05 4.56Ca*2 D 2.53E-05 1.e 7E- 0 5 2.79E-06 1.62E-05 6.22E-06 TE-131 1.74E-02 7.05E-04 6.46t-04 T.zut-ua a. ult-ca. s.azt-va e.ast-wa 4.6E-u5 m 1.25E+00 1.73E-03 8.40E-02 1.3+F-03 TE131M 3 25E+00 2.52E-03 7 71E-02 1.80E-03 1 53E-03 1.63E-03 1.01E-02 4.50E-021,6.51E-03c5.40E-03 4.47E-03 k d7E-132< ~'9;T2F 04 7.84E US~7;UDE +00- 3;1PC-13 7;74E;U4 v.42ETU4 s.est-us ,s. nut *uu. a.46E-55 s . 24 E=0 4---

. I-129 5 80E+09 I-130 5 15E-01 7.56E-04 1.92E-03 1.duC-01 8.60E-04 2.23E-03 2.92E-03 2.76E-03 t6 5 CE-01

  • 3.04E-0 3 # 5.9CE-0 3 1.*3E+00 3.410-02 b.3st-ua a.szt-uz a.sgD ua.,s. set +uu i. cat-ua a . s arat2-I-131 #. a.04E+00 4.16E-03 1 57E-03 9.54E-02 2.03E-04 1.02E-04 1.90E-02 1.90E-04 5.43E-04 R.00E-04 1 73C-03 L6.82E-02 6.76E-04 1.47E-03 I-132 s o ut-u5 E.67E-0T- ~T.Vfi~53 2.22E-33 3.63f-01 7 5'3 E-0 4 2.477-73 d.v2E-us z.vst-ua~,4.aet+uu z. set-va y 1-133 4.99E-03 1.03E-04 2.8PE-04 4.19E-04 5 16E-04 61 79E-02 3.58E-0 4 Z 7.T eE-0 4 '

3.65E-02 1.06E-04 2.51E-07 I-134 2.74E-01 4.430-04 1.51 F 03 7.65E-c2 4. 2 e FU 4 1.16E-Os 1.rmt-us 'z s a.ut-ua.. a. a st-g 0.00E+00 2.45E-02 0.00E+00 0.00E*00 0.00E+00 0.00E*00 2 45E-02 z.*UL-eanfe. .00E+00*c0.00E*00 sit-ua k.1-135)+

ug133g 2.19E+00 u . u tC*C g RE-133 4 XE135M3 5 25E+00 1.06E-02 0.00E+00 0.00E+00 2.58E-02 3.29E-04 0.0CE+00 0.00E+00 U.UUE+00 0.00E+0C U.uut*Uu.

0.ECE*00 u.uut+uu 0.0 0E +0 0 z.sut-uzi.u.uut+ue.iu.uuteau[s[

3.29E-04fD.00E*00 0 00E+00 0.sOE+se M 3.79E-01 0.00E+00 1.00E-02 0.00E+00 0.00E+0D U.uGE*UD u.UUL+Uu 1.uut-uz gu.uut+uus s.sut.uu:,u.svEveurg g xE-135) 1.21E-01 1.4AE-01 2.34E-01 2.07E-03 8.10E-02 8.10E-02 3.84E-01 .

CS-134 7.53E+02 6.22E-02 2.59E-03 1.21E-01 n.naDu a a.azE-1 8.400+ca ' 1. 3 0F07 5. 35 E- 0 4~T;I3E;0 2 6.6T'E; C 1!T2C-52 1. AVE;U2 s.ast-us a.13t-v4 C5-135 1.85E-02 2.57E-02 2.35E-02 2.27E-03 4.18E-02 4.18E-02 6.46C-02.i 1.31E*01 6.51E-03 2 92E-03 1.RSE-02 C5-136~

1.10E+04 7.9fE D2~2 IlFDT T.T4T;32 7.14T;02- 1 U9E-01 s.27E;U1 1 36t-us e.ezt-uz . . u t -u e a.a3 & vt--*

CS-137 5.40E-05 1.09E-04 2.28E-04 1 46E-04 2.01E-04 2.01E-04 3.17E-0 4 CS-134 2.24E-02 5.52E-02 4.65E-10 5.40E-05 5 T2177 3.azt-us 3.zyt-us 1*ITE-03 2 93E-07 2.87E-05 4.07E-09 5.2SE-07 2.93E-07 2 57E-05 4.ust-ga HA137" 6.91E-08 4.14E-04 2.39E-02 1.20E-05 1.20E-05 2.21E-07 RA-139 5. 7 P E - 0 2 ._ 9.70E-05 1 72E-04 2.d4E-06 2 84E-0E 1 2nE+01 2. 0 3E-02T1h t:0 2T33F63T 33EIDF2;35Da s 8.- 31ETU2 4TIIE-uz g.est-ua s . est -u s s.zet-c r-HA-140 3.56E-09 2.00E-04 1.14E-04 6.51E-06 6.51E-06 1.12E-07 RA-141 1.26E-02 4.71E-05 2.22E-14 1.55E-06 1.55E-0E 7743E;U3- 2.13T;D S 3.GDU23 1 34FD6- l 34E;0F2T19E;D B h . 7 4 E-D 5- ~1TI 4 t- u b s.aEE 06 GB'8GU 6-~6n9E' -G8---

fl A - 14 2 1.01E-05 9.84E-02 1.15E -0 6 1.19E-06 3.53E-06 1.68E+00 2.50C-06 9.25E-02 3.33E-07 3.33E-07 1.26E-06 EA-140 T4"E;U7- 1.45E-UF 5.P2E-06 3.24E-UI J.J1L-uz s.zJL-uu s zat-un a.est-us LA-142 1.28E-07 4 25E-04 1.45E-08 CE-141 3.25E+01 _ 9.36E-06 2.42E-02 7.19E-07 7.1EE-07 6.33E-06 3.97E-05 2 47E-02' 2.94E-06 2.94E-06' 1.98E-05

a. s y t-13---

CE-143 1. ML+00 7 E3F;06 4.56E-027 35E D 7 1.35Er07 1.22r-03 E779E Ut s.sst-uz s.nt-us 3.s it-u s 1 11E-04 6.52E-04 2.d4E.02 4.aHE-04 1.65E-01 2.62E-05 2.62E-0! 2.04E-04 2.080-03 1 70E-01 1.11E-04 CE-144 4. 0 3GT27'.T6F0 F436E-0 7 J.FC;05 3.v 3GV 5772 4t-u z 4.ist-un z.vst-tm 4.a6E-c r PR-143 1.36E+01 9. 2 0 FF6 T;26f-'W 3.01E-00 4.33C-15 1.5 3E-0 9 1.53E-09 1.25E-08 1.29E-07 8.5SE-05 6.45E-09 6.49E-09 3.99E-08' PR-144 9.:%-g8 7. sot-vo PR144M 5.00E-03 8.dbE-08 5.69E-DT 's. I'47D9-- 3 29C;Et a.M60-un s.svt-us 2.ast-ua a . z a t -u n 2.26C-05 T;1TdC*U T 6.29E-06 3.49E-02 4.350-37 4.35E-07 7.27E-06 2.79E-05 3.5 8 E-02 1. 75E-0 6 1.75E-06 ftD-147 1.DE- 02 5 31E;0F5TV2E 17U2r:UA 2.nsE;Us 4.ast-ve s .a8D u s 3.uet-us 4. set-u, 9.57E.02_ ~ 2-iDf;D5 0'-

pp-147 4.85E-02 1 240-07 1.24E-07 2.5CE-07 1.53E-06 4.85E-02 1.24E-07 1.24E-07 2.50E-07 J h Pp-149 2.21E+00 1.53E-06

4. woe-v2 4 . 2S E* 01---

2.4CE-01 4 . a no v a

< 'SP-147 3.=4E+13_ ~~3 20E7017 726E;D2 171TE;03-~2 9EE-37 a .20D 017.z a t-u z 4.85E-03 2. 8 4E-0 6 2.84E-06 1.18E-05

  • 3.3iL+C4 6.R7E-05 4.95E-03 2."4E-06 2.44E-96 1.1FE-05 6.A7E-05 SP-151_

1.95E+00_ 7.9 0E-o r 2.43E-02 6.Ist-58 h.AJL-gr s.enE-ua s.vut-us z. sat-We n.aat-ua n.adt-uo s . na t-s e ,

SM-153 1.0PE-05 4.63E-05 9.70E-03 ' 5. 26E-0 6 5.26E-06 1.08E-05',

EU-155 1.74E+03 4.63E-05 9.70E-03 5.260-06 5.26E-06 S 4.43E-02 a . s t t-UE-~B- 75Uu t 6. sGin a.szE;us .3:t-v4 o.sst-so n.s5E-Go . 5iE-55 TA-1H2 1.15E+C2 1.12E-os

" g-187 9.9hE tT- 1.03E-04 2.82E-02 3.01E-05 3.010-05 8.61E-05 4.29E-04 3 57E-02 1.14E-04 1.14E-04 2.54E-04 i

,A /m s <ms(

i l

O')

5 Gl Tabic 2.1 (continued) Sheet 3 of 3 NUCLIDE HALF-LIFE DOSE CCPPITMEh? FACTCRS --- (REP /UCII EW fig suaTsp avuti AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA CCCCC C CCCCC CC CCC CCC CC CCCCCCCCCC CCCCCCCCCCCC CCCC C UQ1L bl IMAll 3MHOLU lulAL UULr LTvtM ,

80h us iRALs BMThuiu iu ht h0Li Li eta P B - 21T"' w.a t-va z .TOU017U3r:32-" 3 0 09UI 1.70E 60 0 ~114 0E*00 e .10r+ 01733r44 a .0 0041 t . # 6DCS 1. 4 0 D 0 8-

1. 2 0E- 01 7.57E-02 5.22C-04 2.57E-03 5.25E-03 1.20E-01 7.57E-02' 5.22E-04 2.57E-0 3 5.65E-03 PH-212 3 9.4JL-ul Pe-?l4 .1."6L-uz J. cat-04 alt 4r;U3- 171 M";US T.6490 z.57E;03 f.0 3r;'0 4 3.1 g L- v a a.act-u: 2.. r-w a 4 27t=st -

81-212 g 4. 21E-0 2 - 3.03E-04 5.90E-03 4.9 7E -05 1.26E-C4 7.24C-05 3.03E-04 5.90E-03 4.9 7E- 05 1.26E-04 7.24C-05 11.act-ud 4.16E-Gr~ M tit:03-~5 11C- W W s1E-W 7 MTU O3 g.16C-05 37170-Os 3.11DBa 4.97tuc3-t s s sE -S t-

-- " H 1~T14 PC-212 J.30E-1z 1.50E-33 9.1FE-13 3.48E-34 1.56E-1E 1.0aE-33 1.500-33 9.17E-13 3.4fE-34 1.96E-15 1.0PC-33 PC-214 TA+87L-us 4.guC 12 4.2DC IV- TTDIE714 173CE71 M 735E:la esE00-12 472PPlu f . u1ESTr tM0E *12--37350=13

9. 35 E- 07 3.68E-07 3.11E-09 1.85E-Oe 7.3*E-08 9.35E-07 3 68E-07 3 11E-09 1.85E-08 7.39E-08 PC-236 31.74E-u6. 'f . b 7E70 3 c.04t-so 4 . a iD%T-"

1 PU-218 A4.14L-va s 9.60E-U5 6.H4E734 1 69E-;6 8 6zt-CE 1.IIE70b b.ut-um s.bst-th RA-224 T.M C+ 0 0 3.30E+00 6.60E-01 R.32E-02 7.47E-02 a.90E-02 3.30E+00 6 60E-01 8.32C-02 7.47E-02 8.90E-02 4 73R +11~~D OGD 1T C 7GM ' J .4T,r4 0 C-~5MCE-O g g .ME

  • C 1- 3. 30 E-t1 3.ist-u1 5 .40DU S--ST90 E= 0 i RA-226 3.59L'u3 4.00E-01 1.70E+00 4.10E-01 RA-228 _,z.lut+va ___2.10 E + 01 7.14E-02 4.00E-01 1.70E+0C 4.00E-01 2 10E+01 7.14E-02 AC-226 -4.33L-us J.4bE-03 4.U7E;04 LTT3E-06'1 m E:04 7 ;!49 V4 a.9BC-Os u.U Fr:CJ b.1 JD 5 h &e55E*D N 4f*$4 -

TH-224 n.7st+oz 4.10E+00 4.70E-01 T.42E-03 3.40E-02 2.34E-02 4.10E+00 4.70E-01 7 92E-03 3.80E-02 2.34E-02 2.81E+D7 1.60E+01 1.OR1 4.5TC-u J 9.z t E-aN FG u z 1.6 c t + 017 .m a t-v i s.stt-va 2.est-se 4.16 C42-TH-230 1.8RE-02 TM-232 3.11L+1z 1. ROE +01 1.50E-01 3.94E-03 9.63E-02 1.PAE-02 1.RCE+01 1.50E-01 3.94E-03 9.63E-02 TH-234 .z.91E*ul 4.W1E;U F~176DC;0~1 1 6st-06 6.25E~T4- IT45r:05 g;9IE:05 1.5Ur41 4 .n ut -s RET 39D7, 1.46t+05 -

PA-234 ..z.svL-ul 3.00E-04 1.11E-02 7.20E-06 3 12E-04 2.2HE-04 3.00E-04 1.11E-02 7.20E-06 3.12E-04 2.28E-04 U-234 15.51L+uf 3 TOGTI TMC D1 6.Jzt-uz z .30D 0 0 6. 2C '02 aTICD01- 1WCL-us n.m-us 4.30D u u 6.32C-02 1'-238 1.6JL+1z __ 2.a0F+01 1.70E-01 5.63E-02 2.00E+0C 5.J'E-02 2.80D 01 1.70E-01 f5.63E-02 2.00E+00 5.35E-02 'f 4.03E-04 1. c eE ~4.42E-03 * -3.21E-02 +1 22E-05 7 9.03C-0 4 t1;00E-03 ni+

~

y NP-z3s z.1zE+uu G 2C;03'~3.21E-02 1.22E-05 ,

^ NP-239 .z.43L*Un 1.19E-06 2 40E-02 6.45E-03 6.45E-DE 1.17E-07 5.25E-06 2.79E-02 2.65E 2.65E-07 3.77E-07.'

ru-zan a.evtvuw z.aut+uu z . t ur371723t- v a 4.n3rmag g. gor"01 4.100*0s 2.isE-si 3.23E=# 3 2.e3E-G2 4 a-9 0E-91 ,

PU-239 e.upt+06 2.60E+00 2.00E-01 3.63E-03 3.13E-02 4.50E-01 2 60E+00 2.00E-01 3.63E-03 3.13E-02 4.90E-01 0, e ru-zeu z.avt+ue z.bul+uu z.u3r:Un a.neteus J.13t-se m . wt 41 e .STD u w 4.GGE-si 5.62E-63 3.15E-G2 43900 PU-241 3.JfL+uJ 4.83C-02 9.92E-04 7.49E-05 6.19E-04 9.50E-03 4.83E-02 9.92E-04 7 4SE-05 6.19E-04 9.50E-03 1.JfL+un z.6ut+ u u a.g t-wa e.iat-ug m.sut-uA 4.nur8Uu a.ivi-va a. ai-va 4.seE-62 4. eE-61, .

.ru-24z 1. 'r u t -u t AM-241 1.5ut+0 3 R.00E+01 2.10E-01 1.200-01 1.00E+00 1.70E*01 8.00E+01 2.10E-01 1.20E-01 1.00E+00 1.70E+01

  • ar-z4z b.ent-va 3 13t-us s.zbt-va 47Ubt-ua s.get;t4 a.:st-u3 5.iSt=U3 v.esE-43 1.usE-s3 1.4 4 E-G 9-1TS it AM-243 2.69E+06 P.50C+01 2 20E-01 1. 30 E- 01 1.00E+00 1.70E+01 B.50E+01 2.20E-01 1. 3 DE-01 1.00E*00 1.70E+01 1.b3E+ u u z.Jul-VA Z.fzL-va Z.3ML-u2 gegUL-UA ATSUDUu 4.30C=Si 4.iiE-63 2.56E-G2 4.99t=#1 .

EM-24z 1.bJL+Uz CM-243 1.04E+04 4.80E+01 2.50E-01 8.22E-02 7.10E-01 1.20E+01 6.00E+03 1.00E+03 1.01E+03 2.01E+03 1.00E*03 8-6.61E+03 J.y ut + u l - z.zut-us 6 9uL-d4 3.byL-ud 1.;ut*Ju a. cut'uA 4 4ut-us ,o.wat us , a .n6E-i i , s.3GE-66 ,,

,cR-244 ,

~a s .~

..n  %- ...n.

o o

r a

  • Dose factors were taken from the following references in order of preference:

y

s w 1. Regulatory Guide 1.109, USNRC, October'1977
2. NUREC/CR-0150, D. E. Dunning, ORNL, October 1981
3. ORNL-4992, G. G. Killough and L. R. McKay, March 1976 l

l

T:bla 2.2 Fl%M CONCENTR Af!Ota F ACTOd5 g - -- - -- - - - -

O,H-3 9.0nE-01 TC-994 1.50E+01 CE-144 1.0nr.00 C-14 4.60E+03 kU-In3 1.00E*01 PR-143 2.50E*01 Ni-22 1 00E*02 RU-105 1.00F*01 PR-144 2.5AE*01 NA*24 1,00E+02 _ _ . . . _ RU-106 1.00E*01..._ _. .__ __ _ PP144M _ _ . . . _ 2.50E*01 0-32 3 00C+03 RM103M 1.00E*01 NO-147 2.50E.01 CZ*SI 2 00E*02 RM-105 1.00E*01 PM-147 2.5nE.nl NN-54 4.00E*02 RM105M 1.00E+01 PM-149 2.50F.Ol MN-56 4.00E*02 RM-106 1.00E+01 SM-147 2.50E*01 FE-55 1.00E+02 AG110M 2.31E+00 Su-151 2.50E*01 FE-59 1 00E+02 AG-Ill 2.31E+00 5M-153 2.50E.Sl CO-57-~ ~~~ 5.00U01 54-122 1.00E*00 E02155 2 5ct.01 CO-58 5.00E*01 58-124 1 00E*00 TA-182 3.coE.04 Co-60 5.00E*01 59-127 1.00E*00 W-187 1.20E+0J N1-43 1 00E*02 TE125M 4.00E+02 PR-210 3 00E*02 N!-65 1 00E*02 TE-127 4.00E+02 P9-212 3.00E*02 CU'-64 5.00E+0! TE127M~ 4.00E*02 - ~ ~ ~ ~ ~ - ~ ~ ' ~ ~P8-214 ~~~

3.onE.02 ZN-65~ ~ ~ ~~~~~~ 2 00E+03 TE-129 4.00E+02 BI-21'2 ~1.50E*01 29-69 2.00E*03 TE129M 4.00E+02 61-214 1.50E*01 AS-74 1 00E+02 TE-131 4.00E*D2 80-212 5.00E*01 AS-74 1 00E*02 TE131M 4.00E+02 PO-214 5.00E.01 5.00E.01 85-83 4.20E*02 TE-132 4.n0E*02 P0-216 c.I-94~~ 4.20E*02 1-129 1.50E*01 ~ ' ~ ~ ' - ~ ' ' ~~~ P0-218 -~ 5.00E*01 B0-85 4.2CE 62

~

" ' l- 13 0 ' ~ 1.50F+01 RA-224 5 0 0E

  • 01 ' ~

K4-43M 1 00E+00 1-131 1.50F+0! RA-226 5.onte01 KI-85M 1 00E*00 1-132 1.50E*01 RA-228 5.ont*01 NO-85 1 00E*00 1-133 1.50E+01 AC-228 2.50E+01 19-86 2 00E*03  !=134 1.50E+0! TM-228 3.SOE*D1 E4-88 2.00E*03 1-135 1.50E*01 ~ ~ ~ ~ ~ TM-230 ~ ~ ~ ~ 3.onE*01 -

' [9 A9

" ~ ~ ~

2 00Es03 - xE133% ~ I.00E*00

~~

TM-232 ').onE.nl

$1-89 3.00E*01 KE-133 1.00E*00 TM-234 3.00E*01 5R-90 3.00E*01 KE135M 1.00E*00 PA-234 1.13E*01 51-91 3.00E+01 xE-135 1.00E*00 0-234 1.00E*01 54-92 3 00E+01 C5-134 2.00E+03 U-238 1.ont 01 Y-90 2.5CE+01 C5-135 2.00E+03 NP-238 1.n0E 01 v-91

~~ -

2 .50E+0L C5-136 ~2.00E+03 'NP-239 1.ecE*01 Y-9tM 2 5cE*01 C5-137 2.00E*03 PU-238 1.50E*02 Y *2 2.50E*01 C5-138 2.00E+03 PU-239 3.50E+02 Y-93 2.50E*01 ~ P4137M 4.00E+00 PU-240 J.5AE*02 24-95 3 33E*00 84-139 4.00E*00 PU-241 3.50E*02 3-97 3.33E+00 04-140~' 4.00E+00 PU-242 J.5nE*02~'

' 0-95

~-

3.' 0 0 E s o i.' 8A-141 4.00E*00 'M-241 A 2.50E+01

_ N;-954 3.00E+04 8A-142 4.00E+oo AM-242 2.50E+01 N9-97 3.00E+04 L4-140 2.50E+01 AM-243 2.50E.01 Ni-97M 3 00E+04 - LA-142 2.50E+0! CM-242 2.5cE+01 MO-99 1.00E+01 CE-141 1.00E*00 CM-243 2.50E*01 TC-99 1.50E*01 CE=143 1.00E+00 CM-244 2.50E*01

  • The source for the fish concentration factors, given in order of preference is:

NUREG/CR-1336, "The Bioaccumulation Factor for Fhosphorus-32 in Edible Fish Tissue," B. Kahn and K. S. Turgeon, Georgia Institute of Technology, March 1980.

Regulatory Guide 1.109, October 1977.

UCRL-50564, " Concentration Factors of Chemical Elements in Edible Aquatic Organisms," S. E. Thompson, et al. ; Lawrence Livermore Laboratory, October 1972.

UCRL-50163, " Prediction of the Maximum Dosage to Man from the Fallout of Nuclear Devices: IV. Handbook for Estimating the Maximum Internal Dose from Radionuclides Released to the Biosphere," Y.C. Ng et al.; Lawrence Livermore Laboratory, May 1968.

Regulatory Guide 1.109, Draft, March 1976.

TVA generated numbers for noble gases.

Revision 5

~

~ ~ _ - ~

_ ~

  • 00660466365660555065464'4535562056035555565555055603545640000000000000000

+++++5 * *+ + + + + + + + + + + + * * +4 + + * + ++ + +++++ + + * + + + + * + + + + +++++*++

    • I
  • N EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE 00690915164000190836264393069103571090872394103760239459 p)V******S
  • K 00720610749300454336097230244801584211820277209300413753 0 0 2 4 0 412 21113 0 6 2 7 01611212 317 2_10 917 4 7 319 211 A 9 2 01610 617 2 3 3

' ~

~ -

_ _ ~

F 5 3 4 5 62 0 5 6 235 5 4 5 55 4 5 5 5 055 5 0 2 4 4 5 6 4

~

  • 00660'4561655605556553640

+ + + +5 + + - + ++ + + +

  • 0+0+0+0+0+0 +0 +i 0 0+0+0+0+0 0 t+ 0 0 0+ 0++0 -0 +i 0 0+O+ 0+ 0+ 0 0+4n 0 +0 0+ 0+0 0 + O+ 0+0 0 +++++

0 0 0 0+* 0 0 0 0~ 0 0

  • R
  • *E
  • d EEEEEEEEECEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE0  ; 093
    • L 009301
6. *. 2 018107 8 9.~9 4.i.2 4 4.f 510 4 710119112 7 7 6 9 9 0 6 4 0 2.5 2 0 0 6 6 9 4 3 i

0 013 0 3 71111_.8 2 0 414 f 9 4 711T. . . . . . . .12851_10611352761656610147017

~ -

~

' ~ _

) ~ . -

GL w

00660456265660555065164253456205613"554555455505550344'56400000O0000000000C000000O00 00 0000000000000000000000000000 + +* - +i +++ +4 + + + + + + + + + + +i * +

/
  • + + +++ + * + + t+ + * + + + + + + + + + + + + + + t IA E E F F F E 9E E 6 E4 E0 E5 F3 E4 E0 E0 E4 EF 812E 0E 5E 5E 3E 6E 9E 3E 0E 4E *EE 0 0E 9E 7E 5E 6E'E 3 9E 3E 4E dr F9 E5 E0 E3 E5 E0 E0 E2 E7 E0 E6 E3 Fl 5 2E 3E 3E ICT 003601 U 00370.s 0 6 6 4 2 5,0 5 0 618.;016 4 616 9 5 5 2 0t 4 013 6 6 9 518. a. 0 617 7 0 6 3 5 0 3 4. l.; 6 8 M

W ~

00230381111_120525715812912962107193529718877101580194222

~

'o ME ~ ~ '

P

~

~ ~ _

~

I I

wA1 R0 0+ ++

0 6+*+ 6 0~4 + + +5+6+ 0+ 6 + +5 +5*6+405* 5+ 5b +

  • 6 + +5 +3*6* 415 + t+ 3 4 5- 6*4 2 ++*++4

+ ++ 0 5 6 2 3*5+ 5+++i 4 5+ 5+ 5+ +4 5 5 5+ +05 5 5 0

+4 t EO E E E E E E E E E E EE EE EE E E E E E E EE 7 2E9 En E7 E 5E 4E 06 Ee EEA EEE 11 ?E7 EE R 0EEE 4 7E 2E9E3n EE41EE p0 EE610 E EE 48 51 EE e sYR n01a n90 4 6 ? 6 n 3 0 2 a 1 n 6 A 4 91 e /Y o. 0 0 2. n.3 6 4 9 0 7. o. 2 0 2 7 7.F.17 9 7 6 9 0 0 4 9 8 +0 0 5 2 616110 6 216 9 4. o.7,J 9 0 6 41.;15 h

S

  • ET MH 0 0 2 4 01615118 2 0 5.14 615 611$ 2 2 7 5110 517 3 4 2 8 616 7 ~

, ~

' 5 510 j4~ 6 0 5 8 4l 2 2_ '

  • R - "
  • M

(

65560555065364253456205613554555'455505550244564 00000O00000000000000000O00000000000000000000000000000000 006604561

~

?+ + ** - +4 + + + + +4 +A +++.+ + + + + + + + +

  • + ++ ++i + + +
  • t+ + + + + + ' + + + + + *i + + +
  • E E E E E E E E E E EF EE E E E E E E E E E E E E E E E E E EE EEE EEE EEE E E EEE E80090612
  • *I
  • *G 0 0 9 0 0 8 9 9 6 5 2 6 6 0 219 9 0 P 9 3 8 8 9 9 9 2 6 4 0 3 5 714 913 416 3 310 7 5 E EE E EE EF 00110066910340514314278134780204315739173660500270153163
  • 0 0 2 4 0 3 71211._9 2 0 5 2 5 A 15 811 t 12 A 6 210 612 3 5 2~ 8 717 5 6 71015 ' ' *
  • 00660"46616566055506546425355620561355555555550556035656400000000000000000000 0000000

+ ++ +++ + * * + + + + + * + + + + + + + + + +++ + + + + +* - + + + + + + + + + + + + + + + + + + * + + +

+

  • E

+

  • *
  • O
  • N E E E E E E E E E62530815062705302077606072820632272703180465I13 006605441 E E E E E E EEE E E E E EE E E E E EE E EE EEE E EE EEE E E EEE EEEEE EE EE s *
  • R 0 0 7 9 0 4
0. e. 7 3 6 2 8 017 7 4 3 4 0 8 5 3 3 217 2 6 0 5 5 914 015 2 8 2 7 4 2 0 6 8. n. 0 7 3 0. A r *
  • t o *
  • 002305112121206269161124331621 ~

0a174731929l 89202620117234 c ~

a

=*

00770577376770666154575464667307714666767567606670465675 00000000000000000000000600000000000000000000000000000000 + + * + + + + ++4 + + + + + + + + * + ++*E + +; + + + +

    • n + + + + + + + + + +4 + + + + +4 7('iD *
  • s

+ ++ ++s s * *i EEEEEEECFEEEEEEEEEEEFEEEEEEEEEEEEEEECEEEEEEEEEEEEEEEEEEE 36403040721339 r

i o *

  • k 0066064 4665370377102697304207504363321822131491000901573061540308610215903 0011 05251774609665610601 b

a n 0036041 23111307288181?31231 93201115731121991201610114243 ' ~

~

' ^

T o **

n 0 7 7 0 5 6 717 6 6 7 0 6 6 615 4 4 7 5'16 4 5 6 7 3 0 6 7 2 4 6 6 5 6 6 6 5 6 6 6 0 6 6 6+0* 2+ 5+ 5'6 + +7 +5 i

  • t
  • a *)R 00000000000000000000000000000000000000000000000000000000
  • ++ + + + + + - + + + + + + + +4 +++++++++++++++-++++++++++++ +4 +

e

  • RE E E EE E E E E E EEE EEEE E E E EE EEE0603750637547226902270859024t791 0070096l733A204200039341 E E E EEE EEEEEE E EE EEE E E EEE EEEF EEE EE r **TIEV 0 0 2 9 0.;0 2. d. 4 216 6 0. A.9 9 017 5 0 0 7 5 2 5 3 2 3 0 9 4 7 7 3 5 4 3 8 5 9 5 2 5 017 7 0 9 6 5 0222 73 c *EL  ; '

e

  • M 002403811 ~ -

R I ~

11_9 2 0 515~615 ~- 7 2 2 312 9 7 2_10 612 3 5 2

~ ~ ~ ~ 9 717 5 6 71014 -

EN T

00770'567276773666 00000000000000000 154475264667306704666666566606660355675 0 0 0 0 0 0D 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

+ + + + + + + +~+0 0 0 0 0 0 0 0 *0 +0 + 0 00 + +0+0 E t+ + + + + + + * + + + + + + + t+ + + + * + + +4 NC e EEEEEEEEEEEEEEEEEEEEEEE6EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE

+ + + + + 4 + + + +

0 0 7 9 0 9 A 7 8 5 J310 4 3 6 2 0 318 9 612 2 218 0 7 0 2 312 0 6 P 7 914 7 0 516 0 ? 9 218 3 IE7 R 0 0 6 3 0 7 6 0 6 4 4110 9 2 914 8 8. '2 3;4 9 613 6,5 017 3 4 7 01518 5 6 4 8 0 5.~510 8 3 4.;4 2 8 LA U 0 0 2 5 0 91218 Z10 8114 ~6 318 2 8 7-~ 7 81015 9~ 0 2 9 3 2- 3 2 3 9 211l13 0 6 2 6716 8 2 2

~

~ -

EQ '

~ ~

S 00770567076_

673 06714665666566606660355675 + +

R/

1O 00000000000 670666 0+ 0+ 0* *0 +0 +0M54 z 6 4 +500000000000000000600000O00000600000O00

  • * + 4+ 75 * + + + + * + + + + - +3 + + + + +i +A + + +i t+

+ + +&

0CI + ++ +T++++t UO E E E E EE E E E E E E E EEE EG E E E E EE E EE E EE E EE EEE EEE EEE E E EEE E EEE E EE EEz 7 7 3 H R 00020452439830058904491 0 4 0 2 5 8 G0 530237965 5EH RY 0 0 3 2 0.'3 3 8 9 2. d7 7 0 5 8 5 z. 9171410 3 3 5.l.7.b. 4 9 6 8 8.T . 5 5 0 6.G 7 018 312 2

~

PT ~ ~ -

~

0026037161i_S20615617721112882_106113S29616766101I60255E75 -

~

~

- ' ~

~

~ ~

  • R
  • A
  • E 00770567175_770666I5'4475 0 0 0 0 0 O 0 0 0 0 00 0 0 0 0 0D 0 0 0 0 0 0 0 0 0+ 0+ g0 0 0 00 0 0 0 0* 0+0+0 +0 +s+4 264667306714666666566606 00000O00000000

+ + +i + * + + * + + +

  • +++*i + + * + +++++*+s*++++++4 +T++* +4
  • Y
  • /I EEEEEEEEEEEEEEEEEEEEEEEdEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE 0 0 9 2 0 7 7 4 7 8 03 2 0 6 0 9 9 0 8 4 212 6 9 4 6 710 2 8 0 5 2 0 0 8 41917 3 0 3 4 2 0 8 6 e 0 7 2
  • HG 23 5 016 4 0 3 6 9 2 0 817 0 0 516 6 0 0.J 3 0 8 5.l.3 9 3  ;
  • E
  • R 0 0 4 9 0 0 514 3 6 0 0 0 8 2 4 4 3 6 6 417
  • M
  • ( 0 0 2 5 0 3 8 2 31b13 06 2 6616 8- 2 ~211219 2_10 712 4 ~6 217 2~~8 5 7 71015

~ '

~ - 8 0 4 -7 2 2 2 2

  • 0e77057717 L7 7 0 6 6 6~15 4 5 7 5'2 6 4 6 6 7 3 0 6 7 0 4 6 6 6 7 6 7 6 6 7+4 6 0 6670365675
    • 0+ 0+ 0* +

0 *0 +0 +0 +0 +0 +0 *00 + 00+ +0+0+0+0* 0* 0 + 0+ 0+ 0b + +0+0+0+0*0+40 0* 0+ 0+ 0+ 0+ 0+ 0+ 0+ 0+ 0+ 0+ 0+ 0+ 0+ 0+ 0 + 0 0 0 0 0 0 00 0 0

+ * + + + + + *

  • *E
    • N
    • O
    • B EEEEEEEEEEEEEEEEEEEEEEEEEEE<EEEEEEEEEEEEEEEEEEEEEEEEEEEE0 00160413167340689573148.i.23298807819853050.;40407010731980 0 4 6 1
  • 00350512312_130727918122533182_109114731121191202710316234 ~ ~

- ~ _

~

~

~

~

_ ~~ ~

935645M641

.)v E 9 4

~

MM M O

( I L

C 312235555555666666778888888888999999999999999991110101114242146597803545'94634

-HCAAPRNNEEoOOIIUNN5SRRRRRRBBBRRRRYYYYYRRBS88OCCUUUHHHHGG

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 2ZNNNNMTTRRRRRRRAA -----------

1 1 1 -

U N NN CMMFFCCCNNCZZAABBBKKKRRRSSSS *

~

_ ~ ~ -

~

_ ~

g<>$o3 ^ L a

M m o V)

I (v)

Table 2.3 (Continued) Theet 2 of :

Q

..................... 3wIs41y5 ..................

.................... sHoaEtInE .................. ****..*... .ee.*******.*** (HREM/ YEAR PER UCI/wt1 *********.******.

....**** (MREM / YEAR PER UCI/ SQUARE CENTIMETER) THYROID TA LIVER . _, SgIN. ,

BONE GI THYROID 79 liver Sklu BONE _ G1 NUCLIDE 7.73F+04 6.83E+05 5.31E+05 5.57E+05 5.35E+05 4.46E+05 6.54E+05 50-122 8.06E+04 6.27E+04 6.58E+04 6.31E+04 5.26E+04 1 94E+07 2 71E*07 2.18E+06 1.86E+06 1.69E+06 1 90E+06 1.64E+06 2.25E*06 S8-124 2.61E*07 2.28E+07 2.07E+07 2.29E+07 6.85E+06 9.52E+05 6.94E+05 6.09E+05 7.55E*05 6.43E+05 9.31E+05 58-127 1.01E+07 7.39E+06 6.47E+06 8.03E+06 4.71E+04 9.91E+06 3.39E+05 4.60E+04 9.08E+03 2.37E+04 2 50E*04 8.75E+03 6.29E+04 7E1259 2 47E+05 2.93E+04 1.24E+05 1 35E+05 6.89E+04 7.74E+03 5.10E+03 4.92E+03 5 69E+03 4.77E.03 6.80E+03 1.86E*04 7.84E+04 5.17E+04 4.98E+04 5.77E+04 4.83E+04 7E-127 3.82E+04 1 26E+04 9.89E+04 1 31E+04 2.54E+03 6.6nE+03 76.50E+04 21E+03 25.37E+04 44E+03 8.28E+04 7E1274 6.91E+04 1.33E*04 3.45E+04 9.52E+04 5.87E+04 5.41E+04 TE-129 8.68E*05 6.12E+05 5.5BE+05 6.69E+05 5.60E+05 8.33E+05 4.89E+04 3.09E+04 2.9AE+04 3 71E+04 2.d8E+04 5.38E+04 TE1299 4.72E+05 3.23E+05 2.94E+05 3.71E+05 3.02E+05 5603E+05 11E+06 6.49E+05._3.94E+05_ 4.16E+05_.4.71E+05_ 3.89E+01__S.78E*05___

1.28E+06 1.89E+06

._TE-131...6.79E*06 _4.21E+0h_ 4.37E+06_ 1.39E+07 4.99E+06__4.13E+06.

1.70E+07 1.45E+07 2 12E+07 1 84E*06 1.35E+06 1.23E+06 1 51F+06 TE1314 2.06E*07 1.53E+07 2.04E+06 3.32E+06 4.55E+05 1.98E+05 2.6eE+05 2 83E+05 2.12E+05 3.60E+05 TE-132 4.27E+06 1.92E+06 2.54E+06 2.6RE+06 4.75E+04 5.02E*04 1.07E+04 2.67E+04 2.57F+04 1.05E+04 5.70E+04 1.19E+05 1.15E+05 2 49F+05 1-129 2.25E+05 4.84E+04 2 88E+06 2.17E+06 _1.86E+06. 2 32E+06_1.99E+06 .2.86E+06 3.72E+05 5.41E+05 I-130 3.09E*07 2.33E*07_2.00E+07_.2 50E+07 2 14E+07 3 0RE*07 6.16E+05 3.87E+05 3.RRE+05 4.49E+05 1-131 6+22E*06 3.93E+06 3.9?E*06 4.54E+06 3.77E+06 5 47E+06 _.2.91E+06_ 2.20Et06 _1.93Et0 L.2 d1E+06 2.06E306. 2.99E*06.

._ I-132 3.23Et07__.2.45E DI _2a16Et07__2.6BE+07_ 2 29E+07_8 369E+06 32F*07 n.44E+05 6.49E+05 5.54E+05 6 75E+05 5.79E+05 8.17E+05 I-133 8.96E*06 6.90E+06 5.89E+06 7.18E+06 6.16E+06 3 22E+06 2.46E+06 2.16E+06 _2 71E+06 2.32E+06 1.35E+06 3.40E+06 1.89E+06 1-134 . 3.67E+07 .2.84E+0T_.2 49E+07__3 11E*07. 2 65E+07 3 89E*07 1 78E+06 1.57E*06 1.41E+06 1 58E+06 3.05E+04 7.71E+04 I-135 2.19E+07 1.95E+07 1.75E+07 1.96E+07 1 67E+07 2 33E+07 8 09E+04 2.81E+04 4.65E+04 - 4.77E+04 XE1334 6.05E?05 _2.38E+05 ,3.55E+05_ 3.71E*05 2 61E+05 5 27E*05 1 11E*05 3.17E+04 6.2RE+04 5 57E*04 3.39E+04 8.27E+04 XE-133 8.52E*05 2.53E+05 4.84E+05 4.24E+05 2.74E+05 5 73E+05

._ XE135'1_ _ 6,'+1E!06 _4. 94Et06 4.15Ein6 s.a4Et06__4.33E+06_6 08E +06. . 2.29E*05 4.59E+05 .. 6.21Et05._4.?SEtD5-_%01E?35_

2.79E+05 3.04E+05 2.41E.05 A.Mf t05_4.17E 4.54E+06 2.28E+06 2.76E+06 3 02E.06 2 40E+06 3.63F+06 1.43E+06 3.67E+05 2.08E+06 XE-135 2 04E+06. 1.54E+06 1.32E+06__1.67E+06 0.00E+00 0.00E+00 C5-134 2.22E+07 .1.67E+07-_1 43E+07._1 81E+07 1 55E+07 2+26E+07 0 00E+00 0 00E+00 0 00E+00 0 00E+00 0 00E+00 0.00E+00 0.onE+00 0.00F+01 2.85E+06 CS-135 0.00E+00 0.00E+00 2 77E*06 2 00E*06 .1.81E+06~ 2026E+06 _1.91E+06 0 00E+00 3.10E+07 2.26E+07._2 03E+07 .2 55E+07 2.15E+07 3 21E+07 0.00E+00 00E+00 0.00E+00 CS-136 0 00E*00 0.00E+00 C5-137 0.00E+00 0.00E+00 0 00E+00 0 00E+00 0 00E+00 0 00E+00 2.23E+ 06._2.35E*06 _2.02E

  • 06. 2.74 E
  • 06_

_ _ CS-138__ ._3.29E+ 07.J.03Et a7 A 86Eea7_ _2+98E+ 07_2.56E +07-. 3 46E+ 07 __ 2.62E* 06.. 2.37E+

R.01E+05 6.02E+05 5.1?E+05 06 6.47E+05 5.54E+05 8.04E+05 8.56E*06 6.45E+06 5.48E+06 6.92E+06 5.93E+06 8559E+06 7.61E+04 3.38E+04 4.75E+04 .4.67t+04. 3.57E+04

! BA137M 55E+05 1.42E+055.62E+04 2.13E+05 BA-139 7.49E+05. 3.44E+05.. 4.73E+05. 4.66E+05 .3.60E+05 2 29E+05 1 56E+05 1.46E+05 1 71E+05 1.12E+06.

BA-140 2.29E+06 1.60E*06 1 46E*06 1 73E+06 1 46E+06 2 10E+06 1 22E+07 1 21E+06 _7.97E+05._8.15E+05._9.26E+05 _7.70E+05 1.36E+06 BA-141. 1.31E*07. 8.90E+06._S.96E+06_ 1 02E+07~ 8.49E+06 1 54E+07 1.34E+06 9.38E*05 9.03E+05 1 10E+06 9.17E+05 1.11E+07 1 02E+07 1 24E+07 1 04E+07 l.98E*0 L 2,.7E*06 6 __

BA-142 1.51E+07 1F+07 ._ 2.60Et06_ 2.32E+0A_._2.laEt06_ M53E+06 2Et06 2.52E*06 3 00E+06

_ _ LA-140_3.20Et07 _2.91E+07__2.73E+a7_2 2.64E+06 2

+ 07_3.3 2.75E+06 2.73E*06 1.02E+05. 9.52E+04 7.07E+04 1.16E+05 8 9E+ 07.._2.46E 10E+07 LA-142 3.74E*07 3.80E+07 3.72E+07 3 47E+07 3.10E+07 41.09F+06 1.69E+05 6.20E+04 CE-141 1.59E+06, 5.94E+05 _9.70E+05 9.01E+05 6.75E+05 4.66E+05 2.61E+05 2.83E+05 3 24E+05 2.57E+0S 4.07E+05 CE-143 4.54E*06 2.64E+06 2+79E+06 3.22E+06 2.60E+06 4 00E+06 4.64E+04 _1.55Et04_ 2.76Et04 _2.50E+04 _1.76E+04_ 3.18E*04 CE-144 _4.18E+05 .1.42E*05__2.51E+05. 2.26E*05 1 63E+05. 2.RIE.051.15E-02 8.60E-03 7.33E-03 9.45E-03 8.09E-03 1 19E-02 PR-143 1.26E-01 9.38E-02 8.00E-02 1.03E-01 8.83E-02 1.30E-01 75E+05 3.46Et04 _3.24E*04_ 2.47 Eta 4_ 3. 10E+04 2.72f304_ J.11E*04.__.

_ PR- 144_4. 4 0 E+ 05J . 24E+ a5_3.13E + 0.5_3 9.7Et 05_3.50 E1+25E*05 05__4. 2.28E+04 5.33E+03 1.15E+04 1 12E+04 5.17E+03 2.06E 04 2.03E+05 PR144M 1.42E*05 3.32E+04 7.19E+04 6.95E+04 3.23E+04 2.47E+05 .1.35E+05_ 1.56E+05_4.43E+00 1 62F+05 1.27E.05 3.36E+00 5.17E+00 NO-147 1.57E+06 1.2SE+06 1.93E+06 2.33E+06 1.34E+06-_1.44E+06 4.26E+01 8.17E+00 2.92E+00 5.11E+00 i N 7.86E*01 2.76E+01 4.92E+01 3.23E+01 4.98E+01 1.?2E+04._1.38E+04 1.12E+04. 1.67E+04 r

y PM-147 1.13E+05 1 69E+05 1.98E+04 1.11E*04 0.00E+00 r PM-149 1.98E+05 1.12E+05__1.23E+05_.1.39E+05 0.00E+00 0 00E+00 0.00E 00 0.00E+00 0.noE+00 0 00E+00 0.00E+00 0 00E+00 0.00E*00 0.00E+00 0.00E+00 .7.60E+00 J.04Ee0 L 2.56Ee0L.6.2'e9 0L_7.22E-01.

S SM-147 5.07E.04 3.55E+ 01. __

1 04E+05 o -_ $$4-151 _ 1.69Et01 _2.2DE+00 L68E30n 1.33E.+01_1.61E* 00 _6.78E* 01_. 1.57E+05 4.71E*04 8.79E+04 7.83E+04 9.49E+04.

D SM-153 1.25E*06 3.89E+05 7.21E+05 6.33E+05 4.25E+05 8 08E+05 1.54E+05. 4.82E+04._8.98E+04 _7.73E+04._5.35E+04 1.96E+06 8.21E+05 _ 1.94E+06 1.41E+06 1.45E+06 1 63F+06 1.35E+06 6.52E+05 l u EU-155 1 35E+06. 4.28E+05__7.98E+05 _6.81E+05_4.7aE+05.

2.04E.06 1.68E+05 P.44E+05 TA-182 2.42E+05 1.90E+05 1.80E+05 6.99E+05 _4.84E+05 _4.30E+05 _5 30E+05._4.45E*05 W-187 7.25E*06 5.coEt06__4,57E*06_.5 55E*06__4.68E+06 6.81E+06

  • 455560200443633346335533303444353
  • 0000000000000000000C0000000c00000 m*N
  • 1

+ + + + + + + !+

EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE

+ +- +++ + + + + + + + + + + + + + + +

  • s+

"

  • 4 351610600959386449465052401770035
  • 5 42,638040040828849630,4953104793031

\x m ** 12_3 2101 Q_011718_5 512 7 6_7 2 8 3 8 0_6 5 2 9 9 2_8 d",

n

  • ~

3 S 5 5 6 01 p 0 3 37 5 3 2 2 3 6 215 51110_14 4 4151 ._ _ .

as m* ** R +

)00000o00000A00000000000Q0000000 + + + + + t+ + ++

0'1+++t + t. + ++ - + + + + + + +

+ + ni e

  • E EEEEEEEFEEEEEEEEEEEEEEEEEEEEEEEEE ot V 80931 0500e184 953707 9244902992724 ti m"**I e

L 2 4,3 6 3 0 8 0 0 5 4 61. M.3 4 3 7 0 9 6 6 5 4 6 0,2 7 2 4 5 2 3 ol hi P c 11_211 n 9 A_0 9_ 6 3_ _.8 !. _31711 g_ 412 5_2 J_2114_21_1 a

) ~ .

oF 3

f GL N/

w 3555602004345322462R5522202444252 0+ n.

+ *0*0 0 0 0 !+ !+ 300 + 0 + 0

- 0 + 0

+ 0 + 0+ 0 + 0+ 0 0000000000000

+ 2+++++t+ + ++ + t +

t e

o I9 rrEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE el ICT 53621 0500259452010364370403609527 rc 3 U 0899501 9.02416991114451966001 87060 t uy M

861275 8 sC R o t

e ME P

312110_1001_849S 52_7370_6316_9I _

_ pl xe r

1 1 h

S WAI RD 3 5 5 5 6 01 O 0 4 3 5 5 m 2 2 4 6 215 511_1014 0000000J00000

+ + + +5 00000300000000000D0

+ + * + + * - + + + + + + + + !+ + + f+ + ++ + ++

Eu F 4 41S SYR EO EEEEEEEEEEEEEE.EEEEEEEEEEEEEEEEEEE

?S615n4005146 1 43325 p81 04169 l

ar

/Y 4 26 6 3 0 8 0. n.14 7 8 2 4 5 2 7 012051 8 5 2 2 2 2 37 n117 9 4 44 6 na wH 21211 re MET 4 9

080_01_8172_521117 427970_532771_. _ . _

el t c 3 5 5 5 6 0 2 Q_0 3 3 5 512 2 3 6 2 ! 5 5 212 014 4 4 2 5 2 xu u( 0000000M00000D00000g000000000000.0

+ f+ + + + + + + +- + 2+ + + + + + t++ + + + + +* + + + EN

" *I

  • G EEEEEEE1EEEEEEEEEEEnEEEEEEEEEEEEE 6998103004 485738036195256031 I6296 _

rm oo

" + 42,375000_009666577844944530,28.I.1007 a . Fr

  • F

"*

  • s
  • 112110_1 J_. 0 9 5 8 8 l. 31611 J 411810__6114 2 J 1 .

rs 5 5 5 6 0 2 Q 0 4 45633246225522202445252 oe m*E***3000000000000000000000000000000000

+ * + + * * + t++ + - + t* + + + +  !* + + + + + + + ++ + t+

t s ca

" *N EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE 19251 o900019751341120973508027e82 ae

  • Fl R e

) m**O 3 9 3 2 7.01001 c. 3 0 0 9 4 8171916 7 3 5 5 7 8 6 0 6 4 3 3 0 6 2 nR d o r

u 52_421 1714_152253634240_3631625 i e sn n _

ri i *

  • 46667030 o543744357336633303555363 et t *
  • 000000n0n000000000000003000000000 vu n
  • N + + + + * + + + + + + - + + + + + + + + + + ++ + + + + ++ + + +

EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE no o oR m*+I W 7359302005337301 83512367n0026e957 04192484 C

" *S

  • 215620600485330819093448.I. + n 3 * *

"

  • 32122010019913_.161?858283806317918 ._

ei t .

2

  • 36_6670300447643347226622202555261 0O00n0000000000000000000000000000 a g0 Rn8

+ + + + + * + + + + ?+ + ++ + + + i9 e " )4 + i+ + + + + + + + * - t+

er1 l RE 66902090056A EV EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE 047333e737758022166e3 sr b

a mTI

  • EL 1339600004293202693,945607054295.l.1 _

oul Dci T

  • M

" crp 91_211 010_096391_316181511510_111311_5 T

I

_ ,O A EN 4666'703O0544743347326632202555362

. s NC E

R 00.00000M0000000000000000000000000

+ + + +

EEEEEEEEEEEEEEEEEEEE6EEEEEEEEEEEE

+ !+ + + + - + t++++++ + + t+ t+++++t+

C.d 4 e ,

IET 6 8 5 ? 7 0 7 g 0113 01313 4 0 2 8 2 0 2 0 0 6 7 2 7 4 31 _ Di LA R 7 7 9 2 8 0 2. g . 0 2 2 51. d 8 2 5 3 8 0 3 0 0. A 9 0 9 3 6 915 0 _ ,lcer EQ U 11221010 01841l4292186219907215119

_ rub enm S

0 5 45 6 L3 3 5 7 326 6 22 2 0 2 5 5 5 2 62 _ h ou R/ 4 6 6- 6 7 0 2 0 ID 0 g 0 0 + 0 + 0 +

0 0 0 0 0 0 0 0 0 0 c 0 0 0_0 0 0 0 0 0 0 0 0 0 0 0 0 ciN 0CI + t+

+ * *+ + - + t+ + + t+ +++*++++++++3+ _. od Ka ,

H UO R EEEEEEEMEEEEEEEEEEEEEEEEEEEEEEEEE 1259905 0398966302967468403750795 R8 RY 776860700118957019367119308497932 m 3 SEH m om DT 11211090 0181_8 b 4 21113 4 2 3 7 3 0 2 216_2 I 1 _

roe

" R A 36667030 044564.3347226622202555262

_ f rm n

F u eE Y

00000000

+ + + +  !+ +

00000n00000000000000000D0

+ + + - + t+ + + + + 1+++*++++++*a+

_ eno l

koV m/1 EE6EEEEEEEEEEEEEEEEEEEEEEEEEEEEEE 5698904002995460070780213o334156_0

  • E" G 7 2,3 0 8 011,0 9 7 3 9 5 8 2 0 0 3 4.~7 4 3 5 3. g 9 4 0 7 9 0 0

_ ai tt ,

.R .

as

". ( M 91221010085991_216282S12420111321_2 ._

sic rdi

. 4S66703005557433573266233025563g2 oas tRy

.

  • 0000000000000000000000000000000o0
  • + + + + + + * +* +- + t+ * * + + + + + ++ * + + + ++ *t+ c h
  • N EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE anP m**E o 999900400773239109790499105182871 f o

_ " *

  • d 6825.'.050083533799876547300200205,9 _

et t rh

.* scl e*

32422010011814_83122%739110853112_6 oea

_ Dl e E , *EH

)'

D 024242468468880244488989012123234 I 111111111222223333333333444444444

._ L 222222222222222222222222222222222

~ C - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

( U B8B11OOOOAAACHMHHAUUoPUUUUUMMMMMM NNPPPPPAAACCC N

PP_P88PPPPRRRATTTTP _

n0${ n.

t

Table 2.4.a

! Public Water Supply Information*

V) 2020 TRM POPULATION

~ ~~

WATER SUPPLY m .5 SEQUOYAH NUCLEAR PLANT 473.0 2000 ICI AMERICA, INC. (VAAp) 473.0 900 C. F. INDUSTRIES, INC.

470.5 4000 E. I. DUPONT, COMPANY 465.3 610700 CHATTANOOGA 418.0 4400 SOUTH PITTSBURG 413.6 3400 BRIDGEPORT 407.6 500 WIDOWS CREEK STEAM PLANT 405.2 500 MEAD PAPER DOARD 392.0 BELLEFONTE NUCLEAR PLANT 385.8 38700 SCOTTSBORO 382.1 18600 SAND MOUNTAIN WATER AUTHORITY 368.2 125 CHRISTIAN YOUTH CAMP 358.0 14900 GUNTERSVILLE 334.5 4500 N.E. MORGAN CO.e WATER AND FIRE 334.2 168600 HUNTSVILLE 330.2 10000 REDSTONE ARSENAL 324.2 REDSTONE ARSENAL 306.0 84600 DECATUR 294.0 B 0WNS FERRY NUCLEAR PLANT 283.0 500 U.S. PLYWOOD-CHAMPION PAPER

[T (s/

274.9 259.6 50 WHEELER DAM 14100 MUSCLE SHOALS 259.5 2700 TVA-NFDC 254.3 21100 SHEFFIELD 245.0 520 COLBERT STEAM PLANT 239.3 3900 CHEROKEE 238.7 350 U.S. STEEL AGRI-CHEMICALS, INC.

217.4 1 YELLOW CREEK NUCLEAR PLANT 206.8 2400 HARDIN CO. WATER DISTRICT 193.5 1900 TRI-COUNTY UTILITY DISTRICT 158.0 1100 CLIFTON l 101.9 170 FOOTE MINERAL CO.

100.5 6100 NEW JOHNSONVILLE 100.4 13300 CAHDEN 100.0 375 JOHNSONVILLE STEAM PLANT 98.5 900 E. I. OUPONT COMPANY i 95.5 700 CONSOLIDATED ALUMINUM CORPORATION l 94.5 250 INLAND CONTAINER CORPORATION 79.5 120 BASS BAY RESORT 39.3 4300 JONATHAN CREEK WATER OISTRICT 28.5 9100 NORTH MARSHALL WATER OISTRICT i 23.6 650 GRAND RIVERS l 17.8 600 8. F. GOODRICH CHEMICAL Co.

I 17.4 106 AIRCO CARRIDE 16.8 592 AIRCO ALLOYS 16.7 510 AIR PRODUCTS AND CHEMICALS

N 1.1 69800 PADUCAH (G

Revision 5

  • From TVA Water Quality Branch, updated December 1979

Table 2.4.b Fish Harvest Data RIVER SPAN FISH HARVEST (LBS/YR)

NAME OF REACH SPORT

  • COMMERCIAL **

(TRM) 484.5 - 471.0 Chickamauga Lake below SQN 5.4x10 5 2.0x10 5 471.0 - 452.0 Nickajack Lake (Part 1 of 2) 1.2x10 5 4.6x10" 452.0 - 424.7 Nickajack Lake (Part 2 of 2) 2.9x10 5 1.1x10 5 424.7 - 417.5 Guntersville Lake (Part 1 of 4) 2.6x10 5 9.5x10" 417.5 - 392.0 Guntersville Lake above BLN 5.2x10 5 1.9x10 5 392.0 - 373.0 Guntersville Lake below BLN 7.8x10 5 2.9x10 5 373.0 - 349.0 Guntersville Lake (Part 4 of 4) 1.0x10 5 3.8x10 5 349.0 - 294.0 Wheeler Lake above BFN 1.0x10 5 3.8x10 5 294.0 - 274.9 Wheeler Lake below BFN 1.5x10 5 5.7x10 5 274.9 - 259.4 Wilson Lake 5.9x10 5 2.2x10 5 259.4 - 217.4 Pickwick Lake above YCN 1.3x10 5 4.9x10 5 217.4 - 206.7 Pickwick Lake below YCN 3.3x10 5 1.2x10 5 206.7 - 165.0 Kentucky Lake (Part 1 of 4) 6.1x10 5 2.3x10 5 165.0 - 121.0 Kentucky Lake (Part 2 of 4) 6.1x10 5 2.3x10 5 Kentucky Lake (Part 3 of 4) 1.8x10 5 6.8x10 5 921.0- 76.0 1.1x10 5 76.0 - 22.4 Kentucky Lake (Part 4 of 4) 3.1x10 5 CDerived from " Situation Assessment and Planning Assumptions," Division of Forestry, Fisheries, and Wildlife, TVA, December 1978.

    • Derived from " Estimated Commercial Fish and Mussel Harvest from the Tennessee Valley,"

Fisheries and Aquatic Ecology Branch, TVA, 1980.

Revision 5

Table 2.4.c

f m

, Recreation. Usage Data

  • jA._,} . .,

RIVER SPAN HOURS OF USAGE PER YEAR

..(TRM) NAME OF REACH SHORELINE ABOVE-WATER IN-WATER i 484,5 -'471.0 . Chickamauga Lake below SQN 5.5x10 8

1.0x10 4.9x10 8

-471.0 - 452.0 Nickajack Lake (Part 1 of 2) 1.2x10 5 2.5x10" 1.1x10 5 >

Nickajack Lake (Part 2' of 2)

'45'2.0 424.7 2.0x10 5 4.0x10" '1.8x10 5 424.7 - 417.5 Guntersville Lake (Part 1 of 4) 7.0x10" 1.5x10" 6.0x10"

]

~417.5 - 392.0 Guntersville Lake above BLN '5.2x10 5 1.0x10 5 4.7x10 5 1392.0 - 373.0 Guntersv111e Lake'below BLN 4.7x1C' 8.9x10 5 4.2x10' 373.0 349.0 Guntersville Lake (Part 4 of 4) 1.1x10 7 2.1x10' 9.8x10 5 349.0 - 294.0 Wheeler Lake above BFN 4.0x10' 7.6x10 5 3.6x10' 1 294.0 - 274'.9 Wheeler. Lake below BFN 5.2x10 6 1.0x10 8 4.7x10"

.274.9 - 259.4 Wilson Lake 3.9x10' 7.4x10 5 3.5x105- [

'259.4 - 217.4 Pickwick Lake above YCN- 2.0x10' 3.5x10s 2.0x10' 217.4 - 206I7 ~

Pickwick Lake below YCN 2.0x10' 4.0x10 5 1.8x10' 6.0x10 5 1.2x10 5 5.4x10 5

~

. 206.7:- 165;0 Kentucky Lake (Part 1 of a) ,

1.2x10' 2.3x10 5 1.1x10 8

~

5.0 - 121.0 Kentucky Lake (Part 2.of 4)-

_ v 1.0 - '76.0 Kentucky Lake (Part 3 of 4) 2.4x10' 4.7x10s 2.2x10'

. s76'.0 - 22.4- Kentucky Lake (Part 4 of 4) 2.6x10 7 4.9x10 6 2.3x10 7 l

i-  !* Based on " Extent of Recreation Development and Use of TVA Lake Frontage Property;"

'(unpublished data from 1974 Annual, Recreation Survey); and Observations of Recreation-l, -Use of TVA Reservoirs,LDivision of Reservoir Properties, Recreation Resources Branch,

TVA, 1975.,

t I

i i-1 e

~

s

. y)

Revision 5

i

!3 i.0 ' Red'iological Environnental Monitoring 1

-3.1 Monitoring Program

)An,environmentalradiologicalmonitoringprogramshallbe.conductedin

'accordance with Technical Specification 3.12.1. The monitoring program described in Tables 3.1-1, 3.1-2, and 3.1-3, and in Figures 4 '

3.1-1, 3.1-2, 3.1-3, 3.1-4, 3.1-5, and 3.1-6 shall be conducted.

Results of this program _shall be reported in accordance with Technical Specifications 6.9.1.6 and 6.9.1.7.

The-atmospheric environmental radiological monitoring program shall consist of 12 monitoring stations from which samples of air

.particulat'es, atmospheric radiciodine, rainwater, and heavy particle fallout shall be collected.

The terrestrial monitoring program shall consist of the collection of milk, soil, ground water, drinking water, and food crops. In addition, direct gamma radiation levels will be measured in the vicinity of the plant.

The reservoir sampling program shall consist of the collection of

~

samples of surface water, sediment, and fish.

Deviations are permitted-from the required sampling schedule if specimens-are unobtainable due to hazardous conditions, sample

> unavailability, or to malfunction of sampling equipment. If the latter, every effort shall be made to complete corrective action prior to the end of the next sampling period.

l()3.2Detectioncapabilities Analytical techniques shall be such_that.the detection capabilities listed in Table 3.2-1 are achieved.

f i-4 1

v i 7 Revision 7

- _ . _ . _ _ _ . _ . _ . _ __ ._ . _ . . , _ - _ _ , , . ~ _ _ _ ~ . _.

_ . . . . . . .. . . - . ~ _ . . _ . - . . _ . .-. _. .

3 1

V- J ,

SNP i T ABL E 3.1-1 RADIOLOGICAL EhTitggyENTAL_M.ONITORING PdOGRAs Sampling and Type and Fregneasy Espesare Fathway Collection Freemeasy of Amstrata andler Samste Samete Locations

  • a
1. AIRBORNE ,

Contimsons sampler Grose beta at least ease i

s. Fertissistes 2 samples from toestless per 7 days. games operaties with essple (in 4tiferest sectors) at or near the site besadary colleetles once per isotopis eastysis if l 7 days gross beta 10 time s mens ,

(LM 1 and 2) of control s am pl e . g Compo site a t least ease j

i per 92 days (by leentson f, f.r ,s..a seam t 5 s ample s from sommanities {

appresimately 6-10 miles  !

distance from the plant

. (PN 1-8) 1 2 samples from eestrel {

locations greater than 10 miles from the plant (tu 1 and 2)'

1 Contimaoss sampler asal at least esse por l

Saoples f r or. same toestions ,4

b. Radioledine operation with fittar 7 days t as air particulates  ;

settesties ease per ,

7 days 1 Heavy partiestate Grosa tota at least ease Samples from same locations per 31 days {

e. Fa11ost se air partiestates fallent so!! acted costianoasty on gammed I sostate paper with paper colleetloa esse per 31 days c

3.1-5. sad 3.1-4.

1 eSample locatiens a re sn ev a on Figures 3.1-1. 3.1-2, 3.1-3. 3.1-d. ,

l eeSamples shall be settested by collectias an alignet at intervale met esseedias 2 hears. i t

l i

Eeviston 4 (Sheet 1 of d) 1 a

i i

_ ___ - - . - - - - ~ . - - - - - - - - .- . . . . . . . - = .. . -. . . - - . - . --- -- -. - . - = _ .. .-- ~_ .

f '

\ .

\/ \J .

)

-f ' TABLE 3.1-1 (eest*d)

RADIOLOGICAL EhVIRONMENTAL MQ3ITORING PEREEAR t

Esposere Pathway Sampling and Type and Frequemer

.and/or Sasale___ $3 mete Loestions* , Collection FreestatY of A E A lesia

d. Rainwater Samples from same loestless Raiawater cellected ses- Gamma seas at least a s air particualtes tinsomely with compeelte ease per 31 days samples analysed ease y

per 31 days I i

Samples from same locattens, Osse per 3 years Gamma seas. sp.908r

e. Seil.

as air particalates once each 3 years. r

2. DIRECT RADIATION 2 er more dealmeters placed Oase per 92 days Gamma dose at least at 10 of the air partiestate esse per 92 days semplias s t a tions (PM 1-8 and RM 1 and 2) i i

4 2 or more desimeters ptsted  ;

' at each of at least 30 other i a teentions.

(Figures 3.1-2 and 3.1-5)

3. WATER 30tNE
a. Surface TRM 497.0 Collested by esteestas Gamma seen of each (Figure 3.1-4) TRE 483.4 sequential-type s am pl e r *
  • eemposite sample.

TRM 473.2 with eemposite samples Composite for tritime f4 e sollected ever a period analyste at least '

of i 31 daye esse per 92 daye 4

' 1 sample adjaccat to At least ease per 92 Gross bete, samma seas b, Ground i (Figure 3.1-2) plant (leenties V-6) daya and tritsam analysia l et least ess* per 92 g days  ;

5 1 sample from ground f I water seurse upgradient l 1

s. Drinking I sample at the first Colleeted by automatie Gross beta and samme seen potable surface water sessential-type sampler ** er each composite sample.

(Table 3.1-3) Composite for trittaa.

(Fisere 3.1-4) supply downstream from with sospesite sample the plant (TEN 473.0) cellected ever a period 89.90Sr at least ease of 1 31 days per 92 days I

l i

1 Revision 4

! (Sheet 2 of 4) l i

l.

1 l

l i

f 7

( )

J T ABLE 3.1-1 t eost' d)

J ADIOLOGIC AL EhyltohutmTAL uo)11081hG Ftgil&B Samplies and Type and Fregnesty Esposure pa thway Collection preauency of Analvate Semele Leestiesje and/ or Samete 1 semple at the mest 2 Grab sample ease per 31 devastream potable sortsee days water sappites (greater than 10 miles deemstream)

(TEM 470.5 sad 466.3) ,

2 semples at sentret toestions Grab semple 31 days esse f rom per Little (Little Seddy Creek Nile 0.5 Sample Seddy Creek. 4 and TRN 303.4) at TRN 503.8 sollected l by astomatie sequentist- i type sampler with sospesite 1 aample sollested ever a perled of i 31 daya At least ease per Gamma seam .of each semple TEM 4pd.S

d. Sediment 1 84 days (Figure 3.1-4) TEN 4 83.4 TEM 4 80.$

TRh 472 .6 At least ease per 184 Gamma seas of each sample e 4

e. Shoretise TR N 4 83 days Sediment TEN 478 1 (Figure 3.1-4) TRM 477 4
4. ING ESTION I At least ease per 13 day s asal analysta semi-
a. N!!k 1 s am pl e f rom milk prodseing monthly en eellesties.

(Figure 3.1-3) animals la each of 1-3 area s Gamma seas. **.Er indicated by the son eenses analysis at least esos where desea are s ale st a t e d per 31 days  ;

to be highest. If samples are not av a ila bl e from as area. dose s to that ares wit!

be e stima t ed by projecting the doses from sessentrattens detected ta alth from other sosters er by sampling

.vege ta tion where milk is met available At least I sample f rom a control locatten Revistos 4

.(Sheet 3 of 4)

TA2LE 3.1-1 teost'd)

O 11DIOLO(ICAL EhVIRQNMENTAL Moh!TotIhG PROGE&N Sampling and Type and pregneasy

.Esposare Pathway of Analysis

.. a n d / o r Saante Somete Locationne Colleetles FriasescY 1 aseple each from Wiekajaak. At least ease per 134 Gassa seen en edible

b. Fish Chichsmanga. and Watts Bar days. One esaple of partson Reservoirs each of the followleg species:

Chaumel Catfish White Ca s p ri e Smallmesth Buffalo Feed Fredacts I sample each of primispel At least esse per 365 Gamme seas os edible s.

food prodsets grows at days at time of portsea, private gardens and/or harvest. The types farms in the immediate of foods available vielaity of the plaat. for sampling will vary.

Seleetles of locations to Followies is a list of be based on the land use typical feeds which may sensas, be avellable:

Cabbage and/or Lottaea .

Cora l Green Beans Potatoes Tomatoes At least ease per 31 Gamma sena s t lea st I4

d. Vegetation 1 sample from each of ease per 31 days, (Figare 3.1-6) .three loestions of milk- days
    • 5r and $r aantysis  ;

producing animals where a sample of milk is not at least esse per 92 l available ame a t three days .

I sostrol dairy farm I locations Revision 4 (Sheet 4 of 4) l

SNP TABLE 3.1-2 Atmo:nheric and Terrestrial Monitorian Station Locations Seanovah Nuclear Plant Location Approximate Distance and Samnie Station Direction from Plant LN-1 S 1/4 mile SW LN-2 S 1/4 mile N PN-1 S (Northwoods) 10 miles WSW PM-2 S (Hamilton County Park) 3-3/4 miles WSW PN-3 S (Daisy) 5-1/2 miles WNW j PM-4 S (Sale Creek) 10-1/2 mile s N PN-5 S (Georgetown) 9 miles ENE PM-6 S (Work) 5 miles NE PN-7 S (Harrison Bay) 3-1/2 miles SE PN-8 S (Harrison) 8-1/2 miles SSW RM-1 S (Chattanooga, Riverside) 16 miles WSW RM-2 S (Dayton) 17-1/2 miles NNE l (Identical with RN-2 WB, Watts Bar Nuclear Plant)

Farm L 2-3/4 miles NNE Farm M 3-1/2 miles NNE Fa rm J 1-1/ 4 mil e s W Fara HW 1-1/4 miles NW Fars EM 2-1/2 miles N 4

Fa rm BR 2-1/4 miles SSW Fara 0 1-1/2 miles NNW Farm C (control) 16 miles NE Farm B (control) 43 miles NE Farm S (control) 12 miles NNE Revision 4 l

SNP TABLE 3.1-3 PUBLIC VATER SUPPLIES _ SAMPLED IN_ ENVIRONMENTAL MONITORING PROGRAM Distance Sampling Water Sunniv from Site a Source Freauency Cha t ta nooga (C. F. Industries) 11.5 Tennessee River Monthly b (mile 473.0)

Chattanooga (E. I. DuPont and 14.0 Tennessee River Nonthly Company) (mile 470.5)

Chattanooga 19.0 Tennessee River Monthly (mile 465.3)

Daisy-Soddy-Falling Water 8.2 Little Soddy Monthly Utility District Creek Dayton 19.3 Tennessee River Monthly b l4 (mile 503.8)

O a$ River other than mile the Tennessee distance River f which are rom 1RM shown as radialexcept 484.5 distance from forSequoyah supplies Nuclear that t Plant.

t

b. Sample collected by an automatic sequential-type water sampler with composite sample taken monthly.

l l

l t

l i

Revision 4

~

Y J - u Table 3 2-i .

DETECTION CAPABILITIES FOR E971ROWVENTAL SAMPLE ANALTSIS .,

.A. Specific Analyses NOMINAL LOWER LIMIT OF DE*lECTION (LLD)e Fish. Foods, seat.

Togetation Soil and clan flesh. Milk Air plankton. Clas shells poultry..

Particulates Charcoal Fallout Water. and grain . Sesisent

' 3C1/a. dry DC1/a. dry oct /r. dry . oC1/ka, wet EC lf.1 mC1/km2 pC1/1' .oci/r, dry DCt/a) ' gCga3 1.5 0.01 -

0.7 tztal 0.05 2.0 0.05 0.35- 0.1 0.7 25 Gross - 0.005 ' 2.4 'O.20 0 70 0.1 Gross b 0.01 330 0.5 8gI I

83 Sr I . .

0.005 0.02 to -0.25 1.5 0.5 5.0 1.0 40 .

8 10 2 l4 2 0.05. 0.3 0.1 93 3r 0.031 B. Cassa Analyses

, NOMINAL LOWER LIMIT OF DETECTION (LLD)

Foods, tomatoes Meat ans Vegetation Soil ant Clas Flesh .

poultry 2 Air, ' Water and. plankton Clas shells potatoes, etc.

and grain sediment Fish D CI / k E(We t particulates and milk DCf/E. dry DCt/t. drF DC1/2. dry oC1/kES. Wet oct/s) DC1/1 DC1/E. drf M Ge(46) MI Ge( L ST Male Ce(LI) es. Mal1- Ge(Li) oct /s. drF -

Na1 Ge(Lt) Mal Ge(L1) NaI Ge(L1) Nat Ge(L1) M Ge(L1) 0.35 'O.35 0.35 90 I%3*10%C e- 0.03- 38 0.55 0.06 0.35 0.06 38 1"#Ce 33 0.22- 0.06 0.60 0.10 33 40 0.02 .

44 0.47 0.60 0.10 - 0.60 0.10 0.56 60 44 200 90 51Cr 0.07 0.03 60 1.10 0.02 0.20 0.02 0.07 0.20 0.02 53 23 1311 0.01 0.01 15 'S. ' 0.35 0.09 0.20 0.45 15 8 O.65 0.45 0.45 .

40 150 IO3*105Ru 0.04 to 0.11 0.11- 0.74 0.11 93 0.03 40 -0.51 40 106Ru 0.33 0.12 0.05 0.12 0.08 0.48 0.12 0.08 26 40 50 13%Cs 0.01 0.02 10 26 0.20 0.08 0.12 0.02 10 G.02 0.02 '

to 5 .0.20 0.06' 0.12 0.12 10 5- to 15 137Cs 0.01 0.01 0.12 0.12

.0.15 0.03 10 to 0.11 0.03 .0.03 10 20 95Z r .0.01 0.05 0.01 0.01 0.07 0.01 5- 15 -

'96Mb 0.01- 5 0.20 0.01 5 ~0.23 0.05 0.20 0.01 0.20 0.01 0.07 15 5 55 15 58co 0.02 0.01 15 0.08 0.15, 0.01 0.20 'O.05 0.15 0.01 0.15 0.01 to 5 40 15 5%Mn 0.02 0.01 10 5

'O.23 0.02 0.23 0.02 0.17 0.23 0.02 70 20 65Zn 15 9 0.25 0.11 0.11 0.01 15 9 0.02- 0.01 0.17 0.06 0.11 0.01 0.11 0.01 0.08 . 5 30 15 60Co 0.01 0.01 - 10 5 0.90 to 40K. 0.10 150 2.50 -0.90 0.90 0.15 150 400

. 15 0.68 0.15 0.15 15 50 140Ba-La 0.02 0.07 0.07 0 30 0.07 50 0.34 140 Ba 0.02 25 0.10 0.02- 25 7 0.08 0.02 0.02 7 15 140La 0.01

- Revision 4 (Sheet 1 of 3) ,

s 4

TABLE 3.2-1 (cantinusd)

(Sheet 2 of 3)

TABLE NOTATIONS ^

p

  • The NaI(T1) LLD values are calculated by the method developed by Pasternak and Harley as described in HASL-300 and Nucl. Instr.

Methods, 533-40 (1971). These LLD values are expected to vary depending on the activities of the components in the samples.

These figures do not represent the LLD values achievable on a -

given sample. Water is counted int) 3.5-L Marinelli beeker.

Vegetation, fish, soil, and sediment are counted in a 1-pint container as dry weight. The average dry weight is 120 grams for vegetation and 400-500 grams for soil sediment and fish. Heat and poultry are counted in a 1-pint container as dry weight, then corrected to wet weight using an average moisture content of 70%. .

Average dry weight is 250 grams. Air particulates are counted in ;

  • a well crystal. The counting system consists of a multichannelv -

analyzer and either a 4" x 5" vell'NaI(T1) crystal. The counting, m ,

time is 4000 seconds. A11 Malculations are performed by the least-squares computer program ALPHA-M. The assumption is made that the samples are analyzed within one week of the collection date.

en The Ge(Li) LLD values are calculated by the methods developed by Pasternak and Harley as described in HASL-300. These LLD values are expected to vary depending on the activities of the components in the samples. These figures do not represent the LLD values -

achievable on given samples. Water is, counted in either a 0.5-L or 3.5-L Marinelli beaker. Solid.sacple's such as soil, sediment,

.s and clam shells are counted.in a 0.5-L~Marinelli beaker as dry

( ) weight. The average dry weight is 4004500 grams. Air filters and

's /

T, very small volume samples are counted in petrie dishes centered in the detector endcap. The counting system consists of a ND-4420 is multichannel nnalyzer and either a 85, 14%, or 18%'Ge(Li) detector. The counting time is normally 8 hours9.259259e-5 days <br />0.00222 hours <br />1.322751e-5 weeks <br />3.044e-6 months <br />. All spectral analysis is performed using the softrwater provided'with the ND-4420. The assumption is made that all samples are analyzed within one week of the collection date.

i

a. All LLD values for isotopic separations are calculated by the method developed by Pasternak~and Harley as described in HASL-i 300. Factors such as samplefsize., decay times, chemical yield, l and counting efficiency may vary for a given sample; these variations may change the LLD value for the given sample. The assumption is made that all samples are analyzed within one week of the collection date.

The LLD is the smallest concentration of radioactive material in a l sample that will be detected with 95% probability with 5%

probability of fasely concluding that a blank observation represents a "real" signal.

l~

l O

(,) Revision 4 s

7 )

+.3 , p ,

'ii i fe i F ,.,

1, TABLE 3.2-13.tcontinued)

~; ( *j. (Sheet 3 of 3)

." i TABLE NOTATION t/, .m j%/

,. - - .) d. s .r g

( 5 #

Jor a parti.cular measut'ersentNystem Iwhich may include radiochemical

[h(!

>t y-3 s epa ra tio'n) :' ' /

i \ )

)

>3y '

'S LLD = 4.66sh-P' } EV 2.22 y 05p(QAt) kM;

  • j._ ( .\ , ,
g. where '

s t ,

p I- LLD*is.sthe lower limit of ,detecti'on as defined above (as pCi per

'j - '

,E unit'a6 ass or volume)

g.g
Y1 q M~ . q

.sbhk)!da...P.tc.ndarddevia,?.ionofthe.backgroundcountingrateor r-of i the ' counting rate of a blank.; sample as appropriate (as counts perQinute)

E is the counting efficiency (as counts per transformation) i 7 V is.the sample size-(in Units of mass or volume) 2.22 is the nu ber of transformation per. minute per picocurie o ws Jg,; Y igss the fractional radiochemical yield (when applicable) m ]

,h is the radioactive' decay cony

  • tant for the particular

, radionucl,ide , j A ie

't ) i 1 is the elapsed time be'tveen sample collection (or end of the

\A '.t sample edilection.. period) and time of counting

'g ~.

( '

% ( ,, '

1 g The>value of'sb used.in tiie calcul tion of the LLD for a detection

'% sys$'em sh all' be voased on the actual observed variance of the bt0kgrourfd counting rate or of the(counting rate of the blank samples R-j- (asiappropriate) rather than on an,. unverified theoretically predicted ita r ian c e .

\4 J N

' b'.7 .IhY LL D value s lis ted in this table may change slightly after sample size, counting times, n .

A, etc..

routineThe1most evaluationrecently of background, calettlated values will be included in the g'B) Annual, Radiological Environmental Operating Report.

\

i g i.

-s w

pe N,

' ~

)

%./

Revision 4 i

4

,.e, -- , --, ,. ,n . + , . -- , , -

4 b Figure 3.1 - 1 ATMOSPHERIC AND TERRESTRIAL MONITORING NETWORK ATMOSPHERIC AND TERRESTRIAL SAMPLES COLLECTED AT EACH STATION O LOCAL MON! TOR t

@ PERIMETER MONITOR 9 REMOTE MONITOR DAYTON N / sw2Sao

) '

\

SALE CREEK 450 PM- SQ M-68 0 e EORGETOWN Q SocoY P SQ ORK D AtSYi LM-250 LMISO PM-7SO pg. iso PM 2SQ AEVELANo MOU N seM eSo R M-t 50 CHICKAM AUGA

,7 DAM io WILES 3

CHAT T ANoOGA IS MILES NO T

\

N 20 MILES O Revision 4

f i I

%,., 'w, Q/

w-t e

- NNW.S g -

~

g-., .

. .O. . N W-1 g, $(,j.msN

) f

.r-'$a / L/ c'~? 'a .* 23Q

v  %  ;

j .

/ (

~" 1, _

^jd%g" f

~

h.

i f

W-6 h j

\

g (w

0 A l l [,_ c

.8 / /r t - >, ,

Qf j~%. '*) LEGEtt0 fjb '

g SgERIC 8 TERRESTRIAL eg

}

1

. b/%;b .F ' I','ettS

- ~~ PL ANT COUNDARY

.s-o = ROADS

  • SEQUOYAH NUCLEAR PLANT SITE MONITORING STATIONS Figure 3.1 - 2

a

- Figure 3. 1 - 3 LOCAL MONITORING STATIONS SEQUOYAH NUCLEAR PLANT w y /

/

g \ O ~

A O

k i

^

?e' o -

^

2 N, f Scale of Miles Q Air Monitor A TLD Station O Doiry Form O ,

Revision 4

Figure 3. 1 - 4 O R ESER VOIR MONITORING NETWORK V SEQUOYAH NUCLE AR PL ANT DAYTON (MILE 503.8, DAYTON)

\

MILE 497 MILE 496.5 SODDY O (LITTLE SODDY CREEK MILE O.5*

SOODY-DAISY)

DAISY SEQUOYAH MILE 485 NUCLEAR PLANT MILE 483 4 MILE 480B MILE 478 f CHICKAMAUGA MILE 477 (MILE 470.5, E. I. DUPONT)

MILE 473.2 l MILE 472.8 I (MILE 465.3, CHATTANOOGA) @ SHORELINE SEDIMENT e . AUTOMATIC WATER SAMPLER (MILE)_ DRINKING WATER SOURCE i

O 5 H

O MILES Revision 4

Figure 3. 1 - 5

.p..% m . j w . _" - w , s -

7'.

(ma)c _ g C. - / .M y .  ; -

- <g r A p !. . p g.;z] ,,, 9, T}p_%.. u '* .v w g r3=r.,vg#.;;g.n

'[ ' k7p. - .,,

8 1,.

,,,',,,,..y. ,-

/ ,

._.....4.-.a.e- -e,, '

, .., . , , . . - ,. J . . /, .

- * " s

.,, , '/t , . ,

l' . I,1 ' ",A -- $.". ,

. 'i .' '.., .

,.y' . s,. ..

. 1. ,'

(,,.

8

,' , ,); . - ~ -. ,

. . y/. <. . ..'

EZ v o.

  • i .

. ,% %' '. . ( A .

. .. e.. . g. ,

3 /-

of a 1. '

.S in ,( ,y -

  1. -e.'7 9 iy ,,

o ..e sx m\

,34;F, , % <c;.

- v f,.4;4 .,,. - .

/

  • rn*.
  1. v, . A ff . 42 4, *ip ghe. *  !

'l;- ' '_

j' ,. ...

., ' ' & j'[l '

.~c y, .-  : E k ., W f . , ' ,,f & , k (..

. . s

- ' G q-t-f  %;p ';

Q.'

g l

.s ,- .,. \,

[, is.y v .' , s./

77 j:h,/[.\.d,d+l.,q..;.s*.'<

Nt < 4[ '. ' '. g.1*%:. '*?"S J ..~3 ' / ,

s. ,,

i+, : q, M s, w.m?q 6.- me .. g. '

.< P ..g . .*

( ",

,'y.

b

~

W h

~t-hk 't e; il}(l .. .

,l'a

% ,; ' ;, Y f . .s , &g % t.Y . fl@' x Q &, &; b. A y, Q 1 .

V. W su Ni  ;/ ,L..'?" YS ,;j,*;-? j.., ,

y }'% . s . . E 4

.* 7 i -.h. y,d, n ,i . C

.; s.g s.,n 5

) . .y . .

II ','M L.:

n. <e. ,,

.r fn ,,- . ! ,

v 4,* -l

. c.,:s, ,

. .,-)o 3

  • <_n s 4 :g g _ m .,  ; , ;

$,. % ,,,;~y n.

~. -

g' ' 8 gD .hfh (y .

,. s,71 ,. ~

~'N ,egtw%,

gmCy n .&,,,w ,

h t

.k s.33, a

~

f  %;-

C A,.

g.

3:uhi,:,

W e 'gI \

1 w 7 .Ng, % ..c J

m !.

\n y'pp\c--? , h. . , .

,n *s p%,,

t. .y5 -. ..g.,, .),.1 s Q: R Vs  :. Q..' ~

gen

) 3 r . ,

w,- .

<- na p... r'es~-. 7 p;r- . , ,

r , g. .y3 c.~,.

e.~.1s(,s* w.. .gL n ..

i. i~ ,iy . ,

s, .J.

w L.,V - y %.

3.

.,C p . y ar...- <.

  • s. =i s ..! in c.'%,v-_>

4 ~1 . ;; .y,< g-

.1( .

T o *. 4 .

;' p.

, a 3, f(f.s., ' s ' /.

> 'g .

3. . , }' y p ,2 * . % -g*; f %.3 . c.'" -

1'j,b,.'

- . , . - igf s

p.(

.' ,g ,y

'( ' . #.7. ./ '! ' 5' y e. 3;i t **y;r*-- I (('%'7^p,.g .

' hI '% ', 1-h - ly , k ('[ N1' 'I. */ \

.:, I'

/{'I'I F -h *F '. j

. . i..,_i. i,.

-3

- x- r* ,

t, h ,*

d by \'

7 . C-M -J

~

j;i ,o p 1) '

';' 3 '-u~~f$,(a'.k"~.pj "r g if .y\.I,, a 4 }.@ VfQ, g q0;sy. [v

->::s...... .?6, - u... : . U ( ; , g?

2. .Syj

'%9.,,,.,. -f , Q, ?

T Q.Q{":@W.., ' '".)Q{,iQ h,c)Q,d fX . ' ' *

, s .. is ,,,s c . M ,,, .a f f.ft VM.A ,., .. .' /O , -

'..*  !., ' P .

' M;. . . ,s , ,,..

> ..s  % yf > ~ g ,; s,t r/ ,* < 1 Pv.w - - W ,p,,,.K. . f.m* F. , '.', N ' ,

i E

' ' n..

~

i ,

N / N a. 1f3 e ,N; 9 f ,'.';f5; * .p %'fy- ip.'S....-

r ',

f ' . y. j ']p ' &. , { '. ' f . ',.

  • f,l

,7 ,

' ,._ .g.). y )%4g A' t;%,;,&....,i'g y .'-(.f,- ,

j (, ' i @ :M - ,

jp ' hj ' ? h. A [ih [ [,, ) I ' , ,. t in h U Ad i ew's @Q..' M4 WlMM.

f Q Q W ),N . '$ %, % &' y ;i- .

Revision 4

Figure 3.1 - 6

/ T VEGETATION SAMPLING LOCATIONS 0

m '

,1,

, SO. -

k(Ly,,(jf,b~t/kX) y y - -v s

'N jJ e

\j y /-

3 .

o

, P

[m g ._ .

Revision 4