ML17335A150

From kanterella
Jump to navigation Jump to search
Calculation NEMP950501JEW, Rhr,Si,Cts - NPSH Available
ML17335A150
Person / Time
Site: Cook  American Electric Power icon.png
Issue date: 10/22/1997
From: Wagner J
INDIANA MICHIGAN POWER CO. (FORMERLY INDIANA & MICHIG
To:
Shared Package
ML17335A147 List:
References
NEMP950501JEW, NUDOCS 9808100100
Download: ML17335A150 (35)


Text

(

)

NEMP NUCLEAR ENGINEERING DEPARTMENT Calculation Cover Sheet Cook Nuclear Plant SECTION f7 SHEET 1

OF,~

ATTACHMENTS 2

CALCULATION No.

NEMP950501JEW INDIANA MICHIGAN POWER COMPANY SAFETY RELATED SYSTEM YES Y

NO UNIT No.

12 R4 E4C'!~EEeED SAFBG'ALCULATED BY:

/8/W TITLE X

RHR SI CTS NPSH Available VERIFIED BY:

DATE TY/fOiA RFC/MM/PM/PR/CR/TM No.

N A FILE LOCATION HEMP CALCS (I

APPROVED BY:

'ATE

~l(h~

DATE l ~

CALCULATION DESCRIPTION:

Re uest for Severe Accident set oint RWST water level necessar to su 1

ade uate NPSH for the CTS SI 8I RHR Pum s.

Contai nt Sum water level necessar to rovi de ade uate NPSH for the CTS RHR PUMPS.

gjLSQQQQ g}t ~+ )0 'Zz. 47 ~$7~

me~ Veuo7&c - db iw ~g ~

9 I g

~ g7-2LZZ METHOD OF VERIFICATION:

ALTERNATE CALCULATION DESIGN REVIEN./IY.k 'd/fg I

HO.

REASON FOR CHANGE QZrSN g 7o AS-~~ELM acr ~

cu 8('g ~'~<~

REVISION Calculated 8

Date Verifled 8

Oate i%7 Approved 8

Oate H

9808i00i00 9808i7 PDR ADOCK 050003i5 PDR

PURPOSE:

NEMP950501JEW Sheet 2 of 7

)4~ 0/$ /0'4 CASE 1) Injection Phase Determine the Refueling Water Storage Tank (RWST) water level necessary to supply adequate NPSH for the (A) Containment spray (CTS)

Pumps, (B) Safety Injection (SI)

Pumps and (C)Residual Heat Removal(RHR)

Pumps.

This calculation is being performed in response to R.B.Bennett's memo dated March 6,1995.

CASE 2) Recirculation Phase Determine the Containment sump water level necessary to supply adequate NPSH for the CTS (A) and RHR (B) Pumps.

(A) PP-9 CTS 3200 46.06 9

610.25 FEET (B) PP-26 SI 650

31. 75 22 610.25 FEET 19 (C)

PP-35 RHR 4500 45.22 610.25 FEET CASE 2) Recirculation Phase RESULTS:

CASE 1) Injection Phase RWST LEVEL PUMP PUMP FLOW NPSH ~

NPSH i

REQUIRED NO.

NAME (GPM)

(FEET)

(FEET)

(ELEVATION)

PUMP NO.

CONTAINMENT PUMP FLOW NPSH ~

NPSH i

SUMP LEVEL NAME (GPM)

(FEET)

(FEET)

(ELEVATION)

(A) PP-9 CTS 3200 23.39 9

595.5 Feet (B) PP-35 RHR 4500 21.89 595.5 FEET Note:

Although the NPSH determined by the calculation is adequate, the calculation does/did not account for vortexing conditions.

Caution should be taken by the operator in severe conditions when the level approaches the general level of the top of the outlet pipe.

Under these conditions any unusual fluctuations in pump flow, pressure, vibration, and/or driver power are indication of vortexing.

When this occurs the pump flow should be throttled until smooth operation is restored, observing the minimum flow requirements, or operation should be terminated.

ASSUMPTIONS:

1) 2)

RWST water level is at minimum elevation (bottom of pipe) 611.25'24" Suction Pipe Center Line) 1'radius of 24" pipe) 610.25'See reference 5A).

Temperature of water in the RWST is 100 F (For injection phase T = 85'F based on RWST temp low alarm (Ref.

7)

+ 15'F conservatism).

Vapor pressure of water at 100 'F is 2.21 ft

.94925 PSI x 2.323 ft/lb/in (conversion factor for water at 100 F)

% ~

1

NEMP950501JEW Sheet 3 of 7

g.g ~ +/g p)a 3)

Temperature of water in containment sump is 190'F (for recirculation phase) based on Unit 2 FSAR figure 14.3.4-4 (containment integrity analysis) vapor pressure of water at 190 'F is 22.285 ft = 9.34 PSI x 2.386 ft/lb/in (conversion factor for water at 190 'F). Reference 6')

Pressure on RWST is 0 psig (14.7 PSIA 33.96 Feet) 5)

For the purpose of this calculation (Severe accident analysis) it is assumed that only one RHR pump is in operation, during the injection phase, and all other safety pumps are running.

6)

Pressure in containment is 0 psig (14.7 PSIA 33.96 feet.

INPUTS:

1)

CTS Pump Centerline Elevation

= 574'-6"(ref 5C) 2)

SI.Pump Centerline Elevation

= 589'-2 1/2"(ref 5D) 3)

RHR Pump Centerline Elevation

= 575'-0"(ref 5E) 4)

Centerline of 24" SI Outlet from RWST

= 611'-3" (ref 5A) 5)

Containment sump water elevation 595.5'Centerline of 24" recirc sump suction line)

See reference 5B.

6)

H (Head Loss due to Friction in piping and fittings) for the following cases is taken from reference 4:

CASE 1A

.H, = 21.44 feet CASE 1B

H = 21.04 feet CASE 2A

H,

=

9.29 feet 7)

H (Head Loss due to Friction in piping and fittings) for CASE CASE 1C and CASE 2B are as follows:

CASE 1C

H = 21.78 feet (Attachment 1)

CASE 2B

H,

= 10.29 feet (Attachment 2)

The H, for these two cases could not be taken from reference 4 because the assumptions were not the same as for this calculation.

~

~

CALCULATION:

NEMP950501JEW Sheet 4 of 7

yC ~ p/gf yd PSH=H H+ H H

where':

H,

= Absolute pressure (in feet of liquid being pumped) on the surface of the liquid supply level.

H

= The head in feet corresponding to the vapor pressure of the liquid at the temperature being pumped.

H, H

Stat'ic head in feet that the liquid supply'evel is above or below the pump centerline or impeller eye.

All suction line losses(in feet) including entrance losses and friction losses through pipe, valves and fittings, etc.

Friction is determined with both trains of SI,

RHR, CC and CTS pumps operating, thus providing worst case (highest) friction values.

CASE 1A CTS Pump (Suction source RWST)

Given:

H,

= 14.7 PSIA, 33.96 Feet (RWST open to atmosphere)

H

=.95 psia, 2.21 Feet (Vapor pressure of water at 100'F from Ref.6 see assumption 2 for basis of 100'F temperature)

H

= 610.25 (assumption 1) 574.5 (input 1) 35.75 Feet H,

= 21.44 Feet 9 3200 gpm (input. 6)

NPSH, =

33.96 2.21

+ 35.75 21.44 Feet 46.06 Feet 9

3200 gpm NPSH

=

9 Feet 9 3200 gpm

( see reference 1)

CASE 1B SI Pump (Suction source RWST)

Given:

NEMP950501JEW Sheet 5 of 7

P.a Ps'/~

H,

= 14.7 PSIA, 33.96 Feet (RWST open to atmosphere)

H

=.95 psia, 2.21 Feet (Vapor pressure of water at 100 F from Ref.6 see assumption 2 for basis of 100'F temperature)

H

= 610.25 (assumption 1) 589.208 (input 2) 21.04 Feet H

= 21.04 Feet 9 650 gpm (input 6)

NPSH fy yy 33 96 2

2 1 + 2 1 04 2 1 04 Feet azgUZaZD

31. 75 Feet 9

650 gpm

= 22 Feet 9

650 gpm

( see reference 3)

CASE 1C RHR Pump (Suction source RWST)

Given:

H,

= 14.7 PSIA, 33.96 Feet (RWST open to atmosphere)

Hvp'a H,

.95 psia, 2.21 Feet (Vapor pressure of water at 100 F from Ref.6 see assumption 2 for basis of 100 F temperature) 610.25 '(assumption 1) 575 (input 3) 35.25 Feet H~,

= 21.78 Feet 6 4500 gpm (input 7)

NPSH f~ ~~

33 96 2

2 1

+ 35 25 2 1 78 45.22 Feet 9 4500 gpm NPSH

=

19 Feet 9 4500 gpm

( see reference 2)

0

C CASE 2A CTS

( SUCTION SOURCE CONTAINMENT SUMP)

Given NEMP95 05 0 1 JEW Sheet 6of7 e/- I <

=

1 4. 7 PS IA, 3 3. 9 6 Feet

( assumption 6 )

H,=9.3 4 psia,22.2 85 Feet (assumption 3)

H= 5 9 5

~ 5 Feet

( input 5 )

57 4. 5 Feet

( Input 1 )

=

2 1 Feet H= 9

~ 2 9 Feet

( input 6 )

NPSH,zybz33.96 22.285+21 9.2 9 Feet 2 3. 3 9 ft NPSH,,=

9 Feet 9 3 2 0 0gpm(see reference1)

CASE 2B RHR

( SUCTION SOURCE CONTAINMENT SUMP)

Given H,=14.7 PS IA,33.9 6 Feet (assumption 6)

H,=9.3 4 ps ia,22.2 8 5 Feet (as sumption 4)

H.,=595.5 Feet (as sumption 3) 5 7 5 Feet

( input 3) 20.5 Feet (see assumption 3')

H=

1 0

~ 2 9 Feet' input 7 )

NPSH,=33.96"-22.285+20.5 10.2 9 Feet 2 1. 8 9 ft NPSH~ggz~D=

1 9 Feet 6 4 5 0 0gpm(secre ference2)

A NEMP950501JEW Sheet 7 of 7

The CALCULATION DATA SHEETS for the above cases 1C and 2B are included as Attachments 1 and 2)

This data was compiled and entered into an INPUT file for the HFLC5 software.

The INPUT data is shown on the above'ttachments right before the HFLC5 results.

The input file includes the following:

Line 1:

Fluid Temperature (degrees F), Pipe Roughness (ft), 1st

segment, last segment Subsequent lines in the input provides the following data for each of the segments identified in Line l.

Design Flow (gpm), Min. Flow, Max. Flow,. Flow Increment, Pipe I.D., Pipe Length (ft), Total K Factors, Total L/D Factors The HFLC5 software calculates the total friction loss in feet of each pipe segment for the range of flows provided.

The output of the software program for cases 1C and 2B are shown in Attachment 1

and 2.

REFERENCES:

1)

)

3) 5)

6)

Byron Jackson Pump performance curve T-32913-1 Ingersoll-Rand company Pump performance curve No.

N-318-(typical for, unit 1 and 2) in the Residual Heat Removal Pump (PP-35) instruction manual.

Pacific Pump performance curve 34554D (typical for unit 1 and

2) in Safety Injection pump (PP-26) instruction manual.

M.J.Treza calculation dated 6/16/72 located in NEMP Nuclear Safeguards calculation file.

Drawings:

A) 2-5353-10 24" SI outlet from RWST details.

B) 1-2-5338-7 Containment sump RHR Suction line details.

C) 2-CTS-13 CTS Pump centerline D) 2-SI-10 (sh.

1 of 2) SI Pump centerline E) 2-RH-15(sh.l of 2)

RHR Punp centerline Ingersoll-Dresser Pumps Cameron Hydraulic Data,18th edition.

7)

System Description

DCC-NEMH104 Rev 7. dated May-14, 1993.

8)

HFLC5 Pipe Friction Calculation Software.

This software has preprogrammed resistance factors for piping, various fittings, and valves other than diaphragm valves.

(Source:

HEPCAT File 13.22.2.1 for Software QA Information)

~

a NPSHRHR PIPE PAICTION CALC INPUT FILE IS-RHRRWST

'\\

pc ppg5~o )+g+

+a.4~e ~+

J l oslo XNPUT DATA FOR THE HFLC5 SYS.

RES.

CALC.

C SXSTS OF THE FOLLOWING DATA:

T TEMPERTURE DEG F E

PIPE ABSOLUTE ROUGHNESS (FT.)

N FIRST PIPE SEGMENT NUMBER Nl LAST PIPE SEGMENT NUMBER QDES DESIGN FLOW THRU PIPE SEGMENT (GPM)

QMIN MXNIMUM FLOW THRU PIPE SEGMENT (GPM)

QMAZ MAXIMUM FLOW THRU PIPE SEGMENT (GPM)

QDELT FLOW INCREMENT THRU PXPE SEGMENT (GPM)

D PIPE SEGMENT INTERNAL DIA. (IN.)

L PIPE SEGMENT LENGTH (FT.)

K PIPE SEGMENT K FACTORS L/D PIPE SEGMENT L/D FACTORS FOLLOWING XS YOUR INPUT DATA T

E N

Nl 100. 00

. 00015 1

8 QDES QMlN 13300.00 13300.00 12000.00 12000.00 12000.00 12000.00 4500.00 4500.00 00.00 4500.00 0.00 4500.00 0.00 4500.00 4500.00 4500.00 QMAX 13300.00 12000.00 12000.00 4500.00 4500.00 4500.00 4500.00 4500.00 QDELT

.00

.00

.00

.00

.00

.00

.00

.00 D

23.250 23.250 23.250 13.250 11.938 13.124 13.124 13.124 L

249.83 6.00 16.00 2.50

.00 19.75 31.11 3.33 K

.50

.00

.00

.50

.94

.00

.00

.00 L/D 205.00

.00 60.00 36.00 71.00 140.00 70.00 20.00 FOLLOWING IS HFLC5 RESULTS WATER TEMP.(F)

DENSITY(LBM/CUFT)

ABS VISCOSITY(LBM/SEC/FT)

PIPE ABS ROUGHNESS(FT) 100.00 62.00

.460533E-03

.150000E-03 PIPE SEG NO FLOW-GPM 13300.0 PIPE SEG NO FLOW-GPM 12000.0 PXPE SEG NO FLOW-GPM 12000.0 1

VEL(FPS) 10.05 2

VEL(FPS) 9.07 3

VEL(FPS) 9.07 PIPE DIA(ID-IN) =

23.250 LHD(FT)

KHD(FT)

LDHD(FT) 2.48

.78 3.94 PIPE DIA(XD-IN) =

23.250 LHD(FT)

KHD(FT)

LDHD(FT)

.05

.00

.00 PIPE DIA(ID-IN) =

23 '50 LHD(FT)

KHD(FT)

LDHD(FT)

.13

.00

.94 TOT HD(FT) 7.20 TOT HD(FT)

.05 TOT HD(FT) 1.07 PIPE SEG NO W-GPM 00.0 PIPE SEG NO FLOW-GPM 4

PIPE DIA(ID-IN) =

13.250 VEL(FPS)

LHD(FT)

KHD(FT)

LDHD(FT) 10.47

.05

.85

.84 5

PXPE DIA(ID-IN) =

11.938 VEL(FPS)

LHD(FT)

KHD(FT)

LDHD(FT)

TOT HD(FT) 1.74 TOT HD(FT)

.4,500, Q

12. 90

.00 2.43 2.53 4.96 gf~p 9 y p~ol~c~

&Bed n e~+ L p~~

PIPE SEG NO FLOW-GPM 0.0 P

SEG NO FLOW-GPM 4500.0 PIPE SEG NO FLOW-GPM 4500.0 6

PIPE DIA(ID-IN) =

13.124 VEL(FPS)

LHD(FT)

KHD(FT)

LDHD(FT) 10.67

.44

.00 3.38 7

PIPE DIA(ID-IN) =,

13.124 VEL(FPS)

LHD(FT)

KHD(FT)

LDHD(FT) 10.67

.69

.00 1."69 8

PIPE DIA(ID-IN) =

13.124 VEL(FPS)

LHD(FT)

KHD(FT)

LDHD(FT) 10.67

.07

.00

.48 TOT HD(FT) 3.82 TOT HD(FT) 2.38 TOT HD(FT)

.56 REYNOLDS PIPE SEG 1

2 3

4 5

6 7

8 NUMBER FRICTION PES.

FLOW 13300.0 12000.0 12000.0 4500.0 4500.0 4500.0 4500.0 4500.0 FACTOR TABLE RE.NO.

F-FACTOR 2621750.0

.0122 2365488.0

.0123 2365488.0

.0123 1556536.0

.0136 1727601.0

.0138 1571480.0

.0136 1571480.0

.0136 1571480.0

.0136 HEAD LOSS 7.20

.05 1.07 1.74 4.96 3.82 2.38

.56

~

0 0

I II 5 I-HIDI IUN L'ALL'ULAI IL/N

~.

I STREET

~

OF~o DATASHEETS SYS~

UNIT:

PIP'EGMENTTO 4 FROM:

PPc3 m A.Q3+ 7

+'a Ri Z'

8 k6 REF.:

9.->1-9~. Zk I.i~~ "4-,~-) Io-W3a 0.

) X->D>4 I Z.-~8~

9--+f~~,

a

/

I

~

4 FLUIDTEMP (4F): AD PIPE ABS. ROUGHNESS (FT)

~

~go I~

PIPE SEGMENT NUMBER

'IEEION FLOW: L&3M IIENIMUMFLOW: I~9 4 4 MAXIMUMFLOW: /S9 oo OFLOW INUREMENT:

Q Il IJ WIPE I.D. (IN):

~ ~ ~.~

PIPEEL-dil -9 TOEL:

6 ~ '7 / P STRAIGHT PIPE LENGTHS FITTINGS NUMBER K OR L/D z VD GATE VALVE GLOBE VALVE BUTTERFLYVALVE SWING CHECK 90'TD. ELBOW 90'.R. ELBOW 90'.R. ELBOW 45'TD. ELBOW 45'.R. ELBOW 180'LOSE RETURN STD. TE" RUN STD. TEE BRANCH

  • MITRE BENDS

<<LATERAL/ OUTLET w LATERAL/ INLEi w STRAIGHT RUN LATERAL w PIPE ENTR PROJ. INWD.

SHARP EDGE WELL ROUND w PIPE EXITSHARP EDGE w ORIFiCE (Q =,61) w SUDDEN CONTRACTION

+

w SUDDEN INCREASE

+

w VALVE,MISCELLANEOUS MISC.

13 340 40 135 30 50 20 16 26 50 20 60 1Z (those) 1.0 0.5 0.15 0.78 0.50 0.04 1.0 2.69 RF/6

.5(1-P)

(1- [PE 891A d/

2 IBEX TOTALS 4 ITEMS ARE"K"VALUES ONLY B== dlD RF = RECOVERY FACTOR

'g OQ 4

BASED ON SMALLERPIPE DIAMETER '

rirr min <<vi~ vol vvLplI l%JI'~

~~I r PLANT o

DATASHEETS BY DATE pCnf'ZoS-c i ~eU UNIT:

~ c r m.-ia~q1- /~,,~., <<,-...,..;t,<

PIPE SEGMENT NUMBER

'FLOW INCREMENT:

PIPE EI

~

~

SYSTEMi 6 t"~

col PIPE SFGMEHT TO 5 FROM:

I c e i~

~

~

FLUIDTEMP ('F):

R~

PIPE ABS. ROUGHNESS (FT):

~ id'

! r bESIGN FLOW: />>oo MINIMUMFLOW:

i i.~v MAXIMUMFLOW i

h IPE I.D. (IN):

STRAIGHT PIPE LENGTHS FITTINGS NUMBER

'K OR L/D zK x L/D GATE VALVE GLOBE VALVE BIJITERFLYVALVE SWING CHECK 90'TD. ELBOW 90'.R. ELBOW 90'.R. ELBOW 45'TD. ELBOW 45'.R. ELBOW 180'LOSE RETVRN STD. TEE RUN STD. TEE BRANCH

  • MITRE BEHDS

~ LATERAL/ OUTLEi LATERAL'NLEi

  • STRAIGHT RUN LATERAL
  • PIPE EHTR PROJ. INWD.

SHARP EDGE WELL ROUND

~ PIPE EXITSHARP EDGE

  • ORIFICE ((g =.61)

~ SUDDEH CONTRACTION

+

~ SVDDEH INCREASE

+

  • VALVE,MISCELLANEOVS MISC.

340 40 135 30 50 20 16 26 50 20 60 1Z (1nose) 1.0 0.5 0.15 0.78 0.50 o.o4 1.0 2.69 RF/6

.5(1-P)

(1-8*)'91Ad/0 2

TOTALS o

P o,d

~ iTEMS ARE~ VALUES ONLY B = d/D RF = RECOVERY FACTOR

+ BASED ON SMALLERPiPE DIAMErER

S

~

~

r1rr rwL <<un lvHLLrV~Il'LJI'~

DATASHEETS Re-I QclCA I IJ(

/

PLANT s K BY~ DATE~

IVP.~P 9 KCX5'O (~LA1 SYSTEM:

P('c S

PIP 'SEGMENTTOAFROM:

FC::

l~~

<<;,0>'r; ~-;.<

EF.:

FLUIDTEMP ('F): ~R PIPE ASS. ROUGHNESS (FD:, o o DESIGN FLOW: La.

"MINIMUMFLOW: I S:~-

"MA)UMUMFLOW..

%PE I.D. EN):

~

'IPE EL:

~

h PIPE SEGMENT NUMBER '

sP u ~FLOW INCREMENT.

TO EL.:

STRAIGHT PIPE LENGTHS FITTlNGS NUMBER K OR L/D

/g O

GATE VALVE GLOBE VALVE BUTTERFLYVALVE SWING CHECK 90'TD. ELBOW 90'.R. ELBOW 90'.R. ELBOW 45'TD. ELBOW 45'.R. ELBOW 180'LOSE RETURN STD. TEE RUN STD. TEE BRANCH w MITRE BENDS w LATERAL+ OUTLET

  • LATERAL'NLET

~ STRAIGHT RUN LATERAL PIPE ENTR PROJ. INWD.

SHARP EDGE WELLROUND

~ PIPE EXITSHARP EDGE

  • ORIFICE (Q =.61) w SUDDEN CONTRACTION

+

w SUDDEN INCREASE

+

~ VALVE,MISCELLANEOUS MISC.

340 40

'I35 30 50 20 26 50 20 60 12 (1WOSe) 1.0 0.5 0.15 0.78 0.50 0.04 1.0 2.69 RF/0

.5(1-6F()

(1-GEP 891.4 d/Q 2 TOTALS U s ITEMS ARE"K"VALUES ONLY 8 = d/D RF = RECOVERY FACTOR

+ BASED ON SMALLERPIPE DlAMETER

DATASHEETS BY DATE pl8+II gZ~o ~Q UNIT:

S

~ r SYSTEM:

. Etc-a PIPE SEGMENT TO 4 FROM:

I-5 Vlb Q.-

+/5 I

F'ID TEMF ('F):

F'I FIFE ASS. ROUGHNESS

%REIGN FLOW: M>CA MINIMUMFLOW:

WIPE I.D. (IN):

(FI):, MO5 PIPE SEGMENT NUMBER bIIIAXIMUMR.OW:

O'E~

FI.OW INCREMENT:

PIPE EI:

~~:" '-"'OEL:

rirc rlllvl lvlxvol vvQpl ~ Ivss

~Isr' ~

v<

PLANT K

STRAIGHT PIPE LENGTHS FITllNGS NUMBER K OR LJD zK GATE VALVE GLOBE VALVE BUTTERFLY VALVE SWING CHECK 90'TD. ELBOW 90'.R. ELBOW 90'.R. ELBOW 45'TD. ELBOW 45'.R. ELBOW 180'LOSE RETURN STD. TEE RUN STD. TEE BRANCH w MITRE BENDS w LATERAL+ OUTLET

. LATERAL'NLET w STRAIGHT RUN LATERAL PIPE ENTR PROJ. INWD.

SHARP EDGE WELLROUND

~ PIPE EXITSHARP EDGE w ORIFICE (Cg =.61) w SUDDEN CONTRACTION

+

w SUDDEN INCREASE

+

w VALVE,MISCELLANEOUS MISC.

I

/

340 40 135 30 50 20 16 26 50 20 1Z (1wose) 1,0 0.5 0.15 0.78 0$0 o.oa

'I.o 2.69 RF/8

.5(1-P)

(1-O'P 891.4 d I 2

TOTALS g

s ITEMS ARE"K"VALUES ONLY 8 = d/D RF = RECOVERY FACTOR

+ BASED ON SMALLERPIPE DIAMETER

clr 0, 2 AlvI Ivie vries vv~ s sva

~

DATASHEETS PLANT ec K BY DATE r

P Sd moo ar-'4 UNIT:

Sr

~

~

SYSTEM:

r h

~ '

.V PIPE SEGMENT NUMBER OFLOW INCREMENT:

/

l M'f/ ~ W TQEI

~

.r ~/

(FI)

~

g ~~ o i I ~~

4ANMUMFLOW:

PIPE EI P IPESEGMENTTO& FROM:

l -rom

< iuv:'

~

/

EF.:

FLUIDTEMP ('F):

+~

PIPE ABS. ROUGHNESS IIESIGN FLOW:

+

'INIMUMFLOW: ~SO WIPE LD. gN):

STRAIGHT PIPE LENGTHS FITTINGS NUMBER K OR L/0 TOTALS U GATE VALVE GLOBE VALVE BUITERFLYVALVE SWING CHECK 90'TD. ELBOW 90'.R. ELBOW 90'.R. ELBOW 45'TD. ELBOW 45'.R. ELBOW 180'LOSE RETURN STD. TEE RUN STD. TEF BRANCH w MITRE BENDS

  • LATERAL+ OUTLET
  • LATERAL/ INLET w STRAIGHT RUN LATERAL w PIPE ENTR PROJ. INWD.

SHARP EDGE WELL ROUND w PIPE EXITSHARP EDGE

  • ORIFICE(Q =.61)

SUDDEN CONTRACTION /IU+ l2) w SUDDEN INCREASE

~ +

w VALVE,MISCELLANEOUS MISC.

/1W

'FQ CIA=2 )

I 5 I -~W.S /~.~E i~ ~=).'~II =S~:

/

340 40 30 50 20 16 50 20 12 (1WOSe) 0.5 0.15 0.78 0.50 0.04 1.0 2.69 RF/8

.5(1-lP)

(1- 02) 891.4 d /

2 o'tQ

"', oe

'"I 2h

~ ITEMS ARE"lC'ALUESONLY B = dlD RF = RECOVERY FACTOR

+ BASEO ON SMALLERPIPE OIAMETER

~

~

to.i I

SYSTEM:

r <rr ravox i ec vv~ <<vi~

~.

}

DATASHEETS Oner(~

Vg ~~

PLANT

~

EP K 2Bn'l'B 5~I ~r-~

UNIT:

t I

rr

~

'IPE SEGMENT TO 4 FROM:

D EF -

L- ~"=-0 FLUID TEMP ('Fj:~ PIPE ASS. ROUGHNESS (FU:

qIESIGN FLOW:

~ >

Ii(INIMUMFLOW: r'5~a IIUDUMUMFLOW ~

'blPE I,D. (IN)

~

i

> s l ~ >

PIPE EI PIPE SEGMENT NUMBER

'5

<>,OFLOW INCREMENT: '

TO EL s

+MD, P rg STRAIGHT PIPE LENGTHS FITTINGS NUMBER

'K OR L/D xK x L/D GATE VALVE GLOBE VALVE

} L/. '

BUTTERFLYVALVE SWING CHECK 90'TD. ELBOW 90'.R. ELBOW 90'.R. ELBOW 45'TD. ELBOW 45'.R. ELBOW 180 CLOSE RETURN STD. TEE RUN STD. TEE BRANCH

  • MITRE BENDS
  • LATERAL/ OUTLET
  • LATERAL/ INLET
  • STRAIGHT RUN LATERAL w PIPE ENTR PROJ. INWD.

SHARP EDGE WELL ROUND r

w PIPE EXITSHARP EDGE

  • ORIFICE (IO =.61) w SUDDEN CONTRACTION

+

w SUDDEN INCREASE

+

w VALVE,MISCELLANEOUS MISC.

340 ao 135 30 20 26'0 20 12 (1wose) 1.0 0.5 0.15 0.78 0.50 o.oa 1.0 2.69 RF/8

.5(1-P)

(1-G')'91A d /r2 4

TOTALS U' f if'

!TERS ARE "K"VALUES ONLY 8 = d/D RF = RECOVERY FACTOR U'

BASED ON SMALLERP!PE DIAMETER

~

~

i t

SYRIA i r ~ 5 PIPF SEGM'ENTTO 4 FROM:

ICI i AIVI iUI'lVR4VV4nI IVIES DATASHEETS H:l all i@A

~

&I BY DATE p W 16 ~~lar=~

UNIT:

Hp'~

~~-~ ~'inc sun.,)

EF.:

4-S>

z-s-~/s FL IO TEMP ('F)

~

ESIGN FLOW:

WIPE LD. (IN):

]3 PIPE ABS. ROUGHNESS(FT):

. < ~ ~ >>

PIPE SEGMENT NUMBER INIMUMFLOW: 4 "w

%HA%MUMFLOW: ~ v oa FLOW INCREMENT:

JR/o-'IPE EI:.-'-"

~~<

TO EL:

STRAIGHT PIPE LENGTHS

/ q g/

'7 c)

TOTALS w

) I/5 FITTINGS GATE VALVE (<<'

- S /'

GLOBE VALVE BUTTERFLYVALVE SWING CHECK 90'TD. ELBOW 90'.R. ELBOW 90'.R. ELBOW 45'TD. ELBOW 45'.R. ELBOW 180'LOSE RETURN STD. TEE RUN STD. TEE BRANCH

~ MITRE BENDS

<<LATERAL/ OUTLET

~ LATERAL/ INLEi

~ STRAIGHT RUN LATERAL PIPE ENTR PROJ. INWD.

SHARP EDGE WELL ROUND

~ PIPE EXITSHARP EDGE

  • ORIFICE(Cg =.61)

SUDDEN CONTRACTION

+

~ SUDDEN INCREASE

+

~ VALVE,MISCELLANEOUS MISC.

NUMBER K OR L/D 340 40'35 30 50 20 16 50 20 60 1.2 (1wose) 1.0 0.5 0.15 0.78 0.50 o.oa 1.0 2.69 RF/8

.5(1-Pj (1- 0

)'91Ad/C 2 xK x UD go,

~ ITEMS ARE"K"VALUES ONLY B =d/D RF = RECOVERY FACTOR

+ BASED ON SMALLERPlPE DlAMETER

I e'

0

r 1

SYSTEM:

'PIPE'SEGMENT TO 5 FROM:

+p(-u m f LIEF Ic ~ 8m IFCI

~

~ ~

~

~

~ LrM ~ rMr % M~r M>>

~ ~ ~

~

DATASHEETS PLANT Co b

~f P 950$ o~g UNIT:

e HI2. Pd~P Q.F D

EF.:

FLUI ~P ('F):

~ >

PIPE ABS. ROUGHNESS(FT):

. ', u I 5 tlEMGN FLOW:

U>

IIIINIMUMFLOW: Fr ""

MAXIMUMFLOW n

WIPEI.D. (IN):

~ > i I m PIPE EL:

PIPE SEGMENT NUMBER 8

tF'<- z>

OR OW INCREMENT F~D-O TOEI:

<?W -o STRAIGHT FIFE LENGTHS FITTINGS NUMBER

.K OR L/D z L/D 3

GATE VALVE GLOBE VALVE BUTTERFLYVALVE SWING CHECK 90'TD. ELBOW 90'.R. ELBOW 90'.R. ELBOW 45'TD. ELBOW 45'.R. ELBOW 180'LOSE RETURN Si D. TEF RUN STD. TEE BRANCH

  • MITRE BENDS

<<LATERAL/ OUTLET

<<LATERAL/ INLET

<<STRAIGHT RUN LATERAL

<<PIPE ENTR PROJ. INWD.

SHARP EDGF WELLROUND

<<PIPE EXIT SHARP EDGF

  • ORIFICE (Q =.61)

>>.SUDDEN CONTRACTION

+

<<SUDDEN INCREASF

+

  • VALVE,MISCELLANEOUS MISC.

13 40 135 30 50 20 26 50 20 1Z (1nose) 1.0 0.5 0.15 0.78 0.50 0.04 1.0 2.69 RF/6

.5(1-lP)

(1-I3~P 891.4 d/Q 2 TOTALS U~

<< ITEMS ARE"K"VALUES ONLY B = d/D RF = RECOVERY FACTOR

+ BASED ON SMALLERPiPE DiAMETER

t P

~

Q II g j rhrout PIPE FRICTION CALC INPUT FILE IS-rhrrecir pJCHPq>o~-o laeD

'P~p ~

t o 0 vA'/><

post-It brand fax transmittal memo 7671

<<tpegee '

PIPE SEGMENT K FACTORS L/D PIPE SEGMENT L/D FACTORS From To

't' t

n

'1 NPUT DATA FOR THE HFLC5 SYS.

RES.

CALC.

C ISTS OF THE FOLLOWXNG DATA:

T TEMPERTURE DEG F

E PXPE ABSOLUTE ROUGHNESS (FT.)

N

FXRST PIPE SEGMENT NUMBER Nl LAST PXPE SEGMENT NUMBER QDES DESIGN FLOW THRU PIPE SEGMENT (GPM)

QMIN MINIMUM FLOW THRU PIPE SEGMENT (GPM)

QMAX MAXIMUM FLOW THRU PIPE SEGMENT (GPM)

QDELT FLOW INCREMENT THRU PIPE SEGMENT (GPM)

D PIPE SEGMENT INTERNAL DIA. (IN.)

L PIPE SEGMENT LENGTH (FT.)

FOLLOWING IS YOUR INPUT DATA T

E N

Nl 190.00

.00015 1

4 QDES QMIN QMAX 7700.00 7700.00 7700.00 7700.00 7700.00 7700.00 4500.00 4500.00 4500.00 4500.00 4500.00 4500.00 WING IS HFLC5 RESULTS WATER TEMP.(F)

DENSXTY(LBM/CUFT)

ABS VISCOSITY(LBM/SEC/FT)

PIPE ABS ROUGHNESS(FT)

Co.

Dept.

QDELT D

.00 17.124

.00 16.876

.00 13.124

.00 13.124 190.00 60.32

.217609E-03

.150000E-03 L

26.66 26.15 42.93 3.33 Co.

Phone ~

K

.97,

.00

.20

.00 L/D 10.00 100.00 160.00

.00 PIPE SEG NO FLOW-GPM 7700.0 PIPE SEG NO FLOW-GPM 7700.0 PIPE SEG NO FLOW-GPM 4500.0 PIPE SEG NO FLOW-GPM 4500.0 1

PIPE DIA(ID-IN) =

17.124 VEL(FPS)

LHD(FT)

KHD(FT)

LDHD(FT) 10.73

.42

1. 73

.22 2

PIPE DIA(XD-IN) =

'16.876 VEL(FPS)

LHD(FT)

KHD(FT)

LDHD(FT) 11.04

.44

.00 2.38 3

PIPE DIA(ID-IN) =

13. 124 VEL(FPS)

LHD(FT)

KHD(FT)

LDHD(FT) 10.67

.92

.35 3.74 4

PIPE DXA(ID-IN) =

13.124 VEL(FPS)

LHD(FT)

KHD(FT)

LDHD(FT) 10.67

.07

.00

.00 TOT HD(FT) 2.38 TOT HD(FT) 2 '3 TOT HD(FT) 5.01 TOT HD(FT)

~ 07 OLDS NUMBER FRICTION FACTOR TABLE SEG DES.

FLOW RE.NO.

F-FACTOR 1

7700.0 4243402.0 '0126 2

7700.0

'305761.0

.0126 3

4500.0 3235750.0

.0132 HEAD LOSS 2.38 2.83 5.01

l t

4500.0 3235750.0

.0132

.07 HB~ t' p od o (~gW ew 4

~~ e vk/~4 l >. y~

~ee

~

~

~

~

~

~

~

I I

I I

I

~

~

I I

~

~

l l

0

~

~

~

~

I '

~

~

~

~

~

~ ~

I

~

~

l I

I ~

I I I

~

~

~

C

~

~

I

4.

J

~

~

S

~

~

l I

~

~

~

~

5 S

fl, t

~

~

~

y I

o t

I o I

! I

'I o I I'

I

~

~

0

~

~

~

~

I I

I 4

~

~

f I

g

~

S I I I

I t t a1 gl r

C, y

o

)

I

~

~

~

~

~ I 1

~

I I

~ I

~

~

~

~

~

~

~

~

~

I I

'I I ~

~

g

~

m

(

~

o HE"015 (OZ/95)

DONALD C.

COOK NUCLEAR pLANT Section DESIGN VERIFICATION CHECKLIST CALCULATIONS Ca 1culatiee Number UP 0 0

J ~~

Signature of Ver (fier 1.0 Mere the inputs correctly selected, incorporated and documented into the calculation?

I M Basis:

J L

A ~

i

~ c~/>>

Date Yes N/A 4

A 2.0 Are assumptions necessary to perform the calculation adequately described and reasonable?

F t

(

Basis:

/<<

< <to~

i Fo a

V' Yes N/A 1

c 0 J ~ Mo~jj~

V ere<(

d F'~l gA4 ~

mc n1~r 3.0

'Are the applicable

codes, standards and regulatory

~

~

requirements identified and requirements for met?

Basis: 74 ~

at

/ r

(

des>gn Yes N/A OC

~dr M/

i+

Q/~

6K.

4.0 Was an appropriate design method used?

Basis:

2 0-~ rw Yes H/A 5.0 Is the output reasonable coppared to input?

Basis:

I r

eu&

6.0 Are the results numerically correct?

Yes N/A Basis:

G4 F 4 lou f~ Ay a VF'W~4'C CuM 4

1 8 V C/~x O'.

C4 t~

f c

LG aM dC a/

Page 1

oF 1