ML20071L240

From kanterella
Jump to navigation Jump to search
Rev 1 to Evaluation of Three Legged Pipe Whip Restraint Sys
ML20071L240
Person / Time
Site: Byron, LaSalle, 05000000
Issue date: 09/21/1982
From: Amin M, John Ma, Yang M
SARGENT & LUNDY, INC.
To:
Shared Package
ML20071L131 List:
References
8.15.1, 8.15.1--R1, 8.15.1-0, 8.15.1-0-R01, SAD-401, NUDOCS 8305270501
Download: ML20071L240 (47)


Text

.y, _ :.9 :.,.._

._:w w_w m

a.

p. g..;.,. x....

n

~

.u., n.:.. - r. - ;.,,.

m u., t ~

. m 3,..,

r e v +.;

t

,o

,. $. s.x# g.a, +m ;y n 3,,...,. w ; w, y., w x.., w; g,,.,.m,.

s, 4,,.,

v jg

..c

. g +,

,. 12

.-..p.....

.m.. -

j.c. p w>-

c

.,x.ty p m,m,n 3 c

a ;. ; - n -
..'.'m.a;.s'.'g p., ~_

., s.; ~'4. J h.n L,,, *.

~

x. M.,....

c,,. a ~. +.

W.n,.;.

-t c,

.~

1; r

r zg.

q 1

. j,,,

.y r

p Q ;p.,L.,X ' ~ V,.h.?,:<MW- :n, ;;.f,. W.g.

. &w~

.s_.,..,

,..,3

.f 1

s.

,.. n

. t e., '

T-r.

u z

z+zf,g.w w y.s'.<q,.a.
m..;.;. M,,y (.,

...-~:

w..

e.

m y.

.. x,, s n n.. e.2_

m_.;.,.

s s,.,,

&,, y;,,;.,;',.%~a, y ' ; : s t

. 9

  • q- ' :'f9

-.j..

knL l~ p;[7

- < ~,.,,.

y :3 Q,.. '.

y,:

s;

",.e n-.

..,>~4 r

m;

.,- :xe, a.,..,

n,

. < - m s

.y

, q.m. l, 9,, 3,; x v g Q, g, g -;; ; &,;,,

p

.V,o n,,, ;+ y.:.y, ;mm.g, p y w,yp ;m. 9, e...,,,,,.

-.. ~..

.c.,n,.

.g.

. ~,,.. n.

. y.y p p

. ~ y ; _.g. y<..

..u m.

. ~

e.

a n;. ~. 6..;. ; a.n.vd,.,.

..;~

~

c
m. /.

- s x.m.7 m.,

n

' - #., tq..,~,

gar t..,..,..
.w.;.,m, p

., w w

s EVALUATION OF THE TSREE LEGGED' PIPE WHIP RESTRAINT SYSTEM.

m;. -

~,.,w,.

u 4,..

, - w a ',,..

.4

+..,

~,.

m..

.m.,.a r..~<.,s.-

m,

. r s.

,e 3,. -s.,.

+

~.

M g,..

uk Commonwealth Edison Company -

LaSalle County Station Project No.4266-02

w

.- 4

.s n P. S. Ma.

M. S. Yano M. Amin' ' '

~'i S. Kazmi-A. K. Singh'

(

s 1

. ~;

Rev. 0 - August 23,.1982 1

Rev. 1 - Septembe.r;21, 1982-g

y. y, g7 h-h,4 Report No.

m 8.15.1-o 4-SARGENT&l. UNDY n.p%h. (SAD-4 01) m.-

W w t.

inummsene.

g. <. 't -: ;

'%Q

.-g

..g4/p,

, ' e.

...A m.~

  1. .,.v;,

-,y 4 e;L.kK).. '..

~:'

^

".g

.; h

.s 3 '

r*

I &~:

c

. -g s n I

~?

+

-, I -* k ~ '

m_,;... h. j. ' e

> >, j

., ~;I.y,a..'.

..,1

  • Q-M. ' a; $ y^

M a

r

~ ~..

. *+ -..Jy,;,,i s

iu

.; :

  • i G '.y["'* 4l rN;9-g. l" ;-

s.

v'.,

.., s v

, ):.i.

.:,,',. g

%.g. q.;.. 4' + H,x.y;.l.4" % y,:y:*5,.; y - y>.,,,;y@y,y Q,

s L;.>,:

b s:

a A %,s. -.:

.u

,..~

- ~.: 4'

~3

, '. C,f. ;u^

,g.

~

.: m,

.s a.%

c...

.M

<yu s

gag;g,.m%; 9.Gr w:,a,. i'=.,y%e, e,. x n...s '.

~, +p*

us p,.. 9., 3 4. %. s.~ n....,.,... p.. y Y,

y

.,J

n. 3.

~ m.,;a.., sy,. _ >.%' :

,.c;.

y f ^; >

(5 f

kks O 00 54 WcWQ32%QMWNV'?)1$5

MM907 WM.%3:%:M.&%:?:.

g p&lS";y!Qp%QsMQw.ih ;y pp&&WN$$$$&$$lkiWOV.

W % 1.M % Q S % - h

  • 7< 2
  • MnW> :

=

r

,w..

mma. s

~

u.

Structural Analytical Division Report Issue Summary Project LaSalle County Station

- Number 4266-02 W.3 Nee o

Commonwealth Edison Company 2*

Client Report EVALUATION OF THE THREE LEGGED PIPE ug, Title WHIP RESTRAINT SYSTEM B*

gs 4

8.15.1-0 (SAD-401 ) Nuclear Safety Related Yes d No O Re o y

e-(

Revision Signatures Data Identification of Revised Pages No.6Date l

f. 3. A

%-21-21 Prepared by: k g,g g

&ry T-35-rL o g b

$ - 2'b-S '2.

gQ gg Reviewed by: j jg y}

f.

A f-Z 3 S E o-Approved by: [. k. h c A 7 M-D T.),k i 4 4 ~~E l i ~ 2I

  • P 1.

Comparable analytical models Prepared by:

M*dC 9 gg-82 are used for presenting 1.zt-fL results of three restraints.

g Eev. 1 replaces Rev. O.in cR j _

its entirety but its fina7 Reviewed by y

3. z1-72 conclusion is the same as d

l

,, a Rev.

O.

>Q l

h G - 1/ - 72, APPf0VedDY'-[.k.

f l

l 11

- 'i

~. '.

TABLE OF CONTENTS Page Report Issue Summary ii Table of Contents iii 1.

INTRODUCTION 1

i 2.

SUMMARY

AND CONCLUSIONS 2

3.

COMPRESSIVE & SHEAR STRENGTH OF CURSHABLE 2

MATERIAL 4.

BEHAVIOR OF THREE LEGGED PIPE WHIP. RESTRAINTS 5

4.1 Description of Analytical Model 5

4.2 Discussion of Results 7

5.

REFERENCES 12 i

TABLES 13 FIGURES 15 l

e lii

8.15.1-0 Rsv. 1 9/21/82 1.

INTRODUCTION As a followup to the Teledyne independent review, the NRC staff had expressed concerns on the behav'ior of the three legged pipe whip restraints, the influence of load angularity on the crushing strength, and the ef fect of the missing weld between the ring and the crushable material on the functionability of the restraint system.

This report addresses these NRC staff concerns.

2.

SUMMARY

AND CONCLUSIONS Data from tests on the crushable material is presented to show that the decrease in crushing strength when the load is l

applied at an angle of 50 to 150 when compared to the pure compressive load is approximately 20%.

Tests under pure shear on samples of the crushable material similar to that used on LaSalle show that the material has a shear strength equal to 40% of the corresponding compressive strength.

To evaluate the behavior of the three legged pipe whip restraints, three restraints, R-32, R-50, and RFW-8, repre-senting critical cases, were analyzed using a nonlinear time history analysis.

Restraint R-32 was chosen by the NRC Region III staff as a followup of the Teledyne review; R-50 was selected because it has one of the longest leg lengths, 1

8.15.1-0 Rev. 1 9/21/82 and RFW-8 was selected because of the large blowdown load and a relatively large gap.

hav'e been analyzed.

For each restraint two extreme cases The case of "with friction" assumes that throughout the time history the points on the collar ring and the curved bearing (facing) plate move together.

The case of "no friction" assumes zero coefficient of friction between the two

(

components.

Results show that in either case all these re-s straints are able to stop the pipe; the maximum angular de-formation of the crushable material in all cases studied is less than 9.80 and the vertical deformation of the crushable

~

material is well below the LaSalle design limit of one-half the material thickness.

Based on the available test data on the crushable material and the nonlinear analysis performed on critical cases of i

the three legged restraints, we conclude that the pipe whip restraints in LaSalle are adequate.

Because of this we believe no additional testing is required.

3.

COMPRESSIVE AND SHEAR STRENGTH OF CRUSHABLE MATERIAL In,the event of pipe rupture the crushable material in a three legged pipe whip restraint becomes subjected.to both compressive and shear loading.

The NRC staf f requested in-formation on the effect of shear on crushing strength and 2

l 8.15.1-0 1

Rev. 1 9/21/82 1

shear str eng t.h of the crushable material.

This section summarizes this information.

As required by Specification J-2986,

" Crushable Energy I

Absorbing Material,"

the manufacturer Hexcel/ MCI Division performed several tests on samples of the crushable material used on LaSalle.

To assure that the crushable material will absorb energy when loaded at an angle, static tests were performed for load angularity at 00, 50, 100, and 150 from

'n Figure 1 presents the i

the vertical plane.

Curve 1

results of these static tests.

In addition to these static out from tests, dynamic tests on representative samples cut each slab of the LaSalle crushable material were performed to determine the dynamic strength of the material.

To account for the expected reduction in crushing strength with temperature, these dynamic tests were performed at the design 1800 temperature.

The dynamic tests were limited to vertical loads only.

l At the request of Commonwealth Edison Company additional dynamic tests were performed on July 19, 1982 for 50,

100, 150, and 200 load angularities at ambient temperature of 800F.

These test results are shown as curve 2 in Figure 1.

(

j l

Curve 3 in Figure 1 represents the crushing strength vs.

shear strength relationship for the crushable material at 1800F.

This curve has been developed by reducing the curve 2 results by 174, to account for the temperature effects as established by the manufacturer.

I 3

8.15.1-0 Rev. 1 9/21/82 The following conclusions on the behavior of the crushable material can be drawn from test data shown in Figure 1.

1.

Dynamic strength of the material is approximately 15%

0 10 -150 higher at 00 load angle and about 6% higher at load

angle, compared to its corresponding static strength.

(

2.

Compared to the strength for pure compressive load (00 angle), when the load is applied at an angle of 50 to 150, the crushing strength decreases by approximately 20% for dynamic tests.

The corresponding decrease for static tests varies from 8% to 12%.

The available test results on shear strength of the crushable material relate to results obtained by the manu-This in-for another application of this material.

facturer formation indicates that in the B-direction (Figure 2) the static shear strength is at least 40% of the corresponding compressive load strength.

The manufacturer's experience also indicates that the shear strength is greater when the shear force is applied in the B-direction in Figure 2 as compared to its application in the A-direction.

For this reason the energy absorber packages provided for LaSalle ctation were fabricated to have the strong (B) direction This was reconfirmed parallel to the shear force direction.

D by the supplier and fabricator of the crushable material.

/

~

8.15.1-0 Rev. 1 9/21/82 4.

BEHAVIOR OF THREE LEGGED PIPE WHIP RESTRAINTS 4.1 Description of Analytical Model In order to address the NRC concern with the behavior of three-legged pipe whip restraints, three such restraints (R-32, R-50, and RFW-8) were analyzed using program ADINA for the nonlinear dynamic response under the effects of blowdown force.

Restraint R-32, shown in Figure 3, was selected for further investigation by NRC Region III as a

followup of the Teledyne review.

Restraint R-50, shown in Figure 4,

was selected because the length of its inclined leg is one of the longest of the three legged restraints as identified by the NRC-NRR staff during the site visit.

The restraint RFW-8, shown in Figure 5, is actually 'a two legged restraint functioning similarly to a three legged restraint because of' the direction of blow'down force.

This restraint has been included in the analysis because of its large blowdown force and a relatively large design gap of 2.43 inches.

The geometry of the dynamic model used in the analysis is shown in Figure 6.

Table 1

summarizes the geometric dimensions of the three restraints analyzed; Table 2 gives information on blowdown force and applicable gap distances.

5

8.15.1-0 Rev. 1 9/21/82 For purposes of analysis the blowdown force is applied at the break location 0 in Figure 6a; the force is transferred to the ring through the gap spring shown in Figure 6b.

The segment of the ring immediately above the crushable material is identified in Figure 6b as the arc abc.

The points on the crushable material immediately below the arc abc are re-ferred to as the arc a'b'c'.

In the analysis each of these arcs is subdivided further to at the better define the deformation state of each component interface.

The location of the boundary nodes in each com-ponent in the unloaded configuration is the same.

Their deformed position, however, depends on the assumption made for the interface behavior in the analysis.

This is dis-cussed further in Section 4.2.

The reason for considering two sets of nodes clong the interface is,to address the NRC staff concern with the missing non-structural

  • weld which was noted in a site visit.

The straight line eg defines the bottom boundary of the crushable material which is rigidly connected to the center column fm.

  • This weld was not required by the original design calculations.

It was specified on the drawings to facilitate construction.

6

8.15.1-0 Rev. 1 9/21/82 stiffness of the gap spring was evaluated from the local The deformation of a cylinder under patch loading.

In the analysis, the gap spring and the ring section are treated as elastic.

The remaining members which include the pipe, inclined

bars, center column and crushable material are treated as elasto-plastic material.

All elements in the model are beam elements with the exception of the crushable material which is composed of two-dimensional plane stress elements with Poisson's ratio equal to zero.

The in-place value of yield stress is used to define the yield limit of beam elements.

For the crushable material Von Mises yield criterion with equivalent stress equal to 80 percent of the compre ssive strength discussed in Section 3 is used to define the yielding.

Since, as is discussed in Section 4.2, the applied load angularity is less than 100, the use of 80 percent of crushing strength to define yielding is appropriate.

in this report The dynamic time history solutions presented were obtained using the large displacement option in the ADINA program.

4.2 Discussion of Results For each restraint, two different time history solutions were obtained by making different assumptions on the 7

~ - _ -

8.15.1-0 r

Rev. 1 9/21/82 movemen't of points along the segment ac of the ring relative to points on the bearing plate a'c' in Figure 6b.

These assumed interface behaviors will be referred to as "with friction" and "no friction" and they are elaborated below.

With Friction.

This assumes points on segments ac and a'c' move together during the time history.

This will be true if throughout the time history the frictional resistance between the ring and the crushable material is greater than the shear force across the interface.

No Friction.

This assumes the points on the segments ac and

~

a'c' move together in the radial direction but are free to slide relative to each other in the tangential direction.

The actual behavior of the points in a

three legged restraint is expected to be between these two extreme cases because for a part of the time history frictional resistance between the two surfaces may be exceeded.

Therefore, if the restraint responses for both assumptions are judged to be acceptable, the restraint response will also be acceptable l

in the actual case.

The time histories for pipe velocity, displacement, and ring displacement at the contact points between the pipe and the l

ring are shown in Figures 7 through 12 for restraints R-32, R-50, and RFW-8 and for the two cases of "with" and "no friction".

Each figure shows the time instances at which 8

8.15.1-0 Rev. 1 9/21/82 the pipe yields, the gap between the pipe and ring closes, and the the initial yielding of the restraint system occurs, instant when major yielding of the restr,aint system takes place.

Note that for each restraint, regardless of the assumption of "with" or "no friction", the forward motion of the pipe is prevented by the restraint soon after major yielding of the restraint occurs.

The negative values of pipe velocity in these figures indicate that the forward motion of the pipe is reversed.

Table 3 lists the response at different locations within the restraint system at the instant of maximum horizontal pipe deflection.

It can be observed from the table that the maximum vertical crushing, AV, of the crushable material, is well below the' LaSalle design limits of one-half the depth of the crushable material.

Note that this one-half depth criterion is more conservative than the 80% of rated energy dissipating capacity as specified in SRP Section 3.6.2.

It is also seen from Table 3 that because of shorter length and higher buckling load of the inclined compressive leg of restraint R-32, dV for this restraint is much smaller than the corresponding values for the other two restraints.

The values of the angular deformation of the crushable material calculated from tan-1 g

D 9

8.15.1-0 Rev. 1 9/21/82 differential horizontal movement between top and bottom of thickness of crushable material crushable material and D

=

are also given in Table 3.

The highest value of the angluar deformation in Table 3 is 9.80 The r e f'or e, referring to Figure 1 it is seen that the use of 80% of compressive strength for crushing strength in presence of shear as it has been assumed for the purposes of this report is appropriate.

Parts a and b of Figures 13 through 18 show the following information for each restraint and case analyzed.

a-deformed configuration at the time of maximum pipe de-flection superimposed on the undeformed configuration b-enlarged view of deformations at the ring crushable material interface The locations of the points a, b,

c of the ring and points a',

b', c' of the crushable material in the deformed state are marked in part b of Figure 13 through 18.

The location of these points in the undeformed state can be seen in the generic Figure 6b.

The examination of Figures 13 through 18 shows that the general motion of the pipe is down and in the direction of the horizontal blowdown force.

Because of the curvature of the ring and bearing plate if frictional resistance is 10

. :., ~

8.15.1-0 Rev. 1 9/21/82 exceede'd, a new segment of the ring which was not previousy in contact with the plate, in the deformed state, comes into contact with the plate.

This means that the center I

vertical support is always available to the system and that infor-the restraint system is able to stop the pipe as the mation in Table 3 shows.

In Figures 15 a and b it appears that for the case of no f riction the inclined leg of the R-50 inter fers with cru,sh-able material.

A review of sheet 3 of 3 of Figure 4 shows that because of the two segment construction of the crush-able material this inference does not actually take place.

The interface behavior between the ring (segment ac) and the crushable mater ial.,(segment a'c')

is further clarified by l

examining the instantaneous total vertical force, P (t), and horizontal force, V(t), which are transmitted from the ring to the crushable material for the with' friction case of the three restraints.

Figures 19, 20, 21 present th i s-information for the restraints R-32, R-50, and RFW-8 is r e spec tively.

In these figures the vertical force, P(t),

shown by dotted line and the horizontal force, V ( t),

is shown by dash-dot line.

The curve shown by solid line is the value of the instantaneous ratio V/P which can be used l

to judge whether relative sliding along the interface may l

occur.

Also shown in these figures are the values of coefficient of static and sliding friction for the contact 11 1 --

8.15.1-0 Rev. 1

. ~.

9/21/82 of mild steel on mild steel.

When the ratio V/P is greater than the coefficient of

friction, one would expect that s

sliding between the components in contact should occur.

for most of time history in the case of Figure 19 shows that R-32, sliding occurs.

Therefore, for R-32 the assumption of no firction may be a

closer approximation.

The with is more suitable for restr'aints R-50 and '

i friction assumption RFW-8.

This is clear from Figures 20 and 21 where it is seen that the ratio V/P is smaller than the value of

(

coef ficient of friction for most of the duration of the time history.

This difference in behavior of R-32 and R-50 is' due' to the early buckling of the inclined compression leg in case of R50.

The restraint RFW-8 is a two legged restraint and it behaves smilar to R-50.

t l

I 5.

REFERENCES 1.

Baumeister and Marks, " Standard Handbook for Mechanical Engineers", McGraw Hill, 7th Edition, pp.3-35.

O e

4 l

I i

12 i

8.15.1-0

~*

  • Rev. 1 9/21/82 Table 1 Geccetry of Restraints 4 1

$2 03 h

Res tr aint T,reak Neher Type in.

in.

in.

in.

Degrees R-32 L

395 37.6 85 27.2 45 138.7 60 R-50 C

269 17.4 e

116.7 45*

RTW-8 C

391 53.2

  • This is only a two-legged restraint with one inclined tension

(

member and one vertical compression member.

L = Longitudinal Break C = Circumferential Break Table 2 Gap Distance and Blowdown Force of Restraints Restraint Blowdown Force (kips) -

Gap Number F

F (in.)

R-32 120 120 2.911 R-50 71.5 70.1 1.554 RFW-8 614.8 415.6 2.434 F

= Impulse Force l

g F

= Blowdown Force b

1 i

+

  • 4

.m Table 3 Summary of Restraint Response Restraint Assumed Interface Gap Size D

Deflection in Inches Angle 0 Number Boundary Condition (inches)

(in)

P

/97 dH (degrees) l H

II H

No Friction 2.91 3

3.5

.40

.00

.04

.025

.47 R-32 R-32 with Friction 2.91 3

3.5

.28

.01

.095

.076 1.45 R-50 No Friction 1.55 3

4.3 2.56

.68

.59

.52 9.80 i

R-50 With Friction 1.55 3

3.8 2.07 2.25

.72

.25 4.72 i

RFW-8 No Friction 2.43 6

11.3 7.65

.82 1.64

.88 8.33 RFN-8 With Friction 2.43 6

10.8 7.22 6.49 2.22

.18 1.73 i

horizontal deflection of pipe P

=

H horizontal deflection of ring at point of contact with the pipe C

=

H horizontal deflection at bottom of crushable material B

=

g thickness of crushable material D

=

maximum vertical crushing within the crushable material AV

=

maximum differential horizontal movement between top and bottom of crushable 2b H

=

material angular deformation of crushable material computed as tan-1( H/D) 9

=

R$f Os; h w 's o

. s.1=o w. 2.

n _~ ~

i....

...l.-.

t

._.._4.___

LA iSALLE COUNTY STATION l

.... j n 'i.

COMMOMWEALTH EDIGOW CO.

i.

i 3_

.. l

._a s

i 4_.

i

,i

- ~

'...i l.

2,. '..

. j._...

....s g

x,

._.(,, o...... _ _~ _..

i j...

._ -_.. _. -.Qg.....Pc.S; cunvE AT eo*F[CYl:4MiC r

~

y e.

6 I.

j

--j-- -

N

_..S.. C U 2V E AT 1.0 v*. e*'Y%. "..'..'. ;.

__. 4l.

a,l ;... _ _ - -,___.... P./P R O R A'. D C V :

i

.. _ _ _. _ o

.s.

1 EVE E.EDUCEL i w

/

~i

. i i...'.1".... (5% l'1 % FDR TE-f.!P. GF F E.~~5) j,._......._...:.._

.4__ Q

~

... l.c.- G CUR.VE AT IS0*F / ST P

/

l j

c t 1 g

l gr Q,

._..,,o

._,y. _ _. j.

.=.

...1....

i z

.j..

UJ y

m 7-__.

i

.V

..u..

l

, y j

.i

)

b

.!. J J l o'_._.',T EST VALU ES '.....

,6' 7 i

'~7

____o._...

e g. g,0

..._. g. n p g n3rp yggug

._ 2 I) u 9 (,

. '{,..'..__

-. _. 1' _.

.I

_ p. __ _,....

m l.... _ _. : _ _. __.,

v...-l....,

.1

.y._..

y 3

4..

i....

4.

. =.........

... a.

...u

.a.

.i l

..1 e

i

.l.

s.

._.....,.2..

i.

. [.

..]..

i

.....___.o._.

.t s

..?.-

J.E. ;J..

%O% Ct= CEVSHit !G p:~.'j..T'.1 i

?

C._ ' _.. '..' ': __ J _Z.. "

I " 'STREIGTH FX VE r:T!C AL

.j

j ~ ~

..["..~

i,... :

.' L4AD. ( O' AIMLu '. STric l.

./

i i o.. _

l f*.lO 1

.4jO

/-

(.O

[

.......__.i.__....__. i S H E A R - ST R E N GT H...

._4

. i i

l i

i.

4

.i g

g.

l

_ {

C._0.!/. PRE _ S__S__!V_ E CRUSHNG STRENGTH T EGTG ' ( E:Eir ORMED CN ~7/19/3'2 (Dft4AM!C)

.u__

b/C9/ 76 ( STATIC )

4

/

j

~

FIGURE.1 i

35

Ry t

4 I

I:

' i. :

ij '

_.olo 30465 i

" l ' i, l. ;O' !i !

l j

N l((-l-lll__

I CA96 l

i l1 'l 1l

!l i

I A

h(4vv.v-/_v] b l

l

!t bh:N

'b

,iil ql 5l

. Ig.-

,)lill' l' l

,f l

ir,cA.s.s.

l I

l N

'I f 6Ef-T B i,

i l

y

_jI l

I ii li i

I,

m._.

'l

=

h

=

secTicW e

=

2AD!tJS g

'~

h I/8'I GAP TYP.

j ALL Acou 99 FIG. 2 TYPICAL ARRAMGEMEMT OF CRUSHABLE MATERIAL _ l j

4 gyg,3tt j

~.[

AIL Acouwp (T 1 &)

7 y:'e i

e--

i ij l

~

jj LA 9ALLE couWTv sTAfroJ N dcMMoWW6ALTN 6plGod c5 'T CHICAC,o lLLilJc16 i

{ E;f' T ! Cis J - A

  • .. - l.

.y 8.15.1-0 Rey, I 9/21/82 g

~

.r

~.:.'.!

l f

l _..'\\~

~. $ ~:: ';

~

..g.

,r u,

0 Id b$

5 o,)_

d

))

w 1-t i

.5 l%

{a 3

e 4 0 - - -- ;_ gl -

t rer -----)

o y

=

L.

_._ _ f, e.

.5-l w

1 g

.]

{

y

.$Y q

p

$ Y8 o

3 m> wy-lr y

s e

3 6

's>h 5 I

1.a c

f C

t E.

4 s6;p4 !{l ;hI i d

D a

t\\

.xe q Its W

J 4

i f.

-c j

N

=

t 5

as h yf.,

1 O

k e

3

  1. 4 Ye

}--

m/

x ;_)/

..,ig o i

s Ll a

,s.

s c

al

?e qs

-*, 4 a

1

-s s

y

8.15.1-0 Rev, I 9/21/82 l

rNm4 m-

,o-

, n ', %*,

s !v +:5._

s

~

,e s

-\\

i ou

[

i?

LeM

-fh' nuo r

s1 4

T i.ve s*

r".

.L 1

W %.v o:o*

va' T, VTx *

. f. a

\\

F**

Ae.s

~*

..,4., :.. h. e...

.2, y

.,, y

's; t *

... s g

j

.. :%. 6.%.. k' 2:.5.,.

.\\ j,,?.

..:'M

.t.

4..;.-

i w

e....:*,.:'; - @<.. mi1.::n,..c.y y M;..

....a..

y;r

'4... u::, %. :

\\

a.

Cjjy d

. l:,. "..

  1. 'fn,n $.+.~..?

... Yph.. l+E'i l4..4,v.i..R. *i: yir:'"

- y

. c..

..a.

.2: z.. :.y em..x 3

.; y,1$....- l2

r...i:. :. Y

'L,

m*a.

e+

-],) -

$ c, Q

5.

y$

' t.

~

i

.__DeT. Ait. JEsd m

f*4r*e CCLD ITA M-Figure 4 Restraint R-50 (Sheet 1 of 3) r.se_

m'.4<-a _

4 at ka'a usT n.sv<rou up 18

.g

/-

\\-

  • ~
. 48 s.6'h..

sy

\\ -we t see 1 messes-sv n

' e i eL7ss'.e%'

7 ll,7 7 % #,

~

/

w s

j Neo.'Hf mLL 1'

cowTa:

,6

\\

if4 m w.

d Pecsue Ie

\\k i l'. de.

y ses esct.v.s

,i,7.78#

N ".wi N

we.seca we is.149 i; sap:__

u g

c a,.w o'.w.

7,5

  • Lmau
  • Td

. ', d.

.... n

,;.,. }**"'

,.w 1,

.....w,

/.y,na, s.

g g a

2 I

< *iH)

K Y;.

,,.4

 % p a s.c.r.5.* wn

~

f' f.'ll [

y e <.t.,t d.i.

x

\\

'%;5,

~

a N

%,/

~

N a:

s e

4......>

6ECTroN 2-2 N (*

4,/

w y."'

-/

<psTas aeo.o. ova)

<<'b "

$y N

  • r Pigure 4 Restraint R-50 (Sheet 2 of 3)

io'

' roir wo

' 4 f p,,

.1

- r u i,se e s,.

r,a ao d

trd

..?~

..ig,2-6 c[,,,

\\'

.f %.'

O 4efergiewee a b

mas *

. [)

I I

i p1 g !

, X. ' '.,'

i ia.m

'g

,gN l

[J..pfEdme'>'E;l: y-

~ ' we or wem Ii%

l i

  • ?

l L

las' e t

-i 2+

s & Y 4.'

i,

.*.g 1..

,i i dLU.,

j 1

g si i

.q D,

.i, F D6 (A Hr) g g

T

- A4 lr 6 I

l g ".

'l l il

..f~.

7 5,*sVfeF

  • 4. 5 e

.w

=

11 l I 'l

/

I sj

/

/

F&3 we(4

, _scr$ j i

l

/ '..

mi i.

.0-410 e 4*

j..

'l

, ', - -- p^,,',

y{(

g 1

~e.pp.

o 4'ac%g

--)

.f i

l i

1

.roa.es,ta.

3.g e m y,

-,--8

-- ^

Tyr!'

l

..e-

' yf l

r't ara saae weies s.

G g,-

. 7G a

8y l

l

" ?'*1we*'r7,5.>

. J'2 '

sae.aev.re.4h

A +$,2. %.. G... 'J W 0*? 'A"l7%/.e.

(

I

..g t

U.. ::..

Secrtou 12

,2..

v.=. vu.u M,e/~ SecttaN A*A a <.t.<r

<ra.. ~,-

+.:.:: r;.,,

~,,..
'

.. ~ -

..n

-,v..........

.. p l

1 8

t l

r s

l Figure 4 Restraint R-50 (Sheet 3 of 3)

I i

mm w D*

I g (A

  • M p*

t T' j

  • "' H a

=

g O

q 1

j i

m sv'w o i

p(-

Q np<.

r

)NuHsmw u

f 7

i 1.

w

\\.I.0) '

[-

i I ',

l,

  • I 1

,i y l.g

~

    • e +

7 _ :. Ki-1 g

~

l t

"o e

~l e-J 4

2 h

. oinw

.s'.

3 ci 2.g t

e a

t~l q

y.. )

. s

-l 1

2 8

,i 1'.s I. ?.

f W2

)

.lc.y' '

F

,3Q..

ll.

Rf 7

4J o

M t

s.

n1 c

, ^2 i..

t i

l at i'

l re

>6 Xp g' te sh eS R(

T:i C

J m

5 W

8 1

U 7

e lit.

r g

l u

j g

i m,

.\\ r h.

mr F

o.

4[

g i

,i J

h,

il g
  • li 6!

ii. i :

i ! g i AI

  • o k

e &

m_-

N a

l h

t

.f j

3 i.

'a AI jy3

.ii w

l ll.

ij i w

.I i

I%

[

., 3 S

35' 4" l

n t 4'- F 3 '

.;- r.

I

+

,6

  • 0-i g

l i

l 1

i L

L._

fp ]: RPW-T l l l

ex se ato l

1

' Y-&,

T\\N

~

i

. D. 69dd-$h,. l.

. [g)%/'

bcou, r asme g

i.,

4 l

l1 i.

PiFA_

.l i4 A Wr"M i

I MT7 s.

w s-i g

\\

g.g

.l g

y

'l W)

.C*

i I t

,$ {

k

_ s I

P l

g i

l

)

I I

j y T r7" T

a@

1 r

.i..

l

_ ri A s f-d__..'

I

. (([

[t o

'l I

% \\,

~

l

!I i

N, i

v.

I I

/

'l m

Tm 3 stt TDisic%' EMBComrar

~ ~L 7tE MP d e:-r:c E DWG s-g?f

, Qf

'~'L-(s.998;

),4 y

..- -..$'* f D -~ 7

~

SECTION 5-8 3/8 -

l'-0" u

o Figure 5 Restraint RFW-8 (Sheet 2 of 2)

8.15.1- 0 REV.I 9/21/02 fi fr

=

--=

=_

X

?

I 0 F(t) l l.

X4 m

M (a )

PLAN VIEW p

7777 RING

,1, _ GAP 11 O

d o

c b

d f

g a

a m

h erg (b) SECTION X-X

' FIGURE 6 MODEL OF PIPE AND RESTRAINT

m*HU*~ o 1

r eQ<o

o. N N W D "

$ mN ZH~

>lH U3m>

8 g

5 0

0 2

0 g

2 8

4 2

g 1

30 N

R MS OE CLK t r DC I,\\

EU ND I,i 1q I

I\\

2 LC :G 1

F

\\i I

\\

0 NL

/

[-,'.\\.

\\'1' I

S

/

ES

\\

O

\\'

4 L

\\s\\,

2 C

i i

0/

/

/*

P A

G

\\

I,\\'

\\

/

)

\\

2 N

\\

O

\\

0 IT C

IR Y

~

)

F T

~

~

I C

C O

O L

E N

E 6

S

(

V 1

(

0 E

j 2

~

Pigs

.~

E 5

P M

I R

s T

R

^

2 O

1 F

0 5D E

L S

E l

N Y

~

O

~

E P

PI s,s

/

8 S

P 0

E 0

R

/.

F f:*y O

/

Y

/'l R

4 O

/

0

/'

T 0

/

l/

S

/

</

I H

.? !l,/

7E i

.M GI IFT 6

4 5

2 1

i" sZwEdcJa5 o m*

,)

l l

,\\l ll

1 a = ~ m 7o mm<- "

oNw~x$

". 8my z"

>F M o3w>

0 0

0 0

0 2

0 8

2 0

4 1

5 2

1 0

B T N

D LE lY ELO i

i.

A S

\\

8 HT

. 4,', i T

SR UA 1'.1, 0

\\

RT

\\.;

[

CS

[

.\\

3 6

SE 1'.s~

I -

G S

N O

4 L

',i't^

R 2

C /

r'V f

0 P

AG

)

s

.\\

N i

f O

TI 3

C 0,

I R

Y F

T I

i C

)

I O

T L

~

E C

I

~

V E

W G

E S

(

1 P

(

0 h

2 PI

/

E 3

M I

R 6

T E

R P

2 O

I P

1 F

0 S

E D

S L

E N

lY O

P

/

E 0

S P

I 0

E P

\\

0 R

F

,, l O

/ / /l/

Y R

/

4

/,/,/

O 0

T-0 S-J

/

l,!

I i:/:*'

H

.i !l/

8 E lI M

G I IF T 5

4 s

2 1

j szyEWO;Qe o

~*

1

,1

,\\'

.;' i 1;i

ll I

I

m + HU* 7 1

M D*<

a

~

(

.OygN I wf~

W>

DNhPN=

J

)

0 0

8 s

0 0

0 8

s 0

- 2 C

4 5

a 1

se s

eae 4

2e

\\

i

)

G 5

N N

2 O

I e

I C

1 T

L

\\g C

TlE

\\

I AINY R

)

F RR

/

TO c

O SJ EA

,v e

E N

RM

,\\'

t S

(

e(

e

.E G

R M

\\,

OS M

I R

CEL

  • .\\ -

T TK

,\\s*T R

C a

O U

3 INY L

t F

R AJs e

T #

L R

ST=

A S

SG E

TI E

EE S

S RL EI RI N

N O

L O

C G

P P

\\s N

\\'

RI e

S A

e E

G i

\\,

j/

s R

.\\

\\

F

/

O

,*/lo Y

,/

R

/

4

/

O e

/

T e

S

,' t I

! /

H I

l I

C gl!

9E EO I

'I,

.M L

PIE G I PV I

T F

6 4

5 2

1

~*ZH~

zyyO5 O

5 iI l!ij i!

il' Ii!il!

l

!]!!ll!i

\\

a*wU'sIo o

1 oD<*

g

(

eNMWDN

~. OgN I"*

W>

)

0 0

0 0

0 0

0 0

2 C

4 5

1 50 8

20 4

20 G

NI DL

)

T E N

INl Y

O A

I RR

- 2 TC TO 0

SJ IR g

EA RM

\\

F

[

\\

\\.

H d'\\

)

T i

C I

k. '.\\'.

E W

6 S

(

1

(

0 0

. E 6

  • f M

S k

I R

D M

L T

/

R O

[

E l

CS 2

O Y

E 1

F T

TL I

l

/

0 Nf 4K 9

A L l C S

L A U E

R E

A RB b

S TI T

S ST SG

.\\

N O

L EI EE

\\

C RI RL i,

S O

N

\\

G P

[

A

\\

I 8

S P

N R

0 E

G

, $'g*

0 R

\\'

/

Ti*

\\

F e'

O

/ l S

Y E

R P

4 j/

I 0

O P

/r T

0 S

I ol H

T

[

I 0

IC t*I.

1 E

O I

M EL

,l

,l P

IE G

I I

PV F T 6

4 5

1

- NH ~ pzWE8 o

yw 1

1 I

1

ll jl1]11

,ll!

,iijl l!

i

12.

8

/

3,,

see.

8.

4 n

a IPl.

TS H

IN AL YlELDS O

8.

5se.

N

,...f.... ~ ~'

y F

GAP Z

m Z

CLOSES v'

s.

W E

./

W

/

\\[

. RESTRAINT O.

MAJOR YlEL[ilNG F

j PIPE 2ee.

H 4

g

- s O

l h

VELOCITY n'

\\

O a

y

/

\\

W PIPE 5 RING S

\\

i h,

j 2.

\\

lee.

\\

\\...,

/

\\.

I'

.s

'O 'd CO

. ed, i

.e7

.se

.si

.e2

.es

.e4

.es

\\

Dr*

l TIME (SEC.)

g S

M i

l FIG. ll o

TIME HISTORY OF RESPONSE FOR RFW-0 (NO FRICTION)

\\

't l

l

a ' ~ o. Yo o

~.

o3. "

eh s0

" d1Ws

  • Z U

>F w OOd>

h 8

0 0

0 0

0 0

0 0

0 0

0 0

8 5

4 s

2 0

1 7

0

.,'. \\

GN

\\

ID b '.'.,

L TE NlY I

0 t

RR TO SJ

,s\\

)

EA N

RM O

I N

TC s'

6 I

R 0

F

/

\\

H T

)

T

'. \\

I R

C W

D ATL E

(

E Sl 4 S Y

0 0

y

(

/

PO E

W IPT M

F

~

I R

w T

R

'v O

5 F

0 E

S N

S O

G P

N I

S S

R 2

E DL 0

R l

/j v

E Y

F TNY O

AIL S

~

L E

S RA Y

TI S

/'j E

R ST PO P

EI AL I

1 O

/P 0

T N

RI GC S

I Y

/

H T

CI

/'f,/

2 E 1

EO L

M IE

.l GI P

PV IFT 2

0 8

e 4

2 1

1 n*h pZi gg3$ 5 d

i lt

8.15.1-0 o

Rev. 1 9/21/82 RESTRAINT R-52 GRP-2.911' (NO FRICTION)

TIME.0286 FIG 13a SUPERIMPOSED DEFORMED AND UNDEFORMED CONFIGURATIONS

\\

\\

\\

\\

\\

1 I

I

/

/

\\

/

\\'s l

4 i

f t

8.15.1-0 Rev. 0 9/21/:

~.,

RESTRRINT R-52 GRP-2.911' (NO FRICTION)

TIME =.0286 1 FIG.13b ENLARGEMENT OF DEFORMED STATE

\\

\\

\\\\

/

\\

/

/

/

c'- - a c'

c

\\

/

b'q p b

/

_ 3.00 in.

I l

t l

31

8.15.1-0 Rev. 1 9/21/82 RESTRAINT R-52 GAP-2.911' (VITH FRICTION)

TIME.0282 FIG.14 0 SUPERIMPOSED DEFORMED AND UNDEFORMED CONFIGURATIONS

's, I

ll l

32 l

m 8.15.1-0 Rev. 1 9/21/82 RESTRAINT R-32 GAP-2.911*

(VITH FRICTION)

TIME.0202

  • FIG.14 b ENLARGEMENT OF DEFORMED STATE 1

I

/

/

/

\\

0,0' C,C' j

-~,

I I

l :.

Jt 3.OOin. _ _ _

33

8.15.1-0 Rev 1 9/21/E' o

~

RESTRAINT R-50 GAP-1.55+*

(NO FRICTION)

TIME.0200 FIG.15 o SUPERIMPOSED DEFORMED AND UNDEFORMED CONFIGURATIONS p W8 em p

/

/

\\

/

\\

/

\\

/

\\

/

\\

\\

l 1

l l

1 l

8 I

I I

I I

\\

l

\\

/

\\

/

\\

/

s

/

\\

s

- 2

\\

l/ N "yd

\\

f f

I

\\

/

\\

fI l

\\

/

I I

\\

2

/.

1

/

l

\\

\\

/

l

/

\\

l I

f

\\

l I

\\

/

I

\\

r f

l

/

l

\\

l

/

I

\\

/

I y

/

I g

/

l g

/

I

\\

l I

I

\\

l

\\

1

/

\\

I

/

\\

/

I

/

I

/

I

/

I

/

I

/

l

/

g I

/

l i

p

/

I

/

I

/

I I

34

/

s

^

~

-?.'

8.15.1-0 Rev. 1 9/21/82 RESTRAINT R-50 GRP-1.554' (NO FRICTION)

TIME.0208 FIG.15 b ENLARGEMENT OF DEFORMED STATE I

I I

I

\\

\\

\\

\\

(

\\

\\

\\

\\

\\

c' c

l,i >+=y

-l I

I I

f I

/ l I

(

/

I I

/

1 J

/

l

/

3.00 in.

/

I

/

I

/

I

/

/

l

/

1

/

I

/

I

/

I

/

l

/

3s

~

8.15.1-0 Rev. 1 9/21/82 RESTRRINT R-EB GRP-1.EE4' (VITH FRICTION)

TIME.0196 FIG.16a SUPERIMPOSED DEFORMED AND UNDEFORMED CONFIGURATIONS W

/

/

\\

/

\\

f

/

S

\\

1 1

1 I

I I

I I

i g

I i

\\

/

t I

\\

\\

, r' g

e J

\\

/

w.

r.

\\

/

l

\\

\\

g l

/

\\

g

/

g

. g

\\

/

\\

/

I

\\

1

/

_A

\\

/

I

\\

/

I

\\

/

8

\\

/

g

\\

/

\\

g

/

\\

I

/

\\

I

\\

/

/

I

\\

/

I

\\

/

I

\\

\\

/

g

\\

/

g

/

\\

I

/

\\

3

\\

/

/

I

\\

/

I

\\

/

I

/

l l

8 1

/

I

/

3

/

/

I

/

8

/

I

/

g

/

36 I

I

o

'I 8.15.1-0 POV. 1 9/21/82 RESTRRINT R-50 GAP-1.EE4' (VITH FRICTION)

TIME.019e FIG.16b ENLARGEMENT OF DEFORMED STATE I

I i

i 1

1

\\

\\

\\

O

\\

\\

\\

N

/.

N N

,g Y

\\

/,

\\

/

\\

m.,.

/

/

\\

o,o' I

b,b' c, c'

/

}

\\

/

i 1

l

\\

g C

\\

I

/

1

/

__ __1

/

I 3.00 in.

j

/

I

/

I

/

1

/

I

./

I

/

/

I

/

I

/

I

/

I 37 l

8.15.1-0 Rev. 1 9/21/82 RESTRAINT RFW-8 GRP-2.454' (NO FRICTION)

TIME.061 FIG.17 a SUPERIMPOSED DEFORMED AND UNDEFORMED CONFIGURATIONS e

M g

p

/

\\

f

/

\\.

/

\\

/

/

\\

/

/

I

/

\\

/

l

/

I

/

I

/

I I

I I

I I

i I

/

i o

\\

1

/

/

\\

/

\\

/

f s'

/

M(T w

1 I

8

/

l p'

I t

l s'

I

/

l e'

l l

/

I l

\\

s' I

s' I

/

l

,/

I t

E l

I l

I I

I I

i i

1 38

8.15.1-0 Rev. 1 9/21/82 REhTRAINT RFV-8 GRP-2.454' (NO FRICTION)

TIME =.061 FIG.17 b ENLARGEMENT OF DEFORMED STATE

~

\\

/

\\

/

/

\\

/

\\

/

O

\\

\\

/

\\

/

\\

/

I

/

I

/

I I

I I

I I

/

l

/

1

/

\\

/

h

/

/

\\

/

\\

~,

\\

f s

>~ L' b'7 C'

C N

~=#==..-

  1. 1 c

G I

b

,/

e I

8 f

/

l 1

A s'

I

,/

5.38 in.

8 I

I I

I I

l I

I I

I

.I 39

,,-.o;.

8.15.1-0 Rev. 1 9/21/82 RESTRAINT RFV-8 GAP-2.454' (WITH FRICTION) 11ME.0605 FIG.18 0 SUPERIMPOSED DEFORMED AND UNDEFORMED CONFIGURATIONS c118 p

k g

/

\\

/

\\

/

\\

\\

/

\\

/

\\

/

/

\\

/

\\

/

I I

l I

l 8

1 1

1 1

/

\\

/

/

\\

/

\\

/

/

/

/

1 i

/

l

/

^'

p' q4

/

I

,/

I

/

l

,/

I

/

8

,/

I

/

D

,/

I

/

I

./

I

/

/

I I

i I

I 1

D I

I 40

)

8.15.1-0 t

Rev. 1 9/21/82

.,s RESTRAINT RFW-8 GAP-2.454' (VITH FRICTION)

TIME.0605 FIG. IB b ENLARGEMENT OF DEFORMED STATE s 's N

s s

/

/

\\

/

\\

/

\\

/

\\

/

\\

/

t

/

/

\\

/

\\

/

I I

i l

I I

I I

I

/

1

/

\\

/

\\

/

\\

/

\\

/

N

/

/

~

Y

/

N J

,s

~

g l

1 e'

a,o'

/

b, b' /

c, c' s

s 1

I f

~"7 -4 e'

5.38 in.

I

=

g 8

l f

I i

i I

'41

'g

8.15.1-0 P.ev. 1

-e 9/21/82 P(t)

V(t) r b"4

- CRUSHABLE g

MATERIAL I.

BUCKLING OF COMP. LEG h

h 100.0 1.0 V

P G

80.0 9:

O.8 5

/A STATIC FOR MILD, STEEL ON_ MILD STEEL,(REEL)

  • o I

/

60.0 O.6 Jgqq-fSLKML ON_Mit-tN{t,(ni 6 f

I h 1

h lf.l Y

}l 8

0.4 j --

40.0,

/'

V(t)

/

/./

l 20.0 O.2 g

4

-.. / >

). -

J \\.l O.OO5 0.010 0.015 0.020 0.025 0.030 TIME (SEC.)

FIG.19 TIME VARIATION OF SHEAR AND NORMAL FORCE AND THEIR RATIO-RING BEARING PLATE INTERFACE R-32 WITH FRICTION 42

0.15.1-0

.nev. 1 9/21/82 P(t) o

=- V(t) 5 h

L j' CRUSHABLE MATERIAL l.O 250.0 0.8 200.0 g

// STATIC,FOR MILD S"" EEL /\\0,N MILD STE_EL

[

\\' /i

[

\\

u v

i

\\p

/

5 15 0.0 g

0.6 di stivi FOR Mitu idi ttLT4 ) j \\

/Mi_D siEEL i

G/

\\/

Pr s

I P(t)]

\\

4 8

o p

BUCKLIN 3 OF i

4 COMP. LEG 100.0 g

E O.4 j

I E

/s

=

j.y

-V/ P

/

D. g

,\\

50.0 O.2 l

\\

/'\\

ls I

I

'g '/

\\

\\\\

\\

s./\\.

V(t) s,f s g

=

0.0 0.005 ODIO O.015 0.020 0.025 TIME (SEC.)

l l

FIG. 20 TIME VARIATION OF SHEAR AND NORMAL FORCE AND THEIR RATIO - RING AND BEARING PLATE INTERFACE R-50 WITH FRICTION t

l 1

43

l'***

0.15,1-0

~

Pev. 1

~

l 9/21/02 e

L 700 b

=- V(t)

W j

600 CF:USHABLE MATERIAL

/

l

/

500 _

1.0

/

E

/

5

/

w M

/

/

400 0.8 M STATIC FOR MILD _ STEEL ON MILD STEEL _,

/

g

)

x s'

S t

i-x 0.6

// SL4 DING-FOR44LD-ETEEL-ON4LO,/ STEE4_

300 [

~

/

//

200

/

o.4

(

l

-V/ P

.I l00 02 I

/\\.\\

l

/

s

\\

/ v(t N.N ~.

)

/

g,

J'

aoi o.02 0.03 0 04 005 0 06 TIME (SEC.)

FIG. 21 TIME VARIATION OF SHEAR AND, NORMAL FORCE AND THEIR RATIO-RING AND BEARING PLATE INTERFACE RFW - 8 WITH FRICTION 44 Final

- - _ _ _ _ _ _ _ _ _ _ _ _ - _