ML17335A156

From kanterella
Jump to navigation Jump to search
Calculation NESM96101AF, Ccp Npsh.
ML17335A156
Person / Time
Site: Cook  American Electric Power icon.png
Issue date: 12/02/1996
From: Feliciano A
INDIANA MICHIGAN POWER CO. (FORMERLY INDIANA & MICHIG
To:
Shared Package
ML17335A147 List:
References
NESM961021AF, NUDOCS 9808100115
Download: ML17335A156 (32)


Text

1 NE.014 NUCLEAR EMGIMEERIMG DEPARTIILIIEMT (02/95) Calculation Cover Sheet Cook Nuclear Plant SECTION SHEET 1 OF Z4 CALCULATION No. NESM961021AF INDIANA MICHIGAN POWER COMPANY SAFETY RELATED YES X NO UNIT No. 1&2 SYSTEM ECCS CALCULATED BY:

DATE TITLE CCP NPSH VERIFIED BY:

RFC/MM/PM/PR/CR/TM No. DB-12-ECCS-24 AT FILE LOCATION NESM Calc files APPROVED BY:

DATE I

CALCULATION DESCRIPTION: This calculation determines the NPSH available to the CCPs,and was performed as a result of DBD action item DB- 12-ECCS-24.

, THOD OF VERIFICATION: ALTERNATE CALCULATION DEsIGM REvIEM (A~

yg

<4 j+gfg' REVISION Calculated verified Approved HO. REASON/ FOR CHANGE By Oate By Date By Date 9808i00iiS 9808i'7 050003'LS PDR ADQCK H PDR

5.

wr )

~ I

~ ~ 1 I \

l Design Inputs Required pumo flows and CCP NPSH obtained from the various p~ mp curves are as follows:

Containment Spray Pump 3200 gpm (SD-12-CTS-100,Rev 0, 6.'1)

Safety Injection Pump 650 corn (SD DCC-NEMHlll Rev 6, 3.4.2.b.12)

Residual Heat Removal Pump - 4500 gpm (SD-12-RHR-100,Rev 0, 8.0; Centrifugal Charging Pump - 550 gom (SD DCC'-NEMH111,Rev 6, 3.4 'A)

Centrifugal Charging Pump NPSH required 22 ft abs 8 550 gom Calculation NEMP950501JEW approved 4/11/96 performed for seve e

~

accident setooints. Note 100'f water temperature obtained from t is calculation. 3 Suction piping configuration (length, dia, fittings, etc) obta'n from the isometric drawings.

References Containment Spray Pump Byron Jackson Pumo curve T-32913-:

Safety, Injection Pump Pacific Pump curve 34554D Residual Heat Removal Pump Ingersoll-Rand Pump curve N-3"8 Centrifugal Charging Pump . Pacific Pump curve 34617I Isometric Drawings 2-SI-53 2-SI-6 2-SI-43 2-CS-79 2-CS-80 2-CS-81 Hydraulic fr'ction loss program HFLCS will be used to determine :he frictional losses thru suction piping. HFLCS is an inho se develooed p ogram which was approved =.or use on Feb 28, 1988..T=is program was validated and approv d in accordance witn =he =

requirements of GP 2.6 Software Qual'y assurance Standard in; se in la88 Description Puroose:

DBD action item DB-12-ECCS-24 "Centrifugal Charging Pump Available.

NPSH Calculation" indicated that an NPSH available calculation :or the CCPs could not be found. The action item requested tha" a calculation be prepared which would determine the NPSH available to the CCPs during the Injection Phase.

This calculation will determine the NPSH available to th C"Ps based on oroviding flow to two t=ains of safeguards pu;..ps (containment spray, safety injection, residual heat removal, and centrifugal charging) .

+~8 M94 L~'Z(

P)

I

~ ~ ~~

t Method:

Xn ord er to obtain the frict'onal losses associated w'th the,.

suction piping the isometric drawings were used to obta'n= the piping configuration. The sketch (pg 4 ) shows the. flow .path and branching flows to the otner safeguard pumps. The data obtaine from the isometric drawings was compilied on the attached "pipe Friction Calculation Data Sheets".'he totals shown o;. these sheets is used as input to HFLC5.

HFLC5 calculates the segments frictional losses and is based on the Dracy-Weisbach formula H = f~~ V D 2g where: H- frictional loss in feet f- friction factor, dimensionless L- pipe length in feet D- pipe diamete in feet V- pipe velocity in feet/sec gravitational constant, 32.174 fe t/sec'he NPSH available is then determined as follows:

NPSH, = H~

- Hvp-.',(

where: NPSH, net positive suet'on head available in atmospheric pressure in ft ft abs Hp HvpA vapor pressure of water H static elevation difference in feet Hrs friction losses 'n feet Assumotions 1 - RWST water level is at minimum elevation (bottom of, pi=e) and is determined as 611.25'(24" suction p'pe center line) - 1',rad's of 24" pipe) results in 610.25'. Th' is conse vative since in normal ECCS operation the CCPs are transfered to the rec'rc lacion sump/RHR before the RWST level reaches Lo-Lo or elevat'on 613.0'.

2 - RWST temperature is 100'f for conservatism. Vapor pressure at 100'f is .94925 psia or 2.21'ased on multiply'ng by the conversion factor 2.323 ft for 100'f water.

3 - RWST is open to atmosphere 4 - For purposes of this calculation safeguards pumps are operating.

it is assumed that all That is, 2 safety injection, 2 residual heat removal, . 2 containment spray, and 2 cent ifugal charging pumps.

N~go Rl a~t t rbC 3

I-(S~(WC

t V(

I

Conclusions:

s This result s of this calculation indicate that the iNPSH ava'lable to the charging pumps exceeds the NPSH required by approxima=ely (6.97'ast pp and 6.55'est pp) at the CCP flow of 550 7'bsolute gpm.

Calculation:

g2lh5 +

C75 P/S 77oc W2" C Yo-~

gp 5~

PP~ 0+0 g(o C~ 5>

I P cs og P eA JOAN+ pa g Wcc.P (cd'&C

~ 5A C~ ~

Segmen" s Flow 1 17,800 11.71 4 16,SOO ~ 68 3 16,500 .7 7,500 .15 5 1,100 1.54 6 550 .21 7 550 .33 8 1, 100 3.04 9 1, 100 .74 10 550 1.64 11 550 .24 12 550 .56 13 550 1.26 NPSH~ = H~

Hmz + Hss

" Hfs H, = 33.96 ft H~, = .95 psia or 2.21 ft H= 610. 25 - 592. 5 = 17. 75 ft

(>g g as- po Ss,r s~k r<( <t"

I 0 C

The friction loss for each pump is determined by adding the respective line segments to that pump. That is for the east CCP add segments 1 thru 5 ana 7 thru 10 and for the west CCP add segments 1 thru 5 and 7 thru 9 and 11 thru 13.

H( ECCP = 11.71 + .68 + .7 + .15 + 1.54 + .33 + 3.04 + *.74  : 1.64 20.53 ft Hfg WCCP = 11 . 71 + . 68 + . 7 + ~ 15 + 1 . 54 + ~ 33 + 3 04 +

~ ~ 74 + ~ 24

.56 + 1.26 20.95 ft NPSH, ECCP = 33.96 - 2.21 + 17.75 - 20.53 28.97 ft abs NPSH~ WCCP 33 96 2 e 21 + 17 75 ~ 20 95 28.55 ft abs NPSH, at 550 gpm is 22 ft Therefore, the NPSH, exceeds the NPSH, by 6.97 abs for the ECCP and WCCK'spectively.

ft abs and 6.55 ft

l 0

c:icalciccpnp PIPE FRICTION CALC - INPUT FILE IS-c:icalciccpnpsh INPUT DATA FOR THE HFLC5 SYS. RES. CALC.

SISTS OF THE FOLLOWING DATA:

T TEMPERTURE DEG F E - PIPE ABSOLUTE ROUGHNESS (FT.)

N FXRST PXPE SEGMENT NUMBER N1 LAST PIPE SEGMENT NUMBER QDES DESIGN FLOW THRU PXPE SEGMENT (GPM)

QMIN MXNIMUM FLOW THRU PIPE SEGMENT (GPM)

QMAX MAXIMUM FLOW THRU PIPE SEGMENT (GPM)

QDELT - FLOW INCREMENT THRU PIPE SEGMENT (GPM)

D PIPE SEGMENT INTERNAL DIA. (IN.)

L - PIPE SEGMENT LENGTH (FT.)

K PIPE SEGMENT K FACTORS L/D - PIPE SEGMENT L/D FACTORS FOLLOWING T

100.00 QDES E

IS

.00015 QMIN N

1

.00 17000.00 17800.00

'3 YOUR INPUT DATA QMAX N1 QDELT D 200.'00 23.250 L

221.33 Tg 1.00 L/D 148'.00

.00 16000.00 16500.00 500.00 23.250 6.00 .00 20.00

.00 16000.00 16500.00 500.00 23.250 7.81 .00 20.00

.00 7000.00 7500.00 500.00 23.250 6.35 .00 20.00

.00 1000.00 1100.00 100.00 7.981 13.55 .44 80.00

.00 500.00 550.00'" 50.00 7.981 8.00 .00 53.00

.00 500.00 550.00 50.00 7.981 8.00 .00 93.00

.00 1000.00 1100.00 100.00 7.981 12.94 .00 235.00 1000.00 1100.00 100.00 7.981 1.20 .00 60.00 500.00 550.00 50.00 6.065 19.00 .00 133.00

.00 500.00 550.00 50.00 7.981 15.96 .00 52.00

.00 500.00 550.00 50.00 6.065 12. 71 .22 20.00

.00 500.00 550.00 50.00 6.065 9.35 .00 113.00 FOLLOWING IS HFLCS RESULTS WATER TEMP.(F) 100.,00 DENSITY(LBM/CUFT) 62.00 ABS VISCOSITY(LBM/SEC/FT) .460533E-03 PXPE ABS ROUGHNESS(FT) .150000E-03 I N PI'PE SEG NO 1 PiPE DIA(ID-IN) 23.250 FLOW-GPM VEL (FPS) LHD(FT) KHD(FT) LDHD(FT) TOT HD (FT) 17000.0 12.85 3.54 2.56 4.59 10. 70 17200.0 13.00 "3. 63 2.63 4.70 10. 95 17400.0 13.15 3.71 2.69 4.80 11. 20 17600.0 13.30 3.79 2.75 4.91 11. 45 17800.0 13.45 3.88 2.81 ~

5 '2 11. 71 PXPE SEG NO 2 PIPE DIA(ID-IN) = 23.250 FLOW-GPM VEL(FPS) LHD(FT) KHD(FT) LDHD(FT) TOT HD (FT) 16000.0 12.09 .09 .00 .55 64 16500.0 12. 47 .09 .00 .59 68 E SEG NO 3 PIPE DIA(ID-IN) = 23. 250 OW-GPM VEL (FPS) LHD (FT) KHD (FT) LDHD (FT) TOT HD (FT) 000.0 12.09 .11 .00 -

.SS 66 16500.0 12.47 .12 .00 .59 70 r(, lOZl 4>

PIPE SEG NO PIPE DIA(ID-IN) I 23.250

~f~ 1M' >i 8

.1 g(

F~~OW-GPM VEL (FPS) LHD (FT) 'KHD (FT) LDHD (FT) TOT HD (FT) 7000.0 5.29 .02 .00 .11 .13 7500.0 5.67 .02 .00 .13 .15 SEG NO 5 PIPE DIA(XD-IN) = 7.981 W-GPM VEL (FPS) LHD (FT) KHD (FT) LDHD (FT) TOT HD (FT) 000.0 41 .20 .28 ~

.79 1.28 1100.0 7.05 .24 34 .96 1.54 PIPE SEG NO 6 . PIPE DIA(ID-IN) = 7.981 FLOW-GPM VEL (FPS) LHD (FT) KHD (FT) LDHD (FT) TOT HD (FT) 500.0 3.21 .03 .00 .14 .17 550.0 3.53 .04 .00 .17 .21 PIPE SEG NO 7 PIPE DIA(ID-IN) = 7.981 FLOW-GPM VEL (FPS) LHD (FT) KHD (FT) LDHD (FT) TOT HD (FT) 500.0 3.21 .03 .00 .25 .28 550.0 3.53 .04 .00 .30 .33 PIPE SEG NO 8 PIPE DIA(ID-IN) = 7.981 FLOW-GPM 1000.0 1100.0 PiPE SEG NO VEL(FPS) 9 6.41 7.05 '23LHD(FT)

PIPE

.19 KHD(FT) LDHD(FT)

.00

.00 DIA(ID-IN) =

2.34

2. 81
7. 981 TOT 2.53 3.04 HD (FT)

FLOW-GPM VEL (FPS) LHD (FT) KHD (FT) LDHD (FT) TOT HD (FT) 1000.0 6.41 .02 .00 .60 QJ 1100.0 7.05 .02 .00 .72 74 PIPE SEG NO 10 PIPE DIA(XD"IN) = 6.065 FLOW-GPM VEL(FPS) LHD(FT) KHD(FT) LDHD(FT) TOT HD (FT) 500.0 5.55 .30 .00 1.06 1.36 550.0 6.11 .36 .00 1.28 1.54 E SEG NO 11 PIPE DlA(ID-IN) = 7.,981 FLOW-GPM VEL (FPS) LHD(FT) KHD(FT) LDHD(FT) TOT HD (FT) 500.0 3. 21 .06 .00 .14 .20 550.0 3. 53 .08 .00 .17 .24 PIPE SEG NO 12 PIPE DIA(ID-IN) = . 6.065 FLOW-GPM VEL (FPS) LHD (FT) KHD (FT) LDHD (FT) TOT HD (FT) 500.0 5.55 .20 .10 .16 . 47 550.0 6.11 .24 .13 .19 .56 PIPE SEG NO 13 PIPE DIA(ID-IN) = 6.065 FLOW-GPM VEL(FPS) LHD(FT) KHD(FT) LDHD(FT) TOT HD (FT) 500.0 5.55 .15 .00 .90 05 550.0 6.11 .18 .00 1.09 26

w 9 ~I oZIR I R(((i. 5/94 PIPE FRICTION CALCULATION SHEET < OF Z

(

DATA SHEETS PLANT C~ ~ 4 STEM. AI~/ P~+ r4 UNIT:

E SEGMENTTO(IE FROM ~ I Qo ~ (Z.i~" i ~ i> 5 ~ I P ,".( r < .a>>

DWG.REF.: '4- 5 ~ - ~- <<- Z 7-5(-CO FLUID TEMP (4F): ~ PIPE ABS. ROUGHNESS (FT): PIPE SEGMENT NUMBER I>EEIGN FLOW: MINIMUMFLOW: ~d~ > MAXIMUMFLOW > OFLOWINCREMENT:

'/9-"'9

~(=}< +

TOEL: <~~- ~

IJ WIPE LO. (IN}:>'I PIPE EL: 5//- g

'K OR

~-'TRAIGHT PIPE LENGTHS FITTINGS NUMBER L/D z L/D I I ~

GATE VALVE 13 GLOBE VALVE 340

,'I BUT1'ERFLY VALVE 40

-7 SWING CHECK 135 gI 90'TD. ELBOW 30 I

0

~

(

90'.R. ELBOW 50 lt ~0 90'.R. ELBOW 20 /o >

45'TD. ELBOW 45'.R. ELBOW 180'LOSE RETURN 50 STD. TEE RUN 20 STD. TEE BRANCH 60 w MITRE BENDS 1.2 (1WOSe) w LATERAL+ OUTLET 1.0

  • LATERAL'NLET 0.5 w STRAIGHT RUN LATERAL 0.15 PIPE ENTR PROJ. INWD. 0.78 SHARP EDGE 0.50 WELL ROUND 0.04 4 PIPE EXIT SHARP EDGE / 1.0 ORIFICF = .61) 2.69 RF/0 w

(Q w SUDDEN CONTRACTION + .5(1-lP) 4 SUDDEN INCREASE + (1-(3~)'91.4

  • VALVE, MISCELLANEOUS d l(j 2 MISC.

33.>, '53 4 ITEMS ARE 'K" VALUES ONLY + BASED ON SMALLER PIPE DIAMETER B = dlD RF = RECOVERY FACTOR

g

~

YSTEM.

~

Ryv.5/94 'IPE CC. ~ F', 5 I- c~~C FRICTION CALCuLATION DATA SHEETS

+~m gI /oZ// >

SHEET PLANT ~cPo OF

~

E SEGMFNTTQ 5 FROM; 4rC g P. ~ r 4'., r m~ gc DWG. REF.:

FLUID TEMP ('F): PIPE ABS. ROUGHNESS (FT): PIPE SEGMENT NUMBER DESIGN FLOW: FLOW: /oo o AilAXIMUMFLOW. g7o Og SFLOWINCREMENT /Oo

'I!INIMUM Q

WIPE I,D. (IN): ~'I 4 PIPE EL:O'E< lO TO EL:

STRAIGHT PIPE LENGTHS FITTINGS NUMBER 'K OR L/D x L/D GATE VALVE 13 GLOBE VALVE 340 BNTERFLY VALVE 40 SWING CHECK 135 90'TD. ELBOW 30 90'.R. ELBOW 50

'90'.R. ELBOW 20 45'TD. ELBOW 45'.R. ELBOW 26 180'LOSE RETURN 50 STD. TEE RUN 20 STD. TEE BRANCH 60 w MITRE BENDS 1.2 (1WOse)

  • LATERAL+ OUTLET 1.0
  • LATERAL'NLET 0.5
  • STRAIGHT RUN LATERAL 0.15
  • PIPE ENTR PROJ. INWD. 0.78 SHARP EDGE 0.50 WELL ROUND 0.04 w PIPE EXIT SHARP EDGE 1.0
  • ORIFICE(Q = .61) 2.69 RF/6 w SUDDEN CONTRACTION + .5(1-P) w SUDDEN INCREASE + (1-
  • VALVE, MISCELLANEOUS 0')'91.4 d / 2 MISC.

- e ITEMS ARE "K"VALUES ONLY + BASED ON SMALLER PIPE DIAMETER 8zu B = d/D RF = RECOVERY FACTOR

&PIE.Q~ PQ f Q j f A+

Rov. 5/94 PIPE FRICTION CALCULATION SHEET i~ OF DATA SHEETS YSTEM: Cc 4' UNIT:

SEGMENT TO a FROM: I"- ~ .1< pt i'4 ~r X~ ~P C-;

DWG. RFF.:

FLUID TEMP

'QESIGN FLOW:

('F):

5 i PIPE ABS. ROUGHNESS FLOW:/0 4 l3 (Fl) 'IPE MAXIMUMFLOW.

SEGMENT NUMBER

/Pn< Q 'FLOW INCREMENT. 'INIMUM

~ c IPE I.D. (IN): <7.a ) PIPEEL: 5~~ ) "

sl TO EL:

STRAIGHT PIPE LENGTHS FITTINGS NUMBER "K OR L/D z LID GATE VALVE GLOBE VALVE 340

,BUTTERFLY VALVE 40 SWING CHECK 135 90'TD. ELBOW 30 90'.R. ELBOW 50 90'.R. ELBOW 20 45'TD. ELBOW 16 45'.R. ELBOW 26

'I80'LOSE RETURN 50 STD. TEE RUN 20 STD. TEE BRANCH 60

  • MITRE BENDS 1.2 (1wose)
  • LATERAL+ OUTLET 1.0 LATERAL'NLET 0.5
  • STRAIGHT RUN LATERAL 0.15
  • PIPE ENTR PROJ. INWD. 0.78 SHARP EDGE 0.50 WELL ROUND 0.04
  • PIPE EXIT SHARP EDGE 1.0
  • ORIFICE (Cg =,61) 2.69 RF/8
  • SUDDEN CONTRACTION + .5(1-fP)

~ SUDDEN INCRE ASE + (1-

  • VALVE, MISCELLANEOUS 0')'91.4 d / 2 MISC.

rats U7

~ ITEMS ARE "K"VALUES ONLY + BASED ON SMALLER PIPE DIAMETER 0 = cM) RF = RECOVERY FACTOR

,r Rov 5/94' pcJ~+g/ag/ Al PIPE FRICTION CALCULATION SHEET /'~. OF Z~

DATA SHEETS RBE SYSTEM: C UNIT:

PE SEGMENT TO Ec FROM: I > ~ ~ Q P ~ C ro p DWG. REF.: 5 ~ - Cc FLUID TEMP ('F): PIPEABS.ROUGHNESS(FI): - PIPESEGMENTNUMBER ESIGN FLOW; %WNIMUMFLOW /O OO QAXIMUMFLOWI o.o!Can OFLOWINCREMENT, r'do 6 WIPE LD. (IN): -i~ ~ 25.'P, ) PIPEEL: >FT- I i<<TOEI-:

STRAIGHT PIPE LENGTHS FACINGS NUMBER K OR L/D x L/D 6-<jr GATE VALVE 13 GLOBE VALVE 340 BUTTERFLY VALVE 40 SWING CHECK 135 90'TD. ELBOW 30 90'.R. ELBOW 50 90'.R. ELBOW 20 45'TD. ELBOW 16 45'.R. ELBOW 26 180'LOSE RETURN 50 STD. TEE RUN 20 STD. TEE BRANCH 60

  • MITRE BENDS 1.2 (1WoSe)

LATERAL/ OUTLET 1.0 w LATERAL/ INLET 0.5

>> STRAIGHT RUN LATERAL 0.15

  • PIPE EMR PROJ. INWD. 0.78 SHARP EDGE 0.50
  • " " WELL ROUND 0.04 w PIPE EXIT SHARP EDGE 1.0
  • ORIFICE ((g = .61) .

2.69 RF/8 w SUDDEN CONTRACTION + .5(1-P) w SUDDEN INCREASE + (1- 0')

w VALVE, MISCELLANEOUS 891.4 d /6(,'

MISC.

TALE e ITEMS ARE "K VALUES ONLY + BASED ON SMALLER PIPE DIAMETER 8 -" dlD RF = RECOVERY FACTOR

1 1

0 0

~

I 0

~

0 ~

0 0 0 \~ I I e

~ ~ I I

~ ~ I I ~

P

~ ~

~ 1 0 ~

~ ~ ~

Aov. $ 94 ,~ C Qmcjio /02IAI PIPE FRICTION CALCULATION SHEET ~ ~ OF DATA SHEETS PLANT VSTEM: UNIT:, 2.

E SEGMENT TO 4 FROM:

DWG. REF.: 2" - - "I FLUID TEMP ('F): PIPE ABS. ROUGHNESS (FT): PIPE SEGMENT NUMBER DESIGN FLOW: FLOW: C~ O WAXIMUMFLOW: /3< O FLOW INCREMENT:

'IIINIMUM OIPEI.D.(IN): ~I 7 7$ >

PIPE El TO EL:

STRAIGHT PIPE LENGTHS FtT1lNGS NUMBER 'K OR L10 xK x UD 11 I/ GATE VALVE 13 il GLOBE VALVE 340 IZ u

'I

-& BNTERFLY VALVE 40 SWING CHECK 135 90'TD. ELBOW 30 90'.R. ELBOW 50 90'.R. ELBOW I 20 45'TD. ELBOW 45'.R. ELBOW 26 180'LOSE RETURN 50 STD. TEE RUN 20 STD. TEE BRANCH 60 w MITRE BENDS 1.2 (1wose)

~ LATERAL/ OUTLET 1.0 w LATERAL'NLET 0.5 w STRAIGHT RUN LATERAL 0.15

  • PIPE ENTR PROJ. INWD. 0.78 SHARP EDGE 0.50 WELL ROUND 0.04 w PIPE EXIT SHARP EDGE 1.0 w ORIFICE (Q =,61) 2.69 RFi8 w SUDDEN CONTRACTION + .5(1-P) w SUDDEN INCREASE + (1- O'P
  • VALVE,MISCELLANEOUS 891.4 d /Q 2 MISC.

~ ITEMS ARE "K"VALUES ONLY + BASED ON SMALLER PIPE DIAMETER B = d/D RF = RECOVERYFACTOR

E heV. S/94 o PIPE FRICTION CALCULATION OF DATA SHEETS PLANT c o au-BY +~ DATE 4 <~<<4 YSTEM: f' P W~ a+Q I CF I C UNIT: 2 E SEGMENTTO8t FROM ': <<" ~ ~r c ~i ~r c. q I-ru ' ~ Pr/

DWG . REF.:

FLUID TEMP ('F): PIPE ABS. ROUGHNESS (FT): PIPE SEGMENT NUMBER ESIGN FLOW: FLOW: ~ IIIAXIMUMFLOW: ~IO CFLOW INCREMENT:

'IIINIMUM 4 IPE I.O. (IN): - '-I" 7. ch I PIPE EL: ~>~ < TO EL:

STRAIGHT PIPE LENGTHS FITTINGS NUMBER 'K OR LID z L/D GATE VALVE GLOBE VALVE 340 BUTTERFLY VALVE 40 SWING CHECK 135 90'TD.'ELBOW 30 90'.R. ELBOW 50 90'.R. ELBOW 20 45'TD. ELBOW 16 45'.R. ELBOW 180'LOSE RETURN 50 STD. TEF RUN 20 STD. TEE BRANCH 60

<<MITRE BENDS 1.2 (1wose) w LATERAL+ OUTLET 1.0 LATERAL'NLET 0.5

  • STRAIGHT RUN LATERAL O.I5
  • PIPE ENTR PROJ. INWD. 0.78 SHARP EDGE 0.50 WELL ROUND 0.04 w PIPE EXIT SHARP EDGE 1.0
  • ORIFICE(Q = .61) 2.69 RF/8
  • SUDDEN CONTRACTION + .5(1-fP)
  • SUDDEN INCREASE + (1- GE)
  • VALVE, MISCELLANEOUS 891.4 d 1 2 MISC.

UT w ITEMS ARE "K" VALUES ONLY + BASED ON SMALLER PIPE DIAMETER 8 = d/D RF = RECOVERY FACTOR

4

~~/~ g tOS~ 2f ~<

RIEV; 5/94 PIPE FRICTION CALCULATION SHEET >> OF. ~

DATA SHEETS PLANT BY <<- DATE ~~solve SYSTEM ~

~

C Cf ~MD pg UNIT:

SEGMENT TO a FROM: <<.~ ~

DWG. REF.:

~ ~ ~ 2- C -7T FLUID TEMP N'IPE

('F): ABS. ROUGHNESS (FT):

. yo O PIPE SEGMENT NUMBER

/gg ~ CIFLOW INCREMENT.

7-'fh'IPEEL:

DESIGN FLOW: FLOW 'MAXIMUMFLOW . 'MINIMUM WIPE I.D. (IN): ~ < ~" ~" TO EL:

STRAIGHT PIPE LENGTHS FITllNGS NUMBER "K OR L/D x L/D

/cr

"/>>'ATE e / VALVE 13 GLOBE VALVE 340 BUTTERFLY VALVE 40 SWING CHECK 135 90'TD. ELBOW 90'.R. ELBOW 50 90'.R. ELBOW 20 45'TD. ELBOW 16 45'.R. ELBOW 26 180'LOSE RETURN 50 STD. TEE RUN 20 STD. TEE BRANCH . 60 w MITRE BENDS 1.2 (1WOSe) w LATERAL+ OUTLET 1.0 w LATERAL+ INLET 0.5

<<STRAIGHT RUN LATERAL 0.15

  • PIPE ENTR PROJ. INWD. 0.78 SHARP EDGE 0.50 WELL ROUND o.oa
  • PIPE EXIT SHARP EDGE 1.0
  • ORIFICE (Cg = .61) 2.69 RF/8 w SUDDEN CONTRACTION + .5(1-fP)

N SUDDENINCREASE + (1- G~P

  • VALVE, MISCELLANEOUS 891.4 d /Q 2 MISC.

~ ITEMS ARE 'K" VALUES ONLY + BASED ON SMALLER P!PE DIAMETER 8 "d/D RF = RECOVERY FACTOR

~ AMV. Ss~ ~

PIPE FRICTION CALCULATION

~~1</Col<~'t OF E

"'NEZr

~ l PLANT DATA SHEETS BY~ DATE /at>wrg YSTEM: UNIT:

Ii E SEGMENT TO8c FROM' F 0

OWG.REF.: 2- cg- V9 FLUID TEMP ('F): PIPE ABS. ROUGHNESS (Fl): PIPE SEGMENT NUMBER DESIGN FLOW: IIIINIMUMFLOW: I CIEAXIMUMFLOW: ~BC C OFLOW INCREMENT:

4 IPEI.D.(IN): <> ~. ~ci PIPEEL'>>"'~ ~"- TUEL: +F+

STRAIGHT PIPE LENGTHS FITTINGS NUMBER K OR LID x L/D GATE VALVE 13 GLOBE VALVE 340 BUTTERFLY VALVE 40 SWING CHECK 135 90'TD. ELBOW 30 90'.R. ELBOW 50 90'.R. ELBOW 20 45'TD. ELBOW 16 45'.R. ELBOW 26 180'LOSE RETURN 50 STD. TEE RUN 20 STD. TEE BRANCH w MITRE BENDS 1.2 (1Wose) w LATERAL/ OUTLET 1.0

  • LATERAL/ INLET 0.5 w STRAIGHT RUN LATERAL 0.15
  • PiPE ENTR PROJ. INWD. 0.78 SHARP EDGE 0.50 WELL ROUND o.o4 w PIPE EXIT SHARP EDGE 1.0
  • ORIFICE ((g =..61) 2.69 RF/6 w SUDDEN CONTRACTION + .5(1-6')

w SUDDEN INCREASE + (1- GE)

  • VALVE, MISCELLANEOUS 891.4 d IC 2 MISC.

ALS P5

~ fTEMS ARE "K"VALUES ONLY + BASE D ON SMALLER PfP E DlAMETER S = d/D RF = RECOVERY FACTOR

1

~~a iOZ/AC

~~~

'. Rov. b/94 qC

~

~

~ PIPE FRICTION CALCULATION SHEET OF DATA SHEETS PLANT BY DATE r~au<C YSTEM:

E SEGMENTTO8L FROM ~ I- <'";,." c< - P% a F cc r o Mc., 'aha DWG. REF.: 4- C~ ~- r-' c~

FLUID TE5I!P ('F): PIPE ABS, ROUGHNESS (FT): PIPE SEGMENT FLow: r / 'FLow INUREMENT:

NUMBER'INIMUM DESIGN FLOW: 0MIUUMUMFLow:

li WIPE I.D. (IN): + . 04$ PIPEEL: SPC - ~"/r- TOEL: meP- C STRAIGHT PIPE LENGTHS FITTINGS NUMBER K OR UD x L/D

>I rFWa 7

/ GATE VALVE 13 I

rF 0 GLOBE VALVE 340 BUTTERFLY VALVE 40

/

I 'WING CHECK 90'TD. ELBOW 30 90'.R. ELBOW 50 90'.R. ELBOW 3 20 45'TD. ELBOW 45'.R. ELBOW 26 180'LOSE RETURN 50 STD. TEE RUN 20 STD. TEE BRANCH / 60

  • MITRE BENDS 1.2 (1WOSe) w LATERAL/ OUTLET 1.0 w LATERAL'NLET 0.5
  • STRAIGHT RUN LATERAL 0.15
  • PIPE ENTR PROJ. INWD. 0.78 SHARP EDGE 0,50 WELL ROUND 0.04 w PIPE EXIT SHARP EDGE 1.0
  • ORIFICE (Cg = .61) 2.69 RF/8
  • SUDDEN CONTRACTION + .5(1-fP) w SUDDEN INCREASE + (1- O'P
  • VALVE, MISCELLANEOUS 891,4 d /(j 2 MISC.

ALS U '

33 e ITEMS ARE "K"VALUES ONLY + BASED ON SMALLER PIPE DIAMETER ~

8 =d/D RF = RECOVERY FACTOR

~m~ fCIO 2/I'r.

ROVE 5/94

~ I PIPE FRICTION CALCULATION SHEET~ QF DATA SHEETS TEM: C C P F-0 UNIT:

SEGMENTTOa FROM: I=<~ r '

~ e <--- ~~ V>> - yF i~

DWG. REF.: 2- c S FLUID TEMP ('F): PIPE ABS. ROUGHNESS (FT): PIPE SEGMENT NUMBER DESIGN Fl OW: FLOW: / ~+ MAXIMUMFLOW: 7 + OFLOW INCREMENT:

'MINIMUM WIPE I.D. (IN): 3 PIPE EL +~ ~ ~ TO EL:

STRAIGHT PIPE LENGTHS FITTINGS NUMBER K OR L/D x L/D GATE VALVE 13 GLOBE VALVE 340 BUTTERFLY VALVE 40 SWING CHECK 135 90'TD. ELBOW 30 90'.R. ELBOW 90'.R. ELBOW 20 45'TD. ELBOW 45'.R. ELBOW 26 180'LOSE RETURN 50 STD. TEE RUN / 20 STD. TEE BRANCH 60

~ MITRE BENDS 12 (1wose)

~ LATERAL/ OUTLET 1.0 LATERAL'NLET 0.5

~ STRAIGHT RUN LATERAL 0.15

~ PIPE ENTR PROJ. INWD. 0.78 SHARP EDGE 0.50 WELL ROUND 0.04 PIPE EXIT SHARP EDGE 1.0

~ ORIFICE(Q = .61) 2.69 RF/6

~ SUDDEN CONTRACTION + .5(1-P)

~ SUDDEN INCREASE + (1- PP

  • VALVE, MISCELLANEOUS 891.4 d / 2 MISC.

ALS U e ITEMS ARE "K"VALUES ONLY p 5'2

+ BASED ON SMALLER PIPE DIAMETER B = d/D RF = RECOVERY FACTOR

P P P

~

~ a ~

~ ~

e ~

~ a

~

I a ~

II '

~ P 0 )

~ )

e 0 0

~ ~

~ ~ ~ ~ ~

~ ~

~ ~

~ ~ ~ ~ ~

~

a ReVi M/94

'( lg PIPE FRICTION CALCULATION V~~ 5(. la Wl OF >

~

DATA SHEETS PLANT~~

gpss rC

'3 TEM: UNIT: . Z.

SEGMENT TO 4 FROM gcP>> l )v ~pc'cgf~l ~ w (4 C C C '< c. <A I DWG. REF.: 3- C s- F'I FLUID TEMP ('F): PIPE ABS. ROUGHNESS (FT): PIPE SEGMENT NUMBER DESIGN FLOW: IIIINIMUMFLOW: ~ IIUCIMUMFLOW: F FLOW INCREMENT:

PIPE I.D. (IN): g.o 6g PIPE EL. gg T . ~/~~ TO EI-. S F2- C STRAIGHT PIPE LENGTHS FLINGS NUMBER 'K OR VD zK x VD GATE VALVE z 13  ?

-'LOBE VALVE 340 BNTERFLY VALVE 40 SWING CHECK 135 90'TD. ELBOV/ 30 90',R. ELBOW 50 90'.R. ELBOW 20 45'TD. ELBOV/ 16 45'.R. ELBOW 180'LOSE RETURN 50 STD. TEE RUN 20 STD. TEE BRANCH / 60

  • MITRE BENDS 12 (1-cose) w LATERAL+ OUTLET 'I.O w LATERAL'NLET 0.5 w STRAIGHT RUN LATERAL 0.15 PIPE ENTR PROJ. INWD. ~

0.78 SHARP EDGE 0.50 WELL ROUND 0.04

<<PIPE EXIT SHARP EDGE 1.0

  • ORIFICF (Cg = .61) 2.69 RF/8 w SUDDEN CONTRACTION + .5(1-P) w SUDDEN INCREASE + (1- HAPP
  • VALVE, MISCELLANEOUS 891A d/ 2 MISC.

ALS U e ITEMS ARE "K"VALUES ONLY + BASED ON SMALLER PIPE DIAMETER 8 = d/D RF = RECOVERY FACTOR

r ~w

\

w $ ~ ~

e NE 015 DONALD C. COOK NUCLEAR PLANT (02/95)

NESN Section DESIGN VERIFICATION CHECKLIST - CALCULATIONS Calculation Number NESM961021AF Rev 0.

l'I /27 Sinai:ore of Ver fier Da"=

1.0 Mere the inputs correctly selected, incorporated and documented into the calculation? Yes ~ N/A Basis v'4 co~ n~~l,

, C0 IC 2.0 Are assumptions necessary to perform the calculation adequately described and reasonable?

Basis: 0 a Ovo v

~ t(

SO Are the applicable codes. standards and regulatory requirements ident- fied and . equi rements for desicn I met? Yes i~l/A >

Basis: (l 0 V a (' W'o 4.0 Mas an appropri'ate design method used? Yes N/A Basis: i '~ ~.~ dc~ f 5.0 's the output reasonable compared to input? Yes N/A Basis: U 6.0 Are the results numerically correct? Yes V N/A Basis: ~

4 4 i

Page 1 of 1