ML17332A727

From kanterella
Jump to navigation Jump to search
Calculation of X/Q Valves for Control Room Intakes.
ML17332A727
Person / Time
Site: Cook  American Electric Power icon.png
Issue date: 02/28/1993
From:
PLG, INC. (FORMERLY PICKARD, LOWE & GARRICK, INC.)
To:
Shared Package
ML17332A726 List:
References
PLG-0913, PLG-913, NUDOCS 9504140308
Download: ML17332A727 (57)


Text

{{#Wiki_filter:PLG-0913 CALCULATION OF X/g VALUES FOR THE CONTROL ROON INTAKES Prepared for O.C. COOK PLANT by PLG, INC. February 1993 9504140308 950407 PDR ADOCK 05000315 j P PDR

   ~

7479A022293 00100500052

TABLE OF CONTENTS

                                                                   ~Pa  e 1.0   Introduction  and Summary 2.0   Background 3.0   Input Data 4.0   Calculation of X/l} Values                                      2.

5.0 .5X Probable X/g Results Attachment A Estimation of Concentration Coefficients at A-1 the Control Room Intakes for Diffuse Releases from the Unit 1 and Unit 2 Containment Structures at the Donald C. Cook Nuclear Plant . 7479A020293 0 O'I 00 50 0053

LIST OF TABLES

                                                                 ~Pa  e Table 1  5g Probable Control Room    Intake X/g Values for the  Cook Nuclear Plant Table 2  Joint Frequency Tables of    Mind Speed and  Direction Versus  Stability .Category from the Cook Meteorological Tower for the Period of January 1, 1989 Through December 31, 1991 Table  3  Cumulative X/g Values at Unit    1 Control" Room Intake   13 Based on Unit 1 Release Table  2  Cumulative X/g Values at Unit    1 Control  Room Intake   14 Based on  Unit 2 Release Table  3  Cumulative X/g Values at Unit    2 Control  Room Intake   15 Based on Unit 1 Release Table 4   Cumulative X/g Values at Unit    2 Control  Room Intake   16 Based on  Unit 2 Release 7479A020193
                            .Oo      i'<<<<0o'"

LIST OF FIGURES

                                                        ~Pa  e Figure  1  Cumulative Plots of Direction Independent X/g   17 Values at Unit 1 Control Room Intake Based on Unit 1 Release Figure  2  Cumulative Plots of Direction Independent X/g   18 Values at Unit 1 Control Room Intake Based on Unit 2 Release Figure  3  Cumulative Plots of Direction Independent X/g Values at Unit 2 Control Room Intake Based on Unit 1 Release Figure 4   Cumulative Plots of Direction Independent X/g   20 Values at Unit 2 Control Room Intake Based on Unit 2 Release 7479A020193 0  0  I   0 0 5 0       0 0

i" X

CALCULATION OF.X/0 VALUES FOR THE CONTROL ROOM INTAKES

1.0 INTRODUCTION

AND

SUMMARY

The purpose of this study was to calculate the 5%%d probable dispersion coefficients (X/g) at the D.C. Cook plant control room intakes due to containment leakage after an accident. Four release-receptor combinations were evaluated for each of the 16 wind directions. Releases from both containment structures were evaluated and concentrations at each of the control room intakes were determined. The study involved two major efforts. First, Or. James Halitsky prepared estimates of direction-dependent concentration coefficients (Kc avg) that are used along with wind speed to determine dilution due to turbulence around the plant structures. Dr. Halitsky's report is included as Attachment A. In this effort, Or. Halitsky actually built a scale model of the plant to serve as a basis for his estimates'r. Halitsky is a well-known aerodynamicist who has worked with wind tunnels and has participated in field studies for many years. Use of generic factors is not appropriate for the Cook Plant due to the complex geometry of the plant structures involved. Second, values of X/g were calculated for each weather category using site specific joint frequency weather data combined with the concentration coefficients. The X/g values were then rank ordered and summed to determine the 5'A probable X/g value for each release-receptor combination. The maximum 5g X/g value was 7.85E-4 (sec/m3). Results for all combinations are given in Table l.

2.0 BACKGROUND

During the design review in the licensing process, the U.S. NRC evaluates control room doses following an accident. This requires estimation of the dispersion (expressed as values of X/g) that occurs as radionuclides released from the containment travel to the control room intake. Established NRC guidelines suggest that a conservative dispersion value should be used, such that concentrations at the intakes would not be exceeded more than 5A of the time. This is defined as the 5g probable X/g value. Once the dilution factor is known, dose calculations to control room occupants can be made. The X/g values computed in this study are appropriate for the first 8 hours following an accident. Values for longer time periods would be lower. 3.0 INPUT DATA This study required use of two types of site/plant specific data as discussed below: A 60m meteorological tower instrumented at two levels is in continuous operation at the plant site. For this report, joint frequency tables were generated for a 3-year period of record from January 1989 through 7479A022293 0 0 I 00500056

December 1991. Wind speed and direction measurements from the 33 ft level and delta temperature between 197 and 33 ft were used. The data recovery averaged better than 985 over the three year period. The concentration coefficients (Kc avg) provided by Dr. Halitsky were to be used with wind speeds at the average plant structure height of 60 ft. Therefore, the wind speed taken from the 33 Ft level was adjusted to 60 ft. Table 2 provides all seven joint frequency tables Followed by a "totals" table for all stabilities. 3.2 Plant Parameters The physical characteristics of the site were taken from drawings provided by AEP as shown in Figure 1 of Attachment A. The heights in . Figure 1 are 'approximate as derived from the drawings. A scale model of the plant was constructed and used to visualize the plant complex. A simplified tracer study was run by Dr. Halitsky using the model to assist in visualizing the effect oF the building cavities. The plant grade averaged about 608 ft above sea level. The average release height of 60 Ft above grade was used for all calculations. This height was about midway between plant grade of 608 Ft and the top oF the containment at about 720 ft. The reference area oF the containment used in all calculations was 1685m2. N ~l An EXCEL spreadsheet was developed to compute the X/Q values for each of the control room intakes given a diFFuse release at either of the containments at the D.C. Cook Nuclear Plant. The X/Q values were computed using K-factors provided by Dr. dames Halitsky as described in Attachment A. When the user selects a particular combination of source unit and control room intake, the X/Q value for each combination of direction, wind speed, and stability is computed and tabulated using: X/Q = K c,avg /u60A 60 Kc avg is the Halitsky K-factor, u60 is the wind speed (m/s) at " where 60 ft'the average elevation of the complex aboye grade)'nd A is the reference arha. (m2) of the containment. The wind speed. is adjusted for elevation using: u60 ( 60/h ) (2) where the exponent n is 0.25 for unstable conditions (Pasquill-Gifford A, 8, and C stability), 0.33 for neutral conditions (0 stability), and 0.50 for stable conditions (E, F, G stability), and where hm is the measurement height (33 ft) oF the meteorological data. A total of sixteen di rections, six wind speeds and seven stability classes were used'ach wind speed category in the joint Frequency tables was assigned a wind speed approximating the average speed in the category. 7479A022293 OO f OO'5000

The assumed wind speed in each joint frequency speed category (33 ft level) was as follows: Mind Assumed Speed Average

                ~Cate" or                   S  eed  m h 1-3                         2.00 4-7                         5.50 8-12                      10.00 13-18                      15.50 19-24                      21.25 25+                        27.00 5.0   5g PROBABLE X/    RESULTS The  resulting table of X/g values, their corresponding meteorological conditions and the frequency of these meteorological conditions, is sorted in order of descending X/g. The cumulative frequency is then computed, and the desired X/g value is the largest one for which the cumulative frequency exceeds 5g. Tables 1 through 4 provide numerical values of X/g and thei r frequencies for the highest 5'A oF the categories in the, joint frequency weather tables. Complementary cumulative distribution functions for all X/g values and all release-receptor combinations are computed and'lotted as shown in Figures 1 through 4.

7479A022293 0031005000S 8

TABLE l. 5'A PROBABLE CONTROL ROOM INTAKE X/Q VALUES FOR THE COOK NUCLEAR PLANT Release from Unit 1 Unit 1 Unit 2 Unit 2 Receptor at Intake 1 Intake 2 Intake 1 Intake 2 X/Q Value (sec/m ) 7.85E-4 2.45E-4 3.43E-4 7.07E-4 7479A012993 bsaoos y

TABLE 2. JOINT FREQUENCY TABLE OF WIND SPEED AND DIRECTION VERSUS STABILITY CATEGORY FROM THE COOK tlETEOROLOGICAL TOWER FOR THE PERIOD OF JANUARY 1, 1989 THROUGH DECENBER 31, 1991 7479A020293 00 / 05s00060

TABLE 2. 30INT FREQUENCY TABLE OF WINO SPEED ANO OIRECTION VERSUS STABII ITY CATEGORY FROM THE COOK METEOROLOGICAL TOWER FOR THE PERIOO OF JANUARY 1, 1989 THROUGH OECEMBER 31, 1991 Stability Class: A Wind Wind Speed(Mph) Direction 4-7 8-12 13-18 19-24 )24 Total "N 12 261 215 16 504 NNE 21 32 62 NE 29 32 79 ENE 54 50 116 50 125 ESE 39 131 68 54 129 SSE 110 80 13 219 10 87 193 341 SSW 23 30 122 SW 119 172 28 325 WSW 162 204 32 409 194 123 10 335 WNW 19 210 300

  'W                 24         247        73                             345 NNW              17         353                                       535 Total           150       2084  ~

1609 221 12 4077

   'Periods of Calm(Hours):

7479A121692 00 i 00500 0 6

TABLE 2 (continued) Stability Class: B Wind Direction 1-3 47 8-12 13-18 19-24 >24 Total N 14 77 54 153 NNE 18 44 NE 36 21 72 ENE 12 31 33 81 44 32 88 ESE 34 19 60 SE 40 20 67 SSE 23 32 65 43 66 34 151 SSW 13 20 79 SW 55 77 22 156 WSW 76 71 W 47 139 WNW 30 85 NW 20 23 90 NNW 89 30 128 Total 113 733 616 17 1622

   'eriods  of Calm(Hours):

7479A121692 0 0 I 5 0 5 0 0 0 6 2

TABLE 2 (continued) Stability Class: C Wind Wind Speed(Mph) Direction 1-3 4-7 8-12 13-18 19-24 >24 Total 13 99 16 182 NNE 25 40 75 35 28 45 29 92 10 54 26 98 ESE 28 19 SE 17 36 18 71 SSE 51 30 99 S 42 70 28 148 SSW 19 51 36 115 SW 49 79 23 158 WSW ""' 57 61 37 170 41 23 153 WNW 62 69 17 156 NW 42 105 NNW 16 81 54 16 167 Total 135 750 .242 30 0 1929 Periods of Calm(Hours): 7479A121692 003 OO500068

TABLf 2 (continued) Stability Class: D Wind Wind Speed(Mph) Direction 4-? '-12 13-1 8 19-24 )24 Total 353 195 39 NNE 35 166 108 25 338 35 170 136 389 ENE 38 150 121 13 326 41 135 26 316 ESE 113 105 13 274 SE 49 129 95 284 SSE 48 146 98 36 328 49 259 126 10 789 SSW 157 401 162 757 SW 37 147 336 117 10 WSW 25 134 284 112 13 569 30 176 294 113 12 625 WNW 66 230 329 50 675 NW 71 255 176 50 552 NNW 78 360 180 67 Total 726 3080 3312 1003 82 8209 Periods of Calm(Hours): 7479A121692 oo i bosooo6<

I H TABLE 2 (continued) Stability Class E Wind Wind Speed (Mph) Direction 1-.3 4-7 8-1 2 13-18 19-24 )24 Total 97 58 10 350 NNE 76 144 35 259 NE 77 139 296 62 170 34 92 157 56 312 ESE 89 174 34 298 SE 96 179 50 330 SSE 122 225 10 442 108 505 294 41 951 SSW 56 271 270 56 SW 50 178 153 19 400 WSW 45 125 78 261 W 59 113 56 234 WNW 96 26 210 NW 55 58 15 130 NNW 78 110 13 207 Total 1245 2827 1335 173 19 1 5600 Periods of Calm(Hours) 7479A121692 oooo><ooo <<

TABLE 2 (continued) Stability Class: F Wind Wind Speed(Mph) Direction 1-.3 8-12 13-18 19-24 )24 Total 38 17 62 NNE 49 10 86 37 129 ENE 110 130 203 ESE 129 57 189 SE 106 61 175 SSE 188 176 372 153 SSW 61 SW 37 51 10 98 WSW 15 28 52 W 34 16 54 WNW 28 16 47 NW 36 NNW 26 35 Total 1226 947 97 19 2290 Periods of Calm(Hours): ~ 0 7479A121692 o o f o o'$ o o o 6

TABLE 2 (continued) Stability, Class G Wind Wind Speed (mph) Oirection 1-3 8>>1 2 13-18 19-24 >24 Total N 17 22 24 26 NE 74 155 16 173 28 252 ESE 197 SE 255 14 269 SSE 345 245 342 SSW 57 34 91 SW 28 10 WSW 25 31 W 30 32 WNW 19 24 NW 20 NNW 21 0 28 Total 1718 305 0 2031 Periods of Calm(Hours): 0 7479A121692 00 I 010500067

TABLE 2 (continued) Stability Class: All Wind Wind Speed(Mph) Direction 4-7 8-12 13-18 19-24 >24 Total N 254 582 2 1924 NNE 199 238 39 454 303 67 12 0 1119 ENE 526 276 0 1239 509 549 0 1394 ESE 498 219 26 0 1209 SE 534 527 245 19 0 1325 SSE 739 795 0 1934 576 279 20 3 3153 SSW 201 594 305 26 2 1966 SW 165 828 209 12 0 1823 WSW 126 704 207 30 1 1656 W 172 27 0 1572 WNW 525 75 0 1497 NW NNW 232 1006 '40 332 7727 95 1801 0 1 9 1290 1789 25758 Total 5313 10748

~

Periods of Calm(Hours): . 0

   'ours   of Missing Data '.:        522 12 7479A121692                0 0         f    0 0 g 0            0 0 g 0

TABLE 3. CUHULATIVE X/Q VALUES AT UNIT 1 CONTROL ROOH INTAKE BASED ON UNIT 1 RELEASE All Directions Stability Wind Wind Chi/Q , Pof Cumul. Class S eed Direction s/m"3 Hours Fre . 1.21 ESE 7.853EQ 5.09%

                        'l.04          NE       2.112E-3                  0 03%

2.112E-3 'P P4% 1.04 1.04'. NE 2.112E-3 0.08% D 1.09 NE 2.012E-3 35 0.21% 1.21 NE 1.816 E-3 77 0 51% 1.21 NE 1.816E-3 86 0.85% G 1.21 NE 1.816 E-3 65 1.10% 1.04 WNW 1.027 E-3 19 1.17% 1.04 NW 1.027 E-3 24 1 27% 1.04 WNW 1.027 E-3 1.29% 8 1.04 NW 1.027E-3 20 1 37% 1.04 WNW 1.027 E-3 1 39% 1.04 NW 1.027E-3 1 41% D 1.09 WNW 9.790 E-4 66 1.67% D 1.09 NW 9.790 E-4 71 1 95% 1.04 ESE 9.133E-4 1.96% 1.04 ESE 9.133E-4 1 98% 1.04 ESE 9.133E-4 2.01% 1.21 WNW 8.835E-4 83 2.33% 1.21 NW 8.835 E-4 55 2.55% 1.21 WNW 8.835E-4 28'6 2.66% 1.21 NW 8.835 E-4 2.80% G 1.21 WNW 8.835 E-4 19 2 87% G 1.21 NW 8.835 E-4 20 2 95% D 1.09 ESE 8.702E-4 3 11% 1.04 8.562E-4 12 3 16% 1.04 8.562E-4 14 3.21%

                      '.04              N        8.562E-4            13   3 27%

D 1.09 N 8.158 E-4 63 1'.21 ESE 7,853E-4 89 3.86% t.21. ESE '7.853E-4 129 4 36% 1;21 ESE 7.853E-4 188 5 09% 2.86 7.680 E-4 ~ 29 5.20% 8 2.86 NE 7.680 E-4 36 5.34% 2.86 NE 7.680 E-4 35 5.47% 1.04 NNE 7.420 E-4 5.49% 1.04 SE 7.420E-4 5.51% 1.04 NNE 7.420E-4 5.52% 1.04 SE 7.420E-4 5 55 1.04 NNE 7.420 E-4 5.57% 1.04 SE 7.420 E-4 17 5.64% 1.21 7.363 E-4 97 6.02% 1.21 7.363E-4 38 6.17% G 1.21 7.363E-4 17 6.23% D 3.00 NE 7.318 E-4 '170 6.89% 7479A012993 o o t o 950 0

P, 0 TABLE 4. CUMULATIVE X/Q VALUES AT UNIT 1 CONTROL ROON INTAKE BASED ON UNIT 2 RELEASE All Directions Stability Wind Wind Chi/Q Pof Cumul. Class S eed Direction slm"3 Hours Fre . g~>>'>>P>%@iPQ E 2.454EP 5.35% 1.04 NE 3.996E-4 0.03% 8 1.04 NE 3.996'E p p4% 1.04 3.996E-4 0.08% D 1.09 NE 3.807E-4 P.2 E 1.21 NE 3 436E-4 77 0 51% 1.21 3.436E-4 86 0.85% G 1.21 1.04 NE 3.425'5 3.436'NE 65 1 10% 1.11% 1.04 E 3.425 E-4 1 13% 1.04 ENE 3.425E-4 12 1.04 E 3.425E-4 1.20% 1.04 ENE 3.425 E-4 1 23% 1.04 3.425E-4 10 1.27% D 1.09 ENE 3.263 E-4 38 1.41% D 1.09 3.263E-4 41 1.57% 1.21 ENE 2.945 E-4 62 1.81% 1.21 2.945 E-4 92 2 17% 1.21 ENE 2.945 E-4 110 2.60% 1.21 2.945E-4 130 3.10% G 1.21 ENE 2.945E-4 155 3.70% G 1.21 2.945E-4 224 4 57% 1.04 N 2.854E-4 12 4 62% 1.04 N 2.854E-4 14 4.67% 1.04 2.854E-4 13 4 72% D 1.09 1.21 N '.4 2.719E-4 2.454 E-4 54E-4 63 97 38 4.97% 5.35% 5 49% 1.21 N G 1.21 N 2.454'NE 17 5 56% 1.04 2.283'SE 5.57% 1.04 2.283E-4 5 59% 1.04 NNE 2.283E-4 5.61% 8 1.04 ESE 2.283K-4 63% NNE

                                      "           2.283E-4                         5 65%

1.04 1.04 ESE 2.283'NE 5.68% D 1.09 2.176E-4 35 5.82% D 1.09 ESE 2.176E-4 43 5 99% 1.21 1.963E-4 76 6.28% 1.21 ESE 1.963E-4 89 6.63% 1.21 NNE 1.963 E-4 49 6.82% 1.21 ESE 1.963'NE 129 7.32% G 1.21 1.963E-4 24 7 41% G 1.21 ESE 1.963E-4 188 8 14% 1.04 SE 1.712E-4 8 16% 1.04 SSE 1.712E-4 16 8.22% 1.04 SE 1.712 E-4 6'.25% 7479A012993 oo,)o 0 0 0 7 0

4 TABLE 5. CUMULATIVE X/Q VALUES AT UNIT 2 CONTROL ROON INTAKE BASED ON UNIT 1 RELEASE All Directions Stability Wind Wind Chi/Q // of Cumul. Class S eed Direction s/m" 3 Hours Fre . 1.04 ENE 3A25EC SVMm~X 5.04% 1.04 SE 7.420E-4 0 02% 1.04 SSE 7.420E-4 16 0.08% 1.04 SE 7.420 E-4 0 10% 1.04 SSE 7.420 E-4 0.13% 1.04 SE 7.420 E-4 17 0.19% 1.04 SSE 7,420 E-4 14 0 25% D 1.09 7.071 E-4 49 P 44% D 1.09 SSE 7.071E-4 48 0.63% E 1.21 6.381E-4 96 1 00% 1.21 SSE 6.381E-4 122 1.47% 1.21 SE 6.381 E-4 106 1.88% 1.21 SSE 6.381E-4 188 2.61% 1.21 6.381E-4 255 3 60% G 1.21 SSE 6.381E-4 345 4 94% 1.04 ENE 3.425 E-4 4 g5 1.04 3.425 E-4 10 4 99% 1.04 ENE 3.425E-4 12 5 p4 1.04 3.425 E-4 5 06% 1.04 3.425 E-4 5 09% 1.04 3.425 E-4 5.11% D 1.09 ENE 3.263E-4 38 5 25% D 1.09 3.263E-4 49 5 44% E 1.21 ENE 2.945 E-4 62 5.68% E 1.21 2.945 E-4 108 6.10% 1.21 ENE 2.945 E-4 110 6.53% 1.21 2.945 E-4 153 7.12% G 1.21 ENE 2.945E-4 155 7.73% G 1.21 S 2.945 E-4 245 8.68% 1.04 ESE 2.854E-4 86g 1.04 2.854 E-4 8.71%

                                                            ~
          ~

C 1:04 . 2;854E-4 8 74% 1.09 ESE 2.'719E-4 43 8.91% 2.86 2.698E-4 68 9.17% 2.86 SSE 2.698 E-4 110 9 60% 2.86 2.698 E-4 40 9.76% 2.86 SSE 2.698E-4 23 9 85% 2.86 2.698 E-4 36 ggg 2.86 SSE 2.698 E-4 51 10.18% D 3.00 2.571E-4 129 10 68% D 3.00 SSE 2.571E-4 146 11.25% 1.21 ESE 2.454 E-4 89 11.60% 1.21 ESE 2.454E-4 129 12.10% 1.21 ESE 2.454 E-4 188 12.83% 3.33 SE 2.320 E-4 179 13.52% E 3.33 SSE 2.320E-4 225 14.40% 7479A012993 0 0 007

TABLE 6. CUMULATIVE X/Q VALUES AT UNIT 2 CONTROL ROOM INTAKE BASED ON UNIT 2 RELEASE All Directions Stability Wind Wind Chi/Q // of Cumul. Class S eed Direction s/m"3 Hours Fre . D 1.09 ESE 7.071EQ SEW'.-",~- 5 11% 1.04 S 1.313E-3 10 0.04% 1.04 1.313 E-3 0 P6% 1.04 1.313E-3 0.08% D 1.09 1.251 E-3 49 0 27% 1.21 S 1.129 E-3 108 0 69% 1.21 1.129 E-3 153 29% G 'l.21 S 1.129 E-3 245 2.24% 1.04 W 1.027E-3 2.26% 1.04 W 1.027E-3 2.29% 1.04 W 1.027E-3 2 31% D 1.09 W 9.790E-4 30 2 43% 1.04 9.704 E-4 2.45% 1.04 9.704E-4 2.47% 1.04 9.704 E-4 10 2.51% D 1.09 9.246E-4 41 2.67% 1.21 W 8.835 E-4 59 2.90% 1.21 W 8.835E-4 34 3 03% G 1.21 W 8.835E-4 30 3 15% 1.21 8.344 E-4 92 3 51% 1.21 8.344E-4 130 4 01% G 1.21 8.344 E-4 224 4.88% 1.04 ESE 7.420E-4 4gp 1.04 ESE 7.420E-4 4g1 1.04 ESE 7.420E-4 4.95% D 1.09 ESE 7.071E-4 43 5.11% E 1.21 ESE 6.381 E-4 89 5 46% 1.21 ESE 6.381 E-4 129 5 96% G 1.21 ESE 6.381 E-4 188 6.69% 1.04 ENE 6.279E-4 . 3 6 7P% 1.04 ENE 6.279E-4 12 6.75% 1.04 ENE 6.279 E-4 6 6.77% D 1.09 ENE 5.983 E-4 38 6 92% 1.21 ENE 5.399 E-4 62 7.16% 1.21 ENE 5.399E-4 110 7 59% G 1.21 ENE 5.399 E-4 155 8.19% 1.04 SE 5.137E-4 8 21% 1.04 SE 5.137 E-4 8.23% 1.04 SE 5.137E-4 17 8 30% D 1.09 SE 4.895E-4 49 8.49% 2.86 S 4.774 E-4 87 8.82% 2.86 4.774 E-4 43 8.99% 2.86 S 4.774 E-4 42 9 15% D 3.00 S 4.549E-4 259 10.16% 1.21 SE 4.418E-4 96 10.53% 1.21 SE 4.418E-4 106 10 94% 7479A012993 0 I 0 0 0

D

)                                                                                 Tl fV                                                                               Gl C

LD CCDF for Ail Directions 100.00% C)

                                                                              +M ca  cm Vl  M'0 C)                                                                         rn CI
                                                                              +I-O 10.00%                                                             O XO  OO rnid C:XTl M RC7 UJ                                                                     + IOs-eK7 O                                                                             Pl RA Xl O+

Pl O~ I ZO O'I-f 1.00% Ijl X rn -I o-c W X C7 FC Pl m C7 64 0.10% 1.000 E-6 1.000E-5 1.000E-4 1.000E-3 1.000 E-2 ( Chi/Q, s/m "3 V)

O ll PO LD C7 CCDF for All Directions Vl 100 00%

                                                                             +M ca cm IhM m -{.

D D O 10.00% O Cll XO OO cx I5 M KD I 0 PO P1 0 K RA OH Pu PlOM I ZO f LL 1.00% Vl Vl ZM

                                                                             )

m-Im D mm mmPl D 0 10% 1.000 E-6 1.000E-5 1.000 E-4 1.000 E-3 1.000E-2 Chi/Q, s/m" 3

O Tl M CD ED CrJ CCDF for All Directions Pl 100 00%

                                                                                 +M m cm CilM D
                                                                             ~

U O

                                                                                 ~l O      CA 10.00%                                                             XA  OO Pu C   X Tl M XIC7
                                                                             -I OM V. Ill                                                                            I Kl 0                                                                          Rl A X) OH O      u                                                                      rn OM ZO 1.00%
                                                                             ) MRM I

rn Cil Pl WM IL VD mm D m 0 10% ( 1.000E-6 1.000 E-S 1.000 E-4 1.000E-3 1.000 E-2 m Chi/Q, s/m" 3 Cjl

CC) rl M lO ID GO CCDF for All Directions m 100 00% C) C I 2 Cl CC)

                                                                                +M Cm (

Cl) M 0 m Wr O O 10.0P% O R O OO X )l C R 6 M RCI C) g OMC O o ro P3 m O X) Pl OH OM cn ~ )- ZO

0) 1.pp% tll ZM P

va~ 7C Pl C) rn m OC 0.10% AD 1.000 E-6 1.000E-5 1.000E-4 1.000 E-3 1.000 E-2 ( 2 P Chi/Q, s/m" 3 D~ CA

ATTACHMENT A A-1 7479A020193 oo I oosaao77

ESTIl1ATION OF CONCENTRATION COEFFICIENTS AT THE CONTROL ROON INTAKES FOR DIFFUSE RELEASES FROl1 THE UNITS 1 AND 2 CONTAINtlENT STRUCTURES AT THE DONALD C. COOK NUCLEAR PLANT Prepared by James Halitsky, Ph.D. 122 North Highland Place Croton-on-Hudson, NY 10520 Prepared for PLG, Inc. Suite 730 1615 H Street, N.W. Washington, D.C. 20036 7478A020193

0. 0 I 0 0 !1 I 0 0 7 7 TABLE OF CONTENTS
                                                             ~Pa e 1   Introduction 2   Bui lding Arrangements 3   Procedure   for Estimating   Kc ag 4   Calculation of    Kc i 5   References Table  1   Plume Model for Kc ; Determination Table  2   Kc aug Approximation for a Diffuse Leak Figure   1  Donald C. Cook Nuclear Plant Figure   2  Photographs of Scale Model Figure   3  Photographs of Scale Model in trlind Stream Appendix   I Estimates of   Kc i  and Kc aug 7478A020193 00!0050.00y9

(loo I 007d

l. Introduction This report contains a determination of values of the concentration coefficient Kc avg at the Unit 1 and Unit 2 control room intakes of the Donald C. Cook Nuclear Plant for diffuse releases through the Unit 1 and Unit 2 containment building surface.

The Kc avg determinations were made in sixteen conventional wind directsons referred to true north. An equation is provided for combining a Kc av value with a wind velocity at an elevation of 10m on the meteorological tower to obtain a value of the concentration factor t/(} for each of four release-intake combinations. -The Kc avg values were obtained by applying a Gaussian plume model to each of nsne point source releases distributed uniformly on the surface of one containment building, converting the predicted X/0 values to Kc values for each release, and averaging the nine Kc values to yield Kc avg for 'the diffuse release. The Gaussian model included provisions for initial plume enlargement due to entrapment in the direction-specific building cavities, and employed plume expansion rates corresponding to PG-C stability in an adaptation of the Halitsky jet plume model (Reference 1) for short travel distances, as applied to building wake plumes.

2. Buildin Arran ement Physical site characteristics were extracted from a set of plans, elevation and vertical section drawings dated 5/1/89, provided by AEP.

Figure 1 shows all signiFicant buildings, roof elevations indicated by numbers within the building outline, and locations of the control room intakes. The topography is flat at elevation 608 ft over most of the plant area, but descends to lake elevation 580 ft, over a distance of about 300 ft in a north-south strip at the west edge of the plant. A 1:360 scale (1 in equals 30 ft) cardboard model of the plant was constructed as an aid in visualizing the building complex and for use with a. visual tracer (water mist from an ultrasonic room humidiFier) in in air stream to detect and/or confirm the existence o$ cavities and local plume trajectories.. Figures '2 and 3 show pho'tographs of the model aqd the flow study set-up.

3. Procedure for Estimatin K
a. Divide containment surface area into nine patches of equal area and replace each patch with a single point release. The nine release points correspond to those used in the EBR-II wind tunnel test and are identified by the following symbols:

BU bottom upwind BL '= bottom left side BR = bottom right side 80 = bottom downwind HU = mid-height upwind 7478A020193 OO i 00'500000 0

HL = mid-height left side HR = mid-height right side HD = mid-height downwind T = top

b. The total gas release rate is g; the release rate at each of the release points is:
c. The concentration field near a building is given generally by:

X = Kcg/Au (2) For multiple releases, each release makes the contribution: Xi = Kc,iQi/Au (3)' and the total concentration, for equal values oF g;, becomes:

                                                                                'g 9        9 X    = $    X.= $

9 (K .g./Au) = 1 9 1 i=1 ~i i=1 K,i K (4) Kc i=1 i=1 Au i=1 '1 Au 9 Au where, 9 K i=1 (5) K c,avg

d. The value of Kc ; must be determined separately For each combination of wiind direction, point source release location and intake location. This was done by first sketching the wind field in the building complex with cavity zones,streamlines and wakes determined by a combination of. the information in Hosker
(Reference 2), personal experience, and observations of a visual

~ . tracer moved about the model in the windstream. Kc i was then either calculat'ed or estimated by analytical methods described

4. Tables 1 and 2 show the individual values o'f Kc ; for in.'ection each of the 16X9X4 = 576 combinations, and the values of Kc avg.
e. To combine X/g (sec/m the Kc avg
                            ) =
                                  ~  values with wind frequency data, use:

Aut I (6) 7478A020193 0o i 0'osoooo i

where, A = projected area of containment = 1685m2 ut = wind speed at an average elevation for the complex or about 60 ft above grade (m/s).

4. Calculation of Kc f i Kc i in Equation 5 is obtained from Equation 3 after Xi is determined by an independent calculation using the Gaussian plume model outlined in Table 1. This model includes provisions for partial division of some released material from the plume (Fq), ground reflection (Fr),

entrapment of released material in a building cavity with resulting establishment of a Gaussian wake plume having initial dimensions cd 0 and cd 0 and plume sigma growth according to the Halitsky jet plume model for PG stability C. The choice of PG-C was based on a comparison of predicted values of Kc i using the model in Table 1 against observed values of Kc i in the EBR-II wind tunnel model tests. The 16 figures in Appendix I show drawings of the wind flow patterns for I i. each wind direction used to determine values of Kc Table 2 provides a summary of Kc avg values.

5. References Halitsky, J. (1989): A Bet Plume l1odel for Short Stacks, 3APCA J.

v 39, No. 6, pp. 856-858.

2. Hosker,.R.P., 3r. (1984): Flow and Oiffusion Hear Obstacles.
     .Chapter 7 in Atmospheric Science and Power Production, 0. Randerson, ed., U.S. OOE Pub. DE84005177, HTIS OOE/TIC-27601.

7478A020193 0 0 j 0 0 5 0 0 0 8 2

Uun TABLE 1 ~ PLUME MODEL fOR Kc,i DETERt'1INATION 2 (v/~ ) K c,l.=A i X u

                      ~

A~r2Nd d 2 y z containment projected area = 18,137 ft2 (1685m2) wind speed at 60 ft "above ground Qi release rate at each release location fraction of source entering plume Fr ground reflection = 2 For flat ground

                                           = 3 For     flat   ground plus small    vertical wal 1 0 92 dy             ay I p + 0.66 Ft     X
  " dz             az p + 0.82 Ft       X 0 8 Ft             e0.08 (T-30)

Turbulence class factor = 15.1 for PG-C stability Therefore, e0.08 (15.1 -30) p 304 dy dy p + (0.66)(.304) X 0.92 dz az p + (0.82)(.304) X A 2c 18,137 /2%' 2,887 dy p = dz p = 0 For direct plume impingement on intake and ay p = az p are estimated independently for each wind direction according to building configuration All dimensions in feet.

                     .0 7478A020193 O     J  0 0     so 0083

TABLE 2. Kc av APPROXIHATION FOR A DIFFUSE LEAK PRON TllE COUR NlkLEAR PLANT CONTAINllENT STRUCTURES WITH RECEPTORS AT TKE CONTROL ROON INTAKES Values of Kc ayg Release from Unit 1 Unit 1 Unit 2 Unit 2 Receptor at Intake 1 Intake 2 Intake 1 Intake 2 l9ind Direction (degrees From) 000 1.5 0.5 0 0 022.5 1.3 0.4 0 0.4 045 3.7 0.7 0 0.5 067.5 0.8 0.6 0.6 1.1 090 1.2 0.6 0.4 1.7 112.5 1.6 0.4 0.5 1.3 135 1.3 0.3 1.3 0.9 157. 5 0.4 0.3 1.3 0.3 180 0.2 0 0.6 2.3 202.5 0.1 0 0.1 ' 0 225 0 0 0 247.5 0 0 0 0.1-270 0.7 0 0.2 1.8 292.5 1.8 0.2 0 0.7 315 1.8 0.2 0 0.7 337.5 0 0 0 0 7478A012993 oo" saooag

0 Ci ) Q Q TRUE h!ORTH Pt:AQT" WORTH - 633 lMOF ELEWTlON I C4 gas I 6 S 6 r

                                                   \

NIT OQlT I N I S lNTAK.E5 1 egal

                                                                        ~70

('ToP).

                                'gyp 6%)      GB'K I

678 QRAPF-7I7 44l C$ 3 7dT F 32. &08 sSa U14'iT Z.

                                                  /

UH( T ' lu TAY-E5 III I I I( I I Gc z (hÃTov (roH'$ w4 w FLAT DOWN ',to

                           '0    FLA f 0

i@I Ul FQOIIB 1.( 10-.

                                        $ COK gyp'                             Qp'8       draw  III'

FIGURE 2. PHOTOGRAPHS OF SCALE HOOEL 7478A121492 '<<OOO06 7

                                                 'or

FIGURE 3. PHOTOGRAPHS OF SCALE HOPEL IN HINP STREAtq 7478A121492

APPENDIX I WIND PATTERNS USED TO ESTIHATE Kc i VALUES 7478A121492 00 i 00500086 9

0 r) I 0 0 '.3 0 0 1m& NORTH FLAUNT lJORTH 6ZQ 0 0 0 633 I IC.39 TG?A JCC IC;ZLEK cry'.TRIG, t T J f I QV f~'l

                                                                                                     ~

5

                                                          /f 1

POOF ELECTION R 2C ~ f 38 6 &

                                                                          /                            fOR UNIT   I INVAK.ES-                                    /

yg 770 ('TaP) sO<

                                                                                                           /RAPE 7IT                                                                                &08
                                                 -Whg.C-A'TQS' 18 462 2u OhlIT Z.                                                          f"o  31 IH'(AYES U+I     Q ZLs 7'

7

                                                                                                   /
                                                                                                 /
                                                                                             )(

DO C. COOV IAOW< m FL A1's) vu e A~A

                                                                              %lIHD      OOO IOO F7                                                             J HAL IT 5 YY I'l LIOv. 1992 I

0 0 0 g 0 P 0 8 9

                             '0 "      I     I,; 0           I     0000 TzuE QozTH 923 633 0

OOF ELEVE,TION

                                         ~s QZC 6

OuIT I I 'il IR <(> INTAKES

                                                                          $ 770 ISO 594                                los         c                                                     gmo6 717            I                                                   C3
                                                                                             'L
                                                                                                      &08 418
                                                                            <50     O'Zl LI Ul417 2.

INTAVES I 2R, wg V.% rfl,p Q l l l

                                                                                /
'L r
l. ~

I 1 J'OG LD C. COO J q F'L A;f DOWN LIUCLEAR L ANT WIWD 022. 5 SCA.L E: I IN ~ IOO FT J H SLITS YY oooo 0;g p 8-V. I'L ~OV. 19'lZ 18 ~a~. O'I '-

PL Agr hlORTH --. 633 R.OOF LEVA'TION czC / ~'. 64 gs

                                                                                     /g 640        ~

g g lo'LS g I Galls UhllT / INTAK,ES I (TOP (L / I

                                                                                    <~o LAKE
                                                                                                                   /RAPE 550                G38     6CI     7I7                                                   70j                         &08
                                                                           /

i/, sac r 46'X Ul41 f Z. 50 U HIT 4 . IOTAVE.5 ( g 1@3

                                                                           /$     7~O
                                                                                        'lL a, ~(waar u                  (roPA I

C$ 6 P j ! ln FL AT D M / /'8'g FLAT DOG LO C. COO LIUCLEAR L ANT

                                /     J                                                  Vll< D          046 SCALE:   I IN ~ IOO  FT                                                                     J, H4LITSYY 1

p p I p p g p p p 9 J nuov.is~a

i 633 K, OF EI.ENANTIO 0 g 64 pb

                                                                             /'3 4
                                                                                                                     ~ r
                            !NANAK,ES.                                                         IU f

UhllT l S ( ID lg rr 1AKE QRADF iso @94 @38 aCI r70 &08 I

                                                             ~ ~

0 7d. 4&2 V 14 I 2. 63I TAv

                                                                        !        uI4q
                                                                                                  ~.J I               '1P             7FO
                                                         'X (fhQf70N                   (TOP
                                           .r C$ .

647 FI A7'O. 'IIO FI. A7'0 DOkl LD C. COOK. LIUCLBAR l AN'T WIG 0 Ot'1. 5 SCA.I.E: I IN ~ IOO F T J. HAI.ITSKY

                        ~Q         Q    (     Q Q          g     Q    Q     Q
                                                                                                           '1IJOV.
                                                                                                                     ~9~52,

TRLJE. hlORT H PtP(QT- QORTH 823 IC.38 IMOF ELENA,TION I

                                                              ~,6
                                                   )
                                                     ~+

I 640 al.5 ohio 1 I (

    ~TAK.EQ '

Uhlgl

                                                      /     (

7 70. foe%~ sO 441 463 /RAPE

                                                                                           &08
                  /

5 78. ( VhLLT 2. r I Iu TAY-E,S r I rr ~ I iI II I I

                                                       /K a,c ~ horra~

447, DOkl LD C. COOK. DO&hi 'tO why LIUCLEAR I. ANT 0 w140 090 100 FT J, HQLITSVY. 0 0 0 lZ klQV 19'3Z l 0 O 3 q=y. IBAD~. n)5

a I 0 0 moE f (3 QozTH 0 0 f 0 0

                                                                                    . PLWQT     HQRT.H     -"-

825 I I 633 p.OOF ELEVATION 64 639

                                                               '1         IP   lJhllT uuIT I
                                                                  ~

INTAICES.- i(g g C7 sO LA<E S38 e6I -C&3- qmoe I SSO @94 7I7 707 MS

                                                                                      .   'SSO 2

l41T Z.

                                                         <~so UI4IT      'L i      vES                      I
                                               ~ wN        )(I III    I (roe>'3I 770 2 IJV
                                                          ~'1 (BffBs 647 DOkl LD C. COOV.

0 gower DOVJ hl LIUCLEAR l. ANT gl il),I 0 el 4 D 11'L. I IN lCIO FT J HRLITSlCY

                                                                                                           ~

5'CALE: 0 0 I 0 0 5 0 0 0 9 4 i2~ov. levy PCy. S& Jhw ."V~K

p p f Qi Q ii ) fJ U TRUE hlORTH PI.AQT CNORTH. ROOF ELEVATION 6

                                                                                              +

i ' siI UNIT I I INTA',ES-( foP sO 'A<E qaape SS0 638 CQ 7I7 eel c@S Y07 roe 5 7S. UhlIT Z. 6/0 INTA'S J( ili GQ 'l (fRlgOH 6 DOkl LD C. COOK. DOwiI FlAT NUCLEAR L ANT o, g) I 0 lr) w lND .1 35 SCA.LE: I IN ~ 100 Fl J HlIiLIT SKY

                                                                                                     ~

0 0 ) 0 0 5 0 0 0 9 5 lx~oii.le~Z e.CV. I8 Se~ I">95

633 0 rOOF F.LE~A,TION

                                                           ~zC    +           I 64 p       ', 638                 6 5

6

                                                                         >g
                                                                     ~   V@IT   I OMIT  I IhlTAK,E5 41 10

('ToP) fV LAKE lsd 550 594 @38 aCI jl7 64I s3 7orh Co18. 650 UNIT I

                                                  ,I I Ili 770
                                                 ~z (eetTav                   (TOI C

OC DOkl LD C. COO o FLI1 V Ol I DOWN '0 FLAT MuCI.aAR I. AT Ill I/) ~ WIWD I57.~ SCA.LE: I Ihl ~ 100 FY J. HALITSVY 0 Q Q~ 6, lJOV. I992 Q Q Q RCV. IB JqV.taS 3 Q 9 6

TRUE hlORTH PI;A,qt AORTA

                                                               -~          8'29 R,OOF     ELEVATION 6 Co 4

I'I g UhllT I INTAK.E.0; IL 0 ( foP GB1 sO LAY.e. SS0 7I7 707 418. I 2D van Z.

                                           <~so         /

631 INTAVF5 EYI4JT~ 770 (T'OP) me (hvrtq~ C$ 40 o DOkl LD C. C OK. QOe4 w. DOWhl HUClEAR L ANT ll) WlAD 180 SCA,LE: I IN J HALITSYY

                                                                                  ~

IZ QOV. I9'3Z RGV LS 5htU ~

                                                                                           "'.~

PLAQUE TRIS E hlORTH - 'AORTA G29 633 OOF H.ECTION Usual o c 'L5 sII GAIT T I I INTA KES

                                                                             ~

l7O ('ToP) i GB1 esO le G. 67 C;RAP iso 717 .wc I c 707 &08

                                                                               ~
                                                                                 <SO 0 f41 T   2.

650 631 lu TAV ES 0 tD I 0 C DOkl L D C. COO Y FI AT DOWN FLAT LI CLEAR L ANT al '0 0) WiXlO 102.5 SCA,L E.: I IN 100 F 7 J H QL 1 T 5 Y Y nuov lssz

                                                                                              ~

p p I p p g p p p g g

                ~ ~

GQ 3 I 009i E- NOIZjH PVP qt'-QORTH ---- 633 OOF GLED TION

                                                                                              ./,/
                                                                                               /

6 6 l /~

                                                                           //           I UNIT   I I j   'l         ,
                                                          /c.  'olT /I I

INTA'.ES / /+~so' 'TOP'T

                                                                   /

GB'L / /p sO

                                                                                                         /PAPE
@94       s&S         jl7        44I    C     3                                   70T             D3        &08 1

C '78. O D Vl41T Z. I .'2L UAI SSI I

                                                                                                     /

14 TAY-E.S' II\ I I I

                                                                           >7/0 ~

zv ~ (toe> 7

                             /             /

y DOkl LD C. COOK. NUCLEAR L ANT

   . T-LAZ       o m Ql r

VlIQO  %~5 SCA,L E: I IN J. H4LITSXY IZ wOV. Iea2, C.i v IS Jwu. r>gp

I, I PLAQT hlORTH

                                     . r..

6' 0 IC.39 63) P IL OhllT I IhlTAK.ES 'T7O lu t ToP) GSX I LAKE r 678; QRAPF- %0 594 C 3~ &701 &08 418, i@6% L U u>Yz. 5 31 a TAV ES 3'70 y4jra~ G$ I 647 0 Ib 4I Dou ~ FIAT. DOW hl '0 FI.AT DON LD C. COO BOUCLE R L ANT LLI WIQD 241.C SCALE: I N ~ 100 FT 0 QJ, HALITSYY 0 0 + 0 Q ) Iz >Jov. 1952 a 0 Q ) Q.-V. Ig 3QP. I'l'35

N 5'29 833

                                                                      -i fr)             g.       p9
                                                                           /J
                                                                                         /                     gOOF    ELG YATION   .

jp 4l<< ~

                                                                 ~
                                                                     @40 1

I yS ~ M Vali A~ LIhllT I: te 663 INTAK.ES L~ g

                                                                                                     ~

I r,i  ;/ r LAKE, 676 /RAPE 550 594 4@I 4Q 3 .-.Y 7or &oB 0 q ~ Co18. 48'2 85o 02 I UI41T 2. ri 50  ! 631 I UgI &3 >+3 Iu TAV E,S I r[ I CCZ( ill T 0V

                                                                                     ~5~g I
                                                                                               /  (

770' OP> I Cf DOkl LD C. COO QO'4'k ~ Ql F'L A,T DO%Ill IlO

                                                         '0    FLA<                                      LI0 ClF.AR I. ANT bl mwQ '270 SCAlE:      I IN ~  100 FT                                                                       J, HALIT'SKY I L QOV. I992.

1 0 I 0 0 5 0 0 l 0 I ev ~sJ~~}}