ML17333A868
| ML17333A868 | |
| Person / Time | |
|---|---|
| Site: | Cook |
| Issue date: | 04/02/1997 |
| From: | Cummings F, Dey A AMERICAN ELECTRIC POWER CO., INC. |
| To: | |
| Shared Package | |
| ML17333A867 | List: |
| References | |
| DC-D-01-MSC-66, DC-D-1-MSC-66, NUDOCS 9704290143 | |
| Download: ML17333A868 (41) | |
Text
~
~ $
~
I
~
I xz>~4C +
i
~
i
~
~
~ $
j
~
)
l Il et I
4 I
r II I c
~
I
~
I
~
p I
~
~
I
~ I ~
I III
\\4
STRUCTURAL 4 ANALYTICALDESlGN
'AMERlGANELECTRlC POWER SERVI~ORP.
't RlVERSfOE PLAZA COLUMSUS, OHlO
'I Calculation No.
C.
0 l - M0C ONCET I OAT C
CON PAHY O.C. COOK NUCLEAR PlANT RFC OC SECTION TABLE OF CONTENTS PAGE
=l.0..........
PROBLEM
SUMMARY
3 2.0 ASSUMPTIONS 3.0 4.0 ComaUTE< J.P.
CONCLUSION.
5.0 REFERENCES
6.0 7.0 S.O PIPING INPUT DATA TYPE OF ANALYSES
('8kwg M l )
SL y~&Y OF 'lAXIM'dM S.RESS:-:
(~s 7 9.0 VAL E INFORMATION 10.0 11.0 12.0 13.0 14.0 15.0 16.0 SEIS 1C ACCELERATION OF L~
ES.
NOZZL ANCHOR LOAD SUM~:=.
BRANCHL E DATA SHEET
SUMMARY
.O SUPPORT LOADS.
LUG/TRUNNIO QIPE STRESS SLMQKY.
LOAD COMPARIS N
PIPING ANALXSI.CHECKLIST e
A-ATTACl'~AENT.-.
ATTACPi:ENT B A. <fACgavE ~1~
DATE ~' ~
VNIT NO.
CALCULATION NO ~
The purpose of this calculation is to verify adequacy of the Main Steam (MS) piping system and, specifically, the component 1-MS-1-M-9E (Attachment 1,
Sheet 1 of 11),
a 12'-6" R pipe bend which has been found to have lower-than-minimum wall thickness at certain sections of the bend.
1.0 During this outage (U1R97),
the sweep bend1-MS-1-M-9E was inspected for flow accelerated corrosion (FAC).
The sweep bend is welded to a vertical 30",
90'lbow at one end and to a 30" straight piece of approximately 2'-5/16" length at the other end.
During the 1995 inspection, UT was performed on the vertical elbow and at two extension locations.
These extensions were 1" and 4" respectively from the weld at the elbow and the sweep bend interface (see Attachment 1, Sheet 4 of 11).
The UT data on the elbow was acceptable,
- however, one node (2I) on the second extension line was found to have wall thickness of 0.893" which was less than the minimum wall thickness tmin of 0.907" computed with the specified system design pressure Pd of 1085 PSIG.
The grid pattern for this measurement was 4" x 4".
In order to obtain additional information in this area, 1" x 1" grid pattern was developed and a
new set of UT measurements were recorded for an area of 21" (circumferentia) x 32" !arial).
Some of these grid points, mostly within columns J through S were found to have wall thickness less than tmin of 0.907".
The piping system analysis was reviewed with these lower values, and the piping system shown in Isometric 1-MS-1 was found to meet ANSI B31.1 requirements for the longitudinal stresses.
Hoop stress check was not made and an acceptance memo
was issued by Nuclear Engineering (Ref. 3).
The same 21" x 32" grid area was UT'd during this outage.
The measured thicknesses show almost an identical pattern as that of 1995.
A comparison of the 1995 and 1997 data confirm that there is no FAC problem in this system.
An engineering review is performed in this calculation to determine the effects of lower than tmin wall thickness on this MS piping system.
2.0 There are no assumptions made which require further verifications.
3.0 ER I Hand calculations have been performed herein.
Computer data from calculation gDC-D-01-MSC-65 have been used as supporting information.
MECHANICAL DESIGN SECTION AMERICAN ELECTRIC POWER SHEET CALC. BY CHK.
BY PLANT OF ATE NATE~~+
UNIT NO.
4 - o MHCRUGXQH FAC is not indicated in 1-MS-1 Main Steam piping.
The measured wall thickness in one strip in the sweep bend (component ¹ 1-MS-1-9E) does not meet the minimum wall thickness requirement based on the specified design pressure.
The minimum wall thickness requirements,
- however, are met based on the actual minimum tensile strength of the material as shown in the mill test report
~
The minimum wall thickness requirements are also met when evaluated with the stress-intensity limits and actual system operational data.
The sweep bend therefore meets the design intent and/or requirements of the ANSI B31.1 and ASME Section III.
5.0
(~~RE QP+
1.
ANSI (USAS)
B31. 1. 0 - 1967, Power Piping Code.
2.
ASME Section III BEPV Code Appendices, 1989.
Memo dated September 8,
- 1995, from A. J.
Lewandowski to E.
R.
Anderson.
5.
Piping Specification ES-PIPE.-1013-QCN.
Pipe Stress Calculation No. DC-D-01-MSC-65.
1.
UT data on the Sweep Bend (total 11 pages).
2.
TUBECO shop drawing for the Sweep Bend (total 1 page).
3.
Mill test report for the Sweep Bend material (total 4 pages)
Tech.
Spec.
Table 4.7-1 for Steam Line Safety Valves per
- Loop, Amendment No. 182, page 3/4 7-4 (total 1 page).
5.
E-mail from Dave Turner to A. K. Dey dated March 25, 1997 (total 1
page) 6.0 None.
t
MECHANICAL DESIGN SECTION AMER1CAN ELECTRIC POWER SHEET CALC.
BY CHK.
BY PLANT OF DATE ~1~
DATE oNlT NO.
DQ 7) 0(- Mdc-4l The following calculations are performed to evaluate code compatibility and to determine structural significance of the wall thickness deficiency.
Hag:
The longitudinal stresses in this piping system are well within the ANSI B31.1 allowable for Pressure, Dead Wt., Thermal
& Seismic loading (Ref.
Calc.
DC-D-01-MSC-65)
- and, as such, the calculations below will primarily address stresses in the circumferential direction (hoop stresses).
Pipe Isometric:
1-MS-1, Rev.
15 Pipe Spec:
ES-PIPE-1013-QCN, Class J-14 Pipe Mat:
30" o.d x 1" wall A106 GR.C Design Press Pd
=
1085
- PSIG, Design Temp Td 600'F Normal Op.
Press Po
=
728
- PSIG, Op.
Temp To = 570'F ANSI B31.1 Piping Matl: Allowable SE
= 17,500 PSI 8 600'F (A)
Minimum Wall Thickness Required Per ANSI B31.1.
Min" thickness tmin
~
+ A Z 5Ew AY)
(OSS 30 Do/07 2
i7,Foo+(oooo)(4))
A 0
(FAC measurements are done and also for no expected FAC)
Y ~ 0.4 for ferritic steel.
Ref.
(1)
At one of'he worse locations of the 21" x 32" grid data (Attachment 1),
the following actual wall thicknesses (ta) have been noted during UT:
Row
¹ MEASURED WALL THICKNESS ta (inch)
~OL N~f 13 14 15 0.860 0.851 0.851 0.851 0.843 0.859 0.857 0.864 0.860 ta average
= 0.855" (ta average is less than the Min" wall of 0.907")
The actual hoop stress using the above equation (pg)(p~)
~ y iosr) so gioss )(0)
=
la (sl ts't>>
z o,ssg OI The actual hoop stress is 4 oSj~ larger than the allowable stress of 17,500 psi.
MECHANICAL DESIGN SECTION AMERICAN ELECTRIC POWER SHEET
'CALC. BY CHK. BY PLANT OF DATE DATE 2
UNIT NO.
CALCULATION NO.
Yield stress (Sy) at 600'F (design temp)
= 29,600 psi (Ref.
2)
Although the calculated hoop stress exceeds B31.1 stress allowable (SE), it is however well below the yield stress at design temperature
- and, as
- such, the piping system will remain functional and there is no safety concern.
(B)
The allowable stress of 17.5 ksi for SA 106 GR.C is controlled by the material minimum tensile strength (Su) of 70 ksi (Ref.
1 a
- 2).
The allowable stress is 1/4 Su.
The actual mill test data (see Attachment-3)show that the minimum tensile strength for this specific piping is 76.8 ksi.
The allowable stress based on this actual data, therefore, should be 1/4 (76.8) or 19.2 ksi.
The minimum wall based on the SE
= 19,200 psi tmin ~
0.828 2
(19,200
+ 1085
(
~ 4))
which is smaller than actual wall ta of 0.843.
Therefore, the Main Steam piping system meets the code intended allowable stress limits.
(C)
Wall Thickness Requirement based on System Operation.
The design pressure and the operating pressure for this Main Steam piping system are 1085 psig and 728 psig, respectively (Ref. 4).
Since the operating pressure is small as compared to the design
- pressure, the operational data was reviewed to determine the percentage of time the piping system operated above 1000 psig during the last two cycles.
The value of 1000 psig was selected for convenience.
ANSI B31.1 (Ref.
1), article 101.2.2 states that the Internal Design Pressure shall not be less than the maximum sustained fluid Operating Pressure and shall include allowance for pressure surges except for the occasional short period operation at higher than the design pressure.
shows that the system operates only for 5.6'-t of the time above 1000 psig which can be considered as the short period pressure surges above 1000 psig.
Based on the system operational data, if we redefine the design pressure as 1000 psig purely from an engineering and system operation standpoint, the intent of Ref.
1, article 101.2.2 is still met.
l.
'ECHANICAL DESIG ECTION" AMERICAN ELECTRIC POWER SHEET CALC. BY CHK.
BY PLANT DATE ~~~
DATE ~Z~
UNIT NO.
CALCULATION NO.
Therefore, for the newly defined design pressure of 1000 psig, the Main Steam piping will meet the minimum wall thickness requirement (by comparison with the page 5 calculation).
The magnitude of maximum pressure during a pressure surge is limited by the safety valve setting of 1065
+
3% or 1097 psig max.
(Attachment-4)
The minimum wall thickness needed for this short duration operation (5.6%
time between 1000 psig to 1097 psig) is:
]oyv)C~o 0, goo zf((y,gpss)(l /5) ~ (l017)(0)g where the factor 1.15 is the 15% increase in the allowable per Ref.
1, article 102.2.4.
Therefore, from actual system operation condition also, the Main Steam piping system will remain functional, meet the intent of the
- code, and have no safety concern.
(D)
Stress Intensity As stated before, the pipe stress analysis (calculation gDC-D-01-MSC-65) confirmed that the piping system as depicted in piping isometric 1-MS-01 meets ANSI B31.1 code allowables for all required load combinations for
- Pressure, Dead Wt., Thermal, and Seismic loads.
The maximum interaction ratio is 0. 7198.
For sustained load combination (load set
- 31. 1-3),
maximum longitudinal stress is 10106 'he shear stresses are insignificant.
Therefore, an element in the pipe bend during a sustained load condition will have stresses as shown below:
6' p
6 Longitudinal stresses due to 10106 psi pressure
& dead wt.
1
~Jq
~
~ 5 6q
= Hoop stress (8 design pressure 1085 psig) = (8'OI f'<<
(p+-
p
~ 1085 psi Therefore, the maximum stress intensity is:
6 - p
=
I860(-(-(os') = I V,NEW Q ~>>~~ I" 5~ = I$,7dg p,cww+8La 5(EEU ZarEaflrl C
Therefore, the sweep bend meets the code stress-intensity limits and, as such, will perform its designed function.
Ills IIPJ 15
'ltPJ RfafrcR~:f~4'~+'
IPDT 'I
>>'c I r COITRDPQIT LPET I
<4 SIPPLE FOI COIT. SEE IRCAI.SIT&I VP O.
~g 32'r 3R'LL trL K'
I IISH I I+SS.L I
f2$ITBI ps Z'18lf
~~e ga tSEE IOTE b
/
r.7
/C W N.
Ol I
3 I
5 2
trOe ILOE Yalf 5%.
Wf aOLRRMSCS rrOA SR. DLC.
IPC ITOINICS SOA ME VRlf S.B rrOA DRRCaP SXO'P QLeL SR.
DL CRl Cs Cta I
~VP.EL CSV<5'EE SEE KT.IP I
15'N ll~ Xf.'P
. P
~ > lI.CHME<T l ~~ll
~VP.O SS2-IR)'
1~~'L~.C P. %0 fOI COll,sfE OITAH5 2 IIIIIESS ItatRS
~r Rre55
'feS}'g
'3ilI%
'l el+
~
)
eer
~A'l 5D'PS 132 pcs l
g'JJgN~
aT
'ever TBIST35 e
LX IIIITSe L TCSIIC PROCQLREs IatrpKLDS uu R.r.
00crETRELDS IITJt.T. CCN.
- 2. Itsc eau< a254 cototo ol NL TIIIEKED COPts.
30 OD.! 10e NRR a TIS CR.f sla s. Ol a Iss OL rc.TO CLass IBILom 24'AL ~ Qtkrfa.
L 1% CILB SOL BO QLS.
16 SD DINcarfs Ucaflot cf PRE Qppol'1 tpcr sLppolf cETRL ILPEER
~ Arww>>e r e~ e<<rA
~ e~WWr<<r
~err\\A
~ e a%0 r eerM Ace er er wee<<p er we4a wW w er<<<<ee
~ee areew We~<<<<ee<<
~lcaN ELscrRfc tock IAAaCo>>>~ h<<>>
QPPTRT RIFN ILPSERS 90tN A% FOI COERIL atcl SOLENIDL LIXAIRDI
% SLPPOIIS OLT FOI EIacf UERTIOts SEE PRE QP%8f DETLIL
~% rg Ae>>
~>>
COtfaaa6lf IXI
~ e r <<>>>>>>>>
0 <<eA 1 WarIN I
~CPC BOOXN
~At>>IA>>tVIPLt%<<t >>A sff ItttP 1 fOI 50'OIL HarR SIEaN~
'Pl%
IRPll% QIIILD XKI
~ I
/
De&+
ZOX'UL a 22'-XT-aa. If'otTS IL,
~ -I y
OIRLED Ol IPSIHENI 5S QIK IF ICIIILEOa.f ITTP)
IIP.IL.S12'-3'~ r
~- ~
I eA r
QQ I
fw) +
+
IIP.ELS3H t w
'f4~~
\\
ILcotraRpea
~.'.
ELL
Company: indiana Michigan Power/AEP Report Date: 21-MAR-97 Time: 11:22:52 Plant: D.C.Cook Unit CHECKWORKS FAC Version 1.0D DB Name: COOK1 t ttttttttttttttt
~ UT Matrix ttttttttttttttttt r.
I sptr:--
I 1
v/g~ +
0 LINENAME:1-MS-001-1 COMPONENT NAME: 1-MS-001-1-L-9E OUTAGE NAME:Ul R95 SECTION: U/S Main Tnom ~ 1.000 (in), Tscreen ~ 0.90T (in)
[Gnd data Cokrr Max.
0.454 0.90T 0.700 0.875 1.000 1.250 A
B C
D 1
1.3ST 1.354 1.367 1.385 2
1.399 1.386 1.417 1A01 3
1.372 1.375 1.388 1.403 4
1.3S2 1.343 1.389 1A33 5
1.32?
1.330 1.388 1.405 6
1.35S 1.320 1.388 1.403 7
1.292 1.333 1.379 1AOB 8
1.274 1.333 1.383 1.401 9
1.3"8 1.343 1.387 1.401 10 1.328 1.351 1.380 1AOO 11 1.336 1.394 1.385 1A02 12 1.333 1.372 1.3n 1.393 13 1.385 14 1A02 15 16 17 18 19 21 22 23 24 E
F G
1.377 1.408 1.394 1.403 1.387 1.384 1.401 1.384 1.377 1.408 1.396 1.400 1.428 1.400 1.377 1A32 1.428 1.401 1.408 1.393 1.408 1.406 1.417 1.411 1.402 1.396 1.389 1.400 1.393 1.413 1.400 1.390 1.383 1.403 1.392 1.380 1.395 1.387 1.382 1.393 1.385 1.375 1.387 1.388 1.380 1.388 1.375 1.380 1.388 H
I J
1.420 1A04 1.438 1.381 1.386 1.381 1.383 1.381 1.369 1.374 1.372 1.363 1.372 1.370 1.355 1.378 1.369 1.359 1.374 1.366 1.387 1.374 1.362 1.364 1.378 1.396 1.382 1.3?S 1.365 1.360 1.375 1.373 1.384 1.3S9 1.357 1.354 1.367 1.390 1.3S4 1.373 1.369 1.360 1.372 1.374 1.365 1.387 1.361 1.352 1.373 1.382 1.350 1.375 1.388 1.375 1.391 1.378 1.377 1.393 1.390 1.372 1.404 1.404 1A26 K
L 1.432
>.422 1.387 1.377 1.3B7 1.396 1.370 1.379 1.380 1.401 1.358 1.388 1.366 1.383 1.36S 1.367 1.361 1.3&S 1.371 1.362 1.403 1.411 1.362 1.412 1.368 1.355 1.362 1.375 1.363 1.39T 1.369 1.374 1.372 1.377 1.370 1.370 1.367 1.377 1.362 1.364 1.363 1.383 1.377 1.366 1.394 1.401 1A23 M
N 0
1.401 1 383 1.388 1.421 1.3SS 1.394 1.37?
1.388 1.354 1.405 1.383 1.378 1.377 1.378 1.376 1.445 1.400 1.375 1A16 1.373 1.368 1.397 1.388 1A01 1.371 1.378 1.391 1.374 1.374 1.400 1.383 1.374 1.387 1.345 1.382 1.366 1.402 1.3&S 1.369 1.3&2 1.384 1.375 1.425 1.378 1A01 1.412 1.372 1.3&S 1.400 1.374 1.3S7 1.350 1.386 1.388 1.407 1.375 1.368 1.356 1.401 1.367 1.348 1.370 1.386 1.402 1.375 1.409 1.377 1AOT 1.412 1.427 1.395 P
Q R
1.400 1.429 1.405 1.403 1.413 1.379 1.370 1.368 1.379 1.358 1.360 1.398 1.383 1.359 1.397 1.383 1.369 1.39&
1.364 1.372 1.403 1.392 1.366 1A03 1.384 1.368 1.396 1.380 1.368 1.385 1.360 1.363 1.391 1.364 1.358 1.370 1.384 1.362 1.376 1.3SO 1.361 1.354 1.382 1.386 1.392 1.369 1.362 1.370 1.359 1.365 1.415 1.358 1.370 1.408 1.3ST 1.377 1.391 1.36& 1.391 1.407 1.409 1.418 1.415 S
T U
1.397 1.386 1.389 1.387 1.390 1.401 1.3?8 1.383 1.402 1.379 1.388 1.405 1.388 1.400 1.41 1 1.387 1.442 1.408 1.391 1.401 1.408 1.393 1.406 1.4IB 1.388 1.404 1.420 1A02 1.404 1A17 1.397 1.433 1.407 1.383 1.399 1.410 1.379 1.400 1.408 1.378 1.402 1.397 1.381 1.397 1.388 1.380 1.383 1.386 1.387 1.432 V
W X
1.382 1.345 1.399 1.394 1.403 1.385 1.405 1.396 1.368 1.407 1.394 1.347 1.408 1.397 1.343 1.407 1.392 1.335 1.406 1.388 1.330 1.410 1.409 1.335 1.417 1.402 1.381 1.411 1.404 1.372 1.408 1.333 1.376 1.438 1.391 1.387 1.392 1.374 1.387 1.384 Min Max 0el Ave 1.345 1.436 0.091 1.395 1.368 1.421 0.055~3 1.354 1.405 0.051~3 1.343 1.433 0.080 1.383 1.327 1.428 0.101 1.380 1.320 1.445 0.125 1.388 1.292 1.416 0.124 1.380 1.274 1.417 0.143 1.382 1.328 1.420 0.092
'l.384 1.328 1.41?
0.089 1.383 1.336 1.433 0.09T 1.388 1.333 1.438 0.105 1.379 1.355 1.408 0.053 1.381 1.354 1.402 0.048 1.377 1.362 1.425 0.063 1.384 1.352 1.412 0.060 1.375 1.350 1.415 0.065 1.376 1.350 1.432 0.082 1.380 1.357 1.407 0.050 1.378 1.356 1.407 0.051 1.379 1.348 1.419 0.071 1.383 1.366 1.426 0.060 6
1.377 1.412 0.035 8
1.385 1.427 0.032
. 15 Min 1.274 1.320 1.367 1.385 1.377 1.385 1.375 1.367 1.357 1.350 1.358 1.355 1.345 1.368 1.354 1.357 1.358 1.354 Max 1.389 1.384 1.417 1.433 1.432 1.428 1.413 1.420 1.404 1.438 1.432 1.423 1.445 1.407 1.412 1.415 1.429 1.415 Del 0.125 0.074 0.050 0.048 0.055 0.043 0.038 0.053 0.047 0.088 0.074 0.068 0.100 0.041 0.058 0.058 0.071 0.061 Ave 1.340 1.353 1.386 1.401
'1.403 1.396 1.389 1.378 1.377 1.374 1.373 1.385 1.392 1.382 1.382 1.374 1.375 1.391 Dev 0.035 0.024 0.012 0.011 0.014 0.012 0.013 0.012 0.014 0.023 0.017 0.020 0.027 0.012 0.016 0.018 0.021 0.015 SECTION
SUMMARY
MinimumThickness 1.274 Minimum at BP, Maximum Thickness
~ 1A45 Maximum at 6,M Delta ~ 0.171 Average Thickness
~ 1.384 Standard Deviation 0.022 1.378 1.386 1.388 1.382 1.345 1.330 1.432 1A42 1.420 1.438 1.409 1.399 0.054 0.056 0.032 0.056 0.064 0.069 1.380 1.402 1.406 1.405 1.392 1.363 0.013 0.015 0.009 0.014 0.017 0.023 rr. rTACB~~~ +
A
Dev 1
0.023 2
0.013 3
0.014 4
0.022 5
0.026 8
0.031 7
0.030 8
0.033 9
0.022 10 0.023 11 0.020 12 0.024 13 0.015 14 0.014 15 0.018 16 0.015 17 0.017 18 0.022 19 0.014 20 0.018 21 0.028 22 0.023 23 0.014 24 0.017
Company: Indiana MIchigan Povrer/AEP Report Date: 21-MAR-97 Time: 11:24:36 Ptas: D.C.Cook Unit CHECKWORKS FAC Version 1.0D DB Name: COOK1 ttttttttttttttttt
'T Matrix ttttttttttttttttt Min 1.232 1.193 1.129 1.053 0.989 0.957 0.953 0.907 0.893 0.924 Max 1.257 1.236 1.181 1.082 1.049 1.034 0.992 O.SOS 0.907 0.945 Del 0.025 0.043 0.052 0.029 0.060 0.077 0.039 0.002 0.014 0.021 Ave 1.245 1.215 1.155 1.068 1.019 0.996 0.973 0.908 0.900 0.935 Dev 0.018 0.030 0.037 0.021 0.042 0.054 0.028 0.001 0.010 0.015 SECTION
SUMMARY
Minimum Thickness
~ 0.893 Minimum at 2,I Maximum Thickness
~ 1.438 Maximum at 2,U Delta = 0.545 Average Thckness
~ 1.151 Standard Deviation ~ 0.174 0.929 0.936 O.S87 0.970 0.936 0.987 0.041 0.000 0.000 0.950 0.936 0.987 0.029 0.000 0.000 LINENAME:1-MS-001-1 COMPONENT NAME: 1-MS-001-1-L-9E OUTAGE NAME:U1 R95 SECTION: D/S Ext.
Tnom ~ 1.000 (in), Tscreen ~ 0.907 (in)
[Grid data Color Max.
0.454 0.907 0.700 0.875 1.000 1.250 A
B C
D E
F G
H I
J K
L M
1 1.232 1.193 1.181 1.M2 1.049 1.034 0.992 0.909 0.907 0.945 0.970 0.936 0.987 2
1.257 1.236 1.129 1.053 0.989 0.957 0.953 0.907 0.893 0.924 0.929 N
0 P
Q R
S T
U V
W X
Min Max Del Ave 1.066 1.141 1.245 1.244 1.265 1.356 1.341 1.398 1.395 1.359 1.273 0.907 1.398 0.491 6
1.131 1.177 1.232 1.238 1.343 1.408 1.438 1.419 1.380 1.307 0.893 1.438 0.545 1.086 1.131 1.177 1.232 1.238 1.343 1.341 1.3S8 1.3S5 1.359 1.273 1.066 1.141 1.245 1.244 1.265 1.356 1.408 1.438 1.419 1.380 1.307 0.000 0.010 0.068 0.012 0.027 0.013 0.067 0.040 0.024 0.021 0.034 1.066 1.136 1.211 1.238 1.252 1.350 1.375 1.418 1.407 1.370 1.290 0.000 0.007 0.048 0.008 0.019 0.009 0.047 0.028 0.017 0.015 0.024 Qi
Oev 0.165 2
0.$ 88
h
Company: Indiana Michigan Povrer/AEP Report Date: 21-MAR-97 Time: 11:12:46 Plant: D.C.Cook Unit: 1 CHECKWORKS FAC Version 1.0D DB Name: COOK1 UT Matrix-
' ttttttttttttttt LINENAME:1-MS-001-1 COMPONENT NAME: 1-MS-001-1-M-9E OUTAGE NAME:U1 R95 SECTION: U/S Main Tnom ~ 1.000 (in), Tscreen ~ 0.907 (in)
[Grid data Color Max.
0.454 0.907 0.700 0.875 1.000 A
8 C
D E
1 1.021 0.993 0.999 0.9&9 0.951 2
0.954 0.947 0.940 0.933 0.926 3
0.990 0.953 O.Q53 0.951 0.939 4
0.954 0.950 0.949 0.984 0.938 5
0.953 0.956 0.955 0.950 0.940 6
0.957 0.953 0,955 0.949 0.955 7
0.960 0.959 0.955 0.946 0.944 8
0.971 O.Q55 0.956 0.940 0.943 9
0.9r2 0.961 0.949 0.940 0.938 10 0.96& 0.96& 0.956 0.943 0.941 11 0.972 0.964 0.962 0.947 0.934 12 0.971 0.957 0.943 0.943 0.921 13 0.967 0.949 0.936 0.930 0.921 14 0.962 0.945 0.934 0.923 0.910 15 0.966 0.953 0.939 0.918 0.912 16 0.963 0.943 0.929 0.922 0.922 17 0.957 0.936 0.914 0.913 0.909 1&
0.941 0.913 0.899 0.&94 0.887 19 0.934 0.906 0.896 0.892 0.906 20 0.932 0.914 0.907 0.906 0.919 21 0.942 0.929 0.920 0.913 0.920 22 0.949 0.939 0.927 0.930 0.932 23 0.960 0.948 0.938 0.931 0.939 24 0.972 0.957 0.951 0.940 O.Q43 25 O.SBO 0.964 0.95& 0.952 0.951 26 0.985 0.975 0.962 0.954 0.845 27 0.993 0.977 0.966 0.960 0.953 28 O.S90 0.983 0.966 0.960 0.951 29 0.992 0.981 0.974 0.957 0.941 30 0.987 0.977 O.Q62 0.949 0.929 31 0.98& 0.973 0.949 0.935 0.920 32 0.983 0.999 0.950 0.924 0.915 1.250 F
G 0.946 0.936 0.901 0.902 0.924 0.911 0.926 0.921 0.933 0.932 0.932 0.929 0.954 0.929 0.942 0.920 0.942 0.919 0.931 0.922 0.924 0.906 0.917 0.910 0.917 0.90&
0.908 0.896 0.916 0.897 0.918 0.907 0.923 0.900 0.910 0.918 0.917 0.913 0.922 0.914 0.918 0.922 0.926 0.922 0.934 0.952 0.938 0.925 0.939 0.933 0.940 0.927 0.931 0.937 0.929 0.931 0.925 0.920 0.916 0.911 0.912 0.906 0.907 0.906 H
I 0.970 0.962 0.&90 0.913 O.QOB 0.902 0.902 0.906 0.938 0.913 0.930 0.938 0.919 0.949 0.936 0.902 0.915 0.903 0.901 0.903 0.903 0.892 0.899 0.918 0.8&9 0.&94 0.8&B 0.890 0.&94 0.903 0.897 0.924 0.&91 0.&88 0.895 0.892 0.901 0.895 0.902 0.&99 0.905 0.899 0.905 0.909 0.935 0.918 O.Q43 0.912 0.911 0.915 0.908 0.914 0.906 0.900 O.QOB 0.914 0.913 0.915 0.903 0.903 0.886 0.&90 0.896 0.873 J
K 0.924 0.912 0.8&8 0.905 O.Q01 0.897 0.904 0.910 0.920 0.918 0.913 0.935 0.905 0.904 0.&99 0.899 0.903 0.920 0.899 0.&90 0.891 0.&8&
0.894 0.879 0.&90 0.908 0.889 0.&87 0.899 0.&75 0.889 0.&7&
0.892 0.885 0.&97 0.884 0.901 0.902 0.902 0.894 0.895 0.88&
0.903 0.923 0.913 0.920 0.910 0.925 0.906 0.&QB 0.&94 0.884 0.8&B 0.882 0.904 0.8&6 0.901 0.&QB 0.874 0.8&8 O.B?3 0.882 0.871 0.865 L
M 0.909 0.928 0.&96 0.&91 0.8&6 0.905 0.890 0.894 0.930 0.903 0.&99 0.89&
0.&89 O.S07 0.&B& 0.896 0.8&5 0.&&4 0.908 0.&&3 0.904 0.871 0.865 0.871 0.&62 0.865 0.&65 0.866 0.866 0.869 0.&59 0.895 0.892 0.867 0.865 0.884 0.8&B 0.&&0 0.8&3 0.876 0.&69 0.&84 0.&76 0.894 0.&84 0.917 0.&84 0.&96 0.8&1 0.&83 0.&72 0.&7&
0.867 0.87&
0.874 0.8&8 0.880 0.91&
0.&82 0.&&6 0.&71 0.&77 0.866 0.875 N
0 0.921 0.919 0.895 0.879 0.904 0.914 0.8&8 0.&&5 0.&BB 0.8&4 0.&83 0.&&9 0.&83 0.&81 0.&82 0.885 0.876 0.873 0.872 0.870 O.BS1 0.863 0.864 0.&53 0.861 0.&54 0.&64 0.&53 0.&63 0.858 0.&61 0.&52 0.859 0.&58 0.&69 0.868 0.&'75 0.870 0.869 0.&87 0.871 0.&67 0.867 0.8&4 0.907 0.885 0.&&2 0.8&1 0.&85 0.877 0.&92 0.8?9 0.88& 0.&&7 0.&92 0.&M 0.&92 0.&87 0.897 0.&94 0.890 0.885 0.&93 0.904 P
Q 0.924 0.966 0.873 0.&97 0.90& 0.&92 0.&90 0.900 0.889 0.&92 0.892 0.898 0.892 0.899 0.8&5 0.893 0.87& 0.&96 0.&7& 0.&&2 0.&69 0.879 0.860 0.873 0.849 0.857 0.847 0.844 0.851 0.875 0.&54 0.&57 0.&5& 0.&65 0.867 0.876 0.&76 0.879 0.873 0.87&
0.880 0.888 0.887 0.8&5 0.&84 0.886 0.893 0.&83 0.&81 0.882 0.881 3.879 0.8&1 0.879 0.8&4 0.897 0.892 0.890 0.&95 0.&86 0.894 0.88&
0.890 0.882 R
S 1.002 0.993 0.917 0.956 0.909 0.925 0.916 0.934 0.913 0.926 0.917 O.S42 0.919 0.923 0.906 0.916 0.899 0.901 0.&94 0.894 0.&82 0.8&5 0.871 0.874 0.859 0.861 0.850 0.860 0.856 0.&66 0.&61 0.869 0.&68 0.869 0.875 0.875 0.884 0.&78 0.&86 0.872 0.890 0.877 0.&79 0.&76 0.882 0.882 0.8&0 0.882 0.&91 0.&74 0.886 0.877 0.873 0.8&0 0.87& 0.878 0.&79 0.877 0.880 0.&85 0.&87 0.&93 0.889 0.&87 T
U 0.924 0.970 0.931 0.923 0.933 0.925 0.943 0.949 0.941 0.938 0.932 0.928 0.933 0.935 0.919 0.937 0.932 0.924 0.900 0.920 0.900 0.914 0.87& 0.925 0.879 0.917 0.875 0.912 0.&75 0.90&
0.882 0.909 0.&88 0.903 0.883 0.90?
0.8&5 0.887 0.8&5 0.&92 0.8&6 0.905 0.885 0.92&
0.887 0.89&
0.880 0.923 0.&75 0.&91 0.883 0.&&1 0.&7& 0.881 0.872 0.8&8 0.&77 0.883 0.&73 0.&7&
0.&90 0.925 0.&BB Min Max 0.909 1.021 0.&73 0.956 0.&86 0.990 0.&85 0.9&4 0.884 O.S56 0.&83 0.957 0.881 0.960 0.8&2 0.971 0.873 0.962 0.870 0.968 0.&63 0.972 0.&53 0.971 0.&49 O.S67 0.844 0.962 0.851 O.S&6 0.&52 0.963 0.&5& 0.957 0.&65 0.941 0.870 0.934 0.&69 0.932 0.867 0.942 0.867 0.949 0.8&2 0.960 0.880 0.972 0.&74 0.9&0 0.872 0.9&5 0.867 0.993 0.872 0.990 0.&77 0.992 0.873 0.9&7 0.871 0.988 0.865 0.999 0el Ave 0.112 0.955 0.0&3 0.912 0.104 0.920 O.OQ9 0.921 0.072 0.924 0.074 0.925 0.079 0.923 0.0&9 0.918 0.0&9 0.914 0.09& 0.911 0.109 0.907 0.118 0.&99 0.118 0.894 0.118 0.&&9 0.115 0.&93 0.111 0.895 0.099 0.892 0.076 0.890 0.064 0.&S4 0.063 0.896 0.075 0.898 0.082 0.906 0.07& 0.914 0.092 0.914 0.106 0.911 0.113 0.909 0.126 0.909 0.118 0.912 0.115 0.914 0.114 0.907 0.117 0.905 0.134 0.903 Dev 0.034 0.024 0.025 0.027 0.023 0.024 0.026 0.027 0.02&
0.030 0.032 0.035 0.035 0.033 0.033 0.032 0.027 0.020 0.016 0.01&
0.021 0.024 0.026 0.030 0.034 0.036 0.040 0.037 0.036 0.034 0.032 0.037 Min 0.932 0.906 0.&96 0.892 0.8&7 0.901 0.&96 0.886 0.873 0.871 0.865 0.859 0.&65 Max 1.021 O.SQ9 O.SS9 0.989.0.955 0.954 O.S52 0.970 0.962 0.924 0.935 0.930 0.928 Del 0.0&9 0.093 0.103 0.097 0.068 0.053 0.056 0.0&4 0.089 0.053 0.070 0.071 0.063 Ave 0.968 0.956 0.945 0.938 0.931 0.926 0.918 0.909 0.908 O.BSB 0.&97 0.882 0.8&8 Dev 0.019 0.022 0.022 0.022 0.016 0.012 0.013 0.01S 0.018 0.012 0.017 0.016 0.016 I
SECTION
SUMMARY
MinimumThickness
~ 0.&44 Minimum at 14,Q 0.859 0.852
.847 0.92 0.91 0.924 0.96B 0.062 0.067 0.077 0.122 0.8&2 0.&7& 0.8&0 0.8&5 0.015 0.017 0.017 0.020 9 0.&72 0.878
.002 0.993 0.943 0.970 0.152 0.133 0.071 0.092 0.&SO 0.&93 0.897 O.S13 0.02& 0.031 0.024 0.022
/iT<A<iiitkti<
iLJ-, o
( ~$ 1i
C'
Maximum Thickness
~ 1.021 Maximum at 14 Oetta ~ 0.177 Average Thickness
~ 0.909 Standard Oeviation ~ 0.032
Company: Indiana Michigan Power/AEP Report Date: 21-MAR-97 Time: 10:40:47 Plant: D.C.Cook Unit: 1 CHECKWORKS FAC Version 1.0D DB Name: COOK1 ttttttttttttttttt
"'TMatrix-
'tt%4tttHttIttt LINENAME:1-MS-001-1 COMPONENT NAME: 1-MS-001-1-M-9E OUTAGE NAME:U1 R97 SECTION: U/S Main Tnom = 1.000 (in), Tscreen ~ 0.907 (in)
[Grid data Color Max.
0.454 0.907 0.700 0.875 1.000 1.250 A
B C
1 1.014 0.997 0.971 2
0.954 0.952 0.948 3
0.959 0.958 0.963 4
0.949 0.952 0.946 5
0.978 O.S67 0.959 6
O.QM 0.967 0.952 7
0.962 0.957 0.957 8
0.957 0.960 0.955 9
0.963 0.969 0.962 10 0.967 0.969 0.957 11 0.975 0.971 0.969 12 1.003 0.963 0.952 13 0.969 0.959
- 0.943 14 O.S91 0.945 0.935 15 0.972 0.949 0.939 16 0.969 0.954 0.938 17 0.951 0.934 0.917 18 0.944 0.913 0.899 19 0.93S 0.908 0.901 20 0.929 0.918 0.910 21 O.S40 0.927 0.918 22 0.952 0.942 0.928 23 0.963 0.957 0.937 24 0.974 0.991 0.950 25 0.981 0.972 0.959 28 0.989 0.985 0.966 27 0.997 0.980 0.964 28 0.993 0.979 0.972 29 0.998 0.984 0.973 30 1.000 0.982 0.970 31 0.991 0.982 0.967 32 0.994 0.972 0.956 D
E 0.983 0.969 0.938 0.935 0.934 0.934 0.968 0.926 0.944 0.937 0.957 0.957 0.950 0.954 0.951 0.947 0.947 0.942 0.947 0.942 0.951 0.935 0.954 0.922 0.936 0.925 0.927 0.917 0.928 0.909 0.925 0.920 0.920 0.914 0.805 0.899 0.895 0.903 0.909 0.912 0.912 0.911 0.929 0.929 0.947 0.937 0.951 0.942 0.953 0 948 0.965 0.950 0.961 0.947 0.961 0.948 0.955 0.953 0.942 0.930 0.942 0.915 0,92S 0.913 F
G 0.953 0.950 0.896 0.900 0.924 0.911 0.923 O.S14 0.936 0.927 0.945 0.929 0.938 0.925 0.943 0.922 0.942 0.922 0.936 0.928 0.933 0.914 0.927 0.914 0.917 0.904 0.919 0.&SS 0.909 0.905 0.914 0.909 0.919 0.907 0.918 0.901 0.917 0.914 0.939 0.915 0.92S 0.920 0.951 0.912 0.939 0.925 0.941 0.930 0.945 0.937 0.948 0.936 0.942 0.921 0.933 0.924 0.937 0.916 0.917 0.909 0.913 0.920 0.906 0.877 H
I 0.939 0.941 0.885 0.910 0.900 0.911, 0.905 0.908 0.915 0.914 0.920 0.922 0.926 0.933 0.907 0.898 0.909 0.901 0.916 0.902 0.902 0.926 0.927 0.901 0.893 0.903 0.890 0.893 0.894 0.908 0.896 0.902 0.893 0.904 0.907 0.907 0.905 0.903 0.910 0.898 0.907 0.903 0.929 0.913 0.919 0.918 0.938 0.916 0.928 0.909 0.916 0.917 0.926 0.900 0.905 0.905 0.924 0.915 0.907 0.905 0.893 0.892 0.879 0.879 J
K 0.901 0.903 0.889 0.888 0.897 0.896 0.898 0.903 0.905 0.909 0.911 0.906 0.908 0.902 0.908.0.908 0.907 0.894 0.901 0.892 0.898 0.887 0.891 0.879 0.892 0.875 0.888 0.876 0.889 0.888 0.897 0.881 0.896 0.907 0.898 0.884 0.911 0.899 0.905 0.894 0.901 0.911 0.913 0.918 0.913 0.899 0.920 0.895 0.908 0.892 0.895 0.882 0.891 0.883 0.905 0.898 0.898 0.878 0.881 0.869 0.865 0.870 0.865 0.872 L
M 0.921 0.906 0.897 0.888 0.895 0.898 0.898 O.BS1 0.900 0.88&
0.894 0.913 0.929 0.892 0.913 0.913 0.907 0.881 0.903 0.884 0.900 0.896 0.871 0.868 0.872 0.864 0.895 0.864 0.859 0.868 0.865 0.867 O.N1 0.871 0.872 0.878 0.888 0.896 0.881 0.889 0.869 0.869 0.806 0.891 0.883 0.887 0.906 0.888 0.871 0.885 0.871 0.885 0.873 0.878 0.880 0.883 0.882 0.&QS 0.878 0.893 0.874 0.890 0.884 0.885 N
0 0.905 0.915 0.887 0.885 0.899 0.904 0.892 0.885 0.884 0.887 0.918 0.888 0.887 0.880 0.882 0.909 o.s77 o.&7e 0.884 0.878 0.874 0.872 0.855 0.865 0.857 0.857 0.855 0.859 0.864 0.858 O.BSS 0.858 0.859 0.857 0.869 0.869 o.sse o.&75 0.871 0.879 O.BS4 0.859 0.873 0.883 O.an 0.882 0.895 0.880 0.884 0.877 0.881 0.879 0.883 0.877 0.893 0.885 0.899 0.888 O.BQB 0.885 0.899 0.910 0.895 0.923 P
Q 0.935 0.917 0.889 0.893 O.BQ9 0.898 0.887 0.894 0.885 0.899 0.886 0.893 0.878 0.893 o.87e o.&ss 0.867 0.888 0.867 0.880 0.889 0.878 0.864 o.sse 0.860 0.851 0.851 0.843 0.857 0.864 0.855 0.866 0.858 0.868 0.872 0.879 0.872 0.882 0.870 0.876 0.871 0.886 0.885 0.902 0.886 0.888 0.883 0.892 0.885 0.880 0.888 0.887 0.881 0.879 0.882 0.877 0.885 0.878 0.897 0.889 0.899 0.885 0.891 O.N4 R
S 0.946 0.957 0.911 0.920 0.914 0.926 0.912 0.933 0.907 0.922 0.913 0.932 0.918 0.921 0.895 0.917 0.892 0.907 0.885 0.901 0.879 0.886 0.864 0.869 0.851 0.856 0.859 0.861 0.860 0.&N 0.877 0.866 0.869 0.878 0.878 0.885 0.&79 0.879 0.878 0.879 0.8&7 0.880 0.886 0.884 0.882 0.880 0.879 0.880 0.876 0.871 0.877 0.872 0.889 0.901 0.883 o.&7e 0.883 0.911 0.886 0.889 0.915 0.891 0.917 0.921 T
U 0.929 0.930 0.922 0.920 0.947 0.942 0.949 0.944 0.960 0.939 0.942 0.938 0.936 0.936 0.933 0.945 0.937 0.955 0.903 0.922 0.902 0.929 0.899 0.924 0.908 0.908 0.881 0.913 0.878 0.913 0.878 0.906 0.895 0.905 0.885 0.900 0.879 0.897 0.886 0.900 0.890 0.901 0.8&8 0.920 0.884 0.900 0.904 0.891 0.870 0.912 0.901 0.911 0.870 0.884 0.883 0.873 0.887 0.879 0.890 0.891 0.898 0.922 0.902 0.900 Min Max Del Ave 0.901 1.014 0.113 0.942 0.885 0.954 0.069 0.910 0.895 O.S63 0.068 0.919 0.885 0.968 0.083 0.918 0.884 0.978 0.094 0.922 0.886 0.967 0.081 0.926 0.878 0.962 0.084 0.923 0.876 0.960 0.084 0.920 0.867 0.969 0.102 0.916 0.867 0.969 0.102 0.913 0.872 0.975 0.103 0.913 0.855 1.003 0.148 0.905 0.851 0.969 0.118 0.895 0.843 0.991 0.148 O.BS3 0.856 O.S72 0.116 0.894 0.855 0.969 0.114 0.896 0.857 0.951 O.OS4 0.896 0.869 0.944 0.075 0.893 0.872 0.938 0.064 0.896 0.870 0.939 0.069.0.888 0.859 O.S40 0.081 0.898 0.873 O.S52 0.079 0.911 0.880 0.963 0.083 0.910 0.879 0.991 0.112 0.916 0.870 0.981 0.111 0.911 0.871 0.9&9 0.118 0.914 0.870 0.997 0.127 0.911 0.873 0.993 0.120 0.911 0.878 0.998 0.120 0.915 0.869 1.000 0.131 0.910 0.865 0.991 0.126 0.911 0.864 O.QS4 0.130 0.906 Dev 0.032 0.024 0.023 0.025 0.028 0.025 0.026 0.026 0.032 0.031 0.033 0.040 0.037 0.037 0.033 0.032 0.026 0.019 0.016 0.020 0.023 0.023 0.028 0.033 0.037 0.039 0.039 0.038 0.037 0.036 0.034 0.034 Min 0.92S 0.908 0.899 0.895 0.899 0.896 0.877 0.879 0.879 0.865 0.869 Max 1.014 0.997 0.973 0.983 0.969 0.953 0.950 0.939 0.941 0.920 0.918 Del 0.085 0.0&S 0.074 0.088 0.070 0.057 0.073 0.060 0.062 0.055 0.049 Ave 0.971 0.960 0.948 0.941 0.932 0.930 0.917 0.910 0.808 0.898 0.892 Dev 0.022 0.022 0.021 0.020 0.017 0.014 0.014 0.015 0.012 0.012 0.013 0.859 0.864 0.855 0.856 0.851 0.843 0.851 0.856 0.870 0.873 0.929 0.913 O.S18 0.923 0.935 O.S17 0.946 0.957 O.S60 0.955 0.070 0.049 0.063 0.067 0.084 0.074 0.095 0.101 0.090 0.082 0.888 0.888 0.882 0.881 0.880 0.884 0.889 0.894 0.904 0.914 0.018 0.013 0.016 0.017 0.016 0.014 0.021 0.025 0.025 0.021 hvrsc~p ~
(4th +
II if I]
E 4
I
SECTION
SUMMARY
MinimumThickness
~ 0.843 Maximum Thickness
~ 1.014 Delta ~ 0.171 Average Thickness
= 0.910 Standard Deviation = 0.032 Minimum at 14,Q Maximum at th
~'r--t. -.
~ - -
~
~ y
~
v>IC>>n>
<<<>A >Ji>>e: ll M/u( 9/
I>me '0;58:12 Plant: D.C.Cook Unit CHECKWORKS FAC Version 1.0D DB Name: COOK1 ttttttttttttttttt
-'T Matrix ttttttttttttttttt LINENAME:1-MS-001-1 COMPONENT NAME: 1-MS-001-1-M-9E OUTAGE NAMES: U1 R95, U1 R97 SECTION: U/S Main Tnom = 1.000 (In), Tscreen ~ 0.907 (In) tWear data Color Max. -0.040-0.021 -0.002 0.018 0.037 A
8 C
D E
F G
H I
J K
L M
N 0
P Q
R S
T U
Min Max 1
0 00/ -0004 0028 0 006-0018-0007-0014 OD31 0021 0023 !>>)>><>-C012 0022
<> <<><'r <>:>:>> -0011 0049 0058 0038 -0005 0040-001
- 0. 5
. 05-0008-0005-0009 G<)Q.
<<u'>
OGG. 0003-000>
(><'): '>W< 'i 'G<!(>-0006-0016'>>!>>
O'GG 0036 Oonn 0 ":;)-0016 0036 3
0031-0005-0010 00!7 0005 0000 GQGl) 0006-0009 i? 00>
(><)'>: -0009 <:l->
">ix>5 >n '><<>)'>-0006-OOGS Gool-0014-0017-0017 0031 4
0005-0002 0003 00!6 GOI2 0 003 GCG7-0003-0002 09)6
(> )'> -0008,
<>)-0004 0 "<>n
(><lC>> '*>: >6 0
>04 I!<'()!<<0006 0 "".. -0008 0016 W025-0011-0004 0 006 0003-0003 DOG~ 0023.0 00>
OG!5> 0 nl>> 0030
< "<" OOO> -0003
>; (i'>.0007 0(36 OC>()> -0019 I>(><>> r0025 0030
-0002-0014 0 003-0008-0002-0013 GOGO 0 Glo 0 0>6 0 GG2 0029
(! 0>'0015%035 n(u'I
!> i 0
>) '(>'
(%> 0 o!G-0010-0010-0035 0029 7
-0.002 GGG"-0002-0004-0010 GG!6 0004-0.007 GG!6-0.003 0</0"'>>4(>
i. -0.004 nii)i >>o>a i!Gon GGG!
Goo
-0,003 (>i>n>-0.040 0016 8
0 Gi
> -0005 0 GOI -0011 -0004 -0 no> -0002 0029 CGO> -0009-0009 -0025-0 017
'>:I'>0< -0024 0 n(<<
i> <>'3 0 ni! 0 (>I
> -0014-0008-0025 0029 9
=00'"< -0008-0013-0007-0004 OOGI>-0003 OOGS 0007-0004 Q026-0022 i': ~:>i>(!I -0003 nl>il 0 'n O(X>i-0006-0005-0031-0031 0026 10
>'000>-Gool-0004-GG<>l-0005-0006-0015 GGG!-0002-0002
".v-
. ~" '.-0012-0008 I
< >I n '."" (>00!>-0007-0003-0002-0015 0011 11
. 03-0007-0007-G 004
.000! -0009-0008 0 Go! -0034-0007>>i);
> <><:4-0025
>l -0009-0020:>n'>:
GOG>3-<) 001-0002-0015-0034 00'.7 12 4032-0006-0009-0011-00>i-0010-00044028 GG!7 <'003 (>GG'0006 '<<0> "<<09-0012-0004-0013 G(K)7 C<i!Ol -0021 G(3> -0032 0017 13
-0002-0010-0007-0006-0004 0 GGG 0 GG I -0004-0009-0002 0033-0010 <<'i>>
!'8 -0003-0011
(>>>Gi) 0 (>C'>) 0 l>i1a -0029 0 <>i 9-0029 0033 14 '029 0 000-0 GGI -0004-000'7-0011 Q(>00-0002-0003 0 0<)! 0 i)liQ030 n
~ ':,'
(r>4-0006-0004
<<>'-'.>> -0009 OGGI -0006 0 <>> > -0030 0011 15
-0006 0004 0000-0010 0.003 0<)G> -0008 GOGO-0005 OG>0-0013
>>(>n<- ini li<n>l <'(>>>"-0006 <>i'll -0004-0003-0003-0005-0013 0011 16
-0006-0011-0007-0003 0 GG" O ()0:. -0002 O Ooi 0022-0008-0003-0006 0028 -0005-0006 i> Goi -0009-00i6 0 ('03 OOGi 00')3-0016 0028 17 OGOG 000."-0.003-0.007-0.005 000>-0.007-0.002-0.016-0.004-0.022
<>Gn> -0.004 G<>GG
<) in> (>(>00-0.003.oool-0.009-0.007r0.002-0.022 0.006 18
-.003 0000 0000-0011-0012-0008 QO!7-0012-0015-C<or>I 0 CA'i-0007
<)
< )6
>! (>(>n non> -0005-0003-OC>ol -0010-0002 GGI)7-0015 0017 19
-0002-0002-0005-0003 o oo3 o 000-o oo> -0004-0008-0010 0 )0:. n(>(G-0016-0011-0 005 n<>(>". -0003 0 GGS 0 Goi 0 GGS-0 0!0-0016 D 006 20 0 003-0.004-0.003-0.003 0 007-0.017 0 00! -0,008 O Go! -0.003 0 GG'>
Gnome:
-0.013-0.002
<) (:(>8 0 Go~ 0("3." 0 (>08-0.007 0 ('0> -Q.008-0.017 0.008 21 0 002 0 00" 0 002 0 001 0 G09-0 008 0 002-0 002-0004 -0006 4023 n GGC> n
< ~ >5 0 Goi n 008 0 @)(> 0 (>>,. 0 ()03 -0 003-0004 0 (> W -0 023 0 015 22
-0003-0003-000'I 000!
0 003 <025 00!0 %024-0004-0010 0 GG: -0030 0 (')3-0006 0 00!
0 (0:"-0017-0007-0008-0003 0 (08-0030 0010 23
-0003-0009 000!-0016 QGO2-0005 0027 00(6 0000 GOGO 0021 0(><)> 0030 D024 GGG3-0002-0002 0000 000.
GC>O3-0.0024.016 003D 24
-0 0024.034 000'I -0 011 000! -0003-0 005 0 005-0004-0 010 0 0304.022 0 (>G(> -0 013 0 Gol 0(J>o-0 009 0 OGI O,(>0
-0.024 0032>>0 034 0032 25
-0001-0008-000! -000i 0005-0006-0004-0017 0006 OOOO OGOC G<'>G-0002 OOni G(00-0004 OC32 0(>:~
OGO3 OOG. -0021-0021 0015 26
-D004-0010-0004-0011-0005-0008-0009-0008-0003-GOO!
0<)(>." <!()>>(-0007 O()>i (>noo-0007-~008 OOOO OOOS-00184030-0030 0011 27
-0004-QQQ3 0002-0001 0006-0011 00!6-0020 0000-0003 Gno! -0006 n<<<>G 0(>05 0(>>o 0000 l>(>>'.0-0.016%.021 0008-0.003-0021 0016 28
-0003 0004-0006-GGGI 0003-0004 0007 0003 0009-000!-0010-OOQ6
(>'(>O'..Qool GOG> 0002 0020-0005 0002-0011 Gol( -0011 0020 29
-0006-0003 0001 0002-0012-0012 0.004-0011 0000 0003 0020-0002 0022-0007-Gool 0007 0()!2-0004.034-0010 OGN-0034 0022 30
-0.013-0.005-D.008 0.007-0 ool -0 00> 0 002-0.004-0.002-0.007 0.019 0 0(>> -0.007 0 00!
G 009-0.002-0.003-0.006-0.004-0.017-0.013-0.017 0.019 31
-0003-0009-0018-0007 0005-000!-0014-0007-0002 0008 00>".-0003-0013-00094.025-0.005
(>003-0028 0(>02-0008 0(!93-0028 0012 32
-0011 0027-0006-0002 0002 oool 0029 00!7-0006 GQQS-0007 (>Got-00(0-0002-0019-GGGI-0012<028%034-0014
-0034 0029 Min
-0.032 4.034-0.018 4.016-0.018-0.025-0.014
-0.028-0.034-0.010-0.023 4040 4025-0.035 4025-0.020-0.017 4.028-0.034-0.029-0.031 Max 0.031 0.027 0.028 0.017 0.012 0.016 0.029 0.031 0.022 O.D23 0.033 0.030 0.030 0.024 0.010 0.014 0.049 0.056 0.036 0.009 0.040 Del D.QS3 0.061 0.046 0.033 0.030 0.041 0.043 0.059 O.Q56 0.033 0.056 0.070 0.055 0.059 0.035 0.034 0.066 0.084 0.070 0.038 0.071 Ave
-0.003-0.004-0.003<.003-0.001-0.004 0.0024.001 0.000 0.000 0.005-0.005 0.002 0.000-0.002 0.000 0.002 0.001 <.001 4.007-0.001 Dev 0.011 0.009 0.007 0.007 0.007 0.008 0.010 0.014 0.011 0.007 0.014 0.014 0.013 0.011 0.009 0.008 0.012 0.014 0.014 0.009 0.015 SECTION
SUMMARY
MinimuinWear
~ 4).040 Min!mum at 7,L 0el Ave 0.074 0.013 D.052 0.002 0.048 0.001 0.024 0.003 0.055 0.002 0.064 -0.001 0.056 0.000 0.054 -0.003 0.057 -0.002 0.026 -0.002 0.051 -0.006 Q.049 -D.QQS 0.062 -0.001 0.041 -0.004 D.024 -0.001 0.044 -Q.001 0.028 -0.004 0.032 -0.003 0.022 -0.003 0.025 -0.002 0.038 0.001 0.040 -0.005 D.046 0.004 0.068 -0.002 0.036 -0.001 0.041 -0.005 0.037 -0.002 0.031 0.001 0.056 -0.001 0.038 -0.003 0.040 -0.008 0.063 -O.OD3 Dev 0.022 0.011 0.011 0.008 0.013 0.013 0.012 0.013 0.012 0.008 0.011 0.012 0.012 0.010 0.006 0.010 0.006 0.007 O.D06 0.006 0.008 0.011 0.012 0.015 0.008 0.009 0.009 0.008 0.012 0.008 0.010 0.016
~
C
~
~
Maximum Wear
~ 0.056 Maximum at 1,R Delta
~ 0.098 Number of Rows 32 Average Wear
~ -0.001 Number of Cols = 21 Standard Deviation ~ 0.0t 1
I ~
CODE I
MSCAIPTIGN 0 ih '
1~Pill ~ II IA >P II C
'PP 1
~ 1 '\\
P !I CP
.'.O I'P Ib \\
Va~ i
~
a
~
~
~b 7
/c ""I7/" '
/I 05O~G) +PBBS G! Pll.GB.l PI!"!I: A. lIO.
'GU'I'OO
O!",.
Q'
~
5 FALRYMTIOII PAS @f8 IHSPFCfEII AIIQ IOALS TO THI RECUkDKITS OS K. r. S. C. ra ac Sn)ISICATIO!I "SKO OVA~MNfR'II!
I
'Cs no n
~
ALITY'ONTROLREC
[g~o
- '! Pz'O-IPc.:q-I /j.
gal&
i gI S pe 4'>>'7 841
~g'yl gS
)
r
/I
',~~p/
Ill I
I I
I I
O'I."Ic: I 4285 I
I I
STRESS PiELlEVED I
:".IHCClIED8"' ~
I WIC I
DATE. +
I I
I I
', Jnà ~
PROD ~
ORDn 2l I'8 f2E:.'SCRIPTION CODE WT'JAN~
i 30 PIP!
~ "A00<!W al06C
+9907760 280OO Zln~
.?l FT 6
INCHcS+9907i60
,'30 END PROTECTOR W/WOOD 99907014 25 '
2
~
I PCS RFOD ~
I I
I TOTaL WEI "HT FOR ONE PIECE 6084n LBS ~ ~A I
- - O'I 0
AWO I
I I'I:I<
II:i{;.
- I I Y 'P.'I Cll:: D. GY 0:!
ti-3!3
- I C')Vg~-g7'.8'r4. >/ig lv)
I
- d. PPl<ic23 9)-'g'hf: /f.:~/i./'I f J~Pj DV.iG.OOSOr/O-Zb T
[I(I)ll<IAPIVI~
A A S -<VSF'ECT Op 047gf
I
~
cf2'I 7: ).s
)";).i.:.'.f'ff.
"<<)1(Q f,;.) f);iJ
.)9Q I J>>C& r >J a) lJ<~
~"~:J JI
)'('D'3 t.<)'1Jlj.)'J.r
'l P2P6 r
~
I-
')':PJ.JFr)]S.
8 X ))
JJ )I X U I'J,
)
i<J"'I'I'0)')
)i J.
t 0
>'J2 X)E(l U, f),.f.~
fc 3'l'c g 0(-%c"~ "I'( --.'
V
~ pr(]c" '.l('('.")]'p Jg.
f'IJ,'<',<Qp BA.tf':,'3.)]:3.)c Jf J;~
)l'.:l'.t. Onio~ )lf'g1039 la'0
)ll:a' g<)yf rg J w ecO r.O<<a cd >' r J.ll 'J.J. 0)'0 (<. (Ill:)10 O.". (~i,(I~ c'e tf>lO >
.C.;):lp(: (
();]. 'i&0 J. (13.AO J.) If" f~c".tGX'J.(.L 3.'i..X I
(
r J. ~,
W
> ~ > ~.K )
7 CC<f> <<X(<r'1 0:. )'.i<61'v )
3M',?lX:f'r. fJ;)..'~
)]OV~ )}Zf' Ol'-".(L t. 5 0 I<;: Ccf:"".el1. t 0 COilJQ) lf>.")';:;0 ).'()ll' Ct. OI}1 i>9 k'NOVO 03.'(I C)~ 0 1
].
'.)1 f'(:O~. i~,:CG I'). I 4
[cjJll~..1 Cfc,.'10
))cl). 'C J
I J
0)I(I('.$.XXC".'l."f f) -
ael
/QU L. g.'f )..')> J']'lf'I, 0:.
I:.~0 I'<
1>,
C J
C
)'I Ca r
a 1'0 fiO< 0~$'(l,
$']1XC>
1 'AY'(
~C(1 0
1 l
') I<<
X'll<I "JO:
.'J ~
pl1COCA fe;I'. C f-'A) '.a 1.1 fp
(~C l 0 f' Ct':lg<CL'.'::0 (;;1('W.
O'LC.".l X(~.1 '.'."..
) %'x r".uA7.
~ A <<e ~ '
'J1 Ii.-r
~a
)l.J. (f,".
~
raw <<a
~I
.>.J. Jr SH7i'P;fltO l".;::i:8
'II I>e It> Ic\\ II II II ~ ~ ~ ~ I\\ <1 IJ fI
)@pf>1 ~ fe
~
\\
Bg<I'e"
~
~
~
~
=~Q,Re
'1<
'afe 'V1ra I a w > J, > r'
'a ~ J
~
~ >>,.(..=)l
~ ~
), o=bR I> a * ~ <<4 J. ~
~
~ I )I '>J ~
C
~
~
1
~ I
~ 'JJb']'sd 2C(
0 1}lr>.J.
rC,
~
1 a! I I1 c 'a
~ ~
~
~
~
f~1
)l P
.C)Ogp
~ Pg l
~
~
e e
e
~
~
e YO'l<<af'O~. I'la
~
~,rf, ~
~
~
~I
\\
~ e Qv~
~
~
. FE&. 5
]g'Ip
b 4
t
~
Ir
4
(
t
~
I t aetv tnt ~ ~ ~
Ir w I 8 a eevs rI I
E
~
ll)Croi)i)I I'il'I c'IIII)cate
)
)'Incr!i.::;".!t
~ I:i;I av avv s vvtt e 4 \\vvavvrana
~
a II etvvvt Ave rve paas tave Inttvavurvt \\ave a rvrvvttrererrna'I IIACt Of'.Dffff:.Cr )i;f!Ti:
I Co()erect'r ore ~ r
.I,'/
c ~<)013/
% cr Via Ce Df/if.'If:"lRO t'c l.
I U.'O I' p o iiI c n o I ~ r FCJ(
~ Cl
",', t Ig 'I -, 0 n n)
(eI C c)
Di+i, -~rgiuOO.. Incl ps tense fRA <:0:eri'IC.". /i V(crc ~ rctrtcrcc I:rats tc-cent Itr S:~'S-.n:C=
Ttntcr(no ci
)'CIA!.:)c
~
". Io.:.~4.. n)rt r
r ii 0 D.'
UQO T)Sc ct Stre
/ CCIAIO vrI~ c I fir))
(l I'.
(s r:-)
(,'--:l!)
P.""SO Vlol hl fc.rc)I
)
3t'f P.
lg(
I I vrJ)
I'tfe CRO I)
I 7U(rl ttorlhrr cl I tt oc lc)I)l (it tcc c
))cs.
-L PlkrnSSfnte C )Q)i/(UI.IO/i i)l PRO(//w Itgdrr vcr c Io ~ I trice
~ rr to I
~
I:/an"
~
>~coo ir Pr)SO Vor/.'C; Tot ~ I crctf ht
~.
SCIICICC(tnir i%~l. ro>I. ~
ir.s 0 Vlr>>I~ pt (Ir c
ev) )
~
LUhCI I('C77.A 1 OT/ILE Tc tot tent.th
\\
9(. (i ~ f lf
<'l.'I'".... If, Frc OD I I)!OI tc1'.".
Vrctgt I ol trrotctlrts f oi'
( 'eil( l'nc) f IROV,i rrf!Ltcl'U',rA ':.OO:ADO LE I!Of'.,.=
TC I cttccti8 rccordtnv Spoctttcctloni J. "..'.. '=. A ICi.l CEH'J.'):F3: CA. TO D I ';f ):.". 7 CELT..I.
C,'hin lect orcllrtc cct Ill)ceto r
I)If/It~ tc:ti,'it
~
I
~ ivrvtta. ~ r recta p~eeenanae(vevavseestvnvryvaetvttraetr ttntw Ivpntarrtrvrlnnvrstvvttpattrt" It ereesttac I \\1(NIQCAvvsv ~ ivnanvnratvl Vttr'Avelcneev 5o,.%3~i 5oc ~).';4
~<<reste bing CI
'9uDQ I>t)gbgg boob)s 5
~rg.;~a
('t t.~~
O.
~
I Cr.P.ir COI reTt t.chine!r c
):ril
, ):I
~% tele/I vvt tv s 'I ~lrval~ I v na f O4 C,Q p.S.
,( o5 KQS'ertvee eensrv O. -)
C,',~~g p) Vfi ci,go P Pgp 0, ~ >~
O. ~P' rrttt Ivrreit vet LA 0, C.~~>
O.GB=N O.GP Q
)),GQ ~s O.o~
o.>=0.
)P S
stevrsrltalvs 'll, tv ~artv 'tt JQI J" '
IY. '0 O. GQCg Or GC) Q D. OQO C7, OQO O,OP+
oct30 0 O~<
2"
~ vVls
'a t Iaa.e,( ~ ~ )I Iewvlvt"In ~
~
ZigqCD OO Q( 1-(/0 dr Q gC>Q OO 4LIC+GO z;-~C)( o j 85G4 j'- 8>o (7cc) ~c sgQ P y'Q, t)t)
P,g Gt)e ppz oc "c3
~l
-".;I 6
~n'() 6' Pg Bl~r
.>JAN
'r mete tre etra (nvta II ttvvnculaatn P3-ASPi terr ~
-j. )O6-lP Vt~
'\\ e Pi cc cr CC r'."i.
C c."i"IRS
~- ~O(O
)
C 0.):.
)a LC + SC'r'cTc
~,>3SC
~ c cr ti
~ ~ ~ r V."tS'1'" 9 Ag(~o
~- l(L'Cii )CO 9! 1'0 >>60 0
/cm(n CAL PII/I.
PII tb
)p
Cu'tc-.cr.:
)':'I'SS!;.S.
S I )) ii.:t Quote.:o II. 00oy:: 69OI39 0).'Oc-.r
> 7"10)G VS sz
- hR'i YQZI"., )(.').
100.-:2
'II 1
I Ue OOisO
~ t
~
S~1!:HL;"..SS 0)
L)'soà S'1Z: J. X'XPi'O.
M'j"~)i O.'!/)) 1' i'OO 0,.)) ~
AQ4 3.,0 ~E M.P.
~V 0
1A~ ~
~
)10
).'/;1.)l '
%W
~
'1&
1 40
/9 50 51 52 53 55 56 58 59'o
~w 62
, 63 6.g 65
~
~
66 67 60 69
'(0 73 6.98
'(. 03
'(,2l
'6,97 7~12 7
7.3
~
(
5-'I.
- 6. 67 6.96 6.90 7 47 6.71 7.21 6.79 6.n0 6.99 7 o7
'(.10..:.:"
6 g95 V 29 6,00
'(. 31
~
'(, 10 6 ~ 12 22 1'I".
r,~t I 231 n!:
~
2c" ')C" 23I r>>
2'"
2cgI 1I" 2/) InII 2'<<1'i >>
&PI IO" 22 I 0>>
2l;I6" 22I 0" 23IG"
.;22I3>>
22 8' 22< 'H1 23'2" 23I 3II
~ 22I IO>>
23I I I"
~
2P
< VII P/j I Qll 23 I 6II 20 I 1 II
~
~
. 35.'i'j 3580 3687 353."i 362o 7
3'(38 3~p>$0 33'(5 35 1A 3j13
'3008 3300 3'(V2 ggl 3513 3559 3600 3615 3539
'3'( I2 3503
'3722 3<II>6 31 1' h
, 0 7035 0 I 28 7(""
7981 62 "i9
'2.~
1I 8p6 74:i-0 (813 7745
.8306
'(l'52 0316 (621 (7l'4 7046 V937
. 79VQ l(002 0103
~
V723
~
0205 Go6o 6872 5(;OII 5oon I I II I
~ ~ I 3009 II>>
5noq 501'In II>>
5"""9 50-'9 5009 ro 5oos) 5Q c
50',i>;
5009 50;);
50<@.
I'0 %9 25 1 (6,0.1.
~
~
p<'('f I 6II 09663 19'(6'(0
DI r Alr~ i <<o l e 4 r
~
~
I 0!!!.~oroo C.'I 0:.I.M!I)K i ~
<<r<<p(
j c<<aav<<v 4
I'l.l i
'4 4'ro.sl I < sc '
) "<<44
)ho V t v
'ave I
or )o loll Cfrlofg<<fd
~
o r
ov oh<<<<<<hot 4<<hoeao<<<<<<ere<<>>.
$ 4 ~ or<<ch p oh
~ <<
~ I~t
'~'4<<l<<! '.i) ~
STEWART'US Z 2 C.
~ ":"";,'3c.'
F.Y. 'f0022 ~
U..";.A.
~ TOP"" COL/.AUDO
) ell 11<<pe<<go <<a<<el gq)ha'E
~ g-Ith~'
'<<'o' TA<<
CC!<<o.!r.COCA
~ '
o
~ drl hd Yltr"II'L!!R4~
793038 Io <<0<</4h Tcc ~ T II Cprcr<<em fr hht ra) oa
~ r 690') 39 JI<< Chv<<<<c 0AO"I" O"i. C'""T" d Flo CF Xad%. c.N II<<hI ac. <<I ~
el<< 4I<<r ~!tto<<e 1<< 4
'"4'I') ~
'rn ellen
~ ~ <<e orr LGniP - A "
0
."I0
~ ~
~I an
~
o rr oo 0!<<:.Clad<<!Oa)I DCI TVOI rc",iu.
<<<<red f<<JI 01! I<<IIC!O<<II
~I Io<<o<<llirllr S C'/Icl<<C
$<<4<<l en I.VI:l)4:o rl 1" f.,lP
<<i<<o X ohoh
)41" 4
~ I pnloo4 r
I'a ~
<<iCll;if\\<
r.l IC<<
lvo
'A<<('i)'ill
<<<<I OT,CI:V<<0 I"oooo i<<o<<o ~ o I
~ ~
4:::..CB PA<<nlo oot P<<la<< l << ~
!:rCuml 44) lac
"<<Inrnl r<<
OT'. -!:Vi0 4!arll 4 <<<<
mn IA flIoa
~
+
I l<<J
~ c<<r c) 30lt
~
< Q>/II Cg 3 /
r)r<<.
"a 4')'goo l
&30 PeZ.!jl Ie
/ ~g (j)~,c 70000 5o WAT ye~>>,
~"h n~C.q:4 e
1 s.~i S4 iri<<re<<sir 4co<<o T o"p
~h( P 5'C v>>r) 5 <<)0)$ Cg 50O &Z8 "qP QC5 Q')'~~
5~5 1
boa gc'i g h
50cp+sQ
\\4
~ n
<<4<<
0.34.
Oo' o "')
<<4 4
~
0 ~ '4 '4
)0 <<-">
0 ~
0<<'4<<$
X r.~
noh Q.NP X 0 0,")l
>,04 1 otr'>
I.VL if cog>
O<<3v 0<<2,'.
bo pG 0,2$
-Oc 20! ~
..ra o,a I
C~
~
C )I ol'}
o.
r,'l 0<<P
)a<<ohq 0 ~ r ~.r 1,.
o,pig 0;;Ol 3 I.~ y I) ~iv aa<<oo v 0 f0/.2.
(p
~ 0 c.r,i l
ga g r~ )',t.
I O..C I" C.
C) 0 Err~"C of g l
~
0 <<Q+$
alod,5 0 0"'~
0 <<>'; >(
0 <<02$
o.a2)'o I
O!
Cl ov jv
~
Oh<<
a
~In
+Mg Qgo<<Q
~ $ 0~<<o '
04<<o A 0444 rel!44
~
~
~
r AoiA I(~
.I
~g, hi,'.
r<<,
'.V.'PA o <<CP <<
~
~
~<<<<v
- a. SV-lh b.
SV-1B c.
SV-2h d.
SV-2B e.
SV-3 1065 psig 1065 psig 1075 paid 1075 paid 1085 paid 16 in. 2 16 in. 2 16 in. 2 16 in. 2 16 in. 2
- The liftsetting pressure shall correspond to ambient conditions of the valve at nominal operating temperature and pressure.
COOK NUCLEhR PLhNT - UNIT 1
3/4 7-4 hMENDMENT NO
- kQO, 182
r
/p
'r
S p
1'o:
Cc:
Bcc:
From:
Subject:
Date:
Attach:
Certify:
Priority:
Defer until:
Expires:
Forwarded by:
AMIYA K.
DE DGSAEPSC Jim D. BenesNESBSCOOK,Michael E RussoNSASCook Mark R MichaelsonNESBCOOK Richard A.F. HarrisNESBSCOOK David G TurnerNESBSCOOK Unit 1 Operational Data
- Tuesday, March 25, 1997 10:56:51 est NNormal
- Amiya, Data from the last two Unit 1 fuel cycles has been reviewed for the purpose of determining how much time the secondary side would be pressurized to greater than 1000 psig.
The logic used xs that while the unit is generating
- power, the pressure will almost always be less than 980 psig.
This 980 psig corresponds to 10.
RTO.
Therefore, the period when the unit could have pressure greater than 1000 psig in the secondary cycle would be anytime when in modes 1,
2, or 3 and at less that 10'.
RTO in parallel.
Mode 3
z.s a transitional mode when the primary loop temperatures are in the range of greater than 350'F up to full temperature and pressure.
Including all this time would be conservative.
Therefore, all the hours when the unit was in modes 1,
2, or 3 are used to bound the conservative time when the unit may have a secondary side pressure of >1000 psig.
The last two Cycle's statistics are:
Hours in M1-M3
= 22248.7 Hours Critical = 21335.8 Hours Parallel
= 21003.2 Hours in M1-M3 not in Parallel
= 1245.5 Percent of Ml-M3 time possible at
>1000 psig
= 5.6% of the time My thanks to Mike Russo for sharing some of his statistics on Unit 1 hours1.157407e-5 days <br />2.777778e-4 hours <br />1.653439e-6 weeks <br />3.805e-7 months <br /> operation in the different modes.
Contact me if you have any questions.
Extension/pager 1095.
Dave Turner
NE&15 (OZ/95)
DONALD C.
COOK NUCLEAR PLANT Section DESIGN VERIFICATION CHECKLIST CALCULATIONS Calculation Number Dd "D-D/ HS~
Rev.
Signature of Verifier
+ -Z-f Date 1.0 Were the inputs correctly selected, incorporated and documented into the calculation?
Yes ~
N/A Basis:
8 F/ JY V J gE'YCC 7844'U OP WF e
CCdc 2.0 Are assumptions necessary to perform the calculation adequately.
described and reasonable?
Basis:
ikey J
JJ V Rid'rV~ W VJ'C-5'es N/A~
3.0 Are the applicable
- codes, standards and regulatory requirements identified and requirements for design met?
Yes N/A Basis:
CfE Pg OJ 5'/rS Odd CPE87i4Af (crt' d
c' o
RF c
4.0 Was an appropriate design method used?
Basis:
-Sl'Co o'S PC o
Yes ~
N/A lz CO FX 5.0 Is the output reasonable compared to input?
Yes ~
N/A Basis:
Can&r rW 7Ã OOZE E'MEWWA' sloe]87/Fp Ec6 ZEiv wx
/r'res zEE eu ex+'c z E XoWA 6.0 Are the results numerically correct?
Basis:
gE'iO'C Mc4 c'
c'p Yes ~
N/A Vf'E oR P4pe 1 of 1
I 4
4