ML14339A808

From kanterella
Jump to navigation Jump to search
Technical Specification Bases 3-4-14
ML14339A808
Person / Time
Site: McGuire, Mcguire  Duke Energy icon.png
Issue date: 11/04/2014
From:
Duke Energy Carolinas
To:
Office of Nuclear Reactor Regulation
Shared Package
ML14339A712 List: ... further results
References
MNS-14-088
Download: ML14339A808 (6)


Text

McGuire Units 1 and 2 B 3.4.14-1 Revision No. 115 RCS PIV Leakage B 3.4.14 B 3.4 REACTOR COOLANT SYSTEM (RCS)

B 3.4.14 RCS Pressure Isolation Valve (PIV) Leakage BASES BACKGROUND 10 CFR 50.2, 10 CFR 50.55a(c), and GDC 55 of 10 CFR 50, Appendix A (Refs. 1, 2, and 3), define RCS PIVs as any two normally closed valves in series within the reactor coolant pressure boundary (RCPB), which separate the high pressure RCS from an attached low pressure system.

During their lives, these valves can produce varying amounts of reactor coolant leakage through either normal operational wear or mechanical deterioration. The RCS PIV Leakage LCO allows RCS high pressure operation when leakage through these valves exists in amounts that do not compromise safety.

The PIV leakage limit applies to each individual valve. Leakage through two or more valves in series in a line will be measured during unit operation by the unidentified and total RCS LEAKAGE calculations, measured by a water inventory balance (SR 3.4.13.1).

Although this specification provides a limit on allowable PIV leakage rate, its main purpose is to prevent overpressure failure of the low pressure portions of connecting systems. The low pressure system interfaces (RHR and Safety Injection Systems) are provided with low capacity relief valves sufficient to relieve valve leakage considerably greater than allowed by this specification. The leakage limit is an indication that the PIVs between the RCS and the connecting systems are degraded or degrading. PIV leakage could lead to overpressure of the low pressure piping or components. Failure consequences could be a loss of coolant accident (LOCA) outside of containment, an unanalyzed accident, that could degrade the ability for low pressure injection.

The basis for this LCO is the 1975 NRC "Reactor Safety Study" (Ref. 4) that identified potential intersystem LOCAs as a significant contributor to the risk of core melt. A subsequent study (Ref. 5) evaluated various PIV configurations to determine the probability of intersystem LOCAs.

PIVs are provided to isolate the RCS from the following typically connected systems:

a.

Residual Heat Removal (RHR) System;

b.

Safety Injection System; and

c.

Chemical and Volume Control System.

RCS PIV Leakage B 3.4.14 BASES McGuire Units 1 and 2 B 3.4.14-2 Revision No. 115 BACKGROUND (continued)

The PIVs are listed in the UFSAR, Table 5-50 (Ref. 6).

Violation of this LCO could result in continued degradation of a PIV, which could lead to overpressurization of a low pressure system and the loss of the integrity of a fission product barrier.

APPLICABLE Reference 4 identified potential intersystem LOCAs as a significant SAFETY ANALYSES contributor to the risk of core melt. The dominant accident sequence in the intersystem LOCA category is the failure of the low pressure portion of the RHR System outside of containment. The accident is the result of a postulated failure of the PIVs, which are part of the RCPB, and the subsequent pressurization of the RHR System downstream of the PIVs from the RCS. Because the low pressure portion of the RHR System is designed for 600 psig, overpressurization failure of the RHR low pressure line would result in a LOCA outside containment and subsequent risk of core melt.

Reference 5 evaluated various PIV configurations, leakage testing of the valves, and operational changes to determine the effect on the probability of intersystem LOCAs. This study concluded that periodic leakage testing of the PIVs can substantially reduce the probability of an intersystem LOCA.

RCS PIV leakage satisfies Criterion 2 of 10 CFR 50.36 (Ref. 7).

LCO RCS PIV leakage is unidentified LEAKAGE into closed systems connected to the RCS. Isolation valve leakage is usually on the order of drops per minute. Leakage that increases significantly suggests that something is operationally wrong and corrective action must be taken.

The LCO PIV leakage limit is 0.5 gpm per nominal inch of valve size with a maximum limit of 5 gpm. The previous criterion of 1 gpm for all valve sizes imposed an unjustified penalty on the larger valves without providing information on potential valve degradation and resulted in higher personnel radiation exposures. A study concluded a leakage rate limit based on valve size was superior to a single allowable value.

Reference 8 permits leakage testing at a lower pressure differential than between the specified maximum RCS pressure and the normal pressure of the connected system during RCS operation (the maximum pressure differential) in those types of valves in which the higher service pressure

RCS PIV Leakage B 3.4.14 BASES McGuire Units 1 and 2 B 3.4.14-3 Revision No. 115 LCO (continued) will tend to diminish the overall leakage channel opening. In such cases, the observed rate may be adjusted to the maximum pressure differential by assuming leakage is directly proportional to the pressure differential to the one half power.

APPLICABILITY In MODES 1, 2, 3, and 4, this LCO applies because the PIV leakage potential is greatest when the RCS is pressurized. In MODE 4, valves in the RHR flow path are not required to meet the requirements of this LCO when in, or during the transition to or from, the RHR mode of operation.

In MODES 5 and 6, leakage limits are not provided because the lower reactor coolant pressure results in a reduced potential for leakage and for a LOCA outside the containment.

ACTIONS The Actions are modified by two Notes. Note 1 provides clarification that each flow path allows separate entry into a Condition. This is allowed based upon the functional independence of the flow path. Note 2 requires an evaluation of affected systems if a PIV is inoperable. The leakage may have affected system operability, or isolation of a leaking flow path with an alternate valve may have degraded the ability of the interconnected system to perform its safety function.

A.1 and A.2 The flow path must be isolated by two valves. Required Action A.1 is modified by a Note that the valves used for isolation must meet the same leakage requirements as the PIVs and must be within the RCPB or the high pressure portion of the system.

Required Action A.1 requires that the isolation with one valve must be performed within 4 hours4.62963e-5 days <br />0.00111 hours <br />6.613757e-6 weeks <br />1.522e-6 months <br />. Four hours provides time to reduce leakage in excess of the allowable limit and to isolate the affected system if leakage cannot be reduced. The 4 hour4.62963e-5 days <br />0.00111 hours <br />6.613757e-6 weeks <br />1.522e-6 months <br /> Completion Time allows the actions and restricts the operation with leaking isolation valves.

Required Action A.2 specifies that the double isolation barrier of two valves be restored by restoring one leaking PIV. The 72 hour8.333333e-4 days <br />0.02 hours <br />1.190476e-4 weeks <br />2.7396e-5 months <br /> Completion Time after exceeding the limit allows for the restoration of the leaking PIV to OPERABLE status. This timeframe considers the time required to complete this Action and the low probability of a second valve failing during this period.

RCS PIV Leakage B 3.4.14 BASES McGuire Units 1 and 2 B 3.4.14-4 Revision No. 115 ACTIONS (continued)

B.1 and B.2 If leakage cannot be reduced, or the other Required Actions accomplished, the plant must be brought to a MODE in which the requirement does not apply. To achieve this status, the plant must be brought to MODE 3 within 6 hours6.944444e-5 days <br />0.00167 hours <br />9.920635e-6 weeks <br />2.283e-6 months <br /> and MODE 5 within 36 hours4.166667e-4 days <br />0.01 hours <br />5.952381e-5 weeks <br />1.3698e-5 months <br />. This Action may reduce the leakage and also reduces the potential for a LOCA outside the containment. The allowed Completion Times are reasonable based on operating experience, to reach the required plant conditions from full power conditions in an orderly manner and without challenging plant systems.

C.1 The RHR interlock prevents the RHR suction isolation valves inadvertent opening at RCS pressures in excess of the RHR systems design pressure. If the RHR interlock is inoperable, operation may continue as long as the affected RHR suction penetration is closed by at least one closed manual or deactivated automatic valve within 4 hours4.62963e-5 days <br />0.00111 hours <br />6.613757e-6 weeks <br />1.522e-6 months <br />. This Action accomplishes the purpose of the interlock function.

SURVEILLANCE SR 3.4.14.1 REQUIREMENTS Performance of leakage testing on each RCS PIV or isolation valve used to satisfy Required Action A.1 is required to verify that leakage is below the specified limit and to identify each leaking valve. The leakage limit of 0.5 gpm per inch of nominal valve diameter up to 5 gpm maximum applies to each valve. Leakage testing requires a stable pressure condition.

For the two PIVs in series, the leakage requirement applies to each valve individually and not to the combined leakage across both valves. If the PIVs are not individually leakage tested, one valve may have failed completely and not be detected if the other valve in series meets the leakage requirement. In this situation, the protection provided by redundant valves would be lost.

The Surveillance Frequency is based on operating experience, equipment reliability, and plant risk and is controlled under the Surveillance Frequency Control Program.

RCS PIV Leakage B 3.4.14 BASES McGuire Units 1 and 2 B 3.4.14-5 Revision No. 115 SURVEILLANCE REQUIREMENTS (continued)

In addition, testing must be performed once after the valve has been opened by flow or exercised to ensure tight reseating. PIVs disturbed in the performance of this Surveillance should also be tested unless documentation shows that an infinite testing loop cannot practically be avoided. Testing must be performed within 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> after the valve has been reseated. Within 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> is a reasonable and practical time limit for performing this test after opening or reseating a valve.

The leakage limit is to be met at the RCS pressure associated with MODES 1 and 2. This permits leakage testing at high differential pressures with stable conditions not possible in the MODES with lower pressures.

Entry into MODES 3 and 4 is allowed to establish the necessary differential pressures and stable conditions to allow for performance of this Surveillance. The Note that allows this provision is complementary to the Frequency of prior to entry into MODE 2 whenever the unit has been in MODE 5 for 7 days or more, if leakage testing has not been performed in the previous 9 months. In addition, this Surveillance is not required to be performed on the RHR System when the RHR System is aligned to the RCS in the shutdown cooling mode of operation. PIVs contained in the RHR shutdown cooling flow path must be leakage rate tested after RHR is secured and stable unit conditions and the necessary differential pressures are established.

SR 3.4.14.2 Verifying that the RHR interlock is OPERABLE ensures that RCS pressure will not pressurize the RHR system beyond its design pressure of 600 psig. The interlock setpoint that prevents the valves from being opened is set so the actual RCS pressure must be < 425 psig to open the valves. This setpoint ensures the RHR design pressure will not be exceeded and the RHR relief valves will not lift. The Surveillance Frequency is based on operating experience, equipment reliability, and plant risk and is controlled under the Surveillance Frequency Control Program.

RCS PIV Leakage B 3.4.14 BASES McGuire Units 1 and 2 B 3.4.14-6 Revision No. 115 REFERENCES

1.

10 CFR 50.2.

2.

10 CFR 50.55a(c).

3.

10 CFR 50, Appendix A, Section V, GDC 55.

4.

WASH-1400 (NUREG-75/014), Appendix V, October 1975.

5.

NUREG-0677, May 1980.

6.

UFSAR Table 5-50.

7.

10 CFR 50.36, Technical Specifications, (c)(2)(ii).

8.

ASME Code for Operation and Maintenance of Nuclear Power Plants.

9.

10 CFR 50.55a(g).