ML17213B196

From kanterella
Jump to navigation Jump to search
Rev 2 to Offsite Dose Calculation Manual.
ML17213B196
Person / Time
Site: Saint Lucie  NextEra Energy icon.png
Issue date: 03/28/1983
From:
FLORIDA POWER & LIGHT CO.
To:
Shared Package
ML17213B195 List:
References
PROC-830328, NUDOCS 8303300254
Download: ML17213B196 (151)


Text

FLORIDA POWER & LIGHT COMPANY ST. LUCIE PLANT OFFSITE DOSE CALCULATIONMANUAL Revision 2 March 28, l983 ssosioo 50oMs Poa p

7LORZDA POWER & ~ XGKT. CO.f2AHY ST ~ LVCEZ 'PL>.NT CF:AlST37 OP RAT HG 2'ROC:DVRZ

~

C-200 R""VZS'ZOH 077S: Z OOSZ CALCuLX 'ZON .fA.'IUD'

QW C Revision ]~

ifovmbe 'ate:

1, 198 1 Page 25 oi 32 PO>~v ~ L:C C~~WVr S~ L~u~ P~iT R~iSEOH '. OO LVZ~Z Z X OE: ril zz.is9%

kp~OVB3 ET: plant M~age S7-19gZ-3"'V '.:~j. ace 3Y BQ OH' ad 8 z <~age=/d -

g 39~9 Hove be". 1982 AZPRO>:.D 3Y: Plant: ~~naze". / 6- '982

F lPo 1 TA3L"- OP CGN:='.iTS St ~ uc a P ant Of fsite Dose Cal " 't on ..anua ocuc"'n Glossa g 1.0 Rad"'oac"'ve Releases of Liquid "=ffluents 1,1 Liqu'd "-ffluent 4fodel Ass~~otions

~ 2 Dete. ='n."g the : act'on (:-) of 0C:R20 NPC L'-'ts for Radioactive Liquid Re'eases 1.3 Dete =ining Setpoints for Rad'oactive 'ou'c E =luent 'Aonitors Deteraining the Dose fr m Radioactive L'qu'd c.ffluents 1}

'1. 5 P o J ect ng Dose For Radioac 've Li oui d ~ f '6 2.0 ~ Rad"'oact've Re eases of Gaseous "=ffluents 2.1 .Gaseous "-ffluent Mode Assuapt ons 17 2.2 Deter~ining =he Total Body ai:d Sk'~ Dose Rat s

=or iso'61 Gas Relea,se s anc =5 ao1'n'ng bet'ooxnts

~

=or ".ffluent i~!onitors Dete~ining th Rad'o iodin and Partic late Dose P.ata, To Any Organ From Zns tantaneous Gaseous Re<eases--------- "3 DiSCUSSi01 Z3

2. 3.' Tnha'at 25 3e 2 Grourd Plane o
2. 3.3 .-1 i 2S 3 /, Trit<<U.il 29 Z.3.5 Total Dose R" te bv Ra'ease Source 31 2 ~ De e~ining the Gar;a A'r Dose for Radioac 've Moo}.2 Gase Relaases 32 2 5 De e~ining the Beta A"'r Dose for Rad'oactive Noole Gase Re eases

~ o r Dete~ n'ng the Pad'oicdin and 'Part'c 'ate Dose To &my Crgan ":roe. C -.u'at've Releases O'ZSCJSS:Oil 7 ST:UC:"" PLAVZ -ODC:!

op go T "ig l ~ OP C~qT~qgS 2.6 (cont,)

2 ac ~ inhalation 2o6o 2 'Ground =lane 2 0

~ ~ .~I 2.6. Tritium dose ( <ll Pathways) 42 2+6o 5 .Total Organ Dose 4g 2o 7 Pro) ecting Dose ".or Radioactive Gaseous

$ .0 40 O'R 190 Dose "-valuation.

4.0 Semiannual Report format 46 Appendix  %, MPC, Dose Factor and Historical Meteorological Ta'oles 57 Appendix 3- Limited Analysis Dose 4,ssessment for Liauid Radioactive Zffluents 80 Append'x C- Technical Bases for ffective ~

Dose Factors Appendix D- Technical Bases for Eliminating Cu='e inventory Limit for Gaseous "las .e Storage Ta~s Appendix Current R.-.M. Sample Point l ocation

.'~lap for Sts-A '5/4 i2

~

AppeQdix F Descriptioa of Meteoroligical Dispersion Formulas Utilized for Historical Data and Nethodology for Determining Actual Net Data ST LUCT" PLAZA -ODCN

Page 3 I;1TRODUCTIOH This manual provides the methodology to calculate radiation dose, to individuals in the vicinity or the St. i.ucie s't, fro . radio-act've gaseous and l'quid ef="uents. It also provides methocology for calcu'ating e"fluent monitor setponts and al'owable release rates to ensure compliance with the STS and 10C:R20 release cr'itera.

The 'n-plant procedures specify what sections of the ODCN shoula be completed to calculate the dose to an individual.

The ODC1 :ollows, the methodolooy and models suggested by NlcZG-0133 (iNov 1978) and Regulato y Guide 1.109. Simplifying assumptions.

have been applied where applicable to provide a more workable document for implementing the Technical Spec'='cation requi.rements.

Alternate calculation methods may be used from.those presented as long as the overal'ethodology does not change or as long as the alt rnative methods provide results that are more limiting.

Also, as available, the most up-to-date revision of th ..egulatory Guide 1.109 cose corversion factors and environmental t-.ansfer factors may be subst'tuted for those currently included and used in this document.

S: LUC - PLNT - DC~i.

I 11 Page GLOSSARY Or CO?FOl< T:-R:-!S cose (dose race) from Baca rad'ac'on cuo ic c en cime r e C'uries - a uni" oz radioactiv"'cy see ~Ci C

i

~ activity'"'or concentrat on of a nuclide in the release source.

Units of pCi, pCi/cc, or pCi/ml Code of E'ederal Regulations Dose The exposure, in mrem or mrad, the organ or the ind'v'd al receives from radioactive erfluents.

Dose Factor Normally, a factor that conve ts the effect of ingesting radioactive material into the body, to dose to a specific organ. Body elimination, radioactive decay, and organ uptake are some of che factors that dete~ine a dose factor for a given nuclide.

Dose Pathway - A specif 'c path that radioact ve material phys'cally travels through prior to e:cposing an individual to rad'ation. The Grass-Cow-Miilk-Infant is a dose path-way.

Dose Rate The dose received pe" unit time.

(D/Q) a long term D over Q a factor with units of 1/H wh'ch describes the deposition of particulate matter from a plume at a po'nc downrange from the source. ic can be thought of as

-hac part of the cloud is going to fa'lout and deposit ove>>

one square meter of ground. (See Appendiz P).

Gamma g a gama photon the dose =rom Carr.as in a'r et,c.

Ground Plane Rad'oactive marer.al deposited nifor ly over che ground emits radiation that produces an o"posure. pathway when an individual is sanding, sitting, etc. in rhe area., Et is assumed that an adu't receives the same ezposure as an infant, regarcless of the pnysical height d'erences. Only the total body is cons'dered ror the ODD!.

H-3 hydrogen-3, or Trit um, a weak Beta em'tter.

E&8DP Radioiodines ard particulates w.th half-lives greater than 8 days .

Limiting condition for operation in STS cubic mete s m2 square meters ST. LUC-"- P~~NT - ODC.'!

Pace C .'!~<=.um? armissible Concentrab 'on nucl'e o nuclide he purposes of

() signifies

'ia s manna ' radioac ~

2 iso ripe.

5pecif c nuclide =he 'st 2nd) "rd if nuclide (i) is '-l~'.: ~hen the one nce" consideration.

Hi,dose example.

factor) under cons.derat'on 'l shoulc be ':!- .-. =.or Organ For ='."'.e ODQf either the bone, l'ver, thy".o'd, kidney, 'ung',

Gl-LLX, or the T. Body,. T. Body (Total Body) is cons.'de ed an organ for ease of writing the methodology i the ODC!.

Q. Qi dotted Denotes a re'ease rate in gCi/sec =or nuclide(c~. f,.

Denotes pCi of nuclide (i) re'eased ove" a specizied ti .e interval.

1 Receptor - The 'nd'vidual receiv.'ng the exposure in a g"ven location.

or who ingests food products "rom a animal for example.

A'eceptor can receive dose from one or more oathways.

Release Source(s) A subsystem, tank, or vent where radioactive material can be released independently of other

,rad'oact've release points STS The St. Lucie Plant Standard Techn'cal Spec'zcat ons pCi micro-Cur ies. l un'

~pCi = 10 Curies. The pCi is the standard of radioactivity =or all cose calculatioys .in the ODCN.

(X/Q) a lo..g ierm Chi over Q. "" descr.'bes the physical dispersion chare ter.'sties oz a se .'-'"z'..ite cloud oz nobl gases as the cloud t=averses downrange f"om the release point. Since noble Gases are inert, tney do no tend to sett' out on the g o nd. ~

(See Appendix P) .

(v/Q)D a long term Depleted Chi ove" Q. It descr'"oes the physical d'spersion characteristics of a se '-'nzinite cloud oz rad"'oac=ive ioc nes and part'culates as the cloud travels downrange. S'nce Eodines and particulates tend to settle out (fall'out of the cloud) on the ground, t'h e ~X( )D represents, what phys'cally emains of the clo'ud and its d'spers.'on qua 'ties at a driven location downrange from the release point. (See Appendix F).

1.0LZ~JiDRELEASES METHODOLOGY

Radioactive L ou d 5 fluent ~!odel Assumntions The "=S~R conta='ss the or" c'al descr'pc"'on o" t..e site char-acte >>sties. The description "'."."" =o laws 's a, br.'e= summary for dose cz culation purposes:

The St. Luc.'e Plant is located on an 'sland surrounded on cwo s'des by the Atlantic Ocean -,and the ind"'an River, an estuary of the A.tlant'c Ocean. Nornally, all rad'oact've liqu d re- .

leases enter the Atlantic Ocean whe e che Circulat'.g ',v'acer Discharge Pipe tewinates on the ocean loo- zt a pow~t approx-imately 1200.feet of shore. No .cred't 's tzken for subsequent m'zing or che discharge f"ume with che ocean. he ci==nsion of radioaccive macerial into the ocean 's dependent on the cond'ions of, tide, wind, znd some eddy c rrents caused by the Gulf Stream. The condit ons a e surficiently random enough to dist ibute the discharges over a wide area and no concentrating ef=ects are assumed.

There are no direct discharge pa.chs for liqu d ef luents to e.'ther of the north or south p ivate proper"y boundary lines.

The Big Mud Creek (part of the indian R've ) does connect to a norm"lly locked shut dam, that is intended to provide an emergency supply of circulating water to che intake Cooling

'Pater Canal 'n the event a Hu icane causes blockage of the intake Canal. Ho radioactive ware could be d scharged di-rectly into the intake Cooling Mater Canal because all p'anc piping is routed to the discharge canal and no back flow can occ ". Consult the "=SP2. for a detailed descr'pt'on of char-acteristics or the water booies surround'ng t'e an".site.

~

j Only those nuc'ides that appear in the Liquid Dose "-acto".

Tables will be cons'dered for dose czlc lzcion.

De"asinine the eraction '2 of 10CPR20 ~PC Limits, for A Licuid Re3.ease Sourc Discussion - Technical Soeci 'cation 3.11.1.1 requ'res chat the samp ing and 'analysis results o= liquid waste. (prior to,disc..arge) be used w th calculation, mechods 'n the in-plant proc du=es

~

to assur chat the concent=ac'on of 1'cu'd rad'oact've material in the unrestricted areas wil'ot evceed t'e conc ntrat'ons spec. "ied in 10 CH, 20, Append'v 3, Table i.i. Th's section pr sents che calc la"'on mechcd to 'oe used =or ch's determinat-on.

Th's method o..ly addresses the calculation for a. specific release source. The in-plant procedures will prov'ce insc=uctions ="or determining that the summation or each release source' " values do not exceed the s.'te's 10 C:-R 20 i!PC 1imic. he values for release race, d'ut'on rate, etc will also 'nave to be obt ined

~

from in-plant orocedures. The basic eouat-'on is:

Dago 3 1.2 {cont)

Where:

= "ae fract"'on of 10CH20 9C chac woula result i= "he re ease ~

source "as d'scharged under the conditions specixied.

The unduced release xate in gpm of the release source.

Liquid Rad Waste ~ 170 gpm Steam Generator = 125gpm/Steam Genexator D = The dilution flow in gpm of intake Cooling Water ox Circulating Water Pumps.

Incake Cooling flow is 14,500 gpm/pump Circulating Wat.er flow is 121,000 gpm/pump C = The undiluted concentration ox nuclid e ((i)) in C'/ml from sample assay.

(MC) . ~ The maximum pe~~ssible concentration of nuc3.ide (i) inn Ci/ml lp from Table L-1. For dissolved or entrained noble gases the HPC value is 2 x 10, 0 Ci/ml for the sum ox all gases.

The traction o of tthee 10 CFR 20 YPC limit may be determined by a nuclide-by-nuclide evaluation or for purposes u oses oof simplifying t

calculation by a cumulative activity evaluation. Xf the s'he simplifiea method is used, che value of 3 x 10

~

Ci/ml

{un'de tixied NPC value) should be substituted for (. ). *,.PC and the cumulative concentration <sum off a all i ident,ixied en radionuclide concentrations) or the g ross concentration snoula be substi te d for C ... Ass long n as che diluted concentration (C .-) is less ban 3 x 10 pCi/ml, che nuc 1<<ide- 'e-b y-nucx~ce calculac'on is no t rrequired co demonscxace compl'iance ce he 10 CrR 20 WC limit. The following'section prov'aes a step-by-step procedure for determining t<<e;

1. 2. 1 Ca3.cu3.at'on Process f or Sol" ds 1.2.1.1 Obcain from cne in-plane procedures, the re ease rate value (R) in gpm fox the'elease source.

1.2.1.2 Obtain from che in-plant procedures, the d'lut 'on rate (D) in gpm. No credit is taken =or any dilution beyond the discharge canal flow.

1.2.1.3 Obcain (C.), che undiluc'ed assay value of nuclide (i) i i)~ " n 4 ki/ml.

m ~

if the simpli <<ed mechoa <<s used, tne cumulative concencrat"'on (c )

is used.

1.2.1.4 5'rom Table L-1, obtain the corresponding {K2C).

for nuc$ ide (i) in pCi/ml, The value oz 3 x 10 ipCi/ml snou3.d be used =or the simpli-f'ed method.

1.2.1.5 Divide C bv (~PC)<< and write down che c<< ot=enc.

ST. LUCK= PLA <<T -ODW

Page 1.2 (Cont)

1. 2. 1 (cont) one swnx'c method s used, oz-cae<

the next steo. T.= dete~ining the ~PC -rect=on by the nuc'ide-by-nuclide evaluation, repeat steps

1. 2.1.3 through 1.2.1.5:or each nuclide reported

'n the assay, fo- H ~from previous month compos'te, and for SR89/90 and ":e55 from previous quarter com-posite.

Add each C./(K'C) quot.'ent from step 1.2.1.5 and solve ~oz c P

L a unit-less value where:

the value of ."-

could be < or >i. The pur-L pose of the ca~culation is to determine what the initial va'ue of ": ~s foz a given set of release conditions. lr ": is >'1, adm'nistrative steps are taken to ensure that the actual release conditions oz di'ution will ensure that FLis 1 during the actual zelease. :L is called the fraction of 10CH20 HC because it should be allowed to be >1.

-p'ever 1.2.2 Calculat'on Process for Gases n rLiquid 1.2.1.1 Sum the uCi/ml of eacn no'ole gas act'vity reported in the re'ease.

1.2.1.2 The values of 3, and D from 1.2.1 above shall be used in the calculat'ons below:

(sun of 1.2. 1.1) uCi/ml R g

D

-Ci 1.2.1.3 7 shall be less than 2 x 10 uCi/M for g

the site for all releases in pzogress. -"ach zelease point w 11 be acmin'st atively controlled. Consul" in-plant procedures for ins true tions.

ST Li.'CI. PLAIT -ODC.'i

I Page 0 1.3 DetermininR Set@pints for Radioact've Licuid ='fluent .'!o.".'itors Disc ssion - Techn'cal Spec'= c -'on 3.3.3.8 reo ires =ha.c

~'qu'd effluent monitoring instrumentation alarm/t"ip setpo'..=s be set to 'n" tiate an ala m or trio so lpga ~ ~he radioactivity concentration in water in the unrestricted area Goes L'o't exceed the concent" t on of .10. C:-R 20> Appendix B, Tabl.e as a result of radioactivity in 'iquid effluents (Technical Speci='cation 3.11.1.1). This section presents the method to be used =or determiniIlf, ~~e ins ~rum axa~ion se ~yoin~s.

Gross cpm vs total liquid activ'ty curves are available or Liquid E luent ~~1onitors based on a composi" e o= real re'ease data. A d'rect correlation between gross cpm a..d the concentrations that wou'd achieve 10 CR. 20 HPC levels in the discharge canal can be estimated. The 1978 liquid release data, rom sem'annual reports was used to determine the average undiluted release concentration. These concentrations were then projected to a diluted concentration in the discharge cane,l.

assum'ng a 1 gpm release rate and a constant d.'lut.'on flow of 121,000 gpm from 1 c'rc water pump. Tnis diluted activ'ty was d.'vided by the nuc'ide's respect've 10C.=320 'APC value (Table L-1) to obtain the Hi column on the taole that follows.

Table 1.3 1978 r GLIDE UbDILUTED M.

i SYMBOL Ci jm11 (no un it s)

I-131 4.43 E-5 1. 22 E-3 '

I-132 2. 23 E-7 2.30 E-7 I-'133 3.17 E-6 2.62 E-5 I-135 1.31 E-6 2.71 .E-6 Na-24 1.72 E-7 4.74 E-8 Cr-51 2.51 E-5 1 '4 E-7 Nn-54 5.64 E-6 4.66 E-7

~i'-56 1.11 E-9 9. 17 E-11 Co-57 3.69 E-7 7.62 E-9 Co-58 1.51 E-4 1,39 E-5 c9 2.92 E-6 83 ".-7 ST LUr-.. P~~bT 'ODC:]

Table >

3 (co~t) 1978

'LLUCL:DE UHD:LUTED 1.

S'~ BOL ~C1./nl (no ur ts)

Co-60 3 ~ 60 E-5 1.00 E-5 I

Zn-65 4.55 E-7

~

>> 3.76 E-8 Ni-65 8.23 E-7 6.80 E-8 I

Ag-i lorn 1.96 E-6 5.40 E-7 SG-113 5.75 E-7 5.94 E-8' Sb-122 2.16 E-6 Sb-124 8.40 E-6 3.47 E-6 V>>187  ! 3.51 E-6 4.83 E-7 Hp-239 1.30 E-8 Br-82 3.64 E-7 7.52 E-8 Zr-95 2.82 E-5 3.88 E-6 Zr-97 4.05 E-6 1.67 E-6 Ho>>99 3.24 E-6 6.70 E>>7 R"-103 3.84 E-8 4.00 E-9 Sb-125 2'.26 E-6 1.87 E-7 Cs-134 2.14 E-5 1.96 E-5 Cs-136 7.'82 E-7 1,08 E-7 Cs-137 4.85 E-5 Z.OO E-5 Ba>>140 6.44 E-7 2.66 E-8 Ce-141 3.04 E-8 2 ~ 80 E-9 CB-144 2.37 E-6 1.96 E-6 A

tot 4.01 E-4 Total '..33 E-3 (1) 1978 Und'lvted Re ease Vole.... 7 E 9 pills (2) H. ~ 1978 Und.'1. Act Nucl='e (') 1 Ron ("elease "ate)

~P" 1 (i"on ~ab~ ~ L-: ) 121000 =u~a (d'1 rate)

Page 12 1.3 (cont)

A 's the mix~uze and <<

total average uCi/~

's the -ract'on of concentration or tne rere 2..ce the '.PC of al'..uclices =oz the re'ease con5itions specified Dividing A tot by << ot yielcs

~~x, -hich is the max'~ total act'vity conce..tzation eq iva ent to the !PC limit for the nuclide d'stzibution typical or racwaste d"'scharges.

Tot The assumption that the mixture does not change is only used for calculational purposes.

1.3.1 The (C max ) value in cpm should be obtained =or the A 4

(0.302 pCi/ml) from the release sources radioact.ve

~

liquid effluent monitor curve of cpm vs >uCi/ml.

NOTL: This setpoint is 'or a specified release of 1 gpm into 121000 gpm dilution flow.

1.3.2 For establishing the setpoint prior to liquid radwaste discharges, the (C ,) will be adjust'ed as needed to account for actual release conditions (ie, actual iqu'ic discharge flow rate and dilution flow).

Dete~inina the Dose for Radioactive Liquid Releases Discussion - echnical Speci ication 3.11.1.2 requ'res ca'ulations be performed at least once pe" 31 days to ver.' that cumu ative radioactive liquid e fluents do not cause a dose in excess o 1.>

mrem to the total body and 5 mrem to any organ during any calendar quazte and not in excess of 3 mrem to the total body and 10 mrem to any organ duzing any calendar year. Th's section presents calculational method to be used for this ve if'cation.

This method is based on the methodology suggested by'sect'ons 4.3 and 4.3.1 of MZG-0133 Rev 1 Hov 1978. The dose actors are a composite ot both tne = 'sh and shel =isn pathways so t..at the fish-shell=ish pathway is the only pathway =or which dose will be calculated. Foz St. Lucie Plant, the adult is the most limiting age gzoup, but, the dose =or cni'd, and teenage can also be calculated by this metnod provided that their appropriate dose. factors are available for tne organ of nterest.

Only those nuclides that anoear in the .ables of his manual be considered.

ST L~C1Z P~~VT '-ODCH

I Page 1.4 (cont) 1.4. 1 This method provides for a dose calculat-'on to the total body or any organ zor a given ag group based on real release conditions durmng a specified t" me enter;al .or radioactive liquid release sources. The eauation is A. ht 0 D

1~

=

-j.=j.1 ~

where:

D = dose commitment in mrem received. by organ Q of age 1

group (to be spec'=eed) during the release time interval A t A. ~ the composite dose factor for the fish-shel'=esh pa"'hway for nuclide (i) for organ ". of age group (to oe specified) . The A, values 'sted in the Tables in this manua: are indepenoenq oz any site speci c information end heve t'e units m".em-ml

,uti-ht I

4t> = . the number o hours th " the release occurs.

Q. = The 'total auant'ty of ruc.'ide (i) released durin~

("Ci) r (DF)1 = The total volume o= d'lution that occurred curing the release time per od Q ti(ie, the cercui ting wa.ter flow t'mes time) he "oses assoceated with each release may then be summed to provide the cumulative dose over a desired time per'od (eg sum all doses for release du.ing a 31 day period, cala..der cuarter or a year).

D, total ~ i

= D 1

where:

DT

= the total dose commitment to organ+ due to al T releases during the desired time interval (mrem)

ST LUCi:" PLAiNT '-ODCi!

>>agsu 14 (cont) 1.4.1 (cont) oasedd on ih e red'onuc'ide distr'bution typica>. 'n radioa"i've the calculated doses to indivicuals ar cominated bv ihe radionuclides, "e-59, Co-58, Co-60, Zn-65> . b-9>,

Cs-134 and Cs-137. These nuclides typically cortrebute over 957. of the total body dose and over 907. of ihe GI-LLT.

dose ose> w xcn xis the critical organ. Therefore, the dose which commxtmen t d u e to radioact vity in 1'quid er=-luents may be bl evaluated by. limiting the dose calculation p"ocess to these radionuclides for the adult rota process o y and adu 1 t Gi-LLI. To allow -.or any unexpec" ed variaoility in the radionuclide distribution, a corservatis- factor of 0.8 is introduced into the equation. After calculateng the dose based on these 7 nuclides, the cumulative dose sou h

(ie xe> D~ =

e~

ld be +vided by 0.8, the conservat'sm R.efer to Appendix' factor.

~ il 8 for a deta. ed e

0  %>.

evaluai+ion ana exp1.anation of this 1 m'ted analysis approach.

The methodology that follows is a step-by-st p breakdown to calculatedoses based on the above equation. Refer'o the in-plane procedures to determine the apol ca b},e organs, Adult aporoachh is usea>

total

'h '

age groups> zn pa thway factors.

body dose and Adult T." the lim'ted analys 's e calculat'on should be Gi-LLI dose li from iced to tne the fish and shellfish pathways. Only the 7 orev'ously soeci 'ed 1'd rad'onucli es s h ou ld b e evaluated. For the dose calculat'ons eo be inn>eden in see'-annuai capon s> -ba doses "o the ss>n>'e groups ano all organs snoozed be ev23.u2ied ="o=. 21~ =2Q<0.;Dc '.Ge, identi" iec in the }.'quid ef=luen" s.

NOR: Table 1.4 provides a convenient form =or compi},'ng tne dose accounting.

1.4.1.1 Determine the time interval At tnat tne release took place. The in-plant procedures shall describe the procedure for calculat'ng >>t for off'cial release pu poses.

1.4.1e2 Obta~ {D:") for the time period Paste '.>anagement Records for the re>ease source(s) of inr.e"est.

1.4.1.3 Obtain Q ~

C for nuclide (i) fo" the t'me per'od At from the L'qu'd Paste 'Management Records.

1.4.1.4 Obtain A. from the appropriate i L'uid Dose ractor Table.

ST LUCI= P<~MT -'ODCH

TASLE l..4

""T.SH & SHELL@ ZSH PATHWAY T>1:"/DAT" ST> XT: TLif"/DATE STOP: ".ov. s TOTAL DILUTION VOLPii ~

z's AGE GROUP: ORGY: DOSE PACTOR TABLE Pr NQCll.de ( i ) A C~ (pC<) l.i Dose (i) mrem Pe-59 Co-58 Co-60 Zn-65 Nb-95 Cs-13~

Cs-137 Othe s Total Dose ii based on 1'mited analys's , Q.3 imii. em ST 'UCZE PLAÃZ - ODC'f

P 0

P age

1. 4 (cont)
1. 4. 1 (cont) 1.4.1.5 Solve for Dose (i)

Dose (i) = Q.~ ~ tl A.

(DF) 1 1.4.1.6 Repeat steps 1.4.1.3 through '.4.1.5 for each nuclide reported and e ch organ required.

If the lim'ted analysis method 's used, limit the radionuclides to Fe-59, Co-5S> Co-60>

Zn-65> Nb-95> Cs-134> and Cs-1.37 and determ. ne the adult total body dose and the adult GI-LLI dose.

1.4.1.7 Sum the Dose (i) values to obtain the total dose to organ w from the fish-shell ish pathway. If the limited analys.s method 's being used> d'ide the cun lative dose by a conservatism factor of 0.8 to account for a~y unexpected variab'1 'ty 'n rad'onucl'de dist"'bution.

$ ~ T DCT ?L~NT .-ODCN

Page 17 Pro~ectina Dose for Midioactive Liquid Kff uents Discuss'on - Technical Speci"'c ""'on 3.11.1.3 requires that appropr'ate subsyste s of the liquid radwaste treat-ment system be used to reduce radioact've material l'quid e f" uents when the projected monthly dose due to liquid re eases to unrestricted areas when averaged over 31 days would exceed 0.06 mrem to the totz bodv or 0.2 mrem to. any organ. Doses are to be projected at least once per 31 days. The following calculation method is provided for per orming this dose projection. The method is based on dose'as calculated in section 1.4 with the adult as the bases for projecting.

1.5. 1 Obtain the latest result of the monthly calculation of the adult total body dose and the adult's highest organ dose. These doses can be obtained from the in-plant logs.

1.5.2 Divide each dose by the number of days the reactor plant was operational during the month.

'.fultiply the quot'ent of each dose by the number of days the reactor plant 's projected to be operational during the next month. The produc"s are the projected dose for the next month. These values should 'oe ad-j usted as needed to account fo" any changes -'n failed fuel or other identif 'able operating condit'ons that could significantly alter the ac'tuel releases.

1.5.4 Xf the projected dose 's g.eater than 0.06 mrem to .

the total body or greater than 0.2 mre to the adu's highest e~osed organ, the liquid rad"aste system shall be used to reduce, the radioact'vity levels p ior to release.

-ODC .

2.0 G A S E 0 U S R E L E A S E S N E T H 0 D 0 L 0 G Y

D age 1 0 Gaseous =f luent Model AssumDt ons Description ci S'te {The "-SAR conta'ns the cff=cia descr'pt'c,.

ci tne site characteristics. The descr-'ption that =oi cws is a brief summary zoz dose ca'culat"'on purposes only).;ne St. Lucie Plant is 'ocated on an island surrounded cn two sides by the Atlantic Ocean and the indian R'ver, an estuary oz the Atlantic Ocean. Pzivat property adjoins the plant site in the north and south directions. A meterological towe is located nozth oz the plant near the site property 'ine. Theze aze 16 sectors, for dose calcu'ation purposes, divided into 22.5 each.:he met towe 's calibrated such that a zero degree bearing coinc"des with TR1JE NORTH. A. bearing of zero degrees d-'ssects the nor=h sector such that bearings of 348.75o and 11.25c dezine the boundaries of the north sector. The nearest distance to private property occurs in the north sector at approximately 0.97 miles.

For ease of calculation, this 0.97 mile radius is assumed in all directions, a>>hough the real Unrestricted Area Boundary is de-fined in Pigur 5 1 of the STS. Doses calculated over water areas do not apply to the STS LCO's or the annual report and may be listed as O.W. (over water) in 1'eu oz performing calcula-tions. The 0.97 mile range in the bW sector is O.W., but chosen as the worst sector for conservative dose calculations it was using the h'stozical met data.

Historical Met Data - Met data, between Septem'cer 1< 1976 and August 31, 1978, rom the St. Lucie Me Tower was analyzed by

~

Dames & Moore of Washington, D.C. The methodology used by Dames

& Moore "as ccnsistant with methods suggested oy Regulatory Guide 1.111 Rev l. Recirculation correct on factors were also calculated for the St. Luc=e Site and ar 'ncorporated.into the h's'-or.'ca met tables (Ta'oles ~D, M6, and M7) in Append'x A oz this manual.

lt was determined that these two years are representative Data =or this locale.

Dose Calcu'at'ons Dose calculat.'ons fcr Techn'cal Specificat 'cn dose limits are normally calculated us"'ng histoz'cai met data and receptor location(s) whic'n yield ca'c lated doses no lower than the real location(s) exp riencing the most exposure. Actual met data factors are calculated and used in dose calculations Xor the Semiannual Reports.

Live met data and hour-by-nou dose calculations are beyond the scope oz this annual. Historica'nf orat'on and conservat"'ve receptor locations etc., are on'y used zoz ease oz STS LCO dose Umit calculations. Dose calculations zor STS dose limits may be performed using acrual met dat'a, real receptor locations, and sector wind frequency distribution if desired. Any dose calculations performed with actual data snou d note the source oz the data in the annual report. Actual met data reduction should be performe'd in accordance wth Regu atory Gu de '.111 Rev 1 and shoulc incorporate Recirculation Cor.ection:actors from able M-4 oz

~

this manual. :ne St. Lucie s" te uses the 1ong term ground re'ase model for ail gaseous effiuents. Only those radionuci'des that appear in the gaseous eff'uent dose =actoz tables anv dose calculations.

-ill Land Ca.,sus inioration wii apply be considered to the'a anczr year foal'cwing the year that the census was admen to avo'd sp 'tt'ng quar"ers etc.

Pagp 20 2.2 Decermininz the To-al 3odv and Skin ~ose Pates'or !soo'e Gas Re'eas s anc " stablishine Setoo'its for ~ "='..t  ! n'"ors D 'sc ssion - Technical Soec'"ication 3.11.2..1 limits =he instantaneous dose rate from noble gaseous in airborne releases to less tnan 500 mrem/yr total body and less than 3000 rem/yr-sk n. Technical Specification 3.3.3.9 requires that the gaseous radioactive effluent monitoring instrumentation, be operable with alarm/trip setpoints set to ensure that these dose rate I.imits are not exceeded. 'The results o the sampling and ana'ysis program or Technical Specificat'on Tao'le 4.11-2 are used to demonstrate compliance witn these, 'm'ts.

The following calculation method is provided ror determining the instantaneous dose rates to the total body and skin from noble gaseous in airborne releases. The alarm/trip setpoin" s are based on th dose rate calculations. Tne Tecnnical Spec'=ication LCOs apply to all airborne releases on the s'e but all releases may be treated as i discharged from a singl release point. Only those noble gases appearing in Table G-2 w'll be considered. The calculation methods are based on Sections, 5.1 and 5.2 of NURZG-0133, Nov 1978.

The equations are:

Fo" Total Body Dose Rate DR R

=

Q K (K/Q) Q.

i For Sk.n Dose Rate skin where:

DR lB B

= total body dose rate =rom noble gases in air'oorne releases (mrem/yr)

DR skin skin dose rate from nob1e gases in airborne releases (mrem/yr) a mathematic 1 symbo'. to signify the opera" ions to the.

right of the symbol are to be performed fo each noble gas nuclide ( i) through (n) and the individual nucl 'ce doses are summed to arrive at the total dose rate for the rel.ease source.

(1 = "Ne total body oose = c "or du, to gamma emissions for e c' nob le Res nuclide zeposced in he ".eleese sousce (r ".eo-"... '~"

page 21

2. 2 (cont)

L. = The skin dose factor due to beta emissions =or noble gas nuclide (i) re~orted in the assay of release source mrem-m g pC>

1 N. = The a'r dose factor due to gamma em ssions for each noble gas nucl'de (i) reoorted 'n the assay of the release source. The constant 1.1 converts mrad to mrem since the units of H, are in mrad m "Ci-yr (X/Q) = For ground leveli the highes" ca,lculated annual long term historic relati.ve conce..t ation for any of the 16 sectors> at or beyond the exclusion area boundary (sec/m ).

Q . = The release rate, of noble gas nuclide (i) in pCi/sec from the release sourc of 'nterest.

2.2.1 Simplified Total Body Dose Rate Calculation From en evaluation of past releases, an effective factor (K~F" 'can be derived. Thi.s dose factor tota'ody dose ~ )

is in e "ect a Meignted average total body dose -actor, ie, weighted by the radonuclide d stribution "ypical or past ope ation. (Ref er to Append i: C for, a d'etai led.

ezplanat on and evaluat'on of K .~). The value o K has been derived from the radioac='ve noble gas e==l.ents for the years 1978, 1979, anc 1980. The value is K

e=

=6.8x10 2 mr em-m pC i-yr This va'ue may be used 'n con~unction with the total noole gas r lease rate ( Qi) to ve"ify that the instantaneous dose rate is within the allowable 'imlts.

To allow for any unexpected variabi'ty in the radionuclide distributioni a conservatism 'actor of 0.8 is introcuced into the calcu'ation. The simplified equation is DR = K

~~ (X/0) Q.

0.8 i ST LUC::" PAINT -ODC:".

2.2.1 (cont)

To further simplify the determination> the his<rical annual average meteorological X/Q of I.6 x.'0 sec/m (from Table M-1) may be substituted into the ecuation.

Also, the dose limit of 500 mrem/yr may be substituted for DR . MaRing these substitutions yields a single cumulaPive (or gross) noble gas release z'ate limit. Th's value is 5

Noble gas release rat'e limit = 3.5 x 10 pCi/sec As long as the noble gas release rates do not exceed tnis value {3.5 x 10 )LCi/sec), no additional dose rate calculations are needed to verify compliance with Technical Spec i icat 'n 3. 1'1. 2. 1.

2.2.2 Setpoint Determination To comoly wi.th Technical Soecifica"ion 3.3.3".9> the alarm/trip setpoints are established to ensure that tho noble gas releases do not exceed tne value o 6.5 x;10 QCi/sec> which corresponds to a total body dose rate of 500 mrem/yr. The method that follows is a step-by-steo procedure for establish'ng the setpoints. To allow for multiple sources of releases from oi==erent o- common release points> the allowable operating setpoints.',.-'e controlled administrative'y by allocating a percentage of the total allowaole release to each oz tne release sources'2.2.2.1 Determine (V) the maximum vol me release rate potential from the in-plant procedures or the release source under consideration. The un'ts o" (V) are f t /min.

2.2.2.2 Solve for A, the activity concentration 'n Ci/cc that should produce the Y "

dose rate L~O 3

A = 3.5xlO uCi x ..in x f /. x 50 sec sec (V) ft3 2.8zlO cc m'n A = yCi/cc 2.2.2.3 Refer to the pCi/cc vs cpm cu-ve o ne Release Source's Caseous ""ff'.uen" Monito cpm value '(C),

corresponding to the value o" A a've.

2.2.2.4 is <<he 1007. setpo'nt, assuming tha- there are lI C

no other release sourcesDl on <<4h t.. s.'.

C

-OZCL4f

2ag 23

2. 2 (con )

2.2 ' (cont) 2 2~ 2 5 obtain the cu .ent 7. allocated '"o this elePse source from the gaseous waste management l.ogs.

2.2.2e6 The Operating setpo'nt SP

.SP = (C) cpm x 7. allotted bv in-plant procedures 1007.

The total body dose is more limit.'ng than the calculated skin dose. (Refer to Appendix C for a detailed evaluation.) Therefozeg the skin dose rate calculations are not required if the simplified dose zate calculation is used ( ie, use of .K'eff to determ'ne release rate limits).

The calculation 'rocess of the following Section (2.2.3) are to be used if actual releases of noble gases exceed the above limit of 3.5 x 10 yCi/sec.

Unde-. these condit'ons, a nuclide-by-nuc1.ide evaluat'on is required to evaluate compliance we th the dose rate limits of Techn'cal Specification 3.11.2.1.

2.2;3 Total Body and Sk'n Nuclide Specific Dose Rate Calculations The fo'lowing outline'orov.'des a seep-by-seep explanat'on o" how .the total body dose rate 's calculate on a nuclide-bv-nuclide basis to evaluate comoliance with echnical Soec. "'cation 3. 11. 2. 1. Th' method is on y used if the actual releases exceed the value oi 3.5 x 10 >Ci/sec.

2.2.3.1 The (X/i)) vs lee = sec/m 3 end is s

"he most limi"ing sec".o"- a the exclusion ates..

2.2.3.2 ""nter the release rate 'n ft3 /min o the release source and convert it to

) t3 .

x 2.63i)vlO 4

cc x m'-'n t3 . 60 -ec cc/sec volume release ra" e 2.2.3.3 Solve for Q. for nuclide (i) by obtaini-..g the l Ci/cc assay value of the release source and mult'p'ying i- by the product of 2.2.3.2 above Q. = (nuc1 'de( ' )

(PssPv) C' ( 2 .2, 0 g is CC sec Q. = Ci/sec f or nuc'ice (i)

ST LUG l Z PL "qT -ODC it[

Paga 2.2 (cont)

2. 2.3 (cont)
2. 2.3. 4 To evaluate the total body dose rate obtain the .'

value for nuclide (i) f"om Table G-2.

2.2.3. S So lve or DR~ TB i.

DR . = K (X/Q)Q = rem-m 3 x sec:c -Ci 0

~Ci-yr m3 sec DRTB TB i

. mrem total body dose yr from nuclide (i) zor the, speci ied release source 2.2.3.6 To evaluate the skin dose rate obtain the Li and i values "rom Table G-2 =or nuclide (i).

2.2.3.7 Solve for DR ,

sxin i DR sk'n i= tL.

I i.

+ 1.1 H I (X/Q) Q.1 DR . = m"em skin dose from nucl de (i) for yr the specified release source 2.2.3.8 Repeat steps 2.2.3.4 through 2.2.3.7 for eac'n r.oble*

gas nuclide (~ ) reported in 'the assay of the '

release source.

V 2'.2.3.9 The Dose Rate to the Total Bccy z"om rad'oact've noble gas gamma rad'at'on from the speciziec release source is Jl DRTB DRTBi 2.2.3.10 The Dose Rate to the Skin from noble gas radiat'on from the specified release source is n

DR DR sk'n skin The dose rate contribution of this release source shall be added to all other gaseous release so rces that are in progress at the time of interest. beezer I

to in-plant procedur s and logs to ceterm'ne the Total Dose Rate to the Tot 1 Body and Skin rom noble gas ez=luents.

2. 3 De'rmininz the Rad oioc: ne & Pa"." 'cu.'ac Dose," - o a r Gr".'.'.

":rom Tnstantaneous Gaseous Releas s D.'scussion - Technical Specification 3.11.2.1 limi"s "he dose rate from radioiod.nes and particulates with hal 1'ves g e ter "hen eight days to ( 1500 mrem/yr to any organ. The fol'owing calculation me"hod, is provided for determining the dose rate from radioiodines and particulates and is based on Section 5.2.1 and 5.2.1.1 through 5.2.1.3 in iMURZG-0133, Nov 1978, The Enf nt is the controll.ng age group in the nhalation, grcund "lane, and cow/goa" milk pathways> wnich are the only pathways con-sidered for instantaneous releases. The long t rz (X/0)

(depleted) and'D/Q) values are based on historical met 3zta prior to implementing Appends~ E. Only those nuclides that appear on their respective taole will be considered. The equations 'are:

For inhalation Pathwa (excluding H-3):

>'~

Por Ground Plane:

Por Grass-Cow/Goat-;filk:

DR i 48DF'or Tritium Releases. (inhalation & Grass-Cow/Goat-Vilk):

"or Total Dose Rate from T & SDP and H-3 To an infant Organ ~:

~3ormallyshould oe P, R'< tables 'n Appendix A.

but Ri- va ues are the same, "hus use

p~ g~ O5 2.3 (cont) wne" e:

r = Tne organ or interesr for the 'nfant age group.

z = The applicable pathways DR DP = Dose Rate in mrem/yr to the organ r rcm iodines and from 8 day particulates DR R<<3 r

= Dose Rate in mrem/yr to organ v from tp ritium

= Total Dose Rate in nrem/yr to organ v from all pathways under consideration

~ A mathematical m m symbol to signify the operations to the fa( h b l are to be performed for each nuclide {i) th oug h ((n), ) an d th e individual nuclide dose rates are summed to arrive a t the tota'ose rate from the pathway.

= A mathematical symbol to indicate that the total dose rate

, D T

to organ x is th e sum~ su of each of the pathways dose rates

~

R ~ The dose factor'for nucl:de (') for organ -. zor the "ath-ay specif'ed (units vary by pathway) .,

p = i.h e dos~~ <<actor L og instantaneous ~.own p lane a,thwa-in units o mrem-m sec pCi-yr

." rom an eva 1uat th adioactive releases nd environmenta, ion o ~ ~~<e the rass-cow/goat-milk pa hway has 'oeen icenti:ied as the most limiting oathway with toe in=ant s y.

1 or an. Th's pathway typical'y cont .butes greater than 901 of the total dose received by the in=ant s y r adio iodine contr ibu te esses t' 1 1 g a of th's dose.

t is possible bl <<o t de.

il o s "~ate compliance with the .elease rate daemon he e"ore, particulates by only evalu ting the infant's t. yro cose o" tne re'ease oi ra d'od'nes io via tne grass-cow/goat-mk oathway.

The calcu,lat'on method oz Section 2. 3.3 s used o- tnis determination. 'Kf this 'lim'ted analysis approach is used> the i << or o ther radioactive particulate mat"er an dose calcu'1 ations t'her pathways need not be per,<<orm ~ c. 'nlv n , the cai cut at<one; Section 2.3.3 for the radioiocines need be "erformed to demonstrate comp'iance w. th the Technica pe - c

Page 27 2~3 (cont)

The calculations of Sect.'ons 2.3.1, 2.3.2, 2.3.~> and 2.3.5 may be omitted. The dose rate calculat'ons as speci='ed in these sections are 'ncluded =or completeness and are to be used only zor evaluating unusual circumstances where releases o=

particulate materials other than radioiodines 'n a'rborne releases are abnormally high. The calculations of Sections 2.3.1, 2.3.2> 2.3.4> and 2.3.5 will typically be used to

~

demonstrate compliance with the dose rate limit oz Technical Speciiecateon 3.11.2.1 for racsoiodines and particu>ates when the measured releases of particulate mate. ial (otner tnan radioiodines and with half lives greater than eegnt days) are greater tnan ten (10) times the measured releases oz radioiodines.

2.3. 1 The Instantaneous Inhalation Dose Rate ltfethod:

NOTE: The H-3 dose is ca'c '1 ted as per 2.3.4 2.3.1.1 The controll'ng location is assumed to be an In-ant locatec 'n the sector at the sile range T.he (:(/Q)h or this locations is sec/m . This value ss common to all nuc'des.

2.3.1.2 Enter the release rate in ft 3 /min o the release source and convert to cc/sec.

min ft3 X 2.831':;10 cc zt x 60man sec

= cc/sec s

2.3.1.3 Solve for Q for nuc'ide{') by obtai..'ng the pCi/cc assay value oz the release source act'vity and multiplying it by the product of 2. .'.2 above.

Qi = (nucl'de(i)assa ) >C'Value X

2.5.1.2) cc CC sec Q

i s=

pC i/sec = or nuclide (.'

2. .1.4 Obtain the R.- value from T-ble G-5 fo- the organ -.

Qagsa >Q

2. 3 (cont)
2. 3; 1 (cont)

~ ~ J ~

1

~ Solve for DR.

i 3.

DR.

it = R.it (X/0) i D mrem-m pCi-yr ~sec m

X gC' sec DR.

ii mrem the Dose Rate to from nuclide(i) o gan. t

2. 3.1.6 Repeat steps 2.3.1.3 through 2. 3.1.5 for each nuclide(i) reported in the assay of the elease source.

2.3. 1. 7 The Instantaneous Dose Rate to the Infants organ t from the inhalation Path~.-ay 's D

nhalation = DR 1

+ DR 2

+ - + DR n

for all nuclides except H-3. This dose rate shall be added to the other pathways as per 2.3.5-Total Organ Dose.

"lOTB: Steps 2.3.1.3 through 2.3.1.7 need to b completed for each organ -. oi the Infant.

2.3.2 The Instantaneous Ground P ane Dose Rate ':!ethod:.

NOT"=: Tritium dose v a the ground plane is zero.

s 2.3.2.1 The contro'ling locat on is assu...ed to be an Xn ant located n "he sector a the range. The (D/Q) "or this loca" ion is 1/m". This value is common to all nuclides.

2. 3.2.2 ""nter the release rate in ft = 3 /min of the release source and conver- to cc/sec.

=.3 2. 33':.10 'cc~l min x 60sec

= cc/sec LUCr PLAiNT ODCh!

Page 2g

2. 3.2.3 Solve for i for nucde(')

Q.

pCi/cc assay value rom the

'oy obtain'ng the release source activity and multiplying it by the product of 2.3.2.2 above.

Q. = (nuclide(i)assa CC

) C'i (Ualue 2.3..2.2)cc s c Q pCi/sec 'or nuclide (i) t 2.3 .2.4 Obtain the P ~ va~ ue from Table G-3 2,3; 2.5 Solve for DR.

2 DR. ~ P. (D/Q) Q. mre=m -sec p.Ci-yr ~

X m-1 X

~Ci sec DR. mrem the Dose Rate to orga-.'.

from nuclide(i) 2.3. 2.6 Repeat steps 2.3.2.3 through 2.3.2.5 or each nuclide(i) repor"ec in the assay o the release'ou ce 4 I 2.3.2.7 The instantaneous Dose Rate to the Tnfan-'s from the Ground Plane Pathway is Tota'ody DR Gr Pl

=DR +DR 1 2

--:DR for all nuclides. Ths dose rata shall be added to the other path"ays as per 2,3.5

Page 30

2. 3 (cont) 2.3.3 The nstantaneous Grass-Cow/Goat-Milk Dose Race .'!echoc NOTc.. H-3 dose is calculated as per 2.3.-'.3.3.1 The controll'..g animal @as established as a.

located in the setto" at miles. The (D/Q) ior t'nis locat-'on is 1/m . This value is common. to all nuclides.

2.3.3.2 Enter the anticipated release rate in =.3 =" /min of the release source and convert to cc/sec.

ft3 min 2.8317x10 cc ft '0sec min cc/sec 2.3.3.3 for for nuclide(i) by obtaen'ng the pCi/cc assayi value of the release source activicy Solve Q.

and multiplying it by the product of 2.3.3.2 above.

Q. ~ (nuclide(i)assa ) Ci (va'ue 2.3'.3.2)cc CC sec Qi an pCi/sec for hue l 'e (i) 2.3.3.4 Obtain tne R value from Table G-6(7 ) es ~

(vhichever 's the conc"oiling an'mal goat/co+,

for 'n'anc).

Xf.the limited an lysis approach 's being used, limit tha calculation co the infant thyroid.

2.3.3.5 Solve f or DRiiT DR it = R.

iT (D/Q)

Q. =

i 2

mrem-m ec x ~ 1 ~CS pCi-yr m sec DR.

lT mrem/yr the Dose Rate to organ T from nucl'de(i) 2.3.3.6 Repeat steps 2.3.3.3 through 2. 3.3.5 or each nuc 'de(i, repor"ad 'n cne ssay of che re ease source.

Only the radioiod'nes need to be ncl ced i" imited na'ys's approa".. 's being .sec.

I 2.3 (cont) 2.3.4 (cont) r 2.3 4.3

~ Solve for QH 3 for Trit'um, by obtaining the pCi/cc assay value of the release source, it by the product oz 2.3.4.2 above and'ultiplying

()

3

= ~(H-3) Ci (2.3.4.2 velue)cc CC sec pCi/sec activity release ra" e 2.3.4.4 Obtain the Tritium dose organ r from 1

factor (R.) i) for Tnfant Path Table )f Tnhalation G-5 Grass- -ii! 'lk G-6(7) 2.3.4.5 Solve for DH 3 (Tnhalation) using the. (Vq)D for inhalation from 2. 3.4. l and RH (Tnha'ation) .

ce om 2 3 4 4 3

('/Q)D Q-,. 3 Inh mrem/yr from H-3 cinfant Instantaneous 'Inhalation for organ t 2.3.4.6 Solve for D. 3 (Grass- -'Ailk) using the

()I;/Q) for "".ass- ' ."'k from .3. .1 and R. (Grass- -Hilk) from 2.3.4.4 G- -iif "-'rem/yrinstantaneous G-from H-3 infant

-Milk for organ -,

ST, vC- MfT I

Page 33

2. 3 (conc) 2.3.4 (conc) 2.3.4.7 Repeat steps 2.3.4.4 through 2.3.4.6 for each infant organ r of interest.

2.3.4.8 The ind'vidual organ dose races from E-3 shall be added to the other organ pathway dose races as per 2.3.5.

2.3 .5 Determin'nz tne Total Or an Dose Race from ioa'nes. SD-Particulates, and H-3 from instantaneous Release Source(s) 2.3.5.1 The following, table describes all tne pat'.r~ays that must be summed to-arrive at the total dose rate to an organ t:.

Pathway Dose Race Step fr'ef In'naia t ion (i&SDP ) 2. 3~ 1.7 Ground Pl.(XGSDP) (T Pody only) 2. 3.2. /

Gr- -Hilk(l6SDP ) '2. 3.3. 7 Tnhalation (H-3) 2. 3.4.'5 Gr- -i~Lilk(H-3) 2. 3.4.o DR.

i (sum of above) 2.3.5.2 Repeat che above summation -"or each Xn:ant organ r.

2.3.5.3 The DR above snail be added to all other release sources that wil be in progress a" any ~~scant.

Refer to in-plant, procedures and 'ogs to decermine che Total DR to e ch organ.

Pago Dete~ininz 'the Gat-a Air Dose or Radioactive Noble Gas 'Release Source(s)

Discussion Technical Specificaton 3.11.2.2 limits the a dose due to noble gases 'n gaseous efzluents zor kg~a radiac'on to less than 5 rads zor the. qua"-er and'.to less than '0 mraas 'n anv calendar vear.

The following calculation method, 's prov ded for detem ning the nobl e gas gamma ai" dose and is oased on sect'ons 5.3.1 oi Hl73"G-0133, Hov 1978. The dose calculation is independent of any age group.

The equation may be used for STS dose calculation, the dose calculation for the annual report or for vzojecting dose,

'rovided that the appropriate value of (X/Q) is used as outl'ned in the detaed e~planation that follows, The eouation zor gam=a air dose is n

D -air 3.17 X 10 Mi (X/Q) Qi i

where:

D -a'r ~ gamma air dose in mrad from radioactive noble gases.

Y

= a mathematical symool to signify the ope.at'ons to the right side of the symbol are to oe,performed =or each nuclide (i) through (n), and su~ed to 'arr.'ve at the total dose, from all nucdes reported dur'ng the in-terval. No units apply.

-8

3. 17z10 = The inverse oz the number of seconds per year with un'ts of year/sec.

= The gamma air dose factor zor3radioactive noble gas nuclide(i) in un'ts of mrad-m 3lCi-yr ~

(X/Q) ~ The long term atmospner"c dispersion zactor zor ground level re'eases in units of sec/m . The value oz ('.C/Q) is the same for all nuclides (i) in the dose calcu'ation, but the value oi (Z/Q) does vary depending on the Limiting Sector the L.C.O. is oased on etc.

l ~ The number of micro-cur"'es of nuclice{i) released (or projected) during the dose calculation ezposure per'od.

(eg.'month, quarter, or year)

2age 3D 2.4 'cont)

"=rom an eva uat'on oz oast releases, a single e =e "'ve ga=-a a.r dose factoi (N ) has been derived, which s r oresen"at've of the radionuclide abundances and cor" spond'..g dose cont=ibut ons typical oz past operation. (Refer to Aooendix C oz a cetailed explanation and evaluation of N ~'. ) The va'ue of >!, has been derived from the radioactive noole gas effluents for ine years 1978> 1979> and 1980. The value is 2

M = 7.4 x 10 1 ~mrxd/

pCi/m" Th's value may be used in conjunction with the total noble g s.

releases ( +I, Q.) to simpl'fy the dose evaluation and to verify that the cumulative gamma ai dose is withmn the 1'mits o Spec.'cat'on 3.11.2.2. To allow "or any unexpected variab'ity in the radionuclide distribution> a conservatism actor of 0.8

-in int'roduced into the calculat'on. The simplified equ t'on is D,'

Y -a'r 3.17 x 10 M ef< X/Q 1 Q.i 1

2'or purposes of calculations, the appropr'ate eieorologic 1 dispersion ()(/Q) from Table H-1 should be used. Technical Speciz'cation 3.11.2.2 requires that the doses be evaluated once per 31. days> (ie, month'y). The quarterly dose 1 mit 's 5 mrads>

which corresponds to a months.y allotment of 1.7 mr ds.

the 1.7 mzads is s bstituted fo" D'7/> - a.'r, a c mulatdve noble gas montnly release objective can be calculated. This val' is 60> 000 Ci/month> noble gases.

As long as this value is not exceeded in any month, no add't.'onal calculations are needed to ve i=y compliance with the quar" erly noble gas release limits of Specification 3.11.2. 2. Also, the gamma air dose is more 1.'miting than the beta ai- cose. Therefore, the beta air dose does not need to be calculated pe" Section 2.5 i= the H dose fac'tor is used to determine the ga.=~a air dose.

Re er to .Zppendix C or a detailed eval 'at'on anc explanation.

The calculations of Section 2.5 may be omitted when "...is 1=m'ted analysis approach is used but should be per orated i= t..e radio-nuc'ide speci='c dose analysis s oer ormed. Also, the radio-nuclide specific calcu'at'ons will be performed =."or inc on in se i-annual repc~M

Page 36

~ ~ (cont)

The following steps provide' detai'ed explanation o how rad onucl'de spec'='c dose is calc lated. This method s used to evaluate quarte ly doses in accordance with 3.11.2.2 if there',ses of noble gase S during Technica'peci"ication any month of the quarter exceed 64,000 .Ci 2.4.1 To determine the applicable (;</Q),refer ro Table N-1 to obtain the value for the type oi dose calculation being performed. ie Quarterly L.C.O. or Dose ?rojection for

.examples. This value of (X/Q) applies to eacn nuclide(').

2.4 ' Determine'N.) the i gamma air dose factor for nuclide(i) from Table G-2.

2.4. 3 Obta'n rhe micro-Curies of nucl'de(.) from the in-plant radioactive gaseous waste management logs for the sources under consideration during tne - me interval.

2.4. follows

4 Solve or i-8 D. as 3.17xl0 Y..mrad-m 3 x (2/Q)sec x 0.

D = yr x i pCi sec )lC i yr m 1 D.

i mr ad the dose from "nucl'e {i) 2.4.5 Perform steps 2.4.2 through 2.4.~ =or each nucl'de(i) reported during the t' interval 'n .the source.

2.4. 6 The total gamma air dose fo" the pathway is determ'ned by summing the D. dose of each nuc'ide(i) to obtz'n D -air dose.

1 Y D

y-air =D 1 +D2

. + -+Dn ~mrad NOT"-: Compliance with a 1/31 day LCO,. Ouarter'y LCO, yearly or 12 consecutive months LCO can be demonstrated by the limited analysis app oachl using if . Using th's method only reouires that steos 2.4.2 tnrough 2.4. 5 be performed one t'me, remember'ng that the dose must be divided 'ov 0.8, the conservat'sm factor.

2.4. 7 Refer to in-plan" proc 'es =or compar ng the ca.lcula ed dose to any appl cable lim'ts that might applv.

2.5 Determininc the Beta Air Dose for Radioactive Noble Gas eleases Discuss'on - Technical Spec'"'cation 3.11.2.2 limits the cuarter y air dose due to beta. radiac'on from nob'e g ses in gaseous effluerts to less than 10 mrads 'n any calendar quarter and less than 20 mrads in any calendar year. The =ol'owing calcu'at'on

~+age 3 i'.

S (cont) method is provided for determining the beta '" cose nd is based on Sections '5.3.'f iZR:-6-0133, Nov 197S. The dose calculat'on is independent of any age group. The equac.on may be used or STS dose calculation> dose ca'culac'on =or annual reports> or for orojeccing dose> provided tha" the aopropriate value of (X/Q) is used as outlined in the deta.iled explanation that follows.

The eouation for beta air dose is D

8-air a '.17x10 i N.(X/Q)Q.i where: C D

8-air

. = beca air dose in mrad rom radioactive noble gases.

a mathemat.'ca'ymbol to signify che operacions to cne right side of the symbol are to be performed for each nuclide(i) through (n), and summed to arr-'ve at the total dose, from all nuclides reported during, the interval.

No units apply.

-8 3.17x10 = The inverse of the number of seconds per year w'th units of. year/sec.

P

= The beta air dose actor for rad,'oactive no'ole,gas nuc 'de(i) in units OE ul ad m3 pCi-yr The long term atmospher 'c d'spersion faccoz for ground level releases in un'cs of sec/m~. The value of ('.C/0) is the same for all nuclides(i) in tne dose calculat'on, buc che value of (X/Q) does vary depend'ng cn the Limi ing Sector tne LCO is based on etc.

Q,- the number of micro-Cur'es of nuclide(i) released (or projected) during the dose calculation exposure per od.

ST LUC::" ?LANT - ODCis

Page 98

2. 5 ( cont)

The beta - i" "ose does not have co be evaluated if the ncb'e gas g~nma a'r dose 's evaluated by the use o che ffa t-'ve ai" dose =actor (A ). However, i-" the nuclsce spec'='c dose ca,lcula.cion is usea co evaluate compliance w'th t.,e "uartarly g~a ai= dose limits (Section 2.4) the beta a'r dose should also 2

be evaluated as outlined below for the purpose of evaluating compli nce with the auarterly beta, ai- dose limits o Tech 'al Soecef cateon 3.11.2.2. Tne following steps prov.de a, detailed explanation of how che dose is ca,lc 'aced.

2.5.1 To determine the applicable (X/Q) refer to Table ~f-1 co obtain the value fo- tne type of 'dose ca'culation being performed (ie. Ouarterly LCO or Dose Projection for examples). This value o (gQ) applies co each nucl'de(').

2.5. 2 l

Determine ('A.) the beta a'r aose factor for nucliae(i) from Table G-2.

2.5.3 Obtain the micro-Curies of nucl'ae(') from tne in-plant r d'ozctive gaseous waste management logs for the source unde" consideration dur'ng the c~me interval.

2.5. 4 Solve for i-8 D, as follows:

0 = 3.1)x)0 vr '.I. ored-e 3 (X/tX)sec 0 .p.C '

X 1 X sec pCi-yr 1 mrad = the aose from nuclide(i)

2. 3. 3 Per orxsceos 2. 3. 2 hroug.h 2. 3. ~ '=or e ch oocl'0oe (.'r) reported during the time interval'n che re'ease source.

2.5.6 he total beta a'r dose for ". e pathway is ete ..'"..o" by i

sum=.ing the D. aose o" each nuclide'(') co cota'n D 3-air . dose D

3-.air

. =D +D +'

1 2

--:D = mrad 2.v .7 Refe>> to in-plant procedures for comparin" the calc ac d ose co any app 'cable 'm'ts that might apply.

0 Page 39 Dete~ininc he Radioiodine and Particulate Dose, To v 0z"an Fzcm C= '.'ve Re'eases Discuss on - 'echn'cal Body Specif'cac'on 3. 1.2.3 'imi"s he aose co che :ota bocy o any organ zesung from che ze:ease of rad'oiodines and particulates with hei=-lives greater than 8 davs to 'ss than oz eaual to 7. 5 mzem dur 'ng any calenaar cuazter and 'ess than or equal to 15 mrem during any calendar veaz. The following ca'culation mechod 's proviaed for determining the criti-cal organ dose cue to releases of radioiodnes and part'culates and is based on Section 5.3.1 oi %LRZG-0133 Nov. 1978. The ecuac'on can be used for any age group pzovidec chac tne appropz"'ate dose factors are usec and the total dose reflects on'y those parhwavs that are applicable ro the age group. The (:</Q)D symbol represencs a DEPLETH)-'(I/Q) which is different from the Noble Gas (X/Q) in that (Z/Q)D taices into accounc the loss of E&8DP and H-3 from the plume's the semi- infinite cloud travels over a given distance.

The (D/Q) dispersion factor represenr.s the rate oz fallour. from the cloud that azzects a sauare meter of ground at. various distances rom the site. The T&8DP and H-3 notat'ons ".afar to Raaioiod'ne and Particulares having half-lives > 8 days, and T" tium. T 'tium calculations are always based on (7/g)D. The first step is to calculate cne E&8DP and H-3 dose or each pathway thar. applies to a given age group. The tocal aose to an organ can tnen be detezmned by summing the parhwavs that applv ro the zecepcor 'n the sector.

The equat'ons aze:

For Tnhalation ?achway (excluding H-3):

D.&8DP = '3.17xl0 8Ri (X/Q)DQ

":oz Ground ?'ane oz Grass-Cow/Goat-Nil'c 1 &8DP 3.17x R~ (D/Q)Qi

oz each pathway above (e'xcluaing Ground  ?'ne) for Tritium:

Dw 3 3.'7x'0 Ri (UQ)DQ,

or Total Dose from Part'culate Gaseous effluent to organ -. oi a specifiea age group:

D

&8DP

+ DH-3

pa~ e y~O (cont) where:

L the organ oz interest oz a specizied age group the annlicable pathways for the age group or inta est e

z =

~ Dose in mrem to the organ T of a specizied age group radioiodines and 8D Particulates.

D = Dose xn nrem too the organ r of a specifxea age group H 3 from T.it D ~ To tal Dose in nrem to the organ t o f a s p ecif'ied age groun from Gaseous Particulate zzluents.

ym bol to signify g the operations to .e right, ih of t,e 4 ssyno bol are to be performed for eac. nuc e

{ ) and the individual nuclice doses are ssurged to arrive at the total dose from the pathway of intt rest~ "to*oran

  • g t.

= A mathematical symbol to indicate thahat the total dose D "3.17xl0 and

-8'conds organ r is= the sum of each of the pata.wag dos H-3

= The from gaseous part'culate ef luents.

units inverse of the number of seco oz year/sec.

doses of p er yea y

TKSDP wigh-R. = Th e dose o factor ffor nuclide{i) (or H-3) zor pathway ~ ~o "4.

or an r of the specified age group. The uni are either mrem-m mrem-m -sec y=-pCi for.yaromays usieg (X/0), or v--

y-.-p'i Ci ~o pathways using (D/Q)

{. ) ~ Th d lated-('.C/Q) value for a spec'z'c lccat"'on ~here ted) the recep)or is located (see d'scussion,.

are sec/m (D/Q) = The deposition value for a spec'fic location where the receptor Z

is located (see d'scussion) . The un's are 1/m where m = meters.

The number

"'4 of micro-Curies of nuc 1'de(i)i , released proj ec"ed ) dcuring ~. e "ose calculat'on exposur period.

p 1 (or H-3 ~ he number of micro<<Cur'es of- H-3 released (or pro j ec during the dose ca'culation exposure per o ST LUCTZ P~qT -ODC~if

Page 41 2.6 (Cont'd)

As discussed 'n Section 2.5, the grass-cow/goat-milk pathway has been identified as the most imiting pathway with the

'nfant's thyroid being the czcal ozgan. Th's pathway typical' contributes greater than 90lo of,6 tcrtal dose contri-received by the infant's thyroid and the radioiodine bute essentially all ox this dose. There oze, ' is possible to demonstrate compl'ance with the dose limit of Technical Specification 3.11.2.3 for radioiodnes and particulates by only evaluating the 'nfant's thyroid dose due to the release of radioiodines v'a the grass-cow/goat-mi'k path~ay. The ca'culation method, of Section 2.6.3 is used for this deter-mination. The dose determined by Section 2.6.3 should be divided by a conservatism factor of 0.8. This added conservatism provides assurance that the dose determined by this limited analysis approach will be less than the dose that wou'd be determined by eva'uating all radionuclides anc all pathways. If this 1~ted analysis approach is used, the dose calculations for othez radioactive particulate matter and other pathways need not be performed. Only the calculations 'of Section 2.6.3 for Technica'pecif'cation dose 1~~ '.

the radioiodines aze required to demonstrate compliance with the However, for the dose assessment included in Semi Annual Reports, doses w'll be evaluated for the infant age groups and all organs via al'esignated path-ways from radioiodines and particulates measured in the gaseous effluents according to the sampl'ng and ana'ses requ'ed in Technical Specification Table 4.11-2. The following steps provide a detailed ezplanation of how the dose 's calculated for the given pathways:

2.6.1 The Tnhalation Dose Pathway Method:

NOT:-: The H-3 dose should be ca'culated as per 2.6.4.

Dete~jne the aool icable (g/Q)D rom Table &2 for the location where =he receptor is located.

This value is common to each nucl'de(i).

ST LUCT.E P~~XT - ODC.f

Page --.

(cent) 2.6. 1 (cont) 2.6.1.2 Determine the R, zac or of nucl'de(') fo" the organ r and age grouo rom Table G-3.

2.6.1.3 Obtain the micro-Curies (Q-) of nuclide .(i) f"om the radioactive gas waste management logs for the release source(s) unde considerat.'on during the time interval.

2.6.1.4 Solve for Di i

D. ~ 3.17xl0 3i.(:C/Q)DQ.

D mrem from nucde(i) 2.6. 1.5 Perform steps 2. 6. 1.2 "hrougn 2. . 1.4 for each nucl'de(i) reported during the time interval for each organ.

2.6.1.6 The inhalation dose to organ r of the spec'z ed age group is determined by summing the D. Dose of each nuclide(i)

D Enha ? zion nrem (Age Group) 1 2 n Re er to 2. 6.5 to determine the total cose to organ z from radioiodines & 8D Part culates; 2.6.2 The Grounc Plane Dose Pathway method:

NOTE: Tr'tium dose via the ground plane is sero. The Total 3ocy is the only organ considered for tne Ground Plane pathway dose.

2 0,2 ,1 Determine the applicable (D7() from Table &2 for the location where the receptor is located.

Th's (D/Q) value is common to each nuclide(i).

2.6,2 .2 Determine the Ri zactor oz nucde(i) for the tota'ody from Table G-4. The ground plane pathway dose is tne s me for all age groups.

2-6-2.3 Obta'n the micro-Cur es (Q.) of nuclide(i) from the rad. oact've gas waste management ogs for the source under conside" tion.

Page "'3 2.6 (conc)

2. 6.2 (cont)
2. 5.2.4 Solve or D.

i D. = 3.17x10 R. (D7$ )Q.

mrem for nuclide(i)

2. 6.2.5 Perform steps 2. 6.2.2 through 2. 6.2.4 =or each nucl'de(i) eported during the time interva
2. 6.2.6 The Ground Plane dose to the total body is determined by summing the D'ose of each nuclide(i)

D Gr.Pl.-TSody

~D 1

+D 2 +' -+D mrem Refer to step 2.6.5 to calculat total organ dose.

2.6.3 The Grass-Cow/Goat-~sfilk Dose Pathway 'method:

NOTE: Tritium does is calculated as per 2.6.,4 2.6.3.1 A cow, or a goat, will be the contro'lng animal; ie. dose will not be the sum of eacn a'nimal, as the human receptor is assumed to drink milk from only the most restrictive an'mal. Re e>> to Tab..'<e l&3 to determi.".e vh'ch an'ma's controlling based on its (D/0).

2. 6.3.2 Dete~ne the cose factor R. for nucl'de('), for organ t, from C

2, 6.3.2.l From Table G-5 =or a cow, or;

2. 6.3 ~ 2~2 :rom Table G-6 for a goat.

the limited analys ' eooroach is being us limit, the cal culat'on to the in"ant t..yroic.

2 Q~ 3~3 Obtain the m'cro-Cur'es (Q. ) of nuc 'de(') from the radioactive gas waste management logs or the release sou ce urder cons derat'on during the time nterval.

ST lUCTE PL4NT ODI 'f

Pae (4 2.6 (cont) 5,3 (cont)

2. 6.3.4 Solve for D.

l D. = 3.17xl0 8R.(D~Q)Q.

mzem fzom nuclide(i) 2.6.3.5 Perform steps 2.6.3.2 through 2.o.3.4 for e"-ch nuc'ide(')'eported 'dur"ng the t'-e intewal.

Only the radioiodines need to be, included iZ the limited analysis approach is used.

2. 6.3. 6'he Grass-Cow-Hi3.k (or Grass-Goat- !ilk) oathway dose to organ v 's determined by summing the 9i dose of each nucl'de(i).

D G-C-H ~or

~

D G-G-i!)

X =D +D 2 +

1

-+Dn = mrem The dose to each organ should oe c*'culatec 'n the same manner with steps 2.6'.3.2 through 2.6.3.6.

Refer to step 2.6.5 to determine the total cose to organ r from zadioiodinesg SD Part'cul tes.

I . the limited analysis aporoach is being used the infant'thyroid dose via the grass-cow(go* ).-

milk oat'hway is the only dose that neecs o be.

detezm'nec. Sec"ion 2.6.5 can be omitted.

2.o.4 ;he Gaseous Tritium Dose (r,ach ?athwav) )!ethod:

2.6.4.1 The controlling locat'ons for the pathway(s) has alreacy been detezm'ned by".

Inhalation - as oez 2.6.1.1 Ground Plane not aoplicable foz H-3 Grass-Cow/Goat-~iL;lk as per 2.6.3.1 2.6.4.2 Tritium d'ose ca'culations use the depleted

(:0/Q) 'nstead (DjQ). Table H-2 descr'oes w'nere the (gQ) value should be obtained =rom.

2. 6.4.3 Determine the Pathway Trit'um dose factor (R.,rl-3 for the organ -, of interest rrom the ab'e '.

specified below.

MILK AGr. I>i r!ALATIONi CGil GOAT Infant G-6 T Li.'CI"= ?LQT - GDC'!

0 0

0

2age 45 2.6 (con )

2;-6.4 (conc)

2. 6.4.4 Obtain the miczo-Cur es (0) of Tritium from t..e radioactive gas waste manage e..c 'ogs (for pro-jected doses - the m'cro-Curies oz nuc ide(i) to be projected), for the release source(s) under consideration during. he time interval. he dose can be calculated from a single release source, but che total dose zor S.T.S. limits or auarteriy reports shall be from all gaseous release sources.

2.6.4.5 Solve for Dq H 3 D 3.17xlO R, (X/Q) Q mrem from Trit.'um 'n che H-3 speci f 'd pa cn" ay =or og an of the specified age group.

2.6.5 Determininz che Total Organ Dose from odires, SD-Particulates,

~

and H-3 from Cumulat've Gaseous Releases

~k NOTE: STS LCO dose l'mits for igSDP sha'l cons'de ose from all release sources zrom Sc. Lucie Unic 1.

2.6.5.1 The following p th;:ays shail be surged to arrive at the total dose co organ . from a. release source, or if appl'cable to STS, from all re'ease sources:

?AThNAY DOSE(mrem) Step inhalation (iIISDP) 2. 6. 1.6 Ground Plane.(I"SDP) (T. Body cr.') 2. 6.2.6 Grass- .filk(~cSDo) 2. 6.3.7 inhalation (H-3) 2. 6.4.5 Grass- -M~1k(H-3) 2. 6.4.5 Dose Sum of bove ST L~Ci-'LA'fT -ODC~f

0 2.6 (cont) 2.o.5 (canc) 2 ~ Qo3 ~ 2 The dose to each of the N'r.'iT's OB,G~NS sha be calculated:

BOhr, LEVER, TZUOiD, KZ'Mr., LUhG ) TOT ~

3ODY

$ 'T-LLl The GiPANT organ rece.'v"'ng the hignes exposure relative to 'ts STS Limi.t is the most for the rad'oiodine g, BD Partic ates crit'ca'rg~

gaseous eifluents.

2.7 Proiectinu Dose for Radioactive Gaseous ".ifluents)

D scussion - Technical Soecification 3.11.2.4 requires that the gaseous radwaste treatment system 'oe used .to reduce radioactive mater'als in waste prior to discharge when the projected dose.

due to gaseous ezfluents would exceed 0,2 mrzd for gama radiaticn and 0.4 m.ad for beta radiation. The. ollowing calculzt'on.

method ~s provided for determining the projected doses..a' method is be.sed on using the resul s of the calculat'ons oer=ormed in Sections 2.4 and 2.5.

2.7.1 Obtain the latest results of the monthly calculat'cns

- or the gamma a'r dose (Sect on 2.<) 'and the beta air doke i" performed (Section 2.5). These doses can be obtainec iron the in-plant logs.

2.7.2 Div.'de these doses by tne number of days the p'anc was operational du ng the month.

2~ /o3 Hultiply the quot'ent by the number of days the plan=

is projected to be operat'onal during the next mon-h.

The product is the projected dose for the. next mon"h.

The. value should be adjusted as neoded to account any changes in failed-fuel or other 'dentif'b e operating conditions that could sign'=icant:y alter the ac releases.

2.7.4 the orojected dose are greater than 0.2 mracs ga. ea z'r dose or .04 mrzds beta a'r dose, the appropr'e

~

subsystems of the geseous radwaste system shall be used to reduce the radioact vity levels pr'or to release.

3.0 40 C:~ .0 Dose "vaiuac Discuss'n' camn cment co a rea> lndlv dual Qn al 1 ur

~

uel cycle sources be 1mited to C 25 nrem co che cot 1 body or any organ (except thyroid, which is 1'mited co < 75 nrem) over a period of '2 consecut've months. The fo>law'ng app oach should be used to demonstrat campliance with these dose limits.

This aoproach is based on HUREG-0133> Section 3.8.

3.0. 1 Kvalua"ion Bases Dose evaluations co demonstrate co..pl'ance w'th the above dose limits need only be performeci if the quarte ly doses calculated in Sect'ons 1.4> 2.4 and 2.6 exceed, twice the dose limits of Tecnnical Speci=,icacions 3.11.1.2.a>

3. lj,.2,2a, and 3.11.2.3a, respectively', ie, cuarterly doses, exce ding 3 nrem to tne total body (1.'qu'd releases),

10 nrem to any organ (licuic releases) 10 mrads beta a'r dose> or 15 mrem to gamma air dose, 20 mrads the thy.oid or any organ from rad'oiodines and particulates (atmospheric releases), Otherwise> no eva'uations are requ'red and the remainder of chis sect'on car. be om'tted.

3.0.2 Doses "rom E 'ouid Releases Por the eva,iuation of coses to real individuals from liquid relea,ses> the sane cele "at 'on. metnod s emploved Sect'on 1.4 w.'ll be used. However, more realist.'c assumptions

'n,,

will be made concern'ng che ci}ut'on anc ingestion'z = sh and shelifisn by individuals who live'nd fish in t'.re area.

Also, the results of "he Radiolog.ca'.nvirannenta Monitoring program will be >nc>uded in determining more real'stic dose to these real peoole by providing data on acc ai measured levels o" plant relac d radio,. clides in che environment.

3.0.3 Doses "rom Atmospheric Releases

""or the evaluat'on of doses to rea.l 'ndividuals from the atmospheric releases, tne sane calculation methods as employed in Section 2.4 ana 2.6 w'1'e used. n Section 2.4> the tocal body dose factor ('(.) should be suost'tuted

""or the gamma air dose factar (>i.) ta det,e.n'ne the tocal

'oody dose. Otherwise the same calculz ion seouence appi>es. However> more realistic assumpt'ons will be made concern'ng the actual location of reandividuals, the .

meteorological conc'" 'ans> ar.d the car.sumption o" -ood (eg, milk). Daca. obca'ned =rom che latest 'and use census

(.echnical Specification 3.;2.2) should be used to. determine locat'ons for evaluat n" doses.'l,so> the results o'he B.aciologicai "nvironmencal '!onicoring p" gran wi 1 be included in determining nore realistic doses co these rea peop}e by prov ding d*" on actual ...easured >.eve s o=

rad>aac"'v> ty and "'adiatian a" locat'ons o= interest.

> >>i 'Tr 7LA >T ODC'hj

Page 48

~.G S:"A .'2UUAL R~Z"OACT VZ "":"."Lv~r..lT BZPORT

- 'n a semiannual report sha

Discuss='on not apply to any The in=ozmacion conca'red STS LCO. The zepozted values aze case 'n ac" cona'tions instead oi hstozical conditions char. the STS LCO a'e'ease cose calculac'ons are based on. The STS LCO dose i~ts aze there-foze included in item 1, of the report, for information only. The KZC's n item 2, oz the report, shall be those 'isted 'n Tab'es and G-1 of th's manual. The average energy in item 3, oz che zeport, is noc applicable co the St. Lucie Plant. he zozmac, ozaer of nucl'des, and any values shown as an example in Tables 3.3 through 3.8, aze samples only. Other formats are acceptable if they conta'n equivalent information. A cable oz contents should also accompany the report. The follow.'ng format should be used.

RADIOACTIVE ""FH.b:"HTS SUPPLPUNTAL INFORMATION

1. Regulatory Limits:

1.1  :"or Rad'oactive liquid waste effluencs:

a) The once diluced concenczat'on of radioactive mat ia zeleasea from the site co unrestz'ccea areas (see : igure 5.1 in STS-A) shall be limited co the concentrac'ons spec'z"'ed in 10CHQO, Append'x 8, Tab'e II, Column 2 zor raaionuclides other than dissolved or entzainec noble gases. The once diluced concenczation zoz cotal dissolved or entrained. noble gases shall be limited to 2 x 10 "

uCi/mi. .P Tne aose or aose commit ent to an 'ndividual from ad'o-active materials in liquid e fiuents ze'eased to I.nzesczicted areas (see Pigure 5.1 in STS-A) sha 1 be limited a z'ng arv calendar auaztez to < 1.5 mzem to the total boay and to < 5 mrem co any organ and < 3 mrem co the cocal boay and < 10 mrem to any organ during any calendar year.

1.2 Por Radioactive Gaseous Haste Zffluencs:

a) The instantaneous dose race in unzestzic ed areas (see Piguze 5.1 in the STS-A) due co radioactive materials released in gaseous effluents =rom the site sha' be to the following values; ii .'ed The dose ".are limit. zor noble gases shall be < 500 mzem/yz to the total body and < 3000 mrem/yr to the skin, and The dose rate limit zrom I-131, Tr'tium, and particulates with half-1'ves greater than 8 days shall be less than 1500 mrem/yz to any organ.

ST. LUCI"- PLAUDIT ODCA

?age ~9 T

~ C-T-. == :,'.ITS - -PPL~N.AL:i:0?-"='.Tz08 (C t r imits:,cont) egulator

%of Rzdioactive Gaseous 'uaste "= iluenrs: (cont)

The dose in unrestricted areas (see Figure 5.'n the due to noole gases released in gaseous e fluents'TS-A) shall be limited to the following:

During any calendar quarter, to < 5 mrad ."or gama radat on and < 10 mrad =or beta radiation and dur=ng any calendar year to < 10 mrad =or gamma radiation and < 20 mrad for beta radiation.

c) Th'e dose to an individual from radioiodines, radioactive materials in particulate form, and radionucl'des other than noble gases with hali-> 'ves g ea e" than 8 davs in gaseous ez luents released to unrestricted areas (see Pigure 5.1 in the STS-A) shall be limited to the following:

During any calendar quarter ro < 7.5 mrem to any organ, and dur'ng any calendar year to < 15 mrem to any organ.

2. 'Aaximum Perm'ssible Concentraticns.

Pwr as per attached Table G-l.

Water as per attached Table L-l.

3. Average energy. oz fssion and activation gases in gaseous effluents

s not applicable to the St. Luc'e Plant.

measurements and Approximations oz Total Radioactivity.

A summary o= 1 quid ezfluent accounting ethods 's cescribed in Table 3.1.

A summary of gaseous ef luent accounting methods is described in Table 3.2.

ST. LUCI=- PL4~T ODC~

0 3'~.OAC: s= == ~ v~F~S - Su&9~ ~ f:: T i:OR~K ON {con<<)

."e surments z"c .~pprozmat c"s o=- iot 'zcioact 'v='t- ~~

s <<~ca vt, (a) Sa'plI ' <<or The e .or associated v'th volte measurement av"'4I c s,:'oc easur<<"g dev='ces, e c. based on " brac'oc anc -"es g.I tolerances has been conse amative'y est~tee o be less thaa (o) Aaz 't'cal:" or;or Nucl'ces AveraRe " ~uxmu Lccuid Gaseous

'able 3.3.

Radioac"ive Lieu'd .'= uent Sa ply g a"d A~lys's 1

O'P Pg~l I VS i l I YETV 7~

iiOR C8 EAZCZ PRLICWPZ. CA~C~A ~i .RS l 0 ~ hs ~ ~ 0 ~

TA%C 0~~~ CC~~OSi Tr t'M / L.S.

Rs MS:"S Gross. Aloca I G.:.P PU~ T~v Y C"~&OS Sr-89. Sr-"".0  ! C.S.& L.S.

ST:.~4M P=f cipa'a=a =-.'=" rs G~KTOR and Dissolved Cases >.h.a.

3LOND04H T-> -~ua L S*. I R~ RASHES NOh~ Y CC~QSi:=

/~JAZZY CC~OST.:- Sr-89 Sr-90 C.S.&L.S.

TAZL"- liOT~'H:

labor.'c Acid vaporator condensate 's no~lly recovered to the'Pr'-a~y Nace-.

Storage ank for recycl'ng hto the r ac"or coo art sys" an'oes ..ot con-tr"'bu-e to 'auid vasce e== uenc, tot4's.

p<< li 4<< - g~ snec.

detectors.

~ pulse heigh A11 peaks analysis us'n~

are ident='=ied and aua t.

'th"- Ce~an'~

L. S. Li"used Scinr~~at'on count'"g C. S. >> Cne ~ca> Separac'on

/\

V~ ~ ~ - Gas ":l~ Prcpor='onal Count='ng

~o gj WZ:QAC i v. "="Li~r,FZS - SUPPLc~'hTAL:ViOR"R ON {cont)

<easure enrs and Approximations oz Total Racioactiv'"y (cont)

(b) Analytical ".rror =or Nucdes (cont)

Tab'e 3.2 Radioact ve Gaseous i~aste Samoline and Ana vsis Gaseous l Samp 'ng Tppe of i<ethod of Source Preauencv Analvsis Anzlvsis Haste Gas Decay Princioal Gama ""mitters (G C P) - o.h.a.

Tank  :-ach Tank Releases L.S.

Contain-ment "ach Purge Princioal G~ ""mitters G, C P) - o.h.a.

Pu"ge Releases E-3 L.S.

Plant Weekly Princioal Gamma cn'tters G C. P) o.h.a.

Vent 3 Monthly Comoosite Gross Aloha P - G.F.P.

(Part 'culates) quarterly Sr-90, 89 C.S. o L.S.

Composite (Particulates)

G Gaseous Grab Sample C Charcoal Pilter Sample Part'culate Pilter Sa-ole L.S. Liquid Sc'nt'l'ation Count'ng C.S. Chemical Separation p.h.a Gamma spectrum pulse he'ght analysis using Lithium Ger'manium detectors. All peaks are identified and cuantif'ed.

Gas Plov Proportion"l Count"ng

- ODC.f

Vg FD HAD OACT:7:":.: 4 "4 S - SUPPL~~V"AL 'EbrORMTIO'0 (cont)

5. Bat.cn Releases A. Liqu'd
1. Number of batch releases:
2. Total t.'me oeriod oi batch releases: u es 3 ~ Max'mum time pe iod for a batch release: .Mnu t es
4. Average time period or a batch release: ~anutes
5. >Znimum time period tor a batch release: ~wnutes
5. Average stream flow curing periods of release or effluent into a flow'ng st"earn: G?N All ~&quid releases are summarized in tables B. Gaseous
1. Number of batch releases:
2. Total time period for batch releases: 2'utes
3. F~Dmum rime period for a batch release: !4'nutes Average time per'od for batch releases: .nut, es
5. Minimum time period for a batch release: ~Knutes All gaseous waste releases are summar'zed in tables
6. Unplanned Releases A. Liouid
1. Number of releases:
2. Total act'vity releases: Cur"'s B. Gaseous 3.. Number of releases:
2. Total activity released: Curies C. See attachments ('f applicable) for:

L ~ A description oi the event and equipment involved.

2. Cause(s) for the unplanned release.

0 ~ Actions taken to prevent a recurrence.

Consequences oi the unplanned release.

7 ~ Descr 'tion of dose assessment, of radiation cose =rom tad'oact,.'ve e fluents to the general public due to the'r act'vit'es inside the unrestricted area (see f '"ure 5-1 n STS-A) dur" ng the report-ing period:

ST. LUCT:- - LANT - ODM

PR6e 33 FLGR:DR POWER " LIGHT CGltPRfY ST. LUCIE U'fI SENIhttNURL RE. vF;T JULY Xi "97. THRC JGH CECEflF:ER 31.

197-'RBLE 3 3 LIQUID EFFLUEHTS SUNNRTIOtf GF RLL FELERSES

/

'UtfiT QURRTERQ QURRTERQ R.'ISSIGt( FiND RCTIVRTIGtf F'FGDfJCTS TOTRL RELEFt= E-NGT It tCLUD If tG TR I 7 I Ut'ti GR'S/ RLPHR > CI 2. 379 E 2 9. ~"19 E RVEF'FiGE DILUTED CGf tCEt t-TRFiTIOH DiJPING PERIOD UCI/tlL i. 983 E -8 7. 439 E -8 B. TRIT IUN TOtRL REL":RSE CI 2.G29 E 1 4. 09 E

2. RVERRGE DILUTED'GHCEH-TF;RTIGtt DtJRIt(G PERIOD UCIr t1L 4 691 E -6 3. 416 DI-SvLVED RttD EHTF.'RIHED GRSE-TOTF!L RELE¹E CI 7. 379 E 2:9" 9 E
2. RVEF;RGE DILUTED C tfCEN-TRRTIOH DUPIHG PERIVD UC I Pt1L 6. 55Q E -G 2. 2" 2 D. GROSS RLPHR RRD I GFiCT I V I TY TGTFIL RELE,i-E CI .GG8 E 8 .GGG E 8 E. VOLUflE GF WFI=T" RELERSED (PRIOR TO DILUTIGtf> LITERS E XS9 E 6 1. 559 F 6 r,. VOLUt".E OF DILUTION WRTER USED DURittG PERIvD L'IT X99 E 10 ~ 3~M E 1u

~

~

FLOR I DF{ POllER 'IGHT COtlP..t t Y

.ST. LUCIE UtlIT tt SEt1IF{ttt{UF{L REPORT 19( B THROUGH DECE!1- ER <<ii 19 78 TRBLE'. 4.: LIQUID EFFLUEHTS COtlTItlUOUS t<OCE BF{TCH l'10DE ttVCLIDES RELEASED UNIT QURRTERQ C'UPRTEFN QUF>, TEP" QUF>RTER{'0'"

CI . G>3>3 E 0 . 08>3 0 1. ~~9 E -2 I CI .GGO E >3 .GOG E >3 a.e:;G c I-1 5 CI ~ Grs>3 E 8 . QQG 0 HFI- 24 CI .Qi38 F 8 Gr-Q E 8 1. 6:-'9 E -4 ~. 988 c -5 CP- 51 CI . Gi38 E 8 . 888 c 7J Q t1tl- 54 CI . 8>3>3 E 8 ~ 'QC>i s 9. 479 E -<< 1. 62v E 2 CI wt Ig<<E A

. GOQ E 8 . C>VQ E 0 4. 27>3 E >

7

~

<<e C>3- CI . Griri E 0 . GOv E 0 7. 39 E FE- 59 CI .C>GG E 8 . G>3>3 E 8 2 218 4. 279 F -3 CO- 68 CI . GQQ E 8 . 000 E 8 6. 199 E 1. 269 E -1 ZH- 65 CI . r~C>r> E . C~Ori 8 4. 280 F 1. "'Z9 E HI- 65 CI ~ Q>1>3 E Q . 800 E Ci 4. ~<0 RG-1'l1 CI . QAG . OC>0 E 0 9. 990 E -4 5. 970 E Sl (-11<< CI .G>30 E 8 . QC>0 E Q n>Q E ~

SB ir.. CI .880 E 0 . >>rj>3 6 >. Ci80 c 4. 4<<9 E CI . .GQO E 0 . fyQQ >3 td-187 C! . GOrJ E . GuG E 0 HP-239 CI . Or>Q EQ . GQG E 8 Po o5 CI GQi E 0 . GOQ E 0 HO- 99 CI . G>3Q E 0 . QO>3 8 P,U-1C>- CI .Qi3u E 8 . GQ>3 E 8 . QOQ EQ 8'.

43>3 E -4 CS-1<<4 CI . GuQ E v . GOO 8 4. 599 E .228 E -2 CS-136 CI . GOO E 0 . OC>>3 v "'. 848 E, -',

<<. 068 E C<< CI .GGO "= 8 . 00>3 8 7-"8 E BR-14>3 CI .GOv E 8 :GGO E, 8 4. 610 E -5 CE-141 CI . GGO E 8 . GGG E 0 2 599 E 5 6 E BR- 82 CI .QQi3 E 8 . C~OG E u .QGi3 E 0 ZR- 97 CI GORY> c Q . G>3Q.E 8 1. 570 E -3 9. 049 E SB-125 CI . Qi3i3 E 8 QQQ E 0 9. 209 E -4 4. 770 E -s CE-144 C! .0>30 E 0 . Gvv' 1. 6" 9 E -3 6 219 E 3 SR- B9 CI . QOG E 8 QOQ 8 . QuCi E SR- 8 CI .GQv E, Ci .GGO E 8 cog c' VtlIDE! lTIF I ED CI .GQQ E 8 .GQQ E 0 800 "= >3 .vGu E 0 TOTF'L FOf=:

PERIOD (RBQVE) CI QQO = "8 2. 375 c~9 c RR- 41 CI , QQsi E 8 . GQQ E 0 390 O'8 E CI . GQQ E 0 . QO>3 0 6. 689 1. 719 c YiE-1 if1 CI . Ovi3 >30>3 E 0 '5. c, 5 ". 179 c

\ JN CI . O'00 E 0 . Gvi3 E 0 f~

~

c, CI . QOC> F 0 . OQG E, 0 2. 450 E -3 E

'rlE-i<<5 CI Q>3' E 0 . vOv E u 6. 860 c 5 4. 689

GLOR".DA P04~ & LEG;.Z CO~Ah~

St. Luce Unit:J Table 3.5 Liquid Effluents << Dose Samzation Age Group: Adult Location: Any Adult Exposure interval: El OU1 througn Ouarter J Ouarte>>

Pish & Shellfish DOSE Pathway to ORGAN (m an)

LiV:"R THYROID KIDNEY Gi T~l T. 30DY ST. LUCRE P'NT ODC'f

FLOF:IDR PO'vtER 4 LIGHT COt1PRttY 5 i. LUC IF UttITtl SEt1IAttttURL PE~OP.T JULY ir 1378 THROUGH DE'l1cER I A

~ V TABLE 3 ~ 6: GR-EOUS EFF LUEllTS SUt1t1RTIOtl OF RLELEtRSES Ull IT QUFiF;TERn QUPPTEc",r R. FI SIOtt RHD RCTIVRTICtt GR-c,.

TOTAL RELEASE CI 7.077 E 3 &.7S& E

2. FA'E.";RG RELEASE PFtTF FOP. PERIOD UCI '-EC c.976E 2 "ZS E B. ICDIt<ES TOTAL IODIttE-13~ CI R 976 E -2 4. GCG E -2
2. 5"ERRGE RELEASE RFtTE FOR PERIOD UC .~SEC e'O7 c'og g 3 C. PARTICULATES l

PARTICULATES T ~M2 > . DRYS CI 970 c., 2 4. 66~ E"-2

2. AVERAGE RELEASE CACTI'v'IT RATE FOF; PEfÃOD UCIi'SEC . 2. SG7 E -3 5&RE GROSS FILPHFl PRD I IY CI . GGG E G . GGQ E 0 TRITIU!1 TOTRL RELEASE CI  %.261 E 2 2. 526 E 2 2 RVE..RQE RELERSF RRT~ FOR PERIOD UCI/SEC " 6QG E " 3. '0 '

T. LUCZ:. PLAIT ODC:I

Fl OP I DR PrJ'ldER 4~ L I GHT Cot'tPRHY ST. LUCIc. UttIT SEl1IRttltUAL REPORT 'ULY 1 197B THROUGH DECFMBER 31< 197B TRBLE 3. 7: GFISEOUS Er FLUEttTS I

COttTIttUOUS fCODE BRTCH tIODE t(UCL I DES RELERSED Ut t I T QUARTER ~ QURRTERn 'URRTERA QUFiRTER" FISSIOtt GASES RR- 41 CI . GriG E "G . Goo E 0 3. 429 E 0 ~ >9 E G B5 nclq CI .. OGO E G , 5>OG 0 1. 939 E 2. r.9@< C CI . 000 E G 419 E 0 p .< cr9 9. G< '0 E VLR B7 CI . GCiG E 0 . GGG E 0 7. 479 E 3. nr~ 9 KR- Bo CI . GGG E G E G 4. 139 E 2 E 2

-1 1M CI . GriG E 0 . Gorj E G 4. -'G9 E car4 E

3. 44>> 2 CI 7 B4c> ri C 4. 109 c' 5. G39 E E 4<X-1 . 3M CI 3. 569 E 0 1 r C CI 3. 669 C A 0~9 ". 049 c. E 1

<Yr-135M CI . OCio E 0 ~ 000 E 0 2;439 E 1 C ~ E 0 L g w9 F CI . Grio E 0 . OGv E G 459 E 1 Ut<IDEtliIF I ED CI . GGO E 0 . GOG c. 0 oor< G GVO E G TOTAL FOR PERIOD'ABOVE) CI 8.302 E 2 4.267 E 3 6. 249 E 5. 494. E 3 IOD It/ES I-D CI  %=29 -2 ~049 E -2 7. 460 E -3 2. 609 E ~ p I-5 3 I-135 CI CI 43?9E

.GAG E E

1,279 0 .GGG c

E 1

G

4. 5?0 E

. OGG E

-6 G 1. 12v E C

C' TOTRL FOR PERIOD <ABOVE) CI 4. 582 E -" 2. 4B4 E -1 7. 464 E -3 2. 619 E

3. PRRTI CULRTES c'n CI '.GriG E 0 3. B9 -" -6 .OGO E 0 .GCG = 0 SR- u< CI 4.=00 c -=- .OOv E G .OOG O .Gov =" 0 SR- 90 CI 8.220 F -6:00G E 0 .000 E G .GGO E G

'- ODC:f

E/I FI.ORTI)A I'OWI'.R 6 I,IGIIT C(81PANY St. I,>>cJ.e Un.l.L'I Tlble 3.8 Gaseous Effluents Dose S>>mmation guartertI Age Group: Infant Exposure Intervall From thrOugll Pal L'IIWagj I.IVER TIIYROID KIDNEY I.UNG GI-LII T. HOI)Y BONI.'ll re Ill Illrelll mrem) Alrc Ill mrem Illr C III ~lln'e Ill)

Ground Plane Grass- -Hilk I n I a 1 el t J 0 n 1

Total Sector: Range: m J.l es Cow/Goat Sector: Range: ~ iilee Noble Gllses Quarter Calendar Year (Above time J>>terval) (mrad) mrnd Gallllna A I r Dos e Beta AI.r Dose IQ IO on Sector: ~gao a: 0.91 mlles Vt 1 Tile dose values below were calc>>lated using act>>a1 meteorological. daLa dur lnl, I bu spul I I luil time interval witll met data r~educed as per Reg. G>>ide 1.111, Hllrch 1976.

%g

Page i9 APPENDS( A HPC, DOSE ."ACTOR, HISTORIC'. ~~i.TEOROLOGZCPJ.

TABLES

- ODC';1

Page -0 TABLE L-1

'.maximum P emissible Concentrac.ons in Mater .n Unrestr cted A"eas I t.

Nuclide WC (~Ci/ml) Nucl'de ~C (uCi/ml) Nuc 1 de :ZC (,uC'ml)

;3 3 E 3 Y-90 2 Te-129 .8 E-4

~ Na-24 3 E-5 Y-91m 3 E 3 Te-1 31m 4 E-5 P-32 2 E-5 Y-91 3 E-5 Te-131 None Cr-51 2 E 3 Y-92 6 E-5 Te-132 2 E-5

'vg 54 1 E-4 Y-93 3 ".-5 i-130 3 E-6

<w-56 1 E-4 Zr-95 6 5 i-131 3 E-7 Fe-55 8 E-4 Zr-97 2 E-5 L 132 8 E-6 Ee-59 5 E-5 Nb-95 1 E-4 i-133 1 E-6 Co-57 4 E-4 Hb-97 ,

9 E-4 I-134 2 E-5 Co-58 9 E-5, Ho-99 E-5 'i'-135 4 E-6 Co-60 '3 E-5 TC-99m '3 E 3 Cs-134 9 E-6 Ni-63 1 E-4 Tc-101 No ne Cs-136 6 E-5 Cu-64 2 E-4 Ru-103 8 E-5 Cs-137 2 E-5 Zn-65 1 E-4 Ru-105 1 E-4 Cs-138 Hone Zn-69 2 D 3 Ru-106 1 E 5 Ba-139 None

,Br-82 4 E-5 Ag-110m 3 E;5 Ba-140 2 E-5 Br-83 3 E-6 Sn-113 8 E-5 Ba-141 Hone Br-84 None2 in-113m 1 E 3 Ba-142 'None Br-85 None Sb-122 3 E-5 L'a-140 2 E-5 Rb-86 2 E-5 Sb-124 2 E-5 La-1 42 None

. b-88 None 'b-125 4 Ce-141 9 E-5

.Rb-89 None Te-125M -4 'e-143 4 .E-.5

'Sr-89 Te-127m 5 E-5 Ce-144 1 E-5 Sr-90 3 ""-7 Te-3.27 2 E-4 P 144 None Sr-91 5 E-5 Te-129m V-187 6 E-5 Sr-92 6 E-5 Hp-239 1 E-4 if a nuc1'ae is not 1'sted, refer to 10 C:R 20, Appendix B, and use the most ii, Column consevat've insolu'ole/soluble lPC wnere they a'e give".. in Table 2.

(2) Nore-(As pe" 10 CPR 20, Appendiv B) 'No WC limit "or any s"'ngle radionuclide not 1'sted above with aecay mode other than apha I emission or spontaneous fission and with radioactive half-life less than 2 hours2.314815e-5 days <br />5.555556e-4 hours <br />3.306878e-6 weeks <br />7.61e-7 months <br />.

ST . i LUCTE PLANTT -ODCN

'FAltl.E 1;2 V<<

A t<<l

<<U cnutnutlnrltlAl FAtln<AY-OOSE CO>>uEhSlutt FAC)OI>ARGES PA 1 Ill<AY - SAL1 IIA) Ll\ F 15<I A<Its St<EL LF I Stt AGE GRO<<P - Ab<<L) t<OCL llti ORGA<< OOSE g AI:) O tnf<C>>/tttt t<<Ek uot/ttLI UO<IE LtvEI< t IIY<tu I 6<, K lots E Y L IIII<<< C)-I.L 1 SK1tt )OIAL OOOY 1 ~ Car Ut 3 ~ 60E tl 1 I 606 4 I $ .4OE-OI ).I,OE-at O. $ .6UE-UI t

<<4--24 6. OUE-01 6. ooE-41 6.oUE -01 6 ~ aat-Ol 6.doC-OI 6 ~ Oo 1'- os 0 ~ 4. doE-01 I'---SZ 1.61L<al l<<05E F 46 0 ~ 0~ 0~ I.boih 06 0 C. <,1C ~ 05 Ctt--51 0 0~ 3hi F 00 l. Z)c. ~ Ua 1.42'o I -< IE ~ 0$ a. 5.59E boa

>><<--54 U. 1~ UlE<US ll o z. toE <as 0 ~ 2. 11L: ~ 04 0 ~ I 35E ~ 03

>><<--56 0. I ~ CUE<<dz 0 ~ 2.26E F 02 d. 5.65C ~ 03 0 ~ 3.1'CE<<Ot I<<E--55 I.ISED ai 5.19E<05 a. 0 6.otE ~ 05 Z.OS'5 4 ~ I~ $ 4C. < 05 I t--5'I 5.54E<<oh 1.92E ~ o5 0 0 5 32Etoh 6.31E < 05 0 ~ 1. Z'Jc ~ 44 CO--5I 0 1<<hZE ~ 42 0 0 4 3. COF. < 03 D ~ 2. 36C ~ 02 I.O 55 0~ 6. 05C'< 02 D ~ 0 ~ 0. 1. 22t ~ 04 0 ~ s. 35L' 03 fo--44 5 I lhE< OS D ~ 0 Oi 3. 26E ~ ah d. 5)E<<0$

t<1 --45 2 ttzc ~ UZ Z.CSE <<dl a. 4 4 0 ~ 6 '5E<02 0 I ZOEt Ol C<J - 6'< 0 ~ 2 15E ~ d2 0. 5.4tEtoz 0 ~ I.b)E ~ dh 0 s. UIE ~ oz C<t--45 62E ~ a5 5. I'$E<<a5 0. 3 ')ED 45 I) ~ 3.2)E<45 0 ~ 2.32C ~ 05 I II - 4'J S.h)E 02 ~ 6-COE I 42 0 4.2IE ~ 02 0 ~ 9 blE ~ 0 I 0 4.5rt<<ot n<t--52 0 D ~ 0 ~ O. 0. 4.65E F 00 0 4.05'0 Ittt--03 0<< 0 ~ 0 0- a. 1 05E-01 D '1.26E-DZ II<< 4'<< il ~ 0 ~ 0. 0 ~ 0 ~ 1. Sa E-Ol 0 ~ 9 '2E OZ OR --n5 0. 4. 0 0 ~ Oi a. a. $ .56E-O3 LO--Ut<< 4 6.25L ~ UZ 0. 0. 0~ I ZSE ~ DZ D~ 2. 9IE <<02 I<II aa 4, I . 1') I. ~ ua a 0. 4~ a. 0 ~ 9. 50E-OI I I<--O'I 4~ I. I 'SC t 04 4 0 0 4 5 ~ 4.34E-OI Slt--5'I 5.osE ~ 4$ 0. 0 a. 0 ~ o.os'1 0 1.4< E ~ 02 5<<<--')0

--')I 1.2 SE 05 ~ 0 ~ 0 D~ 0 1.65'3 0 ~ ).ozE F 04 Stt ~

).4)E ~ Ol 0- 0 0 4.15E<<OZ IJ <<<< ~ ISO<00 ~ V s<t- -'JZ I 54L <Us O 0- 0 U ~ 4 9! t ~ OZ 4 I. rsc ~ do I<<

on Y 'JU C ~ dlC < O<J 0<< O. 0<< 0 ~ C.hler<<oh El. I ~ t<<SL. Ol <<<<

Y 'J I tl 5. 1<<. E-02 O. tl 0 ~ '4<< I uoE-Ut D 2.2 sE-os Y -'Jl b. 4'JE 4 I ~ 4 0. a. 0 4. a)E ~ 04 0. 2. Iot aa ~

Y---'J l

'J2 i ~ lht-a I 4. a. 4 a. 'J S)L 03 < 0 I~ <<rd c 42

<<Y ~

s.4<Ii 00 ~ 4. 0. 0 0 5. $ 6E ~ Oh 4 4It-DZ t <<<- -')5 I 601 ~ Ul 5.1$ o<<do a. 0 tl'Jt <<ba 0 ~ t. 59E ~ Oh d S. hli ~ ao Id --')I a.o ZE-Ol I . 14 E- <I I 0. Z.CSE-OI 0 ~ 5 5lr ~ Oh D ~ d. 19t-UZ tt tl - - ')5 4 ~ <<<o t ~ D2 2 4 '1 I. < 4 Z 4 ~ 2. 41 E 42.~ 4~ I rr1 C ~ 04 D. <<J.r Jt 51 ~

ttu-- Jr $ .1EE<UO <<).541.- ot 4 I.LIE ~ 44 3 5I I 01~ 0 4CL' I

<I<<) - -'J'I 0 I. ZUE ~ t)2 0 Z.'Jo<: ~ 42 04 2. 91 E ~ 02 0. 2.4SE <OI II 'JIJ<t I SUL'Z S. t 1 r.-oz 0. 5.51 L-0 I I >'oo<." -02 2. 11E ~ 41 5 4.4IE-ot

<<A 'Scil utt I ut'I /SEI'<EL E'ASt I(A) 1 OF 1 ACII I SO)lll<<t Itt IJ)SC>>AItf<<L' l tilt Of 1 Ct'/Sl I'1 lit t<O At)lit ) )OJIAL U) Lul lul)

<I<

<~ )

I'I A <

rl

~

~

<< L<<VL<(ON<<c<<I AL I'allis<AT-0<I)t GUIWE f Slu<< FAGIDRS Fuk LLOULO OLSGIIARGES PA1<I<<AT - SAI.f UAlfil f)S<<AUO SUELLF1SU AGE Ckous' A OUL1

<<UGL ) Dl ORGAN OOSE FAG1OR I Nk E N/IIR <

~

ER UCI/NLL un<<E 1.1Vf k 1<<rku)O Klu<<ir I. UUG G1 LL) SK)W 101AL IIOUT I G- I ul I IE-02 l.9)E-02 '4)L'-Ol 9 ~ 52E-OS dut-ul f<U-I 0) 1 ~

1.0)E oz ~ a.

0 0

~

~

3~

'. ~ 0 0

1

~

25E ~ 04 0

0

~

~

I

<,. 61 C ~ ul

<<U-105 b.9uc< Un 0 u ~ I. I5E <OZ 0~ 5.44'3 0 ~ 3 ~ 51 E ~ 00

'51 'S

~

I U-I 06 1 5')E<n) 0. 0 3 0 l. a lf ~ a5 0 ~ Z. Ul 1 t 02 ho< IION I. 5)E ~ OS I ~ 45E<UJ 0 2.55'3 0 ~ 5. 9ZE. ~ 05 0 ~ a.&2'2 Su-s22 0 ~ 0 0 ~ 0 0 ~ 0 ~ 0 ~ 0 Sls- I '24 2 I O'E ~ uz 5.z3E<uo 6.)Lc-as 0 ~ 2.15Etoz 1 ~ 55E <as 0 ~ I.soE nz ~

SO-I25 Z.ZDC<uz 2.31E F 00 1.96f-al 0 ~ Z.JOE<04 s.95E ~ OS Oo 4.<,zf F 01 1L'25k Z. I)E<02 1.59E F 01 6 '4E<ol a d)t<oz 0 b Clf ~ 02 0 2 OIE ~ 0 I li lt lz)N 5.50E 52 ~ I ')ZL<02 1.401:<02 Z.ZJE ~ O3 Oi

~ e dhE F 03 0

~

~ 6 ) OE ~ <)1 I zl 5 9ZE<00 3. 2DE oo

~ 6 CIE ~ 00 6)E ~ Ol 0 ) ~ Ohf<02 Oa 1.9)E ~ Dn 1E IZON 9.

~

)2'2 3 49t 02~ ).20E<DZ 3.a')i ~ 03 0

~

4. 69E<03 oa I.hdf<02

)E-I2') 2.55f>ou 9. 65E- D I L.')5'D 1 Oli ~ 01 Oe l. )Zf OO ~ 0 ~ C.ZLE-OL i 13IN s.<.sE ~ 02 6. 5)E 0 I

~ 1.09'2 6.95f: <DZ 0 6.dsf ~ US 0~ 5;)ZE ~ 01 lt-I ls 1

I.cuff oo 6.6oE-ul L.sif <na ).Oui<00 0 2.)91.-as 0 ~ 5.ohf-nl li-< IZ 2 05E ~ 03 s. )3E< n2 I ah&E <nz I.Zdt F 03 Di 6.25E<03 Oi 24E aZ

~

1-"I Ju 1--I SL 3 ~ 9<)E < 0 I I. I hE ~ oz I'DE F 04 I d)E<OZ O. I.os'z 0 ~ h. 6)f 0S 1.1')c

~

Z. IdC<OZ ).13E az~ Lanzf 05 ~ 5 S< 1 <02 Oo b ~ 24E ~ Ol D~ ~ Dz 1- I I2 I 5) f ~ us 2.DSE OUI 3.166 <0) 551.<nl 0~ 5.36E F 00 0 ~ l.alt< Ol 1--I S) 1.5IE 01 ~ I. )Of <nz 2 5 IE ~ 04 2.2)t ~ nz 0 I.I5t F 02 0 3.9dt nl ~

1--I Ih 5.5)E < na I.5se<os I.')&E < DS 2 hli <DI D ~ 1.32E-az 0 ~ 5.4 IE ~ Oa 1--I )5 2 SLE ~ Dl 6. I <.f Ol

~ d nif ~ 03 9 1)E IOI 0 ~ 6.ddt ol ~ 0 ~ 2,25E ~ Ol I)S.I 14 6.5ii ~ u) L.C)c D4~ 5 ~ 5.ZUC<u) l.)>t ~ OS 2.a5E<oZ 0 ~ I. 3)E< 04 CS-I )6 1~1!E ~ OZ 2.5)c ~ OJ 0 1.55E<03 Z. ICc<02 S.22t ~ 02 0 ~ 2 ~ 04E ~ 01 CS I II d I')t<0) I.zoi 54~ ui 4.O'f. ~ uJ l. SCE ~ 03 2 3IE ~ 02 0 ~ 1. bdf. ~ OS GS I Sd 6.udf Ou ~ s.zulus Oi d.ahead d.))f-hl 5. IZt-o5 Di 5.') 6t ~ 00 UA-I J<) 1.5)E<uo 5.6IL-uJ . 0 ~ 5.24E-D3 3.sbf-o) 1.3')C ~ 01 Oi 2. JDE-DL IIA -140 1.65C ~ OS Z.oli 00~ 0 1 0<,L:-Dl l. I df <.Du 3 . 3')i ~ 03 0 ~ l. 0 )f. ~ UZ I<A ih I 0. Z.auC-o) 0 ~ Z.CJE -u3 I.Chf-ul l.dOE-O) 0 s.2)f-al I<A" I 42 I Isc ~ uu s.)uf-u3 0. I.5DC-O) I+DIE 0 0 ~ Io 0')c Ol LA Ihu I ~ 55E ~ 00 1.95E-Os 0. 0. 0 ~ 5.5)f ~ 04 0 ~ Za I I c-OI I A -I >.2 5.5)f-u2 3.6)f-)2 Oi 0 ~ 0 ~ Z.f,at ~ UZ 0 ~ 9. I5t-u)

GL - Ihl J.hsE no ~ 32t<uo 0 I <)dL,< uu a 5 5) t ~ 03 0 ~ 2.<;Sc-ul Gt:-Ih I <<.U5E-ns 4.4) f oZ'

~ 0. I -')I E -D I u I L) f ~ 04 0 ~ 956-Uz Ic Ihh I ~ IUE ~ DZ hht ~ Ol 0 ~ 4-'<St Dl< 0. 6. 051 ~ 04 0 ~ 9.<<DL 00 F I'I< - I 4'< I ') I L-uz I doc UJ Ui 4-45E-0 J 2 )JL-5') ') ~ LUE uw

<I I dl I. I)f ~ uO I Cat<UU u. u. 0 ~ 2.5lf <U3 0 ~ Z. <.') t < UO

<<k 2 I') J 5<<e-oz S. UDE-DJ u. I.D5t-UZ 0 ~ IZL < 02 ui I 92c-ni UASI.I< Utl I UG)/51G I<tttA' NAIL OF I.Au<I ISOIUI~

t LN IILSGUARI;L FLU<i ut I CC/CEG Ul 1<< <<0 AUI)11 1<t<<AI. IIII Ul lull d

0 0

?age 63 TA3LE G-1

.wzimum Permissible Ccncentrations in Air in Unrestricted .reas Nucde .i'PC pCi/cc Nuclide "PC ~Ci/cc Ar-41 4 E-8 Y-91 1 9 Kr-83m 3 E-8 Z -95 1 o K"-85m 1'-7 No-95 3 E-9 K"-85 3 E-7 Ru-103 3 E-9 Kr-87 2 E-8 RU-106 2 E-10 Kr-88 2 E-8 Ag-110m 3 E-10 Kr-89 3 E-8 Sn-113 2 E-9 Kr-90 3 E-8 ln-113m 2 E-7 Xe-131m 4 E-7 Sn-123 1 E-10 Xe-133m '

3 E-7 Sn-126 1 E-10 Xe-133 E-7 So-124 7 c-l0 Xe-135m 3 E-8 Sb-125 9 E-10 Xe-135 1 E-7 . Te-125m 4 9 Xe-137 3 E-8 Te-127m 1 E-9 Xe-138 3 E;8 Te-129m 1 E-9 H-3 2 E 7 T-130 1 -10 P-32 2 E-9 T-3.31 1 E-10 Cr-51 8 E-8 'I-132 3 E-9 i~~w-54 1 E-9 E-133 4 10 Fe-59 2 E-9 T-134 6 9 Co-57 6 E-9 l-135 1 E-9 Co-58 2 E-9 Cs-134 E-10 Co-60 3 E-10 Cs-136 6 o Zn-65 2 E-9 Cs-137 5 E-10 Rb-86 2 E-9' Ba-140 1 E-9 Sr-89 E-10 La-140 Sr-90 3 E-11 Ce-141 0 E-9 Rb-88 3 E-8 Ce-144 2 10 Ef a nucl'de is not listed, ref e" to 10 CFR 20, Appendix B, and use the most conservat've insoluble/so ub e K'C vhere they are given in Table li., Column 1.

4 ST. LUCRE E PLEAT -ODC.L

'I'ABI.E G-2 DOSE FACTOllS FOR NOBLE GASES" Total Body Gamma Air. Beta hir Dose 1'actor Sl<in Dose Factor Dose Factor Dose I'actor.

Ki Li Hi Hi lhQ(lionuclide (mrem/yr per IICi/m ) -(mrem/yr per IICi/m ). (mrnd/yr per IICi/))i ) (mrail/yr l)er IICi/m )

I'-83)n 7. 5GE-02 "> l. 931!a 01 2. 881 I.02 Kr-85lll 1. 17E-I 03 l. 46L-I-03 1. 23r;I-03 1. 97E.I 03 Kr-85 I. 61L"I 01 1. 72E.I.O I 1. 95)';I 03 Kr-87 Kr-88 5.92r.-l03

1. 47L'-I 04
1. 34iL'I 03
9. 73t'.+03 2.37E+03
6. 17 '3
1. 52L'.I.04 1.03LI04 2.93L'IO3, Kr-89 1. 66r+04 1.01E+04 l. 73&I.04 1. OGI';I 04 Kr-90 1. 56E-I.04 7.29E+03 1. 63L) I.04 7.83E-I03 Xe-131m 9.15E+Ol 4.76LI-02 l. 56K+02 1. 111 I 03 Xe-133m 2. 51L-I.02 9. 94L'-1-02 3. 27E+02 1. 48E.H)3 Xe-133 2. 94il';I 02 3. 061';I.02 3. 53'.02 1. 05F:I 03 Xe-l35m 3. 12P;I 03 7. 11E.I.02 3.36r+03 7.39l':I02 Xe-135 i. 81E-I.03 I . 86 r;-I.03 1. 92L'-I.03 2.4GI:I03 Xe-137 1. 4i 2E+03 1. 221'.+04 l. 51F;I 03 1. 27I::I 04 Xe-138 8.83E+03 4. 13L'I.03 9.21L-I03 4.75I':I03 Ar-41 8. 84i E.I.03 2.69E+03 9.30L'+03 3.28EI03

"'The listed do .e factors are for radionuclides that i))ay be detected in gaseous cffluents.

ii"7 56L'-02 7.56 x 10 ~.

~1 I

t)

~ .I t~I

~

a)

)a a.)

ENV lkOWIatl)1AL taa1)tna'f"I\USE COIIVE)aSlo)I FAI'IORS Pl ll FOR GASEOUS OISC)taiaGES I A '1ll)IAY Gilt)ollll I LANE OttaOS) 1 )On AGE GNIU)a 1 nF At)1 lauCL lnt 0 R G A It 0 0 5 E F A C 1 0 R S ISO ~ t)EYER-ttt)EII/rR PER UCl/SEC I UOUE L1 vttl lltrRO10 K)OIIEr l. Ul)G G 1-LL1 SK ln inta<<oot)r n --4 oi P -92 0 ~

I.'Il --5) C.CUEa06 ttn--5a I ~ IOE ~ 09 I E --59 1. 92E ~ 00 CO--5? I. C41 ~ 04 I;O--DU 5~ 2lt ~ 04 u

CO--UU aa ~ ~ OE a 0) ~

taa Ital

)n--c5 t.ofE ~ Uo ttp ltn tali I 2'JE ~ 01 St) - 49 4. DIE ~ Oa. Qa 5 a) - - ') 0 5 9aaE ~ 05 gal r- -') I ). >SE ~ Ol

)A--)5 6. Oa,E ~ 04 tlat-- I5 I. ')5E ~ 04 I al IU) ).5>taboo Ian-I ob 2.99'4 ao I )on l. I ol: 0')

~

/

na'Eo on I Ucllstt; tlELLAsf )taft GFF faCII I ISI)FOI E ltl Ano A Vatnt. Ol-'I. FO)t Xlt), t)EI'LE)EO Xsn anO i<<<LA))VL ni)OS) llOII

tlsV IIIUIIIIEIIIALI'All))IAY-l)OSE GUIIVELSIOII F AGTOkS I' ll FU)I GASEOUS 01SCIIAIIGES I'A IIUIAY - CII Iltltl) I'LAIIE OEI'OS1 110tl AC f. CkuUP - 1UF At) 1 UIICL IOE 0 II C A tt 0 0 S E I' C I 0 K S ISO ttEYEfi-IIREIIIZII I'ER UCIISEC)

OOttt I I VEIt 1IIYROIU KIOIIEY Lltttti C1-LL1 5tt 10 IO I AL OOOY Stt-I ZJ D.

SK-I Z6 h.oot F 09 SU-)Zh o hZE~DO Sll -I 25 7~ 56E ~ 00 IE IZitt 2 ~ l9E ~ 06 IE I27tt I. )5Ei06 rE 129<< 5. h'JE 01

'0t

~

I- I Jo 1 F 06 1--1 )I 2 ~ hhE ~ 01 ~Q 1--) J2 I./OE 06 ~ A 00 I 'IJJ J. bht at~

to 1--I Ih b hdt< 05 I --I 15 J. 6ht ~ 06 CS - I lh 2. o 'E ~ 09 CS t)4 Z~ I Jt ~ Oo CS -I )1 I tbt ~ 09 UA thD 2 JVF. ~ Oo CE Ihl I.. 958 u)

~

CE- lhh 9. 52f 01~

I!A'U Utt I 0(:I/SIC KCL EASE NAI E OF EACII ISOf Ut'E ltt At(0 A VALIIE OF I FOR X/0 ~ OEI'l.t rEI) XIU At)U RF L Al IVt OEI'llS 1 I lOll

0 I'>>

n I>)

t<<V lnu<<<<ctl I AL I'All)<<AY-OUSE I U<<V) fcS l 0<< ) Al lUHS H I ll Fott CASEOuS Ol SC<<AHCE 5 I'A I IIWAV - CRout)O PLAtaE Ut PUS l float AfiE CIIOUI' - Gill L 0

'I'I.'I N-AI)III.'I' 'I tlul:L IUL 0 R G A II 0 0 S E F A C l 0 k S I'EH UCI/SEC)

Nl'AN'I'SO.<<ElLH-HkE<</YR UOne L lVEH l <<YRC In ia IO<<g V LUIIC C l-).L I S))IH YOIAL OOUY Ia 0~

I -Q 0 ~

CK 5 I

. a. 64E ~ 06 tati- - 51 I Boer 09 f t--5') 2. 15E I . 4')E ~ 04

~ oa t;0--5!

CO-- 54 3 ~ AUEado CO--CO 2. I5E ~ I0 I<<--Li 1.>, je ~ as ~ Q ku--s6 'I ole ~ 46 U9

~k --4>J 2. I 1E ~ oa ak Sk--ua 5. 45E ~ UC V"- ')I Use 46 Ik - -VS 5. 0) t ~ 04

>>0--05 I ~ 86E ~ Us I u-IVY I. IUL ~ aa c I') t

~

I al-IUC

~ aa AC I I a)al 5 at ~ 09 i)ASa ai a>al I all:I/StC lttt L ASC tthl E a)t'AC)a ISUIOI E In A<<t)

~

A VAI alt< OF I. fait X/O. ULt ll lEI) X/0 At)i) ke I AI IVL ULI'US) I lul<

t<t

~ I I

r)

<-I I'

EwvlttnwwitttAt. latt<waY-nusE coltvEwsluw FAclnt<s wt ll Fow cAsEous otscwahGEs I'AINUAY - cwoutttl I'tat(E OEl'usIIlotl AGf. GIIOUP - CUILA TLII':N-AI)III.T6 1 Nl'ANT I I t<t'. I I u L' w t' rt w o s E F a c I o w s tsn.ttEIEII-I)ICE)I/Ytt pEH Ucl/sECI UUIIL I. I vEk IUYtloln K lu)IE Y Lutlc GI ILI SKIN IOIAL uooY Sw 121 0 Sw 12e 5~ It>E ~ I o Stl-12's 5.9DE ~ Ob SII 125 2. IDE 09F lf 125w 1.55E ~ Oe IE I 2/<I 0.19E 05 ~

'V IL 12'Jw 3. 05E< 01 D<

I - - I.SO 5.5)E< oe vo 1 -I.tl l. 12E ~ Ol

<0 I - -1.12 I ~ 25E ~ ote I -- I I)

V1

2. <,DE ~ 06 Ou I -114 4 5UE ~ I<5 I -- I )5 2.iCE OC ~

I.S -I 14 e. w)ED 0)

CS - I .Io l. 4')E ~ Ob CS I II t. O)L ~ Io IIA-I'0 I-Cot ~ Ob I.'E - I 4 I I Ale ~ 01 CE-I44 I. I )E ~ oo

<)hoot) I<<I I I)el/sic IILLLas lta If. Ui E'acw lsolot<E lw arto a vat.ut I)t' I utt x/0, UEILCIElt x/ 0 anil IILI Al lvc UEI'US I I IVII

I C<

C7 EHVIRO<<<<EHTAL I',ATHHAY-IIOSt COI<VEhSIOH I ACTORS lf(I)/1'(I) 1'Olt GASEOUS l)ISCIII<ltULIS I'A THHAY 1IIHALA11OH AGE GROUP - IHthHT HUCLIHE U R G A H D 0 S E f A C T O R S IHRfH/YR 1'ER UCI/CV+HEIERI OOHE I. I v ER 1 I IY R 01 0 K1llutY . LuwG G1-LL1 SKTH TOTAL OOOY H-- 4. Sot < 02 4 ~loE <02 t ~ddE ~ 02 CosoE ~ uz luf. ~ 02 0 ~ 4. loE < 02 I'---SZ 2 lI f ~ 05 l. 15E< 04 0 ~ 0 0 ~ 1.51E<o4 5.01E 02 0 ~ 0 laE I 151<01

~ ol CI< 5 I 0 ~ 0 I 04E<01 1.99c<oo 2.5zE ~ os F 0

<<<I--54 0. 6 9lE ol ~ 0. 1.1Z E ol ~ Z.CSE Fgaol 05 1 lSE ~ OC 0 I I OE al~

t E--59 Z. 06E < OS 4.06E<06 0 0. t.ldE ~ 05 l.29E ~ 0<, a. 1.0SE<al I:O--SI 0. I.ztE az ~ 0 ~ 0 6.4 lE F 04 5.5of. 0)

~ 0 I. IaE ~ oz

<.0- -Sd 0. I.laEtoz oo 0 ~ 0.1 )E ~ 05 1.21 E 04

~ 0~ I. 6al ~ 02 I.'0 - - ti 0 0. a.CaE ~ o2 0 0 5.51L ~ 06 l.zat ~ o4 0 ~ 1. I I E ~ os

(<<--45 c!E<os I ~ d I L ~ 04 0 I Z IL 04~ l. 5lE < 05 9.S5E ~ Ol 0 d.<5E ~ us I. o IE I'l- - 0 4 u Z. I 1 t ~ 04 0 ~ 0 ~ 0 ~ z. >>Ecol 0 < 04 ul

'V SH--d') 4. ) IE ~ 04 0 0. 0- 2 ~ slE 06 ~ 6 aoE ~ 04 Oe I 24E ~

Sk--')0 I.)2E<01 0 0 0 I.5 l f. ~ o I 1. )9E< 05 0 d.ubE ~ 05 u<<

<D Oi Y- 5.') dE < 0< oo 0 ~ di F 6 )E<ob 1.IIE<04 0 ~ I 60L ~ OS sfr I ~ 0 ') Cdf <ol l.atE<uC 1.4IF <04 Oi ')DE ~ us I<u --')5 I.zaE ol ~ 5.15t<02 0. 1.)5E ~ 01 CD 11'5 I.ZtE ~ O4 0 s. ) ll. ~

5. Oi f ol uz HU <dl t.C')E<02 0 0 I.OZE ~

OP 5.4IE ~ 05 50E F 04 0 ~ ~

<(U - I 04 '). s I E 0 l

~ a ~ 0 2 l 4 E. < 0'4 1.5uE 1.16E ~ u5 oi I. ICE ol I. OCE ol a

AC>>0<< I~ d')i ~ 0 l I. ISE<ol 0. 1 44E <03" 0 S IZE<05 5 z')L 0<<< 0 ~

UA 't<I <H I U< [/5 t<'HL< tASt Hhl E OI E A<'I< IS<< IOI'E lH AHU A vhl UE 6<< I. f UH x/H. OErl I'I Eu x/0 AHO REL A I I vt OI <'OS I I lu<<

I Cg t>1 ittVIIIutlttitllALI'AtltttAY l)DSE GOIIVfhslutt FAI'lukS R(T)/l,'(I) f>OR [lh,'>EOLJS 13'fSCllhRGI?S i 0 A 1 I I IIA Y I << I I A L A 1 > 0 II faut ACE Gttu>JP " lltFAttf IIUCL lot 0 R 6 A tt 0 0 S E F A C 'f 0 R 5 t>>Rill/YR PiR IIC1/CU.IIETiRI Duttf LIVED 1 I I Y tt 01 0 K lu<<E Y LUNG 01-LL1 SK1 tt 10 1AL 000Y Stt- I 2 3 I. I I f t 04 6 ~ '>51 > 02 6~45'2 0~ 3.6IE ~ 06 5 99E ~ 04 a. I U26 F 03 Stl - I zt> 2. 2 IE>05 5.45'3 1.12C 01 ~ .0- 1.64E 06 ~ 2-23E ~ 04

1. I I f ~ ac 0 ~ 4.40E ~ 03 Stl I 24 5.4CE>03 I 03E ~ 02 1.3ZE ~ nt 0 ~ t .3cf ~ U5 0 ~ 2. I1E ~ 03 Stl-I 25 I. ICE F 04 I. 25't ~ 02 I.e1C 0 ~ asf>05 1.16E Oh > 0 ~ 2. 32E ~ 43 1 f tzs<< 4.54E>02 l.95f>02 1.53E>02 2. I1E >03 4.')6E >05 1.36E>04 0 ~ 6. I CE ~ 0 I IL I21<< 2 ~ 2 IE ~ 03 9.43'z 5.1st >nz 4.0 IE F 03 1.6OE>oS 2.62E>04 0 ~ 2.14E 02 2.06E>02 F

It I?'ttl I. 32EI 0 I 5.OOE>nz 5 OOE ~ 02 6.40 E >03 I.O3Eto6 1.3ZE ~ OC 0 ~

'5C. IU I- I 30 4. 02E Iuz 2.356 ~ 03 3.oSE ~ 05 3 ~ 65 I: >43 0~ 1.35E>03 0 ~ 9 ~ 02 I--Itt 3.63E ~ Oh 4.21E Dh ~ I.h t E ~ o1 I ~ D1E >oh Oa 01E

1. IIE

> D3 0 ~ 2. 5I E ~ 04 Z. 0 IE ~ 42 Iu IH I I 32 Z.u.tt>OZ 5.1oE > oz 1.61t>ah 9. o9E >02 0 ~ Ot Oo tt>

l--l.l3 I ~ 34t>D4 1.93'h 66E>06 4.55C I 03 OI 2 20C>03 Oi 5 ~ tl1E I.

~ 43 I--I 34 I. I 3L> 02 3.n2f>02 4.02'4 h.ezE 02 ~ 0 ~ 1.16E "01 0 ~ Uef ~ 02 I -I ls 4.1OE ~ OZ ~ 03

2E 1.6>.ED o5 l.95E ~ U3 0 9e IOE >02 Oo 4. SIE ~ 02 CS -I 14 I,. OOE ~ 05 a.zsf ~ 05 0 s.ahe O'I > t. o I E ~ o5 I 31E>03 0 ~ 1. 32E F 04 I'. 5 -I3 6.esi ~ 03 2.5t t'> Oh 0

~

~ I.5ol, ~ oh 2. I OE ~ 0 I 2 04L >03 0 ~ I. >35E ~ Uh I S -I.I1 6>

6. Ot>f 05> 1.:IIL ub ~ 0 3, ea)f ~ Oc 9.45'4 I 3ZE ~ 03 Oo hlf > uc IIA I' 4 5.1oE >o3 4.21C 04 F 0 ~ z. >33E ~ utt I.t 4E I 06

~ 3 ~ DDE ~ 43 0 ~ z. ISE ~ 08 Ci I 4l 2.52'3 I.DSE ~ 03 0 ~ I. IOE ~ 03 5.24E 05 2.06C F 04 0 I. el E ~ az Ci I 44 >,.6et ~ 05 I ~ OZE>O5 a. I 'Ief ~ 05 I ~ 21E ~ 01 I.CIA u5 0 2 h'I t ~ Uh IIASilt I>tt I Itul/Stt'ttLEASt IIA I I IIF E ACII 1SuluPE It) Aktl A VAIIIE 0F t. Ful( x/II. ))El LE1EII x/II A<<0 RELAI IVI. OLI'usll lutt

E<<VIIIOUIlcNIAL I'At<<IIAY-OOSE CO<<VERSION FACIORS ll(I)/I'(I) I'Ok CASEOUS l)JSCllhlNL'6 PA IIUIAY - CUIIS IIILK ICOII IAIIIIIAIt0FORACE I ACE CIIOUP - I <<f'AIII

<<UCL IUE 0ll 6 A <<0 0 S E F A C l 0 R S I 0.<<f tfk-IIREN/Yk PE)I UCI/SEC I 00<<f L lVEk IllYk 0 I 0 t K I 0 II Y L U<<G Ct LLI SK I II 101 AL BOO Y

<< - I 0 2.)Iso) 2 ~ 31E ~ 43 l.ohE ~ o3 2.31E ~ 03 2.31 f ~ 03 Do z. 31 t ~ o3 r---SZ Ie dzti I 0 I ~ I h f ~ 09 4 ~ 0 ~ 0 ~ 2 F 05'9 0 ~ 7 ~ OSE ~ vd Ck--Sl 0~ 0 I ~ bzf Iuh 6.12E ~ 03 h.al,t ~ Oh l. Chf ~ 06 0 ~ 3. 05E ~ 04

<<tl -54 0 4.')6E ~ 46 4 ~ Z. 61E I 06 0 ~ 2-14E ~ 41 0 I. 1 lc ~ Oh FE --5') 3. I 1E 41 ~ r. 5 zf. ~ 01 0 ~ oi Ze 09t ul

~ 2 ~ hof ion 0 2.466 ~ Ol c0--51 a. l.36E l 46 0 ~ 0- 0 3 .46f l 01 0 ~ 2.21 E 06 ~

C0--54 0 ~ 2.55E ~ al 0 0. 0 ~ 6 ~ Cal. F 01 0 ~ 6. 24E Ol ~

CO--LO 0 4.13f ~ 01 0 ~ 0. 0 ~ Z-)6E ~ OO 4 ~ 2 ~ 0') E ~ 04 2<< --45 I.ht E' o') 4.65E ~ 49 ui 3.I If ~ O9 0 2 ')Et09 ao I 4L' 09 ko--06 0 z.rlf ~ a) Oi 0 ~ 0. 5.45E laa 2.)SLED 0 ~ I. 2')L' 0')

Sk--49 I.hrf i)a 4 0. 4 ~ 0 2. 15f lan 0 h.zcf ~ aa sk--'Ia Y---') I

).65f >> I 0~ 4 0 0 ~ I.I If ~ 09 0 h. 2IE Io ~

4. IZf loh 0~ 0 0 ~ 0 5.3rf noh 0 ~ Z. I CI o)~

rk--95 2. I ZE ~ u5 ').hl I ~ uh Or I,aha ah 0 ~ z.hrfear a. S.Sarah

<<U-- )5 5.4')Elu5 2.4 1 f 45~ 0 h.dhf.lah 4 l.94E ~ on 0 ~ I.c5tlo5 d 34f u) I ~ ohf ~ 2.niff 03 RU I U) k>> I uh AI' I Oll 2

~

4IC ~ 05 6.zlflor 4

a.

5.15f ur ~

0 0

~ 4 ~ I6L I 03 4.20f luh I ~ I ) LI 04 0

a.

0.

I'6'6la 45 oo a.

0 ~

2 hbf

3. 4ZEl or

~ Oh UnsCU 0>> I Ul:I/sfC kfLLASf IIAIE UF LAC<< lSutuPE lw A>>U A vnl <<L3 )f'. Fug x/0, UEPI ftEU x/0 n<<0 KELAtlvt Of)Us))in<<

<<ult ~ l<>Its I'ok C---lh A>>0 <<----3 AIIE I<<OEII/Yll I'fk UCI/CIi.<<f ILkl

EIIV lnttntleIIIAL PA f OMAN-OUSE CatlvCRS 1otl F AGIOtts IC(I) /P (I) 1)OR OhSLOUS DISCIIAI?CLS

-I'A fntlAY - COIIS ttf LK ICOtlfAnt llhfEn FOF<ACE I AGE CIIIOUP - I t<F Att'I gaol d'or UUCL IUE 0 K t' n 0 0 5 E F A C I 0 R S ISO tlEf EK tlREtt/YR Pill UCI/SEC)

UOUE LIVER IUYIIOIO KIDNEY L Utlt< CI-LLf SKfn IOIAL 000Y Stt- I 23 0 4 ~ Oo 0 ~ 0 0 ~

' 0 ~ 0 ~

Stl-126 1.15f tu9 3.I dftor I-OLE ~ Ol 0 C ~ ')1 f ~ 06 1.16C ~ O9 0 5. z5E ~ ol Sn-12c 2 15E<01 5.1)ED 05 6.6cE ac ~ a. 2.13E ~ 0 r ~ 14C ~ 04 Oo t.o9f Stt I 25 3. 59c. ~ 01 3.21 f ~ 06 2.9)E t ot< ')6t a6

~ 2.4$ C 09 ~ 2 c)E ~ 04 0 ~ 6. Czf Ob ~

It 125n I, 51E ~ 00 5.30f ~ Ol 5.14E tnr 1.05E IDl 0 1.51Etar 0 ~ 2. I of ~ Ol IL Iz/n 5.5CE ~ Or 1.9se I,r')E ~ Ol 2.0uf ~ ad 0 ~ 2CC ~ ad a. l. sdf ot ~

t f I Z')n 5 41L)ud 2.02E ~ 04 Z. Z I f. tod 2 10L tau 0 3-5cf F 04 0 ~ d. 95E ~ ol

'I--)30 t<.5cft05 1.35E 06 ~ 1 IE t04 2. 09E F 06 0 1.15E ~ 06 0 ~ 5 29f ~ 05 I-- I sl 59E ~ Dct 3. 0') f ~ u<s cs ~ 9< E ~ II 1.1<, C ~ ud D I 16F.i 04 do I dlf <tt9 I--I lz I. 1df-ol c.r t.t- ul 6.26E Ol ~ 1.50E Ol 0~ 4 ~ 93E D2 0 69E-dt I"-1st 3. /5E Ol

~ 5 '<at. F 01 1.30C ~ 10 I 29f tor 0. 9.1CE t D6 0 1.66E Ol ~

I --I s'< d. a. )-04C. -0') D 0. 0 ~ 0 ~ 0~

I -- I 'l5 I C9L ~ uc 3 'lc f ~ 0<< 5. t56 ~ 44 6 24E ~ Uc 4-alt-02 C.elf ~ aC a. I cCI. t OC GS -I )C c.c)f t to l.')1E t I 0 0 4.65f ~ 09 9 ~ 12E ~ 0') 90f ~ 04 0 ~ 6.15'9 CS- I lb 2.14E ud~ I. I 01.< 09 D 6.1)E F 00 4. 31E ~ 01. l. 25E < 04 Oo 1.9ut. ~ Dd GS -I sr 4.c<.E I 0

~ 1.? I E la~ 0 3.6F< t <09 4 ~ t<9E < 0') 46t ~ ad 0 c. Icf <49 IIA -I ctl 2.C5E<od 2.41E u5 ~ 0 ).2?E ~ uc 1.5lf ~ u5 4 13f ~ 06 0 ~ I. Z1E ul ~

CL Ic) 2 65t<45 1.42'5 a. 9 lzt: F 03 0 1. 41E ~ 01 0 ~ l. )ue ~ oc cE -Icc 2. I of ~ 01 4.29'6 tl ~ 5.61f ~ 05 0 4~64E ~ 04 0 l. I sf ~ Oa ltAScl) litt I tt<'.I/SIG IIEI.EASf ltAI C 0) tACU I SOIUPe Itl AIIO A VAI.UE OF I FOK 'X/I) ~ I)el'L E I EO X/0 Alttt RLL A I I VE ttCt'O'Sl I I t)tt tlul t Itic Utl 115 FUti 0 IC Attlt 0-- 3 Alit In)if)I/YQ I'tK uCI/Cu~nLfEKI

I Ct 0

Ettvtitontlfntat I'AtuuAY-DOSE CO<<VtRSlun Fal'.IORS It(1)/P(l) I'Olt CASLIOUS l)ISCIIAIIOLIS PatnuAY - 60Al S UILK ICOtl'tatltNAf EO FOIIAGE I acf GROuP - 1<<FAttt It<<i'L lot o il r, a n n o s E F a c I o R s lsn.nEIER-nufn/YR pER ucr/strl Uutlk Ltvfn I IIYIIOiu Ktottt Y Luttc GI-LLI SKI W 10 tAL UOOY n ---3 0~ 4.44EIOJ 4 ~ 44E ~ DJ Z. I IE tOJ 4 ~ ahk ta 3 4 ~ ahftUJ 0 ~ dhE ~ 03 V--- Jz 2~ I')E t la Ie)ltt09 0 ~ Oo 0 2.46E 09~ D ~ da hef ~ ob CR--51 0~ 0 ~ 2 I')L IU3 D.pit ~ DZ 4 F 45'3 9.19f ~ 05 a. 3.teEI03 nw--54 0. t.oaf F 06 0 3. zoE ~ 05 0. 3,.29E ~ a6 a. 2.05ftd5 tt--59 4 ~ I2f ~ 9.lamas 0 ~ a. dr 1zfi05 3 ~ 23E ~ De Di 3i 1ZE 05

~

Cur-51 a. l.i 4E ~ 05 0 ~ 0, 0 ~ h.isf toe 0 2 12E ~ 05 co--54 0. J ObE ~ 06 0 a.'. 0 1.92f ~ 06, 0 l.t.)E ~ oe Cu -60 0. I 05E tol 0 0- z.59E al~ D 2. 5l E ~ D 1 ltl--65

-06

i. ll.E t Ob 5 ~ 51 f ~ aa 0 ~ 3 l)t ~ Od a. 3 ~ 5IE t Ob a. 2 58E ~ Db AU b 3.32E ~ Dd 0. 0 0 6.54f Dl~ 0 ~ 55f ADD

~

tt

'SQ--09 Su--90 J. 09t lo 3.heft

~

I I 0.

0 0

0.

0~

0.

0.

0.

~

5 ll 3.35f E ~

~

Ob 09 0

0 ~

b bl f ~

b a3E ~ lo Ub VQ tD Y---')I '). 14E ~ 03 0. 0. 0 ~ D~ 6. 45E t 05 0 ~ 2. 6ok ~ 02 lit--'Is 2.54f ~ 04 i. I Jt ~ Oh 0 2 ~ ZJE ~ 0) 0 ~ 4.9SE t 06 0 o elk t 03 Itlt--.)5 I.59E ~ Oh 2.91 f ~ ah 0 5 alf ~ 03 d. 2 31k ~ Ol tl 1 5E ~ Dh IIII-IO) 9 96k ~ UZ a. 0 ~ h.')9E ~ 02 0 i.Zhf >ph Di J. h.if ~ OZ ltu I 04 2.hit ~ 04 D. 0. 5.tl4t ~ OJ 0. I alt 05~ 0 2- ')ot DJ

~

AC I I ott 1 45E ~ 06 6.90'6 0. I JbE ~ 01 0, dlk ~ U9 0. h. I of 06

~

uh tu UW I uci/stc llLI UAit RAII CF LArn tst'lut'k III httu a vfl<<L IIF i . I Ult x/It <<LI'I,t ten xl<<hnlt ttft Al I vt.

~ I)Et'O>I I lutt tlul k l ttf ttttl I 5 Flit\ C -- I 4 Attlt tl-- 3 hut I ltu ftt/Yg I ttt uci/Wu.ttklfnl

>>u I'"j oI Ll Et<V IRO<<ttf t(IAL PAW((I<AY-DOSE CDHVfRSIOtt I'AI IOI(S l((I)/I'(I) 1(ot( GhSL'0(JS l)ISC(lhl(GES PA Ill<(AY GOATS tllLK ICOI(/At(II(A(ED, FORAGt ( AGE GROUP - Il<F At(I i(UGL IOE O R G A Il O O S E F A C I O'R S ISa.<<EIER-<<r(f<</VR PER UCI/SEC(

otlt(E L lvER I tlv Ro I 0 KIo<<Ev L UI I G G I-LI.I /DIAL ODOM S<t-I Z3 0 0 ~ a ~ oe 0~ 0 ~ aa 0~

SII-126 2 1 of ~ nb 4. (7 E ~ O6 '1.22f<u6 0 ~ 5 91E ~ 05 I 40f <00 0, 6.SDE ~ a6 Sit- ( 24 3~ 30E(06 6 22E< 04 <9lt <03 0. 2-5( 9 3$ E<01 1.30E ~ OC So-(25 IE 125tl 4.316 1.49E al

'6

~

3.92t <05 6.36E(06 1

3.52E 05 6.21E<06 F 4.7et ~

0.46f. I 06 O5 ED 40E<ad 06 2 92E< 07 9.09E<06 0

a ~ 1 . 946' 05 2.5ZE<06 0 ~ 4 ~

I L I Z lit C.C4f 4( ~ 2.31f t 46 2 15E ~ 06 2.40E ~ 01 . 0 3 bdf. F 01 0 ~ 0.05f ~ 05 I f. IZ9<l 7.05E jul 2 42E ~ al 2.66E jul 3>>Z3f. <07 0 4 ~ 25E ~ 01 0 I 01E ~ al I-- I Stl 5.45'5 1.6 lt<O6 2 05E ~ tlb 2.5(i. <06 0

~

~ I 3bE ~ 06 0

~

~ 6 35E<05 I-"131 I- ISZ 3.11Eto's loE<09 1.19'Z 9.24'b 0 ~ I a 39f ~ 00 4~ 2.17E ~ 0<S 2.13E-a I S. 7 I f -o I 7-5IE ~ 0 I 9.10E-DI 0 ~ I ~ 01f-01 0~ 2 03E-Dl I--IS3 4.50E<07 6.5) E< Dl 55E ~ I il I. 55E ~ Dl 0 Ia llE ~ 01 Oe 99E ~ 07 I --I S4 0 0 ~ I ~ 21E-09 0 0 ~ D 0 4 ~ u 1--ISO I 79t<u4 4~72 i ~ 04 6.10E < o6 7.5(E <04 2 ~ 42E al 5.29E F 04 ao I. 7 sf. < D4 CS -134 I~ S IE I I

~ 2. 39E ~ I I a. I. 39E ~ 10 Z ~ 74f ~ (4 5.6IE ~ nb 0  ?. 02E ~ ln <Nt

>

CS -I SC d. 3<>> f ~ ub Z9E ~ 09 0 ~ I. osE ~ n9 2 ~ 51L< ad 3.74E ~ un 0 ~ 2. 316 ~ 0)

CS -137 I, lf

) <II 2.16E ~ I I 0 ~ I. I of,< 10 2 ~ 6(E ~ I a 5 '91. ~ Ob 0 I 2<>>t ~ I0 (IA-I<>>0 2. 95f. ~ Ol 2.96 E< 04 0. 1.41E ~ os I b)E 04 9.76f<05 1.526 o6 Ct -141 3. Ili ~ 04 1.95f. <O4 D 1.11E O3 < 0 ~

~

9 '4E<U6 0

0

~

2.2bf>>u3

~

I'E - I '>>4 2.'> ZE ~ 06 9. 95f. 05~ 0. c aaf. (tel/Gtt

~ 04 0 (.04'o 0 ~ I. Sit n5>>

IIASttt u<< I Ut;I/Sfc t(ELLA~t kA(f OF EACII ISOIOI E II( A<<o A;VALUE of I. foR x/a. oLI'Lflfo X/II A<to I(tl Allvt otluSI(lu<<

tl>>II t IIIL Uttg (s Foll c- - 14 At(It II 3 ARt ( ttREII/Yt( I'fk ~ IIE I t t(l

%g

~>>

?age 75 TABL""

Selectina the Appropriate Long Te~ (X/0) for Dose Calcu'at'ons Tnvolvina Noble Gases or:

(1) Total body dose from instantaneous releases (2) Skin dose from instantaneous releases (3) Gamma air dose (cumulative).

(4) Beta air dose (cumulative)

Type of Dose Limiting Limiting (X/Q) Value Calculation Range (miles) Sector sec/m3 Xns tan taneous-LCO 0.97 1.6 x 10 6 1/31 days LCO 0.97 1. Normally (X/'Q) ~ 1.6 x .10 6 sec/m Quaiterly LCO 0.97 2. Ray use option of actual mererolo-yearly '2 gical data for t'me of concern r Consecutive 0.97

-onths LCO Semi-A~ual 0.97 Hot Reoort e-'ore-1 The (X/Q)'as to be, calculated based on actual meterological data that occurred during the per'od of 'nterest. The sector of 'nterest is.HA because the limiting X/Q will oe determined

.rom the actual meterological data and may occur in any sector.

0.97 miles - Corresponds to the minimum site boundary distance in the north direction and 0.97 miles was chosen for al'ther sectors =or ease of calculations when the averaging is done :or'uarterly reports.

ODCN

a TA11LI'. H-2 Selecting tile Appropriate Long Term (X/(})D or (D/g) for Dose Calculations Involving Radioiodines 6 0 D Particulates for:

(1) Inllalation, (2) Tritium (All gas patllways), (3) Groun<l Plane Limiting Limiting Type of Dose Range Sector Calculation Hiles (OI.) (D/Q) 1/m Instantaneous LCO 0.97 NW I,l x lO g/N 1A 8,<x lO (quarterly for 0.97 h Seuliannual Reports 0.97 1/31 day'CO, 0. 97 1.5 x]O gtr - yearly I.CO, 12 consecutive mu>>tll LCO. 0.97 Q,2. x lo (Ol.) Over land areas only A. '1'o be deLermlned by re(luctlon of actulll llleL'ata occurriug durinp eacll uuarLer.

~ V PI IN IP

Page 77 TABLE ~-3 Selectinz the AooroDriate Lone Term (D/0) for Dose Calculations Tnvolvine Rad'oiod'nes a 8 D Particulates =or Grass-Cow-Milk or Grass-Goat Milk:

l Tvpe o Dose Limiting Lim'ing (D/Q) value Calculat'on Range Sector 1/m-

'Release Rate-LCO

":,1/31 Days LCO I

Quarterly-Yearly LCO

,.12 Consecutive

Months LCO

'Se '-annual Report A. The worst cow or. goat as per locations from land census. f no "ilk animal in anv sec".or, assume a cow at 4.5 'les 'n t'h e highes- (D/Q) sector over land.

B. The historical (D/Q) of all land sectors wi"n the wors- cow or goat from each sector as reported in the Land Census. A 4.5 mile cow should be assumed in the worst sector 'when no milk animal is reported.

C. The (D/Q) of all land sectors as reported in the Land Census. Actual met data should be used for the reporti g perod. A 4.5 mile cow should be assumed 'n land sectors where no milk animal was reported.

he h'storical wind frequency fractions for each sector are listed in

able .'1-8.

ST LLUCT.E ~~~li - ODCN

VI TABI,E H /I TERRAIH CORRECTION FACTORS

>-3 O

n>:

~

FLOftlDA PUufA At)D I.l/I)T Ctl ~

5 T ~ Lt)C IE t)N I T tilt TCII)ttsnt< ISLAHII FLDII Tna IIA)IES At)t) t)00)IE JAI) t)0 ~ I 45')0 - 112 TE)It)alt) CD)tt)ECTII)tt FACID)ts tt'I)FF I ST)ta)0)tT Llt)EI PE)t )no AF ttECufID I tlr2)r/I In Ar3lr7)I t)ASE t) tsTatJCf ltt )IILf5 r KTLD)IETFt/S AF Tt) DESIG)t SECT DIST

)Il

.25

~ 40

~ 75 I ~ 21

)

2 'l "2'5 ) ~

2.u2 75 2 '5 3 ~ hi?

2.75 4 '2 3 '5 5.23 3,75 '

03 4*25 h 04 7 75

/>4 t.lut.' ~ 1.9nh 1.5/6 I o4/>5 I ~ CAC 3'jt) 1.318 I 334 l>306 I ~ 346 I~ llo ttt 0 ~ 1.007 ).SI)l 4/> I I' 3') I I ~ 310 I . 25'3 l,)64 1.120 I I A) I ~ I I />

t'IIE o. I ~ 452 I.z )n I.)72 ).AUI 1.047 1.033 .941 ~ 906 .9n2 0 ~ I ~ /i62 ) F 425 I ~ 2/'/ I ~ )91 I ~ 151 I )23 1.0')7 I ~ I i? I I >) 2'l I l?d ESE n. ).t9O ) ~ 4)I'I I ~ ii) >) ~ I .?60 I ~ 246 1.190 1.134 ).n 34 I . 03i'. .9/>A st. n. I . t))A I ~ 6') I I ~ 470 ) F 427 435 1.361 1.366 I 311 1.279 1.2)9 ssF. o. ).tt)2 I i tit)h I ltn IIl)>' I 2/0 1,26.) 1.229 I ~ 19:I I ~ I 7.l 1.)SI s n. 1. 39h 1 ~:)?. I )-125 ~ Anl I ~ Ioo 1-127 I ~ 073 I 06;I ).n,7 I 024 SSu o ~ ).S34 I ~ 4) I I ~ ?9>> I I'/? l,?AS I ~ 132 1.135 ) > I lh ) .0'/7 I.nho Su n. I ~ 40'5 Ccj? I ~ i>94 ~ ).2'33 I ~ 2no I.2?2 1.160 I Ihn 1.19U I I')4 u'.iu 0 ~ I.t 2n I )1'I I ~ 21)I- I ~ I '/3 ).n02 ).n) I 099 1,056 I 034 I.AAC u 0 ~ ) ~ 651 I 415 1.?9A I ~ 2) II I )SC O'/9 1.001 1.067 1.091 I.nnl uttu n ~ 1,720 I ~ 4 lo I ~ i'.t'/ I ~ It)5 I ~ ISA I ~ 133 ) .125 I ~ 0t)5 ) .03') l,ncs ttu 0 1.60) 1.>.n7 I ~ 2'> 7 I ..)7:) I ~ 119 1.07U ) .OU3 9'35 .99U .9'/)I

)It tu 0 ~ I ~ 739 I ~ 4AU ).3)6 Ii>>?.12 I ~ I /2 1,122 1.)35 1.000 I . 0'/9 I ~ 0'I I tt 0 ~ ) F 016 I ~ 574 I ~ '3tl9 I ".205 I ~ 25/ I ~ 263 1.205 I ~ 267 1.23l I.i'I )

NOT)t l A))y l)IL'er))t)lUL)OIIs bl'I wee)I sLUte(I III'Ile/I),es will be IIo)Ie by .Io);-lo);

lAIILr. H-5 IIXSTOltXCAI. LONG i'EliH (X/ ) (fre nenc corrected)

TCIIIIAIt) I IIFCIACULATlntt AIIJUSII I)

PIIOGIIA<I Attrtxon9 vEttslott - I lzlnrr6 Fl.At)it)A PALEA AHO LIGIIT Cn.

5'I ~ I.I)C IF. VIII1 l IIUTctlltlsntt I 5I.Atto f'l.ntt I AA

~

I)A)ICS At)0 IIOOOC JOI) IIO I 4598 - I 12 AVCIIAGC AWtIUAL IIELAT IVC COWCEWTOAT IOII )SEC ~ ICUOIC IIETEA)

PEnlon nf IICtottu I 9i Irr6 10 Ar3Iirn OASE OISTAIICE III IIILFS / KILOHETETIS AfTn I Gtt SECT OC 5 l)IST 25 15 I 25 I <75 2 '5 2 'S 3.25 3 ~ 15 4 '5 4 ~ 15

'4 III

~

<40 I

~

.7l 2.0l Z.A2 3 '2 4 '2 5 23 6 tlat

'3 F 04 7 n<<E o. I. If.-05 I.1C-06 I.nf.-nr 4.'SF.-01 3, IE-07 2.2E-or I.1E-07 I ~ 5E-07 I ~ ZE-07 I.oC-or

n. 1.3f-ns 2 IE-06 0-')C-01 5. IC-01 3.4E"01 2.4C-or I.TC-or I ~ 4C"07 I ~ IC" 07 9.nC-oo E'.

Uf; ~

CIIE o. 9 3E-06 I.4f-ot< 6.2C-or 3.1E-or 2.5C-01 l.9c-nr I.JE-or I ~ IE-01 n<AE-nn 1. IE-OII 9.nt-o6 I . 6l:-06 6. Sf.- 01 1. TC-0 1 Z. SC-01 l.nE-or l.4E-07 1.2E,-Or 9.9f'.-00 0 4F.-OA CSE 0 ~ I.7C-05 l.vf.-o6 A. If.-07 4 nf.-or ~ 3.2C-01 2-4C" 01 l.nE-o1 I.4C-or I. IE-or ).nf.-oo SC 0 ~ I.4L-OS 2 ~ 4f.-06 9, rf;-01 5~ rf:-01 of-or 2. 9E-0 1 2. 3E-07 I <')F."01 I ~ 4C-07 I <2t-01 55E n. I ~ II'-05 I . )f -06 1. 3F:-01 4 3L'-01 2<')C-01 2.IE-01 I ~ 6C-01

~ I ~ 3E-0 1 l.lf.-or 9.IC-on 5 0 ~ 6.2f.-06 I.nt-o6 4.2F.-O) z.sc-or, I.AE-01 I. E-or I.nc-or A 0E"00 6 'E-00 5.SC-oo

~

554 0 ~ 5 ~ 1L-06 9.oF.-or 4.nc-or z.lt.-nr I.6L-OT ITIC-01 0.9C"00 7 'E"On 5 'l.-nn 4.0C-un S<t 0. 6. I f.-06 9.4C-or 3.9C-or 2;7C-01 I.6C-or I. IE-or 0.6C-oo 7<OE-00 6 ~ OF-00 5. IC-On vstt n. 7 lt-06 I IF.-06 '< 6F-01 Z 1C-01 I TC-01 I,3E-07 I OC-07

~ ~ ~ ~ < ~ O<OE-00 6.5C-OO 5<4E"00

n. 7.6C-06 I 2C-06 5 2E-01 2.')f-01 2.OE-or l.3C-07 I.OC-01

~ ~ 4E-00 1.2E-OO 6.IC-OO M<IV 0 ~ I.4f"05 2< IF.-06 ') ~ lC."01 S.ZC" 0 I 3 'C-07 2 6E-01 2 'E-07 l<SC-07 I ~ 2E-07 I ~ AC-01 ltu 0. I ~ f<f -05 2.IF.-n6 l.of.-n6 5. )c-0 1 3-<)C"07 2.0E-07 Z. IE-01 I.7C"01 l,4E-AT I'E-07 I ttlu 0. I ~ 5C-05 2.2L'-06 ').6C-01 S.SC-or 1.6C-O) 2 'E-01 2.0C-O) l.6E-01 I <3C-01 I'E-01

n. 9.lf.-A6 .4f.-06 6 1f.-n I '3.6L-O ) 2 At"01 I AE-07 1.4C"07 I'E-07 9 'E-00 7.')C-Ou

'I

~ ~ ~

ttt At)If'll Of vAI. IO nl)SCnvAT lntts I 1 I 35

<>ntftt Of It)VAI.IO nllSEIIVAIIl)Its 3)IS Ittt<<IICII Ol QAI.)ts.l.nvf It Lf.vtL 95;. ~

~ III>>I)It)I OF cAL)ts ltl'PC)I LEvCL 5<<

NO'l'E l Any 9nterpnltttfono between otatetl mlleageo will be done by log-log

'fhDLE kf-6 IIISTORIGAL LONG TERN DEPLE'fED (X/A)D (fre uenc corrected /se2 TEN(t4(N r >IF CI(iCuLAI ION AO)uS(LO I>RU( I(AH At(NXOQ ) vf itS ION - 11/I or 76 I'(.OII I(IA I>ouER At(t) I. IC>til CD.

57. LtiCIE Iinl 7 1 II(IT C>II((SON I SLAt)D > Lntt I(IAf -

DAI(f5 A(ID HUO(tf JUU IIU ~ I 59U 112 AVE))AGE At)ttt)AI. (IfLAT IVE CONCEII(t)AI IUN DEPLElEI) (SEC/CuulC )IE(ftt)

PElt I 0() Of (IECOIIO ) 9/ I'/76 10 tt/31/1)3 i)ASC O(S(A(iCE (N II(LES / I(ILO(4L(CI(S At II) OESIC>ti SEC( DISt ~ 25 ~ 15 I ~ 25 I ~ 75 2,?5 2 ~ 75 3.25 3.75 ,4>25 4 ~ 15 II I ~ 40 1.21 2.AI 2.u2 3.62 4 ~ 42 5.23 6.03 6 ~ 04 1.64 IUJC 0 ~ I. IE-O5 1.6F.-06 6.6f:-AI 1.0E-01 2.4E"07 I ~ 76-07 I 3E-A7 1 IE-07 9.2E-no 7 ~ 6t'-ou tif 7.tl:.-ol 4.3E-AI 2.nc-ol L'.

t IIL LSE 0

0 0

~

1.2E-OS 1. 1(.-06 0.')C-at I 2f-06 9.) t.-ah I..\t-nh 1.2L-05 I.t f-ah 5.3f-nl 3.of.-ol 2.0E-07 5.61 -0 I 3. It.-a 1 .2. ) f-07 6.9('-nl .7.9F.-nl 2.( E-01 I >9f:-01 1.4E-01 I.> E-ol I.of-ol 1.5L-01 I )E-07

~

1.')E-07 I . 4t:-07 1.1k:-07 0 ~ hf-00 1.4f-un 0.4E-ou 6. (E-nt> S.t E-00 9.1E-OO 7.!>I -an 6..)L -Uu I ~ IE-07 0>SC-AA (I ~ ll -00 Sf n. 1.3(-AS 2. I)f.-06 0.2(:-ul >>. I(;-Ol 3.3(.-O1 2.3E-01 I.ut.-ol I ~ 3E-ol I ~ 'I t -07 9.01 -o>I Sot 0 ~ (-11.-05 I . )C-UI) ti 3(.'-ul ~

~ ~ 3 .'if.-07 2 4C-01 I .IIE-07 I 4E "01

~ I ~ OE-07 It. 2E-nu 6.0C-OU 0 ~ S.9C-A6 9. It.-07 3.t)t.-nl g,)C>>OI ).>>C 01 'I IE-07 7 I f.- 0 >I

~ ~ 6. 2E- 0 0 5.af -ou 4. It:-UI>

SSu n. S ~ 4t -0(i U.nc-ul 3.4c-nl I . 9c>>u 7 1. 3E -O'I A.')E-0(I 6.9f -OU 5.5E-AU 4.:)I -00 3 ~ t)g -uu Su 0~ 5-7K -06 OS 4E-AI 3 4l.-nl I .I)C->) I I 2f -07 9.21. -OU 6.7t. OU 5 'C 00 4 i t>t'-00 1. I) F. - 0 >)

usu n. 1-OE-06 9. I)E-01 ' OC-07 2.2C-O7 I~ 4(-nl I ~ UL-07 U.AC-AU 6> IE-00 5 0K-au 4 'L-au

~

>I 0 7.3f-oh 1. IE-06 4.4C-O7),2 ~ 4C nl I.t,f 01 I . I f. -01 0.2t:-00 6.4E"00 5.5t'-nu 4 4f, -0>>

~

uNu n. I-3L-O'S I ~ >it -uh I.'if'-n7'.4f-nl 2.9(.-0 I 2.0E-07 I.ht."07 1>2E-07 9, lf-AO 1 >) I:-nu

>>. 3L'-0 I I lf"U1 I 3L'"01 I ~ OC-O'I It SL OU

~

I tu 0 ~ I ~ 5t 05 2 lf-ah I).9t:-nl 4.')I -01

~ 3.1).-UI ~

i>>iu O. I . 4('-A5 2, IE-uh u..')t:-n'I 4;st.'1 2.')L-01 2.nt:-01 1.6t;-ol I.?f.-ol I.nf-ol tt . Iit: - 0 It ti 0 ~ 0.1(.-nh ) . lf-nh 5.4('-OI ).bf-nl 2 'E-07 I, >>E 01 I.IL-07 0.)C-OU 7.nf-ou 5, >)t.-ou tu>>tl>t'll Of VALI() OIISL'(IVAI IONS I I I ')5 NI>>I(iL)t Of It(VAL(O Oltst(IVA( l>>ti5 = 3I)'i tn>>IIIC)t Of CAL>iS t.u>IE(I I.f VFL ')5 Iiuilt)L(t Of CAI.IIS I)l>t>EI> LFVt'L 0 HO'I'I; I hny interpol )tloi)s between stuted mlle()I,'es will be done by 1I>I;-lot;

V>

nI. I I<l IIISTORIChL LONG TERM (D (fre Uenc corrected) /R2 TtlulAIN / l<FCIIICULA1ION AOJUSlfll I>uufIIAII ANNxooo vENSIAN - II/lo/)6 FLOII IQA Pouf fl AN!I L IGIIT co ~

ST l.UCIE UN11 l IIUTCIIINSON I SI.ANO ~ FLOII IOA l)AIIES AND lloollt Jnll No. I 45')u - 112 AVEOAGE ANNUAl. AEI.AT Ivf IIC! OS I 1 ION liATE ISOUAlIE NE1ETI -I I I'LII 00 OF. TlfCnllo 1 9/ I /I4 Tu u/31/70 UASE NISI AIICC IN I!ILES / KILO<<t TENS AfTII l)tSIGN Sf CT Dl Sl II I

~

~

i5 40 75 I ~ 21 I 25 2 ~ ol I ~ 75 2.02 2 25 3.62 2 'IS 4 ~< 2 F 25 5>23 3 '5 6.03 4

6 '425

~ 4.7'.i

7. I <.

NNE n. I>.SE-OO 9.1C-A9 3 'll "09 2 ll.-A9 I 3L "0')

~ ). of-In 6 ut-I 0 5 ~ SE-I 0 4 't-10 3.!if- I 0 NC 0 ~. 6.0E-nu u.9f-nv 3 'St-0') I >9E-09 1,2C-09

~ O.IE-lo 5,4E-IO 4 ~ 3E-10 3.3E-10 2, nf.- I 0 LNE 0> 3.2E-ou 4.uf-09 I.')I:-09 I.nC-o9 6.6f-lo 4 ~ 6E'- ln 3.2t-ln 2 ~ 4E-ln I ~ 9E- I 0 'I .Sf -10 E. n. 3 'L-On '>.4F.-09 I.uf-09 9.5E-.III 6 'E-Io 4 ~ ZC-10 3.1E."IQ 2.<iE-IO 2.AE-IO 1.6C- ln ESC 0 3.7E-Ou S.uf-n'I 2.3l -nv I.ZE-A9 U>nf-Io 5 4C-ln 3 ~ 9F-10 3.0F.-IO 2.2l.-ln 1.7E- I n 6 'L-nu .1>AE-ou 4.0c-n) 2.ll;-09 1.4t'-n9

~

Sf 0 9. )E-In 7,2L'-10 5 6F.-IO 4 ~ 3t-I 0 3 5E-I 0 SSt. 0 ~ 6.2E -ou 'I.!iC-u') 3.4f.-oo 2.of -o9 1.2f -0') u, 7l.- I 0 6 4F."10 4 ~ 91.-10 3 ~ 9L-10 3. If-l0 s n. 4.2C-OO 7.AF-09 2 Al:-0') I At',-09 9.5E- I 0

~ 6 9E-I 0 4.9f-lo

~ 3.of-lo 3.0E-IA 2.<if- ln SSu 0 ~ 3.4f-oo 5.< E-n) 2.2f-o) I;IE-n9 7.5E-IO 5.0E-IO 3 ~ IE-lo 2 9E-10 2. 3E-10 I.OL-I0 Su n. 4.5f-nu ).nf-o) 2.4C-09 1.5E-09 9 'E-10 6 'E-10 4.6f-lo 3 6E-lo 3>nl.-ln 2.5L-IA

~

I u 0 ~ S.nf-nu 7.5f-o9 3.0I-,-II) 1.6E-09 9.I!f -I 0 4.'lf -10 5.0L-I 0 3.Elf.-l 0 3.2f" IO 2 AC-10

~

6 uIIu n. II. OE -0 0 I . 3!:-Au 4. 9l;;0') 2. 6f -09 I. )C-09 I lf-09

~ O.)E-IO 6 6E-IO 5.1E-IO <<. ZL'- I 0 Nu 0 ~ 0.2f-nu 1.2f-oil 4.)l:-o) 2.5L'-no I . bE-0') I ~ IE-09 7 ~ ')F-10 5 ~ uf-10 4>7E-lo 3. OF.- I 0 NIIu 0 ~ II-?f-ou 1.2f-ou 4 t C-O'I 2.4C" 09 I ~ SC-09

~ I IE-0') O.lf-lo 5.9f-lo '< ~ ul.- I 0 nf 10 II 0 ~ S.lt-ou 2 3F-o9 2.9f-uv I >) i<f-09 ') uf I 0 ~ 2.1E-IO 5.4E-IO 4 2E-lo 3.2E-IO 2. )F.- I 0 IIII<<IIf II Of'ALIO OUSEI<VAT 1nNS I 7 l 35 NU<<IIEI< nf INvALID llus>t'IlvAI ION 5 a '3>>5 Inl<<III:Il Ol CALLS l.ouEII LfvE'L <: 95 NIAI>>tu Ol CALI<5 Ul>l'Ell I.I.VCL = 0 HOTI.' hny interpolations between stated lnileaI',es will be done by loI;-I,ol, /I!2

?age 82 D,3L" if-8 JO! HT 'NO PEOUENCY 3]S ~ !5LII ]ON Oc TA oc '>70 c SEoTE'SE>> j o ]976 AUGUS > 3) ~ 1978 g ]NOS 5 . ~ L>JC]E UN 1 GAIA SO<>PCE:

'i lNO Ot'-S]TE HUT w )N50N '. Sl AHG ~ c LOP '>OC

"=LGnI: 10 ~ 00 4cTERS Fl 0>> ]0>> PorEP>>NO >~ 1 ovI CO I '8l 5 vEN

'<Si>c>

l< c.:: . L2/05/78 ~ 07 ~ 42 ~ 18 ~ OA>>ES ANO io c. Job No: '98 -

~

1 )2 - Z7 v]NO w]NO 5PE 0 C>>T GO% j S(NETEPS SECQNO)

SECTOP 0 0 ] i5 1 ~ 5 3 0 3 ~ 0 5>>0 5~0 7 ~5 7 ~ 5-10 ~ 0 > !Oio TOTAL SPEEO NNE F43 71 1 ~

ZO5 25 318 1 ~ 92 ~

7) 43 ~ 02 3

0 00 0 eo9 4 F 05 3 '2

'3

~

52 3)L 292 1+77 385 Zo33 128

+77 0000 0

0000 5 '5 867 3 ~

! 057 c'Nc'"SE

~

50 36 2 '2 334 505 F 06 15o

~ 96 0000 0

0 F 00 ei>>0 3 Sl

)010

~ 42 eo 352 2>]5 3 '9 510

~

76 46 0>>00 0

0 F 00 0

6.!] 3+25 684 44. 72 1616 3 04 4 '0 115 7 1 0

~ 70 4 ~ j4 ~ Ol 0 F 00 9 ~ 78 183 660 749 28 0 0 620 2.88 1> ll 3 ~ 99 4o53 ~ ]7 0 F 00 0 ~ 00 ~ 81 l45o 3o)0

]29

>7S 3 '0 579 3 '7 656

.56 93

.oI 0 ~ OO 0

F 82

~

72 4>>

310 1+88 407 2>46 .60 99 F 05 8

.0!

897 5 F 43 3 '6 esp oS) 84 2 '5 372 4we 2+70 lo5

~ 6>> ~

33 20 ~ 02 5 '2 1044 F 48

)4

,Sv !29

+IS 2 440

'o 2 '3 335 106

~ 64 F 08 0 00 0

5 '0 1025 3 ~ 10 j55 320 ]85 29 5 0' 695 F 59

~ 9>> l>94 1 ~ 13 ~ !8 ~ 03 ~ Oo 1'74 257 119 37 2 0 599 2'43

)>05 F 62 ~ 2 ~ 22 oO]' 0 F 00 3.63 ~

J 304 695 .-2.34 203 1.23 1 +64 172 1.04 o 17 10 0 F 00 Oooo 0

4 '1

'2.85 143

~ 87 3 '< )8 424 2 F 57 ~

co 30 0 F 00' 0

0 F

~

00 1]35 6 '7 3.22 NN>>

oS]

P.5 2 '9 379 535 3 ~ Zc ~

70 42 .Ol 0 F 00 LO7O 0 ~ <<4

>5" 91 1 ~ 17 531 3+2]

)48 e90 ~ 03 0 F 00 0 959 Sade 3 '9 CAL> 99 CAL" 7 F57 TOTAl.

'l 1920

, 6214 7023 )287 73 5 16 i522 3.) 0 l o2~ 37 ~ o 1 42.51 ~ 44 F03 ]00 F 00 NU oEP 0 TOTAL NU>>8 VAL]0 OSSEPVAT]n>~S !6 0- L.'OVAL]0 0> SERVAT]ONS OF 0 5 >Ii>47!ONS ]7520 22'U<i-P 5 '0 94 30 PCT 100 ~ 00 PC>

PCs

'<EY ZXX NV~Sco OF OCCUPPENCES xzz >ERIC- N'I OCCURP NC 1 Totals below are given in nours for wind frequency by sectors.

~e percent ST LUC'5" PLANT -ODC'A

Page 83 APPENDIX 2 Limited Analysis Dose Assessment for Liquid Radioactive "= '= 1uents The radioact've liquid effluents for the years 1978> 1979, and 1980 were evaluated to determine the dose contr "out=on or tne radionucl'de distr.'bution. This analysis was performed to evaluate the use of a limited dose analysis fo determining environmental doses. Lim ting the dose calculation to a few selected radionucl'des that contr'bute the majority of the dose provides a simplified method oz determ'ning compl'ance with the dose Limits of Technic 1 Specification 3.11.1.2.

Tables B-l and 8-2 present the results oz this eva'u? tion.

Table B-l presents the fraction oz the adult total body dose co..t".'buted by the major radionuclides. Table S-2 presents the same data =or the Adult GI-LLI dose. The acult total bocy and adult GI-LLI were determined to be the limiting doses based on an evaluation oz all (adult, teenager> ch ld> and 'nf nt) and all organs (oone>

age groups live"., kidney> 1> ng> and GI-LLI). As "he d? ta. in the tables show, the

?d o luclides "e-59 >

Co-58, Co-60, Zn-65, Cs-13<> and Cs -137 dom 'ate the ".otal body dose; the radionucl> des, ":e-59, Co-58, Co-60, Zn-65> and

>Nb-95 dominate the GI-LLI dose. In al'ut one case (1979 zish>

GI-LLI dose) these "adionuclides cont= bute 90'. or .ore of the total dose. If for 1979 the fish and shell= sh pathways are comoined as is done to determine the total dose> the cont=ibut'on from these nucl'des is 847. of the total GI-LLI dose.

There ore, the dose commitment cue to radioactive mate".'al liquid e==luents can be reasonably est.'mated by limiting he dose calculation to the r dionucl'des, ""e-59, Co-58, Co'-60, Zn-65>>lb-95>

Cs-134> and Cs-137> which cumulatively contr'bute the ma j'ority oz he total dose calculated by using all radionuclides cetected. This 1'mit d analysis dose assessment method 's a s'mp'ified ca'culat'on th - prov>des a reaso.. ble evaluation of doses cue to 'iquid rad oac- 've e fluents.

-ODCM

Tr'tium is not incluaed in the 1'mited analysis dose assessment

"or liauid re eases because the potent'a dose esu' ng =r"m ".."".="'e ctor releases is negligible and is essent'al'y independent'=

radwast syst m operat'on. The amount oz -"t'um ". 'eases annually is about 300 c ries. At St'. Luc'e, 300 Ci/yr releases to the Atlantic Ocean produces a calculated ~hole body dose of 5 x 10

-7 mre=/yr via the fish and shellfish pathways. This amounts to less than 0.0017 oz the design objective dose of 3 mzem/yr. Furthermore, the release o" t=itium is a zunction of operating time and power level and is essent'ally unrelated to radwaste s'stem operat'on.

-Oi C'iI

Paoe Taole B-l Adult Total Body Dose Cont" butions F.act.on oz otal 1078 1979 1080 B.ad 'onuc'de rish S'ne'1:'sh "'sn Shel'"'sh C ~ ~ Shel 1='sz Co-58 0. 08 0. 27 0. 06 0. 28 Q. 02 0. 05 Co-60 0. 05 0. 19 0. 03 0. 15 0. 20 0. 44 Fe-59 0. 10 0. 25 0. 0.4 0. 13 0. 15 0. 22 Zn-65 0. 01 0;10 0. 02 0. 19 0.04 0. 20 Cs-134 0. 31 0.07 0. 46 0. 14 0. 27 0.04 Cs-137 0. 42 0.10 0. 38 0. 11 Q. 30 0.00 Total 0. 97 0.98 0.99 1. 00 0.98 0.99 Table B-2 Adult GT.-LLI Dose Contribution Fraction o Total 1978 1979 "1980 B.adionuclide r 'sh S"ne'=ish r'sh Shell= sh ish S'ne'=ish Co-58 0. 03 0.36 0. 25 Q. 44 0. 01 0. 07 Co-60 0. 02 0. 23 0. 12 0. 22 ~ 0. 05 0. 57 Fe-59 0. 03 Q ~ 31 0. 16 Q ~

10 0.04 0. 29 Zn-65 0. 01 0. 02 0. 01 0. 05 0. 01 0. 04 Nb-95 0,89 0. 01 0. 0.01 0. 88 0. 01 Total 2'.

0. 98 0. 92 75 0.90 0. 97 0.97

+age R5 A2PZNDlX C Technical 3ases for .==ective Dose ".ac=ors Overview The eva'uat'on oz .doses due to'eleases o= radioactive material to the atmospher can be simplif ed by the use oz eff c 've dose transfer factors instead of using dose factors which are rad'anuclide specif'c. These effective factors> which a e,based on "he typical rad'onuc'de dis ribution in .the releases> can be applied to the total radioactiv.'ty released to approximate the dose in the environment, ie, instead og having to sum the isotopic distr bution multiplied by the isotope specific dose factor only a single rad=oactive mate

'ff mult'plicat'on (K f, M efff or efz ) times the total qua..tity oz ial iM

.eleased) would be ne dec. Th's approach provides a reasonable estimate of the actual dose wh'le eliminating the need for a detailed calculat'onal technique.

Determination of Effective Dose Factors The e =ective dose transfer zactors are based on pas- ooe a" ing, ~

data. The radioact've e zluent dist=ibution for the past yea".s -"can be used to derive single e>> ective factors bv the fo 1 lowing equa ions.

K where K f the ezfect've total body dose zactor due to gamma em ssions f=om all no'ole gases re'eased K the total body dose factor due to gamma em.'ssions zrom each noble gas rad'onucl'de released the, fractional abundance oz noble gas radionucl'de i is of the "otal noble gas radionuclides

~age

('- + l. l M) = g (L.. '.1 1

H.) (C-2) where (L + 1.1 M) ef=

= the effective skin dose, factor d e "o bet and gamma emiss'ons from all noble gases released (L + 1.1 M .)

L

= the s¹n dose =actor due to beta and gamma emissions from each noole gas rzd'onuc lide i released M

eff M~ . f.

where M eff

= the effective air dose factor due to gamma emiss'ons from all noble gases released M . = the air dose factor due to gamma emissions from each 1

noble gas radionuclide i released N c>>=

eff 7 N

+ i i '(C-4) where N eff z+

= the ef=ective air dose actor cue to beta emissions from a'1 noble gases released H. = the ai" dose actor due to beta em'ss ons. f=om eacn '

noble gas radionuclide i 1 To determine the appropriate e =ect've factors to be'sed and to evaluate the deg ee of variabil'ty, the atmospher'c "ad'oact've e =luents for the past 3 years have 'oeen evalua ed. Tables C-1 and C-2 present the results of th's evaluat'on.

As can be'seen rom Tables C-1 and C-2, the ef ect've dose trans"e>> factors varies little from yea" to year. ::he maximum obse ved variab il'y from the average va, lue is 18'. ~ This va zb -' ' m nor considering ot..er a" eas of uncer "ainty and conservat'sm inhe ent in the environmenta'ose calcu'at'on models.

-07)CM

Page o provide an additional degree of conserva" ism, a "actor o=

O.B .s introduced into the dose calculat.on . process when the ef=ect've dose transfer factor is used. Th's added conserv tism provides addit'onal assurance tha" the evaluat'on oz doses by the use of a. single ef ective z ctor w.'ll not significantly underest =ato any actual doses in the environment.

Reeval a"ion The doses due to the gaseous e luents are evaluat d by the more detailed calculation methods (ie, use of nuclide spec.'f"c dose factors) on a yearly bases. At this time a comoarison can be made between the simpl:fied method and the detailed method to assure the ove all reasonableness of this limited analysis approach. lf this comoarison indicates that the radionuclide distribution has changed s'gni.ficantly causing the simplified method to underestimate the doses by more than 207.i the value of the ef ect've factors will need to be reex mined to assure the overall acceptab'l=ty oz this approach. However, this reexamination will only be needed 'f the doses as calculated by the de "iled analysis exceec 50"'. of the desig>-

bases doses ( ie, greater than 5 mrads gamm air dose or 10 mrads-.

beta air dose).

En any case, the appropriateness of the A value will be periodically evaluated to assume the applicability o a singl e- oc"'ve dose factor. =or evaluating environmental doses.

>T LUCY~ Pl.~ -() 7'C N

Table C-1

""ffective Dose Factors Noble Gases Total Body and Sk~ Doses veer .Total Body Effect've Sk'n "=f=ect.ve Dose "-actor Dose "..actor eff (~-:l. m) 3 3 mrem-m mrem-m WCi-vr uCi-vr 2 3 1978 7.3 x 10 1.4 z 10 2

1979 7.4 x 10 1.< x 10 3 3

1980 5.6 x 10 1.2 x 10 2 3 Avg 6.8 x 10 1.3 x 10

Page which yields a 1 mit'ng total 'nventory oi app ox'mately 43>000 Ci.

By assuming a typical rad'onuciide d'st"'but'on an equivalen" Xe-133 invento~ can be determined. Table D-l prov.'des the typical radionuclide (noble gases) dist 'but'cn and the Xe-133 equivalent concentrat'on. The equivalent concentrarion is determined by multiplying the radionuclide concentrat on by ehe ratio of the nuclide total 'oody dose actor to the Xe-133 tata'ody dose factor.

Summing a'1 the ind.'vidual radionuclide equ-valent concentrations provides the overall reactor coolant Xe-'33 equivalent concentrat.on.

The data show that the equ valent conco. =ation s a factor o 2 larger than the gross concentration (ie, 24 'Ci/gm total versus 47 Ci/gm equivalent. The resulting Xe-133 eq" ivalent curie inventory of the reactor coolant system is aporox'mately 86,000 C'.

Page 9 There=ore, even iz the total primary systm at the zaz='mum ech n

Soec a'lowable concentrat"'on was degassed to a s'ngle aste gas decay tank, the tank curie inventory would be we'l below the 285)000 Ci limit. Based on this evaluation; the curie inventorv limit on a single waste gas storage tank cannot exceed the Technical Spec 'ication reau'rement.

Ta'ole D-l Reactor Coolant Xe-133:- =" ect 'e Conc ..Crat=on Rad. on@el ide Reactor Coolant+ Reg Gu ce 1. 109 Rat. o Ze-133 Concen~ ation 'j'Total Body Dr. 'TB DP ~zzect~ ve

.(yC'/gm) mr em/. -. . Xe-133 Dp. 'Concent>>et'on

('-'Cf./ pm Kr-85m, "0. 19 1.2 x 10 4 0 78

0. 83 1.6 i 10 0;06 . 0.05 N." -87 0.16 5.9 x 10 20. 3.2 Kr-88 0. 31 ~ 1.5 x 10 52. 16 Xe-13 lm 8.8 9.2 x 10 0. 32 2.8 Xe-133m 0. 20 2.5 x 10 0. 86 0 17 Xe-133 12. 2.9 x 'L 0 1.0 12.

Xe-135m 0. 11 3.1 x 1 Q 1 2 Xe-135 '.2 1.8 x 10 6.2 Xe-137 0. 02 1.4 x 10 Xe-138 0. 12 8.8 x 10 30. 3.6 .

Tot 1 24.

k Data adapted Crom the NRC GA>~ Code

v)

APPL'Ht) IX I'.

RADIOLOGICht. EHVIIIOttHEHTAL SUR)EILLAttCE ST. LUCIE PLAHT Key to Sample Locations Sample Col lection Approx tmate Olr<<ct ton Path~ay Location Description Samples Collected Frequency Distance (mlles) Sector DIRECT RAOIATIOtt Horth of Ollnd TLO quarterly I H Creek DIRECT BAO I AT I OH HtN-5 South of Pete Stone 'LD 'uarterly 5 Creek DIRECT ttAOIATIOtt tttN-10 C. G. Qtatlon TLO qua r ter ly HflW DIRECT ltAI) IATIOtt tN-5 Indian River Or. 9 TLO quarter.ly Rlo Vista Or.

DIRECT RAOIATIOtt HW-10 Intersection of TLO quarterly 10 Hit Slt 60 an<t SR 607 OlltECT BAOIATIOH WttW-2 Cenietary Soutl> of 7107 TLO quarter ly WIN Indian It iver Or.

I) IRECT RADIATIOtt WttW-5 US-1 9 SR 712 TLD quarterly Wttu OlttECT IIAOIATIDtt tttN-IO Stt 70, W<<st of Turnpike TLO qua r t<<. r I y 10 ltttW OlttECT RAOIA[IOtt ~ W-2 7609 Indian !liver Or. TLD iluar Carly I) tttt'CT ttht) IATIOH lt-5 Oleander and quarterly Sager Sts.

I) lttECT ttAI) IAT IOH W-10 1-95 anil Stt 709 TLD qua rior I y DtitCCT ttAOIATIOH WSW-2 0503 Indian Illver Or. quar t<<rl y IISW 0 lttECT RAO Ihl'IOtt WSW-5 Prlnia Vista Ulvd. t~ TLO quarler ly WSW Yacht Club

c' IH tu

~

u APPL?Ht)IX E (co>>ti>>>>ed)

I I

O RADIOLOGICAL EHVIROt0tEHTAL SURVE ILLAHCE ST. LUCIE PLhttT Key to Sample Locations Sample Collection hpproxtmate Ulrcct ion Pathway Location Description Samples Collected Frequency Distance (cities) Sect.or DlttECT lthDIATIOtl WSW-10 Oel Rio and Davis Sts. TLD quarterly OlttECT RAD IATIOH SW-2 9207 Indian ttiver Or. TLD quarterly OlttECT lthOIATIOH Slt-5 US-1 and Vil I age TLD quarterly 5 SH Green Dr.

DIRECT tthOIATtOH Slt-10 Point St. Luclc TLO quart.erly 10 Blvd. and Cairo Rd.

t) IR" CT tthOIATIOtt SSlt-2 10307 Indtaii River Or. 'fLO quarterly UlttL'CI tthDIATIOH SSW-5 Point St. Luc le fLD quarterly t)1vd. anil US-I OlttECT Rht) IATIOH SSW-10 Pine Va1 I ey qua r ter 1y and ltcstrnorcl and Rds.

TLU'LD OlttECT RADIATIOtt 5-5 13179 Indian ttivcr Or. quarterly DlttECT ftAOIATIOH S-10 US-1 and Stt 714 quarterly 10 DlttECT Rht) IATIOtt S/SSE-IO Indian River Ur. TLD quarterly 1U and qua I 1 ttun Lane 0 IREC'I RAO I AT IOH SSE-5 Entrance of ttcttles TLD ituarterly Island I) lttECT fthDIATIDtt SSE-10 El 1 lot ttuscum TLO quarterly. 10 DlttECT tthl)lhflUH SE-1 South of Cool in9 T).D quar ter ly Canal

C<

lu

// 'I AP1'EHI)IX E (continuect)

Q C7 itAO IOLOG ICAL EW I IIOINEI'TAL SUItVE ILLAIICE ST. LUCIE PLNIT Key to Sample Locations Sa<npl e Collection Approximate Dir<<ction Pathway Location Description Sa<nples Collected Frcqucncy t)i stance (<nl les) Sector D IIIECT IIAO IAT IOII II32 U. of Florida - IFAS quarterly Enten<OIOgy Lab, Vere Oeach Al tt00ftIIE IIOO FPL Substation . -Ita<tiolodlne and

-Wcatherby Itd. Part I cul a tos weekly Wttw A I tt OOIIIIE II12 FPL Substat,ion -Itadiolodine and 'eekly t2

-Sit 76, Stuart Particulates A I AOOIIIIE Ilt4 Ons Itc -Itadioiodlne and weekly

-near south Particulates property line A I IIOOftIIE II30 Power Line -Itadioiodinc and weekly

-7609 Indian Itivcr Or. Particulates A I lt 00IIIIE II34 Ons I te -itadloiodtne and wcckly 0.5

-at Iteteoroiogtcat Part,iculatcs .

Tower WATEItooltIIE ill 5 Atlantic Ocean -Surface water weekly L. IIL/L/LSt vicinity of public .(oc<<an) b<<aches east. side of -Scdi<ncnt. fron

!toute AIA sliore I inc WATEIIIIOIIIIE II59 Itcar soul.h c..s of -Surface water <nunthly IU-20 Ilutchinsun Island (ocitan)

-Scd i<ncnt trom s I<o< c I inc Ocnotcs control sample

AI'I'I'NI)IX E (contgnrrc(J)

RADIOLOGICAL EIIV IROINENTAL SURVE ILLAHCE ST. LUCIE PLAnT Key to Sample Locations Sample Collection Approximate lllr<<ctiun Pathway Location Oescr I pt I on Samples Collected Frequency Oistancc (inllcs) S<<ctur FOOO PROOUCTS ll15 Ocean side -Crustacca srnni-annually <I ERE/L/ESE Vicinity of St. Lucie -Fish . soni-annually FOOO PROOUCTS IISI Offsite near north -I}roarl leaf monthly rr/IIrrr}

property line vegetation (when availai}le (mangrove)

FOOO PROOUCTS ll52 Offsite near south -IIroad leaf monthly 10-20 prolierty line vegetation (wlren ava il anal c)

(rnangrovc)

FOUO PRODUCTS ll59 tlcar south cnd of -Crustacca semi-annually 10-20 Ilutchinson Island -fish semi-annually

-Or oad leaf monthly vegetation (mangrove)

Ocnotcs control sample

k j<<) /

r

/ n I,), r C

C/

r

/ ~ r P 5/

<<r,5/

~

C3 ~

3 acr 4 / ~

~ I

/.

I t,,

I h.

a'4 I Yhh-2 Inset Oetail h..

,c I

+~L H15 I

H30 cXCLUSION AREA 't0.97 /n)) I UNIT I AND l OW PPPUI.>TION ZONE (I m)) UNIT 2 "o +'l

.i ~

y'. 4,'4 ~

I/

s I /

)Sr -1

//

~

/P ~

It ~

g

'5 4 ~ )

gJ I

FPBI. s

(/)~+'"

I

',1 PROPERT Y

/ 'Y<<>"',

/ I li~

t I. INE I/ NOTES L-l.iquid rt>2 Radwaste Release Point WS vi-2 Oue!o the Scale ol the F)gvre the Qzctus)on "reo 0

Rod)us (OS57 miles) ond Ihe Low Populat)on Zone J ~

~ 5 0

\

(Imite) Are Shown as Se)ni; Ihe Some Sire. ~

~ I 5/5

~,

~ /

5J C

P)OPr>Q'/r<P~) I i r+TC<<.ALP 5T. I UCIE PLAH T 0 I/r2 5i i " AR E>> 5A>>P SCA~c tN g II. g S FIGURE ~.1.1

~M ~4 ~

'QNvvvE~ 4 ~

' ~ c, "- ~... '

f

~ * ~ ~

~,

~

l

~~~ ~

ar C

~ ~ i >" "-v v'C t ~

I

~P

, v S.td 'v ~

v 5 V.hvigl+ v

.'vv .4~

'A

<e" v L X C)5 ~>> ~ ~ ~ ~

y 4

gl v

~ ~ A II V v vv vI ~ ~

.~2P %IX F

.Z EOROLOGiCAL DISPERSION FOR'.ALAS*

"=or X/0:

2.032 X/Q (1) 68 + cV EQ Li. D 2.032 Z/Q EQ (2)

/R2 Where C = .5 V = 207.5 zt (63 2 meters),

X/Q was calculated using each of the above EQ's for each hour. The

~ highest X/Q /R2 rom EQ (1) or EQ (2) was selected. The total inreg aced relative concentration at each sector and distance was then divided by the total number oz nours n the data base.

For Denleted XI factor of figure of R.G. 1.111-R1) /R2 (X/Q)D = (X/Q) X(Depletion 2 For Deposition D/0:

D/Q RDen/ (2 sin (1 1 . 2S) y) 'Z (Freq . distrbution} /R2 where

  • D/Q =. Ground deposit'on rate Calculation distance RDep Relative ground deposition rare from F'gure 6 of R.G. 1.111 Rl

+. Terrain cor ect"'on factors given by Table .'i-4 were also app'ed to Dispers'on Fondles S:. LUC E P>~%' ODCN