L-2011-081, Response to NRC Request for Additional Information (RAI) Regarding Extended Power Uprate (EPU) License Amendment Request (LAR) No. 205 and Electrical Engineering Branch Issues

From kanterella
(Redirected from ML110940179)
Jump to navigation Jump to search

Response to NRC Request for Additional Information (RAI) Regarding Extended Power Uprate (EPU) License Amendment Request (LAR) No. 205 and Electrical Engineering Branch Issues
ML110940179
Person / Time
Site: Turkey Point  NextEra Energy icon.png
Issue date: 03/31/2011
From: Kiley M
Florida Power & Light Co
To:
Document Control Desk, Office of Nuclear Reactor Regulation
References
L-2011-081, TAC ME3908, TAC ME4907
Download: ML110940179 (72)


Text

0 IPL.

MAR3 1 2011 POWERING TODAY.

L-2011-081 EMPOWERING TOMORROW.L 1

10 CFR 50.90 U.S. Nuclear Regulatory Commission Attn: Document Control Desk Washington, D. C. 20555-0001 Re:

Turkey Point Units 3 and 4 Docket Nos. 50-250 and 50-251 Response to NRC Request for Additional Information (RAI) Regarding Extended Power Uprate (EPU) License Amendment Request (LAR) No. 205 and Electrical Engineering Branch Issues

References:

(1) M. Kiley (FPL) to U.S. Nuclear Regulatory Commission (L-2010-113), "License Amendment Request No. 205: Extended Power Uprate (EPU)," (TAC Nos. ME4907 and ME4908), Accession No. ML103560169, October 21, 2010.

(2) Email from J. Paige (NRC) to T. Abbatiello (FPL), "Turkey Point EPU - Electrical Engineering Branch (EEEB) Request for Additional Information - Round 1," Accession No. ML110610719, March 2, 2011.

By letter L-2010-113 dated October 21, 2010 [Reference 1], Florida Power and Light (FPL) requested to amend Facility Operating Licenses DPR-31 and DPR-41 and revise the Turkey Point Units 3 and 4 Technical Specifications (TS). The proposed amendment will increase each unit's licensed core power level from 2300 megawatts thermal (MWt) to 2644 MWt and revise the Renewed Facility Operating Licenses and TS to support operation at this increased core thermal power level. This represents an approximate increase of 15% and is therefore considered an extended power uprate (EPU).

By email from the U.S. Nuclear Regulatory Commission (NRC) Project Manager (PM) dated March 2, 2011 [Reference 2], additional information was requested by the NRC staff in the Electrical Engineering Branch (EEEB) to support the review of the EPU LAR. The RAI consisted of fourteen (14) questions regarding the electrical engineering section of the LAR Attachment 4, Licensing Report. These RAI questions and the applicable FPL responses are documented in the to this letter. Attachment 2 contains a revised Generation Interconnection Service System Impact Study that supports the response to RAI 1-6.

In accordance with 10 CFR 50.91(b)(1), a copy of this letter is being forwarded to the State Designee of Florida.

This submittal does not alter the significant hazards consideration or environmental assessment previously submitted by FPL letter L-2010-113 [Reference 1].

This submittal contains no new commitments and no revisions to existing commitments.

Should you have any questions regarding this submittal, please contact Ms. Olga Hanek, Acting Licensing Manager, at (305) 246-6607.

an FPL Group company

Turkey Point Units 3 and 4 L-2011-081 Docket Nos. 50-250 and 50-251 Page 2 of 2 I declare under penalty of perjury that the foregoing is true and correct.

Executed on March 3 (,2011.

Very truly yours, Michael Kiley Site Vice President Turkey Point Nuclear Plant Attachments (2) cc:

USNRC Regional Administrator, Region II USNRC Project Manager, Turkey Point Nuclear Plant USNRC Resident Inspector, Turkey Point Nuclear Plant Mr. W. A. Passetti, Florida Department of Health

Turkey Point Units 3 and 4 Docket Nos. 50-250 and 50-251 L-2011-081 Attachment I Page I of 22 Turkey Point Units 3 and 4 RESPONSE TO NRC RAI REGARDING EPU LAR NO. 205 AND EEEB ELECTRICAL ENGINEERING BRANCH ISSUES ATTACHMENT 1

Turkey Point Units 3 and 4 L-201 1-081 Docket Nos. 50-250 and 50-251 Page 2 of 22 Response to Request for Additional Information The following information is provided by Florida Power & Light (FPL) in response to the U. S.

Nuclear Regulatory Commission's (NRC) Request for Additional Information (RAI). This information was requested to support the review of License Amendment Request (LAR) No. 205, Extended Power Uprate (EPU), for Turkey Point Nuclear Plant (PTN) Units 3 and 4 that was submitted to the NRC by FPL letter L-2010-113 on October 21, 2010 [Reference 1].

In an email dated March 2, 2011 [Reference 2], the NRC staff requested additional information regarding FPL's request to implement the Extended Power Uprate. The RAI consisted of fourteen (14) questions from the NRC Electrical Engineering Branch (EEEB). These RAI questions and the applicable FPL responses are documented below.

EEEB-1.1 Regarding Section 2.3.1.2.3.1 of Attachment 4 of the license amendment request (LAR) dated October 21, 2010:

a. Explain the basis for the following statement: "Pressure effects are generally stress-related rather than age related."

Aging effects on non-metallic materials are typically caused by prolonged exposure to temperature and radiation or, in the case of loss of material, through excessive wear; these are all considered age-related where the non-metallic material exhibits signs of drying, cracking, embrittlement and loss of material (wear aging). Each are clearly defined in the Institute of Electrical and Electronics Engineers (IEEE) STD 323, "Standard for Qualifying Class 1E Equipment for Nuclear Power Generating Stations" [Reference 3], as well as 10 CFR 50.49. Pressure is a stress-related effect, such as compression which unlike radiation, temperature and wear aging is more of a forcing function which can drive moisture into (or out of) an object/equipment. Pressure effects unto themselves have never been considered a detrimental qualification aging mechanism, but are to be considered as part of environmental qualification (EQ) with respect to a driving force for humidity and moisture during the event.

b. Explain how the margins identified in the Institute of Electrical and Electronics Engineers Standard 323-1974 (i.e., Temperature, Pressure, etc.) are being maintained under EPU conditions.

PTN EQ program licensing basis was approved based on IEEE 323-1971 which does not require margins above the design basis accident profiles. FPL committed to meet NUREG-0588, "Interim Staff Position on Equipment Qualification of Safety-Related Electrical Equipment" [Reference 4], and the later version of IEEE 323-1974 for any EQ equipment installed after February 22, 1983 as part of the original NRC program approval.

As identified in item 1.4 of NUREG - 0588, additional margin need not be added to the radiation parameter if the methods identified in Appendix D of NUREG-0588 are utilized.

The methods used to determine the PTN radiation parameters are consistent with the Appendix D methodology for current and EPU conditions. As documented in the current PTN EQ Program Manual, the radiation margins required by section 6.3.1.5 of IEEE 323-1974 are not necessary.

Turkey Point Units 3 and 4 L-2011-081 Docket Nos. 50-250 and 50-251 Attachment I Page 3 of 22 Typically only the peak accident temperature and pressure are compared against the EQ qualification temperature to demonstrate qualification per IEEE 323-1974 as can be seen in example Figure 1 on page 16 of IEEE 323. Peak temperature and pressure present the most demanding environment and cause the greatest challenge to equipment. PTN EQ profiles were developed to show the limiting profile that would support equipment qualification for all EQ equipment.

The difference between the EQ Qualification (Qual) Envelope and the EPU LOCA temperature curves is that the EPU LOCA temperature curve does not drop below a 150F margin until after at least 2.7 hours8.101852e-5 days <br />0.00194 hours <br />1.157407e-5 weeks <br />2.6635e-6 months <br /> when the temperature is declining and any potential damage would have already occurred. In addition, the EQ Qual Envelope temperature steps show a higher temperature is maintained for significantly longer than the EPU LOCA tempature curve. This adds margin since electrical equipment aging is a function of temperature and duration. Therefore, the margin added due to maintaining a longer duration at higher temperatures is considered adequate for qualification.

The difference between the EQ and the EPU pressure design curve is that the EPU pressure design curve does not drop below 10% margin until after at least 50 minutes at which time both the design and EQ curves decrease by at least 20 psi. Since the first time step, which is at the highest pressure, provides greater than 10% margin for the entire time step, additional margin over the 10% IEEE 323 guideline is provided. The remaining time steps maintain the EQ profile at constant pressure above the design profile for the majority of the time step and build margin greater than 10% that compensates for the subsequent time steps where the 10%

margin is not achieved. As stated above, the damage mechanism associated with pressure is not age-related, but a function of the pressure magnitude which causes greater moisture intrusion. Since the EQ profile maintains the pressure above the design profile for a greater duration and the maximum pressure is above 10% of design, the developed margin is considered adequate for qualification.

c. Figure 2.3.1-1 appears to show that the required temperature margin (15 degrees Fahrenheit) is not being maintained. Clarify the apparent deviation.

See response EEEB-1. Lb above

d. The licensee stated that while some EPU pressure points well after the peak EPU pressure slightly exceed EPU pressure envelope, the integrated EPU pressure curve remains below the current environmental qualification (EQ) envelope during Post Accident Operability Time (PAOT) period of 31 days. Provide the 'integrated EPU pressure curve'.

The statement referencing the integrated EPU pressure curve is based on a qualitative assessment of the difference between the area under the EPU LOCA Profile and the area under the EQ Qualification Envelop. As can be seen from inspecting the pressure curve, the area under the EQ Pressure Profile exceeds the area under the EPU LOCA curve, even though there are a few points where the actual EPU LOCA curve does exceed the EPU Qualification curve.

Turkey Point Units 3 and 4 L-2011-081 Docket Nos. 50-250 and 50-251 Page 4 of 22 8 0.0 0.

EQ Press Profile 7 O 0 -!.................

.....................3 D a, P O 70.00 31 D ay-R A O T.............

EPU MSLB "6

0 0

/"......

-- 3 D a

___EO Press Profile 50.00.......

EPU LOCA

-31 Day PAOT EPU LOCA 3o0m i.................

iOE-01 l.OE+00 L.OE+01 LOE+02 1.OE+03 1.OE+04 l.OE+05 l.OE+06 1.OE+07 Time (sec)

- 1 1............................................................................

e. The licensee stated that following EPU, the containment submergence level or containment flood elevation has changed. The EPU maximum containment sump temperature is 4 degrees Fahrenheit higher than the current maximum due to thermal power increase. The licensee concluded that there is no impact on the EQ population or qualification of existing EQ equipment based on its review. Provide a summary of the evaluation used to determine that there would be no impact on the EQ population or qualification of existing EQ equipment.

All Class IE electrical equipment locations inside containment were reviewed and compared against the postulated new flood levels. As stated in LR Section 2.3.1.2.3. 1, the EPU maximum containment flood level is 2.2 inches higher than the pre-EPU flood level. FPL determined from the review of EQ documentation packages (Doc Pacs) for equipment inside containment and other configuration control documents that no EQ equipment is located below the flood level.

EEEB-1.2 In Section 2.3.1.2.3.2 of Attachment 4 of the LAR, the licensee stated that any Containment EQ equipment that could not meet new EPU bounding radiation dose level was assessed for dose reduction. Factors included consideration if a component was sealed, equipment shielding, and the actual distance from the radiation source.

Provide a list of equipment Which could not meet the new EPU bounding radiation dose level and a brief summary of dose reduction factor(s) considered for each component including any planned modifications that shows that the resulting radiation dose will remain below the existing EQ level.

Turkey Point Units 3 and 4 L-2011-081 Docket Nos. 50-250 and 50-251 Page 5 of 22 The initial screen of the below listed 18 Rosemount transmitters (nine in Unit 3 and nine in Unit 4) resulted in the determination that the bounding EPU in-containment gamma radiation environments exceeded the qualification levels for these transmitters.

PTN Doc Pac 1001-24.1, Rosemount Transmitters (18)

LT-3-459, LT-3-460, and LT-3-461 PT-3-403, PT-3-404, PT-3-405, and PT-3-406 FT-3-932 and FT-3-933

" LT-4-459, LT-4-460, and LT-4-461

" PT-4-403, PT-4-404, PT-4-405, and PT-4-406

  • FT-4-932 and FT-4-933 Thus, location-specific integrated gamma dose estimates were developed for these transmitters.

Note that since these transmitters are sealed, exposure to in-containment beta radiation was not a concern.

The bounding EPU in-containment radiation environment is conservatively based on a spherical cloud model with no credit for shielding. The location-specific gamma dose to each of the 18 transmitters was developed taking into consideration the shielding provided by major walls and floors within the containment. Since the transmitters are mounted on the outside surface of the missile barrier wall, the dose model changes from an essentially finite spherical cloud to a finite hemispherical cloud, which reduces the source term and thus dose. The accident component-specific dose estimate included the contribution from the post-LOCA radioactivity airborne in the containment, as well as that mixed in the sump fluid. The EPU assessment demonstrated that the estimated location-specific 31-day integrated post-LOCA plus 60-year normal operation dose to the 18 Rosemount transmitters will remain below the qualification level.

In accordance with current licensing basis methodology, the EPU evaluation continued to take credit for shielding from beta radiation as described below. If deemed necessary, and in accordance with the guidance provided in NRC IE Bulletin (IEB) 79-01 B, "Environmental Qualification of Class lE Equipment," [Reference 5], the qualification assessment for cables took credit for the shielding provided by cable jacketing material, by other cables in the tray and by the tray itself. In addition, the contribution of beta radiation was ignored if the radiation sensitive portion of the component was sealed in an enclosure. The number of components that credited shielding to attenuate for beta was not impacted as a result of the higher radiation environments due to the EPU.

EEEB-1.3 Regarding Section 2.3.1.2.3.3 of Attachment 4 of the LAR:

a. The licensee stated the normal operating gamma radiation dose in the Aux Building has increased in some EQ Zones due to the EPU. However, the EPU dose estimates in the worst case EQ zone has not changed and remains at 5.26E+04 Rads. Provide a summary of the evaluation of equipment that shows how the EQ of all equipment remains bounding for normal operating EPU conditions.

Turkey Point Units 3 and 4 L-2011-081 Docket Nos. 50-250 and 50-251 Attachment I Page 6 of 22 As a screening tool, FPL used the radiation environment in the worst case zone for outside containment (Auxiliary Building) locations, recognizing that even as the integrated dose in some radiation zones changed, as long as the worst case zone was used for screening, and the equipment met the environmental qualification requirements for that zone, then the equipment in the lower dose zones would remain acceptable. The radiation zones used the normal 60-year dose plus the 31-day accident dose to get a total integrated dose (TID) for the purpose of qualification. This TID was compared against the qualification dose presented in the EQ Doc Pacs and, as long as the EQ Doc Pac qualification dose exceeded the worst case TID the equipment was considered qualified with no further review required.

b. The licensee stated that EPU gamma radiation dose in the Auxiliary Building has increased in the worse [worst] case EQ Zone from 7.50E+06 to 1.1E+07 Rads. Some mild areas have become harsh due to dose increases from EPU.
i.

Provide a summary of the evaluation of equipment that shows how the EQ of all equipment remains bounding for accident EPU conditions.

The initial screening performed to evaluate the radiation qualification of EQ equipment used the accident radiation level for the worst case radiation zone outside containment for evaluation. The use of the worst case radiation zone recognizes that even as the radiation levels in other radiation zones may have changed, as long as the radiation level for the worst case zone was used and the equipment met the EQ radiation requirements for that zone, the lower zones were inconsequential. As described above in the response to EEEB-1.3.a, the 60-year normal dose was added to the worst case 31-day accident dose to get the total integrated dose (TID). For the initial screening the worst case TID was compared to the radiation level in the individual EQ Doc Pacs. As long as the EQ Doc Pac qualification dose was greater than the worst case TID, the equipment was considered qualified, with no further review required. This initial screening review identified five components outside containment that required further evaluation. These components included 1. cables manufactured by Okonite, 2. cables manufactured by General Cable, 3. cables manufactured by Kerite, 4. Masoneilan I/P Transducers, and 5. Valcor Solenoid Valves.

Okonite Cable A new bounding integrated dose calculation was done for each of the areas outside containment containing EQ cables manufactured by Okonte by considering actual EPU radiation sources in the room and shine from adjacent rooms rather than using the most limiting dose for areas outside containment. A conservative bounding dose for an entire room was determined by calculating the dose 1 foot from a pipe that represented the entire volume of piping carrying post accident sump fluid in the room. The integrated dose from adjacent room shine and the normal 60-year dose was also calculated and added to the pipe dose in the room. This more detailed dose calculation showed all areas outside containment with EQ cables manufactured by Okonite were below the qualification levels for the ten cable codes involved.

General Cable Areas containing EQ cables manufactured by General Cable had a detailed location specific dose calculation performed. The actual distance from each pipe containing post-LOCA fluid to the cable was measured and the dose contribution from each pipe

Turkey Point Units 3 and 4 L-2011-081 Docket Nos. 50-250 and 50-251 Page 7 of 22 was calculated and summed to provide a pipe dose in the room. The pipe dose contribution from adjacent rooms was also added to the pipe dose within the room to produce a pipe dose. The normal 60-year dose was also calculated and added to the pipe dose. This detailed location specific dose calculation showed that the dose for all areas outside containment with EQ cables manufactured by General Cable were below the qualification levels.

Kerite Cables Qualification of EQ cables manufactured by Kerite to the higher radiation level requirements following EPU was demonstrated by a new EQ test report that envelopes the EPU higher dose.

Masoneilan I/P Transducers, and Valcor Solenoid Valves The subject EQ devices are part of the Post Accident Sampling System (PASS). All PASS equipment has been removed from the PTN Technical Specifications and has been determined as not required to mitigate an accident or provide operator assessment capability. The devices in question were conservatively left on the EQ master list since they could still be operated. However, as part of the EPU implementation they will be removed from the master EQ list since they no longer provide a required post-accident function.

ii.

Provide a list of equipment that is being added to the master EQ list as a result of the new areas being designated as Harsh.

The majority of the PTN EQ cables are identified on the EQ list by cable type and manufacturer. However, several cables are listed by manufacturer only. All cables in the new harsh radiation areas were reviewed and their specific cable type was checked against the EQ list. Seven cable types were found that did not exist on the EQ list and consequently were identified as new EQ cables. However, upon review of the EQ Doc Pacs for cables identified on the EQ list by manufacturer only, it was discovered that the 7 new cable types are included in the Doc Pacs for Rockbestos and Teledyne cables.

No new equipment was required to be added to the PTN EQ List as a result of the reviews performed for EPU since Rockbestos and Teledyne cables are on the existing EQ list.

iii.

Show how the newly added equipment meets EQ requirements under EPU conditions, and has been maintained as EQ for its installed life.

No new equipment is being added to the PTN EQ List as a result of the reviews performed for EPU.

EEEB-1.4 In Section 2.3.1.2.3.4 of Attachment 4 of the LAR, the licensee stated that any Auxiliary Building EQ equipment that could not meet new EPU bounding radiation dose level was assessed for dose reduction. Factors included consideration for equipment shielding, and the actual distance from the radiation source.

Turkey Point Units 3 and 4 L-2011-081 Docket Nos. 50-250 and 50-251 Attachment I Page 8 of 22 Provide a list of equipment which could not meet the new EPU bounding radiation dose level and a brief summary of dose reduction factor(s) considered for each component including any planned modifications that shows that the resulting radiation dose will remain below the existing EQ level.

As described in EEEB-1.3.b above, Auxiliary Building equipment that could not meet the initial screening requirements for the increased radiation levels following EPU was identified. These components included EQ cables manufactured by Okonite, General Cable, and Kerite, and Masoneilan I/P transducers and Valcor solenoid valves. The Kerite cables were qualified by using an existing qualification report in EQ Doc Pac 34.2 that previously was not needed since higher radiation qualification was previously not required to qualify the cables at current licensed power level. As described in the response to EEEB-1.3.b above, the other Okonite and Genral cables had location-specific doses evaluated. As part of this evaluation, the distance of equipment from recirculation piping sources and shielding afforded by plant components was used to lower the effective radiation dose at the EQ devices. The Masoneilan I/P transducers and Valcor solenoid valves were removed from the EQ list since they are only required to support the PASS system which is no longer required to respond to a design basis LOCA.

No equipment modifications were determined to be necessary as a result of this review.

EEEB-1.5 In Section 2.3.1.2.4 of Attachment 4 of the LAR, the licensee stated that with respect to the license renewal described in NUREG-1779 [NUREG-17591, EPU activities do not add any new components, any new or previously unevaluated materials, nor introduce any new functions for existing components that would change the license renewal system evaluation boundaries.

Provide a summary of the evaluation that provides verification of above statement.

FPL evaluated impact of the EPU against the following License Renewal Program documents:

1. NUREG-1759, "Safety Evaluation Report Related to the License Renewal of the Turkey Point, Units 3 and 4" [Reference 6]
2. "Turkey Point Nuclear Plant, Units 3 and 4, Application for Renewed Operating Licenses"

[Reference 7]

3. Updated Final Safety Analysis Report, Chapter 16 "Aging Management Programs and Time Limited Aging Analysis" [Reference 8]
4. NUREG-1801, "Generic Aging Lessons Learned (GALL) Report," US Nuclear Regulatory Commission [Reference 9]

The FPL evaluation focuses on identifying the potential impacts on the License Renewal Program elements due to the implementation of the FPL EPU Program.

No new aging effects have been identified for equipment in the EQ Program as a result of EPU.

The evaluation for EPU conditions demonstrated the continued qualification of the existing equipment. The EQ program as described in FSAR Chapter 16.2.6 will continue to cover its scope of aging management through the license renewal period considering the EPU condition.

Turkey Point Units 3 and 4 L-2011-081 Docket Nos. 50-250 and 50-251 Attachment I Page 9 of 22 Some environmental parameters have changed due to EPU. Therefore, changes to some of the EQ Doc Pacs are required to incorporate the changes for LOCA, main steam line break (MSLB),

high energy line break (HELB), and/or radiation dose changes. Therefore, the EPU will have an impact on the EQ of electrical equipment within the scope of the program.

FPL has assessed the effects of the proposed EPU on EQ of electrical equipment. FPL concludes that it has adequately addressed the effects of the proposed EPU on the environmental conditions and the qualification of electrical equipment. FPL further concludes that the electrical equipment will continue to meet the requirements of its current licensing basis with regard to 10 CFR 50.49 following implementation of the proposed EPU. Therefore, FPL finds the proposed EPU acceptable with respect to the EQ of electrical equipment.

EEEB-1.6 Explain why a maximum of 889 Megawatts Electric (MWe) generation of each unit was considered in the System Impact Study while the maximum main generator output is mentioned to be 899.8 MWe in Section 2.3.3.2.3 of Attachment 4 of the LAR.

The Generation Interconnection Service System Impact Study, submitted to the NRC by FPL letter L-2010-160 [Reference 10], was originally performed with heat balance data that represented the best information available at that time. That heat balance specified an EPU peak winter power level of 889 MWe under lowest cooling water temperature conditions. A subsequent heat balance performed after the original System Impact Study specified an EPU peak winter power level of 898.9 MWe under more stringent winter cooling water temperature assumptions. Addendum #2 to the System Impact Study (Attachment 2) addresses the impacts of using a revised more conservative power level of 899.8 MWe. No additional transmission reinforcements are required as a result of the higher generator output.

EEEB-1.7 Regarding Section 2.3.3.2.3 of Attachment 4 of the LAR, provide the existing and revised current transformer ratings of main generator.

The existing main generator current transformers (CTs) are rated 30000/5A with temperature rating of 130'C. The replacement CTs are rated 35000/5 A with ANSI accuracy classifications of C800 and temperature rating of 130'C (Class B insulation).

EEEB-1.8 Regarding Section 2.3.3.2.3 of Attachment 4 of the LAR, provide a summary of any major changes required to the main generator and main transformer protection, such as replacement of relays, as a result of the proposed EPU.

Since the generator and transformer nameplate rating increased in support of EPU, new CTs are required at the generator terminal. Therefore, 35000/5A CTs will replace the existing 30000/5A units. In addition, to accommodate the change in the generator capacitance, the generator neutral grounding transformer and resistor will be replaced. No major changes, such as protective relay replacements, are required.

Turkey Point Units 3 and 4 L-2011-081 Docket Nos. 50-250 and 50-251 Attachment I Page 10 of 22 EEEB-1.9 On page 2.3.3-7 of Attachment 4 of the LAR, the licensee stated that loads that will increase as a result of the proposed EPU include the heater drain pump, the intake cooling water pump, and the circulating water pump motors. However, no specific increase in loads for these pump motors is indicated in Table 2.3.3-15. Explain the apparent discrepancy.

The mechanical EPU evaluations determined the existing and EPU brake horsepower (BHP) loads of the heater drain pump, the intake cooling water pump, and the circulating water pump motors for comparison. The mechanical EPU evaluations determined that the BHP loads on these motors have increased under post-EPU conditions.

The information in Table 2.3.3-15 reflects the motor BHP loads used in the pre-EPU (existing) and post-EPU AC electrical distribution analyses. The motor loads used in the pre-EPU (existing) electrical analysis were modeled conservatively higher than the post-EPU loads determined in the mechanical EPU evaluations. The same conservative motor loads used in the pre-EPU (existing) electrical analysis were also used in the post-EPU electrical analysis.

Therefore, the loads for these motors are viewed as unchanged values in the table. The increase in BHP load for these motors under post-EPU conditions remains bounded by the values credited in the pre-EPU electrical analysis.

EEEB-1.10 Regarding Page 2.3.3-7 and 2.3.3-8 of Attachment 4 of the LAR, provide the technical rationale for determining that it is acceptable for the maximum momentary short circuit currents exceeding the switchgear bus rating at 4.16 kV Buses 3AA1 and 3AB1 for existing conditions and at Buses 4AA1 and 4AB1 (Table 2.3.3-10) for both existing and EPU conditions.

As indicated in Table 2.3.3-10 below, in the pre-EPU configuration for PTN Units 3 and 4, the maximum momentary short circuit current exceeds the switchgear bus rating at 4.16 kV buses 3AA1, 3AB1, 4AA1 and 4AB1.

In addition, the electrical analysis which was originally presented in the EPU License Amendment Request (LAR) has been updated to reflect actual Unit Auxiliary Transformer (UAT) vendor test data. The new test data is the result of the plan to replace the UATs for non-EPU obsolescence reasons. As indicated in Table 2.3.3-10 below, the new UAT test data results in the buses 4AA1 and 4AB1 having a momentary overduty in the post-EPU configuration. This condition is eliminated for buses 3AA1 and 3AB1 in the post-EPU condition and, while still exceeding the buses' momentary rating. The severity is decreased for buses 4AA1 and 4AB I in the post-EPU condition. Also, as shown in Table 2.3.3-12 below, the reactor coolant pump (RCP) and steam generator feed pump circuit breakers on bus 4AA 1 have an interrupting short circuit current overduty in the pre-EPU and post-EPU configuration and the RCP circuit breakers on bus 4AB 1 has an interrupting short circuit current overduty in the pre-EPU configuration.

These overduty conditions are still determined to be acceptable based on a very low likelihood of occurrence and low level of risk rationales as follows:

The bus overload condition only exists when the associated Emergency Diesel Generator (EDG) is paralleled to the grid through the Unit Auxiliary Transformer (UAT). This

Turkey Point Units 3 and 4 L-2011-081 Docket Nos. 50-250 and 50-251 Attachment I Page I I of 22 condition occurs only during EDG testing which is one hour per month and 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> every 18 months. Sufficient margin on interrupting ratings exist when the EDG is not paralleled to the grid.

When the EDG is paralleled to the grid it is considered inoperable since the EDG protective relaying response to an external system disturbance is not quick enough to trip the EDG circuit breaker.

Paralleling an EDG to the grid does not overload the 4160 V buses or breakers.

The 4160 V buses are connected in a delta phase configuration. This configuration will accommodate a grounded phase without creating a fault condition.

There is a high resistance ground system that will provide indication of a ground event on any phase of the 4160 V buses with high sensitivity.

Degradation of the insulation on the 4160 V buses will not be an acute event.

The buses are enclosed in a ventilated compartment on top of the switchgear.

The phase bus bars are sleeved with an insulated jacket and configured in a honeycomb insulating bus support arrangement. In this condition, a ground fault due to insulation board tracking would occur prior to a 3 phase fault.

The 4160 V switchgear rooms have a closed ventilation system. Outside air is not forced through the room reducing potential contaminates or corrosion effects.

The 4160V buses are thoroughly inspected on a 36 month interval.

The 4160V breakers are thoroughly inspected on a 36 month interval.

The Probabilistic Safety Analysis (PSA) model has a Core Damage Frequency (CDF) model that determined a probability of 4.5 E -07 per year for a fault occurring on a 4160 V bus when the EDG is loaded and paralleled with the grid. Even with this conservative assumption that the three-phase bolted fault occurs on a once per year interval, the change in the CDF is nearly three orders of magnitude less than what would be considered significant by the NRC.

The EPU project and associated configuration changes are reducing the momentary short circuit loading on the 4160 V buses on both PTN units.

Based on the above, nuclear safety is not compromised for this condition. From the standpoint of personnel safety, there are many conservative factors used in the fault studies which, when combined and credited, lead FPL to conclude that exposure of the 3AA1, 3AB1, 4AA1 and 4AB 1 buses to fault current levels exceeding their manufacturer's ratings is an event that can be deemed to be incredible.

Therefore, FPL concludes that no modification is needed to the bus and breaker capability to withstand the hypothetical fault levels that slightly exceed the manufacturers' ratings for infrequent EDG surveillance activities.

Turkey Point Units 3 and 4 Docket Nos. 50-250 and 50-251 L-2011-081 Attachment I Page 12 of 22 Table 2.3.3-10 4.16 kV Switchgear Bus Momentary Short Circuit Current Bus Maximum pre-EPU Maximum EPU Momentary Design Momentary Duty, Momentary Duty,

Rating, rms Asymmetrical rms Asymmetrical rms Asymmetrical (kA)

(kA)

(kA)

Unit 3 3AA1 79.799 77.632 78 3AA2 53.841 53.101 78 3AB1 79.014 76.169 78 3AB2 53.382 52.432 78 3AD 41.171 40.704 80 3C 68.448 68.291 78 Unit 4 4AA1 84.252 82.503 78 4AA2 60.653 60.381 78 4AB1 83.398 80.041 78 4AB2 59.882 59.018 78 4AD 40.798 40.626 80 4C 66.364 66.212 78

Turkey Point Units 3 and 4 Docket Nos. 50-250 and 50-251 L-2011-081 Attachment I Page 13 of 22 Table 2.3.3-11 4.16 kV Switchgear Circuit Breaker Momentary Short Circuit Current Maximum Pre-EPU Maximum EPU Momentary Design Bus Momentary Duty, Momentary Duty,

Rating, rms Asymmetrical rms Asymmetrical rms Asymmetrical (kA)

(kA)

(kA)

Unit 3 3AA1 71.478 69.169 80 3AA2 53.527 52.785 80 3AB1 70.205 67.210 80 3AB2 53.075 52.123 80 3AD 40.885 40.416 60 3C 68.234 68.077 78 Unit 4 4AA1 76.104 74.219 80 4AA2 60.343 60.069 80 4AB1 75.290 71.805 80 4AB2 59.571 58.706 80 4AD 40.545 40.370 60 4C 66.148 65.997 78

Turkey Point Units 3 and 4 Docket Nos. 50-250 and 50-251 L-2011-081 Page 14 of 22 Table 2.3.3-12 4.16 kV Switchgear Circuit Breaker Interrupting Short Circuit Current Interrupting, Symmetrical (kA)

Unit 3 3AA1 44.165 46.119 44.702 46.215 3AA2 33.303 46.532 33.907 46.633 3AB1 43.304 46.136 43.183 46.248 3AB2 33.102 46.530 33.452 46.647 3AD 24.790 33.269 24.123 33.341 3C 42.318 45.135 42.261 45.172 Unit 4 4AA1 47.169 46.429 47.825 46.505 4AA2 37.227 46.855 38.031 46.954 4AB1 46.691 46.325 46.057 46.446 4AB2 36.892 46.714 37.144 46.860 4AD 26.187 33.507 25.694 33.578 4C 41.276 44.966 41.224 44.991 EEEB-1.11 Regarding Page 2.3.3-10 of Attachment 4 of the LAR, provide a summary of calculations that shows that the degraded voltage relay and undervoltage relay settings at the 480 Volt load center buses are not adversely affected by operation under EPU conditions.

Motor starting analyses were performed to ensure sufficient bus voltages exist for proper functioning of the safety-related equipment.

If safety-related bus voltages drop to or below the maximum dropout setpoint limits of the degraded voltage (DGV) relays and of the under voltage (UV) relays - 3271, 327H, and 327T, then voltages at the safety-related buses must recover to or above the maximum pickup setpoint limits of the relays before the relaying time delay (timers or characteristic curves) expires.

Tables 1.11-1 and 1. 11-2 show the existing relay setpoints for Relays 3271 and 327H.

Tables 1. 11-3 and 1. 11-4 show the resultant bus voltages for operation of Relays 3271 and 327H under EPU motor starting conditions.

The relay settings in Tables 1.11-1 and 1.11-2 are compared against the EPU analysis resultant bus voltages in Tables 1.11-3 and 1.11-4 to ensure that the relays are able to pick-up, following a drop-out, within the minimum relay time setting.

Turkey Point Units 3 and 4 Docket Nos. 50-250 and 50-251 L-2011-081 Page 15 of 22 The results in Tables 1.11-3 and 1.11-4 indicate that the DGV and UV relays are able to achieve pick-up, within the relay minimum time settings specified in Tables 1.11-1 and 1.11-2, following a drop-out. Therefore, the existing DGV and UV relay setpoints are demonstrated to be adequate under EPU.

Table 1.11-1 Degraded Voltage Relay (3271) Settings Location -

Max Relay Max Relay Min Time 480 V Load Dropout Pickup Setting Center Setting Setting (Sec) 3A (3B01) 429 V 440.696 V 59.5 3B (3B02) 432 V 446.204 V 59.5 3C (3B03) 442 V 446.426 V 59.5 3D (3B04) 440 V 444.612 V 59.5 4A (4B01) 435 V 441.677 V 59.5 4B (4B02) 441 V 450.225 V 59.5 4C (4B03) 439 V 444.665 V 59.5 4D (4B04) 439 V 444.179 V 59.5 Table 1.11-2 Under Voltage Relay (327H) Settings Location -

Max Relay Max Relay Min Time 480 V Load Dropout Pickup Setting Center Settin Setting (Sec) 3A (3B01) 435 V 439.047 V 9

3B (3B02) 443 V 447.046 V 9

3C (3B03) 439 V 443.046 V 9

3D (3B04) 439 V 443.046 V 9

4A (4B01) 440 V 444.046 V 9

4B (4B02) 439 V 443.046 V 9

4C (4B03) 439 V 443.046 V 9

4D (4B04) 435 V 439.047 V) 9

Turkey Point Units 3 and 4 Docket Nos. 50-250 and 50-251 L-2011-081 Attachment I Page 16 of 22 Table 1.11-3 Bus Voltages for PSB-1/LOCA Motor Starts,

('/)

Loading Sequence Train A Train B Time (s)

LC 3A LC 3C LC 3B LC 3D (3B01)

(3B03)

(3B02)

(3B04) t = 0.0+

424 426 421 417 LBI: t = 0.11+

463 465 459 456 LB2: t = 3+

454 456 450 447 LB3: t = 11+

428 459 454 422 LB4: t = 18+

459 461 456 453 LB5: t = 25+

458 461 455 452 LB6: t = 32+

465 467 462 458 LB7: t = 39+

465 467 462 458 LB8: t = 44+

427 463 457 421 RCP: t = 48.1+

402 404 398 395 Steady State: t = 50+

466 468 463 459 Table 1.11-4 Bus Voltages for PSB-1/LOCA Motor Starts, Loading Sequence Train A Train B Time (s)

LC 4A LC 4C LC 4B LC 4D (4B01)

(4B03)

(4B02)

(4B04) t = 0.0+

424 427 423 422 LBI: t = 0.11+

463 466 460 461 LB2: t = 3+

434 454 448 432 Run: t = 4.1+

463 468 463 461 LB3: t = 11+

422 464 455 423 LB4: t = 18+

452 462 456 451 LB5: t = 25+

451 462 456 450 LB6: t = 32+

457 468 462 456 LB7: t = 39+

457 468 462 456 LB8: t = 44+

423 464 458 422 RCP: t = 48.1+

397 409 403 396 Steady State: t = 50+

458 469 463 457 Table 1.11-5 shows the existing relay setpoints and EPU analysis resultant bus voltages for operation of Relay 327T under EPU motor starting conditions. The time required for the bus voltage to increase from drop-out (D.O.), and exceed the maximum relay voltage setting, is determined from the relay characteristic curves. The relay settings are compared against the

Turkey Point Units 3 and 4 L-2011-081 Docket Nos. 50-250 and 50-25 1 Page 17 of 22 tabulated resultant bus voltages to ensure that the relays are able to pick-up, following a drop-out, within the relay calculated pickup time.

The results in Table 1.11-5 indicate that the DGV 327T relays are able to achieve pick-up, within the relay calculated pickup time, following a drop-out. Note that the 327T relay on 480 V load center Bus 4D does not drop out under motor starting conditions. Therefore, the existing DGV 327T relay setpoints are demonstrated to be adequate under EPU.

Table 1.11-5 Load Max Calc Required Calc Calc P.U.

Center Relay D.O.

Relay P.U.

Voltage Bus Setting Voltage P.U. Time Time (V) us (V)

(V)

(Sec)

(Sec)

(V 3A (3B01) 404 402 13 1.9 466 3B (3B02) 411.14 398 13 1.9 463 3C (3B03) 400.936 383 13 1.3 457 3D (3B04) 400.936 395 13 1.9 459 4A (4B01) 391 384 50 1.3 457 4B (4B02) 401 394 12 1.3 468 4C (4B03) 393 385 40 1.3 458 EEEB-1-12 Regarding Page 2.3.3-11 and 2.3.3-12 of Attachment 4 of the LAR, provide a summary of calculations that shows that emergency diesel generator (EDG) loading in the post-EPU state, after taking into account new loads and the loading on the 120 V alternating current vital (safety-related) instrument power systems, will remain within each EDG's capacity, even after taking into account EDG operation at extreme limits of revised frequency and voltage.

EDG Loading EDG 3A, with the following ratings and the least margin among the EDGs at PTN is used as a bounding case.

Base Continuous Rating 2500 kW Basic Overload Rating 2750 kW 2000 Hour Peaking Rating 2850 kW 168 Hour Emergency Rating 2950 kW 1/2 Hour Exceptional Rating 3050 kW

Turkey Point Units 3 and 4 L-2011-081 Docket Nos. 50-250 and 50-251 Attachment I Page 18 of 22 The EDG loadings for EDG 3A have been analyzed for changes under EPU conditions as shown below:

UNIT 3 MAXIMUM LOAD AT EPU EDG 3A Load @ 60 Hz Load @ 60.6 Hz (kW)

(kW)

Description Unit 3 LOOP with Unit 3 LOOP with Unit 3 LOCA, Unit 3 LOCA, 0-85.5 sec 0-85.5 sec Automatic Loads 1694.95 1741.08 Manual Loads 258.82 266.63 Automatic and Manual Loads 1953.77 2007.71 Notes:

1)

The EDG load changes credit emergency containment filter fans 3V3A, B, C placed out of service under EPU and the intake cooling water pumps 3P9A, B, C load is increased to 271 kW under EPU

2)

The EDG 3A SBO Pre-EPU and EPU Loading comparison is provided in the response to EEEB-1. 14.

120 VAC Loading For vital 120 VAC loadings for EPU, the changes are identified in EEEB-1.13 (EPU modifications, items 8 and 9). The new vital 120 VAC loads are powered through inverters and in the battery sizing calculation are configured for maximum loading. The highest calculated loading of any inverter pre-EPU is 93.74% loaded on a full load of 58.59A. The largest estimated load for any inverter from items 8 and 9 is 0.63A.

EEEB-1.13 Regarding Page 2.3.4-3 of Attachment 4 of the LAR, the licensee stated that both the safety related and non-safety related portions of the 125 V DC systems were evaluated to determine potential impacts due to EPU. The five non safety-related modifications discussed on Page 2.3.4-2 will have a small impact on the DC Power System. The current unused system capacity associated with the batteries and chargers is sufficient to accommodate the impact of these additional EPU loads on the DC Power System.

Provide a comparison of the existing loads to the EPU loads and the design rating for each safety related and non-safety related battery at Turkey Point Units 3 and 4.

There are no EPU plant modifications, or changes that adversely affect the DC Power system post EPU.

Turkey Point Units 3 and 4 Docket Nos. 50-250 and 50-251 L-2011-081 Page 19 of 22 The batteries were calculated to have the following margins:

Safety Related Batteries Pre-EPU Post-EPU Battery Actual Required Margin Required Margin Positive Plate Positive Plate Positive Plate 3D03 12 10.72 10.6%

10.72 10.6%

3D24 8

6.378 20.3%

6.421 19.7%

4D24 8

7.005 12.4%

7.04 12.0%

4D03 12 11.91 0.8%

11.91 0.8%

Non-Safety Related Batteries Actual Pre-EPU Post-EPU Battery positive Plate Required Margin Required Margin Positive Plate Positive Plate 3D34 16 12.291 23.2%

12.333 22.9%

4D34 16 12.214 23.7%

12.25 23.4%

The maximum load (worst period) on the batteries are as follows:

Safety Related Batteries Pre-EPU Post-EPU Battery Highest Highest Load (A)

Load (A) 3D03 839 839 3D24 523 525.9 4D24 663 664.5 4D03 902 903.4 Non-Safety Related Batteries Pre-EPU Post-EPU Battery Highest Highest Load (A)

Load (A) 3D34 842 844.08 4D34 841 843.08

Turkey Point Units 3 and 4 L-2011-081 Docket Nos. 50-250 and 50-251 Page 20 of 22 There are nine (9) modifications being implemented for EPU that will result in minor changes to the safety related and non-safety related batteries as follows:

1.

Replacement of the feedwater isolation valves will add DC solenoids to the safety related portion of the DC system. This modification is anticipated to have a small impact on the safety related portion of the DC power system.

2.

Electro-hydraulic controls (EHC) upgrade will add DC solenoids, which have very low power requirements, to the non-safety related DC power system.

3.

Leading edge flow meter (LEFM) feedwater flow metering will add AC loads to the non-safety related inverters.

4.

Turbine digital controls upgrade will add AC loads to the non-safety related inverters.

5.

Feedwater heater drains digital controls upgrade will add AC loads to the non-safety related inverters.

6.

Re-powering of the alternate Spent Fuel Pool pump will add control circuit load to the safety related batteries.

7.

Replacement of the Power System Stabilizer (PSS) will add load to the non-safety related batteries.

8.

Replacement of the motor operated damper for the Normal Containment Coolers will add a momentary load to the vital inverters.

9.

The pressurizer setpoint and control modification will replace 3 existing indicators on each unit, adding load to the vital inverters.

EEEB-1.14 Regarding Page 2.3.5-4 of Attachment 4 of the LAR, provide a summary of EDG station blackout (SBO) loads, with one unit in SBO and the other unit experiencing loss of offsite power event, for both existing and under EPU conditions.

The most limiting of the four Emergency Diesel Generators (EDGs) is EDG 3A. Therefore EDG 3A, with the least margin of the EDGs, is used for comparison:

Turkey Point Units 3 and 4 Docket Nos. 50-250 and 50-251 L-2011-081 Page 21 of 22 Table 1.14-1 EDG SBO Loading Evaluation Unit 3 Non Blackout (LOOP), Station Blackout 90 Sec - 8 Hrs on Unit 4 and only EDG 3A Available (kW)

Total - Unit 3 Automatic Loads 1035 Total - Unit 3 Manual Loads 510 Total - Unit 3 Auto and Manual Loads 1545 Total - Unit 4 Station Blackout Loads 1250 Total - Unit 3 Auto and Manual Loads and 2795 Unit 4 Station Blackout Loads EDG 3A 2000 Hour Rating 2850 EDG 3A 168 Hour Emergency Rating 2950 Design Margin for 2000 Hour Rating 55 Design Margin for 168 Hour Emergency Rating 155 Table 1.14-2 EDG SBO Loading Evaluation - Post-EPU with Overfrequency Operation Unit 3 Non Blackout (LOOP), Station Blackout 0.67% OF on Unit 4 and only EDG 3A Available 90 Sec - 8 Hrs (kW)

Total - Unit 3 Automatic Loads 1040 Total - Unit 3 Manual Loads 517 Total - Unit 3 Auto and Manual Loads 1557 Total - Unit 4 Station Blackout Loads 1264 Total - Unit 3 Auto and Manual Loads and 2821 Unit 4 Station Blackout Loads EDG 3A 2000 Hour Rating 2850 EDG 3A 168 Hour Emergency Rating 2950 Design Margin for 2000 Hour Rating 29 Design Margin for 168 Hour Emergency Rating 129 Note: Load center (LC) transformer losses were adjusted base on transformer actual loadings.

During an SBO event, after the automatic loads have been activated, manual loads are operator activated. The operator is required to verify that adequate kW margin is available prior to adding load to the EDG and adjust the frequency to be within the "Green Band" on the indicator as required. The "Green Band" provides a span of +/-0.2 Hz, and when combined with a reading accuracy of +/-0.2 Hz would maintain the frequency within +/-0.4 Hz.

The table above indicates that maintaining the frequency within 0.4 Hz (0.67 %

over-frequency) the EDG load is under the 2000 hour0.0231 days <br />0.556 hours <br />0.00331 weeks <br />7.61e-4 months <br /> rating by 29 kW.-

Turkey Point Units 3 and 4 L-2011-081 Docket Nos. 50-250 and 50-251 Page 22 of 22 References

1. M. Kiley (FPL) to U.S. Nuclear Regulatory Commission (L-2010-113), "License Amendment Request No. 205: Extended Power Uprate (EPU)," (TAC Nos. ME4907 and ME4908), Accession No. ML103560169, October 21, 2010 2, Email from J. Paige (NRC) to T. Abbatiello (FPL), "Turkey Point EPU - Electrical Engineering (EEEB) Request for Additional Information - Round 1," Accession No. ML110610719, March 2, 2011
3. IEEE 323 - 1974, "Standard for Qualifying Class IE Equipment for Nuclear Power Generating Stations"
4. NUREG-0588, "Interim Staff Position on Equipment Qualification of Safety-Related Electrical Equipment," February 5, 1980
5. NRC IE Bulleting 79-011B, "Environmental Qualification of Class 1E Equipment,"

January 14, 1980

6. NUREG7 1759, "Safety Evaluation Report Related to the License Renewal of the Turkey Point, Units 3 and 4," Accession No. ML021260004, April 2002
7. "Application for Renewed Operating Licenses", Turkey Point Nuclear Plant, Units 3 and 4, Accession No. ML003749538, September 8, 2000
8. Updated Final Safety Analysis Report, Chapter 16 "Aging Management Programs and Time Limited Aging Analysis"
9. NUREG-1801, "Generic Aging Lessons Learned (GALL) Report", US Nuclear Regulatory Commission, July 2001
10. M. Kiley (FPL) to U.S. Nuclear Regulatory Commission (L-2010-160), "Supplement to the Extended Power Uprate (EPU) License AmendmentRequest (LAR) No. 205: Regarding the EPU Related System Impact Study (SIS)," Accession No. ML103060107, October 29, 2010

Turkey Point Units 3 and 4 Docket Nos. 50-250 and 50-251 L-2011-081 Turkey Point Units 3 and 4 GENERATION INTERCOMMECTION SERVICE SYSTEM IMPACT STUDY ATTACHMENT 2 This coversheet plus 47 pages

FPL EXTENDED POWER UPRATE PROJECTS TURKEY POINT 3 & 4 SYSTEM IMPACT STUDY - ADDENDUM #2 3/23/2011

Summary:

Florida Power. & Light Company ("FPL") has performed additional analysis to supplement the original System Impact Study ("SIS", dated 11/25/2008) and its first Addendum (dated 5/12/20 10) regarding the increased power output of the Turkey Point 3 extended power uprate

("TP3 EPUP") & Turkey Point 4 extended power uprate projects ("TP4 EPUP"). This Addendum

  1. 2 incorporates FPL's latest revision to the Engineering Evaluation for the Extended Power Uprate, Revision 3 (March 9, 2011) which specifies a higher EPU Peak Winter Power output level for both TP3 EPUP and TP4 EPUP than was submitted in the original application for transmission service to add incremental generation at the Turkey Point ("TP") site. The original submission specified an EPU Peak Winter Power output level for both TP3 EPUP and TP4 EPUP of 889 MWe, while the revised output level for both TP3 EPUP and TP4 EPUP is specified as 899.8 MWe. The potential higher output of approximately 11 MW per nuclear unit under cold winter conditions was analyzed for both thermal and dynamic stability impacts. Short circuit impacts were not expected nor evaluated because the electrical characteristics of the generator components did not change significantly based on a review and comparison of the revised Engineering Evaluation against the original submittal. In summary, the results of these analyses indicate that the potential higher winter output (22 MWe total) of the EPU projects does not adversely impact the transmission system and does not require additional upgrading of facilities.

This result was expected because the cold winter peak conditions are less severe to the transmission system in the geographic area of the Turkey Point site than hot'summer conditions.

Due to the relatively small incremental increase, output results are very similar to the results achieved in the original system impact study and the first Addendum.

This System Impact Study Addendum #2 includes:

" A review of the Engineering Evaluation Revision 3 Data Submittal; Revised Loadflow Analyses for Designation as an FPL Network Resource:

Revised Dynamic Stability Analyses for selected contingencies Theses additional analyses were performed in accordance with FPL's Facility Connection Requirements, NERC Reliability Standards (FAC-001, FAC-002, TPL-001, TPL-002, TPL-003 and NUC-001-2).

The required changes to the transmission system identified in the original SIS and the first Addendum were included as base assumptions in the additional analyses scenarios for this Addendum 2. The requirement to replace the existing power system stabilizers is also unchanged.

" The installation of two new 5 ohm inductors at the Turkey Point 230kV switchyard is required prior to the uprate of the second of two nuclear units (currently TP4, scheduled to occur on or about December, 2012), to reduce the available fault current at Turkey Point switchyard to acceptable levels with both of the TP nuclear units operating in their uprated configuration.

  • Reduction of the existing breaker failure back-up (BFBU) total clearing time at Flagami 138kV substation from 15.3 cycles to 10.9 cycles is required.
  • Reduction of the existing BFBU total clearing time at Davis 138kV substation from 13.3 cycles to 9.9 cycles is required.

2

  • New Power System Stabilizers are required for TP units 3 & 4 to improve oscillations damping.

The results of the additional analyses for this SIS Addendum 2 are as follows:

Engineering Evaluation Revision 3 Data Submittal Review A review of the revised data submittal indicated that the only significant change was that the EPU Peak Winter Power output level for both TP3 EPUP and TP4 EPUP was increased and would need to be evaluated. The EPU Summer Power output level was-less than the previous submittal (851.7 MWe vs. 869 MWe) and did not need to be re-evaluated. The slight changes in some of the other modeling input parameters were incorporated in the analyses performed for the first Addendum and applicable analyses in this Addendum 2. They are not considered material and did not invalidate any of the results of the original SIS.

Loadflow Analyses 7

The loadflow analysis performed in the original SIS used in its assumptions the EPU winter peak and the EPU summer minimum output power levels reported in the Engineering Evaluation (Rev.

2, June 30, 2008). As a result of the submittal of a revised Engineering Evaluation (Rev. 3, March 9, 2011) with a slightlyhigher EPU winter peak output power level for each generator after EPU, the loadflow results portion of the original SIS is revised in this Addendum 2.

The results of the contingency power flow analysis indicated that there were no overloads of facilities that resulted from the increased EPU output levels that could not be mitigated by normal switching procedures. Also, no existing overloads in the cases were materially aggravated (more than 3%) due to the increased EPU output power levels. In addition, there were no low voltages observed due to the increased EPU output power.

Dynamic Stability Analysis Dynamic simulations were performed using the latest available 2014 summer peak base case for dynamic simulations at both peak load and off peak (50% of peak) load levels with existing commitments of all the companies in Florida.

The 2014 summer cases include the latest available transmission and generation assumptions for dynamic simulation and are appropriate for modeling the effects of increased. EPU output levels. (Winter cases are not developed for dynamic stability simulations because the summer case models the most pessimistic scenario for stability.)

The.,base cases are modified for study by modeling the higher EPU Peak Winter Power output level for both TP3 EPUP and TP4 EPUP (22 MWe incremental to original study cases).

The results of the dynamic stability analyses all indicate that the system remains stable with no load shedding under all conditions simulated, and the post-transient steady-state voltages after worst case contingencies are all within Nuclear Plant Interface Requirements ("NPIR") required ranges. The detailed results of the simulations are contained in the following tables.

Table 1 - 2014 Peak and Off-Peak Loading with TP3EPUP (simulates 2012 before TP4EPUP)

Table 2 - 2014 Peak and Off-Peak Loading with TP3EPUP and TP4EPUP Table 3 - Power Flow Analysis, 2014 Summer Peak Loading with EPU Peak Winter Output for TP3 EPUP and TP4 EPUP 3

The following pages of this report contain the tables and associated plots for the analyses.

4

Table 1 2014 Summer with TP3EPUP (900 MWe)

Run ID Description Peak Loading Off peak Loading 3-pha fault at Turkey Point on Turkey System Stable System Stable Point-Levee 230kV line, BRK 90 fails Loadshed 0 MW Loadshed 0 MW At 3 cy open Turkey Point-Levee line C_01/C_ 11 at Levee and convert fault to SLG, At 8.0 cy open Turkey Point-Levee line at Turkey Point & clear fault at Turkey Point 230kV.

3-pha fault at Levee 230kV on Turkey System Stable System Stable Point-Levee #1 230kV line. RELAY Loadshed 0 MW Loadshed 0 MW C_02/C_12 FAILURE at Turkey Point. At 4 cy open Levee end. At 28 cy clear fault and open Turkey Point end.

C_03/C_13 3-pha fault at Davis 230kVon Davis-System Stable System Stable Levee #1 line, Mid BRK 96 fails, at Loadshed 0 MW Loadshed 0 MW 4cy open Davis-Levee #1; at 9.0 cy open Davis-Turkey Point #3 & clear T

fault.

C_04/C_14 3-pha fault at Davis 138kV on Davis-System Stable System Stable Village Green line, Mid BRK 31 fails, Loadshed 0 MW Loadshed 0 MW at 4cy open Davis-Village Green; at 9.9.cy open Davis-Princeton & clear fault.

C_05/C_15 3-phase fault at Flagami capbank. Bus System Stable System Stable BRK 67 fails. 10.9 cycles open Loadshed 0 MW Loadshed 0 MW Flagami S 138kV bus brks & clear fault.

5

Table 2 2014-Summer with TP3EPUP and TP4EPUP (900 MWe each)

Run ID Description Peak Loading Off peak Loading 3-pha fault at Turkey Point on Turkey System Stable System Stable Point-Levee 230kV line, BRK 90 fails Loadshed 0 MW Loadshed 0 MW At 3 cy open Turkey Point-Levee line C_06/C_16 at Levee and convert fault to SLG, At 8.0 cy open Turkey Point-Levee line at Turkey Point & clear fault at Turkey Point 230kV.

3-pha fault at Levee 230kV on Turkey System Stable System Stable Point-Levee #1 230kV line. RELAY Loadshed 0 MW.

Loadshed 0 MW C_07/C_ 17 FAILURE at Turkey Point. At 4 cy open Levee end. At 28 cy clear fault and open Turkey Point end.

C_08/C_18 3-pha fault at Davis 230kVon Davis-System Stable System Stable Levee #1 line, Mid BRK 96 fails, at Loadshed 0 MW Loadshed 0 MW 4cy open Davis-Levee #1; at 9.0 cy open Davis-Turkey Point #3 & clear fault.

C_09/C_19 3-pha fault at Davis 138kV on Davis-System Stable System Stable Village Green line, Mid BRK 31 fails, Loadshed 0 MW Loadshed 0 MW at 4cy open Davis-Village Green; at 9.9 cy open Davis-Princeton & clear fault.

C_10/C_20 3-phase fault at Flagami. capbank. Bus System Stable System Stable BRK 67 fails. 10.9 cycles open Loadshed 0 MW Loadshed 0 MW Flagami S 138kV bus brks & clear fault.,.

6

Table 3 Power Flow Analysis - 2014 Summer Peak Loading with EPU Peak Winter Output for TP3EPUP and TP4EPUP Turkey Point Grid voltage or Scenario Event 230 voltage loading problems PTN @ 1800 MWgross 241.14 none TN3 EPU, TN4 EPU -

900 MW each PTN3 off, PTN4 tripped 239.53 none PTP5 off, PTN4 tripped 238.09 none 7.

Dynamic Stability Plots for Table 1 2014 SUMMER PEAK LD, 2009 FRCC LFDB (8/24/09) MODIFIED FOR DYNAMICS. FIRM INTERCHNG. TP3 EPU, TP2 SYNCH COND 3 PH FAULT @TURKEY POINT ON LEVEE 230KV LINEBRK 90 FAILS LOADFLOW=DY09 14SR4.SAV, SNAPSHOT= FY09R4-2014 FILE:

C: \\home \\pxgOdd9\\nuc-uprates\\sis\\TP\\llMW\\dyn\\Run EPU C 01.out Ch-4# 280:

[A0GL 3301 CR RV G3 22.0001 1 5

CHNL0 219-

[ANG-200[10TUCOE2 22.000111 01000.0 258, [-128 020S[TPSST0M 00.00018 1

-lo 150.00 CH-O 277,

[A-1283-TP5 BI 18-03;p -

.000 CHN-0 276, (A

4{p.4 22.0003j=

0 k-00 210.

1[-

01 3[0TP 22.00011

-000.0 IS00.00150005505.

573

.00 I

  • I I

0 I

  • i:

I 14 0

II

  • 1I 0001 10~

1001 RU 0

2014 SUMMER PEAR LD, 2009 FRCC LFDB (8/24/09) MODIFIED FOR DYNAMICS. FIRM INTERCHNG.

TP3 EPU, TP2 SYNCH COND 3PH FAULT @TURKEY POINT ON LEVEE 230KV LINE,BRK 90 FAILS LOADFLOW=DY09_14SR4.SAV, SNAPSHOT= FY09R4-2014 FILE: C:\\home\\pxgodd9\\nuc-uprates\\sis\\TP\\llMW\\dyn\\Run EPUC 01.out

=u F-I o*"..

0~.

.~~1-1=2 0 1.0S0000 10.050015000.0 3000:

1PMC 00

[

O ST CI E2S71 02.00010!II 0000 I. o Q oo

.o..o.o.o

-05r1

  1. 007: [-MEC 0 017[TP51T70 18.000110 i.osoo 05000 k

_-c

ý # 307,

[PMEC 1283 [Tll-lB

-IB U.0.00 o _]

c** 305,

[PMEc li~p, 22-01o11 1.0010[

0.05000 1 I: I 11 oFI

.'I

,I.I

.ii '

I I

I I

0I d 0 Oo 00 2014 SUMMER PEAR LD, 2009 FRCC LFDO (8/24/09) MODIFIED FOR DYNAMICS. FIRM INTERCHNG.

TP3 EPU I TP2 SYNCH COND 3PH FAULT @TURKEY POINT ON LEVEE 230KV LINE,BRK 90 FAILS LOADFLOW=DY09_14SR4.SAV, SNAPSHOT= FY09R4-2014 FILE: C:\\home\\pxgOdd9\\nuc-uprates\\sis\\TP\\llMW\\dyn\\Run EPU C 01.out 1>

z

.01 01 H-2014 SUMMER PEAK LD, 2009 FRCC LFDB (8/24/09) MODIFIED FOR DYNAMICS. FIRM INTERCHNG. TP3 EPU, TP2 SYNCH COND 3PH FAULT @TURKEY POINT ON LEVEE 230EV LINEBRK 90 FAILS LOADFLOW=DY09_14SR4.SAV, SNAPSHOT= FY09R4-2014 FILE: C:\\home\\pxgodd9\\nuc-uprates\\sis\\TP\\11kMW\\dyn\\Run EPU C 01.5t 10000 080. 100WR 305110 OV

-0 22.000101

-0000 11000

[V-AnY 1

0.70000 i.2.o0 11.20..0000 15.ooo 5

0

.0000 0

050: [00-0 200S1U.C1 22.00..

0.0000 1 11..000 0

0

[

0.000 C 284: [-OR 12-5TPSSTEAM

-a.00)115 oo 1-0000 000.50. 000 0007070 0

.00001 cK4283' [POWR 12B3 ITP5CTBI 1B5 QI, N

oo 05.000282: 1 POWR 41TP.4 22.000111 10.000 1

0.0000 d

inqL 281; [pOWR 3 tTP. 3 22.0001115.-7

'8 I

+:

I H

0 Co 0

z 50 Page 1 of 40

Dynamic Stability Plots for Table 1 2014 SUMMER PEAK LD, 2009 FRCC LFDB (8/24/09) MODIFIED FOR DYNAMICS. FIRM INTERCHNG. TP3 EPU, TP2 SYNCH COND 3PH FAULT @TURKEY POINT ON LEVEE 230KV LINE,B K 90 FAILS LOADFLOW=DY09_14SR4.SAV, SNAPSHOT= FY09R4-2014 FILE: C:\\home\\pxg~dd9\\nuc-uprates\\sis\\TP\\llMW\\dyn\\RunEPUC_01.out E,

2014 SUMMER PEAK LD, 2009 FRCC LFDS (8/24/09) MODIFIED FOR DYNAMICS. FIRM INTERCHNG. TP3 EPU + TP2 SYNCH COND 3PH FAULT @TURKEY POINT ON LEVEE 230KV LINE,BRK 90 FAILS LOADFLOW=DY09_14SR4.SAV, SNAPSHOT= FY09R4-2014 FILE: C:\\home\\pxgOdd9\\nuc-uprates\\sis\\TP\\llMW\\dyn\\Run_EP)!

C_01.out

-o w00 I-.

1-

.94 IET*

41T

-20 11 9.5000

-0.5000

-oC 2

10,

[

30 T-3 02.000111 Is.5000

-0.5000 I

I I

I I

I I

I I

I I

I I

s*

I*

L.

616.000 0.00

-01000

-010.

-4

-0 0500 1

00.000 100.00 0100 o,0*0000000)o0.0 I Isq.-

0 00 0

00 2014 SUMMER PEAK LD, 2009 FRCC LFDS (8/24/09) MODIFIED FOR DYNAMICS. FIRM INTERCHNG. TP3 EPU + TP2 SYNCH COND 3PH FAULT @TURKEY POINT ON LEVEE 230KV LINE,BRK 90 FAILS LOADFLOW=DY09_14SR4.SAV, SNAPSHOT= FY09R4-2014 FILE: C:\\home\\pxgOdd9\\nuc-uprates\\sis\\TP\\11MW\\dyn\\Run EPUC 01.out 1-0 El0 2014 SUMMER PEAK LD, 2009 FRCC LEOB (8/24/09) MODIFIED FOR DYNAMICS. FIRM INTERCHNG.

TP3 EPU + TP2 SYNCH COND L 3PH FAULT @TURKEY POINT ON LEVEE 230EV LINE,BRK 90 FAILS LOAOFLOW=DY09_14SR4.SAV, SNAPSHOT= FY09R4-2014 FILE: C:\\home\\pxg0dd9 \\nuc-uprates\\sis\\TP\\llMW\\dyn\\RunEPU C_01.out I

000000.0 274 000 00 E 00 00 22.00001]

R G I

r0.00000 0

-0.07 00 I 10.00000 0..........

2

[-

.00[

U0000 20 101

-0.02001[

o.oBooo 2..o i100 0 C

2702,

[SPD 0105[TPT.4 M 20.0001.1

-0.00 0o.osooo 271 0,0, s f0 [B 00 01

-0.020000 I 0.000 270. [0SPD 4TP.4 22.0001-0 io.osooo 2-I-n 3[T0.3 22-oob

-0.02000 I I I

I I

I I

.01 0101

.00~

LU 0

z 00 ou 0uw Page 2 of 40

Dynamic Stability Plots for Table 1 2014 SUMMER PEAK LD, 2009 FRCC LFDB (8/24/09) MODIFIED FOR DYNAMICS. FIRM INTERCHNG. TP3 EPU + TP2 SYNCH COND T

3PH FAULT 0LEVEE230KV ON TURKEY POINT#I LINERELAY FAIL 28CY LOADFLOW=DY09_14SR4.SAV, SNAPSHOT= FY09R4-2014 FILE: C:\\home\\pxg0dd9\\nuc-uprates\\sis\\TP\\S1MW\\dyn\\Run EPU C 02.out r 7750.00

-oo.oI i10 o.0.

00 270

, [ANG 1

2000 L3

-0.000

-)

100.0

k.

CDo 276:

jANGL 4 ITP. 4 22.0001D I

00.00

00. 07, 00 707 0 0

-000.0 DoCNL 275, [ANGL 3 [TP. 3 22.000111 I-I I

Ii I I-I f10 0

7

Ž-

00105

.01A 00(~)

0 2014 SUMMER PEAK LD, 2009 FRCC LFDB (8/24/09) MODIFIED FOR DYNAMICS. FIRM INTERCHNG.

TP3 EPU, TP2 SYNCH COND 3PH FAULT @LEVEE230KV ON TURKEY POINT#1 LINERELAY FAIL 28CY LOADFLOW=DY09_14SR4.SAV, SNAPSHOT-FY09R4-2014 FILE: C:\\home\\pxg0dd9\\nuc-uprates\\sis\\TP\\11MW\\dyn\\RunEPUC_02.out F

5.000 0.050000 F

03090 0PMEC 200(STLUCIE2 22 000

-1; 1-5o

.oso Doo

[

1.00 [0MEC 1-.0000M F DI.

0 0 3

0 7, [PMEC 12B0 ITP50 70 00.000-0.0 il.osoo o-l ~

[P4 2.01ý

. osooo C-4*

foP[MEC *[TI.,

22.000111

  • D.oDoo j'

I I

i I

I

I II.

i,:

9t1 II.

'II II.

~I' I

I I

I I

I Kc Di0 00 00 So 10

+

2014 SUMMER PEAK LD, 2009 FRCC LFD' (8/24/09)

MODIFIED FOR DYNAMICS. FIRM INTERCHNG.

TP3 EPU + TP2 SYNCH COND 3PH FAULT @LEVEE230KV ON TURKEY POINT#I LINERELAY FAIL 28CY LOADFLOW=DY09_14SR4.SAV, SNAPSHOT= FYS9R4-2014 FILE: C:\\home\\pxg0 dd9\\nuc-uprates\\sis\\TP\\llMW\\dyn\\Run EPUC_02.out c0001. 70

)V-00070TOW000 1.2000 0.70 U) 104 00>

01H Do Do E]

2014 SUMMER PEAK LD. 2009 FRCC LFDB (8/24/09) MODIFIED FOR DYNAMICS. FIRM INTERCi G. TP3 EPU TP2 SYNCH COND 3PH FAULT 0LEVEE230KV ON TURKEY POINT#l LINERELAY FAIL 28CY LOA!DFLOW=DY09.14SR4.SAV, SNAPSHOT= FY09R4-2014 FILE: C:\\home\\pxgOdd9\\nuc-uprates\\sis\\TP\\11MW\\dyn\\Run EPU C 02.out 1000000000010 000 R00 7000)70 0700 20,..o

.000)0

-0oo

-0 2-00 1000 000)o*

7O0[00UCI0 00.00)0) 000

.o.0000 0C 6

084:

po-R 1285[TPSrTA-1.000)1 k00.000 0

0 0

5.0ooo 105.000 C00L# 2630 00 WR 1283[TP(CTB0

4) 00.000)1

.00 1-1s 1-oooooll

-if Do 0 02 Do0-0 Do0 Page 3 of 40

Dynamic Stability Plots for Table 1 2014 SUMMER PEAK LD, 2009 FRCC LFDB (8/24/09) MODIFIED FOR DYNAMICS. FIRM INTERCHNG. TP3 EPU, TP2 SYNCH COND 3PM FAULT @LEVEE230KV ON TURKEY POINT#l LINERELAY FAIL 28CY LOADFLOW=DY09_14SR4.SAV, SNAPSHOT= FY09R4-2014 FILE: C:\\hone\\pxgOdd9\\nuc-uprates\\sis\\TP\\11MW\\dyn\\RunEPUC02.out oo~:

ME-o (ol 2014 SUMMER PEAR LD, 2"09 FRCC LFDB (8/24/09) MODIFIED FOR DYNAMICS. FIRM INTERCHNG.

TP3 EPU I TP2 SYNCH COND 3PM FAULT @LEVEE230KV ON TURKEY POINT#I LINERELAY FAIL 28CY LOADFLOW=DY09_14SR4.SAV, SNAPSHOT= FY09R4-2014 FILE: C:\\home\\pxgOdd9\\nuc-uprates\\sis\\TP\\11MW\\dyn\\RunEPUCO2.out CHNL# 86:60-160° (FRO-pU*AM])

C95N0 294-

-7 0E-.

4 1T0.4 22.0ooL o1 I

.S0 0 2

1

-0.5000 0.00C00NL.

200, 10Tpm 2,TP.2 20.000101 I

I I

I "I

I I

§ 0

(00.00

-~

0.000 C~%*84, 60-(60-[fR0-C-0-3LT))

1.000 0

.4...

590.000 000 1 00 00- o*60'

[FR0-0NCH]

C1#.

0060 00.000 I

I I

I I

I

'--7 Su 02 U0~

-0 i

2014 SUMMER PEAR LD, 2009 FRCC LFDB (8/24/09)

MODIFIED FOR DYNAMICS. FIRM INTERCHNG.

TP3 EPU, TP2 SYNCH COND 3PH FAULT @LEVEE230KV-ON TURKEY POINT#1 LINERELAY FAIL 28CY LOADFLOW=DY09_14SR4.SAV, SNAPSHOT= FY09R4-2014 FILE: C:\\home\\pxg0dd9\\nuc-uprates\\sis\\TP\\llMW\\dyn\\Run EPU C_02.out L*

300:

[EFD 4fTp 4 2

-000111

-.0

-u RX

-0 2.74e ooo 3301 R G

-0.0200 I 2730*0 1 0 SPD 200ISTLCIE2 22.000111

-B~oooo 00001 "00 2000 0000 X

-o oooo I 10.000 201 00, 20 28020000......0020

-0.0200

  • #272:

[SPD 1285[TPSSTýM 18 ýo00)11 o-eooo

-0+

H io-ooo 211.

ISPD 1283[ITPSCTBI "18.0001-1]

1o.ooeoo 0200020 00

20.

2OO0

-0.0200 o-oooo C 2-9 1S-1 [TP.3 21.00-111 o.osooo

-0.0200 I

I I

I 1 1I 2014 SUMMER PEAK LD, 2009 FRCC LFDB (8/24/09) MODIFIED FOR DYNAMICS. FIRM INTERCHNG. TP3 EPU, TP2 SYNCH COND 3PH FAULT @LEVEE230KV ON TURKEY POINT#1 LINERELAY FAIL 28CY I LOADFLOW=DY09 14SR4.SAV, SNAPSHOT= FY09R4-2014 FILE: C:\\home\\pxgodd9\\nuc -uprates\\sis\\TP\\IiMW\\dyn\\RunEPUC_02.out 020 Mm 02~

0001 0

Page 4 of 40

Dynamic Stability Plots for Table 1 2014 SUMMER PEAK LD, 2009 FRCC LFDE (8/24/09) MODIFIED FOR DYNAMICS. FIRM INTERCHNG.

TP3 EPU + TP2 SYNCH COND 3PH FAULT @DAVIS ON LEVEE 81 230KV LINEBRK 96 FAILS LOADFLOW=DY09_14SR4.SAV, SNAPSHOT= FY09R4-2014 FILE: C:\\h6me\\pxgOddS\\nuc-uprates\\sis\\TP\\11MW\\dyn\\Run EPU C 03.out C950.0 280:

ANGL 33010CR RV G3 22.000)11 000 279, 5AN5L 2001*07t0CIE2 I0.000lli o

h.150

-0F0w 2780 00GL 12:07'5TSS2AM 00.00011) i00 0 1001 277: 1200 1283 3TPSTBI

-2000001)

-.000.0 00 2014 SUMMER PEAK LD, 2009 FRCC LFDB (8/24/09)

MODIFIED FOR DYNAMICS. FIRM INTERCHNG. TP3 EPU, TP2 SYNCH COND 3PH FAULT @DAVIS ON LEVEE 41 230KV LINE,BRK 96 FAILS LOADFLOW=DY09_14SR4.SAV, SNAPSHOT= FY09R4-2014 FILE: C:\\home\\pxg~ddO\\nuc-uprates\\sis\\TP\\11MW\\dyn\\RunEPUC_03.out 0C0 310,

[PMEC 3301(CR 00 03 22.000)11

'1.0500 0.05000 1.000 2CHNL0

309, 0PMEC 20 0Q 1UC 2 02 22000110 0.50 h

00 o1

000, C

1000 2050090000A 00.00011 t

-]0000 1.0500 0.5000_

SC-*L 307: [PMEC 1263[TPS-Bl

-eooocl1 o

1.osoo2.005000 1.50 1250L0 200, 2000 41T2.4.0005000 11.0500021 00, 20F

22.

2201.0052I 11.o o

0-o.osuooo 0-

--1,I IPM-.

3 17P.

3 2

I I

I

'1'

'1

/

"PI 8t10

-II

' 'II

,1I 1......i I

I I

I S

H 1.20 Do 2014 SUMMER PEAK LD, 2009 FRCC LFDS (8/24/09) MODIFIED FOR DYNAMICS - FIRM INTERCHNG. TP3 EPU + TP2 SYNCH COND 3PH FAULT @DAVIS ON LEVEE #1 230KV LINE,BRK 96 FAILS LOADFLOW=DY09_14SR4.SAV, SNAPSHOT-FY09R4-2014 FILE: C:\\home\\pxgOdd9\\nuc-uprates\\sis\\TP\\llMW\\dyn\\RunEPUCO3. out I.- 000 0.70000 CN#71: V-TURKY P)

I i I i

I I

I 0 0 i,7-

,1 4

' I

-103 of U)3E.>

0*

U-2014 SUMMER PEAK LD, 2009 FRCC LFDB (8/24/09) MODIFIED FOR DYNAMICS. FIRM INTERCHNG.

TP3 EPU, TP2 SYNCH COND 3PH FAULT @DAVIS ON LEVEE #1 230KV LINE,BRK 96 FAILS LOADFLOW=DY09_14SR4.SAV, SNAPSHOT= FY09R4-2014 FILE: C:\\h6me\\pxg0dd9\\nuc-uprates\\sis\\TP\\lDMW\\dyn\\Run EPUCO03. ot I

~

2000.ý00, I00--000-)200000-002-!1

]

a 2r

,[

.0

.1....

15.000 02 0001 l

5.0000 CN 283+ [PO-R ý200S-CE

[

22.0- -]i w2.00 5.0ooo0 215.000 1o 23 0

2.00011 CH # 22,: [1R0 0

4 TP 3.4

-2.000-1 5,000 l

[05.000 00w20 20

)23 2.01)500 C

I LI 28 :IIR

[P 3 22 o o 1 I

I

,I I/

5.

\\'

\\.

(,-.3 C

u5

'3 00 A

Page 5 of 40

Dvnamic Stability Plots for Table I 2014 SUMMER PEAK LD, 2009 FRCC LFDB (B/24/09) MODIFIED FOR DYNAMICS. FIRM INTERCHNG. TP3 EPU + TP2 SYNCH COND 3PH FAULT @DAVIS ON LEVEE #1 230KV LINE,BRK 96 FAILS LOADFLOW=DY09_14SR4.SAV, SNAPSHOT= FY09R4-2014 FILE: C:\\home\\pxgOdd9\\nuc-uprates\\sis\\TP\\llMW\\dyn\\RunEPUC_03. out CHONLO 054, [00TR0 4[T1.4 02.00010 1I i 9.5000

-0.5000 4

T-6 293, [-*M 3

1.

22.000111 F

9.00 00000 5,100

00.

0000

-0.5000I I

I I

I I

{

{

-"[p2 C

1-'

~0 o0.)

-'to N

2014 SUMMER PEAK LD, 2009 FRCC LFDB (8/24/09) MODIFIED FOR DYNAMICS. FIRM INTERCHNG.

TP3 EPU, TP2 SYNCH COND l

3PH FAULT @DAVIS ON LEVEE #1 230KV LINE,BRK 96 FAILS

(

LOADFLOWDY09_14SR4.SAV, SNAPSHOT= FY09R4-2014 FILE: C:\\home\\pxgOdd9\\nuc-uprates\\sis\\TP\\llMW\\dyn\\RunEPUC_03.out C-N#

86, 60-(60-[PR0-PUT 1)]

610.000 0005090 0-00 P000t~t~

-#o00 64: 60-(10"I0RQ--l0O5) I-

.0 0..

59.000 CHNLA 83: 60-(60-[FR0-F*CH))

-10Oo-0 CýýO 82, 60.(60"[FR0-FLAG-lZ) 61.000 s

5.000 I { '

l F

~07

-o to[o3 000p~

to~

00 It 2014 SUMMER PEAK LD, 2009 PRCC LFD, (8/24/09) MODIFIED FOR DYNAMICS. FIRM INTERCHNG. TP3 EPU, TP2 SYNCH COND 3PM FAULT @DAVIS ON LEVEE #1 230KV LINE,BRK 96 FAILS LOADFLOW=DY09_14S04.SAV, SNAPSHOT= FY89R4-2014 FILE: C:\\home\\pxgOdd9\\nuc-uprates\\sis\\TP\\1lMW\\dyn\\Run_EPUC_03.out E-o 2014 SUMMER PEAK LD, 2009 FRCC LFDB (8/24/09) MODIFIED FOR DYNAMICS. FIRM INTERCHNG.

TP3 EPU, TP2 SYNCH COND 3PH FAULT @DAVIS ON LEVEE #1 230KV LINE,BRK 96 FAILS LOADFLOW=DY09_14SR4.SAV, SNAPSHOT= FY09R4-2014 FILE: C:\\home\\pxg0dd9\\nuc-uprates\\sis\\TP\\1lMW\\dyn\\RunEPU C_03.out toO

.0

'04 9.5000

-0.5000o 00050.-#

299: [00 30TP.

3 22.00011) 0.5000ý_

L 050 9.5000

(

)

)(

00.

1o.osooo 000..

. 000 0000 01.......

..0 o.000o

-0 00 l# 2-00 [500 2001STLUCTE2 22.00011-o.0so x

02oo J

  • #272t

[SPD 1285[TP5ST-M 16.00141 J00 0 00000.0 270. 05000 0712031T0SCT0 00.0001011-.00 0

C0000.0

270,

[D:

4[TP.4 22.0001-10

-0.0000 0

0 317P.3

22.

-0.0200 I

II I

I II to 04 50 Page 6 of 40

Dynamic Stability Plots for Table 1 2014 SUMMER PEAK LD, 2009 FRCC LFDB (8/24/09) MODIFIED FOR DYNAMICS. FERM INTERCHNG. TP3 EPU I TP2 SYNCH COND 3PH FAULT @DAVIS 138KV ON VILLAGE GREEN LINEMID BRK 31 FAI LOADFLOW=DY09_14SR4.SAV, SNAPSHOT= FY09R4-2014 FILE: C:\\home\\pxgOdd9\\ nc-uprates\\sis\\TP\\llMW\\dyn\\Run EPU C 04.out 00.0-0 o-10.0 050.00COt!

'70. 10001. 0001.~000 2

00 00011-0000L1 070.18001 0AG 285 lT05STEA4 08.000111 05o0.0-0.0

-0 277: [*L1293

[TPSCTB 1B00 Y

050.00 CCHOL 276, [A0GL 40TP.

20o000111

.000.0 CHNL# 275, 1-aA 3[TP.0 22.000111 k

I I,

I' I

I

['I 01103

.8.3 01~

010 08()

2014 SUMMER PEAK LD, 2009 FRCC LFDB (8/24/09) MODIFIED FOR DYNAMICS. FIRM INTERCHNG.

TP3 EPU, TP2 SYNCH COND 3PN FAULT @DAVIS 138KV ON VILLAGE GREEN LINEMID SRE 31 FAI LOADFLOW=DY09_14SR4.SAV, SNAPSHOT= FY09R4-2014 FILE: C:\\hcoe\\pxgodd9\\nuc-u.prate\\osis\\TP\\llMW\\dyno\\Run EPU C 04.out 11.00o0 0.oso0 0 5

3o901 PmEC 200 00 8

000,S0-UCIE2 22 00D1]

I-1-~o oIooo I

C}010101.

700. 10P400 000851T0S10T0M 0.000)1]

0000

-. osoo 000

.1.

I

.00010.

0. 1040 00 00500 0

.0.0000]

10C-00 306:

0 PMEC 4[TP.4 2-.000]10 I

C00H.0 0

m00*

105 0

0 [TP.3 22.0001110 II,

'1.1

'11 Ei,:

. i

1 I

I I

I 8

08 0o Un 10 2014 SUMMER PEAK LD, 2009 FRCC LFDS (8/24/09) MODIFIED FOR DYNAMICS. FIRM INTERCHNG. TP3 EPU, TP2 SYNCH COND 3 PH FAULT @DAVIS 128KV ON VILLAGE GREEN LINEMID BRK 31 FAI LOADFLOW=DY09_14SR4.SAV, SNAPSHOT= FY09R4-2014 FILE: C:\\home\\pxgOdd9\\nuc--uprates\\sis\\TP\\11MW\\dyn\\Run EPU_C_04.0out 0.2000 0.70000 011121. 67:

IV-FLAGA*I) 0.2000-0.0000 0* -00. IV-TURKEY 01 0.20000

.00 lo go 0>

0 uH 2014 SUMM4ER.

PEAK LD, 2009 FRCC LFDB (8/24/09) MODIFIED FOR DYNAMICS. FIRM INTERCHNG.

TP3 EPU + TP2 SYNCH CONG 3PH FAULT @DAVIS 138KV ON VILLAGE GREEN LINEMID BRK 31 FAI LOAGFLOW=DY09_14S@4.SAV, SNAPSHOT= FY09R4-2014 FILE: C:\\home\\pxgOdd9\\nuc-uprates\\sis\\TP\\llMW\\dyn\\Run_EPU_ C04.001 S20.. 11PO00 00010 RV 01 2-000-l l1 151.000

5.

0*

000001 25,*

2

[:

POWR

[-S'nU-2E 22-0o111 ooo 075.1000100 0000100 00 0.0008]

i 55.000 C

  1. 284:

(POWR 0

185 10T0STEAM 08.000).

I

's.oo 28a0 8

POW 1261 [-5-53 0

T 10

-000181 0.000 15.000 00 2

0 1 0 41-4 22.00

.0000]

1-000 2810

1.

POWR 20 TP.0 3 22.000111 0.000 7

I.I N

K-F-I 0

10 Page 7 of 40

Dynamic Stability Plots for Table 1 2014 SUMMER PEAK LD, 2009

,RCC LFDO (8/24/09) MODIFIED FOR DYNAMICS. FIRM INTERCHNG. TP3 EPU + TP2 SYNCH COND 3PH FAULT @DAVIS 138KV ON VILLAGE GREEN LINEMID BRK 31 FAI LOADFLOW=DY09_14SR4.SAV, SNAPSHOT= FY09R4-2014 FILE: C:\\home\\pxgOdd9\\nuc-uprates\\sis\\TP\\1M0w\\dyn\\RunEPUC_04.out 9.5 0CHNL 294, [ETM 4 [TP.4 22.000101 CHNM#"2930, 1ETM 30[7.

22.000111 9.50000

-0.000 I

=

I ol 2014 SUMMER PEAK LD, 2009 FRCC LFDB (8/24/09) MODIFIED FOR DYNAMICS. FIRM INTERCHNG.

TP3 EPU, TP2 SYNCH COND 3PH FAULT @DAVIS 138KV ON VILLAGE GREEN LINEMID BRK 31 FAI LOADFLOW=DY09_14SR4.SAV, SNAPSHOT= FY09R4-2014 FILE: C:\\home\\pxg~dd9\\nuc-uprates\\sis\\TP\\iiMW\\dyn\\Run_EPUC_04.00u 00>4

-- U 2Z om 04G~

00(00 C*e 86: 60+t60" [FRO-pUTNAM]

61.000 S9 00.000 CN 84,

-60

-[0*FR0-C]-0LTE))

61.000 4

19.000 CHNL# 83; 60"÷(60-[FR0-ANCH])

61.0000 l S0 CHW04 81, 600(600 1FR0 FLAGAMI0)

SI I

I j

z 10 I

2014 SUMMER PEAK LD, 2009 PROC LFDS (8/24/09)

MODIFIED. FOR DYNAMICS. FIRM INTERCHNG.

TP3 EPU + TP2 SYNCH COND 3PH FAULT @DAVIS 138KV ON VILLAGE GREEN LINEMID BRK 31 FAI LOADFLOW=DY09_14SR4.SAV, SNAPSHOT= FY09R4-2014 FILE: C:\\home\\pxg~dd9\\nuc-uprates\\sis\\TP\\llMW\\dyn\\RunEPUC04-.0t

-109 o>

-o

.5-El 2014 SUMMER PEAK LD, 2009 FRCC LFDB (8/24/09) MODIFIED FOR DYNAMICS. FIRM INTERCHNG. TP3 EPU, TP2 SYNCH COND 3PH FAULT @DAVIS 138KV ON VILLAGE GREEN LINEMID BRK 31 FAI LOADFLOW=DY09_14SR4.SAV, SNAPSHOT= FYS9R4-2014 FILE: C:\\home\\pxgOddg\\nuc-uprates\\sis\\TP\\1lMW\\dyn\\Run_EPU_C_04.out CHNL# 274' ISPD 0

-0)[-

0 22.000111 C00000**

2000 4

[000 4)TP.4 20.00011) 0.0000

.0.5000 00000 299.

[000 3T[..

220.00011) i I

I I

I

/

'1 0i 0o+o8000 I

0

-.0.0200 1 10.06000 CO5L# 273,

[010 2001-0U-C2E2 22.000111

-0.00 i Io~oaooo 060

0. [0 250S006 0000

-0.0200 CH

  1. 272:

ISPD 1285[TP5STEA

-800011]

0.oso0

-o0-0o CN#

7 1 -SD 12831ITP5CTBI 18000ol111 1.0ooo0

-0.0200 C-00#

2700 [SPD 4 [TP.4 22.0001j41 o.o0ooo 6

0

.0 CHNL# 269:

I SPD

[T.3 0

F14 UI N

S~0 Page 8 of 40

Dynamic Stability Plots for Table 1 2014 SUMMER PEAK LD, 2009 FRCC LFDE (8/24/09) MODIFIED FOR DYNAMICS. FIRM INTERCHNG. TP3 EPU + TP2 SYNCH COND 3PH FAULT @FLAGAMI CAPBANK. BUS BRK G7 FAILS.

LOADFLOW=DY09 14SR4.SAV, SNAPSHOT= FY09R4-2014 FILE: C:\\home\\pxgOdd9\\nuc-uprates\\sis\\TP\\llMW\\dyn\\Run EPU C 05.out C000# 280: [A-G 3301[CR RV G3 22.000W 2

-I 15.0

-7 d

2-5-1 2-.,001 S278

[AN-L 12851T-5-T0 16.000)0]

100 C.0

277, ANGL 1[

O3TP5CTBI

-.000.. Y 050.00

-00, 7.1001

47.

2000 000.0 C-60, 275.

1A1 3[T-3 2-.000)1]

050.00

-000.0o (I,

js 2 0 o"

  • ¢ 0203

'.03 000

~r23z 01I~

0-U U

2014 SUMMER PEAK LD, 2009 FRCC LFDB (8/24/09) MODIFIED FOR DYNAMICS. FIRM INTERCHNG.

TP3 EPU, TP2 SYNCH COND 3PH FAULT @FLAGAMI CAPBANK. BUS BRK 67 FAILS.

LOADFLOW=DY09_14SR4.SAV, SNAPSHOT= FY09R4-2014 FILE: C:\\home\\pxgodd9\\nnuc-uprates\\sis\\TP\\llMW\\dyn\\RunEPU C 0S.out 0

0 -0, 3

10 000PMEC 33010CR RV G3 22.000]10

.0500 0.05000 C*#309: IPMEC 200 ýSTýUCIE2 22.000131 C-4ZL 308,

[PMEC 1285[T?-TEM 1s8000]iý 1.0500 0.05ooo

ý0 307, 1o000(PMEC [2510 0 00.o1-0 0

S306, (PMEC 4IT[.-

-0).oo]

1

.0500 0000, 707, Ill.0 I00 00 0

n0.000)1 -l d

I; I

II. I

~i1 Tj I.

.11 q'I 4t1 II.

I I

I Ký F-SO U

2014 SUMMER PEAK LD, 2009 FRCC LFDB (8/24/09) MODIFIED FOR DYNAMICS. FIRM INTERCOHNG. TP3 EPU, TP2 SYNCH CONE, 3PH FAULT @FLAGAMI CAPBANK. BUS BRK 67 FAILS.

LOADFLOW=DY09_14SR4.SAV, SNAPSHOT-FY09R4-2014 FILE: C:\\home\\pxgOdd9\\nuc-uprates\\sis\\TP\\llMW\\dyn\\RunSEP0_C_05.out

0. 2000 0010.....I-0000000010.700000 0.2000000,07 vF,000 0.00I 1.2000 0.70000

.0 oH 02 2014 SUMMER PEAR LD, 2099 FRCC LFDO (8/24/09) MODIFIED FOR DYNAMICS. FIRM INTERCHNG. TP3 EPU + TP2 SYNCH COND 3PH FAULT @FLAGAMI CAPBANOK. BUS BRK 67 FAILS.

LOADFLOW=DY09S14SR4.SAV, SNAPSHOT= FY09R4-2014 FILE: C.\\home\\pxg0ddg\\nuc-uprates\\0si\\TP\\SlMW dyoo\\Run EPU C_05.out 105.000 500, 00 00 000 05 2000...

~o 105.00 N1, 005, 1 200ISTLUCIE2 22.000110 1C5.000 284.

10000

-1 [T 000 0.0001]

5.0000 I

030, 0

28:

P OWR 1283ITP5CTBO 1B.000]l I

E-03 ii 01 Page 9 of 40

Dynamic Stability Plots for Table 1 2014 SUMMER PEAK LD, 2009 FRCC LIDS (8/24/09) MODIFIED FOR DYNAMICS. FIRM INTERCHNG. TP3 EPU, TP2 SYNCH COND 3PH FAULT @FLAGAMI CAPBANK. 1BUS BRK 67 FAILS.

LOADFLOW=DY09_14SR4.SAV, SNAPSHOT= FY09R4-2014 FILE: C:\\home\\pxgOdd9\\nuc-uprates\\sis\\TP\\11MW\\dyn\\RunEPUC_05out o,

2014 SUMMER PEAK LD, 2009 PRCC LFDB (8/24/09) MODIFIED FOR DYNAMICS. FIRM INTERCHNG. TP3 EPU + TP2 SYNCH COND 3PH FAULT @FLAGAMI CAPBANK. BUS BRK 67 FAILS.

LOADFLOW=DY09_14SR4.SAV, SNAPSHOT= FY0954-2014 FILE: C:\\home\\pxgcdd9\\nuc-uprates\\sis\\TP\\llMW\\dyn\\Run_EPUC_05.out 00>0 0o2 000 0000 0100o 0.5000 A

-5.

CkILO 293:, 1-0M 3[TP 3 22 00101 I

0.5000 R

-0.5000 S I I

I I ~ I I

I

}

I H

z 00 1H.000 000

-00.00 00101*

"4, I0 5f00COOLTI 06,0000 02 84 t 60-(6D0- FRD-0l TE]

  1. ?r*

83, 60- (60. IFR0*-R CH] )

610.000 50.000O

-I 4 81, 0 (6

[FR-LA 1

61-000900 OU 0

2014 SUMMER PEAK LD, 2009 FRCC LFDB (8/24/09) MODIFIED FOR DYNAMICS. FIRM INTERCHNG. TP3 EPU, TP2 SYNCH COND 3PH FAULT @FLAGAMI CAPBANK. BUS BRK 67 FAILS.

LOADFLOW=DYE0914SR4.SAV, SNAPSHOT= PY09R4-2014 FILE: C:\\hooe\\pxgOdd9\\nuc-uprates\\sis\\TP\\11MW\\dyn\\Run EPU C 05.out El

-o

.0 I >

0 E

2014 SOMMER PEAK LD, 2009 FRCC LFDB (8/24/09)

MODIFIED FOR DYNAMICS. FIRM INTERCHNG.

TP3 EPU, TP2 SYNCH COND 3PH FAULT @FLAGAMI CAPBAMK. BUS BRK 67 FAILS.

LOADFLOW=DY09 14SR4.SAV, SNAPSHOT= FY09R4-2014 FILE: C:\\hom e\\pxgdd9\\ nc-uprates\\sis\\TP\\1M9W\\dyn\\Run EPU C 05.out

-H014 3000 1EFD 4150.4 22.0001)1L 00 001NL#

000. [E000 01TP.0 02.000101 000 I

5 G

-s 3

00 0.08000 0

o._0.0200 CHNL# 273,

[SPD 200[STLUCIE2 22.000111 0.06000

-0.0200 0000 272:

[0p1 1285(TP5ST-AM 18.000o 0.000oo

-0100 00

07.

oooo

~

0.0200 CHNL4 271-WSD

  • SySTI Z.01 0.00000 2

-0.0200 CHNL# 270: [SPD 4[T-22.000111 CHNL# 269: [SD 31TP.3 22.00011]

I I

I I

I 0

o z

0u Page 10 of 40

Dynamic Stability Plots for Table 1 2014 SJUMMER 50% LOAD LEVELFIRM INTERCHNG FRCC LFDB REV.2 (8/24/09),

MODIFIED FOR DYNAMICS TP3 EPU, TP2 SYNCH COND 3PH FAULT @TURKEY POINT ON LEVEE 230KV LINE,BRK 90 FAILS L

LOADFLOW=DY09 14SR4-50.SAV, SNAPSHOT-FY09R4-2014 FILE: C:\\home\\pxgo0dd9\\nuc-uprates\\sis\\TP\\llMW\\dyn\\Run EPU C 110.cut Osonoo

-ooo.ol 200.

00 0-- -

7

_0 01 CHnO* 279, rANL 20Q0IST1,1CIE' 22 00111

1. o.o oo~

CHI-0 0787 1-ANG 1281STPTAM 1

-10000i0 200o.00

-2oo.o 0.02770 1-N 1

1-5-1 18.0001 - ---

-0.0 190.00

~-0.

-L I I I

I Ci 23 O

II I

>)

00

° -

_ 080 2014 SUMMER 50% LOAD LEVELFIRM INTERCHNG FRCC LFDB REV.2 (8/24/09),

MODIFIED FOR DYNAMICS TP3 EPU, TP2 SYNCH COND 3PH FAULT @TURKEY POINT ON LEVEE 230KV LINEBRK 90 FAILS LOADFLOW=DY09_14SR4-SD.SAV, SNAPSHOT= FY09R4-2014 FILE: C:\\home\\pxg0ddg\\nuc-uprates\\sis\\TP\\llMW\\dyn\\Run EPUC_ll.out 1.0500 200 0.05000 200000.

3009. I.-

172[ST1UC0E 00.000oo1 1.0500

.0.

0 0 2.

0 2000.30.0002 40040 001O

.O0000 C-4 30; IPMFC 12B3 TPSCTBI IB 0-0 Ct-NL 306,

[PMEC 4 [TP.A 22-00o

ýi k.0500 o.osooo 8:I xi

,I 8'1I

,I I

I 0

0 oO 00 i

2014 SUMMER 50% LOAD LEVELFIRM INTERCHNG FRCC LFDB REV.2 (8/24/09),

MODIFIED FOR DYNAMICS TP3 EPU, TP2 SYNCH COND 3PH FAULT 'TURKEY POINT ON LEVEE 230KV LINE,BRK 90 FAILS I

LOADFLOW=DY09_14SR4-50.SAV, SNAPSHOT-FY09R4-2014 FILE: C:\\home\\pxgOdd9\\nuc-uprates\\sis\\TP\\llMW\\dyn\\Run EPUC_11.out 10 0>i )

.10 2014 SUMMER 00% LOAD LEVEL,FIRM INTERCHNG FRCC LFDBP REV.2 (8/24/09),

MODIFIED FOR DYNAMICS TP3 EPU, TP2 SYNCH COND 3PH FAULT @TURKEY POINT ON LEVEE 230KV LINE,BRK 90 FAILS LOADFLOW=DY00 14SR4-50.SAV, SNAPSHOT= FY09R4-2014 FILE: C:\\home\\pxg~dd9\\nuc-uprates\\sis\\TP\\llMW\\dyn\\Run_EPU_C11.

out 1.2000 0

0.0.70000 k

.0 CHIC# 67:

V-FLAA1 1 0.70000 2,...

0.700000 I

4

  • 4)

/~

,0' 15.000 1.

0.0000 I 280 ;

0.

-WR 210028[-ST 0 10.00011) is.ooo 5.0000 C ýN

  1. 283-

[pO R 12835[TPS EM]

28. 000 1) k,.000 0

-.0000 cft#282: tPOWR 4 [TP.~B 4

.ooo)l 100000

.0000 1-09.000#

22000900 CpOWR 41T0.0 00.000101

.00 k

6.5o

.)

is~ooos~ooo i

I i El oH C48 802 802 00 oo z

10 Page 11 of 40

Dynamic Stability Plots for Table 1 2014 SUMMER 50% LOAD LEVELFIRM INTERCHNG FRCC LFDB REV.2 (8/24/0), MODIFIED FOR DYNAMICS TP3 EPU TP2 SYNCH COND 3PM FAULT @TUIKEY POINT ON LEVEE 230KV LINEBRK 90 FAILS LOADFLOW=DY09_14SR4-50.SAV, SNAPSHOT= FY09R4-2014 FILE: C:\\home\\pxgOdd9\\nuc-uprates\\sis\\TP\\11MW\\dyn\\Run_EPUC_ 11. out 2014 SUMMER 50% LOAD LEVELFIRM INTERCHNG FRCC LFDB REV.2 (8/24/09).

MODIFIED FOR DYNAMICS TP3 EPU, TP2 SYNCH COND 3PH FAULT @TURKEY POINT ON LEVEE 230KV LINE,BRK 90 FAILS LOADFLOW=DY09_14SR4-50.SAV, SNAPSHOT= FY09R4-2014 FILE: C:\\home\\pxgOdd9\\nuc-uprates\\sis\\TP\\llMW\\dyn\\Ru _EPU C 11.out 00>4

--U

-o O

CH-# 294,

[-M09 4[TP.4 22.00011]

9.5000

-0.5000 3

0.000COOOLO 200, 10E0M 3[TPA 3 2000010]-.50 I I I

I I

I I

I zC

- O 1.000 59.000 I CONLO 64, 0 (0- [FRQ-CH-0LOTE0

)

61.00 61.000 CHNL# 83, 00-(6 0- 000 1 000 000 C-#

01, 6002 (01 Page 12 of 40

Dynamic Stability Plots for Table 1 2014 SUMMER 50% LOAD LEVEL,FIRM INTERCHNG FRCC LFDB REV.2 (8/2 /09)F MODIFIED FOR DYNAMICS TP3 EPU T

TP2 SYNCH CONF,

/3PH FAULT MLDVEE230KV ON TD KY POINT#C LINE,RELAY FAIL 2TCY LOADFLOW=DY09 14SR4-50.SAV, SNAPSHOT= FY09R4-2014 FILE: C :\\home\\pxgodd9\\nucr-uprates\\sis\\TP\\i MW\\dyn\\Run_EPO C_12.out C-N.1 21-,

1... 3010 C.

-V -2 22.0001-11 I

00.00

-200.0 CHNLf 00

[27

-GL 002-STLUC0 E2 22.000111 I 00.00

-000.0 1

27B, [ANGL 12851-S0TST M 16 0001.

CHNLq 277, [AN-L 12030 TPCTBI 1.0001B.

iso.co 000.o0

0.

2060 [AN-L 4[TP.4 22.0001-0 H1 275, 1A L 310TP3 22.0001) 11 15-0

-o.oI I

i I

  • I I*

' *I I

'4

(

\\o F')'

/

'00 O

)

3/4,1 2014 SUMMER 50% LOAD LEVELFIRM INTERCHNG FRCC LFDB REV.2 (8/24/09),

MODIFIED FOR DYNAMICS TP3 EPU, TP2 SYNCH COND 3PH FAULT OLEVEE230KV ON TURKEY POINT#l LINERELAY FAIL 28CY LOADFLOW=DY0914SR4-50.SAV, SNAPSHOT= FY09R4-2014 FILE: C:\\home\\pxg~dd\\nuC-ulprates\\sis\\TP\\llMW\\dyO\\Run EPU C 12.out 000010 200, [0M8 30122001C0 0V G3 2.0001]1 1.05000 0.00020 00 0-0402.1 3080 PMEC 12B5[T-S-TE0M 18.000141 0.0-000]

10.050 011 0,11000 25-000 0000 8

0.050000

1.

00s1 00

[PMEC 1283[TPCTBI

- -100011 050 I

0.0000 300 4

10EC 410.0 0

-0.0 0

-100 300 1

1-SEC 30 TP 3 220 W 011 I-l I

I I'

1 I

I F

t:1 I

F I

I i

i j.[

I I

I I

I o

o oo0 002 z

2014 SUMMER 50% LOAD LEVEL, FIRM INTERCHNG FRCC LFDB REV.2 (8/24/09),

MODIFIED FOR DYNAMICS TP3 EPU + TP2 SYNCH COND I

3PH FAULT @LEVEE230KV ON TURKEY POINT#I LINE,RELAY FAIL 28CY L

LOA/DFLOW=DY09_14SR4-50.SAV, SNAPSHOT= FY09R4-2014.

FILE: C:\\home\\pxg~ddg\\nuc-uprates\\sis\\TP\\llMW\\dyn\\Run_EPLUC12.out o

0. 20 00 010 # 33, [V-A0 O0.70000 1

0.0000 0110, 67, 1V-FLAGA10 0

0. 20-00 01 71:

P1-0 0

0.070*02 I

I I)

I 2

01 0.1 00 2014 SUMMER 50% LOAD LEVEL, FIRM INTERCHNG FRCC LFDB REV.2 (8/24/09),

MODIFIED FOR DYNAMICS TP3 EPU + TP2 SYNCH COND

  • 3PH FAULT @LEVEE230KV ON TURKEY POINT#1 LINE,RELAY FAIL 28CY LOADFLOW=DY89_14SR4-50.SAV, SNAPSHOT= FY09R4-2014 FILE: C:\\home\\pxgOdd9\\nuoc-uprate\\sis\\TP\\lýMW\\dy

\\Run EPU_C_12.out 6 RG 22.0000 C0010 20- [0WR

-[10-ST702 02.000110000 150008:{OR 2STPSEM 18001 CHN# 283,

[POWR 1253 (TP5CTB3 18 0001!ý----]

0 010 212: 1P.-

I 4ITP.4 22.00011.

s0000

.01 I

II

.1 7

000 6

)

00~~

~.0 10~

~50

~8 0

oS I

I

[

I

. i g

Page 13 of 40

Dynamic Stability Plots for Table 1 2014 SUMMER 50% LOAD LEVEL, FIRM INTERCHNG FRCC LFDB REV.2 (8/24/09),

MODIFIED FOR DYNAMICS TP3 EPU TP2 SYNCH COND 3PH FAULT @LEVEE230KV ON TURKEY POINT#1 LINERELAY FAIL 28CY LOADFLOW=DY09_'14SR4-50.SAV, SNAPSHOTw FY09R4-2014 FILE: C:\\home\\pxg~dd9\\nuc-uprates\\sis\\TP\\llMW\\dyn\\RunEPUC_12.out OF-.

2014 SUMMER 50% LOAD LEVELFIRM INTERCHNG FRCC LFDB REV.2 (8/24/09),

MODIFIED FOR DYNAMICS TP3 EPU + TP2 SYNCH COND 3PN FAULT @LEVEE230KV ON TURKEY POINT#I LINERELAY FAIL 28CY LOADFLOW=DY09_14SR4-50.SAV, SNAPSHOT= FY09R4-2014 FILE: C:\\home\\pxg~dd9\\nuc-uprates\\sis\\TP\\llMW\\dyn\\Run EPU C 12.0ut0

D
000,
0.

00

[FRO-puT00A,41) 9 CANLO 294:

[-0M 4(T-P.

22.0o11._01_

i o

CHNLet 293, I-TM 3

P.

2. 000111 0.5000

-0.5000.

I I

I I

I I

I I

I I

161.000 59.000 Am L 4, :

Go÷60- [FRD-C -.RLTE:))

61.00--

sg.000 CHNL* 83,: 60. (60- (FR0-ANCHj) 6 o.oo0 00-81, (6 0 1 -

1 1 I

I 1I I

I I

I 0

oz 0

00 o0 2014 SUMMER 50% LOAD LEVEL,FIRM INTERCHNG FRCC LFDB REV.2 (8/24/09),

MODIFIED FOR DYNAMICS TP3 EPU, TP2 SYNCH COND 3PM FAULT @LEVEE230KV ON TURKEY POINT#I LINEKELAY FAIL 28CY

(

LOADFLOW=DY09_14SR4-50.SAV, SNAPSHOT= FY09R4-2014 FILE: C:\\home\\pxgOdd9\\nuc-uprates\\sis\\TP\\1lMW\\dyn\\Run_EPUC_12.out CHK0L0 300:

0EFD 4 [TP.4 22.000)01 9.000

-0.5000 k.C50 2005

0.

D 30[T00

.3 22.0001]-

0

)

)

'0 I

I I

1 * "

i I

I E-o

-o

00 Elo p

04 2014 SUMMER 50% LOAD LEVEL,FIRM INTERCHNG FRCC LFDB REV.2 (8/24/09),

MODIFIED FOR DYNAMICS TP3 EPU + TP2 SYNCH COND 3PM FAULT @LEVEE230KV ON TURKEY POINT#1 LINERELAY FAIL 28CY I

LOADFLOW=DY09_14SR4-50.SAV, SNAPSHOT= FY09R4-2014 FILE: C;\\home\\pxg0dd9\\nuc-uprates\\sis\\TP\\11MW\\dyn\\Run_EPUC_12.out 1o.0sooo k

-0.00001

273,

[SP 200 [S -

22.000111 So.

no#o

272,

[SPD 12 0

[T005 ST

[

A

)

-0.00001 IO.OBO00

-ooo00.

sn oorocoooo~o~

00 2710 SPD 1

0.3

[T

-T

-0.02001

- - -00

-o-o oo C-000 2 790: ISPD 4 [TP.3 22.000]i]

o 2.

00.00010 10.08000 00000 290 [50 0

1 P.3 2-00111

-0.0200 I

I I

Iy

..1o2 0000 02 0H 50 Page 14 of 40

Dynamic Stability Plots for Table 1 2014 SUMMER 50% LOAD LEVELFIRM INTERCHNG FRCC LFDB REV.2 (8/24/09),

MODIFIED FOR DYNAMICS TP3 EPU + TP2 SYNCH COND 3PH FAULT @DAVIS ON LEVEE #1 230KV LINE,BRK 96 FAILS LOADFLOW=DY09_14SR4-50.SAV, SNAPSHOT= FY09R4-2014 FILE: C:\\home\\pxgldd9\\nuc-uprates\\sis\\TP\\llMW\\dyn\\Run EPUUC 13.out 0s0.00 7

-100.0 C5 219' o

ANGL 200isT1UCIE2 2-000111 C-1 278, 12851TP5ITEAM 1.000]i

-10 050.00 000000 XOI 00IOOB 001]-000.0 CHNL# 277:

I:

12E3[TP5CTBI 18.00`oIS

  • sooo-000 I-k 276, 0ANGL 4[TP.4 22.000i C6 2 7 5, IA N G L 3 1T P.3 2 1 -

o0.

1 lso~oo

-lo0.

I 3

(.

-'-3 A

z 00 H 00~0:

000 2014 SUMMER 50% LOAD LEVEL, FIRM INTERCHNG FRCC LFDB REV.2 (8/24/09),

MODIFIED FOR DYNAMICS TP3 EPU + TP2 SYNCH COND 3PH FAULT ODAVIS ON LEVEE #1 230KV LINEBRK 96 FAILS LOADFLOW=DY09_14SR4-50.SAV, SNAPSHOT= FY09R4-2014 FILE: C:\\home\\pxgoddgn\\uc-uprates\\sis\\TP\\llMW\\dyn\\RnEFPUC_13.out

10.

00 00

  • ~.

0G.05000 I

0.000 0C00 309 0

IPMEC 200 00TU 02

.0022 00.0.000 I.0500

-41 3080 IPMEC 125TP5STEAM 8 0001.

0l I

1I, o5000 0000 1 3060 07 PMEC o121T0S0700 0.50000 I.00 000r.0 000. 10M00 4 170.4 00.00010.

.1.00 4 3D5, IPMEC I[T-22 000)1ý1 I

p I

,0

' I I

i

, I I

SI I

0'

' iI

, i I

I l

I I

oo 0

'0 0'

-i 2014 SUMMER 50% LOAD LEVEL,FIRM INTERCHNG FRCC LFDB REV.2 (8/24/09),

MODIFIED FOR DYNAMICS TP3 EPU I TP2 SYNCH COND 3PH FALT @DAVIS ON LEVEE #1 230KV LINE,BRK 96 FAILS LOADFLOW=DY09_14SR4-50.SAV, SNAPSHOT= FY09R4-2014 FILE: C:\\home \\ pxgOddg\\nuc-uprates\\sis\\TP\\lIMW\\dyn\\RunEPU-C_13.out 1.2000 0.o0000 000C01 0 6 7 : IV - 0 A G A l

_ _ (

0. 0000 0.70000

(

i-/

00

,00 2014 SUMMER 00% LOAD LEVEL,FIRM INTERCHNG FRCC LFDB REV.2 (8/24/09),

MODIFIED FOR DYNAMICS TP3 EPU + TP2 SYNCH COND 3PH FAULT GDAVIS ON LEVEE #1 230KV LINEBRK 96 FAILS LOADFLOW=DY09_14SR4-S5.SAV, SNAPSHOT-FY09R4-2014 FILE: C:\\ho.e\\plg~dd9\\nuc-uprates\\sis\\TP\\llMW\\dyn\\Run EPUC 13.out 00.0850 01 200. [000 0000100 02 0 2 2.0001011 5.0000 105.000 00000

.284,

[POWR 120S[T00 2

TAM 00.OO1l]

5.00o S105.000.

10000.-

0 s.ooo I0 1.00#

2800 [POWR 41ITP.

0.00010]0 1i00.0 00-HN# 281,

[POWR 3[TP.3 n2.000]i]

k 0.oo 1

I 0=

~1 0~

I I

.07 0,

/

I

"'0.

.5

(

-3 C'

0

'-4

'00 FC0 00 0

0

~

I

  • I I

Page 15 of 40

Dynamic Stability Plots for Table I 2014 SUMMER 50% LOAD LEVELFIRM INTERCHNG FRCC LFDB REV.2 (8/24/09),

MODIFIED FOR DYNAMICS TP3 EPU, TP2 SYNCH COND 3PH FAULT @DAVIS ON LEVEE #1 230KV LINE,BRK 96 FAILS

(

LOADFLOWDY09 _14SR4-50.SAV, SNAPSHOT= FY09R4-2014 FILE: C:\\home\\pxgOdd9\\nuc-uprates\\sis\\TP\\llMW\\dyn\\Run EPUC_13.out OEH

9. sooo

-7

-oNL 293, I-TM 3[T-3 2-.00111)t]0-o 0.5000

-0.5000 I I I

I

{§ 2014 SUMMER 50% LOAD LEVELFIRM INTERCHNG FRCC LFDI REV.2 (8/24/09),

MODIFIED FOR DYNAMICS TP3 EPU, TP2 SYNCH COND 3PH FAULT @DAVIS ON LEVEE #1 230KV LINE,BRK 96 FAILS LOADFLOW=DY09_14SR4-50.SAV, SNAPSHOT= FY09R4-2014 FILE: C:\\home\\pxgOdd9\\nud-uprates\\sis\\TP\\llMW\\dyn\\Run EPU C_13.ou0 610.000 sgl000 0

  1. 84: &0,(60*(FR0- -

-OT))

5.0 60.000 590000,00 0f050.OCII~.000 I]

ci.. -

0 63 60-f60*[RO--PAA 1)

C-#.000 810 00 00 1FRO-FLAGM:

a 59.000 I

I I

I I

I I

U

~o 0

0' 2014 SUMMER 50% LOAD LEVELFIRM INTERCHNG FRCC LFDB REV.2 (8/24/09),

MODIFIED FOR DYNAMICS TP3 EPU I TP2 SYNCH COND 3PH FAULT @DAVIS ON LEVEE #1 230KV LINE,BRK 96 FAILS LOADFLOW=DY09_14SR4-50.SAV, SNAPSHOT= FY09R4-2014 FILE: C:\\home\\pxgOdd9\\nuc-uprates\\sis\\TP\\llMW\\dyn\\RunEPU_C_13.out

-103 o>

E-o

-o N

xu 2014 SUMMER 50% LOAD LEVELFIRM INTERCHNG FRCC LFDB REV.2 (8/24/09),

MODIFIED FOR DYNAMICS TP3 EPU, TP2 SYNCH COND.

3PH FAULT @DAVIS ON LEVEE #1 230KV LINE,BRK 96 FAILS LOADFLOW=DY09_14SR4-50.SAV, SNAPSHOT= FY09R4-2014 FILE: C: \\home\\pxgOdd9 \\nuc-Ouprates\\sis\\TP\\ iMW\\dyn\\Runo EPUC 13.

I.-0

000, f001 0-10 -0 0 0\\

o010-out C-004 3000 [EFD 4[Tp.4 22.00011]

I9.5000

-0o.S000 k

01.L# 009: [ED 31TP.13 22.000D)1 I.S0000f

-000 I

I I

I I

I i

I I

8 I0

)

0 1o.0oooo

-0.0200 I

0CHNL0 2730 [SPD 200[STLUCIE2 22.000110 0.000 0

10 0 0

-0.0200

.C....

C

  1. 2 72 : (SPD 12 B S[TP5S -T M

-00 )] ý 0 0 0.0o0sooo90 s0 08 0000

-0.0200I

l.

l.-.*

111.

1S-I2 T-BTBI 18.000111 c0.000800 0

0 0

22.o00..

-0.

_02 I-HN#

269,

[SPD 4[P4 22. O01 11 0,08000 0l 000CHONtO 000. 100D 0[T0.0 02.000111 00 I

I I

I 0.0 N

H 02.

SI S

ý3 10 Page 16 of 40

Dynamic Stability Plots for Table 1 0140~

I 2014 SUMMER 50% LOAD LEVELFIRM INTERCHNG FRCC LFDB REV.2 (8/24/09),

MODIFIED FOR DYNAMICS TP3 EPU, TP2 SYNCH COND 3PH FAULT @DAVIS 138KV ON VILLAGE GREEN LINEMID BRK 31 FAI LOADFLOW=DY09_14SR4-5S.SAV, SNAPSHOT= FY09R4-2014 FILE: C:\\home\\pxgoddg\\nuc-uprates\\sis\\TP\\1lMW\\dyn\\RunEPU C 14.0ou C-NO# 2-00 [A-0 2301[CR RV G3 22.000)11 50.0oo

-I00.0 201 100 079. [AN1 L

200 S1--CO-2.0 00 11 oI 050 00

.I 600 H

2-4 78, 1A-12851TP5STAM 1600011

.-+

00o. o 1.5 0.

277, 1ANG0 12830 TP0C00 10 8.0001 1.

z

.0.

2014 SUMMER 50% LOAD LEVEL, FIRM INTERCHNG FRCC LFDR REV.2 (8/24/09),

MODIFIED FOR DYNAMICS TP3 EPU, TP2 SYNCH COND 0

3PH FAULT @DAVIS 138KV ON VILLAGE GREEN LINE,MID BR*K*31 FAI*2-"

LOADFLOW=DY09_14SR4-S5.SAV, SNAPSHOT= FY09R4-2014 FILE: C:\\home\\pxgoddg\\nuc-uprates\\sis\\TP\\llMW\\dyn\\Run_EPU C 14.0ut C-Nt 310:

0 PMEC 3 301(CR RV G3 22.0004 I 00 309' IPMEC 2000STLUCI0 0

22,000111 0

I o.osoo

00.

0.INC1010570 0..0001 0.05000 kI CHN0 0 308, IPMEC 1285 0T0STEAM 00.000101 0.050001 I-k 101. 00..

.10 00.0.0 3065 [7770

.107.0 22.0001.1 I

CHNL# 3D5, [PMEC

ý[TP-22.0-111

1. 0500 I iJ I

I' I

I 10%0l19;2 I

I-I 9, I 0

.i:

I I

r I

I I

I I

2014 SUMMER 501 LOAD LEVEL,FIRM INTERCHNG FRCC LFDB REV.2 (8/24/001, MODIFIED FOR DYNAMICS TP3 EPU, TP2 SYNCH COND 3PH FAULT @DAVIS 138KV ON VILLAGE GREEN LINEMID BRK 31 FAI l

LOADFLOW=DY09_14SR4-50.SAV, SNAPSHOT= FY09R4-2014 FILE: C:\\home\\pxg~dd9\\nuc-uprates\\sis\\TP\\1lMW\\dyn\\RunEPU_C_14.0u 0.2000 0100 0 1-0001

$~

0.70 C 00000 67:

0.

L-FLAGA 1

71

[

)0.000 01 z1 00011 E-A

[1 2014,SUMMER 50%1 LOAD LEVEL, FORM INTERC..N iPRcc 7777rEVý 2

-8/24/09),

MODIFIED FOR DYNAMICS TP3 EPU + TP2 SYNCHCOND 3PH FAULT @DAVIS 138KV ON VILLAGE GREEN LINEMID BP4K0-31",FAI LOADFLOW-DYO9_14SR4-50.SAV, SNAPSHOT-FY09R4-2014 FILE: C:\\home\\pxg0dd9\\nuc-uprates\\sis\\TP\\llMWkdyn\\Run EP C 34oot-.

I00 01 286. [0WR 33001[CR 70003 22.00011 2-oo (1

_.3 2*

s1oo 0

000 285, [pOWR 200[STUC IE2 22.00011, 0s.ooo 284 [

1285 5 1.00011.

o 5

i 115.000 0...

28 1

.. 1 1-.5-3.

000..

I 0.0.2..

28 0:

7

0.

..4 2

.2 00 0

00 0

I 0..

000 02 0

0 HL 2El1 [POWR 3 [TP:3

22. 00011

~1~

.121 t904 0 Do 1-s000 S 0000 I I

I I

I I

I I

Page 17 of 40

Dynamic Stability Plots for Table 1 2014 SUMMER 50% LOAD LEVEL, FIRM INTERCHNG FRCC LFDB REV.2 8/24/09),

MODIFIED FOR DYNAMICS TP3 EPU, TP2 SYNCH COND 3PH FAULT @DAVIS ISKV ON VILLAGE GREEN LINEMID BRK 31 FAX LOADFLOW=DY09_14SR4-50.SAV, SNAPSHOT= FY09R4-2014 FILE: C:\\home\\pxg~dd9\\nuc-uprates\\sis\\TP\\llMW\\dyn\\RunEPUC_14,out 2014 SUMMER 50% LOAD LEVELFIP*

INTERCHNG FRCC LFDB REV.2 (8/24/09),

MODIFIED FOR DYNAMICS TP3 EPU, TP2 SYNCH COND 3PH FAULT @DAVIS 138KV ON VILLAGE GREEN LINEMID BRK 31 FAI LOADFLOW=DY09_I4SR4-50.SAV, SNAPSHOT= FY09R4-2014 FILE: C:\\home\\pxgoddg\\nuc-uprates\\sis\\TF\\1lMW\\dyn\\Run_EPU C 14.out 00z0 041 C 0 294:

[-0RM 4[TP.4 22.0001})

9.S0000

~-

-SO SC0000t8 029:

[00T0M 01T0.0 22.00000]

0-5000 0

-0.0000 2-

1.

I I

111 I ~

~

~

o s I

I I*1 I

00 000

.00 10-.

0090 oI 100.000 000000.0 041 00-000.

(005-ELCOOO,0l)I -

s~o I oooo~ 000. 00:00..00 l00.0.00001l

-00.0 100.00 000000 4

00.100 P050I,00000 0

9.000 10 2014 SUMMER 50% LOAD LEVELFIRM INTERCHNG FRCC LFDB REV.2 (8/24/09),

MODIFIED FOR DYNAMICS TP3 EPU + TP2 SYNCH COND 3PH FAULT @DAVIS 138KV ON VILLAGE GREEN LINEMID BRK 31 FAI LOADFLOW=DY09_14SR4-50.SAV, SNAPSHOT= FY09R4-2014 FILE: C:\\home\\pxgqdd9\\nuc-uprates\\sis\\TP\\llMW\\dyn\\RunEPUC_14.out

.oO E-2014 SUMMER 50% LOAD LEVELFIRM INTERCHNG FRCC LFDB REV.2 (8/24/09),

MODIFIED FOR DYNAMICS TP3 EPU. TP2 SYNCH COND 3PH FAULT @DAVIS 138KV ON VILLAGE GREEN LINEMID E3RK 31 FAX LOADFLOW=DY09_14SR4-50.SAV, SNAPSHOT= FY09R4-2014 FILE: C:\\home\\pxg0ddg nbc-uprates\\sis\\TP\\1lMW\\dyo\\Run EPU C_14.out S000W.0 004:

I0-00.0 0

-0 "10 00000000 9.500000 _6 000 299t0, 1-0 3 [00.0 3--22.00012)

-0.0000 I

I I

I9

>1 o.osooo....

-0.2000 CHNL# 273,

[SPD 200[STLUCIE2 22,0001]

.0.0.

0 200

-4 00005 272:

0SPD 1280300 A

0.000)1

-0.0200 o~oeooo-oo2oo i

.0 00 C-000 270:

0SPD 028[TPST.

2.000- -

-0.-00 I

Co000 070:

2 0SP 4 0[T.4 22.0001-)

o~osooo 1.00000.

00:

000000.0 00.0000)-0.02000 I I I

I I

I jf I

I I0 00 0041 00~

Dl U

z 00 00.

0 00 100 Ku Page 18 of 40

Dynamic Stability Plots for Table 1 2014 SUMMER 50% LOAD LEVEL,FIRM INTERCHNG FRCC LFDB REV.2 (8/24/09)

MODIFIED FOR DYNAMICS TP3 EPU + TP2 SYNCH COND 3PH FAULT @FLAGAMI CAPBANK. BUS BRK 67 FAILS.

I LOADFLOW=DY09 14SR4-50.SAV, SNAPSHOT= FY09R4-2014 FILE: C:\\home\\pxgO0dd\\nuc-uprates\\sis\\TP\\llMW\\dyn\\RunEPUC15.out 0Cm2 28_0: [-A00 301[CR V 00 22.00G3 1(

0s.00oo,000 001 001000 22 00

]

-100.0o 10.0

+1002 270, 10AN0 0201?0PST7U00E 22.000111l 100 0000 205002022 2520010011 160.00

-100.0 20 2014 SUMMER 50% LOAD LEVEL,FIRM INTERCHNG FRCC LFDB REV.2 (8/24/09),

MODIFIED FOR DYNAMICS TP3 EPU, TP2 SYNCH COND 3PH FAULT @FLAGAMI CAPBANK. BUS BRK 67 FAILS.

LOADFLOW=DY09S14SR4-50.SAV, SNAPSHOT-FY09R4-2014 FILE: C:\\home\\pxg~dd9\\nuc-uprates\\sis\\TP\\llMW\\dyn\\Run EPU C 15.out

  • 0022 3100 [PMEC 3300 0CR OV G3 22.000111 I

F.0100 0.100 1.-0 309:

0 PMEC 200(1-10CE2 22.0001.1

0. 000 00.00001 kC7 0

308-

[PMEC 1285[TPSST M

18.000111 0

_050 k,50100 C3 4 307 ; [PMEC 1283[TP5CTBI 18 001];

050 4h 306! [PMEC 4 ITP 4 22,0001jý=

10.00 0000507 (0O0 202000 0

0.0000 10.3050

[PMEC 0[TP.3 22.00010 0

10.050 0020 0 0, (00 1203 0.0(10.01000

              • -I--*****

l j I

I II I

I I

2 IS i.

I i

I I"

I I

/

I I

I I"

a C)

PH Uo 10 10 2014 SUMMER 50% LOAD LEVEL,FIRM INTERCHNG FRCC LFD8 REV.2 (8/24/09),

MODIFIED FOR DYNAMICS TP3 EPU I TP2 SYNCH COND 3PH FAULT @FLAGAMI CApBANK_ BUS BRK 67 FAILS-LOADFLOW=DY09_14SR4-50.SAV, SNAPSHOT= FY09R4-2014 FILE: C:\\home\\pxgOddg\\nuc-uprates\\sis\\TP\\llMW\\dyn\\RunEPU_C_15.0ut

.E-o

-02 02 2014 SUMMER 50% LOAD LEVEL, FIRM INTERCHNG FRCC LFDS REV.2 (8/24/09),

MODIFIED FOR DYNAMICS TP3 EPU + TP2 SYNCH COND 3PH FAULT @FLAGAMI CAPBANK. BUS BRK 67 FAILS.

LOADFLOW=DY09S14SR4-S5.SAV, SNAPSHOT= FY09R4-2014 FILE: C:\\home\\pxg~ddS\\nuc-uprates\\sis\\TP\\SlMW\\dyn\\Run EPUC 15.0ut C000

1.

(: V-AN01000T 0,000 1.2000 0.2000~~~~

00000-(-000.0 0.70000]

0000# 67: [V-FLAGA0

!]

0.2000 0-o.70000 115.ooo 5 -.

000 0 28-:,

O 1 T

0

0.

0 0.0001 k1.0

-01000 204

, (2000 021(285 1200 10.00(1 -

5.0005 15.0001.O0000 11h.o00o 0070 2B3:

PW 12810TP0CT1 8

-5 1-.000:!

I5 1

0 000000282; 2

POWR 4[TP.4 22.00011.

15.00 0

2

(

0.00 C.

53 2BI

[P-3[TP,3 22.0001 7o 2

8.

'0 ZI H

w02

ý n) 20 20 z

10 Page 19 of 40

Dynamic Stability Plots for Table 1 2014 SUMMER 50% LOAD LEVEL, FIRM INTERCHNG FRCC LFDBE REV.2 (8/24/09),

MODIFIED FOR DYNAMICS TP3 EPU + TP2 SYNCH COND 3PH FAULT EFLAGAMI CAPBAUK. BUS BRK 67 FAILS.

I LOADFLOW=DY09_14SR4-50.SAV, SNAPSHOT= FY09R4-2014 FILE: C:\\home\\pxgOdd9\\nuc-uprates\\sis\\TP\\llMW\\dyn\\RunEPU C_15.out 2014 SUMMER 50% LOAD LEVELFIRM INTERCHNG FRCC LFDB REV.2 (8/24/09),

MODIFIED FOR DYNAMICS TP3 EPU, TP2 SYNCH COND 3PH FAULT @FLAGAMI CAPBANK. BUS BRK 67 FAILS.

LOADFLOW=DY09_14SR4-50.SAV, SNAPSHOT= FY09R4-2014 FILE: C:\\hom\\pxgOdd9\\nuc-uprates\\sis\\TP\\ilMW\\dyn\\Run_EPU C_15.0u-01 k.CHNL 294: [E-M 4 [TP 4 22.000 11 9.5000-000I CL 2-3 1ET-31TP 3 22 000111 0.5000

-0.5000 I

I I

}

I I.

I

{

161.000 1

5.000 I 8* 4, 60.(60*IF--CH-0LTEl) 60.000

59. 00 SB31 60.(60-[FR*+-CH1) 60

.000 0

69-00

[6.000 50,0.O-0 I

I I

z4~0 z0 50

.4, 2014 SUMMER 50% LOAD LEVELFIRM INTERCHNG FRCC LFDB REV.2 (8/24/09),

MODIFIED FOR DYNAMICS TP3 EPU, TP2 SYNCH COND 3PH FAULT @FLAGAMI CAPBAMK. BUS BRK 67 FAILS.

(

LOADFLOW=DY09_14SR4-50.SAV, SNAPSHOT= FY09R4-2014 FILE: C:\\home\\pxgOddg\\nuc-uprates\\sis\\TP\\llMW\\dyn\\Run EPU C 10.0ut 03

-u ixWro 2014 SUMMER 50% LOAD LEVEL,FIRM INTERCHNG FRCC LFDB REV.2 (8/24/09),

MODIFIED FOR DYNAMICS TP3 EPU, TP2 SYNCH CONED 3PH FAULT @FLAGAMI CAPBANK. BUS BRK 67 FAILS.

LOADFLOW=DY09S14SR4-50.SAV, SNAPSHOT= FY09R4-2014 FILE: C:\\home\\pxgOdd9\\nuc-uprates\\sis\\TP\\11MW\\dyn\\Run_EPU_C_15.out 0 0274, [SPD 3301[CR RV G3 22,0001-]

o~~osooo_

-00200

-0.000 CH#L 273,

[SPD 200[ST-UC--2 22.00011

-0.0200

,0

272,

[SPD 1285[TP5ST-1.0001]

0.0o0oo

-o,0-00 C', 271: 1-P 12831ITP5= 1 ler'no*Il K.09 200

-0.0200 02 270:

[0SPD 4Tp.4 22.000(P 0

C1-0.00L 260. [010 21P.

22.0001 0

I o.0.0

-ooo0

-0 4003 01 0

5.6900

-0.50000 500

-0 S I I

I I

I 1

I7

)

.4.

00 B

u4 B

0 8

Page 20 of 40

Dynamic Stability Plots for Table 2 2014 SUMMER PEAK LD, 2009 FRCC LFDB (8/24/09) MODIFIED FOR DYNAMICS. FIRM INTERCHNG. TP3&4 EPU + TP2 SYNCH COND 3PM FAULT @TURKEY POINT ON LEVEE 230KV LINE,BRK 90 FAILS LOADFLOW=DY09_14SR4.SAV, SNAPSHOT= FY09R4-2014 FILE: C:\\home\\pxgOddg\\nuc-uprates\\sis\\TP\\llMW\\dyn\\R1ounEPU C 06.0ut 00.- 260 (ANGL' 33 18000

'R 0002 650.00 2-T 2200011100 iso-0n C1N-#1 278 : [A-0 L 1265[T-SSTEAM 18 0 00101

-000 isonoCHN.r 277,[01001.

0260

[07OCT01 06010 10 00 276.

0.

j0-4 TP.4 22.000111.

15.00 0

0CHNL0 275 0

IANGL 3170.0 2.000111

-100.0 I

I I

",I I-

¶ 00 1'

,~

to

\\A I I I

I 10(o u~

2014 SUMMER PEAK LI, 2009 FRCC LFDB (8/24/09) MODIFIED FOR DYNAMICS. FIRM INTERCHNG. TP3&4 EPU I TP2 SYNCH COND 3PH FAULT @TURKEY POINT ON LEVEE 230KV LINE,BRK 90 FAILS LOADFLOW=DY09S14SR4.SAV, SNAPSHOT= FY09R4-2014 FILE: C:\\home\\pxgoddg\\nuc-uprates\\sis\\TP\\ilMW\\dyn\\RunEPU_C_S06ut 0

a.

0500 0.0000 00#

R, C00

,S0 2E 2

"...0001n

1. 0500000010 0

308, [PMEC 12850 TP0 STEAM 0

80000.

00

-1.000 0.0000 1.0500 000 1000 k.0CHNL#

305, IPMEC I17P. 3 22. Q00 1 1a0500 I

J'"

I I

I I

I I

I

-O.I El I..1......

j 1

I I

I I

01.

00 80 10 2014 SUMMER PEAK LD, 2009 FRCC LFDB (8/24/09) MODIFIED FOR DYNAMICS. FORM INTERCHNG. TP3&4 EPU I TP2 SYNCH COND 3PH FAULT @TURKEY POINT ON LEVEE 230KV LINEBRK 90 FAILS LOADFLOW=DY09S14SR4.SAV, SNAPSHOT= FYS9R4-2014 FILE: C:\\home\\pxgOdd9\\nuc-uprates\\sis\\TP\\llMW\\dyn\\RunEPUC_06.out gU3 0>

z 03 2014 SUMMER PEAK LO, 2009 FRCC LFDB (8/24/09) MODIFIED FOR DYNAMICS. FIRM INTERCHNG.

TP3&4 EPU, TP2 SYNCH COND 3PM FAULT @TURKEY POINT ON LEVEE 230KV LINE,BRK 90 FAILS LOADFLOW=DY09_14SR4.SAV, SNAPSHOT= FY09R4-2014 FILE: C:\\home\\pxgOdd9\\nuc-uprates\\sis\\TP\\1lMW\\dyn\\HunEPU C_06.out I

0081.01 00000 r

07w 8 018l07 70.000*00o111 1..000 0.70000

0. 20000 008CH
  1. 67:

[ -FLAGAM1 1

0.

1. 0000V-P) 0.7000 I I
11 I

I I

I

,I8 88 150.000 1-. -

s7771.0

-N* 285:

POWR 200[STUCIE2 22.000111 15.ooo C~n, IL#284,*

(POWR 1285[T-ST-M l~o~

/*

5oo 1 50

. 0 0 0 0.

2 8 3

-[ P O W R 1 2 8 3 1 T P 5 C T B 3 1 8. 0 0 l l

- 0

-00# 208. [PowR (0A 12[

0 12.000. 10 I11.0000000 00# 281.

[POWR 30TP.3 22.000111 0.000 m I n

ii I

t ix H

,7F7 003 020

~O2 N

80 80 00 Page 21 of 40

Dynamic Stability Plots for Table 2 2014 SUMMER PEAK LD, 2009 FRCC LFDB (8/24/09)

MODIFIED FOR DYNAMICS. FIRM INTERCHNG. TP3&4 EPU, TP2 SYNCH COND 3PH FAULT @TURKEY POINT ON LEVEE 230KV LINE,BRK 90 FAILS LOADFLOW=DY09_14SR4.SAV, SNAPSHOT= FY09R4-2014 FILE: C:\\home\\pxgOddg\\nuc-uprates\\sis\\TP\\11MW\\dyn\\Run EPU C 06.out OH

'P 2014 SUMMER PEAK LD, 2009 FRCC LFID (8/24/09) MODIFIED FOR DYNAMICS. FIRM INTERCHNG. TP3&4 EPU, TP2 SYNCH COND 3PH FAULT @TURKEY POINT ON LEVEE 230KV LINE,BRK 90 FAILS LOADFLOW=DY09_14SR4.SAV, SNAPSHOT= FY09R4-2014 FILE: C:\\home\\pxgOdd9\\nuc-uprates\\sis\\TP\\SlMW\\dyn\\RunEPUC 06.out

-r..

o OHI 9.5000O

-0.5000 COOUO*

29>: [0TR0 0(9T.0 2.00901 I

0.

SOO 000 o

k }

- 0 1

3 IP 3

{2 13=

61.000 59.000 1~

.ooo 04- 0 0.ooo 1.000 oo. I 0

5 09.000 I

S I

o0

-U 0

2014 SUMMER PEAK LD, 2009 FRCC LFD.

(8/24/09) MODIFIED FOR DYNAMICS. FIRM INTERCHNG. TP3&4 EPU + TP2 SYNCH COND 3PH FAULT @TURKEY POINT ON LEVEE 230KV LINEORK 90 FAILS LOADFLOW=DY09_14SR4.SAV, SNAPSHOT= FY09R4-2014 FILE: C:\\home\\pxgodd9\\nuc-uprates\\sis\\TP\\lM6W\\dyn\\Run EPU _C_06.ot o>

oH

.-u 2014 SUMMER PEAK LD,. 2009 FRCC LFDB (8/24/09)

MODIFIED FOR DYNAMICS. FIRM INTERCHNG. TP3&4 EPU, TP2 SYNCH COND 3PH FAULT @TURKEY POINT ON LEVEE 230EV LINE,BRK 90 FAILS LOADFLOW=DY09_14SR4.SAV, SNAPSHOT= FY09R4-2014

FILE, C:\\home\\pxgO0dd9\\nuc-uprates\\sis\\TP\\llMW\\dyn\\Run EPU C 06.out Hi-9000 2"4 [S00 3301[CR V G3 2.0001100 0

o.o7ooo 0

.0.0200 I-0

[00 200[STLUCIE2 22.000)1) -

0.00 000.00010S000 9

.0 1

1 0.20 0

0272;

[SPD 185TP5 A

-00000 0.O8000-0.0200 0.08000 CHNL# 271: fSPD 12831T-5-T1 18 00-] -

000 DI F

-0N1#

300: [EFD 4[-.4 002.0001011 19.5000

.0.5000 1

z z

0 H

Page 22 of 40

Dynamic Stability Plots for Table 2 U

2014 SUMMER PEAK LD, 2009 FRCC LFD. (8/24/09)

MODIFIED FOR DYNAMICS. FIRM INTERCHNG.

TP3&4 EPU, TP2 SYNCH COND j3PH FAULT @LEVEE230KV ON TURKEY POINT#1 LINERELAY FAIL 28CY o

LOADFLOW=DY09Y14SR4.SAV, SNAPSHOT= FYOgR4-2014 FILE: C:\\home\\pxqoddg\\nuc-uprates\\sis\\TP\\11MW\\dyno\\Run EPU C 07.0Ut 050.00 OOOOIO28c:

[A-00 0300)00 RV 00 122 0)0(11

-~

15o.o00 C-400 270-1-ANG 200(STLUCIEO 22- 000101

-000 C-#o 27B,0 1-1 25*S M.

0 2 500o1.

-000 1

SCHNL#

277,

[ANGL 123 Tp5CTB 220 I*

iS.oo

-000.0 050.00 ~

2-01 [-,1001 4[TP.4 0.011

-0.

0098 3100 0098 00 H 00 00U 0

2014 S01MOER PEAK LD, 2009 FRCC LFDB (8/24/09)

MODIFIED FOR DYNAMICS. FIRM INTERCHNG. TP3&4 EPU + TP2 SYNCH COND 3PH FAULT @LEVEE23OKV ON TURKEY POINT#1 LINERELAY FAIL 28CY F-.

LOADFLOW=DY09_14SR4.SAV, SNAPSHOT= FY09R4-2014 FILE: C:\\home\\pxgOdd9\\gnc-uprates\\sis\\TP\\llMW\\dyn\\Run_EPUCO7.out H

10_05#

000 00, 1200 0005m 33

'S00000001 m.05000 I

1..

0 o.osooo

[0.050001000!oo0

~

o.osooo C-000 -00 PMEC 1285T1 STEAM 00.000101 C-#

307!

[PMEC

[TP5CTRI IS

-1ýj I

3-1.0500-2.0D~ý 0.050-d

-30S.

[PM 3[TP.3 22 0]

-I 0

- L

iI I

o 000C 0

N 00 i

2014 SUMMER PEAK LD, 2009 FRCC LFD.

(8/24/09) MODIFIED FOR DYNAMICS. FIRM INTERCHNG.

TP3&4 EPU, TP2 SYNCH COND 0

3PH FAULT @LEVEE230KV ON TURKEY POINT#O LINERELAY FAIL 28CY LOADFLOW=DY09_14SR4.SAV, SNAPSHOT= FY09R4-2014 FILE: C:\\home\\pxgOdd9\\nuc--uprates\\sis\\TP\\i1IMW\\dyn\\RunEPU_C_07.0out 0'3 T

I.

2051.030! 1V-00000OWOlI 2014 SRUMER PEAK LD, 2009 FRCC LFDB (8/24/09)

MODIFIED FOR DYNAMICS. FIRM INTERCHNG. TP3&4 EPU, TP2 SYNCH COND 3PH FAULT @LEVEE230KV ON TURKEY POINT#1 LINERELAY FAIL 28CY LOADFLOW=DY09_14SR4.SAV, SNAPSHOT= FY09R4-2014 FILE: C:\\home\\pxgldd9\\nuc-uprates\\sis\\TP\\llMW\\dyn\\RunrEPUC_07.out I

000010 00120_

[.R 3..01.CR G3 2-000)01]

115.000 0

5.O0000 0500 01 005! 10O 2001STLUCIE2 22.000.l0 1s.ooo 5.oo 11.2000 0.0000 012..00 202107, W-VL-21,01 0--00 C001# 70! [V-T00X0 y P1

0..2000 0.70000 II I

'I --

.OK

?

_0 U) 200.# 284,

[-OWR 12B 5(TPSSTEAM 18.000)I]

1.000 5.0000

-5000 C"NL# 2-3

[1-W 1ý83 (TP5TB:

18.05)-7 C-#~~~

~

~ 2000-4T 2.001

-5.000

.000 O

  1. ooo 1-000R 01
22.

.000101 500 15.000

ý -

I 0 0 I

I I

I I

I I

I I

I I

I 00

-0

Page 23 of 40

Dynamic Stability Plots for Table 2 2014 SUMMER PEAK LD, 2009 FRCC LFDB (8/24/09) MODIFIED FOR DYNAMICS. FIRM INTERCHNG. TP3&4 EPU, TP2 SYNCH COND 3 PH FAULT @LEVEE230KV ON TURKEY POINT#I LINE,RELAY FAIL 28CY LOADFLOW=DY09_14SR4.SAV, SNAPSHOT= FY09R4-2014 FILE: C:\\home\\pxgOdd9\\nuc-uprates\\sis\\TP\\llMW\\dyn\\Ruon EPUC_07.out 4E, 2014 SUMMER PEAK LD, 2009 FRCC LFDB (8/24/09) MODIFIED FOR DYNAMICS. FIRM INTERCHNG.

TP3&4 EPU, TP2 SYNCH COND 3PH FAULT @LEVEE230KV ON TURKEY POINT#1 LINERELAY FAIL 28CY LOADFLOW=DY09_14SR4.SAV, SNAPSHOT= FY09R4-2014 FILE: C:\\home\\pxgOdd9\\nuc-uprates\\sis\\TP\\llMW\\dyn\\Ru_EPU _C_07.out 61.000 59.000 6-.0-.0 k1.000 CHNL* 294:

IE*M 41TP.4 2200011]

9.5000 i9.-

0 2930 [-'0M 3[TP.3 22.000111

-0.0000 SI I

I L.

I I I

I I

I I

I ow 04 o0 4-U 4-(5 0.1 I

I I

i I

I I

2014 SUMMER PEAK LD, 2009 FRCC LFD.

(8/24/09)

MODIFIED FOR DYNAMICS. FIRM INTERCHNG.

TP3&4 EPU, TP2 SYNCH COND I

3PM FAULT @LEVEE230KV ON TURKEY POINT#I LINE,RELAY FAIL 28CY 1

LOADFLOW=DY09_14SR4.SAV, SNAPSHOT= FY09R4-2014 FILE: C:\\home\\pxg~ddg\\nuc-uprates\\sis\\TP\\11MW\\dyn\\Run EPU C 07.out Eu

.0 IEN 2014 SUMMER PEAK LD, 2009 FRCC LFDB (8/24/09) MODIFIED FOR DYNAMICS. FIRM INTERCHNG. TP3&4 EPU, TP2 SYNCH COND I

3PH FAULT @LEVEE230KV ON TURKEY POINT#1 LINERELAY FAIL 28CY

[

LOADFLOW=DY09_14SR4.SAV, SNAPSHOT= FY09R4-2014 FILE: C:\\home\\pxgOddo\\nuc-uprates\\sis\\TP\\llMW\\dyn\\Run_EPU_C_07.out 7

0*0 004: [SPD 33011CR RV G3 22.000117 19,5.0000 0.90 C0 # 2-0:

000 3 (TP.3 22.000111 9.So00 I

I I

I I

I (0o.o4ooo

-0.0200 D

ClN*273, (SPD 2001-

-2C* 0113 0o.o0oo I.0.0..

0

-0.0200 Mo.0 000CHNL#

272: [SPD 1265[TS-TAM 18.0001].

10.000 0000 CM# 2710 0

SPD 1283[

TPseB1 09 I) 000101 0*}.02001 0.0800 0

0008

[sn 4000 2

0

-0.0200 Moo 000L# 270: (SPD 42[TP.4 22.00010]

-0.02 oo C- # 2-ISD 3ITP.3

.00011-04.

o0 0-2 00

~0 z

50 Page 24 of 40

Dynamic Stability Plots for Table 2 2014 SUMMER PEAK LD, 2009 FRCC LFDB (8/24/09) MODIFIED FOR DYNAMICS. FIRM INTERCHNG. TP3&4 EPU, TP2 SYNCH COND 3PH FAULT @DAVIS ON LEVEE #1 230KV LINE,BRK 96 FAILS LOADFLOW=DY09_14SR4.SAV, SNAPSHOT= FY09R4-2014 FILE: C:\\home\\pxgOdd9\\nuc-uprates\\sis\\TP\\OSMW\\dyn\\Run EPUC_08-out 150-

-7 00oo.o 005.0 -79, 0000L 2 0. [STLU E2 220 000111 k50- 00

-000.0 C-40. 270:

[ANGL 1285 5T- 00TEAM 18.0001]i 050. 00

-00.0 C000 277 12030[TP5CTB5 18.0001 030.00

-000.0 C-00 270:

00000 4 0TP.4 22.00010 1o CHNL0 275:

[ANGL 3 0TP.

3 22.000111 050.o 00------

-000.0o I

I I

I I

I

  • ~

II 6,

1 I

10 ji f

  • It
  • I L

2 i

F40 2014 SUMMER PEAK LD, 2009 FRCC LFDB (8/24/09) MODIFIED FOR DYNAMICS. FIRM INTERCHNG. TP3&4 EPU, TP2 SYNCH COND 3PH FAULT @DAVIS ON LEVEE #1 230KV LINE,BRK 96 FAILS LOADFLOW=DY09_14SR4.SAV, SNAPSHOT= FY09R4-2014 FILE: C:\\home\\px0dd.9..

uo-upra es\\sis\\TP\\lMW\\dynO\\RuEPU_C_08.out 00'*.L00 3O fP00C 73000000RV007 700o001

-l 1,0500 0.0000 c0 0# 3o90 0

p-Ec 200D ST0UC0 E2 2

W0 000I0

[0.0500 0

0.05000 1-oo CHNL# 308: [PMtC 1285[TPSST-M

-4OO

_l-10.0500 00o.00 000000050oo.000 kCHNL 30

[PMEC 12 3[TP CTB 18

2.

0000 300

-n 700: [0000 4[TP.4 22.0001

-0500 1.o050 0

11.05000 I

'fi7

'I I

I I

I I

I 1-5.

I'.I1T f

II.

II S

.1 0

..........l......

ii

{I I

I I

I I

I 00 p0 I

00 01 2014 SUMMER PEAK LD, 2069 FRCC LF,.

(8/24/09) MODIFIED FOR DYNAMICS. FIRM INTERCHNG. TP3&4 EPU I TP2 SYNCH COND 3PH FAULT @DAVIS ON LEVEE #1 230KV LINEBRK 96 FAILS LOADFLOW=DY0 914SR4.SAV, SNAPSHOT= FY09R4-2014 FILE: C:\\ho\\ekpxgodd9\\nuc-uprates\\sis\\TP\\1lMW\\dyn\\Ru EPUC_08.out 000000#

000:

(0V-00,AOGMI) 1.2000

-3.

0.0000 I

0-000 o0-0000 7_o I

Cm*'- 4 71: (V-TR*

P)

.20000.700 I;.

-I-00t 20 05 EIn 010 15.000

.5.0000 15,0,001 005: 0 00 0ooIs0 ucI0 2 22.000111 I 5.0 0

0 0000020.

5.0 1

05.00..

284:

(POWR 451-5T4 1.000)1) 0.00 1s.ooo 28s;PW 13 T5 1

iooy ooo

  • #282; 1 POWR 4 J3TPS.

4B 22.000111 000000200 000000.300.0 0.00)010 1I5.000

056, C-4 28; POWR 3 ITP. 3 22.ooo]o-5.00000 I

i I

I*

'!i

.1 I

it 00 2014 SUMMER PEAK LD, 2009 FRCC LFDB (8/24/09) MODIFIED FOR DYNAMICS. FIRM INTERCHNG.

TP3&4 EPU, TP2 SYNCH COND 3PH FAULT QDAVIS ON LEVEE #1 230KV LINE,BRK 96 FAILS LOADFLOW=DY09_14SR4.SAV, SNAPSHOT-FY09R4-2014 FILE: C:\\home\\pxg~ddS\\nuc-uprates\\sis\\TP\\llMW\\dyn\\Run EPU C 08.out o

U

.00 00 00 00 Page 25 of 40

Dynamic Stability Plots for Table 2 2014 SUMMER PEAK LD, 2009 FRCC LFDB (8/24/09) MODIFIED FOR DYNAMICS. FIRM INTERCHNG. TF3&4 EPU, TP2 SYNCH COND R

3PH FAULT &DAVIS ON LEVEE #1 230KV LINEBRK 96 FAILS h

LOADFLOW=DY09_14SR4.SAV, SNAPSHOT= FY09R4-2014 FILE: C:\\home\\pxgoddg\\nuc-uprates\\sis\\TP\\llMW\\dyn\\RunEPU_C08.out

-1 4

2-05 4TP.4 22-o00o01 C-#I 2-0 [0 323 T

0.P 22000111 0

2014 SUMMER PEAK LD, 2009 FRCC LFDB (8/24/09) MODIFIED FOR DYNAMICS. FIRM INTERCHNG.

TP3&4 EPU S

TP2 SYNCH COND 3 PH FAULT @DAVIS ON LEVEE #1 230KV LINE,BRK 96 FAILS LOAIDFLOW=DY09_14SR4.SAV, SNAPSHOT= FY09R4-2014 FILE: C:\\home\\pxg~dd9\\nuc-uprates\\sis\\TP\\llMW\\dyn\\RunEPUC_08.0ut I

0109009 06: 60- (60- (FR00

-O Y IE 62.000

.000 CN~qL# B4:60- (60- FRO-C -

0-OT ))

60.000 00 0

0W0,.000Y000020001 00.000 0CHNL#

83 60-(600 0FRQ--NCH0) i -

0 CHNL# 81, 60-D'I*FRO-FA -;'11) 5. o I6o.000 00 0.0.(O 00-I0291I

~

0.000I I

I I 0

ol.

Ia 2014 SUMMER PEAK LD, 2009 FRCC LFDB (8/24/09) MODIFIED FOR DYNAMICS. FIRM INTERCHNG.

TP3&4 EPU + TP2 SYNCH COND 3FPH FAULT @DAVIS ON LEVEE #1 230KV LINEBRK 96 FAILS LOADFLOW.DY09_14SR4.SAV, SNAPSHOT= FY09R4-2014 FILE:-C:\\home\\pxgadd9\\nuc-uprates\\sis\\TP\\llMW\\dyn\\Run EPFU_C_08.out 10 0E-o

-u 2014 SUMMER PEAK LD, 2009 FRCC LFDB (8/24/09) MODIFIED FOR DYNAMICS. FIRM INTERCHNG. TP3&4 EPU, TP2 SYNCH COND 3PH FAULT @DAVIS ON LEVEE #1 230KV LINEBRK 96 FAILS LOADFLOW=DY09_14SR4.SAV, SNAPSHOT= FY09R4-2014 FILE: C:\\home\\pxgodd9\\nuc-uprates\\sis\\TP\\llMW\\dyn\\RunEPU C 08.out C-00# 3000 [EFD 4[TP.4 22.0001 11 9.5000 00 I

oC-299:

0EF 1T.

22.0001.1]

I.5000

-0 00I SI

]

I I

I 0

_1

"..: IS.D 00[SFCR RV 22 00011]

.oo0ooo 0

-0.0200 273: 1-D 12[TPSSEA 122.000)11 o.ooo

-0 o.o-oo oo

-o o-o I 0.000

-~

2S00004 0.012 0..0200.

. 0-600 2-00 1D.

41-T.4 22.000)11

-0.0200

-0.04000

-1

-0.0200 SD TP 2.009

~0 Do 0.010 0

04 0

E-N 50 Page 26 of 40

Dynamic Stability Plots for Table 2 2o114 SUMMER PEAK LD, 2009 FRCC IF.S (8/24/09) MODIFIED FOR DYNAMICS. FIRM INTERCHNG. TP3&4 EPU, TP2 SYNCH COND 3PM FAULT @DAVIS 138KV ON VILLAGE GREEN LINEMID BRK 31 FAI LOADFLOW=DY09_14SR4.SAV, SNAPSHOT= FY09R4-2014 FILE: C: \\hoooe\\pxg~dd \\ nuc-uprates\\001H\\TP\\I1M04\\dyn\\Run EPH C 09 Coot 2014 SUMMER PEAK LD, 2009 FRCC LFDB (8/24/09) MODIFIED FOR DYNAMICS. FIRM INTERCNGD. TP304 EPU, TP2 SYNCH COED -

3PH FAULT @DAVIS 138KV ON VILLAGE GREEN LINE,MID BRK 31 FAI LOADFLOW=DY09_14SR4.SAV, SNAPSHOT= FY09R4-2014 u

FILE: C:\\home\\pxg~dd9\\nuc-upraoes\\s\\TP\\l1MH\\dyn\\RuEPUC_59.ouo C-0

.00 1

G 22 000.0 1 050.

00 7

-1 00-0 i

,C0-1# 279

[A-G0 2001ST0LU00 2 2

0 000101 000.00

-00.0 00010278 10 N

0 10 850 0 1-55-M 0000 0001:

050.00 :00.0 C-L 2770 10A 12830[TPSCTBI

[.000101]

CHNL# 276:, (AN-0 01-.0 22.000101 100.00 271

-000 3 ITPI3

-111071 I

4

.I I

I II iI i

I I,1

/0 CD(

N 00 H 00 Ru 0

10.00o 0.05000 0.0100 0000 00.....00100000 0.000 0.05000 0

I c0.0 300 000 EC 200 IST1S0T0A 22.0001,11 0

01 05000 1.0500 30 8, rPMEC 1263T5CTB

-M 18000411]00.

1.o~oo 05000#000, 10000 1000 1000 0.00000]

0 C0NL0 3060 1PMEC 40[TP.

22.00041 0.0I0 CH.-#0S

[

1-~ 3

[TP 3

2 000l

ý1 1.05000 0.05000 II,

,1I*

-I.

.I

'I SiI' I

I II I

I

(.2 N

~o4

-z 000 004 0

z 10 i

2014 SUMMER PEAK LD, 2000 FRCC LFDB (8/24/09)

MODIFIED FOR DYNAMICS. FIRM INTERCHNG. TP3&4 EPU, TP2 SYNCH COND 3PH FAULT @DAVIS 130KV ON VILLAGE GREEN LINEMID BRK 31 FAIl LOAfFLOW=DY09 14SR4.SAV, SNAPSHOT= FY09R4-2014 FILE: C:\\home\\pxg~ddO\\nuc-uprates\\sis\\TP\\llMW\\dyn\\Run_EPU_C_09.out 00 0

0-

1.

oOo~ob~l 2014 SUMMER PEAK LD, 2000 FRCC LODE (8/24/09) MODIFIED FOR DYNAMICS. FIRM INTERCHNG. TP3&4 EPU + TP2 SYNCH COND C

3PH FAULT @DAVIS 138KV ON VILLAGE GREEN LINE,MID BRK 31 FAI LOADFLOW-DY0 9 14RE4.SAV, SNAPSHOT

=

FY09R4-2014

  • U FILE: C:\\homep\\01dd9\\nuc-upraletes\\si\\TP\\11MW\\dyn\\RunEPUC_09.out H

00010 000: 100W 0

3 001 0R RVG 2000000001I I _

1.2000 0

-000 0- 0.

00F500 37 0.0000-P 0.70000

.2/ 2 0'-k 0401 N

U) 15,000CHNL 285:

[POWR 20 0[STMUCJ.E2 2

2

.000 111 x

5 00 15.000 X

+

s5oooo

-00000 2840 10000 12850TP5ST0 M 18.000110 1 000 00C00#

2830 0

POWR 120 31-500 001 T

0001

.00 0

CH0

.# 2020: 0I00R 4100.4 20.0001 500.0000

  • N#28 1;:

[pOWR 3[TP.3 22,001ý1 I-.ooo 00ooo 4.

I.-

(.

i ZE-o N

N 000

~Oo S08 00 Page 27 of 40

Dynamic Stability Plots for Table 2 2014 SUMMER PEAK LD, 2009 FRCC LID. (8/24/09) MODIFIED FOR DYNAMICS. FIRM INTERCHNG. TP3&4 EPU + TP2 SYNCH COND 3PH FAULT @DAVIS 138KV ON VILLAGE GREEN LINEMID BRK 31 FAI LOADFLOW=DY08014SR4.SAV, SNAPSHOT= FY09R4-2014 FILE: C:\\home\\pxgOddg\\nuc-uprates\\sis\\TP\\l1MW\\dyn\\RunEPUC00 out 2014 SUMMER PEAR LD, 2001 FRCC LFDB (8/24/09) MODIFIED FOR DYNAMICS. FIRM INTERCHNG.

TP3&4 EPU + TP2 SYNCH COND 3PH FAULT @DAVIS 138KV ON VILLAGE GREEN LINE,MID BRK 31 FAI LOADFLOW=DY09_14SR4.SAV, SNAPSHOT= FY09R4-2014 FILE: C:\\home\\pxgOddg\\nuc-uprates\\sis\\TP\\llMW\\dyn\\Rurn EPGC_09.out 00~20 m

000 00(o3 00(o~

I 2000.0 00, 00s-

[2o.

IP0S-02UT00]

-0000

-94: [0000 4(T-.4 2,.000,0]

-o 0o lq ROON l

C*

293,

[E-M 31-TP3

-00]V]

0.5000 200023 00

30.

2000 S0OO00 I

I I

I I

I

=

00 (62.00 (60 60.000 C-003 B3, 0- (6D0 IFR-AOCHO

-HL 4

60.000 I) 00 U

2014 SUMMER PEAK LD, 2009 FRCC LFD, (8/24/09) MODIFIED FOR DYNAMICS. FIRM INTERCHNG.

TP3&4 EPU, TP2 SYNCH COND 3PH FAULT ODAVIS 138KV ON VILLAGE GREEN LINEMID BRK 31 FAI LOADFLOW=DY09_14SR4.SAV, SNAPSHOT= FY09R4-2014 FILE: C:\\home\\pxgOdd9\\nuc-uprates\\sis\\TP\\11MW\\dyn\\RunEPUC_09.out 000, [0 41-T.4 22.000 0I]

1 9.5000

-05000 I

CH-299:

0 EFD

[0 T0.3 02.0002 ]

I I

I I

l I

I I

00~

'0 2014 SUMMER PEAK LD, 2009 FRCC LFD. (8/24/09)

MODIFIED FOR DYNAMICS. FIRM INTERCHNG. TP3&4 EPU, TP2 SYNCH COND 3PH FAULT @DAVIS 138KV ON VILLAGE GREEN LINE,MID BRK 31 FAI LOADFLOW=DY09_14SR4.SAV, SNAPSHOT= FY09R4-2014 FILE:

C: \\home\\pxgOdd9\\nuc -uprates\\sis\\TP\\liMW\\dyn\\Run EPUC_09. out 10.080000 0

-0.00001

.00-0200 C-273:

23 D

200STLUCIE2 22-..0111 o.os0oo I..

-o~oo i

0.0 0 20 20: [SPD 25TST

--. 0003 ý-

-0.-0 i0-0C-N#

271-SPD 12 TP5TB 8 000-]

I0.0000200 3.02 000IOCl

-0.02000

,*vu 1-0

[SD 4TP.4 122.01101ý I0.0000 20 003 3, 00

40.

200J ~ -

-0.0200I 0-0600000 269:

[SPD 3 [TP.3 22.0001]1

-0.020-0]

II I

I I

I 29(03 02 DI 0

00 00 Page 28 of 40

Dynamic Stability Plots for Table 2

[

2014 SUMMER PEAK LD, 2009 FRCC LFDB (8/24/09) MODIFIED FOR DYNAMICS. FIRM INTERCHNG. TP3&4 EPU + TP2 SYNCH COND 2PH FAULT @FLAGAMI CAPBANK. BUS BRK 67 FAILS.

LOADFLOW=DY09 14SR4.SAV, SNAPSHOT= FY09R4-2014 FILE: C:\\home\\pxg~dd9\\nuc-uprates\\sis\\TP\\llMW\\dyn\\Run_EPUC 10.out

ý1~o 6

-loo.o CHNL* 7*

[A-q

'2001-LUC-E2 22.000111 150.00 0.0o 05.00 CHI0 278' 0

L 128.5[

1T-5E 001=1 _Io 150.00

-o-,

101000#

277,, ANGL 12035 TP0B1 10 00011]

CHNL# 276, 0ANGL 40TP.4 22.0001-1 050.00o

-000.0o 15-D

275,

[AN0 L

0

[0 T

3 2H0

-000.0

.I

,Ii J

ii I

4

)i/0

'I

'-4 z

61 H m

RU~

0 2014 SUMMER PEAK LD, 2009 FRCC LFDB (8/24/09) MODIFIED FOR DYNAMICS. FIRM INTERCHNG.

TP3&4 EPU, TP2 SYNCH COND 5

3PH FAULT SFLAGAMI CAPBANK. BUS BRK 67 FAILS.

LOADFLOW=DY09_14SR4.SAV, SNAPSHOT-FY09R4-2014 FILE: C:\\ho\\ekpxgoddB\\nuc-uprates\\sis\\TP\\llMW\\dyn\\Run EPUC_10.ou0 100500 1CHNL#

3100 [PmEC 3301[CR RV G3 22.000)11

]

0.0500 C01100#

3090 [PMEC 2000 ST LUC.

E2 22,000011

0. 05000 1.0500 11010'.

304, 10001 124I[

I 00.000]0 0.05000 10-0530 100,002 000:

[100 18,00501V.0.0.0.1.

0_0 C0-01.

306:

1PMEC 4 1TP.4 22.000101 S.050050 10 10 0

i 2014 SUMMER PEAK LD, 2009 FRCC LFDB (8/24/09) MODIFIED FOR DYNAMICS. FIRM INTERCHNG. TP3&4 EPU + TP2 SYNCH COND 3CPH FAULT OFLAGAMI CAPBANK. BUS BRK 67 FAILS.

LOADFLOW=DY09_14SR4.SAV, SNAPSHOT= FY09R4-2014 FILE: C: \\home\\pxgOdd9\\nuc--uprates\\siS\\TP\\1iMW\\dyn\\Run_EPUC_10.

out E-5 0>

z 1-004 33' lH.00000101.

2014 SUMMER PEAK LD, 2000 FRCC LFDB (8/24/09) MODIFIED FOR DYNAMICS. FIRM INTERCHNG. TP3&4 EPU + TP2 SYNCH COND0 3PH FAULT OFLAGAMI CAPBANK. BUS BRK 67 FAILS.

LOADFLOW=DYS9B_4SR4.SAV, SNAPSHOT= FYO9R4-2014 u

1310- C:\\h0101\\no*0S g\\nlls-:1I1t00\\0111\\¶P\\11MW\\dvo\\HIn 0011 C 10 0111 0-4 1.2000 0.70000 1.2000 1.2000 IHN0 71:

P) 0-.000 "I

I1 I

I I

I I

i, I

'~1 10i 44(1)

CS 105.000

11.

0 100 01 0 0 0

01 11 1

5.0000 o

C-oL* 285, (POWR 200[Sf--

2.000111 S15.000

.oooo 105.000 1001050 304: [10100 1405[TP500TEA0 04.000101 1

15.000 1 0 0.0

00.

Cý#

28:IPOWF 12831ITP5CTBI

-8,000-!5000 CHNL 282: [POWR 4[TP.4 20.000110

[15.000100.

00: 100 01.0 20011500 is o

I I " 211 I-I[1_

2I111 0.

I

  • 1 I

I ~ ~~~~I

.1

  • EH

.04 00 zo 02 Page 29 of 40

Dynamic Stability Plots for Table 2 2014 SUMMER PEAK LD, 2009 FRCC LFD (8/24/09) MODIFIED FOR DYNAMICS. FIRM INTERCHNG.

TP3&4 EPU + TP2 SYNCH COND 3PH FAULT @FLAGAMI CAPBANK. BUS BRK 67 FAILS.

LOADFLOW=DY09_14SR4.SAV, SNAPSHOT= FY09R4-2014 FILE: C:\\home\\pxgoddg\\nuc-uprates\\sis\\TP\\11MW\\dyn\\RunEPUCl0.ou.0 2014 SUMMER PEAK LD, 2009 FRCC LIDE (8/24/09) MODIFIED FOR DYNAMICS. FIRM INTERCHNG. TP3&4 EPU, TP2 SYNCH COND 3PH FAULT @FLAGAMI CAPBANK. BUS BRK 67 FAILS.

LOADFLOW=DY09_14SR4.SAV, SNAPSHOT= FY09R4-2014 FILE: C:\\home\\pxg~ddg\\nuc-uprates\\sis\\TP\\llMW\\dyn\\Run_EPUC 1i.0o*

z.~

w0 000 cm*L* 86 : 60* (60* rFRO-pOTNAM(

I CHNL# 294, LOTUM 4[TP.4 22.0001]1

_05.0 k5CHNL0 2930 [0TRM 1T.0 22.000.101 9.5000

-05S000 I

I I

I

.1 I

I I

I I

0

]6i.ooo 5..

c~o (00.000

+

59.000 I

00000.0 000C-4 83: 6

[0(

0 CFR0-5NCHI C1#.000 000 I I

00.000000.

00, 00.

(000*

[POO-FLOX50

]

00,000 -

0.000 I

I I

I I

I I

I

-3d N

00 2014 SUMMER PEAK LD, 2009 FRCC LFDB (8/24/09) MODIFIED FOR DYNAMICS. FIRM INTERCHNG. TP3&4 EPU, TP2 SYNCH COND 0.3PH FAULT @FLAGAMI CAPBANK. BUS BRK 67 FAILS.

LOADFLOW=DY09_14SR4.SAV, SNAPSHOT= FY09R4-2014 FILE: C:\\home\\pxg~ddg\\nuc-uprates\\sis\\TP\\l1MW\\dyn\\RunnEPUC

.0.ut i

CN 300: 1-F 4 [TPA4 22.00011]1 2-005000 900 000*0.

299,

[EFD 30[TP.03000 4

000.

-0.50002 I.5000000800 00 00.

I I

I I

I I

  • E, 0

E.r 00

-u 2014 SUMMER PEAK LD, 2009 FRCC LFDB (8/24/09) MODIFIED FOR DYNAMICS. FIRM INTERCHNG.

TP3&4 EPU, TP2 SYNCH COND 3PH FAULT @FLAGAMI CAPBANK. BUS BRK 67 FAILS.

LOADFLOW=DY09_14SR4.SAV, SNAPSHOT= FYS9R4-2014 FILE: C:\\home \\pxýgýdd9\\nuc--uprates\\sis\\TP\\1IMW\\dyn\\RunEPU_C_10.0out 030000 1

G3

2.

0-.0200 C-00# 273.

1SPD 200lST0UCE2

-2.000111 0.00000#

272; [SPD 1285[T5TAM

[-S-

.00000 0

S0.

o 1-2 00.1-0.0200 10000 000. 7000

[S 4100.4 22.0.0000 10.080000000020, 000

00.

.000 00 0I 1

1 1

129 1

1S1

[T.3 2200)I o.o ooo

-o.o-o I

5I5 270 1-1 ITP 4

§0ý io.. 55 I-1-

3T 2--

000 00[43 U) 0 Page 30 of 40

Dynamic Stability Plots for Table 2 2014 SUMMER 50% LOAD LEVELFIRM INTERCHNG FRCC LFDO REV.2 (B/24/09),

MODIFIED FOR DYNAMICS TP3&4 EPU + TP2 SYNCH COND 3PH FAULT @TURKEY POINT ON LEVEE 230KV LINE,BRK 90 FAILS LiLOADFLOW=DY09_14SR4-S5.SAV, SNAPSHOT= FY09R4-2014 FILE: C: \\home\\pxq0dd9\\nuc-uprates\\sis\\TP\\lIMW\\dyn\\Rou EPU C 16.out 2014 SUMMER 50% LOAD LEVELFIRM INTERCHNG FRCC LFDB REV.2 (8/24/09),

MODIFIED FOR DYNAMICS TP3&4 EPU, TP2 SYNCH COND 3PH FAULT @TUIKEY POINT ON LEVEE 230KV LINE,BRK 90 FAILS l

LOADFLOW=DY09_14SR4-50.SAV, SNAPSHOT= FY09R4-2014 FILE: C:\\home\\pxgOdd9\\nuc-uprates\\sis\\TP\\IlMW\\dyn\\RunEPHC_16.out 0

'303 I3 I

330c000Th0

23. 1.

0 1 G.0rT 0

22.00)1-100.00 C00. 7. [01 003070 0003.....-

-I000. 1 00.0 01 278. [AN0 L

-01 5[-5 M

100 0

8.0001-0.0 000.00

-oo,

001, 473.00.011 o

0~

5000C-# 20 [-

1283 (T -

.1 000100 050.00

-000.0 4NL 2?5, 1-NL 34TP. 3 22,000111 I0 (0

0 C

005o~

310~

03 4,4 NO 10z.o00oo o.o~oooo 1.00500 0005000

i.

osoo

0. 00000 k10-00 000 308 [PMEC 1301105[

S-0 18.300D111 0-.0000 SCHN14

306, IPMEC 41TP.4 22.000111
11.

0500 0d4.0.0 1-.0 C-300, IP0 EC 1

031.3 22.000111 0.000 I', v I

I1 I

I I

I,

,i I

I I

-0 S i' I

I I, i I

I I

FC4 00a4

.0 00 2014 SUMMER 001 LOAD LEVELFIRM INTERCHNG FRCC LFDB REV.2 (8/24/09),

MODIFIED FOR DYNAMICS TP3&4 EPU + TP2 SYNCH COND 4U) 3PH FAULT @TURKEY POINT ON LEVEE 230KV LINEBRK 90 FAILS LOADFLOW=DY09_14SR4-50.SAV, SNAPSHOT= FY08R4-2014 FILE: C:\\home\\pxgOdd9\\nuc-uprates\\sis\\TP\\IlMW\\dyn\\Run EPU C_ 16.out

~0 00 CM # 00 V-A00y 0 ]

0.2000 0.70000 o

o o

C-*#

67! (V-FLAGM:1

.200000000 C-hT# 71! [V-*RKEY P]

1.3000.000ooo 2014 SUMMER 50% LOAD LEVELFIRM INTERCHNG FRCC LFDB REV.2 (8/24/09),

MODIFIED FOR DYNAMICS TP3&4 EPU, TP2 SYNCH COME) 3PH FAULT @TURKEY POINT ON LEVEE 230KV LINE,BRK 90 FAILS LOADFLOW=DY09_14SR4-50.SAV, SNAPSHOT= FYO9R4-2014 m U FILE:

C3\\home\\pxgOdd9knu\\o c-uprates\\sis\\TP\\SlMW\\dynk\\Ru EPU_C 16.0ut

.ooo 0

0 01 RV 03 2

o.00010

.100.000285:

0 POW 200 [STLUCIE2 22.000110 15.000 0o o

0 _

100.000 0001-0 100

-00 0001

[T-0I.000)101 150.000 003..20.100

11.

0 001

-'.0

-0000 0h*

28 2:

[POWR

ý [T-

  • 2.20-111*

t%

15.000 15.ooo 0033-0 281, 0001 3100

.0 1

5.0000

[

I 3

I 0

0 Page 31 of 40

Dynamic Stability Plots for Table 2 2014 SUMMER 50% LOAD LEVEL,FIRM INTERCHNG FRCC LFDB REV.2 (0/24/09),

MODIFIED FOR DYNAMICS TP3&4 EPU, TP2 SYNCH COND 3PH FAULT @TURKEY POINT ON LEVEE 230KV LINE,BRK 90 FAILS I

LOADFLOW=DY09_14SR4-50.SAV, SNAPSHOT= FY09R4-2014 FILE: C:\\home\\pxgOdd9\\nuc-uprates\\sis\\TP\\llKW\\dyn\\Run EPUC_16.out X

oH CHNL* ~

294 1E14TP4 2 00 I 0.0000

.00 I

CIONIO ZOO, 10E M 0(03 22.0001 1 9.50000

-0.0000 I

I I

I I

I I

I 2014 SUMMER 50% LOAD LEVELFIRM INTERCHNG FRCC LFDB REV.2 (8/24/09), MODIFIED FOR DYNAMICS TP3&4 EPU + TP2 SYNCH COND 8PH FAULT ETOIRREY POINT ON LEVEE 230KV LINEBRK 90 FAILS LOADFLOW=DY09_14SR44-505.SAV, SNAPSHOT= FY09R4-2014 0

FILE: C:\\home\\pxgOdd9\\nuc-uprates\\sis\\TP\\11MMW\\dyn\\Run_EPU_C_6.

out 1.0009000 CUNL# 83, 0

(60-(FRO-CHA OT1) 61-.000 000.10 10-00040

-9~.ooo CH-81 I6o+(o

[R -FLAG

) )

61.oo g~oo 00 2014 SUMMER 50% LOAD LEVEL,FIRM INTERCHNG FRCC LFD0 REV.2 (0/24/09),

MODIFIED FOR DYNAMICS TP3&4 EPU, TP2 SYNCH COND 3PM FAULT MT KEY POINT ON LEVEE 230KV LINE,BRK 90 FAILS LOADFLOW-DY09_14SR4-50.SAV, SNAPSHOT-FYSOR4-2014 FILE: C:\\home\\pxgOdd9\\nuc-uprates\\sis\\TP\\l1MW\\dyn\\Run_EPUC_16.out

~10

~-0 u0 2014 SUMMER 50% LOAD LEVEL,FIRM INTERCHNG FRCC LFDB REV.2 (R/24/09),

MODIFIED FOR DYNAMICS TP3&4 EPU + TP2 SYNCH COND 3PH FAULT @TUORKEY POINT ON LEVEE 230EIV LINE,BRK 90 FAILS LOADFLOW=DY09_14SR4-50.SAV, SNAPSHOT= FY09R4-2014 FILE: C:\\home\\pxgodd9\\nuc-uprates\\sis\\TP\\1lMW\\dyn\\Run_EPU_C_16.out o.00000 0

-0.02000 COOS 020, 00 0 1200[STLUCIE2 22.000111 C L#272: [SPD 1285[TPSSTEA 18,00011]

0.08000-0.02000 10.08000~

~

~

~

~ ~~

-oi

-00

-0 00OOIOSO0 0000 0-00 I o~~ooo50000 20 00 000 00000,-0.02000 20 270:

1SPD 4[TP.4 22.00041 00 0 io ooo50 269: ((PD 3[T2 P.3 22.000111

-0.0200 I

I I

I I

I I

'SQ 04503 04 z0 Page 32 of 40

Dynamic Stability Plots for Table 2 2014 SIUMMER 50% LOAD LEVEL,FIRM INTERCHNG FRCC LFDS REV.2 (8/24/09),

MODIFIED FOR DYNAMICS TP3&4 EPU, TP2 SYNCH COND 3PH FAULT @0LEVEE230V ON TURKEY POITT#l LINERELAY FAIL 28CY LOADFLOW=DY09_14SR4-50.SAV, SNAPSHOT= FY09R4-2014 FILE: C:\\ho-e\\pxg0dd9\\nuc-uprates\\sis\\TP\\llMW\\dyo

\\Run EPU C 17.out C-*# 2-00 3300[CR RV G3 22.000111 CIHn 279 0

200 ooIlOOO 22-00011 00.00.

-1oo.o0

-0 2780 0AG 25[TP STM

-000 C-b# 277, 0100 1283[TPSCTBI Is.0001

-]

050.00

-000.0 COCH-O 276:

1ANGL 41TP.4 21.00011]

1CHNL 275, [AN 30TP 3 2200 111 0

000.00 001 7,101

20.

-100.01 I

I

  • I I'

I I I

I I

(4 00 0

(

¢ 00 2014 SUMMER 50% LOAD LEVELFIRM INTERCHNG FRCC LFDB REV.2 (8/24/09),

MODIFIED FOR DYNAMICS TP3&4 EPU + TP2 SYNCH COND 3PH FAULT @LEVEE230KV ON TURKEY POINT#1 LINERELAY FAIL 28CY

  • LOADFLOW=DY09-14SR4-50.SAV, SNAPSHOT= FY09R4-2014 FILE: C:\\home\\pxg~dd9\\nuc-uprates\\sis\\TP\\llMW\\dyn\\Run_EoPUC_17.out 00001 20,10:0 00M0 3010CR 00 C 22.000001 I 050000 0.00000 11.03090 C001 000,

[S0000E 2000 0 2.000.0000 I.osoooooo 5..

C-#

r C 1285[T-TEAM is 0o0i000 k.00 CH000 000, 0000020005000001 0.000100 --

0510.O000100 C-NL 307: [PMEC

[1.8{PCB 4

800I

.000 0 1 0

00.05000 11000.

0000.3 000, 000E0 4000.4 22-.000.0000 C-#NL 3D5, [PMEC 3 [TP. 3 22-00111

.000.0000

.I I

I I

I

i.

i I

0i 0'

I

.I I

(

0' I

" 0 0

P4O 00 2014 SUMMER 50% LOAD LEVELFIRM INTERCOONG FRCC LFDS REV.2 (8/24/091, MODIFIED FOR DYNAMICS TP3&4 EPU + TP2 SYNCH CONE 3PH FAULT @LEVEE230KV ON TURKEY POINT#S LINERELAY FAIL 28CY I

LOADFLOW=DY09_14SR4-50.SAV, SNAPSHOT= FY09R4-2014 FILE: C:\\home\\pxgoddg\\nuc-uprates\\sis\\TP\\lSMW\\dyn\\Run_EPU_C_17.out 2014 SUMMER 50% LOAD LEVELFIRM INTERCHNG FRCC LFDB REV.2 (8/24/09), MODIFIED FOR DYNAMICS TP3&4 EPU, TP2 SYNCH COND 3PH FAULT @LEVEE230KV ON TURKEY POINT#1 LINERELAY FAIL 28CY LOADFLOW=DY09_14SR4-0S.SAV, SNAPSHOT= FYO9R4-2014

FILE, C:\\home\\kRxSdd9\\nuc-uprates\\sis\\TP\\llMW\\dyn\\Run EPU C 17.out 20-E2 2.00010 15oo 00010 200, 00000 200[00UC0E2 42.00)).....

0.50000 1500 oooo 000 204, [0000 02005[T0S00T0M 10.0001]0 0.0000 lsoooo 110.000 005202, [00000 410.4 22.00101

.00 H

z 0

u z

00 Page 33 of 40

Dynamic Stability Plots for Table 2 2014 SUMMER 50% LOAD LEVELFIRM INTERCHNG FRCC LFDB REV.2 (8/2 /09),

MODIFIED FOR DYNAMICS TP3&4 EPU N

LN 2 SYNCH COND 3PH FAULT @LEVEE230KV ON TURKEY POINT#1 LINE,RELAY FAIL 28 CY LOADFLOW=DY09_14SR4-50.SAV, SNAPSHOT= FY09R4-2014 FILE: C:\\home\\pxg~dd9\\nuc-uprates\\sis\\TP\\1lMW\\dyn\\Run_EPUC_17.ou0 0Yo~

00E~o lol I?

2014 SUM1MER 50 LOAD LEVEL, FIRM INTERCHNG FRCC LFDO REV.2 (8/24/09),

MODIFIED FOR DYNAMICS TP3&4 EPU, TP2 SYNCH COND 3PH FAULT OLEVEE230KV ON TURKEY POINT#1 LINERELAY FAIL 28CY LOADFLOW=DY09_14SR4-50.SAV, SNAPSHOT= FYO9R4-2014 FILE: C:\\home\\pxgOddg\\nuc-uprates\\sis\\TP\\SIMW\\dyn\\Run EPU C 17.out 20u 0z (99 w(9 P42 9.5oo0

-0.5000 CNL# 293,: I0M 31-3 21...

0001W1 9.5000

-000 I

I I

I I

I 86, s

00.

(6001-0 P-0 1)5 00 610.000 5.0 CN#84: 60.!60"fFR-Q TEJ)59ýo 0.o 59.000 C-W# 63,

-0(60"IPR0-ANCH])

i10.000 51.000 I

I I

I I

'I 00 10 12014 SUMMER 00% LOAD LEVELFIRM INTERCHNG FRCC LFDB REV.2 (8/24/09),

MODIFIED FOR DYNAMICS TP3&4 EPU TP2 SYNCH COND 3PH FAULT OLEVEE230KV ON TURKEY POINT#I LINERELAY FAIL 28CY

)

LOADFLOW=DY09_14SR4-S0.SAV, SNAPSHOT-FY09R4-2014 FILE: C:\\home\\pxgOdd9\\nuc-uprates\\sis\\TP\\llMW\\dyn\\Run EPU C_17.out

-0000 ' (000 (00 2[TP.4 22.000111 I 9.5000

-5000

-. 0:

-o E-02 2014 SUMMER 50% LOAD LEVEL, FIRM INTERCHNG FRCC LFDB REV.2 (8/24/09),

MODIFIED FOR DYNAMICS TP3&4 EPU, TP2 SYNCH COND 3PH FAULT @LEVEE230KV ON TURKEY POINT#1 LINE,RELAY FAIL 28CY

  • LOADFLOW=DY09_14SR4-50.SAV, SNAPSHOT= FY09R4-2014 FILE: C:\\home\\pxgOdd9\\nuc-uprates\\sis\\TP\\1lMW\\d*n\\Run EPUC_17.out PD 3301[CR R G3 22.000)i) 06.000)10)

Io.0.00 0

-0.0o00 CHý# 271, [5PD 1253 (TP5CTB2

-000101 i.0B000 0200 002690 (SPD 34-3.3 22.000110 o.ooo

-0.02 220

~c43 20)23 02 U) z Page 34 of 40

Dynamic Stability Plots for Table 2 2014 SUMMER 50% LOAD LEVELFIRM INTERCHNG FRCC LFDB REV.2 (8/24/09),

MODIFIED FOR DYNAMICS TP3&4 EPU, TP2 SYNCH COND 1

3PH FAULT @DAVIS ON LEVEE #1 230KV LINE,BRK 96 FAILS

(

LOADFLOW=DY09_14SR4-50.SAV, SNAPSHOT= FYO9R4-2014 FILE: C:\\home\\pxgOdd9\\nuc-uprates\\sis\\TP\\11MW\\dvn\\Run EPU C 18.out C0000 100 3301[CR RV G3 22.00011]

15o.oo 0

- =

-=

00.

0.4 2790 IA0L 2000 STLUC1E2 22,000111 0

5.

-000.0

-50.00 I

....,.... [A-= 1283[TPBCTB,

. oo1 1 5o. oo C-4 [T0o.

I 2 -

)

00 2014 SUMMER 50% LOAD LEVELFIRM INTERCHNG FRCC LFDE REV.2 (8/24/09),

MODIFIED FOR DYNAMICS TP3&4 EPU I TP2 SYNCH COND 3PH FAULT @DAVIS ON LEVEE #1 230KV LINE,BRK 96 FAILS

  • LOADFLOW=DY09-14SR4-50.SAV, SNAPSHOT= FY09R4-2014 FILE 1

C:\\home\\pxgOdd9\\nuc-uprates\\sis\\TP\\llMW\\dyn\\Run EPU C_18.out 1

CH0 # 310.

[PMEC 3301CR R G3 22.000)]---

11. 0 3090 rpmEC 2000 00 [10S TLUC 2 02 00 01]

1-.50000

0. 1000005050000 0

.001 -

- =-+

0.05000

.0 C0 308

[PMEC 22851TP5STEAM 10.000)i0 1-1000#

307:

0 PMEC 1-4)TPSCTBI

-8.00011; 1-1.0500 0000

.5....0 7.0 000011O.OS0000

-I# 306,IPMEC 41T-4 j47 0 5 31 3

22-0011 00 0 I

I i'

I I

0.

a4 10 2014 SUMMER 50% LOAD LEVELFIRM INTERCHNG FRCC LFDE REV.2 (8/24/09),

MODIFIED FOR DYNAMICS TP3&4 EPU, TP2 SYNCH COND 3PH FAULT @DAVIS ON LEVEE #1 230KV LINE,BRK 96 FAILS

(

LOADFLOW=DY09_14SR4-50.SAV, SNAPSHOT= FY09R4-2014 FILE: C:\\home\\pxg 5

dd9\\nuc-uprates\\sis\\TP\\11MW\\dyn\\RunEPU_C_18.out

~U)

-- ~o 33 : [-A 1TON 200 000

-4 0.700000 u) 2014 SUMMER 50% LOAD LEVELFIRM INT'ERCHNG FRCC LFDE REV.2 (8/24/09),

MODIFIED FOR DYNAMICS TP3&4 EPU, TP2 SYNCH COND 3PH FAULT @DAVIS ON LEVEE #1 230KV LINE,BRK 96 FAILS LOADFLOW=DY09_14SR4-50.SAV, SNAPSHOT= FY09R4-2014 FILE: C:\\home\\pxg0dd9\\nuc-uprates\\sis\\TP\\llMW\\dyn\\Run EPUC_18ou0 S15.00000210 0

wR 0

01JCR RV G3 22 000110 Ioo.ooo 0000 0.100 00S000 0000.

5.0000 0000 00000 005: 10000 100IO{STLCRl 00.000101 S.

5.0000 I15. 000 t

f1*23 POWR 12831TP5CTBI 18.111V..

H ro 00 10.000 00 00 Page 35 of 40

Dynamic Stability Plots for Table 2 2014 SUMMER 50% LOAD LEVELFIRM INTERCHNG FRCC LFDB REV.2 (8/24/09)

MODIFIED FOR DYNAMICS TP3&4 EPU S

TP2 SYNCH COND 3PH FAULT @DAVIS ON LEVEE #1 230KV LINE,BRK 96 FAILS LOADFLOW=DY9 _14SR4-0S.SAV, SNAPSHOT= FY09R4-2014 FILE: C:\\home\\pxgOddg\\nuc-uprates\\sis\\TP\\1M1W\\dyn\\Run EPU C_18.out o,

2014 SUMMER 50% LOAD LEVELFIRM INTERCHNG FRCC LFDB REV.2 (8/24/09),

MODIFIED FOR DYNAMICS TP3&4 EPU, TP2 SYNCH COND 3PM FAULT @DAVIS ON LEVEE #1 230KV LINEBRK 96 FAILS LOADFLOW=DY09_14SR4-S0.SAV, SNAPSHOT= FY09R4-2014 FILE: C:\\home\\pxgoddg\\nuc-uprates\\sis\\TP\\11MW\\dyn\\RunSEPU C 18.out C*#

294:

[E*M 4 [TP.4 22.00Q] i]

9.I5I'l

-0.5000 19.5000 so000 0

o

{

CHNL# 86: 60+ (60. (PRO-PUTN 59.0o 610.000 0010 0 0-0.00-0002oo~

61-ooo s.oo.

kl~oooC-*#

B3, 60-(60*-F0-AN-H1) 61.000 59.000 610.000 0001..0000 I

I-I I

{

{

20 2014 SUMMER 00% LOAD LEVELFIOM INTERCHNG FRCC LFDB REV.2 P

(8/24/09),

MODIFIED FOR DYNAMICS TP3&4 EPU + TP2 SYNCH COND 3PH FAULT @DAVIS ON LEVEE #1 230KV LINE,BRK 96 FAILS I

LOADFLOW=DY09_14SR4-50.SAV, SNAPSHOT= FY09R4-2014 FILE: C:\\home\\pxgOdd9\\nuc-uprates\\sis\\TP\\liMW\\dyn\\Run EPUC_18.out

~EI o>

-o

-I 2014 SUMMER S0% LOAD LEVELFIRM INTERCMNG FRCC LFDB REV.2 (8/24/09),

MODIFIED FOR DYNAMICS TP3&4 EPU, TP2 SYNCH COND 3PH FAULT @DAVIS ON LEVEE #1 230KV LINE,BRK 96 FAILS LOADFLOW=DY09 14SR4-50.SAV, SNAPSHOT= FY09R4-2014 FILEI: C:\\home\\pxgOdd9\\nuc-uprates\\sis\\TP\\llMW\\dyn\\Run EPUC 18.-1.t C-N# 2?4, [spD 33o1[CR RV G3 22.oo]1 o0.000100 0

0200 CHNL0 2-0, 0SPD 200[STLUCIE2 22.000)11i o2-oo 11 T

-o-o oo 10.000 0000010 0.2i [000SPD 12B3 ITPSCTBI 18.0001Y1 0

.00 2

-000)110.0200 10.0000 000. 2700 [000 0(000.0*

22.000101 0020 0-0 12102 CO 0

0 Do 112 Page 36 of 40

Dynamic Stability Plots for Table 2 2014 SUMMER 50% LOAD LEVELFIRM INTERCHNG FRCC LFDB REV.2 (8/24/09),

MODIFIED FOR DYNAMICS TP3&4 EPU, TP2 SYNCH COND 3PH FAULT @DAVIS 138KV ON VILLAGE GREEN LINEMID BRK 31 FAI L

LOADFLOW=DY09_14SR4-50.SAV, SNAPSHOT= FY09R4-2014 FILE: C:\\home\\pxg~dds\\noc-uprates\\sis\\TP\\11MW\\dyn\\Run EPU C 19-out 1-1-

1-0-10 2*oI 00 -i011 1000 2001-TL-0E2 0

CNNL# 27B

- 0 1285.TP T M o

BO 00 hs.-olo 1z 00 2014 SUMMER 50% LOAD LEVELFIRM INTERCHNG FRCC LFDB REV.2 (8/24/09),

MODIFIED FOR DYNAMICS TP3&4 EPU, TP2 SYNCH COND 3PH FAULT @DAVIS 138KV ON VILLAGE GREEN LINEMID BRK 31 FAI LOADFLOW=DY09_14SR4-50.SAV, SNAPSHOT= FY09R4-2014 FILE: C:\\home\\pxgldd9\\nuc-upraoes\\0i4\\TP\\llMW\\dyn\\Run-EEUC1.0ut IC 000031o00 I 0000 01011CR 0000 0300001:11 1.oso o.osooo 0.0500 1-0.05000 1

C 3Q8: [PMEC 12B STBTAM 1.0001, 1

1. OSO0 n -OO0 000A 307:

0 PMEC 12831T-5-81

18.

sOa 0001 0.05000 1.0500

-o.O.000 C-400 305, [PMEC 3Tpb00 22.0o0001

[1.05o.010.

s' 0000oo2

~

0.050001

[*.oo 010Ooools 10000.

ooo 0.0500o 10 I

I I'

I I

I 0

I.I I

8.

I 8

I I

I I.

I 8:

I 10 1

I, I

I 1"I I

0 100 10z 10~

S

~ro~

-S coO N

2014 SUMMER 50% LOAD LEVEL,FIRM INTERCNG FRCC LFD REV.2 (8/24/09),

MODIFIED FOR DYNAMICS TP3&4 EPU T 2 SYNCH COND 3PH FAULT @DAVIS 138KV ON VILLAGE GREEN LINEMID BRK 31 FAI LOADFLOW=DY09_14SR4-50.SAV, SNAPSHOT= FY09R4-2014 FILE: C:\\home\\pxgOdds\\nusc-uprates\\sis\\TP\\1lMW\\dyn\\Run EPUC_1

-out 10>

2014 SUMMER 50% LOAD LEVELFIRM INTERCING FRCC LFD REV-.2 (8/24/09),

MODIFIED FOR DYNAMICS TP3&4 EPU + TP2 SYNCH'COND 3PE FAULT @DAVIS 138KV ON VILLAGE GREEN LINEMID ERK 31 FAI LOADFLOW=DY09_14SR4-50.SAV, SNAPSHOT= FY09R4-2014 FILE:

C: \\home\\pxgoddD\\nuc-uprases\\sis\\TP\\llMW\\dyn\\Run EPU DC 19 ous CW 2eIpOR 03000CR RV G3 22.-14000 Ioo.ooo 00101 0, 100 00[0.00 000 5ooo li00

5. 0000 CH
  1. 284!

IPOWR 1285 [TP5STEAM

-0011)

  • s~ooo5,oo H

10 0

Page 37 of 40

Dynamic Stability Plots for Table 2 2014 SUMMER 50% LOAD LEVEL, FIRM INTERCENG FRCC LFDB REV.2 (8/24/09),

MODIFIED FOR DYNAMICS TP3&4 EPU, TP2 SYNCH COND 3PH FAULT @DAVIS 13..V1 ON VILLAGE GREEN LINE,MID BRK 31 FAI I

LOAIDFLOW=DY09_14SR4-50.SAV, SNAPSHOT= FY09R4-2014 FILE: C:\\home\\pxgodd9\\nuc-Gprates\\sis\\TP\\llMW\\dyn\\Run EPU C_19.out 2014 SUMMER 50% LOAD LEVELFIRM INTERCHNG FRCC LFDB REV.2 (8/24/09),

MODIFIED FOR DYNAMICS TP3&4 EPU, TP2 SYNCH COND, 3PH FAULT @DAVIS 138KV ON VILLAGE GREEN LINEMID BRK 31 FAI LOA*FLOW=DY0Y914SR4-50.SAV, SNAPSHOT= FY09R4-2014 FILE: C:\\home\\pxgOdd9\\nuc-uprates\\sis\\TP\\llMW\\dyn\\Run_EPU_C_19.0ut 00z

¢*WT,£ R* [60. I*R*-ptlTNAMI I COOOOL.

2005 fF 4[TP 0 22400011 19.5-k5a-CHNLP 2-

[E2M 3 ITP, 3 2ý -1V o

-+

59ooon i-0 C-#L 84: 60-(60-jFRQ-CHARLTE1) i10.000 0-0

9. I i6.000 a05#

00 00-(40*

FR5 ANC0 I

I II I

I 0

0 10 00.19 2014 SUMMER 90% LOAD LEVEL,FIRM INTERCHNG FRCC LFDB REV.2 (8/24/09),

MODIFIED FOR DYNAMICS TP3&4 EPU + TP2 SYNCH COND 3PH FAULT @DAVIS 138KV ON VILLAGE GREEN LINEMID BRK 31 FAI I

LOADFLOW=DY09_14SR4-50.SAV, SNAPSHOT= FY09R4-2014 FILE: C:\\home\\pxgOdd9\\nuc-osprates\\sis\\TP\\1lMW\\dyn\\Run EPUC_119.out

,00 Ix EU 2014 SUMMER 50% LOAD LEVEL,FIRM INTERCHNG FRCC LFDB REV.2 (8/24/09),

MODIFIED FOR DYNAMICS TP3&4 EPU, TP2 SYNCH COND 3PH FAULT @DAVIS 138KV ON VILLAGE GREEN LINEMID BRK 31 FAI I

LOADFLOW=DY09_14SR4-50.SAV, SNAPSHOT= FY09R4-2014 FILE: C:\\home\\pxgOdd9\\nuc-uprates\\sis\\TP\\llMW\\dyon\\Run EPU C 19.0out

00.

500005 204. 0 0000005 0500

.2.2.0

.-0.0200 10.000000087.0 0000 O.....

02 020010

-0.0200.

1 0ChOTL-2720 [SPD 1253FTP5CTB 18.000]01 10.000 2

0 0200 I 00000 2-00 000D 40T.

22.000],

N CO 0

z 10.

1 0 Page 38 of 40

Dynamic Stability Plots for Table 2 2014 SUMM4ER 50% LOAD LEVELFIRM INTERCHOG FRCC LFDB REV.2 (8/24/09),

MODIFIED FOR DYNAMICS TP3&4 EPU, TP2 SYNCH COND 3PH FAULT @FLAGAMI CAPBAMK. BUS BRK 67 FAILS.

kLO3ADFLOW=DY09S14SR4-50.SAV, SNAPSHOT= FY0SR4-2014 FILE: C: \\home\\pxgodds\\nuc-uprates\\sis\\TP\\11IMW\\dyn\\Run EPUC_20 out 000.00 IT T.

4 00.

I "0

.000001 270:

0A001 200 10T1UCIE2 22.000101

-0.

150.00 00 1001 oOIO 070 0.00 1 -

K

-000.0 050.00C-207:

[A00- 050 T050700 01B000

-000 500000 20: 101 40 4 0.01.

-1000.

C-4 270: 1f-0 01T0.

22.000101

-4000.00

-00. I I

I

-*I i

14

\\

-mI z

0 200 00 2014 SUMMER 50% LOAD LEVEL, FIRM INTERCONG FRCC LFDB REV.2 (B/24/09),

MODIFIED FOR DYNAMICS TP3&4 EPU, TP2 SYNCH COND 3PH FAULT @FLAGAMI CAPBANK. BUS BRK 67 FAILS.

LOA*FLOW=DY0SB14SR4-50.SAV, SNAPSHOT= FY09R4-2014 FILE: C:\\home\\pxogOddS\\nuc-uprates\\sis\\TP\\llMW\\dyn\\Run EPUC_20.out CNL# 310: IPMEC 3301 [CR VG3 22.00011)

.1.0500 -

0:

0 0002 2200110.050 C-# 300: 100 200308

[1-00001 0001 000:

[0000PMEC 12B3.[TP15TE1 1.0001 0-05000 1.0500 C00 30:

[ONPMEC 1004 22.000111 5

1.0500 1.050001 005: [100 00.0 20.00011 S

I I

I' 1

I I

I I.

I 0'

I i'-

I I i I

I

,p 0

I.

0 0,

j

1. I I

Ii I

I SW H

19 20(93 0

000

~00 0

U 2014 SUMMER 50% LOAD LEVELFIRM INTERCHNG FRCC LFDB REV.2 (8/24/09),

MODIFIED FOR DYNAMICS TP3&4 EPU, TP2 SYNCH COND 1000020 PM FAULT @OFLASARI COOFOARE. BUS EBB 67 FAILS.

IR0~LOADFLOW-DYSS _145R4-50.SAV, SNAPSHOT= FYSBB4-2514 FILE: C: \\home\\pxgOdd9\\nuc -uprates\\sis\\TP\\0I1MW\\dyn\\Run EPUC_20 oout 1.2000 00 67: lV-1 1

0201104 01: 10-FLAS0AM!1 f

I 0, /

)

-O 10 1

El 008 0

U) 2014 SUMMER 50% LOAD LEVEL, FIRM INTERCHNG FRCC LFDB REV.2 (8/24/09),

MODIFIED FOR DYNAMICS TP3&4 EPU + TP2 SYNCH COND 3PM FAULT @FLAGAMS CSPBAMK. BUS EBB 67 FAILS.

LOADFLSH=DYSB_545B4-SS.SAV, SNAPSMOT= FYSBB4-2514 FILE: C: \\home\\pxg5 dd9\\nuc-uprateo\\sis\\TP\\IiMW\\dyn\\Bun EPUCS20.out 10. 0 00201 00.0:

10 WR3010 00 C1 0 010 G0 22.000

)11

-)

105.000 000 00 00 0 0100 02 000101 000 10.000 5.0000]

I C-0001 2840: 1-W 12812[TPSSTOA 100.000111 in 0000 282: [000R 41T0.0 22.000111 ]0.

tO H

to

-to

.00 o

B Page 39 of 40

Dynamic Stability Plots for Table 2 2014 SUMMER 50% LOAD LEVELFIRM INTERCHNG FRCC LFDB REV.2 (8/24/09),

MODIFIED FOR DYNAMICS TP3&4 EPU, TP2 SYNCH COND 3PH FAULT @FLAGAMI CAPBANK. BUS BRK 67 FAILS.

LOADFLOW=DY09_14SR4-S0.SAV, SNAPSHOT= FY09R4-2014 FILE: C:\\home\\pxgodd9\\nuc-uprates\\sis\\TP\\llMW\\dyn\\Run_EPUC_20.out 19.50000

-:~

100 4 (T-4 22008

_0 S.00 115.

090, [-M9 22,000111.-.--

-0.000 I

I I

I T

,00 2014 SUMMER 50% LOAD LEVELFISM INTERCHNG FRCC LFDB REV.2 (8/24/05),

MODIFIED FOR DYNAMICS TP3&4 EPU + TP2 SYNCH COND 3PH FAULT @FLAGAMI CAPBANK. BUS BRK 67 FAILS.

L LOADFLOW=DY09_14SR4-S5.SAV, SNAPSHOT= FY09R4-2014 FILE: C:\\home\\pxgodd9\\nuc-uprates\\sis\\TP\\llMW\\dyn\\Run EPU C_20.0ut 100.000

~ ~0105 86, 60- (0- FR0O-PU00s4 0.0 610.000 00 0~:0 0-0001:

50.0 10.00 00005 CH 08: 60,0-HO'010-90.00000 75.00 81 60-I0-[

FLAI 11 0r4 z

2014 SUMMER 50% LOAD LEVELFIRM INTERCHNO FRCC LFDB REV.2 (8/24/09),

MODIFIED FOR DYNAMICS TP3&4 EPU + TP2 SYNCH COND 3PH FAULT @FLAGAMI CAPBANK. BUS IRK 67 FAILS_

LOADFLOW=DY09_14SR4-50.SAV, SNAPSHOT= FY09R4-2014 FILE: C:\\home\\pxg~ddg\\nuc-uprates\\sis\\TP\\llMW\\dyon\\RunEPU_C20.0out C0NL0 30 0

IEFD 4 [TP..4 22.0001 1) 9.500

_5 0

_0 00.0 1.

.CHNL4 299; [EFD 3[TP.3 22.00011]

0ý50 E-o

'oC 0

2014 SUMMER 50% LOAD LEVELFIRM INTERCHNG FRCC LFDS REV.2 (8/24/09),

MODIFIED FOR DYNAMICS TP3&4 EPU, TP2 SYNCH COND M.

I ON FAULT eFLAGdAMI CAPSAe. BUS RsK 67 FAILS.

IHOOOLOADFLOI48DYSS_14SR4-SS.SAV, SNAPSHOT. FYSOR4-25014 FILE: C:\\home\\pxOgdd9\\nuc-ooprateS\\Sis\\TP\\11MW\\dyoo\\Run SOD C 20.0000 Noo. c

-ý -

0

-0000 0

0005 2730: [SPD 200 0STLUCIE2 22.000)1 1 10.08000 0005 00-

-00

-090000 800 O.O0O00 0

00000000 SCHN#

272; (SPD 128S51-5T-M 18.000]11 0.0 o 000

-0.0200 i.0 0

  1. 2710 (W0D 12

.TP0CTB2 10.000Y --

-0.0 i -

-C-N#

270:

(-PD I[T.

22.

0001)ýL_

2 i 0.0s000 5000 000: oro 000.0 0 0) o 3

-0.000 I

I I

II I

I I

~08 Page 40 of 40