ML14342A067

From kanterella
Jump to navigation Jump to search
Technical Specification Bases 3-6-10
ML14342A067
Person / Time
Site: McGuire, Mcguire  Duke Energy icon.png
Issue date: 11/04/2014
From:
Duke Energy Carolinas
To:
Office of Nuclear Reactor Regulation
Shared Package
ML14339A712 List: ... further results
References
MNS-14-088
Download: ML14342A067 (5)


Text

McGuire Units 1 and 2 B 3.6.10-1 Revision No. 120 AVS B 3.6.10 B 3.6 CONTAINMENT SYSTEMS B 3.6.10 Annulus Ventilation System (AVS)

BASES BACKGROUND The AVS is required by 10 CFR 50, Appendix A, GDC 41, "Containment Atmosphere Cleanup" (Ref. 1), to ensure that radioactive materials that leak from the primary containment into the reactor building (secondary containment) following a Design Basis Accident (DBA) are filtered and adsorbed prior to exhausting to the environment.

The containment has a secondary containment called the reactor building, which is a concrete structure that surrounds the steel primary containment vessel. Between the containment vessel and the reactor building inner wall is an annulus that collects any containment leakage that may occur following a loss of coolant accident (LOCA) or rod ejection accident. This space also allows for periodic inspection of the outer surface of the steel containment vessel.

The AVS establishes a negative pressure in the annulus between the reactor building and the steel containment vessel. Filters in the system then control the release of radioactive contaminants to the environment.

Reactor building OPERABILITY is required to ensure retention of primary containment leakage and proper operation of the AVS.

The AVS consists of two separate and redundant trains. Each train includes a heater, mechanical demister, a prefilter/ moisture separator, upstream and downstream high efficiency particulate air (HEPA) filter, an activated charcoal adsorber section for removal of radioiodines, and a fan. Ductwork, valves and/or dampers, and instrumentation also form part of the system. The heaters and mechanical demisters function to reduce the moisture content of the airstream to less than 70% relative humidity. A second bank of HEPA filters follows the adsorber section to collect carbon fines and provide backup in case of failure of the main HEPA filter bank. Only the upstream HEPA filter and the charcoal adsorber section are credited in the analysis. The system initiates and maintains a negative air pressure in the reactor building annulus by means of filtered exhaust ventilation of the reactor building annulus following receipt of a Phase B isolation signal. The system is described in Reference 2.

The prefilters remove large particles in the air, and the moisture separators remove entrained water droplets present, to prevent excessive loading of the HEPA filters and charcoal absorbers. Heaters are included

AVS B 3.6.10 BASES McGuire Units 1 and 2 B 3.6.10-2 Revision No. 120 BACKGROUND (continued) to reduce the relative humidity of the airstream. Continuous operation of each train, for at least 10 hours1.157407e-4 days <br />0.00278 hours <br />1.653439e-5 weeks <br />3.805e-6 months <br /> per month, with heaters on, reduces moisture buildup on their HEPA filters and adsorbers. The mechanical demisters cool the air to keep the charcoal beds from becoming too hot due to absorption of fission product.

The AVS reduces the radioactive content in the annulus atmosphere following a DBA. Loss of the AVS could cause site boundary doses, in the event of a DBA, to exceed the values given in the licensing basis.

APPLICABLE The AVS design basis is established by the consequences of the limiting SAFETY ANALYSES DBA, which is a LOCA. The accident analysis (Ref. 3) assumes that only one train of the AVS is functional due to a single failure that disables the other train. The accident analysis accounts for the reduction in airborne radioactive material provided by the remaining one train of this filtration system. The amount of fission products available for release from containment is determined for a LOCA.

The modeled AVS actuation in the safety analyses is based upon a worst case response time following a Phase B isolation signal initiated at the limiting setpoint. The total response time, from exceeding the signal setpoint to attaining the negative pressure of 0.5 inch water gauge in the reactor building annulus, is 22 seconds. The pressure then goes to -3.5 inches water within 48 seconds after the start signal is initiated. At this point the system switches into its recirculation mode of operation and pressure may increase to -0.5 inches water within 278 seconds but will not go above -0.5 inches water. This response time is composed of signal delay, diesel generator startup and sequencing time, system startup time, and time for the system to attain the required pressure after starting.

The AVS satisfies Criterion 3 of 10 CFR 50.36 (Ref. 4).

LCO In the event of a DBA, one AVS train is required to provide the minimum particulate iodine removal assumed in the safety analysis. Two trains of the AVS must be OPERABLE to ensure that at least one train will operate, assuming that the other train is disabled by a single active failure.

AVS B 3.6.10 BASES McGuire Units 1 and 2 B 3.6.10-3 Revision No. 120 APPLICABILITY In MODES 1, 2, 3, and 4, a DBA could lead to fission product release to containment that leaks to the reactor building. The large break LOCA, on which this system's design is based, is a full power event. Less severe LOCAs and leakage still require the system to be OPERABLE throughout these MODES. The probability and severity of a LOCA decrease as core power and Reactor Coolant System pressure decrease. With the reactor shut down, the probability of release of radioactivity resulting from such an accident is low.

In MODES 5 and 6, the probability and consequences of a DBA are low due to the pressure and temperature limitations in these MODES. Under these conditions, the AVS is not required to be OPERABLE.

ACTIONS A.1 With one AVS train inoperable, the inoperable train must be restored to OPERABLE status within 7 days. The 7 day Completion Time is based on consideration of such factors as the availability of the OPERABLE redundant AVS train and the low probability of a DBA occurring during this period. The Completion Time is adequate to make most repairs.

B.1 and B.2 With one or more AVS heaters inoperable, the heater must be restored to OPERABLE status within 7 days. Alternatively, a report must be initiated within 7 days in accordance with Specification 5.6.6, which details the reason for the heater's inoperability and the corrective action required to return the heater to OPERABLE status.

The heaters do not affect OPERABILITY of the AVS filter train because charcoal adsorber efficiency testing is performed at 30°C and 95%

relative humidity. The accident analysis shows that site boundary radiation doses are within 10 CFR 50.67 (Ref. 6) limits during a DBA LOCA under these conditions.

C.1 and C.2 If the AVS train cannot be restored to OPERABLE status within the required Completion Time, the plant must be brought to a MODE in which the LCO does not apply. To achieve this status, the plant must be brought to at least MODE 3 within 6 hours6.944444e-5 days <br />0.00167 hours <br />9.920635e-6 weeks <br />2.283e-6 months <br /> and to MODE 5 within

AVS B 3.6.10 BASES McGuire Units 1 and 2 B 3.6.10-4 Revision No. 120 ACTIONS (continued) 36 hours4.166667e-4 days <br />0.01 hours <br />5.952381e-5 weeks <br />1.3698e-5 months <br />. The allowed Completion Times are reasonable, based on operating experience, to reach the required plant conditions from full power conditions in an orderly manner and without challenging plant systems.

SURVEILLANCE SR 3.6.10.1 REQUIREMENTS Operating each AVS train from the control room with flow through the HEPA filters and activated carbon adsorbers ensures that all trains are OPERABLE and that all associated controls are functioning properly. It also ensures that blockage, fan or motor failure, or excessive vibration can be detected for corrective action. Operation with the heaters on for 10 continuous hours eliminates moisture on the adsorbers and HEPA filters. Experience from filter testing at operating units indicates that the 10 hour1.157407e-4 days <br />0.00278 hours <br />1.653439e-5 weeks <br />3.805e-6 months <br /> period is adequate for moisture elimination on the adsorbers and HEPA filters.

Inoperable heaters are addressed by Required Actions B.1 and B.2. The inoperability of heaters between required performances of this surveillance does not affect OPERABILITY of each AVS train. Operability of the heaters is demonstrated by the heater power dissipation test per SR 3.6.10.2.

The Surveillance Frequency is based on operating experience, equipment reliability, and plant risk and is controlled under the Surveillance Frequency Control Program.

SR 3.6.10.2 This SR verifies that the required AVS filter testing is performed in accordance with the Ventilation Filter Testing Program (VFTP). The AVS filter tests are in accordance with Regulatory Guide 1.52 (Ref. 5) with exceptions as noted in the UFSAR. The VFTP includes testing HEPA filter performance, charcoal adsorber efficiency, minimum system flow rate, heater power dissipation, and the physical properties of the activated charcoal (general use and following specific operations). Specific test frequencies and additional information are discussed in detail in the VFTP.

SR 3.6.10.3 The automatic startup on a Containment Phase B Isolation signal ensures that each AVS train responds properly. The Surveillance Frequency is based on operating experience, equipment reliability, and plant risk and is controlled under the Surveillance Frequency Control Program.

AVS B 3.6.10 BASES McGuire Units 1 and 2 B 3.6.10-5 Revision No. 120 SURVEILLANCE REQUIREMENTS (continued)

SR 3.6.10.4 The AVS filter cooling electric motor-operated bypass valves are tested to verify OPERABILITY. The valves are normally closed and may need to be opened to initiate miniflow cooling through a filter unit that has been shutdown following a DBA LOCA. Miniflow cooling may be necessary to limit temperature increase in the idle filter train due to decay heat from captured fission products. The Surveillance Frequency is based on operating experience, equipment reliability, and plant risk and is controlled under the Surveillance Frequency Control Program.

SR 3.6.10.5 The proper functioning of the fans, dampers, filters, adsorbers, etc., as a system is verified by the ability of each train to produce the required system flow rate. The Surveillance Frequency is based on operating experience, equipment reliability, and plant risk and is controlled under the Surveillance Frequency Control Program.

REFERENCES

1.

10 CFR 50, Appendix A, GDC 41.

2.

UFSAR, Section 6.2.

3.

UFSAR, Chapter 15.

4.

10 CFR 50.36, Technical Specifications, (c)(2)(ii).

5.

Regulatory Guide 1.52, Revision 2.

6.

10 CFR 50.67, "Accident Source Term."