ML17333A868

From kanterella
Jump to navigation Jump to search
Hoop Stresses in Sweep Band.
ML17333A868
Person / Time
Site: Cook American Electric Power icon.png
Issue date: 04/02/1997
From: Cummings F, Dey A
AMERICAN ELECTRIC POWER CO., INC.
To:
Shared Package
ML17333A867 List:
References
DC-D-01-MSC-66, DC-D-1-MSC-66, NUDOCS 9704290143
Download: ML17333A868 (41)


Text

~ ~

~

I

~ I xz>~4C +

i ~

i ~ ~ ~

$ j ~

) l '

Il et I r 4

I II I c ~

I

~ ' ' I ~

I I

p

~ I ~

~

I III

~

\4 STRUCTURAL 4 ANALYTICALDESlGN ONCET I

'AMERlGAN ELECTRlC POWER SERVI~ORP. OAT C

't RlVERSfOE PLAZA CON PAHY COLUMSUS, OHlO O.C. COOK NUCLEAR PlANT

'I RFC OC Calculation No. C. 0 l - M0C SECTION TABLE OF CONTENTS PAGE

=

l. 0.......... PROBLEM

SUMMARY

. 3 2.0 ASSUMPTIONS 3.0 ComaUTE< J.P.

4.0 CONCLUSION

5.0 REFERENCES

6.0 PIPING INPUT DATA 7.0 TYPE OF ANALYSES ('8kwg M l

) (~s 7 S.O SL y~&Y OF 'lAXIM'dM S.RESS:-:

9.0 VAL E INFORMATION 10.0 ES.

11.0 SEIS 1C ACCELERATION OF L~

NOZZL ANCHOR LOAD SUM~:=.

e A-12.0 BRANCHL E DATA SHEET 13.0

SUMMARY

.O SUPPORT LOADS.

14.0 LUG/TRUNNIO QIPE STRESS SLMQKY.

15.0 LOAD COMPARIS N 16.0 PIPING ANALXSI .CHECKLIST ATTACl'~AENT .-.

ATTACPi:ENT B DESIGN VERIFICATION CHECK'::

A. <fACgavE DATE ~'

VNIT NO.

~

CALCULATION NO ~

The purpose of this calculation is to verify adequacy of the Main Steam (MS) piping system and, specifically, the component 1-MS-1-M-9E (Attachment 1, Sheet 1 of 11), a 12'-6" R pipe bend which has been found to have lower-than-minimum wall thickness at certain sections of the bend.

1.0 During this outage (U1R97), the sweep bend1-MS-1-M-9E was inspected for flow accelerated corrosion (FAC). The sweep bend is welded to a vertical 30",

at one end and to a 30" straight piece of approximately 2'-5/16" length 90'lbow at the other end.

During the 1995 inspection, UT was performed on the vertical elbow and at two extension locations. These extensions were 1" and 4" respectively from the weld at the elbow and the sweep bend interface (see Attachment 1, Sheet 4 of 11).

The UT data on the elbow was acceptable, however, one node (2I) on the second extension line was found to have wall thickness of 0.893" which was less than the minimum wall thickness tmin of 0.907" computed with the specified system design pressure Pd of 1085 PSIG. The grid pattern for this measurement was 4" x 4".

In order to obtain additional information in this area, 1" x 1" grid pattern was developed and a new set of UT measurements were recorded for an area of 21" (circumferentia) x 32" !arial) . Some of these grid points, mostly within columns J through S were found to have wall thickness less than tmin of 0.907". The piping system analysis was reviewed with these lower values, and the piping system shown in Isometric 1-MS-1 was found to meet ANSI B31.1 requirements for the longitudinal stresses. Hoop stress check was not made and an acceptance memo was issued by Nuclear Engineering (Ref. 3).

The same 21" x 32" grid area was UT'd during this outage. The measured thicknesses show almost an identical pattern as that of 1995. A comparison of the 1995 and 1997 data confirm that there is no FAC problem in this system. An engineering review is performed in this calculation to determine the effects of lower than tmin wall thickness on this MS piping system.

2.0 There are no assumptions made which require further verifications.

3.0 ER I Hand calculations have been performed herein. Computer data from calculation gDC-D-01-MSC-65 have been used as supporting information.

SHEET OF MECHANICAL DESIGN SECTION AMERICAN ELECTRIC POWER CALC. BY CHK. BY PLANT ATE NATE UNIT NO.

~~+

4-o MHCRUGXQH FAC is not indicated in 1-MS-1 Main Steam piping. The measured wall thickness in one strip in the sweep bend (component ¹ 1-MS-1-9E) does not meet the minimum wall thickness requirement based on the specified design pressure.

The minimum wall thickness requirements, however, are met based on the actual minimum tensile strength of the material as shown in the mill test report ~ The minimum wall thickness requirements are also met when evaluated with the stress-intensity limits and actual system operational data.

The sweep bend therefore meets the design intent and/or requirements of the ANSI B31.1 and ASME Section III.

5.0 (~~RE QP+

1. ANSI (USAS) B31. 1. 0 - 1967, Power Piping Code.
2. ASME Section III BEPV Code Appendices, 1989.

Memo dated September 8, 1995, from A. J. Lewandowski to E. R.

Anderson.

Piping Specification ES-PIPE.-1013-QCN.

5. Pipe Stress Calculation No. DC-D-01-MSC-65.
1. UT data on the Sweep Bend (total 11 pages).
2. TUBECO shop drawing for the Sweep Bend (total 1 page).
3. Mill test report for the Sweep Bend material (total 4 pages)

Tech. Spec. Table 4.7-1 for Steam Line Safety Valves per Loop, Amendment No. 182, page 3/4 7-4 (total 1 page).

5. E-mail from Dave Turner to A. K. Dey dated March 25, 1997 (total 1 page) .

6.0 None.

t MECHANICAL DESIGN SECTION AMER1CAN ELECTRIC POWER SHEET CALC . BY CHK . BY OF DATE DATE

~1~

PLANT oNlT NO.

DQ 7) 0(- Mdc- 4l The following calculations are performed to evaluate code compatibility and to determine structural significance of the wall thickness deficiency.

Hag: The longitudinal stresses in this piping system are well within the ANSI B31.1 allowable for Pressure, Dead Wt., Thermal & Seismic loading (Ref.

Calc. DC-D-01-MSC-65) and, as such, the calculations below will primarily address stresses in the circumferential direction (hoop stresses).

Pipe Isometric: 1-MS-1, Rev. 15 Pipe Spec: ES-PIPE-1013-QCN, Class J-14 Pipe Mat: 30" o.d x 1" wall A106 GR.C Design Press Pd = 1085 PSIG, Design Temp Td 600'F Normal Op. Press Po = 728 PSIG, Op. Temp To = 570'F ANSI B31.1 Piping Matl: Allowable SE = 17,500 PSI 8 600'F (A) Minimum Wall Thickness Required Per ANSI B31.1.

Min" thickness tmin ~ + A Ref. (1)

Z 5Ew AY)

(OSS 30 Do/07 2 i7,Foo+(oooo)(4))

A 0 (FAC measurements are done and also for no expected FAC)

Y ~ 0.4 for ferritic steel.

At one of'he worse locations of the 21" x 32" grid data (Attachment 1), the following actual wall thicknesses (ta) have been noted during UT:

MEASURED WALL THICKNESS ta (inch)

Row ~OL N~f

¹ 13 0.860 0.851 0.857 14 0.851 0.843 0.864 15 0.851 0.859 0.860 ta average = 0.855" (ta average is less than the Min" wall of 0.907")

The actual hoop stress using the above equation (pg)(p~) iosr) so )(0) = la (sl

~ "y z o,ssg gioss ts't>>

OI The actual hoop stress is 4 oSj~ larger than the allowable stress of 17,500 psi.

SHEET OF MECHANICAL DESIGN SECTION 'CALC. BY DATE AMERICAN ELECTRIC POWER CHK. BY DATE 2 PLANT UNIT NO.

CALCULATION NO.

Yield stress (Sy) at 600'F (design temp) = 29,600 psi (Ref . 2)

Although the calculated hoop stress exceeds B31.1 stress allowable (SE),

however well below the yield stress at design temperature and, as such, it is the piping system will remain functional and there is no safety concern.

(B) The allowable stress of 17.5 ksi for SA 106 GR.C is controlled by the material minimum tensile strength (Su) of 70 ksi (Ref . 1 a 2) . The allowable stress is 1/4 Su.

The actual mill test data (see Attachment-3)show that the minimum tensile strength for this specific piping is 76.8 ksi. The allowable stress based on this actual data, therefore, should be 1/4 (76.8) or 19.2 ksi.

The minimum wall based on the SE = 19,200 psi tmin ~ 0.828 2 (19,200 + 1085 ( ~ 4))

which is smaller than actual wall ta of 0.843.

Therefore, the Main Steam piping system meets the code intended allowable stress limits.

(C) Wall Thickness Requirement based on System Operation.

The design pressure and the operating pressure for this Main Steam piping system are 1085 psig and 728 psig, respectively (Ref. 4). Since the operating pressure is small as compared to the design pressure, the operational data was reviewed to determine the percentage of time the piping system operated above 1000 psig during the last two cycles. The value of 1000 psig was selected for convenience.

ANSI B31.1 (Ref. 1), article 101.2.2 states that the Internal Design Pressure shall not be less than the maximum sustained fluid Operating Pressure and shall include allowance for pressure surges except for the occasional short period operation at higher than the design pressure.

Attachment-5 shows that the system operates only for 5.6'-t of the time above 1000 psig which can be considered as the short period pressure surges above 1000 psig.

Based on the system operational data, if we redefine the design pressure as 1000 psig purely from an engineering and system operation standpoint, the intent of Ref. 1, article 101.2.2 is still met.

l.

'ECHANICAL DESIG AMERICAN ELECTRIC POWER ECTION" SHEET CALC. BY CHK. BY DATE DATE

~~~

~Z~

PLANT UNIT NO.

CALCULATION NO.

Therefore, for the newly defined design pressure of 1000 psig, the Main Steam piping will meet the minimum wall thickness requirement (by comparison with the page 5 calculation).

The magnitude of maximum pressure during a pressure surge is limited by the safety valve setting of 1065 + 3% or 1097 psig max. (Attachment-4) .

The minimum wall thickness needed for this short duration operation (5.6%

time between 1000 psig to 1097 psig) is:

]oyv) C~o 0, goo zf((y,gpss)(l /5) ~ (l017)(0)g where the factor 1.15 is the 15% increase in the allowable per Ref. 1, article 102.2.4.

Therefore, from actual system operation condition also, the Main Steam piping system will remain functional, meet the intent of the code, and have no safety concern.

(D) Stress Intensity As stated before, the pipe stress analysis (calculation gDC-D-01-MSC-65) confirmed that the piping system as depicted in piping isometric 1-MS-01 meets ANSI B31.1 code allowables for all required load combinations for Pressure, Dead Wt., Thermal, and Seismic loads. The maximum interaction ratio is 0. 7198.

For sustained load combination (load set 31. 1-3), maximum longitudinal stress is 10106 'he shear stresses are insignificant.

Therefore, an element in the pipe bend during a sustained load condition will have stresses as shown below:

6' 6 Longitudinal stresses due to 10106 psi p pressure & dead wt.

1 ~

Jq ~

5 6q = Hoop stress (8 design pressure 1085 psig) = (8'OI f'<<

~

~ 1085 psi (p+-

p Therefore, the maximum stress intensity is:

6 - p = I860(-(-(os') = I V,NEW Q ~>>~~ I" '

5~ = I$ ,7dg p,cww+8La 5(EEU ZarEaflrl C Therefore, the sweep bend meets the code stress-intensity limits and, as such, will perform its designed function.

W N.

I IISH I Ol I trOe ILOE Yalf 5%.

I+SS.L I Wf aOLRRMSCS 3 I rrOA SR. DLC.

IPC ITOINICS 5 2 SOA ME VRlf S.B rrOA DRRCaP DL CRl SXO'P QLeL SR. Cs Cta 32'r 3R'LL tSEE IOTE b ga R fafrcR~:f~4'~+'

IPDT 'I >>'c I r trL f2$ ITBI ps

/ r.7

/C COITRDPQIT LPET I VP O. Z'18lf IIPJ 15

'ltPJ

<4 SIPPLE FOI COIT. SEE

~

g K' ~~e Ills IRC A I.SIT&I I ~VP.EL CSV<5'EE SEE I ll~ Xf.'P KT.IP I 15'N 10lfLE RIPE IEIPRED ~ DOS

~VP.O SS2-IR)'

P ~

> lI.CH ME<T fOI 50'OIL HarR SIEaN~

'Pl% IRPll% QIIILD IIIIIESS ItatRS XKI 1~~'L~.C l ~~ll

~

I ~

r P. %0

/

)

De&+ fOI COll,sfE ZOX'UL OITA H5 2 a 22'-XT-eer Rre55 aa. If'ot TS IL,

~ -I y

r

~

'feS}'g OIRLED Ol IPSIHENI 5S QIK IF ICIIILE Oa.f ITTP) IIP.IL.S12'-3'~

- ~A'l

'3ilI%

'l el+ ~

~

g'JJgN~ eA I 5D'PS 132 pcs aT r QQ I l

fw) + + IIP.ELS3H > tw

~

'f4~ \

'ever ILcotraRpea ~.'. ELL IIIITSe TBIST35 L TCSIIC PROCQLREs IatrpKLDS uu R.r.

00crETRELDS II T Jt.T. CCN. SD DINcarfs Ucaf lot cf PRE LX e 16 Qppol'1 tpcr sLppolf cETRL Itsc eau< a254 cototo ol NL 2.

TIIIEKED COPts.

ILPEER Ace er er areew wee<<p w e4a w e werW r<<<<ee We~<<<<ee<<

~ err\A r er

~e e

a%0 M r~

~e e ~ w>>e Arwe<<rA

~ WWr <<r

~

~ ee st3Las fCLLDRQ

3. PPE 12 OD.I 125 NR.

QPPTRT RIFN ILPSERS ~lcaN ELscrRfc tock 30 OD.! 10e NRR 90tN A% FOI rg IAAa Co>>> h<<>>

a TIS CR. f sla s. Ol a Iss OL rc.TO CLass IBILom COERIL atcl SOLENIDL LIXAIRDI

% SLPPOIIS OLT ~ e r <<>>>>>>>> 0 <<eA 1

~% Ae>>

~>> <<>>>> COtfaaa6lf IXI War FOI EIacf UERTIOts SEE PRE 24'AL ~ Qtkrfa.

L 1% CILB SOL BO QLS. QP%8f DETLIL sff ItttP 1

~ CPC BOOXN

~ At>>IA>>tVIPLt%<<t >>A IN I

Company: indiana Michigan Power/AEP Plant: D.C.Cook Report Date: 21-MAR-97 Time: 11:22:52 r . I ptr:--

s Unit CHECKWORKS FAC Version 1.0D I 1 DB Name: COOK1 v/g~ + 0 t ttttttttttttttt

~ UT Matrix ttttttttttttttttt LINE NAME: 1-MS-001-1 COMPONENT NAME: 1-MS-001-1-L-9E OUTAGE NAME: Ul R95 SECTION: U/S Main Tnom ~ 1.000 (in), Tscreen ~ 0.90T (in)

[Gnd data Cokrr Max. 0.454 0.90T 0.700 0.875 1.000 1.250 A B C D E F G H I J K L M N 0 P Q R S T U V W X Min Max 0 el Ave 1 1.3ST 1.354 1.367 1.385 1.377 1.408 1.394 1.420 1A04 1.438 1.432 >.422 1.401 1 383 1.388 1.400 1.429 1.405 1.397 1.386 1.389 1.382 1.345 1.399 1.345 1.436 0.091 1.395 2 1.399 1.386 1.417 1A01 1.403 1.387 1.384 1.381 1.386 1.381 1.387 1.377 1.421 1.3SS 1.394 1.403 1.413 1.379 1.387 1.390 1.401 1.394 1.403 1.385 1.368 1.421 0.055~3 3 1.372 1.375 1.388 1.403 1.401 1.384 1.377 1.383 1.381 1.369 1.3B7 1.396 1.37? 1.388 1.354 1.370 1.368 1.379 1.3?8 1.383 1.402 1.405 1.396 1.368 1.354 1.405 0.051~3 4 1.3S2 1.343 1.389 1A33 1.408 1.396 1.400 1.374 1.372 1.363 1.370 1.379 1.405 1.383 1.378 1.358 1.360 1.398 1.379 1.388 1.405 1.407 1.394 1.347 1.343 1.433 0.080 1.383 5 1.32? 1.330 1.388 1.405 1.428 1.400 1.377 1.372 1.370 1.355 1.380 1.401 1.377 1.378 1.376 1.383 1.359 1.397 1.388 1.400 1.41 1 1.408 1.397 1.343 1.327 1.428 0.101 1.380 6 1.35S 1.320 1.388 1.403 1A32 1.428 1.401 1.378 1.369 1.359 1.358 1.388 1.445 1.400 1.375 1.383 1.369 1.39& 1.387 1.442 1.408 1.407 1.392 1.335 1.320 1.445 0.125 1.388 7 1.292 1.333 1.379 1AOB 1.408 1.393 1.408 1.374 1.366 1.387 1.366 1.383 1A16 1.373 1.368 1.364 1.372 1.403 1.391 1.401 1.408 1.406 1.388 1.330 1.292 1.416 0.124 1.380 8 1.274 1.333 1.383 1.401 1.406 1.417 1.411 1.374 1.362 1.364 1.36S 1.367 1.397 1.388 1A01 1.392 1.366 1A03 1.393 1.406 1.4IB 1.410 1.409 1.335 1.274 1.417 0.143 1.382 9 1.3"8 1.343 1.387 1.401 1.402 1.396 1.389 1.378 1.396 1.382 1.361 1.3&S 1.371 1.378 1.391 1.384 1.368 1.396 1.388 1.404 1.420 1.417 1.402 1.381 1.328 1.420 0.092 'l.384 10 1.328 1.351 1.380 1AOO 1.400 1.393 1.413 1.3?S 1.365 1.360 1.371 1.362 1.374 1.374 1.400 1.380 1.368 1.385 1A02 1.404 1A17 1.411 1.404 1.372 1.328 1.41? 0.089 1.383 11 1.336 1.394 1.385 1A02 1.400 1.390 1.383 1.375 1.373 1.384 1.403 1.411 1.383 1.374 1.387 1.360 1.363 1.391 1.397 1.433 1.407 1.408 1.333 1.376 1.336 1.433 0.09T 1.388 12 1.333 1.372 1.3n 1.393 1.403 1.392 1.380 1.3S9 1.357 1.354 1.362 1.412 1.345 1.382 1.366 1.364 1.358 1.370 1.383 1.399 1.410 1.438 1.391 1.387 1.333 1.438 0.105 1.379 13 1.385 1.395 1.387 1.382 1.367 1.390 1.3S4 1.368 1.355 1.402 1.3&S 1.369 1.384 1.362 1.376 1.379 1.400 1.408 1.392 1.374 1.387 1.355 1.408 0.053 1.381 14 1A02 1.393 1.385 1.375 1.373 1.369 1.360 1.362 1.375 1.3&2 1.384 1.375 1.3SO 1.361 1.354 1.378 1.402 1.397 1.384 1.354 1.402 0.048 1.377 15 1.387 1.388 1.380 1.372 1.374 1.365 1.363 1.39T 1.425 1.378 1A01 1.382 1.386 1.392 1.381 1.397 1.388 1.362 1.425 0.063 1.384 16 1.388 1.375 1.387 1.361 1.352 1.369 1.374 1.412 1.372 1.3&S 1.369 1.362 1.370 1.380 1.383 1.352 1.412 0.060 1.375 17 1.380 1.373 1.382 1.350 1.372 1.377 1.400 1.374 1.3S7 1.359 1.365 1.415 1.386 1.387 1.350 1.415 0.065 1.376 18 1.388 1.375 1.388 1.375 1.370 1.370 1.350 1.386 1.388 1.358 1.370 1.408 1.432 1.350 1.432 0.082 1.380 19 1.391 1.378 1.377 1.367 1.377 1.407 1.375 1.368 1.3ST 1.377 1.391 1.357 1.407 0.050 1.378 1.393 1.390 1.372 1.362 1.364 1.356 1.401 1.367 1.36& 1.391 1.407 1.356 1.407 0.051 1.379 21 1.404 1.404 1.363 1.383 1.348 1.370 1.386 1.409 1.418 1.348 1.419 0.071 1.383 22 1A26 1.377 1.366 1.402 1.375 1.409 1.415 1.366 1.426 0.060 6 23 1.394 1.401 1.377 1AOT 1.412 1.377 1.412 0.035 8 24 1A23 1.427 1.395 1.385 1.427 0.032 . 15 Min 1.274 1.320 1.367 1.385 1.377 1.385 1.375 1.367 1.357 1.350 1.358 1.355 1.345 1.368 1.354 1.357 1.358 1.354 1.378 1.386 1.388 1.382 1.345 1.330 Max 1.389 1.384 1.417 1.433 1.432 1.428 1.413 1.420 1.404 1.438 1.432 1.423 1.445 1.407 1.412 1.415 1.429 1.415 1.432 1A42 1.420 1.438 1.409 1.399 Del 0.125 0.074 0.050 0.048 0.055 0.043 0.038 0.053 0.047 0.088 0.074 0.068 0.100 0.041 0.058 0.058 0.071 0.061 0.054 0.056 0.032 0.056 0.064 0.069 Ave 1.340 1.353 1.386 1.401 '1.403 1.396 1.389 1.378 1.377 1.374 1.373 1.385 1.392 1.382 1.382 1.374 1.375 1.391 1.380 1.402 1.406 1.405 1.392 1.363 Dev 0.035 0.024 0.012 0.011 0.014 0.012 0.013 0.012 0.014 0.023 0.017 0.020 0.027 0.012 0.016 0.018 0.021 0.015 0.013 0.015 0.009 0.014 0.017 0.023 SECTION

SUMMARY

Minimum Thickness 1.274 Minimum at BP, rTACB~~~ +

Maximum Thickness ~ 1A45 Maximum at 6,M Delta ~ 0.171 rr.

Average Thickness ~ 1.384 Standard Deviation 0.022

A Dev 1 0.023 2 0.013 3 0.014 4 0.022 5 0.026 8 0.031 7 0.030 8 0.033 9 0.022 10 0.023 11 0.020 12 0.024 13 0.015 14 0.014 15 0.018 16 0.015 17 0.017 18 0.022 19 0.014 20 0.018 21 0.028 22 0.023 23 0.014 24 0.017

Company: Indiana MIchigan Povrer/AEP Report Date: 21-MAR-97 Time: 11:24:36 Ptas: D.C.Cook Unit CHECKWORKS FAC Version 1.0D DB Name: COOK1 ttttttttttttttttt

'T Matrix ttttttttttttttttt LINE NAME: 1-MS-001-1 COMPONENT NAME: 1-MS-001-1-L-9E OUTAGE NAME: U1 R95 SECTION: D/S Ext.

Tnom ~ 1.000 (in), Tscreen ~ 0.907 (in)

[Grid data Color Max. 0.454 0.907 0.700 0.875 1.000 1.250 A B C D E F G H I J K L M N 0 P Q R S T U V W X Min Max Del Ave 1 1.232 1.193 1.181 1.M2 1.049 1.034 0.992 0.909 0.907 0.945 0.970 0.936 0.987 1.066 1.141 1.245 1.244 1.265 1.356 1.341 1.398 1.395 1.359 1.273 0.907 1.398 0.491 6 2 1.257 1.236 1.129 1.053 0.989 0.957 0.953 0.907 0.893 0.924 0.929 1.131 1.177 1.232 1.238 1.343 1.408 1.438 1.419 1.380 1.307 0.893 1.438 0.545 Min 1.232 1.193 1.129 1.053 0.989 0.957 0.953 0.907 0.893 0.924 0.929 0.936 O.S87 1.086 1.131 1.177 1.232 1.238 1.343 1.341 1.3S8 1.3S5 1.359 1.273 Max 1.257 1.236 1.181 1.082 1.049 1.034 0.992 O.SOS 0.907 0.945 0.970 0.936 0.987 1.066 1.141 1.245 1.244 1.265 1.356 1.408 1.438 1.419 1.380 1.307 Del 0.025 0.043 0.052 0.029 0.060 0.077 0.039 0.002 0.014 0.021 0.041 0.000 0.000 0.000 0.010 0.068 0.012 0.027 0.013 0.067 0.040 0.024 0.021 0.034 Ave 1.245 1.215 1.155 1.068 1.019 0.996 0.973 0.908 0.900 0.935 0.950 0.936 0.987 1.066 1.136 1.211 1.238 1.252 1.350 1.375 1.418 1.407 1.370 1.290 Dev 0.018 0.030 0.037 0.021 0.042 0.054 0.028 0.001 0.010 0.015 0.029 0.000 0.000 0.000 0.007 0.048 0.008 0.019 0.009 0.047 0.028 0.017 0.015 0.024 SECTION

SUMMARY

Minimum Thickness ~ 0.893 Minimum at 2,I Maximum Thickness ~ 1.438 Maximum at 2,U Delta = 0.545 Average Thckness ~ 1.151 Standard Deviation ~ 0.174 Qi

Oev 0.165 2 0.$ 88

h Company: Indiana Michigan Povrer/AEP Report Date: 21-MAR-97 Time: 11:12:46 Plant: D.C.Cook Unit: 1 CHECKWORKS FAC Version 1.0D DB Name: COOK1 UT Matrix-

' ttttttttttttttt LINE NAME: 1-MS-001-1 COMPONENT NAME: 1-MS-001-1-M-9E OUTAGE NAME: U1 R95 SECTION: U/S Main Tnom ~ 1.000 (in), Tscreen ~ 0.907 (in)

[Grid data Color Max. 0.454 0.907 0.700 0.875 1.000 1.250 A 8 C D E F G H I J K L M N 0 P Q R S T U Min Max 0 el Ave Dev 1 1.021 0.993 0.999 0.9&9 0.951 0.946 0.936 0.970 0.962 0.924 0.912 0.909 0.928 0.921 0.919 0.924 0.966 1.002 0.993 0.924 0.970 0.909 1.021 0.112 0.955 0.034 2 0.954 0.947 0.940 0.933 0.926 0.901 0.902 0.&90 0.913 0.8&8 0.905 0.&96 0.&91 0.895 0.879 0.873 0.&97 0.917 0.956 0.931 0.923 0.&73 0.956 0.0&3 0.912 0.024 3 0.990 0.953 O.Q53 0.951 0.939 0.924 0.911 O.QOB 0.902 O.Q01 0.897 0.8&6 0.905 0.904 0.914 0.90& 0.&92 0.909 0.925 0.933 0.925 0.&86 0.990 0.104 0.920 0.025 4 0.954 0.950 0.949 0.984 0.938 0.926 0.921 0.902 0.906 0.904 0.910 0.890 0.894 0.8&8 0.&&5 0.&90 0.900 0.916 0.934 0.943 0.949 0.&85 0.9&4 O.OQ9 0.921 0.027 5 0.953 0.956 0.955 0.950 0.940 0.933 0.932 0.938 0.913 0.920 0.918 0.930 0.903 0.&BB 0.8&4 0.889 0.&92 0.913 0.926 0.941 0.938 0.884 O.S56 0.072 0.924 0.023 6 0.957 0.953 0,955 0.949 0.955 0.932 0.929 0.930 0.938 0.913 0.935 0.&99 0.89& 0.&83 0.&&9 0.892 0.898 0.917 O.S42 0.932 0.928 0.&83 0.957 0.074 0.925 0.024 7 0.960 0.959 0.955 0.946 0.944 0.954 0.929 0.919 0.949 0.905 0.904 0.&89 O.S07 0.&83 0.&81 0.892 0.899 0.919 0.923 0.933 0.935 0.881 0.960 0.079 0.923 0.026 8 0.971 O.Q55 0.956 0.940 0.943 0.942 0.920 0.936 0.902 0.&99 0.899 0.&B& 0.896 0.&82 0.885 0.8&5 0.893 0.906 0.916 0.919 0.937 0.8&2 0.971 0.0&9 0.918 0.027 9 0.9r2 0.961 0.949 0.940 0.938 0.942 0.919 0.915 0.903 0.903 0.920 0.8&5 0.&&4 0.876 0.873 0.87& 0.&96 0.899 0.901 0.932 0.924 0.873 0.962 0.0&9 0.914 0.02&

10 0.96& 0.96& 0.956 0.943 0.941 0.931 0.922 0.901 0.903 0.899 0.&90 0.908 0.&&3 0.872 0.870 0.&7& 0.&&2 0.&94 0.894 0.900 0.920 0.870 0.968 0.09& 0.911 0.030 11 0.972 0.964 0.962 0.947 0.934 0.924 0.906 0.903 0.892 0.891 0.&8& 0.904 0.871 O.BS1 0.863 0.&69 0.879 0.&82 0.8&5 0.900 0.914 0.&63 0.972 0.109 0.907 0.032 12 0.971 0.957 0.943 0.943 0.921 0.917 0.910 0.899 0.918 0.894 0.879 0.865 0.871 0.864 0.&53 0.860 0.873 0.871 0.874 0.87& 0.925 0.&53 0.971 0.118 0.&99 0.035 13 0.967 0.949 0.936 0.930 0.921 0.917 0.90& 0.8&9 0.&94 0.&90 0.908 0.&62 0.865 0.861 0.&54 0.849 0.857 0.859 0.861 0.879 0.917 0.&49 O.S67 0.118 0.894 0.035 14 0.962 0.945 0.934 0.923 0.910 0.908 0.896 0.8&B 0.890 0.889 0.&87 0.&65 0.866 0.&64 0.&53 0.847 0.844 0.850 0.860 0.875 0.912 0.844 0.962 0.118 0.&&9 0.033 15 0.966 0.953 0.939 0.918 0.912 0.916 0.897 0.&94 0.903 0.899 0.&75 0.866 0.869 0.&63 0.858 0.851 0.875 0.856 0.&66 0.&75 0.90& 0.851 O.S&6 0.115 0.&93 0.033 16 0.963 0.943 0.929 0.922 0.922 0.918 0.907 0.897 0.924 0.889 0.&7& 0.&59 0.895 0.&61 0.&52 0.&54 0.&57 0.&61 0.869 0.882 0.909 0.&52 0.963 0.111 0.895 0.032 17 0.957 0.936 0.914 0.913 0.909 0.923 0.900 0.&91 0.&88 0.892 0.885 0.892 0.867 0.859 0.&58 0.&5& 0.&65 0.&68 0.869 0.&88 0.903 0.&5& 0.957 0.099 0.892 0.027 1& 0.941 0.913 0.899 0.&94 0.887 0.910 0.918 0.895 0.892 0.&97 0.884 0.865 0.884 0.&69 0.868 0.867 0.876 0.875 0.875 0.883 0.90? 0.&65 0.941 0.076 0.890 0.020 19 0.934 0.906 0.896 0.892 0.906 0.917 0.913 0.901 0.895 0.901 0.902 0.8&B 0.&&0 0.&'75 0.870 0.&76 0.879 0.884 0.&78 0.8&5 0.887 0.870 0.934 0.064 0.&S4 0.016 20 0.932 0.914 0.907 0.906 0.919 0.922 0.914 0.902 0.&99 0.902 0.894 0.8&3 0.876 0.869 0.&87 0.873 0.87& 0.&86 0.872 0.8&5 0.&92 0.&69 0.932 0.063 0.896 0.01&

21 0.942 0.929 0.920 0.913 0.920 0.918 0.922 0.905 0.899 0.895 0.88& 0.&69 0.&84 0.871 0.&67 0.880 0.888 0.890 0.877 0.8&6 0.905 0.867 0.942 0.075 0.898 0.021 22 0.949 0.939 0.927 0.930 0.932 0.926 0.922 0.905 0.909 0.903 0.923 0.&76 0.894 0.867 0.8&4 0.887 0.8&5 0.&79 0.&76 0.885 0.92& 0.867 0.949 0.082 0.906 0.024 23 0.960 0.948 0.938 0.931 0.939 0.934 0.952 0.935 0.918 0.913 0.920 0.&84 0.917 0.907 0.885 0.&84 0.886 0.882 0.882 0.887 0.89& 0.8&2 0.960 0.07& 0.914 0.026 24 0.972 0.957 0.951 0.940 O.Q43 0.938 0.925 O.Q43 0.912 0.910 0.925 0.&84 0.&96 0.&&2 0.8&1 0.893 0.&83 0.8&0 0.882 0.880 0.923 0.880 0.972 0.092 0.914 0.030 25 O.SBO 0.964 0.95& 0.952 0.951 0.939 0.933 0.911 0.915 0.906 0.&QB 0.8&1 0.&83 0.&85 0.877 0.&81 0.882 0.&91 0.&74 0.&75 0.&91 0.&74 0.9&0 0.106 0.911 0.034 26 0.985 0.975 0.962 0.954 0.845 0.940 0.927 0.908 0.914 0.&94 0.884 0.&72 0.&7& 0.&92 0.8?9 0.881 3.879 0.886 0.877 0.883 0.&&1 0.872 0.9&5 0.113 0.909 0.036 27 0.993 0.977 0.966 0.960 0.953 0.931 0.937 0.906 0.900 0.8&B 0.882 0.867 0.87& 0.88& 0.&&7 0.8&1 0.879 0.873 0.8&0 0.&7& 0.881 0.867 0.993 0.126 0.909 0.040 28 O.S90 0.983 0.966 0.960 0.951 0.929 0.931 O.QOB 0.914 0.904 0.8&6 0.874 0.8&8 0.&92 0.&M 0.8&4 0.897 0.87& 0.878 0.872 0.8&8 0.872 0.990 0.118 0.912 0.037 29 0.992 0.981 0.974 0.957 0.941 0.925 0.920 0.913 0.915 0.901 0.&QB 0.880 0.91& 0.&92 0.&87 0.892 0.890 0.&79 0.877 0.&77 0.883 0.&77 0.992 0.115 0.914 0.036 30 0.987 0.977 O.Q62 0.949 0.929 0.916 0.911 0.903 0.903 0.874 0.8&8 0.&82 0.&&6 0.897 0.&94 0.&95 0.&86 0.880 0.&85 0.&73 0.&7& 0.873 0.9&7 0.114 0.907 0.034 31 0.98& 0.973 0.949 0.935 0.920 0.912 0.906 0.886 0.&90 O.B?3 0.882 0.&71 0.&77 0.890 0.885 0.894 0.88& 0.&87 0.&93 0.&90 0.925 0.871 0.988 0.117 0.905 0.032 32 0.983 0.999 0.950 0.924 0.915 0.907 0.906 0.896 0.873 0.871 0.865 0.866 0.875 0.&93 0.904 0.890 0.882 0.889 0.&87 0.&BB 0.865 0.999 0.134 0.903 0.037 Min 0.932 0.906 0.&96 0.892 0.8&7 0.901 0.&96 0.886 0.873 0.871 0.865 0.859 0.&65 0.859 0.852 .847 9 0.&72 0.878 Max 1.021 O.SQ9 O.SS9 0.989.0.955 0.954 O.S52 0.970 0.962 0.924 0.935 0.930 0.928 0.92 0.91 0.924 0.96B .002 Del 0.0&9 0.093 0.103 0.097 0.068 0.053 0.056 0.0&4 0.089 0.053 0.070 0.071 0.063 0.062 0.067 0.077 0.122 0.152 0.993 0.133 0.943 0.071 0.970 0.092 /iT <A<iiitkti<

Ave Dev 0.968 0.956 0.945 0.938 0.931 0.926 0.019 0.022 0.022 0.022 0.016 0.012 0.918 0.909 0.013 0.01S 0.908 0.018 O.BSB 0.&97 0.882 0.8&8 0.8&2 0.&7& 0.8&0 0.8&5 0.&SO 0.012 0.017 0.016 0.016 0.015 0.017 0.017 0.020 0.02&

0.&93 0.031 0.897 0.024 O.S13 0.022 iLJ-, o ( ~$ 1i I

SECTION

SUMMARY

Minimum Thickness ~ 0.&44 Minimum at 14,Q

C' Maximum Thickness ~ 1.021 Maximum at 14 Oetta ~ 0.177 Average Thickness ~ 0.909 Standard Oeviation ~ 0.032

Company: Indiana Michigan Power/AEP Report Date: 21-MAR-97 Time: 10:40:47 Plant: D.C.Cook Unit: 1 CHECKWORKS FAC Version 1.0D DB Name: COOK1 ttttttttttttttttt

"'T Matrix-

'tt%4tttHt tIttt LINE NAME: 1-MS-001-1 COMPONENT NAME: 1-MS-001-1-M-9E OUTAGE NAME: U1 R97 SECTION: U/S Main Tnom = 1.000 (in), Tscreen ~ 0.907 (in)

[Grid data Color Max. 0.454 0.907 0.700 0.875 1.000 1.250 A B C D E F G H J K L M N 0 I P Q R S T U Min Max Del Ave Dev 1 1.014 0.997 0.971 0.983 0.969 0.953 0.950 0.939 0.941 0.901 0.903 0.921 0.906 0.905 0.915 0.935 0.917 0.946 0.957 0.929 0.930 0.901 1.014 0.113 0.942 0.032 2 0.954 0.952 0.948 0.938 0.935 0.896 0.900 0.885 0.910 0.889 0.888 0.897 0.888 0.887 0.885 0.889 0.893 0.911 0.920 0.922 0.920 0.885 0.954 0.069 0.910 0.024 3 0.959 0.958 0.963 0.934 0.934 0.924 0.911 0.900 0.911, 0.897 0.896 0.895 0.898 0.899 0.904 O.BQ9 0.898 0.914 0.926 0.947 0.942 0.895 O.S63 0.068 0.919 0.023 4 0.949 0.952 0.946 0.968 0.926 0.923 O.S14 0.905 0.908 0.898 0.903 0.898 O.BS1 0.892 0.885 0.887 0.894 0.912 0.933 0.949 0.944 0.885 0.968 0.083 0.918 0.025 5 0.978 O.S67 0.959 0.944 0.937 0.936 0.927 0.915 0.914 0.905 0.909 0.900 0.88& 0.884 0.887 0.885 0.899 0.907 0.922 0.960 0.939 0.884 0.978 0.094 0.922 0.028 6 O.QM 0.967 0.952 0.957 0.957 0.945 0.929 0.920 0.922 0.911 0.906 0.894 0.913 0.918 0.888 0.886 0.893 0.913 0.932 0.942 0.938 0.886 0.967 0.081 0.926 0.025 7 0.962 0.957 0.957 0.950 0.954 0.938 0.925 0.926 0.933 0.908 0.902 0.929 0.892 0.887 0.880 0.878 0.893 0.918 0.921 0.936 0.936 0.878 0.962 0.084 0.923 0.026 8 0.957 0.960 0.955 0.951 0.947 0.943 0.922 0.907 0.898 0.908 .0.908 0.913 0.913 0.882 0.909 o.87e o.&ss 0.895 0.917 0.933 0.945 0.876 0.960 0.084 0.920 0.026 9 0.963 0.969 0.962 0.947 0.942 0.942 0.922 0.909 0.901 0.907 0.894 0.907 0.881 o.s77 o.&7e 0.867 0.888 0.892 0.907 0.937 0.955 0.867 0.969 0.102 0.916 0.032 10 0.967 0.969 0.957 0.947 0.942 0.936 0.928 0.916 0.902 0.901 0.892 0.903 0.884 0.884 0.878 0.867 0.880 0.885 0.901 0.903 0.922 0.867 0.969 0.102 0.913 0.031 11 0.975 0.971 0.969 0.951 0.935 0.933 0.914 0.902 0.926 0.898 0.887 0.900 0.896 0.874 0.872 0.889 0.878 0.879 0.886 0.902 0.929 0.872 0.975 0.103 0.913 0.033 12 1.003 0.963 0.952 0.954 0.922 0.927 0.914 0.927 0.901 0.891 0.879 0.871 0.868 0.855 0.865 0.864 o.sse 0.864 0.869 0.899 0.924 0.855 1.003 0.148 0.905 0.040 13 0.969 0.959 - 0.943 0.936 0.925 0.917 0.904 0.893 0.903 0.892 0.875 0.872 0.864 0.857 0.857 0.860 0.851 0.851 0.856 0.908 0.908 0.851 0.969 0.118 0.895 0.037 14 O.S91 0.945 0.935 0.927 0.917 0.919 0.&SS 0.890 0.893 0.888 0.876 0.895 0.864 0.855 0.859 0.851 0.843 0.859 0.861 0.881 0.913 0.843 0.991 0.148 O.BS3 0.037 15 0.972 0.949 0.939 0.928 0.909 0.909 0.905 0.894 0.908 0.889 0.888 0.859 0.868 0.864 0.858 0.857 0.864 0.860 0.&N 0.878 0.913 0.856 O.S72 0.116 0.894 0.033 16 0.969 0.954 0.938 0.925 0.920 0.914 0.909 0.896 0.902 0.897 0.881 0.865 0.867 0.858 0.855 0.866 O.BSS 0.877 0.866 0.878 0.906 0.855 0.969 0.114 0.896 0.032 17 0.951 0.934 0.917 0.920 0.914 0.919 0.907 0.893 0.904 0.896 0.907 O.N1 0.871 0.859 0.857 0.858 0.868 0.869 0.878 0.895 0.905 0.857 0.951 O.OS4 0.896 0.026 18 0.944 0.913 0.899 0.805 0.899 0.918 0.901 0.907 0.907 0.898 0.884 0.872 0.878 0.869 0.869 0.872 0.879 0.878 0.885 0.885 0.900 0.869 0.944 0.075 0.893 0.019 19 0.93S 0.908 0.901 0.895 0.903 0.917 0.914 0.905 0.903 0.911 0.899 0.888 0.896 o.sse o.&75 0.872 0.882 0.&79 0.879 0.879 0.897 0.872 0.938 0.064 0.896 0.016 20 0.929 0.918 0.910 0.909 0.912 0.939 0.915 0.910 0.898 0.905 0.894 0.881 0.889 0.871 0.879 0.870 0.876 0.878 0.879 0.886 0.900 0.870 0.939 0.069.0.888 0.020 21 O.S40 0.927 0.918 0.912 0.911 0.92S 0.920 0.907 0.903 0.901 0.911 0.869 0.869 0.859 O.BS4 0.871 0.886 0.8&7 0.880 0.890 0.901 0.859 O.S40 0.081 0.898 0.023 22 0.952 0.942 0.928 0.929 0.929 0.951 0.912 0.929 0.913 0.913 0.918 0.806 0.891 0.873 0.883 0.885 0.902 0.886 0.884 0.8&8 0.920 0.873 O.S52 0.079 0.911 0.023 23 0.963 0.957 0.937 0.947 0.937 0.939 0.925 0.919 0.918 0.913 0.899 0.883 0.887 O.an 0.882 0.886 0.888 0.882 0.880 0.884 0.900 0.880 0.963 0.083 0.910 0.028 24 0.974 0.991 0.950 0.951 0.942 0.941 0.930 0.938 0.916 0.920 0.895 0.906 0.888 0.895 0.880 0.883 0.892 0.879 0.880 0.904 0.891 0.879 0.991 0.112 0.916 0.033 25 0.981 0.972 0.959 0.953 0 948 0.945 0.937 0.928 0.909 0.908 0.892 0.871 0.885 0.884 0.877 0.885 0.880 0.876 0.871 0.870 0.912 0.870 0.981 0.111 0.911 0.037 28 0.989 0.985 0.966 0.965 0.950 0.948 0.936 0.916 0.917 0.895 0.882 0.871 0.885 0.881 0.879 0.888 0.887 0.877 0.872 0.901 0.911 0.871 0.9&9 0.118 0.914 0.039 27 0.997 0.980 0.964 0.961 0.947 0.942 0.921 0.926 0.900 0.891 0.883 0.873 0.878 0.883 0.877 0.881 0.879 0.889 0.901 0.870 0.884 0.870 0.997 0.127 0.911 0.039 28 0.993 0.979 0.972 0.961 0.948 0.933 0.924 0.905 0.905 0.905 0.898 0.880 0.883 0.893 0.885 0.882 0.877 0.883 o.&7e 0.883 0.873 0.873 0.993 0.120 0.911 0.038 29 0.998 0.984 0.973 0.955 0.953 0.937 0.916 0.924 0.915 0.898 0.878 0.882 0.&QS 0.899 0.888 0.885 0.878 0.883 0.911 0.887 0.879 0.878 0.998 0.120 0.915 0.037 30 1.000 0.982 0.970 0.942 0.930 0.917 0.909 0.907 0.905 0.881 0.869 0.878 0.893 O.BQB 0.885 0.897 0.889 0.886 0.889 0.890 0.891 0.869 1.000 0.131 0.910 0.036 31 0.991 0.982 0.967 0.942 0.915 0.913 0.920 0.893 0.892 0.865 0.870 0.874 0.890 0.899 0.910 0.899 0.885 0.915 0.891 0.898 0.922 0.865 0.991 0.126 0.911 0.034 32 0.994 0.972 0.956 0,92S 0.913 0.906 0.877 0.879 0.879 0.865 0.872 0.884 0.885 0.895 0.923 0.891 O.N4 0.917 0.921 0.902 0.900 0.864 O.QS4 0.130 0.906 0.034 Min 0.92S 0.908 0.899 0.895 0.899 0.896 0.877 0.879 0.879 0.865 0.869 0.859 0.864 0.855 0.856 0.851 0.843 0.851 0.856 0.870 0.873 Max Del 1.014 0.085 0.997 0.973 0.983 0.0&S 0.074 0.088 0.969 0.070 0.953 0.057 0.950 0.073 0.939 0.060 0.941 0.920 0.062 0.055 0.918 0.049 0.929 0.070 0.913 0.049 O.S18 0.923 0.063 0.067 0.935 0.084 O.S17 0.946 0.957 O.S60 0.955 0.074 0.095 0.101 0.090 0.082 hvrsc~p ~

Ave Dev 0.971 0.022 0.960 0.948 0.941 0.022 0.021 0.020 0.932 0.017 0.930 0.014 0.917 0.014 0.910 0.015 0.808 0.898 0.012 0.012 0.892 0.013 0.888 0.018 0.888 0.882 0.881 0.880 0.884 0.889 0.894 0.904 0.914 (4th + II if I]

0.013 0.016 0.017 0.016 0.014 0.021 0.025 0.025 0.021

4 E I

SECTION

SUMMARY

Minimum Thickness ~ 0.843 Minimum at 14,Q Maximum Thickness ~ 1.014 Maximum at th Delta ~ 0.171 Average Thickness = 0.910 Standard Deviation = 0.032

~

Plant:

'r--t . -. - -

~ ~ ~

y ~ v>IC>>n> > <<<>A >Ji>>e: ll M/u( 9/ I>me '0;58:12 D.C.Cook Unit CHECKWORKS FAC Version 1.0D DB Name: COOK1 ttttttttttttttttt

-'T Matrix ttttttttttttttttt LINE NAME: 1-MS-001-1 COMPONENT NAME: 1-MS-001-1-M-9E OUTAGE NAMES: U1 R95, U1 R97 SECTION: U/S Main Tnom = 1.000 (In), Tscreen ~ 0.907 (In) tWear data Color Max. -0.040-0.021 -0.002 0.018 0.037 A 8 C D E F G H J K L N 0 P Q S T U Min Max 0 el Ave Dev

'i I M R 1 0 00/ -0004 0028 0 006-0018-0007-0014 OD31 0021 0023 !>>)>><>-C012 0022 <> <<><'r <>:>:>> -0011 0049 0058 0038 -0005 0040-001 0. 5 0.074 0.013 0.022

- . 05-0008-0005-0009 G<)Q. <<u'> OGG. 0003-000> (><'): '>W< 'G<!(>-0006-0016'>>!>> O'GG 0036 Oonn 0 ":;)-0016 3

4 0031-0005-0010 00!7 0005 0000 GQGl) 0006-0009 i? 00> (><)'>: -0009 <:l-> ">ix>5 >n '><<>)'>-0006-OOGS Gool-0014-0017-0017 0005-0002 0003 00!6 GOI2 0 003 GCG7-0003-0002 09)6 (> )'> -0008, <>)-0004 0 "<>n (><lC>> '*>: >6 0 >04 I! <'()!<<0006 0 "".. -0008 0036 0031 D.052 0.048 0.002 0.001 0.011 0.011 0016 0.024 0.003 0.008 W025-0011-0004 0 006 0003-0003 DOG~ 0023.0 00> OG!5> 0 nl>> 0030 < "<" OOO> -0003 >; (i'>.0007 0(36 OC>()> -0019 I>(><>> r0025 0030 0.055 0.002 0.013

-0002-0014 0 003-0008-0002-0013 GOGO 0 Glo 0 0>6 0 GG2 0029 (! 0>'0015%035 n(u'I !> i 0 >) '(>' (%> 0 o!G-0010-0010-0035 0029 0.064 -0.001 0.013 7 -0.002 GGG"-0002-0004-0010 GG!6 0004-0.007 GG!6-0.003 0</0"'>>4(> < i . -0.004 nii)i >>o>a i!Gon GGG! Goo -0,003 (>i>n>-0.040 0016 0.056 0.000 0.012 8 0 Gi > -0005 0 GOI -0011 -0004 -0 no> -0002 0029 CGO> -0009-0009 -0025-0 017 '>:I'>0< -0024 0 n(<< i> <>'3 0 ni! 0 (>I -0014-0008-0025 0029 0.054 -0.003 0.013 9 =00'"< -0008-0013-0007-0004 OOGI>-0003 OOGS 0007-0004 Q026-0022 i': ~:>i>(!I -0003 nl>il 0 'n >

O(X>i-0006-0005-0031-0031 0026 0.057 -0.002 0.012 10 >'000>-Gool-0004-GG<>l-0005-0006-0015 GGG!-0002-0002 > ".v- . ~ " '.-0012-0008 I < >I n '."" (>00!>-0007-0003-0002-0015 0011 0.026 -0.002 0.008 11 - . 03-0007-0007-G 004 .000! -0009-0008 0 Go! -0034-0007>>i); > <><:4-0025 < >l -0009-0020:>n'>: GOG>3-<) 001-0002-0015-0034 00'.7 0.051 -0.006 0.011 12 4032-0006-0009-0011-00>i-0010-00044028 GG!7 <'003 (>GG'0006 '<<0> "<<09-0012-0004-0013 G(K)7 C<i!Ol -0021 G(3> -0032 0017 Q.049 -D.QQS 0.012 13 -0002-0010-0007-0006-0004 0 GGG 0 GG I -0004-0009-0002 0033-0010 '8

<<'i>> ! -0003-0011 (>>>Gi) 0 (>C'>) 0 l>i1a -0029 0 <>i 9-0029 0033 0.062 -0.001 0.012 14 '029 0 000-0 GGI -0004-000'7-0011 Q(>00-0002-0003 0 0<)! 0 i)li Q030 n ':,'

Gnome:

~ (r>4-0006-0004 <<>'-'.>> -0009 OGGI -0006 0 <>> -0030 0011 0.041 -0.004

> 0.010 15 -0006 0004 0000-0010 0.003 0<)G> -0008 GOGO-0005 OG>0-0013 >>(>n<- ini li<n>l <'(>>>"-0006 <>i'll -0004-0003-0003-0005-0013 0011 D.024 -0.001 0.006 16 -0006-0011-0007-0003 0 GG" O ()0:. -0002 O Ooi 0022-0008-0003-0006 0028 -0005-0006 i> Goi -0009-00i6 0 ('03 OOGi 00')3-0016 0028 0.044 -Q.001 0.010 17 OGOG 000."-0.003-0.007-0.005 000>-0.007-0.002-0.016-0.004-0.022 <>Gn> -0.004 G<>GG <) in> (>(>00-0.003.oool-0.009-0.007r0.002-0.022 0.006 0.028 -0.004 0.006 18 - .003 0000 0000-0011-0012-0008 QO!7-0012-0015-C<or>I 0 CA'i-0007 <) )6 >! (>(>n non> -0005-0003-OC>ol -0010-0002 GGI)7-0015 0017 0.032 -0.003

< 0.007 19 -0002-0002-0005-0003 o oo3 o 000-o oo> -0004-0008-0010 0 )0:. n(>(G-0016-0011-0 005 n<>(>". -0003 0 GGS 0 Goi 0 GGS-0 0! 0-0016 D 006 0.022 -0.003 O.D06 20 0 003-0.004-0.003-0.003 0 007-0.017 0 00! -0,008 O Go! -0.003 0 GG'> -0.013-0.002 <) (:(>8 0 Go~ 0("3." 0 (>08-0.007 0 ('0> -Q.008-0.017 0.008 0.025 -0.002 0.006 21 0 002 0 00" 0 002 0 001 0 G09-0 008 0 002-0 002-0004 -0006 4023 n GGC> n >5 0 Goi n 008 0 @)(> 0 (>>,. 0 ()03 -0 003-0004 0 (> W -0 023 0 015 0.038 0.001

<~ 0.008 22 -0003-0003-000'I 000! 0 003 <025 00!0 %024-0004-0010 0 GG: -0030 0 (')3-0006 0 00! 0 (0:"-0017-0007-0008-0003 0 (08-0030 0010 0.040 -0.005 0.011 23 -0003-0009 000!-0016 QGO2-0005 0027 00(6 0000 GOGO 0021 0(><)> 0030 D024 GGG3-0002-0002 0000 000. GC>O3-0.0024.016 003D D.046 0.004 0.012 24 -0 0024.034 000'I -0 011 000! -0003-0 005 0 005-0004-0 010 0 0304.022 0 (>G(> -0 013 0 Gol 0(J>o-0 009 0 OGI O,(>0 -0.024 0032>>0 034 0032 0.068 -0.002 0.015 25 -0001-0008-000! -000i 0005-0006-0004-0017 0006 OOOO OGOC G<'>G-0002 OOni G(00-0004 OC32 0(>:~ OGO3 OOG. -0021-0021 0015 0.036 -0.001 0.008 26 -D004-0010-0004-0011-0005-0008-0009-0008-0003-GOO! 0<)(>." <!()>>(-0007 O()>i (>noo-0007-~008 OOOO OOOS-00184030-0030 0011 0.041 -0.005 0.009 27 -0004-QQQ3 0002-0001 0006-0011 00!6-0020 0000-0003 Gno! -0006 n<<<>G 0(>05 0(>>o 0000 l>(>>'.0-0.016%.021 0008-0.003-0021 0016 0.037 -0.002 0.009 28 -0003 0004-0006-GGGI 0003-0004 0007 0003 0009-000!-0010-OOQ6 (>'(>O'..Qool GOG> 0002 0020-0005 0002-0011 Gol( -0011 0020 0.031 0.001 0.008 29 -0006-0003 0001 0002-0012-0012 0.004-0011 0000 0003 0020-0002 0022-0007-Gool 0007 0()!2-0004.034-0010 OGN-0034 0022 0.056 -0.001 0.012 30 -0.013-0.005-D.008 0.007-0 ool -0 00> 0 002-0.004-0.002-0.007 0.019 0 0(>> -0.007 0 00! G 009-0.002-0.003-0.006-0.004-0.017-0.013-0.017 0.019 0.038 -0.003 0.008 31 -0003-0009-0018-0007 0005-000!-0014-0007-0002 0008 00>".-0003-0013-00094.025-0.005 (>003-0028 0(>02-0008 0(!93-0028 0012 0.040 -0.008 0.010 32 -0011 0027-0006-0002 0002 oool 0029 00!7-0006 GQQS-0007 (>Got-00(0-0002-0019-GGGI-0012<028%034-0014 -0034 0029 0.063 -O.OD3 0.016 Min -0.032 4.034-0.018 4.016-0.018-0.025-0.014 -0.028-0.034-0.010-0.023 4040 4025-0.035 4025-0.020-0.017 4.028-0.034-0.029-0.031 Max 0.031 0.027 0.028 0.017 0.012 0.016 0.029 0.031 0.022 O.D23 0.033 0.030 0.030 0.024 0.010 0.014 0.049 0.056 0.036 0.009 0.040 Del D.QS3 0.061 0.046 0.033 0.030 0.041 0.043 0.059 O.Q56 0.033 0.056 0.070 0.055 0.059 0.035 0.034 0.066 0.084 0.070 0.038 0.071 Ave -0.003-0.004-0.003<.003-0.001-0.004 0.0024.001 0.000 0.000 0.005-0.005 0.002 0.000-0.002 0.000 0.002 0.001 <.001 4.007-0.001 Dev 0.011 0.009 0.007 0.007 0.007 0.008 0.010 0.014 0.011 0.007 0.014 0.014 0.013 0.011 0.009 0.008 0.012 0.014 0.014 0.009 0.015 SECTION

SUMMARY

Minimuin Wear ~ 4).040 Min!mum at 7,L

C

~ ~ ~

Maximum Wear ~ 0.056 Maximum at 1,R Delta ~ 0.098 Number of Rows 32 Average Wear ~ -0.001 Number of Cols = 21 Standard Deviation ~ 0.0t 1

I~

G! Pll.GB.l PI!"!I : A. lIO. 'GU'I'OO O!",. CODE MSCAIPTIGN Va~ i ~ a ~ ~

70

' I

~b 1~Pill II ih ~ IA >P II C 'PP 1 ~ 1 '\ P !I CP .'.O I'P Ib \ II II IA IT AP IO I'.

/c ""I 7/" ' /I 05O~G) +PBBS Q' ALITY'ONTROL REC [g~o gal&

i Pz'O-IPc.:q- I gI S pe 4'>>'7 841 / j. I I

I I

~g'yl I

)

gS I I

I I

r ', Jnà ~ O'I."Ic: I 4285 PROD ~ ORDn 2l I

'8 f2E:.'SCRIPTION CODE WT'JAN~

i 30 PIP! ~ "A00<!W al06C - +9907760 280OO Zln~

/I .?l FT 6 INCHcS+9907i60

'30 END PROTECTOR W/WOOD . 99907014 25 ' 2 ~

I PCS RFOD ~

I

',~~p/ I ll I

I I

TOTaL WEI "HT FOR ONE PIECE 6084n LBS ~ ~A O'I 0 AWO I I I

I I

STRESS PiELlEVED

~

I

:".IHCClIED 8"' ~ DATE. +

5 FALRYMTIOII PAS @f8 IHSPFCfEII AIIQ IOALS TO THI RECUkDKITS OS I K. r. S. C. ra ac Sn)ISICATIO!I "SKO OVA~ MNfR'II!

I no

'Cs WIC I n ~

I'I:I< II:i{;. 9)-'g'hf: /f.:~/i./'I f J~Pj

I I Y 'P.'I Cll:: D. GY 0:!  :: I C')Vg~-g7'.8'r4. >/ig lv) DV.iG.OOSOr/O- Zb T .

ti-3!3 I .".ST .r'.I'"'.'.CK I'.!.':3 I

d. PPl<ic23 S -<VSF'ECT Op

[I(I)ll<IAPIVI~

A A 047gf

cf 2'I 7: ).s )";).i.:.'.f'ff. "<<)1(Q f,;.) f);iJ

.)9Q I J>>C& r >J a) l J<~ ~" ~:J JI

)'('D'3 t.<)'1Jlj.)'J.r r

'l P2P6 I ~

3'l'c g 0(-%c"~ "I'( --.'

V

~ I- ')':PJ.JFr)]S. 8 X )) JJ )I X U I'J, X)E(l ~ pr(]c" '.l('('.")] Jg. 'p

) J" i< 'I'I'0)') )i J. t 0 >'J 2 U, f),.f.~ fc f'IJ,'<',<Qp BA.tf':,'3.)]:3 .)c Jf J;~ )l'.:l'.t. Onio~ )lf'g1 039

>' r la'0 ) ll:a' 'i &0 g<)yf rg J w ecO r.O<<a cd .C.;):lp(: ( ();]. J. (13.AO J.) If" f~c".t GX'J.(.L J.ll 'J.J. 0)'0 (<. (Ill:)10 O.". (~i,(I~ c'e tf>lO >

3.'i..X I

( 7 rCC<f> <<X(<r'1 J. ~, W 0:. )'.i<61'v > ~> ~.K

)

3M',?lX:f'r. fJ;)..'~

)]OV~ )}Zf' Ol'-".(L t. 5 0 I<;: Ccf:"".el1. t0 COilJQ) lf>." )';:;0 ).'()ll ' Ct. OI}1 i>9 0:. I:.~ 0 f'(:O~. i~,:CG I'). I 4 [cjJll~..1 Cfc, .'10 ))cl). 'C I'< 1>,

k'NOVO 03.'(I C)~ 0 1 ]. '.)1 J I J C J C )'I Ca

- g.'f

'i 0)I(I('.$.XXC".'l." f f) ael /QU L. )..')> J']'lf'I, r

a 1'0 fiO< 0~$ '(l, $ ']1XC> 1 'AY'( fC L 10 f )l.<<, Cjl IO(I ( ~C(1 0 1 l ') I<<

' X'll "JO:

<I .'J ~

pl1COCA fe;I'. C f-'A ) '.a 1.1 fp (~C l0 f' Ct':lg<CL'. '::0 (;;1('W. O'LC.".l X(~.1 '.'."..

) %'x r".u A7. 'J1 Ii.-r )l .J. (f,".

~ A <<e ~ ' ~a ~ raw <<a

=~Q,Re

~ I

.>.J. Jr )@pf>1 ~ fe '1<

Iaw

'afe

'V1ra J, > r' 'a ~

J

~ \

Bg<I'e" ~

~

~ >>,.(..=)l

~ ~

~

~ ~

SH7i'P;fltO l".;:: i:8

'I I I >e It > I c\ II I I I I ~ ~ ~~ \

I <1 IJ fI

), o=bR I> a *~ <<4 J. ~ ~ ~ I )I '>J ~ C ~ ~ 1 ~ I

~ 'JJb']'sd 2C( 0 1 a! I 1}lr>.

I1 J. rC, ~

c 'a

~ ~

~ ~

e ~ ~

~ f~1 )l P .C)Ogp ~,rf, ~

~ Pg l ~

e

~ e YO'l<<af'O~.

e I'la ~

Qv~ ~ ~

FE&. 5 ]g'Ip

~ I~ e

\

~

~

b 4 t ~ I r

I E ll)Croi)i)I I'il'I c'IIII)cate It(

4 t ~

~

)'Incr!i.::;".!t ~ I:i;I )

aetv tnt ~ ~ ~ Ir w I 8 a ee vs r I av avv s vvtt e 4 \vvavvrana ~ a II etvvvt Ave rve paas tave Inttvavurvt \ave a rvrvvttrererrna'I IIAC t Of'.Dffff:. Cr )i;f!Ti: tense fRA <:0:eri'IC.". /i r ii 0 D .' UQO I Co()erect'r ore ~ r V(crc ~ rctrtcrcc T)Sc ct Stre I:rats tc-cent

.I,'/ c ~<)013/ I tr

% cr Via Ce Df/if.'If:"lRO t'c l. I U .'O S:~'S-.n:C= / CCIAIO P.""SO I' p o ii I c n o I ~ r Ttntcr(no ci vrI ~ c I Vl ol hl FC J( ~ Cl ",', t )'CIA!.:)c fir)) (s r:-) fc.rc)I )

(eI C Ig 'I c)- , 0 , n n) ". Io.:.~4 n)rt (l I'.

3t'f P. lg(

~

.. (,'--:l! )

D i+i, -~rgiuOO.. Incl ps r I I vrJ)

PlkrnSSfnte C )Q)i/(UI.IO/i i)l PRO(//w f IROV,i rrf!Ltcl'U',rA ':.OO:ADO LE I!Of'.,.=

Itgdrr vcr c Io ~ I trice ~ rr to TC I cttccti8 rccordtnv Spoctttcctloni I ~

I:/an" J. "..'.. '=. A ICi.l

~ >~coo i

r I'tfe CRO I) I 7U(rl . Pr)SO Vor/.'C; LUhCI I('C77.A 1 OT/ILE Frc OD I I)!OI tc1'.".

ttorlhrr cl I tt oc Tot ~ I crctf ht Tc tot tent.th Vrctgt I ol trrotctlrts lc)I)l (it tcc c ~

. SCIICICC(tnir \ f oi' ( 'eil( l'nc)

))cs. -L 9(. (i f lf~

i%~l. ro>I. ~ ir.s <'l.'I'".... If, 0 Vlr>>I ~ pt (Ir c ev) ) ~

CEH'J.'):F3: CA. TO r

DI ';f lect orcllrtc cct Ill)ceto I)If/It tc:ti,'it

~

):.". 7 CELT..I. C,'hin

~ I

~ ivrvtta. r COI reTt

~ recta p~eeenanae(vevavseestvnvryvaetvttraetr ttntw Ivpntarrtrvrlnnvrstvvttpattrt" It ereesttac I \ 1(NIQCAvvsv ~ ivnanvnratvl Vt tr'Avelcneev t.chine!r c

~<<reste

):ril S 2"

, ):I

~% tele/I vvt tv s 'I ~ lrval ~ I v na eensrv rrttt Ivrreit vet stevrsrltalvs 'll, tv artv 'tt ttvvnculaatn mete tre etra (nvta I I vVls

~ ~ 'a t Iaa.e,( ~~

)I Iewvlvt"I n

.>JAN ~

LA JQI J" ' IY. '0 5o,.%3~i ('t t.~~

f O4 O. -) 0, C.~~> O. GQCg ~

ZigqCD j 85G4 "c3 5oc ~).';4 O. ~

I KQS'ertveep) Vfi C,',~~g O.GB=N Or GC) Q OO j'- 8>o ~l

'9uDQ bing CI C,Q O.GP Q D. OQO Q( 1-(/0 (7cc) ~c -".;I 6 p.S. ci,go )),GQ ~s C7, OQO dr Q gC>Q sgQ ~n'() 6' I>t)gbgg Cr.P.ir ,( o5 P Pgp O.o~ O,OP+ OO P y'Q, t)t) boob)s 5 0, ~ o.>=0.

>~ oct30 4LI C+GO P,g Gt)e Bl ~r Pg

~rg.;~a O. ~P' )P 0 O~< z;-~C)( o ppz oc 'r lP Vt~ '\ e Pi c."i"IRS terr ~ cc cr CC P3-ASPi -j. )O6- C r'."i.

~ )

- ~O(O C 0.):. )a LC + SC'r 'cTc ~,>3SC ~ c ti cr ~ ~ ~ r V."tS'1'" 9 Ag(~o ~ - l(L'Cii )CO 9! 1'0 >>60 0

/cm(n CAL PII/I .

PII tb

)p

Cu'tc-.cr.: )':'I'SS!;.S. S I )) ii.:t VS sz - hR'i YQZI"., )(.') . 100.-:2 'II I Ue 1OOisO Quote.:o II. 00oy:: 69OI39 0).'Oc-.r > 7" 10)G

~ t ~

S~1!:HL;"..SS 0) L)'soà S'1Z: J. X'XPi'O. i'OO 0,.)) ~ 3.,0 ~E M.P.

M'j"~)i O.'!/)) 1' AQ 4

~V 0 1A ~ ~ ~

)10 ).'/;1.)l '

& %W ~ 1

'1&

6.98 22 1'I" . . 35.'i'j 7035 5(;OII

'(. 03 r,~t I 3580 40

/9 '(,2l 231 n!: ~

3687 0 I 28 5oon 50 '6,97 2c" ')C" 353."i 7("" II II 7~12 23I r>> 362o 7981 I~ ~ I 51 52 7 2'"

2cgI 1I" 7

3'(38 62 "i9

'2.~ 3009 53 7.3 ~ . 1I II >>

( 5-'I. 2/) InII 3~p>$ 0 8p6 55 6. 67 2'<<1'i >> 3 3'(5 74:i-0 5noq 56 6.96 &PI IO" 35 1A (813 22 I 0>> 501'In 6.90 3j13 7745 II >>

58 7 47 2l;I 6" '3008 .8306 59'o 6.71 22I 0" 3300 '(l'52 7.21 23IG" 3'(V2 0316 5"""9 6.79 .;22I3>> ggl (621 50-'9

~w 62 6.n0 22 8' 3513 (7l'4 5009 63 6.99 22< 'H1 3559 , 0 h

7046 ro 6.g 7 o7 23'2" 3600 V937 5oos) c 65 '(.10 ..:.:" 23I 3II 3615 . 79VQ 5Q 22I IO>> l(002 50',i>;

~ ~ 66 6 g95 ~

3539 67 V 29 23I I I" ~ '3'( I2 0103 5009 60 6,00 2P VII 3503 ~

V723 50;);

69 '(. 31 ~

P/j Qll I '3722 ~

0205 50<@.

'(, 10 I'0 %9

'(0 23 I 6II 3<II>6 . Go6o 73 6 ~ 12 20 I 1 II 31 1' 6872

~ ~

~ ~

25 1 (6,0.1. p<'('f I 6II 09663 19'(6'(0

c<<aav<<v 4 I'l.l i '4 4'ro.sl I < sc ' ) "<<44 )ho Vt v 'ave I or )o

~

D I r Alr ~ i <<o l e 4 r <<r<<p( loll Cf rlofg<<fd ~ o r

~

0!!!.~oroo 0:.I.M!I)K ov oh<<<<<<hot 4<<hoeao<<<<<<ere<<>>.

I C.'I j

i ~

STEWART'US ":"";,'3c.' U..";.A.

$~4 ~<<o r<<ch

'~'4<<l<<! p'.i)

~

I~t oh

~ Z 2 C . ~ F.Y. 'f0022 ~

SE ~ TOP"" COL/.AUDO CC!<<o.!r.COCA 0AO"I" O" i. C'""T"

~' o drl hd

) ell 11<<pe<<go d Flo CF

-A"

~

<<a<<el gq)ha'E g-Ith~' Yltr"II'L!!R4~

LGniP

~

793038 690') 39 X ad%. c.N Io <<0<</4h ~ T II Cprcr<<em .

<<I ~ el<< 4 I<<r ~ ! tt o<<e '"4'I') ~ 'rn ellen 0 Tcc II<<hI ac 1<< 4

."I 0

'<<'o' TA<< fr hht rra)

~

oa JI<< Chv<<<<c ~ ~ <<e orr

~ ~

0!<<:.Clad<<!Oa)I DCI TVOI ~~

I.VI:l)4:o OT,CI:V <<0 4:::..CB OT'. -!:V i0

~ I rl 1" pnloo4~ I I "oooo PA<<nlo oot 4!arll 4 <<<<

an rc",iu. 01! I <<IIC!O<<II S C'/Icl<<C r I'a ~

i<<o<<o ~ o I P<<la<< l

<<<<red I Io<<o<<llirllr $ <<4<<l f.,lP << ~

~ o rr ~ en

<<i <<o

+ I l<<J oo f<<JI X ohoh f

<<iCll;i \< IC<< 'A<<('i)'ill !:r Cuml "<<Inrnl mn flI ~

)41" 4 r.l lvo <<<<I 44) lac r<< IA oa

~ c<<r c) 30lt ~ < Q>/II Cg 3 / 4')'goo r)r<<.

l "a

/ ~g (j)~,c

&30 PeZ.!jl Ie 70000 5o WAT ye~>>,

1 s.~i

~

S4"h n~C.q:4 iri<<re<<sir e4co<<o T o"p

~ h( P X r.~

5'C v>>r) <<4<<

~ n noh cog> if C.

5 <<) 0 )$ Cg 0.34. Q.NP 0

O<<3v C) 0 Err~"C X 0,") l 0<<2,'. 0<<P bo pG 0 1,.)a<<ohq

~ r ~.r ofl g << ~

50O &Z8 0,2$ o,pig 0 <<Q+$

"qP -Oc 20!

..ra

~ 0;;Ol 3 alod,5 QC5 Oo' o,a I) ~ I.

iv y ~

0 0" '~

Q')'~~

o <<4

"')4 ~ C~ ~ C )II aa<<oo v 0 <<>'; >(

5~5 0 f0/.2. 0 <<02$

1 0 ~ '4 '4 >,04 o .a2)'o boa gc'i g <<-"> (p ~

0

)0 h

0 ~ c.r,i l

50cp+sQ 1 otr'> ol'} ga g r~ ) ',t.

I I

\4 0<<'4<<$ I.VL o. r,'l O..C I" O! Cl ov 04<<o A '.V.'PA o <<CP <<

0444 rel!44 jv g, hi,'.

~ Oh<<

~

~

~

r AoiA ~

~ <<<<v ~

a

~In +Mg Qgo<<Q $ 0~<<o

~

I(~ .I ~ r<<,

a. SV-lh 1065 psig 16 in. 2
b. SV-1B 1065 psig 16 in. 2
c. SV-2h 1075 paid 16 in. 2
d. SV-2B 1075 paid 16 in. 2
e. SV-3 1085 paid 16 in. 2
  • The lift setting pressure shall correspond to ambient conditions of the valve at nominal operating temperature and pressure.

COOK NUCLEhR PLhNT - UNIT 1 3/4 7-4 hMENDMENT NO kQO, 182

r

/p

'r S p 1'o: AMIYA K. DE DGSAEPSC Cc: Jim D. BenesNESBSCOOK,Michael E RussoNSASCook Mark R MichaelsonNESBCOOK Richard A.F. HarrisNESBSCOOK Bcc:

From: David G TurnerNESBSCOOK

Subject:

Unit 1 Operational Data Date: Tuesday, March 25, 1997 10:56:51 est Attach:

Certify: N Priority: Normal Defer until:

Expires:

Forwarded by:

Amiya, Data from the last two Unit 1 fuel cycles has been reviewed for the purpose of determining how much time the secondary side would be pressurized to greater than 1000 psig. The logic used xs that while the unit is generating power, the pressure will almost always be less than 980 psig. This 980 psig corresponds to 10. RTO.

Therefore, the period when the unit could have pressure greater than 1000 psig in the secondary cycle would be anytime when in modes 1, 2, or 3 and at less that 10'. RTO in parallel. Mode 3 z.s a transitional mode when the primary loop temperatures are in the range of greater than 350'F up to full temperature and pressure. Including all this time would be conservative.

Therefore, all the hours when the unit was in modes 1, 2, or 3 are used to bound the conservative time when the unit may have a secondary side pressure of >1000 psig.

The last two Cycle's statistics are:

Hours in M1-M3 = 22248.7 Hours Critical = 21335.8 Hours Parallel = 21003.2 Hours in M1-M3 not in Parallel = 1245.5 Percent of Ml-M3 time possible at >1000 psig = 5.6% of the time My thanks to Mike Russo for sharing some of his statistics on Unit 1 hours operation in the different modes.

Contact me if you have any questions. Extension/pager 1095.

Dave Turner

NE&15 DONALD C. COOK NUCLEAR PLANT (OZ/95)

Section DESIGN VERIFICATION CHECKLIST CALCULATIONS Calculation Number Dd "D -D/ HS~ Rev.

+ -Z-f Signature of Verifier Date

1.0 Basis

Were 8

the inputs documented F/ JY correctly selected, incorporated into the calculation?

VJ gE'YCC and 7844'U Yes ~

OP N/A WF e CCdc

2.0 Basis

Are assumptions ikey J necessary to perform the calculation adequately. described and reasonable?

JJ V Rid'rV~ W VJ'C-5'es N/A ~

3.0 Are the applicable codes, standards and regulatory requirements identified and requirements for design Basis: CfE met?

Pg OJ 5'/rS Odd C PE87i4Af (crt' Yes d

N/A c' o RF c

4.0 Basis

Was an PC

-Sl'Co appropriate design method o

used?

o'S lz Yes CO FX

~ N/A 5.0 Is the output reasonable compared to input?

Basis: Can& r rW 7Ã OOZE E'MEWWA' Yes ~ N/A sloe]87/Fp Ec6 ZEiv wx /r'res zEE eu ex+'c z E XoWA

6.0 Basis

Are the results numerically correct?

gE'iO'C Mc4 Yes Vf'E oR

~ N/A c' c'p P4pe 1 of 1

I 4

4