ML17332A727
| ML17332A727 | |
| Person / Time | |
|---|---|
| Site: | Cook |
| Issue date: | 02/28/1993 |
| From: | PLG, INC. (FORMERLY PICKARD, LOWE & GARRICK, INC.) |
| To: | |
| Shared Package | |
| ML17332A726 | List: |
| References | |
| PLG-0913, PLG-913, NUDOCS 9504140308 | |
| Download: ML17332A727 (57) | |
Text
{{#Wiki_filter:PLG-0913 CALCULATION OF X/g VALUES FOR THE CONTROL ROON INTAKES Prepared for O.C. COOK PLANT by
- PLG, INC.
February 1993 9504140308 950407 PDR ADOCK 05000315 j P PDR ~ 7479A022293 00100500052
TABLE OF CONTENTS 1.0 Introduction and Summary
2.0 Background
3.0 Input Data 4.0 Calculation of X/l} Values 5.0.5X Probable X/g Results Attachment A Estimation of Concentration Coefficients at the Control Room Intakes for Diffuse Releases from the Unit 1 and Unit 2 Containment Structures at the Donald C. Cook Nuclear Plant ~Pa e 2. A-1 . 7479A020293 0 O'I 00 50 0053
LIST OF TABLES Table 1 5g Probable Control Room Intake X/g Values for the Cook Nuclear Plant Table 2 Joint Frequency Tables of Mind Speed and Direction Versus Stability.Category from the Cook Meteorological Tower for the Period of January 1, 1989 Through December 31, 1991 Table 3 Cumulative X/g Values at Unit 1 Control" Room Intake Based on Unit 1 Release Table 2 Cumulative X/g Values at Unit 1 Control Room Intake Based on Unit 2 Release Table 3 Cumulative X/g Values at Unit 2 Control Room Intake Based on Unit 1 Release Table 4 Cumulative X/g Values at Unit 2 Control Room Intake Based on Unit 2 Release ~Pa e 13 14 15 16 7479A020193 .Oo i'<<<<0o'"
LIST OF FIGURES Figure 1 Figure 2 Figure 3 Figure 4 Cumulative Plots of Direction Independent X/g Values at Unit 1 Control Room Intake Based on Unit 1 Release Cumulative Plots of Direction Independent X/g Values at Unit 1 Control Room Intake Based on Unit 2 Release Cumulative Plots of Direction Independent X/g Values at Unit 2 Control Room Intake Based on Unit 1 Release Cumulative Plots of Direction Independent X/g Values at Unit 2 Control Room Intake Based on Unit 2 Release ~Pa e 17 18 20 7479A020193 0 0 I 0 0 5 0 0 0
i" X
CALCULATION OF.X/0 VALUES FOR THE CONTROL ROOM INTAKES
1.0 INTRODUCTION
AND
SUMMARY
The purpose of this study was to calculate the 5%%d probable dispersion coefficients (X/g) at the D.C. Cook plant control room intakes due to containment leakage after an accident. Four release-receptor combinations were evaluated for each of the 16 wind directions. Releases from both containment structures were evaluated and concentrations at each of the control room intakes were determined. The study involved two major efforts. First, Or. James Halitsky prepared estimates of direction-dependent concentration coefficients (Kc avg) that are used along with wind speed to determine dilution due to turbulence around the plant structures. Dr. Halitsky's report is included as Attachment A. In this effort, Or. Halitsky actually built a scale model of the plant to serve as a basis for his estimates'r. Halitsky is a well-known aerodynamicist who has worked with wind tunnels and has participated in field studies for many years. Use of generic factors is not appropriate for the Cook Plant due to the complex geometry of the plant structures involved.
- Second, values of X/g were calculated for each weather category using site specific joint frequency weather data combined with the concentration coefficients.
The X/g values were then rank ordered and summed to determine the 5'A probable X/g value for each release-receptor combination. The maximum 5g X/g value was 7.85E-4 (sec/m3). Results for all combinations are given in Table l.
2.0 BACKGROUND
During the design review in the licensing process, the U.S. NRC evaluates control room doses following an accident. This requires estimation of the dispersion (expressed as values of X/g) that occurs as radionuclides released from the containment travel to the control room intake. Established NRC guidelines suggest that a conservative dispersion value should be used, such that concentrations at the intakes would not be exceeded more than 5A of the time. This is defined as the 5g probable X/g value. Once the dilution factor is known, dose calculations to control room occupants can be made. The X/g values computed in this study are appropriate for the first 8 hours following an accident. Values for longer time periods would be lower. 3.0 INPUT DATA This study required use of two types of site/plant specific data as discussed below: A 60m meteorological tower instrumented at two levels is in continuous operation at the plant site. For this report, joint frequency tables were generated for a 3-year period of record from January 1989 through 7479A022293 0 0 I 00500056
December 1991. Wind speed and direction measurements from the 33 ft level and delta temperature between 197 and 33 ft were used. The data recovery averaged better than 985 over the three year period. The concentration coefficients (Kc avg) provided by Dr. Halitsky were to be used with wind speeds at the average plant structure height of 60 ft. Therefore, the wind speed taken from the 33 Ft level was adjusted to 60 ft. Table 2 provides all seven joint frequency tables Followed by a "totals" table for all stabilities. 3.2 Plant Parameters The physical characteristics of the site were taken from drawings provided by AEP as shown in Figure 1 of Attachment A. The heights in Figure 1 are 'approximate as derived from the drawings. A scale model of the plant was constructed and used to visualize the plant complex. A simplified tracer study was run by Dr. Halitsky using the model to assist in visualizing the effect oF the building cavities. The plant grade averaged about 608 ft above sea level. The average release height of 60 Ft above grade was used for all calculations. This height was about midway between plant grade of 608 Ft and the top oF the containment at about 720 ft. The reference area oF the containment used in all calculations was 1685m2. N ~l An EXCEL spreadsheet was developed to compute the X/Q values for each of the control room intakes given a diFFuse release at either of the containments at the D.C. Cook Nuclear Plant. The X/Q values were computed using K-factors provided by Dr. dames Halitsky as described in Attachment A. When the user selects a particular combination of source unit and control room intake, the X/Q value for each combination of direction, wind speed, and stability is computed and tabulated using: X/Q = K /u60A c,avg 60 where Kc avg is the Halitsky K-factor, u60 is the wind speed (m/s) at " 60 ft'the average elevation of the complex aboye grade)'nd A is the reference arha. (m2) of the containment. The wind speed. is adjusted for elevation using: u60 ( 60/h ) (2) where the exponent n is 0.25 for unstable conditions (Pasquill-Gifford A, 8, and C stability), 0.33 for neutral conditions (0 stability), and 0.50 for stable conditions (E, F, G stability), and where hm is the measurement height (33 ft) oF the meteorological data. A total of sixteen di rections, six wind speeds and seven stability classes were used'ach wind speed category in the joint Frequency tables was assigned a wind speed approximating the average speed in the category. 7479A022293 OO f OO'5000
The assumed wind speed in each joint frequency speed category (33 ft level) was as follows: Mind Speed ~Cate" or Assumed Average S eed m h 1-3 4-7 8-12 13-18 19-24 25+ 2.00 5.50 10.00 15.50 21.25 27.00 5.0 5g PROBABLE X/ RESULTS The resulting table of X/g values, their corresponding meteorological conditions and the frequency of these meteorological conditions, is sorted in order of descending X/g. The cumulative frequency is then
- computed, and the desired X/g value is the largest one for which the cumulative frequency exceeds 5g.
Tables 1 through 4 provide numerical values of X/g and thei r frequencies for the highest 5'A oF the categories in the, joint frequency weather tables. Complementary cumulative distribution functions for all X/g values and all release-receptor combinations are computed and'lotted as shown in Figures 1 through 4. 7479A022293 0031005000S 8
TABLE l. 5'A PROBABLE CONTROL ROOM INTAKE X/Q VALUES FOR THE COOK NUCLEAR PLANT Release from Receptor at Unit 1 Intake 1 Unit 1 Intake 2 Unit 2 Intake 1 Unit 2 Intake 2 X/Q Value (sec/m ) 7.85E-4 2.45E-4 3.43E-4 7.07E-4 7479A012993 bsaoos y
TABLE 2. JOINT FREQUENCY TABLE OF WIND SPEED AND DIRECTION VERSUS STABILITY CATEGORY FROM THE COOK tlETEOROLOGICAL TOWER FOR THE PERIOD OF JANUARY 1, 1989 THROUGH DECENBER 31, 1991 7479A020293 00 / 05s00060
TABLE 2. 30INT FREQUENCY TABLE OF WINO SPEED ANO OIRECTION VERSUS STABII ITY CATEGORY FROM THE COOK METEOROLOGICAL TOWER FOR THE PERIOO OF JANUARY 1, 1989 THROUGH OECEMBER 31, 1991 Wind Direction 4-7 Stability Class: A 8-12 13-18 Wind Speed(Mph) 19-24 )24 Total "N NNE NE ENE ESE SSE SSW SW WSW WNW 'W NNW 12 10 19 24 17 261 21 29 54 68 110 87 23 119 162 194 210 247 353 215 32 32 50 50 39 54 80 193 172 204 123 73 16 13 30 28 32 10 504 62 79 116 125 131 129 219 341 122 325 409 335 300 345 535 Total 150 2084 ~ 1609 221 12 4077 'Periods of Calm(Hours): 7479A121692 00 i 00500 0 6
TABLE 2 (continued) Stability Class: B Wind Direction N NNE NE ENE ESE SE SSE SSW SW WSW W WNW NW NNW 1-3 14 12 20 47 77 36 31 44 34 40 23 43 13 55 76 89 8-12 54 18 21 33 32 19 20 32 66 77 71 47 30 23 30 13-18 19-24 34 20 22 >24 Total 153 44 72 81 88 60 67 65 151 79 156 139 85 90 128 Total 113 733 616 17 1622 'eriods of Calm(Hours): 7479A121692 0 0 I 5 0 5 0 0 0 6 2
TABLE 2 (continued) Wind Stability Class: C Wind Speed(Mph) Direction NNE 1-3 13 4-7 99 25 8-12 40 13-18 16 19-24 >24 Total 182 75 ESE SE SSE S SSW SW WSW ""' WNW NW NNW Total 10 17 16 135 35 45 54 28 36 51 42 19 49 57 41 62 81 28 29 26 19 18 30 70 51 79 61 69 42 54 750 28 36 23 37 23 17 16 .242 30 92 98 71 99 148 115 158 170 153 156 105 167 0 1929 Periods of Calm(Hours): 7479A121692 003 OO500068
TABLf 2 (continued) Wind Direction Stability Class: D 4-? '-12 13-1 8 Wind Speed(Mph) 19-24 )24 Total NNE ENE ESE SE SSE SSW SW WSW WNW NW NNW 35 35 38 41 49 48 49 37 25 30 66 71 78 353 166 170 150 135 113 129 146 259 157 147 134 176 230 255 360 195 108 136 121 105 95 98 401 336 284 294 329 176 180 39 25 13 26 13 36 126 162 117 112 113 50 50 67 10 10 13 12 338 389 326 316 274 284 328 789 757 569 625 675 552 Total 726 3080 3312 1003 82 8209 Periods of Calm(Hours): 7479A121692 oo i bosooo6<
I H
TABLE 2 (continued) Wind Direction 1-.3 4-7 Stability Class E 13-18 19-24 8-1 2 Wind Speed (Mph) )24 Total NNE NE ESE SE SSE SSW SW WSW W WNW NW NNW 97 76 77 62 92 89 96 122 108 56 50 45 59 55 78 144 139 170 157 174 179 225 505 271 178 125 113 96 58 110 58 35 34 56 34 50 294 270 153 78 56 26 15 13 10 10 41 56 19 350 259 296 312 298 330 442 951 400 261 234 210 130 207 Total 1245 2827 1335 173 19 1 5600 Periods of Calm(Hours) 7479A121692 oooo><ooo <<
TABLE 2 (continued) Wind Direction NNE 1-.3 38 49 86 17 10 37 Stability Class: F 8-12 13-18 19-24 Wind Speed(Mph) )24 Total 62 129 ENE ESE SE SSE SSW SW WSW W WNW NW NNW Total 110 130 129 106 188 153 61 37 15 34 28 36 26 1226 57 61 176 51 28 16 16 947 10 97 19 203 189 175 372 98 52 54 47 35 2290 Periods of Calm(Hours): ~ 0 7479A121692 o o f o o'$ o o o 6
TABLE 2 (continued) Wind Oirection N NE 1-3 17 24 8>>1 2 13-18 Stability,Class G Wind Speed (mph) 19-24 >24 Total 22 26 74 ESE SE SSE SSW SW WSW W WNW NW NNW Total 155 255 345 245 57 28 25 30 19 20 21 1718 16 28 14 34 10 305 0 173 252 197 269 342 91 31 32 24 28 0 2031 Periods of Calm(Hours): 0 7479A121692 00 I 010500067
TABLE 2 (continued) Wind Direction N 254 4-7 8-12 582 13-18 19-24 Stability Class: All Wind Speed(Mph) >24 Total 2 1924 NNE ENE ESE SE SSE SSW SW WSW W WNW NW 199 509 534 739 576 201 165 126 172 232 454 526 549 498 527 795 594 238 303 276 219 245 828 704 525 332 39 67 26 19 279 305 209 207 75 12 20 26 12 30 27 0 1119 0 1239 0 1394 0 1209 0 1325 0 1934 3 3153 2 1966 0 1823 1 1656 0 1572 0 1497 0 1290 NNW 1006'40 95 1 1789 Total 5313 10748 7727 1801 9 25758 ~ Periods of Calm(Hours): 0 'ours of Missing Data '.: 522 7479A121692 12 0 0 f 0 0 g 0 0 0 g 0
TABLE 3. CUHULATIVE X/Q VALUES AT UNIT 1 CONTROL ROOH INTAKE BASED ON UNIT 1 RELEASE AllDirections Stability Class Wind S eed Wind Direction Chi/Q s/m"3 , Pof Hours Cumul. Fre 1.21 'l.04 1.04 1.04'. ESE 7.853EQ NE 2.112E-3 2.112E-3 NE 2.112E-3 5.09% 0 03% 'P P4% 0.08% D 1.09 NE 2.012E-3 35 0.21% 1.21 NE 1.816 E-3 77 0 51% 1.21 NE 1.816E-3 86 0.85% G 8 D D G G D 1.21 1.04 1.04 1.04 1.04 1.04 1.04 1.09 1.09 1.04 1.04 1.04 1.21 1.21 1.21 1.21 1.21 1.21 1.09 1.04 1.04 NW 8.835 E-4 WNW 8.835E-4 NW 8.835 E-4 WNW 8.835 E-4 NW 8.835 E-4 ESE 8.702E-4 8.562E-4 8.562E-4 NE 1.816 E-3 WNW 1.027 E-3 NW 1.027 E-3 WNW 1.027 E-3 NW 1.027E-3 WNW 1.027 E-3 NW 1.027E-3 WNW 9.790 E-4 NW 9.790 E-4 ESE 9.133E-4 ESE 9.133E-4 ESE 9.133E-4 WNW 8.835E-4 65 19 24 20 66 71 83 55 28'6 19 20 12 14 1.10% 1.17% 1 27% 1.29% 1 37% 1 39% 1 41% 1.67% 1 95% 1.96% 1 98% 2.01% 2.33% 2.55% 2.66% 2.80% 2 87% 2 95% 3 11% 3 16% 3.21% D '.04 1.09 N N 8.562E-4 8.158 E-4 13 63 3 27% 8 G D 1'.21 t.21. 1;21 2.86 2.86 2.86 1.04 1.04 1.04 1.04 1.04 1.04 1.21 1.21 1.21 3.00 ESE 7,853E-4 ESE '7.853E-4 ESE 7.853E-4 7.680 E-4 NE 7.680 E-4 NE 7.680 E-4 NNE 7.420 E-4 SE 7.420E-4 NNE 7.420E-4 SE 7.420E-4 NNE 7.420 E-4 SE 7.420 E-4 7.363 E-4 7.363E-4 7.363E-4 NE 7.318 E-4 89 129 188 ~29 36 35 17 97 38 17 '170 3.86% 4 36% 5 09% 5.20% 5.34% 5.47% 5.49% 5.51% 5.52% 5 55 5.57% 5.64% 6.02% 6.17% 6.23% 6.89% 7479A012993 o o t o 950 0
P,
0 TABLE 4. CUMULATIVE X/Q VALUES AT UNIT 1 CONTROL ROON INTAKE BASED ON UNIT 2 RELEASE AllDirections Stability Class E Wind S eed 1.04 Wind Direction NE Chi/Q slm"3 2.454EP 3.996E-4 Pof Hours g~>>'>>P>%@iPQ Cumul. Fre 5.35% 0.03% 8 D E G 1.04 1.04 1.09 1.21 1.21 1.21 1.04 NE 3.996'E 3.996E-4 NE 3.807E-4 NE 3 436E-4 3.436E-4 NE 3.436'NE3.425'5 77 86 65 p p4% 0.08% P.2 0 51% 0.85% 1 10% 1.11% 1.04 E 3.425 E-4 1 13% 1.04 ENE 3.425E-4 12 1.04 E 3.425E-4 1.20% D D G G D 1.04 1.04 1.09 1.09 1.21 1.21 1.21 1.21 1.21 1.21 1.04 1.04 1.04 1.09 1.21 2.854E-4 N 2.854E-4 2.719E-4 N '.4 54E-4 ENE 3.425 E-4 3.425E-4 ENE 3.263 E-4 3.263E-4 ENE 2.945 E-4 2.945 E-4 ENE 2.945 E-4 2.945E-4 ENE 2.945E-4 2.945E-4 N 2.854E-4 10 38 41 62 92 110 130 155 224 12 14 13 63 97 1 23% 1.27% 1.41% 1.57% 1.81% 2 17% 2.60% 3.10% 3.70% 4 57% 4 62% 4.67% 4 72% 4.97% 5.35% 1.21 N 2.454 E-4 38 5 49% G 8 D D G G 1.21 1.04 1.04 1.04 1.04 1.04 1.04 1.09 1.09 1.21 1.21 1.21 1.21 1.21 1.21 1.04 1.04 1.712E-4 SE SSE 1.712E-4 N 2.454'NE 2.283'SE 2.283E-4 NNE 2.283E-4 ESE 2.283K-4 NNE " 2.283E-4 ESE 2.283'NE 2.176E-4 ESE 2.176E-4 1.963E-4 ESE 1.963E-4 NNE 1.963 E-4 ESE 1.963'NE 1.963E-4 ESE 1.963E-4 17 35 43 76 89 49 129 24 188 16 5 56% 5.57% 5 59% 5.61% 63% 5 65% 5.68% 5.82% 5 99% 6.28% 6.63% 6.82% 7.32% 7 41% 8 14% 8 16% 8.22% 1.04 SE 1.712 E-4 6'.25% 7479A012993 oo,)o 0 0 0 7 0
4 TABLE 5. CUMULATIVE X/Q VALUES AT UNIT 2 CONTROL ROON INTAKE BASED ON UNIT 1 RELEASE All Directions Stability Class D D E G D D E E G G ~ C D D E Wind S eed 1.04 1.04 1.04 1.04 1.04 1.04 1.04 1.09 1.09 1.21 1.21 1.21 1.21 1.21 1.21 1.04 1.04 1.04 1.04 1.04 1.04 1.09 1.09 1.21 1.21 1.21 1.21 1.21 1.21 1.04 1.04 1:04 1.09 2.86 2.86 2.86 2.86 2.86 2.86 3.00 3.00 1.21 1.21 1.21 3.33 3.33 Wind Direction ENE SE SSE SE SSE SE SSE SSE SSE SE SSE SSE ENE ENE ENE ENE ENE ENE S ESE ESE SSE SSE SSE SSE ESE ESE ESE SE SSE Chi/Q s/m" 3 3A25EC 7.420E-4 7.420E-4 7.420 E-4 7.420 E-4 7.420 E-4 7,420 E-4 7.071 E-4 7.071E-4 6.381E-4 6.381E-4 6.381 E-4 6.381E-4 6.381E-4 6.381E-4 3.425 E-4 3.425 E-4 3.425E-4 3.425 E-4 3.425 E-4 3.425 E-4 3.263E-4 3.263E-4 2.945 E-4 2.945 E-4 2.945 E-4 2.945 E-4 2.945E-4 2.945 E-4 2.854E-4 2.854 E-4 . 2;854E-4 2.'719E-4 2.698E-4 2.698 E-4 2.698 E-4 2.698E-4 2.698 E-4 2.698 E-4 2.571E-4 2.571E-4 2.454 E-4 2.454E-4 2.454 E-4 2.320 E-4 2.320E-4 // of Hours SVMm~X 16 17 14 49 48 96 122 106 188 255 345 10 12 38 49 62 108 110 153 155 245 43 68 110 40 23 36 51 129 146 89 129 188 179 225 Cumul. Fre 5.04% 0 02% 0.08% 0 10% 0.13% 0.19% 0 25% P 44% 0.63% 1 00% 1.47% 1.88% 2.61% 3 60% 4 94% 4 g5 4 99% 5 p4 5 06% 5 09% 5.11% 5 25% 5 44% 5.68% 6.10% 6.53% 7.12% 7.73% 8.68% 86g 8.71% ~ 8 74% 8.91% 9.17% 9 60% 9.76% 9 85% ggg 10.18% 10 68% 11.25% 11.60% 12.10% 12.83% 13.52% 14.40% 7479A012993 0 0 007
TABLE 6. CUMULATIVE X/Q VALUES AT UNIT 2 CONTROL ROOM INTAKE BASED ON UNIT 2 RELEASE AllDirections Stability Class Wind S eed Wind Direction Chi/Q s/m"3 // of Hours Cumul. Fre D 1.09 ESE 7.071EQ SEW'.-",~- 5 11% 1.04 1.04 1.04 S 1.313E-3 1.313 E-3 1.313E-3 10 0.04% 0 P6% 0.08% D 1.09 1.21 1.21 S 1.251 E-3 49 1.129 E-3 108 1.129 E-3 153 0 27% 0 69% 29% G D D G 'l.21 1.04 1.04 1.04 1.09 1.04 1.04 1.04 1.09 1.21 1.21 1.21 1.21 S W W W W W W W 1.129 E-3 1.027E-3 1.027E-3 1.027E-3 9.790E-4 9.704 E-4 9.704E-4 9.704 E-4 9.246E-4 8.835 E-4 8.835E-4 8.835E-4 8.344 E-4 245 30 10 41 59 34 30 92 2.24% 2.26% 2.29% 2 31% 2 43% 2.45% 2.47% 2.51% 2.67% 2.90% 3 03% 3 15% 3 51% G D E 1.21 1.21 1.04 1.04 1.04 1.09 1.21 8.344E-4 130 8.344 E-4 224 ESE 7.420E-4 ESE 7.420E-4 ESE 7.420E-4 ESE 7.071E-4 43 ESE 6.381 E-4 89 4 01% 4.88% 4gp 4g1 4.95% 5.11% 5 46% 1.21 ESE 6.381 E-4 129 5 96% G 1.21 ESE 6.381 E-4 188 6.69% 1.04 ENE 6.279E-4 3 6 7P% 1.04 ENE 6.279E-4 12 6.75% D G 1.04 1.09 1.21 1.21 1.21 1.04 ENE 6.279 E-4 6 ENE 5.983 E-4 38 ENE 5.399 E-4 62 ENE 5.399E-4 110 ENE 5.399 E-4 155 SE 5.137E-4 6.77% 6 92% 7.16% 7 59% 8.19% 8 21% 1.04 SE 5.137 E-4 8.23% 1.04 SE 5.137E-4 17 8 30% D 1.09 SE 4.895E-4 49 8.49% 2.86 S 4.774 E-4 87 8.82% 2.86 4.774 E-4 43 8.99% D 2.86 3.00 1.21 1.21 S 4.774 E-4 42 S 4.549E-4 259 SE 4.418E-4 96 SE 4.418E-4 106 9 15% 10.16% 10.53% 10 94% 7479A012993 0 I 0 0 0
D) fV LD CCDF forAil Directions Tl Gl C 100.00% C) 10.00% UJ O f 1.00% O'I-C) + M ca cm Vl M'0 rn +I-CI O OX OOO C:XTl M RC7 + Os-e I K7 Pl RA Xl O+ Pl O~ I ZO Ijl X o-c rn -IX W C7 FC Pl rnid m C7 E-6 0.10% 64 1.000 1.000E-5 1.000E-4 Chi/Q, s/m "3 1.000E-3 1.000 E-2 ( V)
O PO LD C7 CCDF for All Directions ll Vl 100 00% 10.00% I5 0 0 Puf 1.00% LL + M ca cm IhM D m -{. D O O Cll X OOO c x M KD I PO P1 RA K OH PlOM I ZO Vl Vl ZM m-Im) D mm mm Pl D 0 10% 1.000 E-6 1.000E-5 1.000 E-4 Chi/Q, s/m" 3 1.000 E-3 1.000E-2
O M CD ED CrJ CCDF forAll Directions Tl Pl 100 00% 10.00% Pu Ill V. 0 O u 1.00% IL + M m cm CilM D ~ ~l U O O CA X AOO C X Tl M XIC7 -I OM I Kl Rl A X) OH rn OM I ZO rn) M Cil RM Pl WM VD mmD m 0 10% 1.000E-6 1.000 E-S 1.000 E-4 Chi/Q, s/m" 3 1.000E-3 1.000 E-2 ( m Cjl
CC) M lO ID GO CCDF for All Directions rl m 100 00% Cl 10.0P% C) O o cn ~ 0) 1.pp% P C) C I2 + M( CC) Cm Cl) M 0 m Wr O O OR OOO C X )l R 6 M RCI g OM C ro m P3 O X) OH Pl OM )- ZO tll ZM va 7C ~ Pl C) rn m 0.10% 1.000 E-6 1.000E-5 1.000E-4 Chi/Q, s/m" 3 1.000 E-3 1.000 E-2 OC AD( 2P D ~ CA
ATTACHMENT A 7479A020193 A-1 oo I oosaao77
ESTIl1ATION OF CONCENTRATION COEFFICIENTS AT THE CONTROL ROON INTAKES FOR DIFFUSE RELEASES FROl1 THE UNITS 1 AND 2 CONTAINtlENT STRUCTURES AT THE DONALD C. COOK NUCLEAR PLANT Prepared by James Halitsky, Ph.D. 122 North Highland Place Croton-on-Hudson, NY 10520 Prepared for PLG, Inc. Suite 730 1615 H Street, N.W. Washington, D.C. 20036 7478A020193
0. 0 I 0 0 !1 I 0 0 7 7 TABLE OF CONTENTS 1 Introduction 2 Bui lding Arrangements 3 Procedure for Estimating Kc ag 4 Calculation of Kc i 5 References ~Pa e Table 1 Table 2 Figure 1 Figure 2 Figure 3 Plume Model for Kc ; Determination Kc aug Approximation for a Diffuse Leak Donald C. Cook Nuclear Plant Photographs of Scale Model Photographs of Scale Model in trlind Stream Appendix I Estimates of Kc i and Kc aug 7478A020193 00!0050.00y9
(loo I 007d l. Introduction This report contains a determination of values of the concentration coefficient Kc avg at the Unit 1 and Unit 2 control room intakes of the Donald C. Cook Nuclear Plant for diffuse releases through the Unit 1 and Unit 2 containment building surface. The Kc avg determinations were made in sixteen conventional wind directsons referred to true north. An equation is provided for combining a Kc av value with a wind velocity at an elevation of 10m on the meteorological tower to obtain a value of the concentration factor t/(} for each of four release-intake combinations. -The Kc avg values were obtained by applying a Gaussian plume model to each of nsne point source releases distributed uniformly on the surface of one containment building, converting the predicted X/0 values to Kc values for each release, and averaging the nine Kc values to yield Kc avg for 'the diffuse release. The Gaussian model included provisions for initial plume enlargement due to entrapment in the direction-specific building cavities, and employed plume expansion rates corresponding to PG-C stability in an adaptation of the Halitsky jet plume model (Reference
- 1) for short travel distances, as applied to building wake plumes.
2. Buildin Arran ement Physical site characteristics were extracted from a set of plans, elevation and vertical section drawings dated 5/1/89, provided by AEP. Figure 1 shows all signiFicant buildings, roof elevations indicated by numbers within the building outline, and locations of the control room intakes. The topography is flat at elevation 608 ft over most of the plant area, but descends to lake elevation 580 ft, over a distance of about 300 ft in a north-south strip at the west edge of the plant. A 1:360 scale (1 in equals 30 ft) cardboard model of the plant was constructed as an aid in visualizing the building complex and for use with a. visual tracer (water mist from an ultrasonic room humidiFier) in in air stream to detect and/or confirm the existence o$ cavities and local plume trajectories.. Figures '2 and 3 show pho'tographs of the model aqd the flow study set-up. 3. Procedure for Estimatin K a. Divide containment surface area into nine patches of equal area and replace each patch with a single point release. The nine release points correspond to those used in the EBR-II wind tunnel test and are identified by the following symbols: BU bottom upwind BL '= bottom left side BR = bottom right side 80 = bottom downwind HU = mid-height upwind 7478A020193 OO i 00'500000 0
HL = mid-height left side HR = mid-height right side HD = mid-height downwind T = top b. The total gas release rate is g; the release rate at each of the release points is: c. The concentration field near a building is given generally by: X = Kcg/Au For multiple releases, each release makes the contribution: (2) Xi = Kc,iQi/Au and the total concentration, for equal values oF g;, becomes: (3)' 9 X = $ X.= $ (K .g./Au) = 1 i=1 i=1 Au 9 Kc 1 1 i=1 9 9 K,i i=1 ~i i=1 'g K (4) Au 9 Au
- where, Kc,avg 9
K i=1 (5) d. The value of Kc ; must be determined separately For each combination of wiind direction, point source release location and intake location. This was done by first sketching the wind field in the building complex with cavity zones,streamlines and wakes determined by a combination of. the information in Hosker
- (Reference 2), personal experience, and observations of a visual
~ tracer moved about the model in the windstream. Kc i was then either calculat'ed or estimated by analytical methods described in.'ection 4. Tables 1 and 2 show the individual values o'f Kc ; for each of the 16X9X4 = 576 combinations, and the values of Kc avg. e. To combine the Kc avg values with wind frequency data, use: X/g (sec/m ) =~ Aut I (6) 7478A020193 0o i 0'osoooo i
- where, A
= projected area of containment
1685m2 ut
wind speed at an average elevation for the complex or about 60 ft above grade (m/s). 4. Calculation of Kc i f Kc i in Equation 5 is obtained from Equation 3 after Xi is determined by an independent calculation using the Gaussian plume model outlined in Table 1. This model includes provisions for partial division of some released material from the plume (Fq), ground reflection (Fr), entrapment of released material in a building cavity with resulting establishment of a Gaussian wake plume having initial dimensions cd 0 and cd 0 and plume sigma growth according to the Halitsky jet plume model for PG stability C. The choice of PG-C was based on a comparison of predicted values of Kc i using the model in Table 1 against observed values of Kc i in the EBR-II wind tunnel model tests. The 16 figures in Appendix I show drawings of the wind flow patterns for each wind direction used to determine values of Kc i. I Table 2 provides a summary of Kc avg values. 5. References Halitsky, J. (1989): A Bet Plume l1odel for Short Stacks, 3APCA J. v 39, No. 6, pp. 856-858. 2. Hosker,.R.P., 3r. (1984): Flow and Oiffusion Hear Obstacles. .Chapter 7 in Atmospheric Science and Power Production,
- 0. Randerson, ed.,
U.S. OOE Pub. DE84005177, HTIS OOE/TIC-27601. 7478A020193 0 0 j 0 0 5 0 0 0 8 2
Uun TABLE 1 ~ PLUME MODEL fOR Kc,i DETERt'1INATION K .=A i X ~ u c,l (v/~ ) 2 A~r 2 2Nd d y z Qi Fr dy " dz Ft Therefore, dy dz A 2c containment projected area = 18,137 ft2 (1685m2) wind speed at 60 ft "above ground release rate at each release location fraction of source entering plume ground reflection = 2 For flat ground = 3 For flat ground plus small vertical wal 1 ay p + 0.66 Ft X 0 92 I az p + 0.82 Ft X 0 8 e0.08 (T-30) Turbulence class factor = 15.1 for PG-C stability e0.08 (15.1 -30) p 304 dy p + (0.66)(.304) X 0.92 az p + (0.82)(.304) X 18,137 /2%' 2,887 dy p = dz p = 0 For direct plume impingement on intake and ay p = az p are estimated independently for each wind direction according to building configuration All dimensions in feet. 7478A020193 .0 O J 0 0 so 0083
TABLE 2. Kc av APPROXIHATION FOR A DIFFUSE LEAK PRON TllE COUR NlkLEAR PLANT CONTAINllENT STRUCTURES WITH RECEPTORS AT TKE CONTROL ROON INTAKES Values of Kc ayg Release from Receptor at l9ind Direction (degrees From) Unit 1 Intake 1 Unit 1 Intake 2 Unit 2 Intake 1 Unit 2 Intake 2 000 022.5 045 067.5 090 112.5 135 157. 5 180 202.5 225 247.5 270 292.5 315 337.5 1.5 1.3 3.7 0.8 1.2 1.6 1.3 0.4 0.2 0.1 0 0 0.7 1.8 1.8 0 0.5 0.4 0.7 0.6 0.6 0.4 0.3 0.3 0 0 0 0 0 0.2 0.2 0 0 0 0 0.6 0.4 0.5 1.3 1.3 0.6 0.1 ' 0 0.2 0 0 0 0 0.4 0.5 1.1 1.7 1.3 0.9 0.3 2.3 0 0 0.1-1.8 0.7 0.7 0 7478A012993 oo" saooag
TRUE h!ORTH 0 Ci ) Q Q Pt:AQT" WORTH-633 lMOF ELEWTlON OQlT I lNTAK.E5 'gyp 6%) I C4 gas I 6 S 6 r\\ N NIT I S ~70 1 ('ToP). GB'K 7I7 I 44l C$ 3 678 7dT F 32. QRAPF- &08 U14'iT Z. luTAY-E5 I( I III I Gc z (hÃTov sSa egal T I I (roH'$ / UH( w4 w FLAT i@I 0 DOWN ',to FLA f '0 Ul FQOIIB 1.( 10-. $COK gyp' Qp'8 draw III'
FIGURE 2. PHOTOGRAPHS OF SCALE HOOEL 7478A121492 7 '<<OOO06 'or
FIGURE 3. PHOTOGRAPHS OF SCALE HOPEL IN HINP STREAtq 7478A121492
APPENDIX I WIND PATTERNS USED TO ESTIHATE Kc i VALUES 7478A121492 9 00 i 00500086
0 r) I 0 0 '.3 1m& NORTH 0 0 FLAUNT lJORTH 633 000 R 2C ~ I IC.39 J/f 1 6ZQ TG?A JCC IC;ZLEK cry'.TRIG, t T f I QV ~ f~'l 5 POOF ELECTION UNIT I INVAK.ES-7IT -Whg.C-A'TQS' f 38 yg / 18 6 / 770 ('TaP) sO< fOR /RAPE &08 OhlIT Z. IH'(AYES 462 2u U+I Q ZLs 7' f"o31 7 / / )( DO C. COOV IAOW< m FL A1's) vu e IOO F7 I 0 0 A~A %lIHD OOO J HALIT 5 YY 0 g 0 P 0 8 9 I'l LIOv. 1992
'0 " I I,; 0 TzuE QozTH I 0000 923 633 0 ~s QZC OOF ELEVE,TION 6 594 OuIT I INTAKES 717 I 'il los I c IR <(> 770 ISO C3 'L gmo6 &08 Ul417 2. INTAVES 418 I 2R, <50 O'Zl LI wg V.% rfl,p Q F'L A;f DOWN l r l l. J l
- 'L
~ q I / 1 J'OG LD C. COO LIUCLEAR L ANT SCA.L E: I IN ~ IOO FT oooo 0;g p WIWD 022. 5 J H SLITS YY I'L ~OV. 19'lZ 8-V. 18 ~a~. O'I '-
PL AgrhlORTH 633 R.OOF LEVA'TION czC / 640 lo'LS 64 ~ g g g gs ~'. /g LAKE 550 G38 6CI UhllT INTAK,ES 7I7 I Galls / I (TOP (L / I <~o 70j / sac i/, /RAPE &08 Ul41 f Z. IOTAVE.5 ( r 50 a, ~(waar u HIT g/$7~O 'lL (roPAI 46'X U 4 . 1@3 C$ 6 P FL AT ln j D M / /'8 FLAT 'g / J DOG LO C. COO LIUCLEAR L ANT Vll<D 046 SCALE: I IN ~ IOO FT 1 J, H4LITSYY p p I p p g p p p 9 J nuov.is~a
i 633 K, OF EI.ENANTIO UhllT l !NANAK,ES. /'3 g 64 4 f IU S ~r 0 pb 1AKE iso @94 @38 aCI V14 I 2. TAv I ~ ~ ID 0 7d. 4&2 uI4q ( lg rr r70 63I QRADF &08 I .r 'X (fhQf70N '1P C$ ~.J 7FO (TOP 647 FIA7'O. 'IIO FI. A7'0 DOkl LD C. COOK. LIUCLBAR l AN'T WIG 0 Ot'1. 5 SCA.I.E: I IN ~ IOO F T J. HAI.ITSKY ~Q Q ( Q Q g Q Q Q '1IJOV. ~9~52,
TRLJE. hlORT H PtP(QT-QORTH 823 IC.38 IMOF ELENA,TION 640 al.5 I ~,6 )~+ I ohio Uhlgl ~TAK.EQ' 1 ( I / 7 70. ( foe%~ sO 441 463 /RAPE &08 ( 5 78. VhLLT 2. / IuTAY-E,S r I I I I i I II I a,c ~ horra~ /K ~r rr
- 447, DO&hi
'tO why 0 DOkl LD C. COOK. LIUCLEAR I. ANT w140 090 100 FT 0 l 0 0 0 O J, HQLITSVY. lZ klQV 19'3Z 3 q=y. IBAD~. n)5
a I
0 0 f (3 0 0 f 0 0 moE QozTH . PLWQTHQRT.H 633 825 I I p.OOF ELEVATION 64 639 uuIT I INTAICES.- '1 ~ IP lJhllT i(g g C7 LA<E SSO @94 S38 e6I 7I7 -C&3-sO 707 qmoe I MS l41T Z. i vES ~wN <~so I )(I III I ~'1 (BffBs . 'SSO 2 UI4IT 'L 2 IJV 770(roe>'3I 647 0 gower gl I il), DOVJ hl 0 DOkl LD C. COOV. LIUCLEAR
- l. ANT el 4 D 11'L.
5'CALE: I IN lCIO FT J ~ HRLITSlCY 0 0 I 0 0 5 0 0 0 9 4 i2~ov. levy PCy. S& Jhw."V~K
p p f Qi Q ii ) fJ U TRUE hlORTH PI.AQT CNORTH. ROOF ELEVATION 6 + i 'A<E SS0 638 CQ UNIT I INTA',ES-7I7 siI I eel c@S ( foP sO Y07 qaape roe 5 7S. UhlIT Z. INTA'S 6/0 J( ili GQ 'l(fRlgOH 6 DOwiI o, lr) g) I FlAT 0 DOkl LD C. COOK. NUCLEAR L ANT w lND .1 35 SCA.LE: I IN ~ 100 Fl J ~ HlIiLITSKY 0 0 ) 0 0 5 0 0 0 9 5 lx~oii.le~Z e.CV. I8 Se~ I">95
633 0 ~zC + I 64 rOOF F.LE~A,TION LAKE 550 594 @38 aCI OMIT I IhlTAK,E5 jl7 p 5 64I s3 ', 638 6 >g ~ V@IT 6 I Co18. 41 10 ('ToP) fVlsd 7orh 650 I ,I I Ili ~z (eetTav UNIT C 770 (TOI OC o FLI1 V DOWN OlI Ill I/) ~ FLAT '0 DOkl LD C. COO MuCI.aAR I. AT WIWD I57.~ SCA.LE: I Ihl ~ 100 FY 0 Q J. HALITSVY 6, lJOV. I992 Q Q~ Q Q Q 9 6 RCV. IB JqV.taS 3
TRUE hlORTH PI;A,qt AORTA -~ 8'29 R,OOF ELEVATION 6 Co 4 LAY.e. SS0 UhllT I INTAK.E.0; 7I7 IL GB1 I'I g 0 ( foP sO 707 van Z. INTAVF5 I <~so me (hvrtq~ 40 418. 2D / EYI4JT~ 770 (T'OP) C$ 631 o QOe4 w. ll) SCA,LE: I IN DOWhl DOkl LD C. C OK. HUClEAR L ANT WlAD 180 J ~ HALITSYY IZ QOV. I9'3Z RGV LS 5htU ~ "'.~
TRIS E hlORTH PLAQUE- 'AORTA G29 633 OOF H.ECTION o c 'L5 le G. iso Usual T I INTAKES 717 .wc I sII I c GB1 67 GAIT ~ l7O i ('ToP) esO 707 C;RAP &08 0 f41T 2. luTAVES 650 ~<SO 631 tD I FI AT al 0) DOWN FLAT '0 0 0 C DOkl L D C. COO Y LICLEAR L ANT WiXlO 102.5 SCA,L E.: I IN 100 F 7 J ~ H QL 1T 5 YY p p I p p g p p p g g nuov lssz
PVP qt'-QORTH---- GQ 3 I 009i ~ ~ E-NOIZjH 633 OOF GLED TION ,/ .// 6 6 @94 s&S UNIT I INTA'.ES jl7 I j 'l I / 44I C 3 /+~so' 'TOP'T /p / sO / GB'L 70T l /~// I , /c. 'olT/I D3 /PAPE &08 1 Vl41T Z. 14 TAY-E.S' C '78. I.'2L UAI O D SSI / I II I I I \\ >7/0 ~ zv ~ (toe> 7 . T-LAZ Ql r SCA,L E: I IN / y / o m DOkl LD C. COOK. NUCLEAR L ANT VlIQO %~5 J. H4LITSXY IZ wOV. Iea2, C.i v IS Jwu. r>gp
I, I PLAQT hlORTH 0 . r.. 6' IC.39 63) P IL LAKE %0 594 OhllT I IhlTAK.ES C 3~ lu GSX r 678; 'T7O t ToP) I &701 QRAPF- &08 Uu>Yz. a TAVES
- 418, i@6%
L 5 31 3'70 y4jra~ G$ I 647 DOWhl 0 Dou ~ FIAT. Ib 4I FI.AT '0 DON LD C. COO BOUCLE R L ANT SCALE: I N ~ 100 FT a LLI WIQD 241.C Q ) 0 QJ, HALITSYY 0 Q ) 0 0 + 0 Iz >Jov. 1952 Q.-V. Ig 3QP. I'l'35
N
5'29 833 -i fr) g. /J / p9 gOOF ELGYATION. I r,i r LIhllT I: INTAK.ES 4l<< ~ 1 jp ~ @40 I yS Vali L~ g ~.
- /
A~te 663 ~M
- LAKE, 550 0
594 4@I 4Q 3 676 q ~ Co18. .-.Y 7or /RAPE &oB UI41T 2. IuTAVE,S ri 50 I I r[ I ill T CCZ( 0V 48'2 UgI ~5~g / I Cf &3 >+3 I 770' ( OP> 631 85o 02 I QO'4'k ~ F'L A,T Ql bl DO%Ill IlO FLA< '0 DOkl LD C. COO LI0ClF.AR I. ANT SCAlE: I IN ~ 100 FT 1 mwQ '270 J, HALIT'SKY I L QOV. I992. 0 I 0 0 5 0 0 l 0 I ev ~sJ~~}}