ML20205L830

From kanterella
Jump to navigation Jump to search
Administrative Technical Requirements App B (Amend 26) LaSalle Unit 2 Cycle 8 COLR & Reload Transient Analysis Results, for Mar 1999
ML20205L830
Person / Time
Site: LaSalle  Constellation icon.png
Issue date: 03/31/1999
From:
COMMONWEALTH EDISON CO.
To:
Shared Package
ML20205L820 List:
References
NUDOCS 9904140311
Download: ML20205L830 (33)


Text

{{#Wiki_filter:. Administrative Technical Requirements Appendix B (Amendment 26) LaSalle Unit 2 Cycle 8 Core Ope.; ting Limits Report and Reload Transient Analysis Results March 1999 ~' 9904140311 990408 POR ADOCK 0500G373 1-P POR i.e

Administrative Technical Requirements - Appendix B Section 1 LaSalle Unit 2 Cycle 8 Core Operating Limits Report March 1999 'I 4

\\ Administrativo Technical Rcquircm:nts - App ndix B L2C8 Core Operating Limits Report issuance of Changes Summary Affected Affected Summary of Changes Date Section Pages 3/99 All All i Original issue (Cycle 8) 8 l } tasane unit 2 cycle 8 i March 1999

AdminiStrativa TcChnical Requirem:nts - App:ndix B L2C8 Core Operating Limits Report Table of Contents References. 111 1. Average Planar Linear Heat Generation Rate (3/4.2.1). 1-1 1.1 Tech Spec Reference. 1-1 1.2 Description. 1-1 2. Minimum Critical Power Ratio (3/4.2.3).. 21 2.1 Tech Spec Reference. 2-1 2.2 Description. 2-1 3. Linear Heat Generation Rate (3/4.2.4). 3-1 3.1 Tech Spec Reference. 3-1 3.2 Description. 3-1 4. Control Rod Withdrawal Block Instrumentation (3/4.3.6).. 4-1 4.1 Tech Spec Reference. 4-1 4.2 Description. 4-1 5-1 5. Allowed Modes of Operation (B 3/4.2.3). 6. Traversing in-Core Probe System (3/4.2.1,3/4.2.3,3/4.2.4).. 61 6.1 Tech Spec Reference. 6-1 6.2 Description. 6-1 6.3 Bases. 6-1 LaSalle Unit 2 Cycle 8 ii March 1999

Administrativo TcChniCal R quirom:nts - Appendix B l L2C8 Core Operating Limits Report 1 References 1. Commonwealth Edison Company Docket No. 50-374, LaSalle County Station, Unit 2 Facility Operating s License. License No. NPF-18. 3 1 2. Letter from D. M. Crutchfield to All Power Reactor Licensees and Applicants, Generic Letter 88-16; Concerning the Removal of Cycle-Specific Parameter Limits from Tech Specs, dated October 4,1988. 3. Neutronics Licensina Report for LaSalle Unit 2 Cycle 8, NDIT 960103, Revision 2, March,1999. 4. LaSalle Unit 2 Cycle 8 Reload Analysis, EMF-96-125, Revision 2, March,1999. 5. LaSalle Unit 2 Cvele 8 Plant Transient Analysis, EHF-96-124(P). Rev. 3, March,1999. 6. LOCA Break Spectrum Analysis for LaSalle Units 1 and 2, EMF-2174(P), Mar::h 1999. 7. LaSalle LOCA-ECCS Analysis MAPLHGR Limits for ATRIUM-9B fuel. EMF-2175(P), March 1999. 8. LaSalle Extended Operatina Domain (EOD and Eauipment Out of Service (EOOS) Safety Analysis for ATRIUM-9B Fuel. EMF-95-205(P), Rev. 2, June 1996. 9. ARTS Improvement Procram analysis for LaSalle County Station Units 1 and 2. NEDC-31531P, General Electric Company, December 1993. 10. j_attice-Dependent MAPLHGR Report for LaSalle County Station Unit 2 Reload 6 Cycle 7. 24A5162AA, Revision 0, December 1994. (MAPLHGR limits for reloaded GE fuel initially loaded in Cycle 7). 11. Lattice-Dependent MAPLHGR Report for LaSalle County Station Unit 2 Reload 5 Cvele 6,23A7209AA, Revision 1, June,1993. (MAPLHCR limits for reloaded GE fuel initially loaded in Cycle 6). 12. Errata and Addenda Sheet to NEDC-31510P. originally issued March,1988. addenda issued October 1991, (MAPLHGR limits for reloaded GE fuel initinfly loaded in Cycle 5). 13. General Electric Standard Application for Reactor Fuel (GESTAR), NEDE-24011-P-A-13 August 1996. 14. LaSalle County Station, Units 1 and 2, SAFER /GESTR LOCA Loss-of-Coolant-Accident Analvris, NEDC-32258P, General Electric Company, October 1993. 15. Evaluation of a Postulated Slow Turbine Control Valve Closure Event for LaSalle County Station. Units 1 and 2. GE-NE-187-13-0792, Revision 2 July 1998. 16. ARTS Improvement Proaram Analysis for LaSalle County Nuclear Station. Units 1 and 2. Removal of Direct Scram Bypassed Limits, NEDC 31531P, Supplement 1, General Electric Company, June 1998. 17. Revised MAPLHGR Values for LaSalle 2 - Rev.1, WHC:99-008, March 16,1999. 18. Updated Transient Analysis: Abnormal Start-up of an idle Recirculation Loop for I aSalle County Nuclear Station Units 1 and 2. B33-00296-03P, March 1998. 19. LaSalle Unit 2 Cvele 8 AbnormalIdle Recirculation Looo Startup Analysis, DEG:99:070, D. Garber to R. Chin, March 8,1999. Additional Methodology for L2C8 analyses can be found in Section 6.6.A.6.b of the Technical Specification. 20. LaSa'le Unit 2 Cycle 8 Principal Transient Analysis Parameter.s, EMF-95-167, Rev. 3 September 1998. LaSalle Unit 2 Cycle 8 iii March 1999

Administrative Technical Requirements - Appandix B L2C8 Core Operating Limits' Report 21. TIP Symmetry Testina, DEG:99.085, D.Garber to R. Chin, March 23,1999. 22. Use of SU3TIP Methodolocy with TIP Symmetry Testina'Above 50 Percent Power. DEG:99:087, D. Garber to ) 1 R. Chin, March 24,1999 l LaSalle Unit 2 Cycle 8 iv March 1999 L

Administrative Technical Requirements - Appendix B L2C8 Core Operating Limits Report 1. Average Planar Linear Heat Generation Rate (APLHGR) (3/4.2.1) 1,1 Tech Spec

Reference:

Tech Spec 3.2.1 1.2

== Description:== 1.2.1 GE Fuel The MAPLHGR limit is determined from Table 1,1, and is either MAPLHGRp or MAPLHGR,, whichever is lower at any given power, flow condition. No thermal limit monitoring is required below 25% power, However, if official monitoring is desired, the lattice type MAPLHGR limits as determined froin Table 1.2 may be used, and multiplied by the appropriate MAPFACp values in Figures 1.2-1 or 1.2-2 or the MAPFAC, values in Figure 1.2-3 whichever is more limiting. Table 1.1 Inoperable Equipment

MAPLHGR, MAPLHGR, For All Power Levels For all Flow Ranges None Lattice-Type MAPLHGR hmit per Table Lattice-Type MAPLHGR hmit per Table 1.2, multiplied by MAPFACp from Figure 1.2, multipled by MAPFAC, from Figure 1.2-1 1.2-3 Feedwater Heaters Out of Service Lattice-Type MAPLHGR hmit per Table Lattice-Type MAPLNGR hmit per Table 1.2, multiphed by MAPFACp from Figure 1.2, multiphed by MAPFAC, from Figure 1.2-1 1.2-3 Single RR Loop Lattice-Type MAPLHGR hmet per Table Lattice-Type MAPLHGR hmit per Table 1.2, multiplied by MAPFACp from Figure 1.2, multiphed by MAPFAC, from Figure 1.2 1 1.2-3 Idle Loop Startup Lattice-Type MAPLHGR hmit per Table Lattice-Type MAPLHGR hmit per Table 1.2, multiplied by MAPFACp from Figure 1.2, muluphed by MAPFAC, of 0 40, for 1.2-1 idle Loop Startup (ILS) from Figure 1.2-3 Turbine Bypass Valves Out of Service Lattice-Type MAPLHGR kmit per Table Lattice-Type MAPLHGR hmit per Table 1.2, multiphed by MAPFACp from Figure 1.2, multiplied by MAPFAC, from Figure 1.2-3 1.2-1 EOC Recirculation Pump Tnp OOS Lattice Type MAPLHGR hmst per Table Lattice-Type MAPLHGR hmet per Table 1.2, n.ultiplied by MAPFACp from Figure 1.2, multipled by MAPFAC, from Figure

?-1 1.2-3 TCV Slow Closure /EOC Recirculation i.attice-Type MAPLHGR hmit per Table Lattice-Type MAPLHGR hmit per Pump Trip OOS 1.2, multiplied by MAPFACp from Figure 1.2, multiplied by MAPFAC, from i,.re 1.2 2 1.2-3 TGV Slow Closure /EOC Recirculation Lattice-Type MAPLHGR hmit per Table Lattice-Type MAPLHGR hmit per Table Pump Trip OOSI 1.2, multiplied by MAPFACp from Figure 1.2, multiphed by MAPFAC, from Figure 1.2-2 1.2-3 Feedwater Heaters OOS lurbine Bypass Valves Lattice-Type MAPLHGR hmit per Table Lattice-Type MAPLHGR hmit per Table OOS/Feedwater Heaters OOS 1.2, multiplied by MAPFACp from Figure 1.2, multiplied by MAPFAC, from Figure 1.2-1 1.2-3 EOC Recirculation Pump Tnp OOS/ Lattice-Type MAPLHGR hmit per Table Lattice-Type MAPLHGR hmit per Table Feedwater Heaters OOS 1.2, multiphed by MAPFACp from Figure 1.2, muitiphed by MAPFAC, from Figure 1.2-1 1.2-3 Table 1.2 Table for Lattice-Type MAPLHGR Limits Cycle First inserted Number of Bundles Fuel Type 1-1 GE98-P8CWB302-9GZ-100M-150 T 5 93 1-2 GE9B-P8CWB300-9GZ-100M-150-T 5 8 1-3 GE9B P8CWB313-9GZ-100M-150-CECO 6 80 1-4 GE9B-P8CWD316-9GZ-100M-150-CECO 6 151 1-5 GE98-P6CWB322-11GZ-100M-150-CECO 7 96 1-6 GE9B-P8CWB320-9GZ-100M-150-CECO 7 80 (References 3 and 4) LaSalle Unit 2 Cycle 8 1-1 March 1.999

Administrative Technical Requirements - Appendix B L2C8 Core Operating Limits Report 1.2.2 SPC Fuel The MAPLHGR Limit is the Lattice-Type MAPLHGR Limit. The. Lattice-Type Maximum Average Planar Linear Heat Generation Rate (MAPLHGR) limits are ~ determined from the table given below; Fuel Type Bundle Type Cycle First inserted Number of Bundles SPCA9-381E-13GZ7-80M 14 8 128 SPCA9-3848-11GZ6-80M 15 8 128 (Reference 4) Planar Average Exposure MAPLHGR (kW/ft) (GWd/MTU) (all Siemens fuel types) 0.0 13.5 20.0 13.5 61.1 9.39 (Reference 7) For single loop operation (or idle Loop Startup), the MAPLHGR multiplier for SPC fuel is 0.90. (References 6 and 7) LaSalle Unit 2 Cycle 8 1-2 March 1999

Administrative Technical Requirements - Appendix B L2C8 Core Operating Limits Report Maximum Average Planar Linear Heat Generation Rate (MAPLHGR) vs.- Average Planar Exposure for Fuei Type GE9B-P8CWB302-9GZ-100M-150-T (Reference 12) Table 1-1 Bundle Type 10 Exposure ExposL*9 fMWD/ST) (MWD /MT) Lattice-Tvoe MAPLHGR (kW/ft) P8CWLO71 P8CWL326 P8CWL337 P8CWL326 P8CWLO71 9GE SG5.0/4G4.0 9G4.0 9G4.0 nog 0 0 12.74 11.99 11.38 12.04 12.74 200 220.5 12.67 12.07 11.42 12.11 12.67 1000 1102.3 12.48 12.21 11.53' 12.27 12.48 2000 2204.6 12.42 12.41 11.74 12.48 12.42 3000 3306.9 12.41 12.58 11.99 12.63 12.41 4000 4409.2 12.44 12.72 12.26 12.76 12.44 5000 5511.6 12.46 12.85 12.46 12.89 12.46 6000 6613.9 12.49 12.97 12.65 13.03 12.49 7000 7716.2 12.51 13.08 12.86 13.17 12.51 8000 8818.5 12.54 13.19 13.07 13.31 12.54 9000 9920.8 12.55 13.31 13.20 13.43 12.55 10000 11023.1 12.57 13.41 13.31 13.51 12.57 12500 13778.9 12.41 13.49 13.34 13.51 12.41 15000 16534.7 12.04 13.19 13.05 13.19 12.04 20000 22046.2 11.27 12.55 12.47 12.55 11.27 25000 27557.8 10.49 11.85 11.88 11.85 10.49 35000 38580.9 8.95 10.38 10.56 10.38 8.95 45000 49604.0 6.15 9.05 9.18 9.06 6.15 46850 51643.3 5.21 5.21 5.86 51790 57088.7 52120 57452.5 5.80 5.80 52130 57463.5 Lattice Type 25 22 23 24 21 Lattice No. 887 879 880 882 733 LaSalle Unit 2 Cycle 8 1-3 March 1999

Administrative Technical Requirements - Appendix B L2C8 Core Operating Limits Report Maximum Average Planar Linear Heat Generation Rate (MAPLHGR) vs. Average Planar E"posure for Fuel Type GE98-P8CWB300-9GZ-100M-150-T (Reference 12) Table 1-2 Bundle Type 11 Exposure Exposure [ MWD /ST) (MWD /MT) Lattice-Type MAPLHGR (kW,ft) P8CWLO71 P8CWL320 P8CWL338 P8CWL338 P8CWL320 P8CWLO71 9GE 4G4.0/3G3.0 7G3.0 2G4.0/7G3.0 7G3.0 NOG 0 0 12.74 12.41 11.89 11.39 12.48 12.74 200 220.5 12.67 12.47 11.96 11.47 12.49 12.67 1000 1102.3 12.48 12.60 12.12 11.65 12.55 12.48 2000 2204.6 12.42 12.71 12.29 11.90 12.64 12.42 3000 3306.9 12.41 12.82 12.43 12.17 12.73 12.41 4000 4409.2 12.44 12.92 12.51 12.43 12.82 12.44 5000 5511.6 12.46 13.03 12.58 12.54 12.90 12.46 6000 6613.9 12.49 13.13 12.65 12.63 12.98 12.49 7000 7716.2 12.51 13.17 12.71 12.69 13.04 12.51 8000 8818.5 12.54 13.16 12.75 12.73 13.08 12.54 9000 9920.8 12.55 13 14 12.78 12.76 13.11 12.55 10000 11023.1 12.57 13.13 12.80 12.80 13.14 12.57 12500 13778.9 12.41 13.10 12.72 12.71 13.11 12.41 15000 16534.7 12.04 12.80 12.41 12.41 12.81 12.04 20000 22046.2 11.27 12.21 11.82 11.81 12.22 11.27 25000 27557.8 10.49 11.63 11.23 11.22 11.64 10.49 35000 38580.9 8.95 10.29 10.04 10.03 10.29 8.95 45000 49604.0 6.15 8.99 8.31 8.30 9.00 6.15 46850 51643.3 5.21 5.21 5.84 5.83 49960 55071'.5 5.88 51240 56482.4 5.86 51290 56537.5 Lattice Type 30 26 27 28 29 21 Lattice No. 1204 1200 1201 1202 1203 733 LaSalle unit 2 Cycle 8 1-4 March 1999 w-

1 Administrative Technical Requirements - Appendix B L2C8 Core Operating Limits Report Maximum Average Planar Linear Heat Generation Rate (MAPLHGR) vs. Average Planar Exposure for Fuel Type GE9B-P8CWB313-9GZ-100M-150-CECO (Reference 11) Table 1-3 Bundle Type 12 Exposure Exposure [ MWD /ST) (MWD /MT) Lattice-Type MAPLHGR (kW/ft) P8CWLO71 P8CWL339 P8CWL350 P8CWL350 P8CWL339 P8CWLO71 9GE 7G4.0 2G4.0/5G3.0 4G4.0/5G3.0 2G4.0/5G3.0 NOG 0 0 12.74 12.34 11.79 11.32 12.35 12.74 200 220.5 12.67 12.39 11.84 11.40 12.40 12.67 1000 1102.3 12.48 12.49 11.96 11.55 12.52 12.48 2000 2204.6 12.42 12.63 12.12 11.73 12.68 12.42 3000 3306.9 12.41 12.74 12.28 11.92 12.83 12.41 4000 4409.2 12.44 12.85 12.40 12.11 12.96 12.44 5000 5511.6 12.46 12.97 12.49 12.27 13M0 12.46 6000 6613.9 12.49 13.10 12.58 12.39 13.19 12.49 7000 7716.2 12.51 13.22 12.67 12.52 13.29 12.51 8000 8818.5 12.54 13.34 12.76 12.65 13.37 12.54 9000 9920.8 12.55 13.38 12.84 12.78 13.45 12.55 10000 11023.1 12.57 13.38 12.91 12.89 13.41 12.57 12500 13778.9 12.41 13.36 12.85 12.85 13.36 12.41 15000 16534.7 12.04 13.01 12.56 12.56 13.01 12.04 20000 22046.2 11.27 12.34 11.98 11.97 12.33 11.27 25000 27557.8 10.49 11.69 11.38 11.37 11.69 10.49 35000 38580.9 8.95 10.46 10.12 10.11 10.46 8.95 45000 49604.0 6.15 9.12 8.53 8.50 9.13 6.15 5.21 46850 51643.3 5.21 5.84 50360 55512.4 50390 55545.5 5.85 51860 57165.9 5.84 5.84 51880 57187.9 Lattice Type 9 1 2 3 8 3i Lattice No. 1581 1577 1578 1579 1580 733 LaSalle Unit 2 Cycle 8 1-5 March 1999

Administrative Technical Requirements - Appendix B L2C8 Core Operating Limits Report Maximum Average Planar Linear Heat Generation Rate (MAPLHGR) vs. Average Planar Exposure for Fuel Type GE9B-P8CWB316-9GZ-100M-150-CECO (Reference 11) Table 1-4 Bundle Type 13 Eyposure Exposure (MWD /ST) (MWD /MT) Lattice-Type MAPLHGR (kW/ft) ) P8CWLO71 P8CWL339 P8CWL355 P8CWL355 P8CWL339 P8CWLO71 9GE 7G4.0 4G4.0/3G3.0 6G4.0/3G3.0 4G4.0/3G3.0 NOG 0 0 12.74 12.34 11.87 11.34 12.36 12.74 200 220.5 12.67 12.39 11.94 11.43 12.41 12.67 1000 1102.3 12.48 12.49 12.10 11.61 12.53 12.48 2000 2204.6 12.42 12.63 12.27 11.86 12.65 12.42 3000 3306.9 12.41 12.74 12.41 12.05 12.77 12.41 4000 4409.2 12.44 12.85 12.53 12.23 12.89 12.44 5000 5511.6 12.46 12.97 12.61 12.38 13.02 12.46 6000 6613.9 12.49 13.10 12.69 12.50 13.14 12.49 7000 7716.2 12.51 13.22 12.77 12.62 13.23 12.51 8000 8818.5 12.54 13.34 12.87 12.75 13.34 12.54 9000 9920.8 12.55 13.38 12.96 12.90 13.43 12.55 10000 11023.1 12.57 13.38 13.04 13.02 13.39 12.57 12500 13778.9 12.41 13.36 13.01 13.00 13.36 12.41 15000 16534.7 12.04 13.01 12.70 12.70 13.01 12.04 20000 22046.2 11.27 12.34 12.10 12.10 12.33 11.27 25000 27557.8 10.49 11.69 11.49 11 47 11.69 10.49 35000 38580.9 8.95 10.46 10.19 10 18 10.46 8.95 45000 49604.0 ' 6.15 9.12 8.70 8.67 9.13 6.15 5.21 46850 51643.3 5.21 5.85 50690 55876.2 50720 55909.2 5.85 3 5.84 51860 57165.9 5.84 Lattice Type 36 32 33 34 35 31 i Lattice No. 1581 1700 1701 1702 1703 733 LaSalle Unit 2 Cycle 8 1-6 March 1999

Administrative Technical Requirements - Appendix B L2C8 Core Operating Limits Report Maximum Average Planar Linear Heat Generation Rate (MAPLHGR) vs. Average Planar Exposure for Fuel Type G E9 B-P8 CWB 322-11 GZ-100 M-150-C ECO (Reference 10) Table 1-5 Bundle Type 1 Exposure Exposure (MWD /sT) (MWD /MT) Lattice-Type MAPLHGR (kW/ft) P8CWLO71 Pa :L345 P8CWL362 P8CWL362 P8CWL345 P8CWLO71 NOG 50 J4G4.0 9G4.0 2GS.0/9G4.0 9G4.0 11GE O O 12.74 12.09 11.65 11.25 12.11 12.74 200 220.5 12.67 12.13 11.70 11.32 12.15 12.67 1000 1102.3 12.48 12.22 11.83 11.46 12.25 12.48 2000 2204.6 12.42 12.35 12.00 11.61 12.39 12.42 3000 3306.9 12.41 12.48 12.14 11.77 12.54 12.41 4000 4409.2 12.44 12.62 12.28 11.94 12.70 12.44 5000 5511.6 12.46 12.77 12.43 12.11 12.86 12.46 6000 6613.9 12.49 12.90 12.58 12.29 13.02 12.49 7000 7716.2 12.51 13.03 12.73 12.46 13.19 12.51 8000 8818.5 12.54 13.16 12 C3 12.64 13.33 12.54 9000 9920.8 12.55 13.30 13.01 12.82 13./ ' 12.55 10000 11023.1 12.57 13.33 13.12 12.98 13.44 12.57 12500 13778.9 12.41 13.13 13.08 13.04 13.40 12.41 15000 16534.7 12.04 13.00 12.78 12.77 13.06 12.04 20000 22046.2 11.27 12.33 12.16 12.16 12.40 11.27 25000 27557.8 0 49 11.69 11.51 11.51 11,76 10.49 35000 38580.9 8.95 10.35 10.22 10.22 10.53 8.95 45000 49604.0 6.15 8.96 8.75 8.68 9.13 6.15 5.21 46850 51643.3 5.21 5.86 50680 55865.1 5.85 50830 56030.5 51870 57176.9 5.83 5.83 51910 57221.0 Lattice Type 37 38 39 40 41 42 Lattice No. 733 1817 1818 1819 1820 1821 (Reference 17) LaSalle Unit 2 Cycle 8 1-7 March 1999

Administrative Technical Requirements - Appendix B L2C8 Core Operating Limits Report Maximum Average Planar Linear Heat Generation Rate (MAPLHGR) vs. Average Planar Exposure for Fuel Type G E 9 B-P 8 CWB 320-9GZ3-100 M-150-C ECO (Reference 10) Table 1-6 Bundle Type 2 Exposure Exposure (MWD /ST) (MWD /MT) Lattice-Tvoe MAPLHGR (kW/ft) P8CWLO71 P8CWL346 P8CWL358 P8CWL358 P8CWL346 P8CWLO71 NOG 4G5.0/3G4.0 7G,4.0 2G5.0/7G4.0 7G4.0 9GE2 0 0 12.74 12.05 11.t:2 11.10 12.09 12.74 200 220.5 12.67 12.09 11.64 11.15 12.14 12.67 1000 1102.3 12.48 12.19 11.73 11.27 12.25 12.48 2000 2204.6 12.42 12.32 11.86 11.44 12.39 12.42 3000 3306.9 12.41 12.44 11.99 11.62 12.53 12.41 4000 4 0 9.2 12.44 12.57 12.13 11.80 12.67 12.44 5000 5511.6 12.46 12.70 12.27 11.96 12.81 12.46 6000 6613.9 12.49 12.83 12.42 12.09 12.89 12.49 7000 7716.2 12.51 12.97 12.54 12.23 12.98 12.51 8000 8818.5 12.54 13.07 12.62 12.37 13.07 12.54 9000 9920.8 12.55 13.15 12.70 12.51 13.15 12.55 10000 11023.1 12.57 13.20 12.77 12.66 13.22 12.57 12500 13778.9 12.41 13.19 12.70 12.67 13.20 12.41 15000 16534.7 12.04 12.89 12.40 12.40 12.90 12.04 20000 22046.2 11.27 12.29 11.82 11.82 12.30 11.27 25000 27557.8 10.49 11.69 11.25 11.25 11.70 10.49 35000 38580.9 8.95 10.46 10.07 10.07 10.46 8.95 45000 49604.0 6.15 9.09 8.35 8.26 9.09 6.15 46850 51643.3 5.21 5.21 5.87 I 49790 54884.1 49990 55104.5 5.86 51490 56758.0 5.88 51500 56769.0 5.88 Lattice Type 43 44 45 46 47 48 Lattice No. 733 1812 1813 1814 1815 1816 LaSalle Unit 2 Cycle 8 1-8 March 1999 l ~

00 1 1 ^ I @l ^ 1 j l 4 L 4 95 l e r ia w ico f. f P O%h e 0 f e j I i f 5 t h d t le 9 9 l i,2deh b 9 ' ) - I r t M-! d od it a ef i wn 9 v e ) 1 . ' j iu n r eT 0 h r s od 0

'z qop ei

,mP c 1 - r 5 r t R ? rap r P e 8 a u f w M g q> r d ( n e n 4 0 o i E5 pa 2 0 P r i toe 2 7 h r ty s 1 l 5 a on m

l in t,

0 = m _ i ' I l f a. 0 p o r r 0 dd , F 5 i Meeisd s c) 0 C e h 8 e + r t A T si !I L l i sla ged 0 F t n r mDpreoiu e P e 1 i1 e r s L at o c = A o s i r iff l t inlce sr x P C M, ie i J l! la igx = C d 5 mnEmVs A P e r - e i el Ss o F t 7 l , + r p 4-I P h r a a oBaT i C p P R t 0 i I > T nyicVy 5 A t l l ql 0 5 u ii 2 ooaf C b 2 M f 1 P NMMOT( r r = r ) M 6 L o o o d F F P 0 e R iL b - TF 7 t ~ i a G ji I . [p i_ R !J il ,h H P l -I' F 5 r L ( =h L! -,iJ hiNIl -r 4 6 e i4 Jl LIj~ ' 7~d A -fWI!It - - {,1\\L l1 P l j,- w M) o9 i jiI t 6 2 + f 7l\\L 1 n1 +!F![! ' l e a ec L b 0 d n - Ll 6 mr nr Nli i! ll e i!t e - 4 (- e pR i i ilh ef 4 t h e( t- ,f Il ; T e 'l ,f r e i;il + 5 r D b 7!l +l-r' 5 o i1 j I l 7ll tII ~ [ r C -r il4 !l!\\ I i r! i e o i '

hE I

w !g ' ll} ii i! tILi4 f .+ it{I)1 if I' t

Il 0

f i 1ta' 4!' I i: 5 P y 2 ,t[hbl-~iR!j! I!4i }

t' 1

4 I lp!Ilj Jlj"! 8 4 !j 1 U"- l !+ e [ l[ lc 5 e j' r I blJ lpf 4 y i I# -l4 ii' I g k j(s C u 2 it +} F + J l l n 0 U Il-l 4 le la F i jJ ' i S t !,#2f; l ib a 1 5 L A l+ + 1' I l+ 3 1 r l i-lt ' + 4l dl 2 I i a + ei h -l!Hl! 1l1 0 -i - -l' i 3 rIf 4 i1 k !i i 4l+ dVl LIi id i =bi fa - i l 1 +Al J 5 2 1 4 5 8 5 7 5 6 5 5 5 4 5 3 5 2 5 1 5 0 9 8 0 ~ 0 0 5 0 4 0 3 O' 2 0 1 0 0 7 6 0 0 0 0 0 0 0 0 0 0 sN a =* g rgIJ % 3 c$c*@ 9% g a. t r!iIlii!ltll

1 I l oo l i i i l I i j j i e I E l l l l LI !__3 i I l _a___ I i !.__ J ___ l' - 9 y -- n oe a [ O e-i OV mg i a ._I i I 1 i i {$a e 4, l A 2 4 I m e I i s i g5N _ ! h. _d.7 .1-m 'E.E g O l -...!._.3--__.. i l .i.. - . w,, g g ay i 4 _.. p. _i _ _p t l l_- I i l e5 . gg so a f > 8{& 3yg g l j_._;_ a.g w ..a_._u R . _.i _I _.i ! I v" $, o$ i i _ i_ _.e n. ..j __p _.._ g Se...gg a u. x y i 1 -{_ l. l - .v a 8 m e-3 4. i r c g o .._.3___.J _,; -_. _ ?_- a ._.4 u o o v 3 na g z 2 c. g g a I M 4 l._u .a _ I w o* O i l l J i j ! I i i -- i __h. _. b_. I 9 m gy I J _ g 4m A 1 l l l i I f~--T u e l I o

  • E gr) * -

5"

._ 7._,_.._T

- d @ { o I Ey$ _.4 ! _1_ ' L-3 _..] L ! ] _ _. i i l i _.. : _i. _._.J _ g o e V Se ..__.i i i l coe o,52 .l-., __.I._.j __ - . w c l ,,I I e ,e E } l,_ t i e i ~~ H g ^(f) i r_ f 4 ..a. p-.-.--*_4-- g, > ..! _.4 .Jq._4 __.. q._._ L__. q_____.___L_____- gg ___.1 .. _. -p._.- .y? ____. g O .._g. o --+---4--8-~- --4-- ~ ~ ~ - Q- ! I j. J_ m. ___. __# _ ___ - i N. e__. l j _ __ 2 _._,. _ _..l _ _.. _. _ 4 i i g _._.;y i._ W __t i . I i N t i i +_7 q _i _.i J l ! 1._J . 1 _L._1

+ -. _ _

e I I _!._ j _ __.i_ - - l I __p._- _ ! 7_7_,i w3 _a_l_J_a; I ': 5n _j i e Q _~_l-_ _ _ j : _ ~ 2 .u. I I i i i i e __j 4._ +_ 3 i. __l I_ !_ .L -.;_ _J j_ g 3 y._ 4 .y 9._y _._7 7___.p. _1 c j q__ _._ _ q _ 4 ._ __ r_ 7 g 3-______ ...q l j _.p 4_ I o _ + _ _ ,l__ _, _4 _ i l . f_ _ [ ! .I.- I i 1 i i i i i O e mmoeoseem om em nm mme mo o o S. dh6S 6

  • 6
  • 6 9 6 N 6 ". 6 9 o

o o o o o o o o o dOYddVW 'JalldplnW BDH7dVW luopueda0-Jamod

50 1 ~ ~ l I .!v IL. ~ 7 t 0 !+ ~ fi l. 0 1 l L !4 L 5 a } 1 l 9 9 . pli 6 l 8 9 1 0 4 ) 9 0 4 0 a u 1 R )+ 0 ijL h E0 = c r 0 ) { 0 r a [ i l. H F l lL 9 M 1 I T C l T/ ( l7 1 EW A l p f C lp[ _ F l o (x m4 w A l 5 P A ij l3 u8 lo M l 8 .l F A iL [I J im7 jj P F _I4lt in 6 p I 0 e u M{ r t M ia o r 0 n +- eR C a 8 t h O d S r l e i T e p ip t; Lj;i R L 4 i ta o I l o C 5 A le I 7 t .l H I l[ l ls u F d }l M !l R P = ) i + d A T r l o e M W F i 7 t ) a 8 !+ G 1 j" 0 R gl' l[1 l H d 4 t [lijqil{. +l n L a,

j i.

l l4_ ( P 6 1 2 t i1 ,i f 1 q w1 pI} A 1 1_ l. I lo1 - [ M 5 9 1 F t e e 4 L Ti 14lc_I! 6 s t e e c r n n 1 y! o C r d e ,i

  • IJl.

0 f n e c!L e R l !qi! IL 6 ( p iL i i[l 3_ i2 l lf e lF . L 'i 4 4jl l w pI1_! .i4: D o

l gl '

j! I f_ I 5 i1(i !4 5 l l; l46 F . i iL_ lM1I;'LiaiIf i}l. ly j1I 3 l + I 8 L l-L{L_lE Lj l ,j l 5 le 2 0 c 1 _ u_ _ i m_ C y e t r I1 2 r }l [ nl ug ,1! 7_ in il l t 1 5 i + 4 U F

C lg Llt le i

b

iJ i la L

1 , alt, ;7_lc! 7 S 1 'g[i,l NI ' i .l ' j a 2l 0 L 4 { il lf t !Ll;.i'! 44il lq.!' il h 1' t .' lh U l ij i lL_l 5 4l4 b 4l. 3 1 L,L.i;:qitjj_ I1l l L

h[

1 i l-l' .i 03 9 8 7 s. 5 4 3 1 0 0 0 o 0 0 0 _ [.<E_io h og <E ogoE a j n

Administrative Technical Requirements - Appendix B L2C8 Core Operating Limits Report 2. Minimum Critical Power Ratio (3/4.2.3) 2.1 Tech Spec

Reference:

Tech Spec 3.2.3. 2.2

== Description:== 2.2.1 Manual Flow Control MCPR Limits The Governing MCPR Operating Limit while in Manual Flow Control is either determined from 2.2.1.1 or 2.2.1.2, whichever is greater at any given power, flow condition. 2.2.1.1 Power-Dependent MCPR (MCPRp)" (Reference 4) 2.2.1.1.1 GE Fuel Table 2-1 gives the MCPRp limit as a function of core thermal power for Tech Spec Scram Speeds. Table 2-2 gives the MCPRp limit as a function of core thermal power for Nominal Scram Speeds *. 2.2.1.1.2 Siemens Fuel Table 2-3 gives the MCPRp limit as a function of core thermal power for Tech Spec Scram Speeds. Table 2-4 gives the MCPRp limit as a function of core thermal power for Nominal Scram Speeds *. 2.2.1.2 Flow-Dependent MCPR (MCPRp) (Reference 4) Figure 2-1 gives the MCPRp limit as a function of flow. f

  • To utilize the MCPR limits for Nominal Scram Speeds, the core average scram speed insertion times must be equal to or less than the following values at the given notch positions:

Note'n Position 45 39 25 05 00 (full-in) Time (sec) 0.380 0.680 1.680 2.680 2.804 (Reference 5 and 20) " For thermal limit monitoring at greater than 100%P, the 100% power MCPRp limits should be applied. LaSalle Unit 2 Cycle 8 2-1 March 1999

Administrative Technical Requirements - Appendix B - L2C8 Core Operating Limits Report MCPRpfor Tech Spec Scram Speeds and GE Fuel (References 4 and 5) Table 2-1 Operation for Exposures from BOC to 12,000 mwd /MTU Percent Core Thermal Power

  • EOOS Combination 0

25 25 60 100 No EOOS 2.60 2.10 1.90 1.47 1.39 Feedwater Hester(s) 2.70 2.20 2.20 1.52 1.39 Ssngle RR Loop 2.61 2.11 1.91 1.48 1.40 idle Loop Startup 2.61 2,47 2.47 2.47 2.47 Turbine Bypass Valves 2.60 2.10 2.00 1.55 1.4^ EOC Recirc Pump Tnp 2.60 2.10 1.90 1.50 1.44 EOC Recuc Pump Tnp/Feedwater 2.80 2.30 2.30 1.55 1.45 Hester(s) TGV Slow Closure /EOC Recarc Pump Tr'o 2 80 2.30 2.30 1.53 1.45 TCV Slow Closure /EOC Recirc Pump 2.80 2.30 2.30 1.5'- 1.45 Trip!Feedwater Heater (s) l Operation for Exposures 12,000 mwd /MTu to EOC Percent Core Thermal Power

  • EOOS Combination 0

25 25 60 100 No EOOS 2.60 2.10 1.90 1.47 1.40 Feedwater Heater (s) 2.70 2.20 2.20 1.52 1.40 Single RR Loop 2.61 2.11 1.91 1.48 1.41 idle Loop Startup 2.61 2.47 2 47 2.47 2.47 lurbine Bypass Valves 2.60 2.10 2.00 1.55 1.43 EOC Recarc Pump Tnp 2.60 2.10 1.90 1.50 1.48 EC Recuc Pump Tnp/Feedwater 2.80 2.30 2.30 1.55 1.48 Heater (s) TCV Slow Closure /EOC Recirc Pump 2.80 2.30 2.30 1.55 1.48 Tnp TCV Slow Closure /EOC Recirc Pump 2.80 2.30 2.30 1.55 1.48 Tnp/Feedwater Heater (s) Coastdown Operation Percent Core Thermal Power

  • EOOS Combination D.

25 25 60 100 NoEOCS 2.60 2.10 2.00 1.47 1.42 Feedwater Heater (s)** 2.70 2.20 2.20 1.52 1.42 Segle RR Loop 2.61 2.11 2.01 1.48 1.43 Idle Loop Startup 2.61 2.47 2.47 2.47 2 47 Turbine Bypass Valves 2.60 2.10 2.00 1.56 1.44 EOC Recarc Pump Tnp 2 60 2.10 2.00 1.62 1.49 TCV Slow Closure /EOC Recirc Pump 2.80 2.30 2.30 1.65 1.51 Trip TCV Slow Closure /EOC Recirc Pump 2.80 2.30 2.30 1.65 1.51 Trip /Feedwater Heater (s)" Turbine Bypass Valves /Feedwater 2.70 2.20 2.20 1.56 1.44 Heater (s)" EOC Recirc Pump Tnp/Feedwater 2.70 2.20 2.20 1.62 1.49 Heater (s)" Values are interpolated between relevant power levels. For operation at exactly 25% CTP, the more limiting value is used. f ' Feedwater Heaters ~Out-of-Service in coastdown may either be due to an actual OOS condition, or an intentionally entered mode of operation to extend the cycle energy. ' LaSalle Unit 2 Cycle 8 2-2 March 1999

y Administrative Technical Requirements - Appendix B L2C8 Core Operating Limits Report MCPRpfor Nominal Scram Speeds and GE Fuel (Reference 4 and 5) Table 2-2 Operation for Exposures BOC to 12,000 mwd /MTU Percent Core Thermal Power

  • EOOS Combination 0

25 25 60 100 No EOOS 2.60 2.10 1.90 1.44 1.36 Feedwater Hester(s) 2.70 2.20 2.20 1.52 1.39 SingW AR Loop 2.61 2.11 1.91 1.45 1.37 idle Loop Startup 2.61 2.47 2.47 2.47 2 47 Turbine Bypass Valves 2.60 2.10 2.00 1.55 1.40 EOC Recarc Pump Tnp 2.60 2.10 1.90 1.50 1.44 EOC Recarc Pump Trip /Feedwater 2.80 2.30 2.30 1.55 1.45 Heater (s) TGV Slow Closure /EOC Recarc Pump 2.80 2.30 2.30 1.53 1.45 Tnp TCV Slow Closure /EOC Recirc Pump 2.80 2.30 2.30 1.55 1.45 Trip /Feedwater Hester(s) Operation for Exposures 12,000 mwd /MTU to EOC Percent Core Thermal Power

  • EOOS Combination 0

25 25 60 100 No EDOS 2.60 2.10 1.90 1.46 1.39 Feedwater Heater (s) 2.70 2.20 2.20 1.52 1.40 Single RR Loop 2.61 2.11 1.91 1.47 1.40 idle Loop Startup 2.61 2.47 2.47 2.47 2.47 Turbine Bypass Valves 2.60 2.10 2.00 1.55 1.43 EOC Recarc Pump Tnp 2.60 2.10 1.90 1.50 1.48 EOC Recirc Pump Tnp/Feedwater 2.60 2.30 2.30 1.55 1.48 Heater (s) TCV Slow Closure /EOC Recirc Pump 2.80 2.30 2.30 1.55 1.48 Trip TCV Slow Closure /EOC Recirc Pump 2.80 2.30 2.30 1.55 1.48 Trip /Feedwater Heater (s) Coastdown Operation Percent Core Thermal Power

  • EOOS Combination 0

25 25 60 100 No EOOS 2.60 2.10 2.00 1.47 1.42 Feedwater Heater (s)** 2.70 2.20 2.20 1.52 1 42 Single RR Loop 2 61 2.11 2.01 1.48 1.43 Idle Loop Startup 2 61 2 47 2 47 2.47 2.47 Turbine Bypass Valves 2.60 2.10 2.00 1.56 1.44 EOC Rectre Pump inp 2.60 2.10 2.00 1.62 1 49 TCV Slow Closure /EOC Recirc Pump 2.80 2.30 2.30 1.65 1.51 Tnp TCV Slow C60sure/EOC Recirc Pump 2.80 2.30 2.30 1.65 1.51 Trip /Feedwater Heater (s)** lurbine Bypass Valves /Feedwater 2.70 2.20 2.20 1.56 1.44 Hester(s)** EOC Recarc Pump Tnp/Feedwater 2.70 2.20 2.20 1.62 1.49 Heater (s)** Values are interpolated between relevant power levels. For operation at exactly 25% CTP, the more limiting value is used. Feedwater Heaters ~Out-of-Service in coastdown may either be due to an actual OOS Condition, or an intentionally entered mode of operation to extend the cycle energy, - LaSalle Unit 2 Cycle 8 2-3 March 1999

Administrative Technical Requirements - Appendix B L2C8 Core Operating Limits Report MCPRpfor Tech Spec Scram Speeds and Siemens Fuel (References 4 & 5) ( Table 2-3 Operation for Exposures from BOC to 12,000 mwd /MTU Percent Core Thermal Power

  • EOOS Combination 0

25 25 60 100 No EOOS 2 60 2.10 1.90 1.46 1.36 Feedwater Hester(s) 2.70 2.20 2.20 1.52 1.36 Single RR Loop 2.61 2.11 1.91 1.47 1.37 l 1 Idle Loop Startup 2 61 2.4 i 2.47 2.47 2.47 Turbine Bypass Valves 2.60 2.10 2.00 1.54 1.39 EOC Recarc Pump Tnp 2.60

2. '. 0 1.90 1.49 1.42 j'

EOC Recirc Pump inp/Feedwater 2.80 2.30 2.30 1.55 1.42 Heater (s) TCV Slow Closure /EOC Recirc Pump 2.80 2.30 2.30 1.52 1.42 Tnp TCV Slow Closure /EOC Recirc Pump 2 80 2.30 2.30 1.55 1.42 Trip /Feedwater Heater (s) I Operation for Exposures from 12,000 mwd /MTU to EOC Percent Core Thermal Power

  • EOOS Combination 0

25 l ?5 60 100 No EOOS 2.60 2.10 1.90 1.46 1.39 Feedwater Heater (s) 2.70 2.20 2.20 1.52 1.39 Singe RR Loop 2.61 2.11 1.91 1.47 1.40 Idle Loop Startup 2.61 2.47 2.47 2.47 2.47 Turbine Bypass Valves 2.60 2.10 2.00 1.54 1.42 EOC Recirc Pump Tnp 2 60 2.10 1.90 1.50 1.46 EOC Recirc Pump Tnp!Feedwater 2.80 2.30 2.30 1.55 1.48 Heater (s) i TCV Slow Closure /EOC Recirc Pump 2.80 2.30 2.30 1.64 1.48 l Tnp TCV Slow Closure /EOC Recarc Pump 2.80 2.30 2.3C 1.55 1.48 Trip /Feedwater Heater (s) Coastdown Operation Percent Core Thermal Power

  • EOOS Combination 0

25 25 60 100 NoEOOS 2 60 2.10 2.00 1.47 1.41 Feedwater Heater (s)" 2.70 2.20 2.20 1.52 1.41 Single RR Laop 2.61 2.11 2.01 1.48 1.42 idle Loop Startup 2.61 2.47 2.47 2 47 2 47 Turbine Bypass Valves 2.60 2.10 2.00 1.55 1.43 EOC Recire Pump Tnp 2.60 2 10 2.00 1.62 1.48 TCV Slow Closure /EOC Recirc Pump 2.80 2.30 2.30 1.65 1.51 Tnp TCV Slow Closure /EOC Recirc Pump 2.80 2.30 2.30 1.65 1.51 Tnp!Feedwater Heater (s)" Turbine Bypass Valves /Feedwater 2.70 2.20 2.20 1.55 1.43 Heater (s)** EOC Recirc Pump inp/Feedwater 2.70 2.20 2.20 1.62 1.48 Heater (s)" Values are interpolated between relevant power levels. For operation at exactly 25% CTP, the more limiting value is used. Feedwater Heaters Out-of-Service in coastdown may either be due to an actual OOS Condition, or an intentionally entered moda of operation to extend the cycle energy LaSalle Unit 2 Cycle 8 2-4 March 1999

Administrative Technical Requirements - Appendix B L2C8 Core Operating Limits Report MCPRpfor Nominal Scram Speeds and Siemens Fuel (References 4 & 5) Table 2-4 Operation for Exposures from BOC to 12,000 mwd /MTU Percent Core Thermal Power

  • EOOS Combination 0

25 25 60 100 No EOOS 2.60 2.10 1.90 1.43 1.36 Feedwater Hester(s) 2.70 2.20 2.20 1.52-1.36 Single RR Loop 2.61 2.11 1.91 1.44 1.37 Idle Loop Startup 2.61 2.47 2.47 2.47 2.47 Turbine Bypass Valves 2.60 2.10 2.00 1.54 1.39 EOC Recirc Pump Tnp 2.60 2.10 1.90 1.49 1.42 EOC Recirc Pump Tnp/Feedwater 2.80 2.30 2.30 1.55 1.42 Heater (s) TCV Slow Closure /EOC Recirc Pump 2.80 2.30 2.30 1.52 1.42 Tnp TCV Slow Closure /EOC Recuc Pump 2.80 2.30 2.30 1.55 1.42 Tnp/Feedwater Heater (s) Operation for Exposures froin 12,000 mwd /MTU to EOC Percent Core Thermal Power

  • EOOS Combination 0

25 25 60 100 No EOOS 2.60 2.10 1.90 1.45 1.36 Feedwater Heat; s) 2.70 2.20 2.20 1.52 1.39 Single RR Loop 2.61 2.11 1.91 1.46 1.37 Idle Loop Startup 2.61 2.47 2.47 2.47 2.47 Turbine Bypass Valves 2.60 2.10 2.00 1.54 1.42 EOC Recirc Pump Tnp 2.60 2.10 1.90 1.50 1.46 EOC Recirc Pump Tnp/Feedwater 2.80 2.30 2.30 1.55 1.48 Heater (s) TCV Sinw Closure /EOC Recirc Pump 2.80 2.30 2.30 1.54 1.40 Tnp TCV Slow Closure / eof Recire Pump 2.80 2.30 2.30 1.55 1.48 Tnp/Feedwater Hester(6 Coastdown Operation Percent Core Thermal Power

  • EOOS Combination 0

25 25 60 100 No EOOS 2.6 D 2.10 2.00 1.47 1.41 Feedwater Hester(s)" 2.70 2.20 2.20 1.52 1.41 Single RR Loop 2.61 2.13 2.01 1.48 1.42 idle Loop Startup 2.61 2 47 2.47 2.47 2.47 Turbine Bypass Valves 2.60 2.10 2.00 1.55 1.43 EOC Recirc Pump Tnp 2.60 2.10 2 00 1.62 1.48 TCV Slow Closure /EOC Recirc Pump 2.80 2.30 2.30 1.65 1.51 Tnp TCV Slow Closure /EOC Recirc Pump 2.80 2.30 2.30 1.65 1.51 Tnp/Feedwater Heater (s)** Turbine Bypass Valves /Feedwater 2.70 2.20 2.20 1.55 1.43 Heater (s)" EOC Recirc. Pump inp/Feedwater 2.70 2.20 2.20 1.62 1.48 i Heater (s)" Values are interpolated between relevant power levels. For operation at exactly 25% CTP, the more limiting value is used. Feedwater Heaters'Out-of-Service in coastdown may either be due to an actual OOS condition, or an intentionally entered mode of operation to extend the cycle energy. LaSalle Unit 2 Cycle 8. 2-5 March 1999

yg3.gN(*C$ qeo7a. 7,. 3,,$ g 3 y E =yv ] [ E I II of rwoc Oo

  • oV* ggo C3 E yeto;%

o t 0 1 _ {- 1 _s_1 [._- ~ u_ L _ _ _ 7 _1_ _ _~ _-_~ __.- 1l' ,4 1i6 y} _ _ 4_ ) F lI.' w4 0 (2 0 J_ 5 1 j.i 5 8 0 ij _b_ 0 _L* 0 j _____}- 9 L_ }_ 7 9 6 9 0 7 1 6 8 0 1 {;' = 5 9 h 9 c r 1 r R 1 a T-P e = M l I_i' e r r u C R R b_ L_ i_- 1t ' F M P P E C C w 4, !i' G i r M lo 08 R l I' 5 F P 2 e t' J C 0 r M F: 1 o h 3i = C d _ _L r it 4i = o F 1_ p' e m t r o F 5 a 'I 7 2 R L{__ i L u,. 0 m_{L, R {4_ 7 + L_ 0 0 0 3 3 1 P t i_5 r r r = C o o o 1 LM_4 M F F F F .{_ _ L _ T_ f_ !_ i I t j;1_. - n e d !1 ) L,._

f. _._L. t n

!1 ' __ d 0 e 1_ 6 t p L_ _ L_ - e a L_ f R p IiI - LjL - L _ L_L _ _.jI J ~ e ) 5 q D l! 1 j } _ - i ( 1 w6 w4 gI.- lo2 t o e Cb s L_ b_. F c ,.i l f 1 ' l+t j t F e O r e m r L_ 4{akL!i Ll_L _4 Le,-}a_n_q i ].1 l fe e S o j1 4l ._t ~ 4 J J_ o .Lt C r R } t ( p-L_2 l i n }m_44gL_ o d }. i ~ 'l_.A}- C L,1 i. a 1 t_41k L'jpd { w ..~ L___4 ._f t_ ! o L-L_ _ ~ ) l F 0 F '} ( 4 ~ l _'I 4 T 4 a a 8 L u 1 a 2_l 2 n 7 e M .,i _} J_ 7 0 0 i 4 0 1 l 6 i 0 8 2 1 7 8 3 lc J_ e a_ ! i! i l r e 1 = e 7 0 i y }CJt 1I __.~F P r _Lb e R 8 C u 1 ig 1_} u 1 = e 2 = F .Lh !} iI r t ~ C i in 4! r R L- _L sn M R P i U L_l - i L. 'f_ J e P C w 0 ie le m C M J. fu i 11 . F_.1_. pdi 1 e M lo 2 ta u n ajL. !lI le i s !L L_ l! i F Sa 1_L f m S 5 e i L !11_ ! J 4_ i 2 e J r 0 o E j,l G L_ e i!i 4 C F 1 d i p 1_ S 1_i i = r= i F r e o< t 0 !i L_} i 1I o F 5 a 1 2 R } 0 0 0 q;; 3 3 1 .._ 1_ Jt ] 2 r r r = o o o I_. F F F F t_ ! f il _ __ _ _ _ a_L_ L _ t J-1_1_ ___1 0 8 7 6 3 4 3 2 3 i 1 1 1 i i 1 1 3 .gua de d [g 4[.o ja l! ll 1 ilil

Administrative Technical Requirements ' Appendix B L2C8 Core Operating Limits Report 3, Linear Heat Generation Rate (3/4.2.4) 3.1 Tech Spec

Reference:

Tech Spec 3.2.4. 3.2

== Description:== 3.2.1 GE Fuel The LHGR Limit is 14.4 kw/ft for fuel types: (Reference 14) 1. GE98-P8CWB302-9GZ-100M-150-T 2. GE9B-P8CWB300-9GZ-100M-150-T 3. GE9B-P8CWB313-9GZ-100M-150-CECO 4. GE9B-P8CWB316-9GZ-100M-150-CECO 5. GE98-P8CWB322-11GZ-100M-150-CECO 6. GE98-P8CWB320-9GZ3-100M-150-CECO 3.2.2 Siemens Fuel The LHGR Limit is the product of the Steady-State LHGR Limit and the minimum of either the power dependent LHGR Factor *, LHGRFACp or the flow dependent LHGR Factor, LHGRFAC,. The Steady-State LHGR limits are given below (Reference 4). LHGRFAC, is determined from Table 3-1 for Technical Specification Scram Speeds and Table 3-2 for Nominal Scram Speeds as defined in Section 2.2. LHGRFAC, is determined from Figure 3-1. Siemens Fuel Steady-State LHGR Limits for the following fuel types: 1. SPCA9-3818-13GZ7-80M 2. SPCA9-384B-11GZ6-80M Planar Average Exposure (GWd/MTU) LHGR (kW/ft) 0.0 14.4 15.0 14.4 61.1 8.32

  • For thermallimit monitoring at greater than 100%P, the 100% power LHGRFACp limits should be applied.
  • LaSalle Unit 2 Cycle 8 3-1 March 1999

Administrative Technical Requirements - Appendix B L2C8 Core Operating Limits Report LHGRFACpfor Siemens Fuel (TSSS Limits) Table 3-1 (References 4 & 5) Operation for Exposures from 800 to 12,000 mwd /MTU Percent Core Thermal Power

  • 3 M Combination 0-25 25 60 100 Nr. %,OS 0.75-0.75 0.75 1.00 1.00 Feedweer Heater (s) 0 65 0.65 0.65 0.96 1.00 Single RR Loop 0.75 0.75 0.75 1.00 1.00 idle Loop Startup 0 40 0 40 0.40 0.40 0.40 Turbine Bypass Valves 0.75 0.75 0.75 0.96 1.00 EOC Recarc Pump Tnp 0.75 0.75 0.75 0.96 1.00 EOC Recirc Pump Tnp/Feedwater 0.60 0.60 0.60 0.92 0.98 Heater (s)

TCV Slow Closure /EOC Recirc Pump 0.60 0.60 0.60 0.96 1.00 Tno TGV Slow Closure /EOC Recirc Pump 0.60 0.60 0.60 0.92 0.98 Trip /Feedwater Heater (s) Operation for Exposures from 12,000 mwd /MTU to EOC Percent Core Thermal Power * ' tiOOS Combination 0 25 25 60 100 NoEOOS 0.75 0.75 0.75 1.00 1.00 reedwater Heater (s) 0 65 0.65 0.65 0.96 1.00 Single RR Loop 0.75 0.75 0.75 1.00 1.00 idle Loop Startup 0.40 0 40 0.40 0 40 0.40 Turbine Bypass Valves 0.75 0.75 0.75 0.96 1.00 EOC Recarc Pump Tnp 0.75 0.75 0.75 0.96 1.00 1 EOC Recirc Pump inp/Feedwater 0.60 0.60 0.60 0.92 0.94 Hester(s) TCV Slow Closure /EOC Recirc Pump 0.60 0.60 0.60 0.96 1.00 Tnp TGV Slow Closure /EOC Recirc Pump 0.60 0.60 0.60 0.92 0.94 Trip /Feedwater Heater (s) Coastdown Operation Percent Core Thermal Power

  • EOOS Combination 0

25 25 60 100 NoEOOS 0.75 0.75 0.75 0.96 0.97 Feedwater Heater (s)" 0 65 0.65 0.65 0.96 0.97 Single RR Loop 0.75 0.75 0.75 0.96 0.97 idle Loop Startup 0 40 0.40 0.40 0 40 0.40 Turbine Bypass Valves 0.75 0.75 0.75 0 95 0.97 EOC Recirc Pump Tnp 0.75 0.75 0.75 0.87 0.87 TCV Slow Closure /EOC Recirc Pump 0 60 0.60 0.60 0.87 0.87 j Tnp TCV Slow Closure /EOC Recarc Pump 0 60 0.60 0.60 0.87 0.87 Trip /Feedwater Heater (s)" Turbine Dypass Valves /Feedwater 0.65 0.65 0.65 0.95 0 97 Heater (s)" EOC Recirc Pump Tnp/Feedwater 0 65 0.65 0.65 0.87 0.87 Heater (s)** Values are interpolated between relevant power levels. For operation at exactly 25% CTP,..le more limiting value is used. Feedwater Heaters Out-of-Service in coastdown may either ba due to an actual OOS. condition, or an intentionally entered mode of operation to extend the cycle energy. LaSalle Unit 2 Cycle 8. 32 March 1999

I Administrative Technical Requirements - Appendix B L2C8 Core Operating Limits Report LHGRFAC, for Siemens Fuel (NSS Times) Table 3-2 (References 4 & 5) Operation for Exposures.from BOC to 12,000 mwd /MTU Percent Core Thermal Power

  • EOOS Combinaten 0

25 25 60 100 No EOOS 0.80 0 80 0.80 1.00 1.00 Feedwater Heater (s) 0.65 0,65 0 65 0.96 1.00 Single RR Loop 0.80 0 80 0.80 1.00 1.00 idle Loop Startup 0.40 0.40 0 40 0.40 0.40 Turbine Bypass Valves 0.75 0.75 0.75 0.96 1.00 EOC Recarc Pump Tnp 0.75 0.75 0.75 0.96 1.00 EOC Recirc Pump Tnp/Feedwater 0.60 0.60 0 60 0.92 0.98 Heater (s) TCV Slow Closure /EOC Recirc Pump 0.60 0.60 0.60 0.96 1.00 Trip .TCV Slow Closure /EOC Recirc Pump 0.60 0.60 0.60 0.92 0.98 Trip /Feedwater Heater (s) Operatien for Exposures from 12,000 mwd /MTU to EOC Percent Core Thermal Power

  • EOOS Combination 0

25 25 60 100 NoEOOS 0.80 0.80 0 80 1.00 1.00 Feedwater Heater (s) 0.65 0 65 0.65 0.96 1.00 Single RR Loop 0.80 0.80 0.80 1.00 1.00 idle Loop Startup 0.40 0 40 0.40 0.40 0.40 Turbine Bypass Valves 0.75 0.75 0.75 0.96 1.00 EOC Recirc Pump Tnp 0.75 0.75 0.75 0.96 1.00 EOC Recirc Pump Tnp/Feedwater 0.60 0.60 0.60 0.92 0.94 Heater (s) TCV Slow Closure /EOC Recirc Pump 0.60 0.60 0.60 0.96 1.00 Trio TCV Slow Closure /EOC Recirc Pump 0.60 0.60 0.60 0.92 0.94 Tnp/Feedwater Heater (s) Coastdown Operation Percent Core Thermal Power

  • EOOS Combination 0

25 25 60 100 No EOOS 0.75 0.75 0.75 0.96 0.97 Feedwater Heater (s)" 0 65 0 65 0.65 0.96 0.97 Single RR Loop 0 75 0.75 0.75 0.96 0.97 Idle Loop Startup 0.40 0.40 0.40 0.40 0.40 Turbine Bypass Valves 0.75 0.75 0.75 0.95 0.97 EOC Recirc Pump Trip 0.75 0.75 0.75 0.87 0.87 TCV Slow Closure /EOC Recirc Pump 0 60 0.60 0.60 0.87 0.87 Trip TCV Slcr. Closure /EOC Recire Pump 0.60 0.60 0.60 0.87 0.87 Trip /Feedwater Heater (s)" Turbine Bypass Valves /Feedwater 0.65 0.65 0.65 0.95 0.97 _ Heater (s)" EOC Recirc Pump Tnp/Feedwater 0.65 0.65 0.65 0.87 0.87 Heater (s)" Values are interpolsted between relevant power levels. For operation at exactly 25% CTP, the more limiting value is used. Feedwater Heaters Out-of-Service in coastdown may either be due to an actual OOS Condition, or an intentionally entered mode of operation to extend the cycle energy. LaSalle ' Unit 2 Cycle 8 3-3 March 1999

Administrctiva Technical R:quirsmsnts - App:ndix B L2C8 Core Operating Limits Report i--1 -l "i

; ; i p --

i i i 8 h 4._ 4.__..h..._... ~. 4 I l f ._.! _1..! I y _ ;_ _' ,. < l g q.__.a-_ i l i I I i w .J__p. g -. ~. - _.4 Hl.. _.. _..I -+--+ - n 8 I I

  • 1 p

_J_.! ! ! _. __}__b_.L. _j 8 E a i i e o i l l - I \\ ._ !._.._T l,._ I.71 ; g" l I m u rg ! i o .o i 1 _. 1 e u. ci ~~I~ _. 1 i l O i

j j ! l l l

____._2 m e u u. L_ .4 e -, j l j l j u. o_ 7 -.'- .l l o o u. __ __a. _.- _y.i __,.. l j; ! J m{. e v [ l, c a I I l 0 I ! I i i t - ' - ~ u J g z -t O i$ N --h-h-~f~~}-~ , i . ia 5 e t-" R 8 r ri ; i -Ly_ L a_ 2 -o _L_.l_4_ 2_u _.+_ I ~I u. 3 I. I i l ! 1 I l a e a O 1 i m t' V c - - - - - - - + t- -t ~r u 3 I' ! ! L i i lI v e 1 i i i i 16 ~l. l m -i h-t yI j ] l: _4j T-1 E J'1 I _.~l i t o o o o u. i' H g .e + a v + J' {._rl _.l J'M_i_ l n o r- . L_.t I m .g l l ! I l i ! u I H) O' O' O" --t-d

l o

u T-~1 I F E _L__;__4_;._ _.J_! , ! i- ; -}- T* T-- _.4 --_J l l_.4-W .e g" i ) _.!._ _ p.._ __r\\ _..l _I_t__,ll a_ I _._ 7.- .._ __ -_. ' - _. _ _.. _ _.. r-J'.- pl I \\ i iI .'5_, t_ _v. 4 -._.7 '. -{ ;,.. i ~ 2s [ _.m __.1 a. gy i . L'.!._.,Sn E _i_. _,..,_. _j.._.i m _ ~i t

i e

.o - gl _w g I 1 I i i 1 ' g _.7 _.! _! O

i

_.1 2 _r 4 ,4 f4l ! I o i l._L_a__L..L_ [_, .. f- !. 4...m.. ! -.!.., -- I ! l 0 l t i I ! ! l 1 i ._4 f, '_1_h, I__h.d _1__. d_ I !, __'.__ )_ b --h < i. c . L_;__ _. 1,, 1 ! _4-_

,i i

i i i. ~_La _J-b__2_..o l l_.i_-. ,i i i I ; '. 1 I 5 l i -i . g'_._e+. - ~ _ l l l l. l l l l7 l. 1 'D 4_ j 1 f l = i i C t ._..L_. J._. _2._[ w.._.t i r e __J_ _.w i i l ; Ct 1 t _. _.J _ _' 4_4 l 1 i _!'_J_ .__J-_4 _.__ J l '. ' i eo

i i

l . _ _ - !j_ !_.p ' l i e i q_,,j.i i i 77 g __.p.,__J _.j__ a._.,_ L J _',_J __1_J._. .o 4_J _ f__L.J , + .o ( l. i I l .. l l l, ! ! ..l..i 1 l l l l.i I a .!_l .i_ U

l. _ I._

{ l I II, i. l l I I l_j_ l _ _.a_.I_,1 _ I. i ' i I _1 _, 9 J._.l I..;i }_J' _,i _.2._ l l u I_y_ A_ a,_ a. {: -l i l i. . _.'_ q i i t l M _ _ L' 4_. ! l l l l l l 1 l __ N -_4_. . h ;j i__.! 4 I l.. M 4__t __4 1._l,I_ s' _ _;__.i_J ,_ m._.I_ __ c I -. D i I I I I I l I l I i _1_. L.d.h_b i._.--_L+i a_;!_,(,,}g[_4 _l_,__j. Di l l i i j } .o e i- _._.a _a_; a___7_9__ , ! !. i I__j 3_j,_ b 3 _.b.j. d_.J_} ! _L_ i i n I 1 l 1 i i I ! i j l l l I I in I l ! j l I "_~T 1.! E T. i i TT-i j i i._j.___i__F t.,1i! 4 1-t 1_.i,i i , m r i_..

7. i !,.._j l,.l._.J_}_ L

.. _._.d. b_.._ }.d.J _4.d..b-4__.} I ___.h h ' J j.hd. .o L_ -_ r..[ _. L_ .__.... 4 p j_ 4 ' i i I _. ' _ l l }_ _.I_. _. l._ l I I l I [._ Yt~ ~1T ~T i l'-Ti i F7 i7'T 1m-t i~ o e a o r-e c J o n o o o d3YdMOH1'JelldmnW DVdBOH14uspuedad mold

i t l Administrative Technical Requirements - Appendix B L2C8 Core Operating Limits Repoit A. Control Rod Withdrawal Block Instrumentation (3/4.3.0) 4.1 Tech Spec

Reference:

Tech Spec Table 3.3.6-2. 4.2 Descriotion; The Rod Block Monitor Upscale Instrumentation Setpoints are determined from the relationships shown below: ROD BLOCK MONITOR UPSCALE TRIP FUNCTION TRIP SETPOINT ALLOWABLE VALUE Two Recirculation Loop 0.66 W + 45%" 0.66 W + 48%" Operation

  • Single Recirculation Loop 0.66 W + 39.7%"

0.66 W + 42.7%" Operation

  • l This setpoint may be lower / higher and will still comply with the RWE Analysis.

Clamped, with an allowable value not to exceed the allowable value for recirculation loop flow (W) of .100 L LaSalle Unit 2 Cycle 8 - 4-1 March 1999

Administrative Technical Requirernents - Appendix B L2C8 Core Operating Limits Report 5. Allowed Modes of Operation (B 3/4.2.3) The Allowed Modes of Operation with combinations of Equipment Out-of-Service are as described OPERATING REGION EquipmeM Out of Service Optionsi ard ELLLA ICF Coastdown 4 None Yes. Yes Yes Yes Feedwater Heaters 2 Yes No3 Yes Yes Single RR Loop Yes Yes N/A Yes Turbine Bypass Vaives Yes Yes Yes Yes EOC Recirculation Pump Trip Yes Yes Yes Yes TCV Slow Closure /EOC Recirculation Pump Trip Yes Yes Yes Yes l TCV Slow Closure /EOC Recirculation Pump Trip / Yes Ho3 Yes Yes l Feedwater Heaters 2 Turbine Bypass Valves / Feedwater Heaters 2 No No Yes5 Yes EOC Recirculation Pump Trip / Yes4 No3 Yes4 Yes Feedwater Heaters 2 TCV Stuck Closed 6 Yes Yes Yes Yes 1 1 Each EOOS condition may be combined with one SRV OOS, up to two TIP Machines OOS or the equivalent number of TIP channels (100% available at startup from a refuel outage), a 13' reduction in feedwater temperature (without Feedwater Heaters considered OOS) and/or up to 50% of the LPRMs out of service. 2 Up to 100*F Reduction in Feedwater Temperature Allowed with Feedwater Heaters Out-of-Service. Feedwater Heaters OOS may be an actual OOS condition, or an intentionally entered mode of operation to extend the cycle energy. 3 If operating with Feedwater Heaters Out-of-Service, operation in ELLLA is supported by current transient analyses, but administratively prohibited due to core stability concerns. 4 EOC Recirculation Pump Trip OOS/Feedwater Heaters OOS is allowed during non-coastdown operation using the TCV Slow Closure /EOC necirculation Pump Trip OOS/Feedwater Heaters OOS operating limits. 5 Only when operating in coastdown, otherwise this combination is not allowed. 6 Operation is only allowed when less than 10.5 million Ibm /hr steam flow and when average position of 3 open TCVs is less than 50% open, with FCL <-108%, and the MCFL setpoint 2120%. TCV Stuck Closed may be in combination with any EOOS except TBVOOS or TCV Slow Closure. If in combination with other EOOS(s), thermal limits may require adjustment for the other EOOS(s) as designated in Sections 1,2, and 3. ~ LaSalle Unit 2 Cycle 8 5-1 March 1999

Administrative ToChniCal Requirements - App ndix B L2C8 Core Operating Limits Report 6. Traversing in-Core Probe System (3/4.2.1,3/4.2.3,3/4 2.4) 6.1 Tech Soec

Reference:

Tech Spec Sections 3/4.2.1,3/4.2.3,3/4.2.4 for APLHGR, MCPR, and LHGR require the TIP system for recalibration of the LPRM detectors and monitoring thermallimits.

6.2 Descriction

When the traversing in-core probe (TIP) system (for the required measurement locations)is used for recalibration of the LPRM detectors and monitoring thermal limits, the TIP system shall be operable with the following: 1. movable detectors, drives and readout equipment to map the core in the required measurement locations, and 2. indexing equipment to allow all required detectors to be calibrated in a common location. With one or more TlP measurement locations inoperable, the TIF data for an inoperable measurement location may be replaced by data obtained from a 3-dimensional BWR core monitoring software system adjusted using the previously calculated uncertainties, provided the following conditions are met: 1. All TIP traces have previously been obtained at least once during a calibration in the current operating cycle which was performed when the reactor core was operating in an octant symmetric control rod pattern above 50% power, (Reference 22) and 2. The total core Tlf r rtainty for the present cycle has been demonstrated to be consistent with th2 asumptions used in the determination of the MCPR Safety Limit (demonstrated by showing chi squared to be less than 36.19, Reference 21), and / 3. The toto, i,Jmber of simulated channels (measurement locations) does not exceed 42% (18 channels). Otherwise, with the TIP system inoperable, suspend use of the system for the above applit,able monitoring or calibration functions.

6.3 Bases

The operability of the TIP system with the above specified minimum complement of equipment ensures that the measurements obtained from use of this equipment accurately represent the spatial neutron flux distribution of the reactor core. The normalizatic,i of the required detectors is performed internal to the core monitoring software system. Startup test criteria for symmetric measured TIP differences is that the calculated Chi-squared value shall ' be less than the critical value at the 1% level of significance; that critical value being 36.19. Compliance is determined based on the values and methodology provided in Reference 21. Substitute TIP data, if needed, is 3-dimensional BWR core monitoring software calculated data which is adjusted based on axial and radial factors calculated from previous TIP sets. Since uncertainty could be introduced by the simulation and adjustment process, a maximum of 18 channels may be simulated to ensure that the uncertainties assumed in the substitution process methodology remain valid. LcSalle Unit 2 Cycle 8 6-1 March 1999

Administrative Technical Requirements - Appendix B Section 2 LaSalle Unit 2 Cycle 8 Reload Transient Analysis Results March 1999

Administrative Technical Requirements - Appendix B L2C8 Reload Transient Analysis Results Table of Contents Attachment PreDarer Document 1 Comed Neutronics Licensing., sport 2 Siemens Power Corporation Reload Analysis 3 siemens Power Corporation Plant Transient Analysis (Excerpts) LeSalle Unit 2 Cycle 8 March 1999

Administrative Technical Requirements - Appendix B 'L2C8 Reload Transient Analysis Resuas LaSalle Unit 2 Cycle 8 Neutronics Licensing Report I i l l LaSalle Unit 2 Cycle B , March 1999 J}}