ML17335A150

From kanterella
Jump to navigation Jump to search
Calculation NEMP950501JEW, Rhr,Si,Cts - NPSH Available.
ML17335A150
Person / Time
Site: Cook  American Electric Power icon.png
Issue date: 10/22/1997
From: Wagner J
INDIANA MICHIGAN POWER CO. (FORMERLY INDIANA & MICHIG
To:
Shared Package
ML17335A147 List:
References
NEMP950501JEW, NUDOCS 9808100100
Download: ML17335A150 (35)


Text

NUCLEAR ENGINEERING DEPARTMENT

( ) Calculation Cover Sheet Cook Nuclear Plant f7 NEMP SECTION SHEET 1 OF, ATTACHMENTS

~2 CALCULATION No. NEMP950501JEW INDIANA MICHIGAN POWER COMPANY SAFETY RELATED YES Y NO UNIT No. 12 SYSTEM R4 E4C'!~EEeED SAFBG'ALCULATED BY: /8/W X DATE SI CTS NPSH Available TITLE RHR VERIFIED BY: TY/fOi A

'ATE RFC/MM/PM/PR/CR/TM No. N A (I FILE LOCATION HEMP CALCS APPROVED BY: ~l(h~

DATE CALCULATION DESCRIPTION: Re l ~

uest for Severe Accident set oint RWST water level necessar to su 1 ade uate NPSH for the CTS SI 8I RHR Pum s. Contai nt Sum water level necessar to rovi de ade uate NPSH for the CTS RHR PUMPS.

gjLSQQQQ g}t ~+ )0 'Zz. 47 ~$7~

me~ Veuo7&c - db iw ~g ~ 9 I g ~ g7-2LZZ METHOD OF VERIFICATION: ALTERNATE CALCULATION DESIGN REVIEN ./IY.k 'd/fg I

REVISION Calculated Veri fled Approved HO. REASON FOR CHANGE 8 Date 8 Oate 8 Oate i%7 QZrSN g 7o AS-~~ELM acr ~

cu 8('g ~'~<~

9808i00i00 9808i7 PDR ADOCK 050003i5 H PDR

NEMP950501JEW Sheet 2 of 7

)4~ 0/$ /0'4 PURPOSE: CASE 1) Injection Phase Determine the Refueling Water Storage Tank (RWST) water level necessary to supply adequate NPSH for the (A) Containment spray (CTS) Pumps, (B) Safety Injection (SI) Pumps and (C)Residual Heat Removal(RHR) Pumps. This calculation is being performed in response to R.B.Bennett's memo dated March 6,1995.

CASE 2) Recirculation Phase Determine the Containment sump water level necessary to supply adequate NPSH for the CTS (A) and RHR (B) Pumps.

RESULTS: CASE 1) Injection Phase RWST LEVEL PUMP NO.

PUMP NAME FLOW (GPM)

NPSH ~

(FEET)

NPSH i (FEET)

REQUIRED (ELEVATION)

(A) PP-9 CTS 3200 46.06 9 610.25 FEET (B) PP-26 SI 650 31. 75 22 610.25 FEET (C) PP-35 RHR 4500 45.22 19 610.25 FEET CASE 2) Recirculation Phase CONTAINMENT PUMP PUMP FLOW NPSH ~ NPSH i SUMP LEVEL NO. NAME (GPM) (FEET) (FEET) (ELEVATION)

(A) PP-9 CTS 3200 23.39 9 595.5 Feet (B) PP-35 RHR 4500 21.89 595.5 FEET Note:

Although the NPSH determined by the calculation is adequate, the calculation does/did not account for vortexing conditions. Caution should be taken by the operator in severe conditions when the level approaches the general level of the top of the outlet pipe. Under these conditions any unusual fluctuations in pump flow, pressure, vibration, and/or driver power are indication of vortexing. When this occurs the pump flow should be throttled until smooth operation is restored, observing the minimum flow requirements, or operation should be terminated.

ASSUMPTIONS:

water level is at minimum elevation (bottom of 611.25'24" Suction Pipe Center Line) 1'radius pipe)

1) RWST of 24" pipe) 610.25'See reference 5A).
2) Temperature of water in the RWST is 100 F (For injection phase T = 85'F based on RWST temp low alarm (Ref. 7) + 15'F conservatism). Vapor pressure of water at 100 'F is 2.21

.94925 PSI x 2.323 ft/lb/in (conversion factor for water at ft 100 F)

% ~

1

NEMP950501JEW Sheet 3 of 7 g.g ~ +/g p)a

3) Temperature of water in containment sump is 190'F (for recirculation phase) based on Unit 2 FSAR figure 14.3.4-4 (containment integrity analysis) vapor pressure of water at 190 'F is 22.285 ft = 9.34 PSI x 2.386 ft/lb/in (conversion factor for water at 190 'F). Reference 6')

Pressure on RWST is 0 psig (14.7 PSIA 33.96 Feet)

5) For the purpose of this calculation (Severe accident analysis) it is assumed that only one RHR pump is in operation, during the injection phase, and all other safety pumps are running.
6) Pressure in containment is 0 psig (14.7 PSIA 33.96 feet.

INPUTS: 1) CTS Pump Centerline Elevation = 574'-6"(ref 5C)

2) SI.Pump Centerline Elevation = 589'-2 1/2"(ref 5D)
3) RHR Pump Centerline Elevation = 575'-0"(ref 5E)
4) Centerline of 24" SI Outlet from RWST = 611'-3" (ref 5A)
5) Containment sump water elevation 595.5'Centerline of 24" recirc sump suction line) See reference 5B.
6) H (Head Loss due to Friction in piping and fittings) for the following cases is taken from reference 4:

CASE 1A .H, = 21.44 feet CASE 1B H = 21.04 feet CASE 2A H, = 9.29 feet

7) H (Head Loss due to Friction in piping and fittings) for CASE CASE 1C and CASE 2B are as follows:

CASE 1C H = 21.78 feet (Attachment 1)

CASE 2B H, = 10.29 feet (Attachment 2)

The H, for these two cases could not be taken from reference 4 because the assumptions were not the same as for this calculation.

~ ~

NEMP950501JEW Sheet 4 of 7 yC ~ p/gf yd CALCULATION:

PSH=H H+ H H where':

H, = Absolute pressure (in feet of liquid being pumped) on the surface of the liquid supply level.

H = The head in feet corresponding to the vapor pressure of the liquid at the temperature being pumped.

H, Stat'ic head in feet that the liquid supply'evel is above or below the pump centerline or impeller eye.

H All suction line losses(in feet) including entrance losses and friction losses through pipe, valves and fittings, etc.

Friction is determined with both trains of SI, RHR, CC and CTS pumps operating, thus providing worst case (highest) friction values.

CASE 1A CTS Pump (Suction source RWST)

Given:

H, = 14.7 PSIA, 33.96 Feet (RWST open to atmosphere)

H = .95 psia, 2.21 Feet (Vapor pressure of water at 100'F from Ref.6 see assumption 2 for basis of 100'F temperature)

H = 610.25 (assumption 1) 574.5 (input 1) 35.75 Feet H, = 21.44 Feet 9 3200 gpm (input. 6)

NPSH, = 33.96 2.21 + 35.75 21.44 Feet 46.06 Feet 9 3200 gpm NPSH , , = 9 Feet 9 3200 gpm ( see reference 1)

NEMP950501JEW Sheet 5 of 7 P.a Ps'/~

CASE 1B SI Pump (Suction source RWST)

Given:

H, = 14.7 PSIA, 33.96 Feet (RWST open to atmosphere)

H = .95 psia, 2.21 Feet (Vapor pressure of water at 100 F from Ref.6 see assumption 2 for basis of 100'F temperature)

H = 610.25 (assumption 1) 589.208 (input 2) 21.04 Feet H = 21.04 Feet 9 650 gpm (input 6)

NPSH fy yy 33 96 2 2 1 + 2 1 04 2 1 04 Feet

31. 75 Feet 9 650 gpm azgUZaZD

= 22 Feet 9 650 gpm ( see reference 3)

CASE 1C RHR Pump (Suction source RWST)

Given:

H, = 14.7 PSIA, 33.96 Feet (RWST open to atmosphere)

Hvp'a .95 psia, 2.21 Feet (Vapor pressure of water at 100 F from Ref.6 see assumption 2 for basis of 100 F temperature)

H, 610.25 '(assumption 1) 575 (input 3) 35.25 Feet H~,

= 21.78 Feet 6 4500 gpm (input 7)

NPSH f~ ~~ 33 96 2 2 1 + 35 25 2 1 78 45.22 Feet 9 4500 gpm NPSH , = 19 Feet 9 4500 gpm ( see reference 2)

0 1)

C CASE 2A CTS Given H= 9 CASE 2B RHR Given

(

H,=14.7 H,=9.3 4

~ 29 I

( SUCT ON SOURCE CONTA NMENT SUMP)

= 1 4 . 7 PS IA, 3 3 . 9 6 H,=9.3 4 psia,22.2 H= 5 9 5 reference

~ 5 I

Feet

= 21 Feet

( input Feet NPSH,zybz33.96 22.285+21 NPSH,,= 9

(

85 input 6 )

23 . 39 Feet Feet ft 9 3 2 0 SUCT ON SOURCE CONTAINMENT SUMP)

PS IA,33.9 6 Feet ps ia,22.2 85 I

( assumption Feet (assumption 5 ) 57 4 . 5 0gpm(see Feet Feet 3)

(

6) 9.2 9 Feet (assumption (as 6)

Input sumption 4) 1)

NEMP95 05 0 1 JEW Sheet 6of7 e/- I <

H.,=595.5 Feet (as sumption 3) 5 7 5 Feet ( input 3) 20.5 Feet (see assumption 3')

H= 10 ~ 29 Feet' input 7)

NPSH,=33.96"-22.285+20.5 10.2 9 Feet 2 1 . 8 9 ft NPSH~ggz~D= 19 Feet 6 4 5 0 0gpm(secre ference2)

A NEMP950501JEW Sheet 7 of 7 The CALCULATION DATA SHEETS for the above cases 1C and 2B are included as Attachments 1 and 2) . This data was compiled and entered into an INPUT file for the HFLC5 software. The INPUT data is shown on the above'ttachments right before the HFLC5 results.

The input file includes the following:

Line 1: Fluid Temperature (degrees F), Pipe segment, last segment Roughness (ft), 1st Subsequent lines in the input provides the following data for each of the segments identified in Line l.

Design Flow (gpm), Min. Flow, Max. Flow,. Flow Increment, Pipe I.D., Pipe Length (ft), Total K Factors, Total L/D Factors The HFLC5 software calculates the total friction loss in feet of each pipe segment for the range of flows provided. The output of the software program for cases 1C and 2B are shown in Attachment 1 and 2.

REFERENCES:

1) Byron Jackson Pump performance curve T-32913-1

) Ingersoll-Rand company Pump performance curve No. N-318-(typical for, unit 1 and 2) in the Residual Heat Removal Pump (PP-35) instruction manual.

3) Pacific Pump performance curve 34554D (typical for unit 1 and
2) in Safety Injection pump (PP-26) instruction manual.

M.J.Treza calculation dated 6/16/72 located in NEMP Nuclear Safeguards calculation file.

5) Drawings:

A) 2-5353-10 24" SI outlet from RWST details.

B) 1-2-5338-7 Containment sump RHR Suction line details.

C) 2-CTS-13 CTS Pump centerline D) 2-SI-10 (sh. 1 of 2) SI Pump centerline E) 2-RH-15(sh.l of 2) RHR Punp centerline

6) Ingersoll-Dresser Pumps Cameron Hydraulic Data ,18th edition.
7) System Description DCC-NEMH104 Rev 7. dated May- 14, 1993.
8) HFLC5 Pipe Friction Calculation Software. This software has preprogrammed resistance factors for piping, various fittings, and valves other than diaphragm valves. (Source: HEPCAT File 13.22.2.1 for Software QA Information)

pc ppg5~o )+g+

+ a.4~e ~+ J

~ a NPSHRHR l oslo PIPE PAICTION CALC INPUT FILE IS-RHRRWST

'\

XNPUT DATA FOR THE HFLC5 SYS. RES. CALC.

C SXSTS OF THE FOLLOWING DATA:

T TEMPERTURE DEG F E PIPE ABSOLUTE ROUGHNESS (FT.)

N FIRST PIPE SEGMENT NUMBER Nl LAST PIPE SEGMENT NUMBER QDES DESIGN FLOW THRU PIPE SEGMENT (GPM)

QMIN MXNIMUM FLOW THRU PIPE SEGMENT (GPM)

QMAZ MAXIMUM FLOW THRU PIPE SEGMENT (GPM)

QDELT FLOW INCREMENT THRU PXPE SEGMENT (GPM)

D PIPE SEGMENT INTERNAL DIA. (IN.)

L PIPE SEGMENT LENGTH (FT.)

K PIPE SEGMENT K FACTORS L/D PIPE SEGMENT L/D FACTORS FOLLOWING XS YOUR INPUT DATA T E N Nl 100. 00 . 00015 1 8 QDES QMlN QMAX QDELT D L K L/D 13300.00 13300.00 13300.00 .00 23.250 249.83 .50 205.00 12000.00 12000.00 12000.00 .00 23.250 6.00 .00 .00 12000.00 12000.00 12000.00 .00 23.250 16.00 .00 60.00 4500.00 4500.00 4500.00 .00 13.250 2.50 .50 36.00 00.00 4500.00 4500.00 .00 11.938 .00 .94 71.00 0.00 4500.00 4500.00 .00 13.124 19.75 .00 140.00 0.00 4500.00 4500.00 .00 13.124 31.11 .00 70.00 4500.00 4500.00 4500.00 .00 13.124 3.33 .00 20.00 FOLLOWING IS HFLC5 RESULTS WATER TEMP.(F) 100.00 DENSITY(LBM/CUFT) 62.00 ABS VISCOSITY(LBM/SEC/FT) .460533E-03 PIPE ABS ROUGHNESS(FT) .150000E-03 PIPE SEG NO 1 PIPE DIA(ID-IN) = 23.250 FLOW-GPM VEL(FPS) LHD(FT) KHD(FT) LDHD(FT) TOT HD(FT) 13300.0 10.05 2.48 .78 3.94 7.20 PIPE SEG NO 2 PIPE DIA(XD-IN) = 23.250 FLOW-GPM VEL(FPS) LHD(FT) KHD(FT) LDHD(FT) TOT HD(FT) 12000.0 9.07 .05 .00 .00 .05 PXPE SEG NO 3 PIPE DIA(ID-IN) = 23 '50 FLOW-GPM VEL(FPS) LHD(FT) KHD(FT) LDHD(FT) TOT HD(FT) 12000.0 9.07 .13 .00 .94 1.07 PIPE SEG NO 4 PIPE DIA(ID-IN) = 13.250 W-GPM VEL(FPS) LHD(FT) KHD(FT) LDHD(FT) TOT HD(FT) 00.0 10.47 .05 .85 .84 1.74 PIPE SEG NO 5 PXPE DIA(ID-IN) = 11.938 FLOW-GPM VEL(FPS) LHD(FT) KHD(FT) LDHD(FT) TOT HD(FT)

gf~p 9 y p~ol~c~

.4,500, Q 12. 90 .00 2.43 2.53 4.96 &Bed n e~+ L p~~

PIPE SEG NO 6 PIPE DIA(ID-IN) = 13.124 FLOW-GPM VEL(FPS) LHD(FT) KHD(FT) LDHD(FT) TOT HD(FT) 0.0 10.67 .44 .00 3.38 3.82 P SEG NO 7 PIPE DIA(ID-IN) =, 13.124 FLOW-GPM VEL(FPS) LHD(FT) KHD(FT) LDHD(FT) TOT HD(FT) 4500.0 10.67 .69 .00 1."69 2.38 PIPE SEG NO 8 PIPE DIA(ID-IN) = 13.124 FLOW-GPM VEL(FPS) LHD(FT) KHD(FT) LDHD(FT) TOT HD(FT) 4500.0 10.67 .07 .00 .48 .56 REYNOLDS NUMBER FRICTION FACTOR TABLE PIPE SEG PES. FLOW RE.NO. F-FACTOR HEAD LOSS 1 13300.0 2621750.0 .0122 7.20 2 12000.0 2365488.0 .0123 .05 3 12000.0 2365488.0 .0123 1.07 4 4500.0 1556536.0 .0136 1.74 5 4500.0 1727601.0 .0138 4.96 6 4500.0 1571480.0 .0136 3.82 7 4500.0 1571480.0 .0136 2.38 8 4500.0 1571480.0 .0136 .56

~

0 0

I II 5 I-HID I IUN L'ALL'ULAI IL/N ~. I STREET ~ OF ~o DATA SHEETS SYS~ UNIT:

PIP'EGMENTTO 4 FROM: PPc3 m A. Q3+ 7 +'a Ri "" Z' 8 k6 REF.: 9.->1- 9~. Zk I.i~~ "4-,~-) Io-W3a 0.

/

) X->D>4 I Z.-~8~ 9--+f~~,

a I ~ 4 FLUID TEMP (4F): AD PIPE ABS. ROUGHNESS (FT) ~ ~go I~ PIPE SEGMENT NUMBER FLOW: L&3M IIENIMUMFLOW: I~9 4 4 MAXIMUMFLOW: /S9 oo OFLOW INUREMENT: 'IEEION Q dil -9 Il IJ WIPE I.D. (IN): ~ ~.~

~ PIPEEL- TOEL: 6 ~ '7 / P STRAIGHT PIPE LENGTHS FITTINGS NUMBER K OR L/D z VD GATE VALVE 13 GLOBE VALVE 340 BUTTERFLY VALVE 40 SWING CHECK 135 90'TD. ELBOW 30 90'.R. ELBOW 50 IBEX 90'.R. ELBOW 20 45'TD. ELBOW 16 45'.R. ELBOW 26 180'LOSE RETURN 50 STD. TE" RUN 20 STD. TEE BRANCH 60

  • MITRE BENDS 1Z (those)

<<LATERAL/ OUTLET 1.0 w LATERAL/ INLE i 0.5 w STRAIGHT RUN LATERAL 0.15 w PIPE ENTR PROJ. INWD. 0.78 SHARP EDGE 0.50 WELL ROUND 0.04 w PIPE EXIT SHARP EDGE 1.0 w ORIFiCE (Q =,61) 2.69 RF/6 w SUDDEN CONTRACTION + .5(1-P) w SUDDEN INCREASE + (1- [PE w VALVE, MISCELLANEOUS 891A d/ 2 MISC.

TOTALS

'g OQ 4 ITEMS ARE "K"VALUES ONLY 4 BASED ON SMALLER PIPE DIAMETER '

B == dlD RF = RECOVERY FACTOR

rirr min <<vi~ vol vvLpl I l%JI'~ ~~I PLANT o DATA SHEETS BY DATE

~ ~

pCnf'ZoS-c i ~eU SYSTEMi 6 t" ~ .

r UNIT:

m .-ia~q1- /~,,~., <<,-...,..;t,<

~ c col PIPE SFGMEHT TO 5 FROM: I c e i~

~

FLUID TEMP ('F): R~

~ PIPE ABS. ROUGHNESS (FT): ~ id'  !

r PIPE SEGMENT NUMBER bESIGN FLOW: />>oo MINIMUMFLOW: i i.~v MAXIMUMFLOW INCREMENT:

'FLOW i h PIPE EI IPE I.D. (IN):

STRAIGHT PIPE LENGTHS FITTINGS NUMBER 'K OR L/D zK x L/D GATE VALVE GLOBE VALVE 340 BIJITERFLY VALVE 40 SWING CHECK 135 90'TD. ELBOW 30 90'.R. ELBOW 50 90'.R. ELBOW 20 45'TD. ELBOW 16 45'.R. ELBOW 26 180'LOSE RETVRN 50 STD. TEE RUN 20 STD. TEE BRANCH 60

  • MITRE BEHDS 1Z (1 nose)

~ LATERAL/ OUTLEi 1.0 LATERAL'NLEi 0.5

  • STRAIGHT RUN LATERAL 0.15
  • PIPE EHTR PROJ. INWD. 0.78 SHARP EDGE 0.50 WELL ROUND o.o4

~ PIPE EXIT SHARP EDGE 1.0

  • ORIFICE ((g = .61) 2.69 RF/6

~ SUDDEH CONTRACTION + .5(1-P)

~ SVDDEH INCREASE + (1-

  • VALVE, MISCELLANEOVS 8*)'91Ad/0 2

MISC.

TOTALS o P o,d

~ iTEMS ARE B = d/D

~ VALUES ONLY + BASED ON SMALLER PiPE DIAMErER RF = RECOVERY FACTOR

S ~ ~

P('c S r1rr rwL <<un lvHLLrV~Il'LJI'~

DATA SHEETS Re- I QclCA I PLANT BY~

IVP.~P 9 s

IJ(

DATE K

~/

KCX5'O (~LA1 SYSTEM:

PIP 'SEGMENTTOAFROM: FC:: - l~~ <<;,0>' r; ~-;.< . ~ h EF.:

FLUID TEMP ('F): ~R PIPE ASS. ROUGHNESS (FD:, o o PIPE SEGMENT NUMBER '

La. "MINIMUMFLOW: I S:~- "MA)UMUMFLOW .. u ~FLOW INCREMENT.

DESIGN FLOW:

'IPE sP

%PE I.D. EN): ~ EL: TO EL.:

STRAIGHT PIPE LENGTHS FITTlNGS NUMBER K OR L/D

/g O GATE VALVE GLOBE VALVE 340 BUTTERFLY VALVE 40 SWING CHECK 'I35 90'TD. ELBOW 30 90'.R. ELBOW 50 90'.R. ELBOW 20 45'TD. ELBOW 45'.R. ELBOW 26 180'LOSE RETURN 50 STD. TEE RUN 20 STD. TEE BRANCH 60 w MITRE BENDS 12 (1WOSe) w LATERAL+ OUTLET 1 .0

  • LATERAL'NLET 0.5

~ STRAIGHT RUN LATERAL 0.15 PIPE ENTR PROJ. INWD. 0.78 SHARP EDGE 0.50 WELL ROUND 0.04

~ PIPE EXIT SHARP EDGE 1.0

  • ORIFICE (Q = .61) 2.69 RF/0 w SUDDEN CONTRACTION + .5(1-6F()

w SUDDEN INCREASE + (1- GEP

~ VALVE, MISCELLANEOUS 891.4 d/Q 2 MISC.

TOTALS U s ITEMS ARE "K"VALUES ONLY + BASED ON SMALLER PIPE DlAMETER 8 = d/D RF = RECOVERY FACTOR

rirc rlllvl lvlx vol vvQpl DATA SHEETS

~ Ivss ~Isr' PLANT BY

~ v<

DATE K

S ~ r pl8+II gZ~o ~Q SYSTEM:

Etc-a UNIT:

PIPE SEGMENT TO 4 FROM:

I-5 Vlb I

. Q.- +/5 F'ID TEMF ('F): F'I FIFE ASS. ROUGHNESS (FI):, MO5 PIPE SEGMENT NUMBER

%REIGN FLOW: M>CA MINIMUMFLOW: bIIIAXIMUMR.OW: O'E ~ FI.OW INCREMENT:

WIPE I.D. (IN): PIPE EI: ~~:" '-"'O EL:

STRAIGHT PIPE LENGTHS FITllNGS NUMBER K OR LJD zK GATE VALVE GLOBE VALVE 340 BUTTERFLY VALVE 40 SWING CHECK 135 90'TD. ELBOW 30 90'.R. ELBOW 50 90'.R. ELBOW I 20 45'TD. ELBOW / 16 45'.R. ELBOW 26 180'LOSE RETURN 50 STD. TEE RUN 20 STD. TEE BRANCH w MITRE BENDS 1Z (1wose) w LATERAL+ OUTLET 1,0

. LATERAL'NLET 0.5 w STRAIGHT RUN LATERAL 0.15 PIPE ENTR PROJ. INWD. 0.78 SHARP EDGE 0$ 0 WELL ROUND o.oa

~ PIPE EXIT SHARP EDGE 'I.o w ORIFICE (Cg = .61) 2.69 RF/8 w SUDDEN CONTRACTION + .5(1-P) w SUDDEN INCREASE + (1- O'P w VALVE, MISCELLANEOUS 891.4 d I 2 MISC.

TOTALS g

s ITEMS ARE "K"VALUES ONLY + BASED ON SMALLER PIPE DIAMETER 8 = d/D RF = RECOVERY FACTOR

clr 0, Alv I Ivie vries 2 vv~ s sva ~

PLANT ec K DATA SHEETS BY DATE

~ ~ r Sd moo ar-'4 P

SYSTEM: UNIT:

P IPESEGMENTTO& FROM: l -rom~ / iu v:'

r h ~

' .V Sr EF.:

FLUID TEMP ('F): +~ PIPE ABS. ROUGHNESS (FI) ~ g ~~ o i I ~~

PIPE SEGMENT NUMBER IIESIGN FLOW: + 'INIMUMFLOW: ~SO 4ANMUMFLOW: OFLOW INCREMENT:

/~

WIPE LD. gN): PIPE EI M'f/ W TQEI ~ .r ~/ l STRAIGHT PIPE LENGTHS FITTINGS NUMBER K OR L/0 GATE VALVE GLOBE VALVE 340 B UITERFLYVALVE 40 SWING CHECK 90'TD. ELBOW 30 90'.R. ELBOW 50 90'.R. ELBOW 20 45'TD. ELBOW 16 45'.R. ELBOW 180'LOSE RETURN 50 STD. TEE RUN 20 STD. TEF BRANCH w MITRE BENDS 12 (1WOSe)

  • LATERAL+ OUTLET
  • LATERAL/ INLET 0.5 w STRAIGHT RUN LATERAL 0.15 w PIPE ENTR PROJ. INWD. 0.78 SHARP EDGE 0.50 WELL ROUND 0.04 w PIPE EXIT SHARP EDGE 1.0
  • ORIFICE(Q = .61) 2.69 RF/8 SUDDEN CONTRACTION /I U+ l2) .5(1-lP) o'tQ w SUDDEN INCREASE ~ + (1- 02) w VALVE, MISCELLANEOUS 891.4 d / 2 MISC.

/1W 'FQ CIA=2 ) I 2h 5 I -~W.S /~.~E i~ ~=).'~II =S~: /

TOTALS U "', oe '"I

~ ITEMS ARE "lC'ALUES ONLY + BASEO ON SMALLER PIPE OIAMETER B = dlD RF = RECOVERY FACTOR

~ ~

r <rr ravox i ec DATA SHEETS vv~ <<vi~ ~. }

Oner(

PLANT

~~ Vg EP K

~~

to I

.i 5~I 2Bn'l'B

~r-~

SYSTEM: UNIT:

'IPE SEGMENT TO 4 FROM: t I rr ~

D EF - L- ~"=-0 FLUID TEMP ('Fj:~ > '.

PIPE ASS. ROUGHNESS r'5~a (FU: PIPE SEGMENT NUMBER

<>,OFLOW INCREMENT: '

'5 qIESIGN FLOW: ~ Ii(INIMUMFLOW: IIUDUMUMFLOW ~

'blPE I,D. (IN) ~ i > s l~ > PIPE EI TO EL s +MD, P rg STRAIGHT PIPE LENGTHS FITTINGS NUMBER 'K OR L/D xK x L/D GATE VALVE GLOBE VALVE 340

' ..' BUTTERFLY VALVE ao

} L/.

SWING CHECK 135 90'TD. ELBOW 30 90'.R. ELBOW 90'.R. ELBOW 20 45'TD. ELBOW 45'.R. ELBOW 26'0 180 CLOSE RETURN STD. TEE RUN 20 STD. TEE BRANCH

  • MITRE BENDS 12 (1wose)
  • LATERAL/ OUTLET 1.0
  • LATERAL/ INLET 0.5
  • STRAIGHT RUN LATERAL 0.15 w PIPE ENTR PROJ. INWD. 0.78 SHARP EDGE 0.50 WELL ROUND o.oa r

w PIPE EXIT SHARP EDGE 1.0

  • ORIFICE (IO = .61) 2.69 RF/8 w SUDDEN CONTRACTION + .5(1-P) w SUDDEN INCREASE + (1-G')'91A 4

w VALVE, MISCELLANEOUS d /r2 MISC.

TOTALS U' f if'

!TERS ARE "K"VALUES ONLY U'

BASED ON SMALLER P!PE DIAMETER 8 = d/D RF = RECOVERY FACTOR

~ ~

i t ICI i AIVI iUI'l VR4VV4n I IVIES all i@A &I H:l

~

DATA SHEETS BY DATE p W 16 ~~lar=~

SYRIA i r ~5 UNIT:

PIPF SEGM'ENTTO 4 FROM: Hp'~ ~~-~ ~'inc sun.,)

4-S> z-s-~/s

'IPE EF.:

FL IO TEMP ('F) ~

PIPE ABS. ROUGHNESS(FT): .< ~ ~ >> PIPE SEGMENT NUMBER ESIGN FLOW: INIMUMFLOW: 4 "w %HA%MUM FLOW: ~ v oa FLOW INCREMENT:

WIPE LD. (IN): ]3 /o-JR EI: .-'-" ~~< TO EL:

STRAIGHT PIPE LENGTHS FITTINGS NUMBER K OR L/D xK x UD

/ q g/

GATE VALVE (<<' - S /' .

'7 c) GLOBE VALVE 340 BUTTERFLY VALVE 40'35 SWING CHECK 90'TD. ELBOW 30 90'.R. ELBOW 50 90'.R. ELBOW 20 45'TD. ELBOW 16 45'.R. ELBOW 180'LOSE RETURN 50 STD. TEE RUN 20 STD. TEE BRANCH 60

~ MITRE BENDS 1.2 (1wose)

<<LATERAL/ OUTLET 1.0

~ LATERAL/ INLE i 0.5

~ STRAIGHT RUN LATERAL 0.15 PIPE ENTR PROJ. INWD. 0.78 SHARP EDGE 0.50

  • " " WELL ROUND o.oa

~ PIPE EXIT SHARP EDGE 1.0

  • ORIFICE(Cg = .61) 2.69 RF/8 SUDDEN CONTRACTION + .5(1-Pj

~ SUDDEN INCREASE + (1- 0

~ VALVE, MISCELLANEOUS d/C

)'91A 2

MISC.

go, TOTALS w

) I/5

~ ITEMS ARE "K"VALUES ONLY + BASED ON SMALLER PlPE DlAMETER B =d/D RF = RECOVERY FACTOR

I e' 0

~ ~ ~ ~ ~ ~ LrM ~ rMr % M~r M>> ~ ~ ~ ~

Co b PLANT DATA SHEETS 1

r

~fUNIT:950$ o~g P

SYSTEM:

'PIPE'SEGMENT TO 5 FROM:

+p(-u m f LIEF Ic ~ 8m IFCI e HI2. Pd~P Q.F D EF.:

FLUI ~P ('F): ~ > PIPE ABS. ROUGHNESS(FT): . ', u I 5 PIPE SEGMENT NUMBER 8 tlEMGN FLOW: U>

IIIINIMUMFLOW: Fr "" MAXIMUM FLOW .. tF'<- z> OR OW INCREMENT n -o WIPEI.D. (IN): ~ > iIm PIPE EL: F~D- O TOEI: <?W STRAIGHT FIFE LENGTHS FITTINGS NUMBER .K OR L/D z L/D GATE VALVE 13 3 GLOBE VALVE BUTTERFLY VALVE 40 SWING CHECK 135 90'TD. ELBOW 30 90'.R. ELBOW 50 90'.R. ELBOW 20 45'TD. ELBOW 45'.R. ELBOW 26 180'LOSE RETURN 50 Si D. TEF RUN 20 STD. TEE BRANCH

  • MITRE BENDS 1Z (1 nose)

<<LATERAL/ OUTLET 1.0

<<LATERAL/ INLET 0.5

<<STRAIGHT RUN LATERAL 0.15

<<PIPE ENTR PROJ. INWD. 0.78 SHARP EDGF 0.50 WELL ROUND 0.04

<<PIPE EXIT SHARP EDGF 1.0

  • ORIFICE (Q = .61) 2.69 RF/6

>>.SUDDEN CONTRACTION + .5(1-lP)

<<SUDDEN INCREASF + (1- I3~P

  • VALVE, MISCELLANEOUS 891.4 d/Q 2 MISC.

TOTALS U~

<< ITEMS ARE "K"VALUES ONLY + BASED ON SMALLER PiPE DiAMETER B = d/D RF = RECOVERY FACTOR

t P

pJCHPq>o~-o laeD

~ Q II g j rhrout PIPE FRICTION CALC INPUT FILE IS-rhrrecir 'P~p ~ t o 0 vA'/> <

'1 NPUT DATA FOR THE HFLC5 SYS. RES. CALC.

C ISTS OF THE FOLLOWXNG DATA:

T TEMPERTURE DEG F E PXPE ABSOLUTE ROUGHNESS (FT.)

N , FXRST PIPE SEGMENT NUMBER Nl LAST PXPE SEGMENT NUMBER QDES DESIGN FLOW THRU PIPE SEGMENT (GPM)

QMIN MINIMUM FLOW THRU PIPE SEGMENT (GPM)

QMAX MAXIMUM FLOW THRU PIPE SEGMENT (GPM)

QDELT FLOW INCREMENT THRU PIPE SEGMENT (GPM)

D PIPE SEGMENT INTERNAL DIA. (IN.)

L PIPE SEGMENT LENGTH (FT.) post-It brand fax transmittal memo 7671 <<tpegee '

PIPE SEGMENT K FACTORS To From L/D PIPE SEGMENT L/D FACTORS 't' t n Co. Co.

FOLLOWING IS YOUR INPUT DATA Dept. Phone ~

T E N Nl 190.00 .00015 1 4 QDES QMIN QMAX QDELT D L K L/D 7700.00 7700.00 7700.00 .00 17.124 26.66 .97, 10.00 7700.00 7700.00 7700.00 .00 16.876 26.15 .00 100.00 4500.00 4500.00 4500.00 .00 13.124 42.93 .20 160.00 4500.00 4500.00 4500.00 .00 13.124 3.33 .00 .00 WING IS HFLC5 RESULTS WATER TEMP.(F) 190.00 DENSXTY(LBM/CUFT) 60.32 ABS VISCOSITY(LBM/SEC/FT) .217609E-03 PIPE ABS ROUGHNESS(FT) .150000E-03 PIPE SEG NO 1 PIPE DIA(ID-IN) = 17.124 FLOW-GPM VEL(FPS) LHD(FT) KHD(FT) LDHD(FT) TOT HD(FT) 7700.0 10.73 .42 1. 73 .22 2.38 PIPE SEG NO 2 PIPE DIA(XD-IN) = '16.876 FLOW-GPM VEL(FPS) LHD(FT) KHD(FT) LDHD(FT) 7700.0 11.04 .44 .00 2.38 TOT 2 '3HD(FT)

PIPE SEG NO 3 PIPE DIA(ID-IN) = 13. 124 FLOW-GPM VEL(FPS) LHD(FT) KHD(FT) LDHD(FT) TOT HD(FT) 4500.0 10.67 .92 .35 3.74 5.01 PIPE SEG NO 4 PIPE DXA(ID-IN) = 13.124 FLOW-GPM VEL(FPS) LHD(FT) KHD(FT) LDHD(FT) TOT HD(FT) 4500.0 10.67 .07 .00 .00 ~ 07 OLDS NUMBER FRICTION FACTOR TABLE DES. FLOW RE.NO. F-FACTOR SEG 1

2 7700.0 7700.0 4243402.0

'305761.0

'0126 .0126 HEAD LOSS 2.38 2.83 3 4500.0 3235750.0 .0132 5.01

l t HB~ t' p od o (~gW 4500.0 3235750.0 .0132 .07 ew 4

~~ e vk/~4 l >. y~ ~ee

~ ~

~ ~ ~

~ ~

I I

' I I I

~ ~

I I ~ ~

l l 0

~ ~

~ ~

I '

~ ~

~ ~ ~ ~

~

I

~ ~

l I I ~

I I I '

~ ~ ~

C ~ ~

I

4. J

~ ~

S

~ ~ l

~ ~

I ~ ~

5 S fl, t ~

~ ~ y I o t I o I

!I

'I o I I'

I

~ ~

0

~ ~

~ ~

I I

' I 4

~ ~

f I

~

g S I I I I t t a1 gl r C, y o ) I ~ ~ ~

1 ~

~ ~

I I I ~ I

~ ~

~ ~

~ ~ ~

~ ~

I I 'I I ~ ~

g

~ m ( ~

o HE"015 DONALD C. COOK NUCLEAR pLANT (OZ/95)

Section DESIGN VERIFICATION CHECKLIST CALCULATIONS Ca 1culatiee Number UP 0 . 0 J ~~

Signature of Ver (f ier Date 1.0 Mere the inputs correctly selected, incorporated and documented into the calculation? Yes N/A Basis: A ~ I M 4 J L i ~ c~/>> A 2.0 Are assumptions necessary to perform the calculation

~

1 adequately described and reasonable? Yes N/A Basis: /<< < <to~ i F t Fo a V' ( c 0 J Mo~jj~

V <

ere<( d F'~l gA4 ~ mc n1~r .

3.0

~ 'Are the applicable codes, standards and regulatory requirements identified and requirements for des>gn met? Yes N/A Basis: ~ 74 ~ at OC ~dr M/

/ r ( i+ Q/~ 6K.

4.0 Was an appropriate design method used? Yes H/A Basis: 2 0-~ rw 5.0 Is the output reasonable coppared to input?

Basis: I r eu&

6.0 Are the results numerically correct? Yes N/A Basis: G4 F 4 lou f~ Ay a VF'W ~4'C CuM 4 1 8V C/~x O'. C4 t~ f c LG aM dC a/

Page 1 oF 1