RS-10-184, Additional Information Supporting Request for License Amendment Regarding Ultimate Heat Sink

From kanterella
(Redirected from ML103120556)
Jump to navigation Jump to search

Additional Information Supporting Request for License Amendment Regarding Ultimate Heat Sink
ML103120556
Person / Time
Site: Byron  Constellation icon.png
Issue date: 11/08/2010
From: Hansen J
Exelon Generation Co, Exelon Nuclear
To:
Office of Nuclear Reactor Regulation, Document Control Desk
References
RS-10-184
Download: ML103120556 (92)


Text

Exelon Generation 4300 Winfield Road Warrenville,ll60555 RS-10-184 November 8, 2010 U.S. Nuclear Regulatory Commission ATTN: Document Control Desk Washington, DC 20555-0001 Byron Station, Units 1 and 2 Facility Operating License Nos. NPF-37 and NPF-66 NRC Docket Nos. STN SO-454 and STN 50-455

Subject:

Additional Information Supporting Request for License Amendment Regarding Ultimate Heat Sink

References:

1. Letter from P. R. Simpson (Exelon Generation Company, LLC) to U.S. NRC, "License Amendment Regarding Ultimate Heat Sink," dated June 30,2009
2. Letter from P. R. Simpson (Exelon Generation Company, LLC) to U.S. NRC, "Additional Information Supporting Request for License Amendment Regarding Ultimate Heat Sink," dated January 2S, 2010
3. Letter from M. J. David (U.S. NRC) to C. G. Pardee (Exelon Generation Company, LLC), "Byron Station, Unit Nos. 1 and 2 - Request for Additional Information Related to License Amendment Regarding Ultimate Heat Sink (TAC Nos. ME1669 and ME1670)," dated August 18, 2010 In Reference 1, Exelon Generation Company, LLC (EGG) requested a license amendment for Byron Station, Units 1 and 2, to revise Technical Specifications (TS) to add additional essential service water (SX) cooling tower requirements as a function of SX pump discharge temperature to reflect results of a revised analysis for the ultimate heat sink (UHS). In Reference 3, the NRC requested additional information to complete the review of the proposed license amendment and requested a 4S-day response. EGC requested to extend the response submittal date on October 14, 2010, and the NRC agreed to an extension until November 1,2010. Subsequently, an additional extension was sought by EGC on November 1, 2010, and the NRC revised the due date to November 12, 2010.

This response is subdivided as follows:

  • provides the response to the request for additional information from Reference
3.

November 8, 2010 U.S. Nuclear Regulatory Commission Page 2

  • contains the proposed changes to the affected Technical Specifications pages.
  • provides additional references to support Attachment 1.

EGC has reviewed the information supporting a finding of no significant hazards consideration and the environmental consideration that were previously provided to the NRC in Attachment 1 of Reference 1. The additional information provided in this submittal does not affect the bases for concluding that the proposed license amendment does not involve a significant hazards consideration. In addition, the additional information provided in this submittal does not affect the bases for concluding that neither an environmental impact statement nor an environmental assessment needs to be prepared in connection with the proposed amendment.

A regulatory commitment is contained in Attachment 4. If you should have any questions concerning this letter, please contact Ms. Lisa Schofield at (630) 657-2815.

I declare under penalty of perjury that the foregoing is true and correct. Executed on the 8th day of November 2010.

Attachments:

1. Response to Request for Additional Information
2. Revised Markup of Proposed Technical Specifications Pages
3. Additional References
4. Summary of Regulatory Commitments

ATTACHMENT 1 Response to Request for Additional Information NRC Request 1

1. The scenarios presented in your June 30, 2009, January 25, 2010, and July 1, 2010, submittals, which established the proposed revisions to TS 3.7.9 LCO, ACTIONS, and Surveillance Requirements (as stated in your January 25, 2010, submittal), assumed SX flow rates with the trains of each unit being cross connected and the opposite unit crosstie valves closed. Two SX pumps are running in the accident unit and one SX pump is running in the non-accident unit.

However, the updated final safety analysis report (UFSAR) currently states that the redundant SX loops can be operated as two separate loops in each unit, and TS Bases B 3.7.8 has provision to cross tie each unit's trains and also cross-tie the units as stated below:

UFSAR Section 9.2.1.2, Essential Service Water System, states that the essential service water system is divided into two redundant loops for each unit. The system may be operated with the loops cross-tied or as two separate loops.

TS Bases B 3.7.8 states that the SX system includes provisions to crosstie the trains (unit-specific crosstie), as well as provisions to crosstie the units (opposite-unit crosstie). The opposite-unit crosstie valves (1 SX005 and 2SX005) must both be open to accomplish the opposite-unit crosstie. The system is normally aligned with the unit-specific crosstie valves open and the opposite-unit crosstie valves closed.

a. Are the proposed revisions to TS 3.7.9 (LCO, ACTIONS and Surveillance Requirements) satisfactory for keeping basin temperature below 100°F when the SX system is aligned as two separate loops in one or both units? Are the proposed revisions to TS 3.7.9 satisfactory for maintaining basin temperature below 100°F when the SX system is aligned with the unit crosstie valves open? Please explain. If not, what course of action should be implemented such that the proposed revisions to TS 3.7.9 ensure the basin temperature will not exceed 100°F for all SX system operating alignments?
b. Do any procedures, UFSAR sections, or TS Bases need revision to ensure that the proposed revisions to TS 3.7.9 are satisfactory for all system operating alignments and modes of operation in your UFSAR and TS Bases? Please explain.
c. If the trains were operating as two separate 100ps1 as stated in UFSAR Section 9.2.1.2, discuss the validity of the proposed revision to TS 3.7.9 when the assumed single failure is a loss of an emergency diesel generator (EDG). Loss of an EDG could result in each unit's single SX pump (after a loss-of-coolant accident (LOCA)) drawing from the same tower with less than four fans running in that tower (depending on which fans are out of service). If this lineup is valid, discuss how the calculation would account for stratification or uneven mixing in the basin.

1: Assumes two separate loops means the returns to the cooling towers are also separate by closing valve 1 SX011.

Page 1

ATTACHMENT 1 Response to Request for Additional Information Response 1

a. The Essential Service Water (SX) system is normally operated with the unit-specific train crosstie valves open and one of the unit crosstie valves closed. In the unlikely event that both opposite-unit crosstie valves are open for the postulated loss of offsite power (LOOP)/LOCA event, there would be some redistribution of flow within the SX system.

Based on sensitivity runs using the Byron SX system flow model, the net change in overall system flow and flow through the essential service water cooling tower (SXCT) cells is very small and would not significantly impact the previous analysis of basin temperature.

Additionally, the operating procedures for post-LOCA alignment of the component cooling (CC) system would align the Unit 0 CC heat exchanger (HX) to the accident unit. This operator action includes verifying/closing one of the unit crosstie valves (1 SX005 or 2SX005). Thus, the proposed revisions to Technical Specification (TS) 3.7.9 are satisfactory for maintaining basin temperature below 100 of when the SX system is aligned with the unit crosstie valves open.

With the loops separated, a postulated single failure that results in only one SX pump operating on the accident unit (EDG failure or SX pump failure) could result in water flow to only one SXCT. Depending on which SXCT fans are operable and the outside air wet bulb temperature, it is possible that the one SXCT with water flow could have less than the required number of operable SXCT fans available for cooling. An analysis (see Attachment

3) has been performed that shows for this postulated scenario, four SXCT fans on the SXCT with water flow are capable of maintaining basin temperature below 100 of. This issue is addressed further in Response 1.c. below.
b. The procedures, UFSAR sections, and TS Bases that are affected by the proposed revisions to TS 3.7.9 will be changed in accordance with existing license amendment procedures.

Changes to the TS Bases were previously submitted in Reference 1 and will be updated to reflect the currently proposed TS revisions. Bounding SX pump discharge temperature limits based on the analyses for the proposed TS have been put in place. Additionally, administrative controls have been put into place to require all eight SXCT fans to be operable when SX trains are separated.

c. If the SX trains were separated on both units and an accident occurred on one unit, a failure of one of the SX pumps or EDG on the accident unit could result in SX flow to only one of the two SXCTs. The same train SX pumps could be operating on the accident and non-accident units, and with the trains separated, essentially no flow would be provided to one of the SXCTs. The current and proposed TS on UHS operation allow up to two SXCT fans to be out of service without entering an LCO. In the scenario described above, if one or two of the out of service SXCT fans is on the SXCT with SX flow, the remaining SXCT fans would not have adequate heat removal capacity to maintain the SX basin water temperature below 100 of for design basis weather conditions.

Calculations indicated that with no SXCT fans out of service and the SX trains separated, the UHS temperature could be maintained at less than 100 of with four SXCT fans operating on the SXCT with flow. In this scenario, only one of the two SXCTs has significant water flow. Minimal mixing would occur between the SX basins; therefore, only half of the Page 2

ATTACHMENT 1 Response to Request for Additional Information SX basin water mass is considered available for heat storage in the calculations for the scenarios with SX trains separated.

A revision to the proposed TS is necessary to accommodate more restrictive SXCT fan requirements when either unit is operating with the SX trains in a split condition. Proposed TS Table 3.7.9-1 has been modified to indicate it applies to SXCT fans when SX trains on both units are in a cross-tied configuration, and a new Table 3.7.9-2 has been added to address when the SX trains on either unit are completely split. The Limiting Condition for Operations, Condition A, and Surveillance Requirement 3.7.9.2 have been modified to account for the addition of new Table 3.7.9-2. Also, Condition 8 has been modified to allow 72 hours8.333333e-4 days <br />0.02 hours <br />1.190476e-4 weeks <br />2.7396e-5 months <br /> to restore one or two inoperable SXCT fans to operable status while operating SX in a split configuration. In this condition, six operable SXCT fans are capable of mitigating the design basis accident with suspension of the single failure design criterion while in a TS Action as discussed in Generic Letter 80-30.

NRC Request 2 Assumption 3.4 of Appendix H of calculation M-MSD-009 (attachment 4 of the June 30, 2009 submittal) states that half of the reactor containment fan cooler (RCFC) heat load on the accident unit is shed at or prior to 30 minutes. Section 8 of Appendix H states, "Results are valid only if half of the RCFC heat load on the accident unit is shed at, or prior to, 30 minutes.

Procedures would have to be changed to implement this operator action."

Shedding the heat load from two of the four RCFCs would cause higher steam/air temperatures in containment for the remaining two operating RCFCs and thus increase their heat removal rate. Therefore, reducing the heat load contribution of the RCFCs by half seems to be a liberal assumption, especially since the same amount of energy has to be removed from containment whether two or four RCFCs are in operation after a LOCA. Securing two of the four RCFCs would seem to make the peak basin temperature occur later and higher than assuming that the half the heat input from containment to the basin was eliminated. As shown in the June 30, 2009, submittal (page 6 of 11), 4 of the 5 scenarios that establish the proposed TS 3.7.9 ACTIONS have a peak basin temperature above 99.5DF.

Please justify assumption 3.4 in light of the fact that the calculated maximum basin temperatures already peak very close to 100DF.

Response 2 Shedding two of the four RCFCs would result in a slow down in the rate of cooldown in containment and a higher heat removal rate from the two operating RCFCs. Attachment 3 of this document contains Calculation ATD-0063, Revision 0048, "Heat Load to the Ultimate Heat Sink During a Loss of Coolant Accident." As discussed in Assumption 3.2 of the calculation:

When two of four of the RCFCs are secured, the RCFC heat removal is assumed to be 50% of the RCFC heat removal of four RCFCs. With two RCFCs operating, the post-accident rate of containment cooldown will be less than when four RCFCs are assumed to be in operation. This would result in higher steam/air temperatures Page 3

ATTACHMENT 1 Response to Request for Additional Information entering the RCFC coils and some increase in heat removal for the two operating RCFCs. For calculating the peak UHS temperatures, the period of interest is the first 6000 seconds (See scenarios 5,6,7, and B of NED-M-MSD-009 [Ref. 4.31]). With four RCFCs operating the calculated containment steam/air temperature drops from 1BB.7 OF to 149.9 OF from time = 1799 seconds to time 5999 seconds (See Table 6 of the base (Rev. 4) calculation). With only two RCFCs and the same SX supply temperature, the drop in temperature over the same time period would be approximately one half or - 20 OF. The calculated maximum heat input from the RCFCs was conservatively based on an assumed SX supply temperature of 32 OF

[Ref. 4.51]. During the time period of concern, the SX temperature will actually be approaching the SX supply design temperature of 100 OF. This provides approximately 6B OF of margin in the approach temperature for the RCFC, which is greater than the expected 20 OF increase in the approach temperature due to securing two of the four RCFCs. Thus assuming 50% of the RCFC load is conservative.

The peak basin temperatures calculated are conservative because of the low SX supply temperature used in calculating the RCFC heat input to the UHS. The low SX temperature used to calculate heat input from the RCFCs offsets the higher heat removal rate due to the higher steam/air temperatures in containment for the remaining two operating RCFCs.

NRC Request 3 The proposed revisions to TS 3.7.9, when basin temperatures are above BO OF and fans are running in high speed, bound the current TS 3.7.9, whose basis considered the loss of an EDG as a Single failure. Since scenarios BC1 and BD1 present new TS, the loss of an EDG might not be bounded by scenario BC1 and/or scenario BD1 (above BO OF). Scenarios BC1 and BD1 each have a loss of 2 cooling tower fans and half the RCFC heat load. The loss of an EDG also results in loss of 2 cooling tower fans and half the RCFC heat load, as well as the loss of an SX pump in the accident unit.

a. Verify that the proposed revisions to TS 3.7.9 determined by scenarios BC1 and BD1 keep basin temperature below 100 OF if the single failure after a LOCA is a loss of an EDG. Please explain.
b. Review and discuss other single failures that need to be considered, if any, for the proposed revisions to TS 3.7.9, which were based on scenarios BC1 and BD1.

Response 3

a. A postulated failure of an EDG for Scenarios BC1 and BD1 would have the following impact:

o The SX pump on the accident unit powered by the failed EDG would not be running, which would result in lower flows to the SXCT cells. With lower water flows, the heat removal rate in the SXCT improves, which will lower the SX basin temperature.

Page 4

ATTACHMENT 1 Response to Request for Additional Information o

The RCFCs on the accident unit powered by the failed EOG would not be running. In Scenarios BC1 and B01, the heat input is from four RCFCs until operator action is assumed to be taken at, or prior to, 21 minutes. Thus, the peak heat input for a postulated EOG failure would be lower with loads later in the event becoming higher, since cool down of containment steam/air is slower.

o One train of ECCS on the accident unit powered by the failed EOG would not be running. With only one train of ECCS in operation, the peak residual heat removal (RHR) HX heat load to the UHS would be lower with loads later in the event becoming higher, since cooldown of containment sump water is slower.

o The SXCT configuration would be unchanged. A postulated failure of an EOG would result in the same number of failed SXCT fans and SX riser valves as the breaker failure currently postulated in Scenarios BC1 and B01.

The net result of a postulated EOG failure for Scenarios BC1 and B01 would be a lower peak basin temperature due to the lower peak load and improved tower performance.

b. As discussed in the January 25, 2010, response to NRC Request 5, the postulated active failures considered are: 1) containment spray pump failure, 2) SXCT fan failure, 3) EOG failure, 4) SX pump failure, and 5) SXCT bypass valve failure.

A containment spray pump failure results in slightly higher heat input from the accident unit which would be more than offset by the full cooling from the two SXCT fans that were postulated to fail in Scenarios BC1 and B01. The current analysis evaluates SXCT fan failures. The impact of an EOG failure is discussed in the response to NRC Request 3.a.

above. Failure of an SX pump results in lower flows to the SXCT cells which improves the heat removal rate in the SXCT and lowers the calculated SX basin temperature. SXCT bypass valve failures were evaluated in Scenarios 11, 12, and 13 in Reference 1.

NRC Request 4 Using the heat load given by the licensee in calculation M-MSO-009, the NRC staff performed an independent analysis and found a basin peak temperature above 100°F for scenarios BC and BO at approximately 10 hours1.157407e-4 days <br />0.00278 hours <br />1.653439e-5 weeks <br />3.805e-6 months <br /> after a LOCA. The heat load used by the NRC staff, being the same as in M-MSO-009, is half the actual containment heat load as noted in question 2, above.

What peak basin temperature does the licensee calculate for scenarios BC and BO (during cool down of the non-accident unit)? If basin temperature would exceed 100°F, what course of action is necessary to prevent basin temperature from exceeding 100°F for a LOCA and non-accident unit cool down?

Page 5

ATTACHMENT 1 Response to Request for Additional Information Response 4 When the time scale is extended for Scenarios 8C and 80 a second spike in basin temperature occurs when the non-accident unit is shutdown. The following peak basin temperatures were obtained:

Maximum Basin Time of Maximum Temperature Scenario Temperature (OF)

(Minutes) 8C 101.3 634 80 (Riser Valves Open for Failed 101.3 634 Fans) 80 (Riser Valves Closed for 101.7 628 Failed Fans)

When the time scale is extended for all of the scenarios, two additional scenarios exceed 100° F during cool down of the accident unit. The following peak basin temperatures were obtained:

Scenario Maximum Basin Time of Maximum Temperature (OF)

Temperature (Minutesl 8C1 100.5 647 8C2 100.9 636 The heat input from the non-accident unit RHR is based on placing the RHR in operation 8 hours9.259259e-5 days <br />0.00222 hours <br />1.322751e-5 weeks <br />3.044e-6 months <br /> after the start of the event. The RCS cool down rate is conservatively assumed to be 50 OF/hr. If required, the start of RHR cooling can be delayed on the non-accident unit and/or the cool down rate slowed. The appropriate procedures will be revised to caution operators on the non-accident unit to monitor the SX temperature and to manage the heat load inputs to the UHS from the non-accident unit to maintain the SX pump discharge temperature S 100 OF. The revision of the procedures is presented as a regulatory commitment in Attachment 4.

References:

1. Letter from P. R. Simpson (Exelon Generation Company, LLC) to U.S. NRC, "License Amendment Regarding Ultimate Heat Sink," dated June 30,2009 Page 6

ATTACHMENT 2 Revised Markup of Proposed Technical Specifications Pages Byron Station Units 1 and 2 Facility Operating License Nos. NPF-37 and NPF-66 REVISED TECHNICAL SPECIFICATIONS PAGES 3.7.9-1 3.7.9-5 3.7.9-6

3.7 PLANT SYSTEMS 3.7.9 Ultimate Heat Sink (UHS)

UHS 3.7.9 and the SX cooling tower fans shall be LCO 3.7.9 The UHS shall be OPERABLE./ OPERABLE and operating as specified

.II>

in Table 3.7.9-1 or Table 3.7.9-2.

APPLICABILITY:

MODES 1, 2, 3, and 4.

ACTIONS CONDITION A.

QAe pe~tl~peEl SOO~~Ag to'/Jep faA iAoperab~e.

.g.

One or more basin

\\ level(s)

\\

Replace with INSERT 3.7.9-1

< 60%.

IE I

BYRON - UNITS 1 & 2 I

REQU I RED ACTI ON PL+/-

IJep~BI pema~A~Ag re~uireEl QP~~gb~

soo~ i A9 tOl,ver faRs are sapab~e of beiRg pov.iereEl b:Y aR QP~~~gb~ emepgeAEry' povJer sourse.

AN{:)

A.2

~store re~uireEl soo~ i Rg tOl/l!er faR to QP~~Agb~ status.

\\

Restore both basin 1 evel s to ~ 60%.

\\

I I E.1 I 3.7.9 - 1 COMPLETION TIME

+/- houp 72 hours8.333333e-4 days <br />0.02 hours <br />1.190476e-4 weeks <br />2.7396e-5 months <br /> 6 hours (continued)

Amendment 106

INSERT 3.7.9-1 A. One or more OPERABLE A.1 Initiate actions to operate Immediately cooling tower fan(s) not OPERABLE cooling tower running in high speed as fan(s) in high speed.

required by Table 3.7.9-1 or Table 3.7.9-2.

B.

One required cooling tower B.1 Verify remaining required 1 hour1.157407e-5 days <br />2.777778e-4 hours <br />1.653439e-6 weeks <br />3.805e-7 months <br /> fan inoperable.

OPERABLE cooling tower fans are capable of being AND powered by an OPERABLE emergency Operating SX in power source.

Table 3.7.9-1 configuration.

AND OR B.2 Restore required cooling 72 hours8.333333e-4 days <br />0.02 hours <br />1.190476e-4 weeks <br />2.7396e-5 months <br /> One or two required cooling tower fans to OPERABLE tower fan(s) inoperable.

status.

AND Operating SX in Table 3.7.9-2 configuration.

C.

Two inoperable cooling C.1 Restore cooling tower fan 72 hours8.333333e-4 days <br />0.02 hours <br />1.190476e-4 weeks <br />2.7396e-5 months <br /> tower fans not required to configuration such that be OPERABLE by Table two inoperable cooling 3.7.9-1 that are powered tower fans are not by the same electrical powered by the same division.

electrical division.

AND Outside air wet bulb temperature> 76°F.

D.

Essential Service Water D.1 Be in MODE 3.

6 hours6.944444e-5 days <br />0.00167 hours <br />9.920635e-6 weeks <br />2.283e-6 months <br /> (SX) pump discharge temperature> 96°F.

AND D.2 Be in MODE 5.

36 hours4.166667e-4 days <br />0.01 hours <br />5.952381e-5 weeks <br />1.3698e-5 months <br />

SURVEILLANCE REQUIREMENTS SR 3.7.9.1 SR 3.7.9.2 SR 3.7.9.3 SR 3.7.9.4 SR 3.7.9.5 SR 3.7.9.6 SURVEI LLANCE Verify water level in each cooling tower basin is ~ 60%.

Veri fy essenti al servi ce 'Hater pURlP discharge water teRlperature is:

a.

< gO°F;

b.

< 90°F, with all required cooling tm.. "er fans runni ng on hi gh speed; or

c.

< 96°F, ',./i th > 7 cool i ng to'/Jer fans running on high speed.

FREQUENCY 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> 24 hours Verify river water level is > 670.6 ft MSL 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> and ~ 702.0 ft MSL.

Operate each required cooling tower fan on 31 days high speed for ~ 15 minutes.

Verify each SX makeup manual, power 31 days operated, and automatic valve in the flow path that is not locked, sealed, or otherwise secured in the open position, is in the correct position.

Verify that each SX makeup pump starts on a 31 days simulated or actual low basin level signal and operates for ~ 30 minutes.

(continued)

'-----I Verify cooling tower fan requirements in Table 3.7.9-1 or Table 3.7.9-2 are met.

BYRON - UNITS 1 & 2 3.7.9 - 5 Amendment 106

SURVEILLANCE REQUIREMENTS (continued)

SR 3.7.9.7 SR 3.7.9.8 SR 3.7.9.9 SURVEI LLANCE Verify each diesel driven SX makeup pump fuel oil day tank level ~ 47%.

Cycle each testable valve in the SX makeup pump flow path through at least one complete cycle of full travel.

Verify fuel oil properties are tested in accordance with and maintained within the limits of the Diesel Fuel Oil Testing Program.

SR 3.7.9.10


~()lrE:----------------

()nly required when two inoperable cooling tower fans are powered by the same electrical division.

Verify outside air wet bulb temperature is.s 76°F.

BYRON - UNITS 1 & 2 Add I~SE:Rlr 3.7.9-2 as a new page 3.7.9 - 6 12 hours1.388889e-4 days <br />0.00333 hours <br />1.984127e-5 weeks <br />4.566e-6 months <br /> FREQUENCY 31 days 18 months In accordance with the Diesel Fuel Oi 1 Testing Program Amendment 106

INSERT 3.7.9-2 Table 3.7.9-1 (page 1 of 1)

Cooling Tower Fan Requirements with SX Trains on Both Units Crosstied SX PUMP DISCHARGE TEMPERATURE REGION REQUIREMENTS 6 cooling tower fans are required to be OPERABLE Either 6 required OPERABLE cooling tower fans running in high speed, or 7 cooling tower fans are required to be OPERABLE 6 required OPERABLE cooling tower fans running in high speed 7 required OPERABLE cooling tower fans running in high speed 8 required OPERABLE cooling tower fans running in high speed Add INSERT 3.7.9-3 as a newpage

INSERT 3.7.9-3 Table 3.7.9-2 (page 1 of 1)

Cooling Tower Fan Requirements with SX Trains on Either Unit Split SX PUMP DISCHARGE TEMPERATURE REGION REQUIREMENTS 8 cooling tower fans are required to be OPERABLE 8 required OPERABLE cooling tower fans running in high speed

ATTACHMENT 3 Additional References

1. Calculation NED-M-MSD-009, Revision 8B, "Byron Ultimate Heat Sink Cooling Tower Basin Temperature Calculation: Part IV"
2. Calculation ATD-0063, Revision 004B, "Heat Load to the Ultimate Heat Sink During a Loss of Coolant Accident"

ATTACHMENT 3 Additional References

1. Calculation NED-M-MSD-009, Revision 8B, "Byron Ultimate Heat Sink Cooling Tower Basin Temperature Calculation: Part IV"

ATTACHMENT 2 Design Analysis Minor Revision Cover Sheet P

1 age Design Analysis (Minor Revision)

I Last Page No.

  • C14 Analysis No.:

Title:

Byron Ultimate Heat Sink Cooling Tower Basin Temperature Calculation: Part IV EC/ECR No.:

  • 371386 Revision: S 0

Statlon(s): 1 Byron Unit No.:'

1 and 2 Safety/QA Class:

  • Safety Related System Code(s):'o SX Is this Design Analysis Safeguards InformaUon? 11 Yes 0 No 181 If yes. see SY-AA-101-1 06 Does this Design AnalysIs contain Unverified Assumptions?.2 Yes 0 No 181 If yes, A TIIAR#:

NA This Design Analysis SUPERCEDES:..

NA in its entirety.

DescrlpUon of Changes (list affected pages): **

NED-M-MSD-009 was revised to include additional Scenarios BE and BE1. These scenarios are Included to respond to a B/1B/1 0 NRC Request for Additional Information (RAI) related to an Ultimate Heat Sink Ucense Amendment Request The Senior Manager Design Engineering, Bill Jacobs, approved use of a minor revision for this "Key Calculation" on 9/30/10. This minor revision includes main body pages 1-13, Appendix A (36 pages), Appendix B (2 pages), and Appendix C (14 pages).

I Disposition of Changes: 1&

See page 10 of this minor revision for disposition of change.

Pre parer: **

Andrew A. Carmean U: (OIIL{/to Print Name Date Method of Review: 17 Detailed Review 181 Alternate Calculations 0 Testing 0 Reviewer: 11 Steve M. Dawson

~11~

IO/t<l/tO PrInt Name Sign Name Dale Review Independent review 181 Peer review 0 Notes: '"

A I

(ForEx18mllAnaIpM Only) t1fJt'a :j~

/oI!#JP!1>

External Approver: 21 Michael A. Nena PrlntN_

--:p Sign tflome d-

/ctl-7ZOIl>

Exelon Reviewer 21

'J). S'AJ<(i,ElJT bAA A

_f rintName S I/lNarne Dale Exelon Approver: 22 Ed\\>Jo:ta ~\\bY\\a\\",

~11LJ'-~~ I~A"

,01 f~ I, ~

Print Name SI nltame Dal'll

ATTACHMENT 2 CC-AA-1 03-1 003 Revision 6 Page 1 of 1 fascimile Owners Acceptance Review Checklist for External Design Analysis Page 1 of 1 DESIGN ANALYSIS NO. NED-MSD-MSD-009 REV.B8 Page-+/-.,A Yes No N/A

1.

Do assumptions have sufficient documented rationale?

[81 D

D Are assumptions compatible with the way the plant is operated and with the

2.

licensing basis? The purpose of the minor revision is to establish limits

[81 D

D for a new licensing basis.

3.

Do all unverified assumptions have a tracking and closure mechanism in D

D

[81 place?

4.

Do the design inputs have sufficient rationale?

t8l D

D

5.

Are design inputs correct and reasonable with critical parameters identified, if

[81 D

D appropriate?

Are design inputs compatible with the way the plant is operated and with the

6.

licensing basis? The purpose of the minor revision is to establish limits

[81 D

D for a new licensing basis.

7.

Are Engineering Judgments clearly documented and justified?

D D

[81

8.

Are Engineering Judgments compatible with the way the plant is operated D

D t8l and with the licensing basis?

9.

Do the results and conclusions satisfy the purpose and objective of the

[81 D

D Design Analysis?

Are the results and conclusions compatible with the way the plant is operated

10.

and with the licensing basis? The purpose of the minor revision is to D

D establish limits for a new licensing basis.

Have any limitations on the use of the results been identified and transmitted

11.

to the appropriate organizations? Analysis results are Input to a letter

[81 D

D responding to NRC questions on a LAR. The results have been sent to Licensing.

12.

Have margin impacts been identified and documented appropriately for any

[81 D

D negative impacts (Reference ER-AA-2007)?

13.

Does the Design Analysis include the applicable design basis t8l D

D documentation?

14.

Have all affected design analyses been documented on the Affected

[81 D

D Documents List (ADL) for the associated Configuration Change?

15.

Do the sources of inputs and analysis methodology used meet committed t8l D

D technical and regulatory reqUirements?

16.

Have vendor supporting technical documents and references (including GE D

D t8l DRFs) been reviewed when necessary?

EXELON REVIEWER:]) SA,e.tiEAlT ~j~ DATE: ItJ/' )/20/D Print / SIgn t

I

CALCULATION NO. NED-M-MSD-009 REVISION NO. 88 PAGE 2 1.0 PURPOSE This minor revision is issued to include additional Scenarios 8E and 8E1. The new scenarios evaluate the potential condition where the SX system trains are operating as two separate loops. If the SX trains were separated on both units, an accident occurs on one unit, a failure of one of the SX pump or EDG on the accident unit could result in SX flow to only one of the two SX cooling towers (the same train SX pumps could be operating on the accident and non-accident units and with the trains separated little flow would be provided to one of the cooling towers). The new scenarios will evaluate if four fans on one of the two SX cooling towers can maintain basin temperature below the SX cooling tower basin design temperature of 100°F. These new scenarios are included to respond to an 8/18/2010 NRC request of Additional Information (RAI) related to an UHS LAR [Ref. 4.1].

2.0 DESIGN INPUTS The design inputs specified in Appendix H of Revision 8 of this calculation apply to the present minor revision except the following:

2.1 The accident scenarios used in this minor revision of the calculation are modified from UHS-01 [Ref. 4.8] Attachment B to respond to an 8/18/10 NRC Request for Additional Information (RAI) related to an Ultimate Heat Sink License Amendment Request [Ref.

4.1] and are discussed in more detail in Sections 7.3.1 through 7.3.2.

2.2 The PIPE-FLO model from BYR96-259, Rev. 2 [Ref. 4.5] is used to develop flow through the two trains of the SX cooling tower for each accident scenario. See Section 7.1 for additional information.

2.3 Cooling tower performance curves for scenarios 8E and 8E1 are based on the model and methodology of BYR97-127, Rev. 1 [Ref. 4.4].

2.4 With the SX trains separated and no flow in one of the SX trains, only half of the SX water inventory is available for heat storage. Thuss the input for basin mass will be changed to 1.068 x 106 gallons x 0.5 = 0.534 x 10 gallons.

2.5 With only one SX train operating on the accident unit, the heat input to the UHS from the accident unit will be from one train of ECCS and two RCFCs. The heat input for this condition is obtained from Attachment A of ATD-0063, Rev. 004C [Ref. 4.2].

3.0 ASSUMPTIONS All assumptions in Appendix H of Revision 8 of this calculation apply to the present minor revision except the following:

3.1 For Scenarios 8E and 8E1 the fraction of flow cooled through the operating cells in Tower B is zero, thus the tower performance curve used for Tower B has no impact on the calculated basin temperature. In these cases, the same tower performance curve is used for both towers.

3.2 For Scenario 8E1, no cooling is credited prior to fan initiation at 10 minutes. Note, this Is assumption 3.3 from Revision 8 and is unchanged.

3.3 The heat loads taken from Attachment A of ATD-0063, Rev. 004C [Ref. 4.2] does not have any unverified assumptions.

CALCULATION NO. NEO-M-MSO-009 REVISION NO. 88 PAGE 3

4.0 REFERENCES

4.1 Byron 1 & 2 - Additional RAI for Ultimate Heat Sink License Amendment Request (ME1669-70), Accession Number ML102160190, dated 8/18/2010.

4.2 BYR-10-065, Rev. 0, This TOOl transmits ATD-0063, Rev. 004C, "Heat Load to the Ultimate Heat Sink During a Loss of Coolant Accident."

4.3 RS-09-054, "License Amendment Regarding Ultimate Heat Sink," Byron letter to the NRC, dated 6/30109.

4.4 BYR97-127, Rev.

1, "Byron Ultimate Heat Sink Cooling Tower Performance Calculations. n 4.5 BYR96-259, Rev. 2, "SX System FLO-Series Analysis." (Note, minor revisions 2A, 2B, and 2C do not significantly impact the modeL) 4.6 PIPE-FLO Version 9.1, Engineered Software Incorporated (S&L Program No. 03.7.100-9.1).

4.7 MRUESC model for Byron Cooling Tower. Validation Report SWR-805, Rev. 1, dated 12/17/91, Chron 177547.

4.8 Attachment B to UHS-01, Rev. 4, "Ultimate Heat Sink Design Basis LOCA Single Failure Scenarios."

5.0 IDENTIFICATION OF COMPUTER PROGRAMS The maximum service water temperature was determined by running Mathcad Version 11.2a, Program Number 03.7.548-11.2.

All computer runs using Mathcad were made on Sargent and Lundy L.L.C. PC No.

ZL4868 from Controlled File Path: C:\\Program Files\\MathSoft\\Mathcad 11 Enterprise Edition\\.

The hydraulic models were run using PIPE-FLO Version 9.1, Program Number 03.7.100-9.1 [Ref. 4.6].

All computer runs for PIPE-FLO are made on Sargent and Lundy L.L.C. PC No. ZL4868 from Controlled File Path:

C:\\Program Files\\Engineered Software\\PIPE-FLO Professiona/\\

The UHS cooling tower performance results for Attachment C were found using the MRUESC model for the Byron Cooling Tower [Ref. 4.7] run in MS-DOS via VMware Player. The MRLlESC model executable has been validated by Exelon under the Exelon Quality Assurance Program.

All computer runs for the MRUESC model are made on Sargent and Lundy L.L.C. PC No. ZL4868.

6.0 METHOD OF ANALYSIS Minor revision 8B of this calculation will use the ESW cooling tower transient model from Revision 8 of this calCUlation to calculate the basin temperature response for additional

CALCULATION NO. NED-M-MSD-009 REVISION NO. 88 PAGE 4 Scenarios BE and BE1. Changes to the Revision B Mathcad model required to perform the Revision BB analysis are summarized as follows and shown in Appendix C:

1) For Scenarios BE and BE1 new flow rates were generated using PIPE-FLO [Design Input 2.2]. The lineup encompasses a single failure of either one SX pump or EDG occurring on the accident unit, resulting in operation of the 1 A and 2A pumps and no supply flow is provided to the B SX trains on either unit. PIPE-FLO model BA from BYR 96-259 [Ref. 4.5} and Appendix H of Revision B of this calculation was used as a starting point for PIPE-FLO models BE and BE1.

The SX system trains are completely separated and the CC HX flow is set to 16,000 gpm for CCHX-1 (CCHX-1 increases from B,Ooo gpm to 16,000 gpm from Scenario BA) and CCHX-2 (CCHX-2 is unchanged from Scenario BA).

2) Tower performance curves were generated for Scenarios BE and BE1 using MRUESC [Design Input 2.3]. For Tower B in both scenarios, there are no active cells. In this case, the same tower performance curve is used for both towers (see Assumption 3.1).

The Byron ESW cooling tower performance is acceptable if the calculated basin temperature is at or below the SX cooling tower basin design temperature of 100°F.

6.1 Scenario Descriptions Scenarios BE and BE1 were developed by modifying the scenarios in Attachment B of UHS-01 [Ref. 4.B] to account for a single failure of either one SX pump or EDG occurring on the accident unit, resulting in operation of the 1A and 2A pumps and no supply flow is provided to the B SX trains on either unit. The following is a short description of each scenario.

Note that from a hydraulic standpoint, the Pre-lOCA and Post-LOCA configurations are the same, unless operator action is taken to open or close valves.

Also, since no cooling is credited prior to fan operation at 10 minutes for Scenario BE1 (see Assumption 3.2) only the Post-LOCA configuration is shown below. Furthermore, fan operation does not affect the hydraulic analysis.

Scenario BE Cells OOS: None SX Pumps: One running on each unit (pre-LOCA)

Train A is completely separated from Train B Single failure: EDG - loss of power to SX pump 1 B [Ref. 4.2]

Post-LOCA Cooling Tower Configuration (SX Pumps: one on Unit 1, one on Unit 2)

All fans running initially Tower A: 4 riser valves open, 0 bypass valves open Tower A: 4 active cells, 0 OOS cell Tower B: 4 riser valves open, 0 bypass valves open Tower B: 4 active cells, 0 OOS cell, 0 failed cells Scenario BE1 Cells OOS: None SX Pumps: One running on each unit (pre-LOCA)

Train A is completely separated from Train B Single failure: EDG - Loss of power to SX pump 1 B [Ref. 4.2]

Post*lOCA Cooling Tower Configuration (SX Pumps: one on Unit 1, one on Unit 2)

CALCULATION NO. NED-M-MSD-009 REVISION NO. 88 Following 10 minute operator action to start fans and open riser valves Tower A: 4 riser valves open, 0 bypass valves open T ower A: 4 active cells, ° OOS celis Tower B: 4 riser valves open, 0 bypass valves open Tower B: 4 active celis, 0 OOS celis, 0 failed cells 6.2 Resistance Values PAGES The flow rates for the scenarios described in Section 6.1 were run by setting the SX pumps to 100% head and inserting a resistance value (K) into each riser and bypass line that is closed to achieve the desired flow rate of at least 250 gpm for each riser valve leakage and at least 375 gpm for each bypass valve leakage (see methodology from BYR96-259 [Ref. 4.5]). The SX pumps were run at 100% head (as opposed to 95%) with valve leakage modeled. Initial basin temperatures were used for fluid density (96°F for Scenario 8E and 82°F for Scenario 8E1). PIPE-FLO model 8A from BYR 96-259 [Ref.

4.5] and Appendix H of Revision 8 of this calculation was used as a starting point for PIPE-FLO models 8E and 8E1. Even though cooling tower efficiency improves with lower flow rates, more leakage (less flow to the active tower cells and more bypass around the active tower cells) is conservative, as it yields higher basin temperatures. This was confirmed in undocumented runs. The K values used to model valve leakage for each scenario are shown in Table 6-1. The results for each scenario are shown in Tables 7-1 and documented in Appendix A.

The resistance values (K) for each scenario are shown below in Table 6-1.

Table 6 Resistance Values (K) for Each Scenario Scenario Scenario Additional Resistance (K) 8E 8E1 Resistance to Riser Valve OSX162A Pipe 857)

Resistance to Riser Valve OSX162B Pipe 859 Resistance to Riser Valve OSX162C Pipe 861 Resistance to Riser Valve OSX162D (Pipe 863 Total Bypass Line Resistance to "A" Tower (Pipe 864) 90,000 90,000 Resistance to Riser Valve OSX162E Pipe 849)

Resistance to Riser Valve OSX162F Pipe 851 Resistance to Riser Valve OSX162G Pipe 853 Resistance to Riser Valve OSX162H Pipe 855 Total Bypass Line Resistance to "B" Tower (Pipe 856) 90,000 90,000 6.3 Tower Performance Curves The tower performance curves are shown in Figures 8-1 through 8-2 for each scenario.

These figures plot T Hot vs T Cold for each tower performance curve for each cooling tower as provided by the methodology in BYR97-127 [Ref. 4.4]. For each scenario, two pOints were selected from the applicable tower performance curve (see Appendix B) to provide a linear approximation of tower performance over the range of T Hot and T Cold temperatures expected for that scenario. The selected points are checked against final results to confirm their applicability to the actual temperature range. These points are listed as Th1, Th2, Th3, Th4, Tc1, Tc2, Tc3, and Tc4 in the Mathcad models.

CALCULATION NO. NED-M-MSD-009 REVISION NO. 88 PAGE 6 7.0 NUMERICAL ANALYSIS 7.1 PIPE-FLO Results The results of all scenario PIPE-FLO runs are summarized in Table 7-1.

Table 7 PIPE-FLO Results of All Scenarios Post-LOCA Scenario Scenario SX Component (gpm) 8E 8E1 SX Pump1A 24,779 24,778 SX Pump 1B 0

0 RCFC1A 2,791 2,790 RCFC 1B 0

0 RCFC1C 2,656 2,656 RCFC 10 0

0 SX Pump2A 22,860 22,859 SX Pump 2B 0

0 RCFC2A 3,119 3,119 RCFC 2B 0

0 RCFC2C 3,236 3,236 RCFC20 0

0 Flow to Riser Valve OSX162A 11,829 11,829 Flow to Riser Valve OSX162B 11,692 11,691 Flow to Riser Valve OSX162C 11,628 11,628 Flow to Riser Valve OSX1620 11,613 11,613 Total Bypass line Flow to "A" Tower 837 837 Flow to Riser Valve OSX162E 0

0 Flow to Riser Valve OSX162F 0

0 Flow to Riser Valve OSX162G 0

0 Flow to Riser Valve OSX162H 0

0 Total Bypass line Flow to "B" Tower 0

0 7.2 Cooling Tower Performance The SX flow through each of the riser valves for Scenarios 8E and 8E1 are shown in the table below.

Table 7-2' Riser flow rate for Scenarios 8E and 8E1 SX Component Scenario Scenario 8E 8E1 Flow to Riser Valve OSX162A (gpm) 11,829 11,829 Flow to Riser Valve OSX162B (gpm) 11,692 11,691 Flow to Riser Valve OSX 162C (gpm) 11,628 11,628 Flow to Riser Valve OSX 1620 (gpm) 11,613 11,613 Flow to Riser Valve OSX162E (gpm) 0 0

Flow to Riser Valve OSX162F (~lPm) 0 0

Flow to Riser Valve OSX162G (gpm) 0 0

Flow to Riser Valve OSX162H(gpmJ 0

0

CALCULATION NO. NED-M-MSD-009 REVISION NO. 88 PAGE 7 Table 7-3: Average Flow Rate per Cell for Each Cooling Tower IMinus Drain Line Losses)

Average Flow Scenario Scenario per Active Cell 8E 8E1 Tower A 11,441 11,440 TowerB 0

0 7.3 Flow Rate Analysis As discussed in BYR96-259 [Ref. 4.5] and BYR97-127 [Ref. 4.4], leakage is taken into account when determining the average flow rates. The table below shows the applicable flow rates for each scenario.

Table 7-4:

ow ate nalys s FI R

A I

I Scenario 8E Scenario 8E1 11,829 + 11,692 + 11,628 + 11,829 + 11,691 + 11,628 Flow through operating cells in T1 11,613 - 1000 = 45,762

+ 11,613 -1000 = 45,761 11,829 + 11,692 + 11,628 + 11,829 + 11,691 + 11,628 Total flow through T1 11,613 + 837 = 47,599

+ 11,613 + 837 = 47,598 Flow through operating cells in T2 0

0 Total flow through T2 0

0 Average flow per cell in T1 11,441 11,440 Average flow per cell in T2 0

0 Flow to RCFC 1A 2,791 2,790 Flow to RCFC 1A + RCFC 18 2,791 + 0 = 2,791 2,790 + 0 = 2,790 7.3.1 Accident Scenario 8E This scenario is the same setup as Scenario 8A from Revision 8 of this calculation, with the exception that the system lineup is modified to account for a failure of an EDG.

The single failure considered for Scenario 8E is the loss of an SX pump or and EDG.

The initial conditions assume a basin temperature of 96°F (maximum basin temperature aI/owed when eight fans are operable and running in high speed) with one SX pump running on each unit. This scenario assumes zero tower cells are out of service (OOS).

Initially, all fans are running and all the bypass valves are closed.

The total heat load to be used for this scenario is the "Total Heat Load to the UHS with 1 ECCS Train and 2 RCFCs" shown in Attachment A of ATD-0063, Rev. OO4C [Ref. 4.2J.

There is one set of parameters f, a, M1, 81, M2, B2, a, and 13 that are needed to determine the basin temperature response.

The UHS tower flows, based on Scenario 8E are shown in Table 7-1. The T hot vs T cold relationship is illustrated in Figure 8-1.

Determination of f, A, M1, B1, M2, 82, a, and 13.

CALCULATION NO. NED-M-MSD-009 REVISION NO. 88 PAGE 8 f11, f12 :

f21, f22

=

Flow through operating cells in T I Total flow through Tl including bypass flow

= 45,762gpm = 0.961 47,599 gpm Flow through operating cells in T2

=----------~~----=-----------

Total flow through T2 including bypass flow

= 0 gpm = 0.000 Ogpm This is equal to the total flow to T1 and T2, (47,599 + 0) gpm = 47,599 gpm M11,B11,M12,B12:

Based on an average flow of 11,441 gpm per cell in T1, the tower performance for T1 is generated using a flow of 11,441 gpm (Figure 8-1). Based on the T H, T c values (as determined from the T H values calculated for tower operation in Design Input 2.3), [(126.60, 98.60), (118.57, 96.57)], Mathcad calculates M11, M12 and B11, B12 from the tower performance inputs.

M21. B21. M22. B22:

a1, a2:

~:

Based on an average flow of 0 gpm per cell in T2, the tower performance for T2 will be the same as for T1 (see Assumption 3.1). Based on the T H, T c values

[(126.60,98.60), (118.57, 96.57)], Mathcad calculates M21, M22 and B21, B22 from the tower performance inputs.

=

Flow to Tl

= 47,599 gpm = 1.000 Total SX flow, Q 47,599 gpm 13 is estimated as the fraction of load to Tower 1.

FiowtoRCFC1A

=

(2,791)gpm -1.000 Flow to RCFC 1 A + Flow to RCFC 1 B (2,791 + 0) gpm Based on the parameters f, Q, M1, B1, M2, B2, a, and 13 determined above, the coefficients A, B. and C in Eq (3), renamed A1/A2. 01/02. and C1/C2 here. are calculated by Mathcad.

The output from the MathCAO calculation for this scenario is shown on pages C1 through C7. The maximum basin temperature. Tbmax* is calculated to be 98.2°F with an initial basin temperature of 96°F. The temperature at 30 minutes is calculated to be 97.6°F

CALCULATION NO. NED-M-MSD-009 REVISION NO. 88 PAGE 9 with an initial basin temperature of 96°F.

Both of these values are at or below the acceptance limit of 100°F.

7.3.2 Accident Scenario 8E1 This scenario is the same setup as Scenario 8E with the exception that no fans are running initially.

No cooling is credited prior to fan initiation at 10 minutes (see Assumption 3.2).

The single failure considered for Scenario 8E1 is the loss of an SX pump or and EDG.

The initial conditions assume a basin temperature of 82°F (maximum basin temperature allowed when eight fans are operable and not initially running in high speed) with one SX pump running on each unit. This scenario assumes zero tower cells are out of service (OOS). Initially, no fans are running and all the bypass valves are closed.

The total heat load to be used for this scenario is the "Total Heat Load to the UHS with 1 ECCS Train and 2 RCFCs" shown in Attachment A of ATD-0063, Rev. 004C [Ref. 4.2J.

There is one set of parameters f, Q, M1, B1, M2, B2, a, and J3 that are needed to determine the basin temperature response.

The UHS tower flows, based on Scenario 8E1 are shown in Table 7-1. The That VS Teald relationship is illustrated in Figure 8-2.

Determination off, Q, M1, B1, M2, B2, a, and 13.

f11,f12 :

=

Flow through operating cells in T1 Total flow through T1 including bypass flow

45,761 gpm = 0.961 47,598gpm f21,f22 :

Flow through operating cells in T2 Total flow through T2 including bypass flow

= 0 gpm = 0.000 Ogpm This is equal to the total flow to T1 and T2, (47,598 + 0) gpm = 47,598 gpm M11, B11, M12, B12:

Based on an average flow of 11,440 gpm per cell in T1, the tower performance for T1 is generated using a flow of 11,440 gpm (Figure 8-2). Based on the T H, T c values (as determined from the T H values calculated for tower operation in Design Input 2.3), [(126.60, 98.60), (118.57,96.57)], Mathcad calculates M11, M12 and B11, B12 from the tower performance inputs.

CALCULATION NO. NEO-M-MSO..Q09 REVISION NO. 88 PAGE 10 M21. B21. M22, B22:

a1. a2:

~:

Based on an average flow of 0 gpm per cell in T2, the tower performance for T2 will be the same as for T1 (see Assumption 3.1). Based on the T H, T c values

[(126.60,98.60), (118.57,96.57)], Mathcad calculates M21, M22 and B21, B22 from the tower performance inputs.

= __

FI_ow_to_T_1_ = 47,598gpm = 1.000 Total SX flow, Q 47,598 gpm 13 is estimated as the fraction of load to Tower 1.

=

Flow to RCFC 1 A

= (2,790) gpm = 1.000 Flow to RCFC 1A + Flow to RCFC 1 B (2,790 + 0) gpm Based on the parameters f, Q, M1, B1, M2, B2, a, and ~ determined above, the coefficients A, B, and C in Eq (3), renamed A1/A2, 01/02, and C1/C2 here, are calculated by Mathcad.

The output from the MathCAO calculation for this scenario is shown on pages C8 through C14. The maximum basin temperature, Tbmru" is calculated to be 98.2°F with an initial basin temperature of 82°F. The temperature at 30 minutes is calculated to be 98.0°F with an initial basin temperature of 82°F. This value is below the acceptance limit of 100°F.

CALCULATION NO. NED-M-MSD-009 REVISION NO. 88 PAGE 11 8.0 RESULTS AND CONCLUSIONS The results for Scenarios 8E and 8E1 are summarized below.

1 S

fS Tab eS. -

ummarvo cenarlos Wet Bulb Initial Basin Basin Max Basin Scenario Cells Temperature Temperature Temperature Temperature OOS (OF) at 30 (OF)

(OF) minutes (OF) 8E None 82 96 97.6 98.2 (at 560 min) 8E1 None 82 82 98.0 98.2 (at 38 min)

The new calculations show that with a failure of an EDG. the calculated maximum basin temperature remains less or equal to the SX system design temperature of 100QF.

CALCULATION NO. NED-M-MSD-009 REVISION NO. 88 PAGE 12 Figure 8-1: Scenario 8E 8E Tower A, 11441 gpm, Twb 103 101 99 97 E

95

.J 93 91 89 87 85 ~I---------,----------~--------~------------------------------.---------__________ ~

90 100 110 120 130 Thad"F) 140 150 160 170

CALCULATION NO. NED-M-MSD-009 REVISION NO. 86 PAGE 13 (Final Page)

Figure 8-2: Scenario 8E1

-8E1 Tower A, 11440 gpm, Twb 82°F 103 101 99 97 Li:'

95.

l..

J 93 91 89 87 85 90 100 110 120 130 140 150 160 170 Thot (OF)

CALCULATION NO. NED*M*MSD-009 REVISION NO. 88 APPENDIX A Page A1 System: Scenario BE Uneup: Scenario BE rev: 10104/10 4:40 pm Aim pressure: 14.7 psi a Specification BBSX (STD)

BBSX (XS)

Steel Sch. 10 Steel Sch. 20 Sleel Sch. 30 Sleel Sch. 40 Sleel Sid Fluid Zone Waler PIPE-FLO 2005 LIST REPORT Total System Volume: 737326 9a'ons Pressure drop calculations: Darcy-Welsbach method.

Calculated: 15 iterations AV9 Deviation: 0.006545 %

Material I Schedule ByronPipes-NHL I STD Valves: standard ByronPipes-NHL I XS Valves: standard Steel A53-B36.10 110 Valves: standard Steel A53-B36.10 120 Valves: standard Steel A53-B36.10 130 Valves: standard Steel AS3-B36.10 140 Valves: standard Steel A53-B36.1 0 I 20 Valves: standard Fluid Water SPECIFICATIONS Roughness 0.036 in C: 100 0.036 in c: 100 0.036 in C: 140 0.036 in C: 140 0.036 In C: 140 0.036 in C: 140 0.036 In C: 140 FLUID ZONES Temp Pressure

('F)

(psi g) 96 14.7 Sizing not specified not specified nol specified nol specified nol specified not specified not specified Density (lbII!')

62.27 10106/10 2:09 pm Company: Sargent & Lundy LLC Project:

Design Limits Vlscoslly cP 0.7118 Pv/Pc or k (psi a) 0.8412/3198 pgl

CALCULATION NO. NED-M-MSD-009 REVISION NO. 88 Pipeline 12 154 155 156 157 158 160 161 162 164 165 166 167 168 170 171 172 173 176 178 179 180 181 182 183 233 PIPE-FLO 2005 From Specification AA BBSX(STD)

BU Steel Sch. 40 BF Steel Sch. 40 BG Steel Sch. 30 BH Steel Sch. 30 BI Steel Sch. 30 BJ BBSX(STD)

Conl Ref. lA Steel Sch. 20 BJ Steel Sch. 30 BM Steel Sch. 30 BT Steel Sch. 20 BX Steel Sch. 40 BY Steel Sch. 20 BO Steel Sch. 40 BP Steel Sch. 40 DG.JWC-1A SleeI Sch. 40 BS Steel Sch. 40 BO Steel Sch. 40 IA Steel Sch. 40 AA BBSX(STD)

SXPump2A BBSX{STD)

CD BBSX(STD)

CE BBSX(STD)

CF SleeI Sch. 20 DA Sleel Sch. 30 DO Steel Sch. 30 DA Steel Sch. 30 To Fluid Zone SXPump lA Water PIPELINES Status CR Ref. Cond OA Water BG Water BH Water BI Waler BJ Water ConI. Ref. lA Waler BM Water BM Waler BT Waler BY Waler BY Water GO Water BP Water DGJWC-1A Waler BS Water BT Water fA Water IB Waler SXPump2A Waler CD Waler CE Water CF Water DA Waler DO Water DP Waler DB Waler xxx xxx Flow (USgpm) 24779 1119 1453 2791 4157 5447 o

5447 5447 7171 1478 8649 1725 1725 1725 1725 20 22860 22860 22860 22860 6746 390,8 20 6355 APPENDIX A Velocity (ft/sec)

Size (in) 8.153 36 7.183 8

5.918 10 6.499 14 9.68 14 9,575 16 12 o

12 9,575 16 9.575 16 7.912 20 6.D18 10 9.642 20 7.024 10 7,024 10 7,024 10 7,024 10 0.222 6

6 7,521 36 7,521 36 7,521 36 7,521 36 7.443 20 0.910 14 0.047 14 11.17 16 dP (psi)

Length (ft)

(R751) 71.2 2.282 229,5 7,397 70,35 1.032 129 0,835 42.14 8,618 205.5 17,25 a

23.5 0.611 12.66 (6.859) 47 (8,013) 37 0,458 5.33 (5.383) 43.5 11.28 125.4 7.159 118,5 21.93 111.5 (6.451) 82,25 (1.186) 81,33 0.25 (8,473) 97,75 1.876 33.8 1,243 0.01 0.140 6,2 23,02 145.8 3.678 8.5 o

3,25 16.95 227,5 PageA2 10/06/10 2:09 pm HL (ft)

K 1.583 1.054 15,93 9.66 4,444 5,837 2.387 0,644 1,932 0.352 6,809 0,804 1,295 a

1.835 1.414 0,749 2.48 0,833 0.960 0.454 1.059 1,707 3.295 1.705 4,699 1.97 26.72 30,98 50,63 62.45 4.325 2.916 0,006 2.002 0.633 2,226 1,875 1.381 1.345 2.877 3.278 0.323 0,326 3.75 2,257 0.010 0,606 o

0.439 1623 3.975 pg2

CALCULATION NO. NED-M-MSD-009 REVISION NO. 88 Pipeline 234 235 236 25 3

327 328 329 330 331 333 334 335 336 337 339 340 341 343 344 345 348 349 351 356 364 367 PIPE*FLO 2005 From Specification DB Steel Sen. 30 DC Steel Sen. 30 DO Steel Sen. 40 CR Ref. Cond OA Steel Sen. 40 SX Pump lA BBSX(STD)

DF Steel Sen. 40 DG Steel Sen. 30 DH Steel Sen. 30 DI Steel Sch. 30 OJ BBSX(STD)

Cont. Ref2A BBSX(STO)

OJ Steel Sen. 30 OM Steel Sch. 30 ON Steel Sen. 30 OU Steel Sen. 20 OV Steel Sen. 20 OP Steel Sen. 40 00 Steel Sen. 40 OGJWC*2A Steel Sen. 40 OT Steel Sen. 40 OP Steel Sen. 40 AF BBSX(STD)

AG BBSl<<STD)

HA BBSX(STO)

HB BBSX(STD)

CCHX*l BBSX(STD)

HE BBSX(STD)

To Fluid Zone DC Water 00 Water DE Water BX Water AD Water OG Water OH Water 01 Water OJ Waler Cont. Ref2A Water OM Water OM Water DN Water OU Water OV Water GC Water 00 Water OGJWC*2A Water OT Water OU Waler JA Water AG Water HA Water HB Water CCHX*l Water HE Water GF Water PIPELINES Status xxx Flow (USgpm) 4805 3119 1545 1119 24779 1545 3119 4805 6355 1040 1040 5316 6355 6355 6355 6726 o

o o

20 16110 16110 16000 16000 16000 16110 APPENDIX A Velocity (ft/sec)

Size (in) 11.19 14 7.263 14 6.292 10 7.183 8

8.153 36 6.292 10 7.263 14 11.19 14 11.17 16 2.951 12 2.951 12 9.344 16 11.17 16 11.17 16 7.011 20 7.42 20 o

10 10 o

10 o

10 0.222 6

5.301 36 7.698 30 7.646 30 7.646 30 7.646 30 7.698 30 dP (psi)

Length (ft) 0.715 26.07 1.514 144 (4.811) 36.95 20.27 248.6 2.407 18.75 6.634 64.54 1.339 130.7 1.248 42.43 12.42 223.5 0.965 20.75 0.048 24.5 2.461 9.25 (1.983) 18.5 (4.466) 31.5 (8.246) 29.75 (4.674) 246 5.943 101.3 112.8 (0.756) 115.8 (7.564) 52.25 0.544 110.8 0.161 42.25 2.515 8.25 8.494 62.75 0.115 12.25 (2.861) 55.75 0.424 13.6 PageA3 10/06/10 2:09 pm HL (ft)

K 1.684 0263 3.502 0.934 1.658 1.47 63.98 68.82 2.609 2.403 4.7 5.505 3.098 0.749 2.887 0.503 15.66 3.757 0.384 2.288 0.312 1.656 5.694 4.024 1.462 0.397 1.917 0.38 0.422 0.123 4.935 2.222 o

2.816 32.21 o

69.77 o

2.138 0.009 3.04 0.373 0.569 1.568 1.635 1.153 0.736 0.267 0.19 1.631 1.323 0.982 0.952 pg3

CALCULATION NO. NED-M-MSD-009 REVISION NO. 88 Pipeline 368 369 370 372 384 387 388 389 390 391 393 394 396 397 398 399 4

400 401 402 403 405 406 407 423 425 463 PIPE-FLO 2005 From Spetification GF BBSX(STD)

CF BBSX (STD)

CG BBSX(STD)

HF BBSX(STD)

CCHX-2 BSSX(STD)

HI BBSX(STO)

GI BBSX(STO)

GH BBSX(STD)

GE BBSX(XS)

GO BBSX(XS)

GC BBSX(XS)

AH BBSX(STD)

SXPump 18 Steel Sch. 20 AK BBSX(STO)

AL BBSX(STD)

EA Steel Sid AD BBSX(STD)

EN Steel Sch. 30 EO Steel Sch. 30 EO Steel Sch. 40 EP Steel Sch. 40 OGJWC-1B Steel Sch. 40 ES Steel Sch. 40 EV Steel Sch. 40 EV Steel Sch. 40 CR Ref. OB Steel Sch. 40 EZ Steel Sch. 40 To Fluid Zone GE Water CG Water HF Water CCHX-2 Water HI Water GI Water GH Water GE Water GO Water GC Water GB Water SXPump lB Water AK Water AL Water AM Water AM Water AE Water EA Water EN Water EP Water OGJWC-1B Water ES Water ET Water EN Water CR Ref. OB Water EY Water EY Water PIPELINES Status xxx xxx

<-~

xxx xxx xxx xxx Flow (USgpm) 16110 16114 16114 16000 16000 16000 16000 16114 32224 40874 47600 o

o 0.235 24779 6.296 5.548 o

o 0.748 0.748 APPENDIX A Velocity (ftlsec)

Size (in) 3.871 42 5.302 36 7.7 30 7.646 30 7.646 30 7.646 30 3.844 42 3.872 42 5.964 48 7.565 48 8.809 48 36 24 o

36 o

36 o

20 8.153 36 0.Q15 14 0.013 14 o

10 10 10 o

10 0.003 10 8

8 0.003 10 dP (psi) length (tt) 0.053 20.75 0.033 4.5 0.602 3.75 13.04 110.8 (4.448) 17.5 0.792 12 0.013 8.5 0.228 123 0.047 14.75 0.144 32.25 15.87 956.2 71.3 7.22 a

0.01 a

6.25 (22.69) 149 1,461 0.01 (1.621) 3.75 o

2 10.01 137 223.8 209 (10.37) 86.5 (1.405) 5.75 233 254.5 a

4.5 PageA4 10/06110 2:09 pm HL (It)

K 0.122 0.407 0.077 0.146 1.393 1.482 1.909 1.159 0.309 0.191 1.833 1.919 0.029 0.081 0.527 1.579 0.110 0.129 0.333 0.222 7.468 1.678 1.054 0.651 a

3.278 a

0.322 o

2.446 3.38 3.278 o

0.606 a

0,457 a

2.558 32.8 43.4 a

2.916 a

0.868 9.791 107.9 o

1.78 pg4

CALCULATION NO. NEO-M-MSO-009 REVISION NO. 88 Pipeline 464 465 466 467 5

514 538 560 561 562 564 565 566 568 569 570 571 6

60 602 603 604 605 607 608 609 61 PIPE-FLO 2005 From Specification EA Steel Sch. 30 EB Steel Sch. 30 EC Steel Sch. 30 ED Sleel Sch. 40 AE BBSX(STO)

EH Sleel Sch. 30 EG Sleel Sch. 30 EF Steel Sch. 40 EI Steel Sch. 30 EJ BBSX(STO)

ConI. Ret. lB BBSX(STO)

EJ Steel Sch. 30 EM Steel Sch. 30 ET Steel Sch. 20 EU Steel Sch. 20 IC To Fluid Zone EB Waler EC Waler ED Water EE Water AF Waler EI Water EH Water EG Water EJ Waler Cant. Ref. lB Water EM Water EM Water ET Water EU Waler EZ Water EO Sleel Sch. 40 Water COOLING WATER BOO.. IC Steel Sch. 40 AF Steel Sid SA Sleel Sch. 30 IG Steel Sch. 40 IG Steel Sch. 40 IH Steel Sch. 40 AH BBSX (STO)

SX Pump 2B Sleel Sch. 20 CK BBSX(STO)

CL SBSX(STO) 88 Steel Sch. 30 Water BA Water B8 Waler IF Water IH Water EU Water SXPump2B Water CK Water CL Water CM Water 8C Water PIPELINES Status xxx xxx xxx Flow (USgpm) 6.061 5.973 4.375 2.276 24779 5.973 4.375 2.276 6.061 o

6.061 6.061 6.061 20.51 5.548 5.548 8669 5447 5.548 14.45 14.45 o

o 4157 APPENDIX A Velocity (fIIsec)

Size (in) 0.011 16 0.014 14 0.010 14 0.009 10 8.153 36 0.014 14 0.010 14 0.009 10 0.011 16 12 a

12 0.011 16 0.011 16 0.007 20 0.023 20 0.036 8

0.062 6

9.564 20 9.575 16 0.062 6

0.161 6

0.161 6

36 24 a

36 o

36 9.68 14 dP (psi)

Length (tt) 9.401 141 o

26 (0.432) 145.6 (5.856) 4B.75 0.166 6.75 2.593 62 o

127 5.403 69.57 3.025 149.5 27.25 0.692 32.75 0.043 13.5 (10.74) 44.75 a

11.75 (6.375) 17.5 0.432 97 1.081 16 23.43 85.1 14.66 214.2 o

2 0.649 22 (2.483) 99 87 6.B2 o

0.01 o

5.75 0.612 29.25 Page A5 10/0611 a 2:09 pm HL (ft)

K o

3.161 a

0.265 a

0.932 a

1.216 0.383 0.326 a

0.832 a

0.748 o

5.919 a

2.368 1.491 a

2.28 a

1.147 a

0.523 a

0.265 a

0.333 a

3.09 a

7.422 4.714 2.094 11.41 3.871 a

0.112 0.001 0.812 0.004 2.903 1.875 0.416 a

3.278 o

0.322 1.416 0.296 pg5

CALCULATION NO. NED*M*MSD-009 REVISION NO. 88 Pipeline 610 611 612 613 614 616 617 62 63 670 671 672 673 7

711 725 747 748 749 751 752 753 754 759 760 761 762 PIPE-FLO 2005 From Specilicalion FA Steel Sch. 20 FA Steel Sch. 30 Fa Steel Sch. 30 FR Steel Sch. 40 FS Steel Sch. 40 OGJWC-2B Steel Sch. 40 FV Steel Sch. 40 BC Steel Sch. 30 SO Sleel Sch. 40 FB Steel Sch. 30 FC Sleel Sch. 30 FO Steel Sch. 30 FE Steel sm. 40 SA Steet Sch. 20 FJ Steel Sch. 30 FI Sleel Sch. 30 FH Steel Sch. 40 FK Steel Sch. 30 FK BBSX(STO)

ConI. Ref2B SBSX(STO)

FN Steel Sch. 30 FO Steel Sch. 30 FP Steel Sch. 30 FW Steel Sch. 20 FW Steel sm. 20 FR Steel Sch. 40 JB Steel sm. 40 To Fluid Zone CM Water Fa Water FR Waler FS Waler OGJWC-2B Water FV Water FP Water SO Waler BE Water FA Waler FB Water FC Water FO Water SN Water FI Waler FH Water FF Water FJ Water ConI. Ref2B Water FN Waler FK Water FN Water FO Waler FP Water FX Waler JB Water PtPELlNES Status xxx xxx xxx xxx COOLING WATER BOO..

Waler Flow (USgpm) 0.323 0.402 o

o o

2791 1453 0.724 0.482 0.253 0.126 3223 0.462 0.253 0.126 0.724 0.724 0.724 0.724 0.724 19.28 o

o APPENDIX A Velocity (ft/sec)

Size (in) o 20 o

14 o

14 10 10 o

10 o

10 6.499 14 5.918 10 0.001 16 0.001 14 o

14 o

10 3.556 20 0.001 14 o

14 o

10 0.001 16 12 12 0.001 16 0.001 16 0.001 16 a

20 0.021 20 o

8 o

6 dP (psi)

Length (ft)

(22.65) 87.75 1.729 4

o 3.25 83 162.3 (1.621) 142.3 (8.752) 59.5 1.215 144.4 (4.002) 50.04 (9.439) 136.9 o

27.57 (0.004) 145.8 5.446 46.25 3.751 6.5 (2.593) 59 o

133.5 (6.267) 65.35 (3.025) 152.3 27.75 30.75 o

15.25 3.35 15.75 7.348 30.75 o

7.25 (6.375) 23.5 (0.497) 106.5 (1.081) 22.25 PageA6 10106/10 2:09 pm HL (tt)

K o

1.986 o

0.607 o

0.457 2.371 31.43 o

125.2 o

2.595 2.811 0.932 1.551 1.188 o

2.988 o

0.299 o

0.932 o

1.224 0.179 0.819 o

0.628 o

0.751 o

5.466 o

2.379 1.375 1.93 o

4.447 o

0.288 o

0.259 o

0.265 o

0.265 o

3.998 o

7.422 pg6

CALCULATION NO. NED-M-MSD-009 REVISION NO. 88 Pipeftne 792 793 794 795 8

809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 837 838 839 840 841 842 843 PIPE-FLO 2005 From Specification JE Sleet Sch. 40 JF Steel Sch. 40 AM BBSX(STD)

AO BBSX(STD)

BN Steel Sch. 30 AP BBSX(STD)

CC HX-Q BBSX (STD)

HK BBSX(STD)

HM BBSX(STO)

HM BBSX(STD)

HL BBSX(STD)

HN BBSX(STD)

GG BBSX(STD)

GJ BBSX(STO)

EZ Steel Sch. 20 GG BBSX(STD)

GJ BBSX(STD)

GK BBSX(XS)

CM BBSX(STO)

CN BBSX(STD)

GL BBSX(XS)

FX Steel Sch. 20 GM BBSX(XS)

GN BBSX (XS)

CN BBSX(STO)

AN BBSX(STO)

FG(A)

BBSX(XS)

To Fluid Zone JF Water FW Water AO Water AN Water BO Water CC HX-Q Water HK Water HL Water HL Water GG Water HN Water GJ Water GF Water GI Water GL Water GK Water GK Water GL Water CN Water AQ Wa1er GM Water GM Water GN Water GO Water CG Water AG Water AA Water PIPELINES Status xxx xxx xxx xxx Flow (USgpm) a 20 0.235 0.073 1745 0.161 0.161 0.161 0.001 0.072 0.163 0.485 19.77 0.072 0.485 0.557 0.323 0.323 20.32 19.68 40 40 47640 APPENDIX A Velocity (Illsec)

Size (In) o 6

0.222 6

o 36 o

36 4.063 14 a

30 o

30 o

30 o

30 o

30 o

30 o

30 42 42 0.022 20 o

42 o

42 o

48 a

36 o

30 0.004 48 0.022 20 0.007 48 0.007 48 36 36 8.817 48 dP (psi) length (tt)

(2.593) 16.5 (1.723) 170.8 o

45 o

2.5 0.053 1.83 12.53 107.3 o

0.Q1 (3.134) 27.75 o

12.5 (1.405) 24.75 (1.405) 89.75 o

10.5 23.25 29 (6.008) 213.5 o

104.8 o

19.75 0.800 45.75 a

4.5 o

3 0.605 23.75 (5.403) 12.5 o

2.25 11.24 1107 90.25 47.25 (19.55) 1021 PageA7 10/06/10 2:09 pm Hl (tt)

K o

1.557 0.014 5.01 o

0.146 o

0.097 0.124 0.44 o

1.705 a

a o

1.532 a

0.394 o

1.179 o

0.919 o

0.952 0.766 0.547 o

2.221 o

1.34 o

0.92 o

0.48 o

0.146 o

1.482 o

0.222 o

1.091 o

0.045 o

1.623 1.315 0.509 7.93 1.744 pg7

CALCULATION NO. NED-M-MSD-009 REVISION NO. B8 Pipeline 845 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 870 871 874 875 897 PIPE-FLO 2005 From Specification FG(S)

SSSX(XS)

GS SSSX(XS)

GO SSSX(XS)

GP Steel Sch. 20 GP BBSX(XS)

KE Steel Sch. 20 KE SBSX(XS)

KF Sleel Sch. 20 KF BBSX(XS)

KG Sleel Sch. 20 KG BBSX(XS)

GA Sleel Sch. 20 GA BBSX(XS)

KA Sleel Sch. 20 KA BSSX(XS)

KB Sleel Sch. 20 KB BSSX(XS)

KC Steel Sch, 20 KC BBSX(XS)

AO BBSX(STD)

AP BBSX(STD)

IB steel Sch. 40 BP Steel Sch. 40 BS Steel Sch. 40 DO Sleel Sch. 40 DT Sleel Sch. 40 KH Sleel Sch. 20 To Fluid Zone AH Waler GA Waler GP Water CeliE Waler KE Waler Cell F Water KF Waler CeliG Waler KG Waler CeliH Water KH Water CeliA Water KA Water CeO B Water KB Waler CeR C Water KC Water Cell D Waler KO Water AP Water AO Waler IH Waler EP Water ES Water FS Waler FV Water basin-5 Watsr PIPELINES Status xxx xxx xxx xxx xxx xxx xxx Flow (USgpm) o 47600 40 10.26 29.74 9.988 19.75 9.93 9.824 9.824 o

11829 35770 11692 24079 11628 12450 11613 837.2 0.161 APPENDIX A Velocity (ft/sec)

Size (in) o 48 8.809 4B 0.007 48 0.008 24 0.006 48 0.008 24 0.004 48 0,008 24 0.002 48 0.007 24 o

48 8.947 24 6.62 48 B.842 24 4.456 48 B.794 24 2.304 48 8.783 24 0.155 48 o

30 30 6

10 10 10 10 24 dP (psi)

Length (tt)

(22.98) 1266 8.577 747.6 6.267 810.6 14.65 120.1 o

43 14.65 120.1 o

43 14.65 120.1 o

43 14.65 120A o

153.2 lB.52 90.92 0.090 43 18.43 90.92 0.041 43 18.39 90.92 0.010 35.75 18.38 90.92 14.49 7.25 o

5.5 7

10.5 4.75 4.75 10.5 12 92.83 PageAB 10/06/10 2:09 pm HL (tt)

K o

1.717 5.346 0,902 o

0.462 o

5.487 o

0.101 o

5.487 o

0.101 o

5.487 o

0.101 a

5.487 a

90000 B.948 6.172 0.207 0.101 8.741 6.172 0.094 0.101 B.647 6.172 0.022 0.101 8.624 6.172 33.52 90000 o

2.071 0,B9 11.59 1.007 1.477 1.464 1.665 2,46 pg8

CALCULATION NO. NED-M-MSD-009 REVISION NO. 88 Pipeline B9B 899 9

900 900-1 DO AFp-2B LOOP (939)

DOAFp-1B LOOP (938)

RCFC-1A (914)

RCFC-1A (915)

RCFC-1B (922)

RCFC-1B (923)

RCFC-1C (912)

RCFC-1C (913)

RCFC-1D (920)

RCFC-1D (921)

RCFC-2A (918)

RCFC'2A (919)

RCFC-2B (926)

RCFC-2B (927)

RCFC-2C (916)

RCFC-2C (917)

RCFC-20 (924)

RCFC-20 (925)

SX CC'S & 0C-1A (932)

SX CC'S & 0C-1 B (934)

SX CC'S & OC-2A (933)

SX CC'S & OC-2B (935)

PIPE*FLO 2005 From Specification KH Steel Sell. 20 KO Steel Sell. 20 BN Steel Sell. 40 KO Steel Sell. 20 To Fluid Zone basin-4 Water basln-4(OOl }

Water BU Water New Pipe Water New Pipe Basin-3 Steel Sch. 20 Waler PIPELINES Status xxx COOLING WATER BOO.. JE XXX Steel Sch. 40 Water IF COOLING WATER BOO.. <->

Sleel Sell. 40 Water BO BG Steel Sell. 40 BE Steel Sell. 40 ED Steel Sch. 40 EE Steel Sell. 40 BB Steel Sell. 40 BC Sleel Sch. 40 EB Steel Sell. 40 EC Steel Sch. 40 DO Sleel Sch. 40 DE Steel Sell. 40 FH Steel Sell. 40 FF Steel Sch. 40 DB Steel Sch. 40 DC Sleel Sch. 40 FJ Steel Sch. 40 FI Steel Sch. 40 HA Steel Sch. 40 AN Sleel Sch. 40 HF Steel Sch. 40 AQ Steel Sell. 40 Water BF Water EG Water EF Water BI Water BH Water EI Water EH Water OG Water OF Water Fo Water FE Water 01 Water oH Water FB Water FC Water HE Water HM Water GH Water HN Water Flow (USgpm) 477 1478 360.2 360.2 5.548 1338 1453 2.099 2.276 1290 1386 0.066 1.598 1574 1545 0.127 0.126 1550 1686 0.242 0.229 110.1 0.073 1143 0.323 APPENDIX A Velocity (ft/sec)

Size (in) 24 0.361 24 6.018 10 0.272 24 0.397 20 8

0.036 8

8.585 8

9.328 8

0.013 8

0.015 8

8.278 8

8.767 8

a 8

0.010 8

10.1 8

9.917 8

o 8

a 8

9.947 8

10.82 8

0.002 8

0.001 8

2.777 4

0.002 4

2.883 4

0.008 4

dP (psi)

Length (It) 77.4 3.46 63.92 1.717 6

2.378 29.58 1.082 22 0.01 (0.430) 0.01 27.49 0.01 24.09 0.01 (5.186) 0.01 (4.733) 0.01 31.18 O.ot 29.73 0.01 (3.025) 0.01 (5.619) 0.01 21.07 0.01 19.24 0.01 5.619 0.01 6.44 0.01 25.88 0.01 23.92 0.01 3.021 0.01 5.614 0.01 55.25 0.01 9.617 0.01 60.31 0.01 8.212 0.01 Page A9 10/06110 2:09 pm HL (ft)

K 3.097 0.006 2.027 0.722 1.086 0.002 1.312 0.004 1.189 303 0.004 220 76.6 67 70.6 52.3 o

74.2 o

78.3 85.14 60.1 81.8 68.6 o

76.8 o

84.4 61.74 39 55.38 36.3 o

46.5 o

44.1 72.91 47.5 68.34 37.6 o

58.1 o

54.2 113.1 945 o

937.1 120.5 935.1 0.001 1026 pg9

CALCULATION NO. NED*M*MSD*009 REVISION NO. 88 APPENDIX A Page A10 PIPELINES 10106110 2:09 pm Pipeline From To Status Flow Velocity dP HL (USgpm)

(flisec)

(psi)

(tt)

Specification Fluid Zone Size Length K

(in)

(II)

Train 1 A (928)

BU BX 356.8 2.303 34.47 106.3 Sleel Sch. 40 Water 6

0.01 1292 TRAIN 18 (930)

EY EV 0.746 0.005 10.7 0

Steel Sch. 40 Water 8

0.01 1142 TRAIN 2A (929)

DO DV 370.8 2.38 39.34 114.3 Steel Sch. 40 Water a

0.01 1301 TRAIN 2B (931)

FO FX 0.402 0.003 (9.357) 0 Steel Sch. 40 Water 8

0.01 1326 PIPE-FLO 2005 pg 10

CALCULATION NO. NED-M-MSD-009 REVISION NO. 88 APPENDIX A Page A11 NODES 10/06/10 2:09 pm Node Elev Status Pressure Grade (ttl (psi g)

(II)

AA 354.33 19.55 399.6 AD 335.75 103.2 574.5 AE 335.75 101.7 571.1 AF 335.75 101.6 570.7 AG 335.75 101.4 570.3 AH 354.33 22.98 407.5 AK 335.75 41.77 432.4 AL 335.75 41.77 432.4 AM 335.75 41.77 432.4 AN 335.75 41.77 432.4 AO 335.75 41.77 432.4 AP 335.75 41.77 432.4 AO 335.75 41.77 432.4 BA 385.25 78.12 566 BB 408.22 63.27 554.6 BC 408.22 62.65 553.2 BO 408.22 61.44 550.4 BE 397.41 65.44 548.8 BF 382.55 41.35 478.2 BG 395.22 33.95 473.8 BH 395.22 32.92 471.4 BI 395.22 32.08 469.5 BJ 408.35 23.47 462.6 BM 408.35 22.86 461.2 BN 393.75 74.37 565.8 BO 393.75 R32 565.7 BP 415.16 63.04 561 BS 409.25 23.26 463.1 BT 390 29.71 458.7 BU 397 72.66 565.1 BX 370.5 38.18 458.8 BY 370.5 37.73 457.8 CO 335.75 105.7 580.3 CE 335.75 104.5 577.5 CF 335.75 104.3 577.1 CG 335.75 104.3 577.1 CK 335.75 41.77 432.4 CL 335.75 41.77 432.4 CM 335.75 41.77 432.4 CN 335.75 41.77 432.4 COOLING WATER BOOSTER PUMP*l.388.5 18.97 432.4 COOLING WATER BOOSTER PUMP*2.. 388.5 18.97 432.4 OA 385.25 81.31 573.4 DB 408.25 64.36 557.2 DC 408.22 63.64 555.5 DO 408.22 62.13 552 DE 395.43 66.94 550.3 OF 384.57 47.7 494.9 DG 395.22 41.07 490.2 DH 395.22 39.73 487.1 Dt 395.22 38.48 484.2 OJ 408.3 26.06 468.6 OM 408.3 23.6 462.9 ON 402.25 25.58 461.4 DO 393.75 77.64 573.4 DP 393.75 77.64 573.4 DO 407.5 71.69 573.4 DT 407.5 22.48 459.5 DU 390 30.05 459.5 DV 370.5 38.29 459.1 EA 388.25 19.08 432.4 EB 410 9.681 432.4 PIPE-FLO 2005 pg 11

CALCULATION NO. NED*M*MSD*009 REVISION NO. 88 APPENDIX A Page A12 NODES 10106110 2:09 pm Node Elev Status Pressure Grade (II)

(psi g)

(II)

EC 410 9.661 432.4 ED 409 10.11 432.4 EE 395.45 15.97 432.4 EF 384.5 20.7 432.4 EG 397 15.3 432.4 EH 397 15.3 432.4 EI 403 12.71 432.4 EJ 410 9.682 432.4 EM 410.1 9.638 432.4 EN 392 17.46 432.4 EO 392 17.46 432.4 EP 415.15 7.455 432.4 ES 409.25 10.01 432.4 ET 385.25 20.38 432.4 EU 385.25 20.38 432.4 EV 395.25 16.06 432.4 EY 370.5 26.75 432.4 EZ 370.5 26.75 432.4 FA 388.15 19.13 432.4 FB 409.99 9.686 432.4 FC 409.99 9.686 432.4 FD 410 9.682 432.4 FE 397.4 15.13 432.4 FF 382.5 21.57 432.4 FH 397 15.3 432.4 FI 397 15.3 432.4 FJ 403 12.71 432.4 FK 410 9.681 432.4 FN 410 9.681 432.4 FO 402.25 13.03 432.4 FP 385.25 20.38 432.4 FQ 392.15 17.4 432.4 FR 392.15 17.4 432.4 FV 405.5 11.63 432.4 FW 385.25 20.38 432.4 FX 370.5 26.75 432.4 GA 398.5 18.52 441.3 GB 384 27.1 446.7 GC 354.75 42.97 454.2 GO 354.75 43.11 454.5 GE 354.75 43.16 454.6 GF 354.75 43.21 454.7 GG 354.75 33.56 432.4 GH 354.75 43.39 455.1 GI 354.75 43.4 455.2 GJ 354.75 33.56 432.4 GK 354.75 33.56 432.4 GL 356.6 32.76 432.4 GM 358 32.16 432.4 GN 358 32.16 432.4 GO 384 20.92 432.4 GP 398.5 14.65 432.4 HA 340 98.88 568.8 HE 354.75 43.63 455.7 HF 335.75 103.7 575.7 HL 358 32.16 432.4 HM 358 32.16 432.4 HN 354.75 33.56 432.4 IC 391 17.89 432.4 IF 389.5 18.54 432.4 IH 391 17.9 432.4 JB 391 17.89 432.4 PIPE-FLO 2005 pg 12

CALCULATION NO. NED-M*MSD-009 REVISION NO. 88 APPENDIX A Page A13 NODES 10106/10 2:09 pm Node Elev Status Pressure Grade (tt)

(psi g)

(tt)

JE 395.25 16.06 432.4 KA 398.5 18.43 441.1 KB 398,5 18,39 441 KC 398.5 18,38 441 KD 398.5 3.892 407.5 KE 398,5 14,65 432,4 KF 398.5 14,65 432.4 KG 398,5 14,65 432.4 KH 398,5 14.65 432.4 New Pipe 404 1,514 407,5 PIPE-FLO 2005 pg 13

CALCULATION NO. NED-M-MSD-009 REVISION NO. 88 APPENDIX A Page A14 PUMPS 10106/10 2:09 pm Pump Flow Status Total head dP Speed NPSHa Suction Discharge Suction Discharge (USgpm)

(ft)

(psi)

(rpm)

(ft)

(psi g)

(psi g)

(ft)

(ft)

SXPump lA 24779 (179.1)

(77.41) 97.55 28.3 105.6 332.5 332.79

<no catalog data available>

SX Pump 2A 22860 (184.4)

(79.69) 96.91 28.03 107.6 332.5 332.79

<no catalog data available>

COMPONENTS Component Flow Sta1us Head Loss dP Inlet Outlet Inlet Outlet (USgpm)

(ft)

(psi)

(psi g)

(psi g)

(ft)

(ft)

CC HX-O 0.161 0

0 29.24 29.02 364.75 365.25 CCHX-l 16000 24.5 10.59 53.31 40.77 358.5 363 CC HX-2 16000 24.5 10.59 90.66 79.48 364 365.35 Cont. Ref2A 1040 4.998 2.16 25.09 23.65 410.15 408.5 Cont. Ref. lA Off 410.1 408.35 Cant. Ref. lB Off 410.1 408.5 CR Ref. Cond OA 1119 26.37 11.4 70.37 58.45 386.35 387.56 DGJWC-1A 1725 20.58 8.893 55.88 45.19 405 409.15 DGJWC-2A Off 405.5 409.25 DGJWC-2B Off 405.5 409.25 CONTROlS Control SeiValue Elev Flow Status dP HL Inlet Outlet (ft)

(USgpm)

(psi)

(ft)

(psi g)

(psi g)

HB FCV: 16000 358.5 16000 36.96 85.52 90.39 53.42

<no catalog data avaUable>

HI FCV: 16000 354.75 16000 39.74 91.95 83.93 44.19

<no catalog data avaUable>

HK FCV: Fully open 365.25 0.161 0

0 29.02 29.02

<no catalog dala available>

PIPE-FLO 2005 pg 14

CALCULATION NO. NED-M-MSO-O09 REVISION NO. 88 APPENDIX A Page A15 TANKS 10106110 2:09 pm Tank Surface Pressure Level Bottom Elevation status Flow Pressure Grade (psi g)

(It)

(It)

(USgpm)

(psi)

(It)

Basin-3 0

406.5 360.2 0.432 407.5 Connecting pipelines Flow (US gpm)

Pressure (psi g)

Grade (It) 900-1@01t 360.2 0.432 407.5 Inflllite tanklno geometry basin-4{OO1}

0 406.5 471 0.432 407.5 Connecting pipelines Flow (US gpm)

Pressure (psi g)

Grade(ft) 899@Oft 471 0.432 407.5 Infmite lanklno geometry CeliA 0

0 432.4 11829 0

432.4 Connecting pipelines Flow (US gpm)

Pressure (psi g)

Grade (It) 857@Oft 11829 0

432.4 Infinite lanklno geometry CeliB 0

0 432.4 11692 0

432.4 Connecting pipelines Flow (US gpm)

Pressure (psi g)

Grade(ft) 859@Oft 11692 0

432.4 Infinite lanklno geometry CeliC 0

0 432.4 11628 0

432.4 Connecting pipelines Flow (US gpm)

Pressure (psi g)

Grade (II) 861@01t 11628 0

432.4 InfinKe lanklno geometry CeliO 0

0 432.4 11613 0

432.4 Connecting pipeHnes Flow (US gpm)

Pressure (psi g)

Grade (fI) 863@Oft 11613 0

432.4 Infinite lanklno geometry CeliE 0

0 432.4 10.26 0

432.4 Connecting pipelines Flow (US gpm)

Pressure (psi g)

Grade (ft) 849@Oft 10.26 0

432.4 Infinite lanklno geometry CeliF 0

0 432.4 9.988 0

432.4 Connecting pipeHnes Flow (US gpm)

Pressure (psi g)

Grade(ft) 851@Oft 9.988 0

432.4 InfR1ite lanklno geometry CellG 0

0 432.4 9.93 0

432.4 Connecting pipelines Flow (US gpm)

Pressure (psi g)

Grade(ft) 853@Oft 9.93 0

432.4 Inflllite lanklno geometry CeflH 0

0 432.4 9.824 0

432.4 Connecting pipelines Flow (US gpm)

Pressure (psi g)

Grade (II) 855@Oft 9.824 0

432.4 Infinite lanklno geometry FG(A) 0 0

407.5

-47640 0

407.5 Connecting pipelines Aow (US gpm)

Pressure (psi g)

Grade(ft) 643@Oft 47640 0

407.5 Inf",ite lanklno geometry PIPE-FLO 2005 pg 15

CALCULATION NO. NED-M-MSD-009 REVISION NO. 88 APPENDIX A Page A16 TANKS 10106110 2:09 pm Tank Suriace Pressure level Bottom Elevation Status Flow Pressure Grade (psi g)

(II)

(II)

(USgpm)

(psi)

(tI)

FG(B) 0 0

407.5 0

0 407.5 Connecting pipeHnes Flow (US gpm)

Pressure (psi g)

Grade (II) 845@0f!

0 0

407.5 Inflllne tanklno geometry DEMANDS Demand Set Value Flow Rate Pressure Elev Status Grade (US gpm)

(psi g)

(tt)

(tt)

IA Flow out 20 75.51 391 565.7 IG Rowin 20 18.54 389.5 432.4 JA Flow out 20 77.09 395 573.4 JF Flow in 20 18.66 389.25 432.4 PIPE-FLO 2005 pg 16

CALCULATION NO. NED-M-MSD-009 PIPE-FLO 2005 REVISION NO. 88 NOTES SPECIFICATIONS FLUID ZONES PIPELINES NODES PUMPS COMPONENTS CONTROLS TANKS DEMANDS APPENDIX A PageA17 10/0611 0 2:09 pm pg17

CALCULATION NO. NED-M-MSD-009 REVISION NO. 88 APPENDIX A Page A18 System: Scenario BE 1 Lineup: Scenario BE 1 rev: 10/05/10 9:54 am Aim pressure: 14.7 psi a Specification BBSX(STD)

BBSX(XS)

Steel Sch. 10 Steel Sch. 20 Steel Sch. 30 Steel Sch. 40 Steel Sid Fluid Zone Water PIPE-FLO 2005 LIST REPORT Total System Volume: 737326 gallons Pressure drop calculations: Darcy-Weisbach method.

Calculated: 15 iterations Avg Deviation: 0.006583 %

Material I Schedule ByronPlpes-NHL I STD Valves: standard ByronPipes-NHL I XS Valves: standard Steel A53-836. 1 0 110 Valves: standard Steet A53-836.1 0 I 20 Valves: standard Steel A53-B36.10 130 Valves: standard Sleel A53-836.10 140 Valves: standard Steet A53-B36.10 120 Valves: standard Fluid Water SPECIFICATIONS Roughness 0.036 in C: 100 0.036 In C: 100 0.036 in C: 140 0.036 in C: 140 0.036 in C: 140 0.036 in C: 140 0.036 in C: 140 FLUID ZONES Temp Pressure (OF)

(psi g) 82 14.7 Sizing not specified not specified not specified notspacified not specified not specified not specified Density (lb/ft')

62.33 10/06/10 2:10 pm Company: Sargent & Lundy LLC Project:

Design limijs Viscosity cP 0.8362 Pv/Pc or k (psi a) 05413/3198 pg 1

CALCULATION NO. NED-M-MSD-009 REVISION NO. 88 Pipeline 12 154 155 156 157 158 160 161 162 164 165 166 167 168 170 171 172 173 176 178 179 180 181 182 183 233 PIPE-FLO 2005 From Specification AA BBSX(STD)

BU Sleel Sch. 40 BF Steel Sch. 40 BG Steel Sch. 30 BH Sleel Sch. 30 BI Sleel Sch. 30 BJ BBSX(STD)

Cont. Ref. lA Steel Sch. 20 BJ Steel Sch. 30 BM Steel Sch. 30 BT Sleel Sch. 20 BX Steel Sch. 40 BY Sleel Sch. 20 BO SleeI Sch. 40 BP Steel Sch. 40 DGJWC-IA Steel Sch. 40 BS Sleel Sch. 40 BO Steel Sch. 40 IA SleeI Sch. 40 AA BBSX(STD)

SXPump2A BBSX(STD)

CO BBSX(STO)

CE BBSX(STO)

CF Steel Sch. 20 DA Steel Sch. 30 DO Steel Sell. 30 DA Steel Sch. 30 To Fluid Zone SXPump lA Water PIPELINES Status CR Ref. Cond OA Waler BG Water BH Waler BI Water BJ Water Cont. Ref.1A Water BM Water BM Water BT Water BY Water BY Water GO Water BP Water DGJWC-IA Water BS Water BT Water IA Waler IB Water SXPump2A Water CD Water CE Waler CF Water DA Waler DO Water DP Water DB Water xxx xxx Flow (USgpm) 24778 1119 1453 2790 4156 5446 o

5446 5446 7170 1478 8648 1725 1725 1725 1725 20 22859 22859 22859 22859 6745 390.8 20 6354 APPENDIX A Velocity (ft/sec)

Size (in) 8.152 36 7.182 8

5.917 10 6.498 14 9.678 14 9.573 16 12 o

12 9.573 16 9.573 16 7.911 20 6.017 10 9.541 20 7.023 10 7.023 10 7.023 10 7.023 10 0.222 6

6 7.521 36 7.521 36 7.521 36 7.521 36 7.441 20 0.910 14 0.047 14 11.17 16 dP (psi) length (ft)

(8.758) 71.2 2.286 229.5 7.404 70.35 1.034 129 0.836 42.14 8.627 205.5 17.25 o

23.5 0.612 12.66 (6.865) 47 (8.02) 37 0.458 5.33 (5388) 43.5 11.3 125.4 7.164 118.5 21.94 111.5 (6.456) 82.25 (1.187) 81.33 0.25 (8.48) 97.75 1.878 33.8 1.244 0.01 0.140 6.2 23.04 145.8 3.682 8.5 o

3.25 16.97 227.5 Page A19 10/06/10 2:10 pm HL (ft)

K 1.584 1.054 15.93 9.66 4.445 5.837 2.389 0.644 1.933 0.352 6.812 0.804 1.295 o

1.835 1.414 0.749 2.481 0.833 0.960 0.454 1.059 1.707 3.295 1.705 4.702 1.97 26.72 30.98 50.62 62.45 4.326 2.916 0.006 2.002 0.633 2.227 1.875 1.381 1.345 2.877 3.278 0.323 0.326 3.751 2.257 0.010 0.606 o

0.439 16.23 3.975 pg 2

CALCULATION NO. NED-M-MSD-009 REVISION NO. 88 Pipeine 234 235 236 25 3

327 328 329 330 331 333 334 335 336 337 339 340 341 343 344 345 348 349 351 356 364 367 PIPE-FLO 2005 From Specification DB Steet Sen. 30 DC Steel Sch. 30 DO Steel Sch. 40 CR Ref. Cood OA Steel Sch. 40 SX Pump 1A BBSX(STD)

OF Steel Sen. 40 OG Steel Sch. 30 OH Steel Sen. 30 01 Steel Sch. 30 OJ BBSX(STD)

Cont. Ref2A BBSX(STD)

OJ Steel Sch. 30 OM Steel Sch. 30 ON Steel Sch. 30 OU Steel Sch. 20 OV Steel Sch. 20 OP Steel Sch. 40 DO Steel Sch. 40 OGJWC-2A Steel Sch. 40 OT Steel Sch. 40 OP Steel Sch. 40 AF BBSX(STO)

AG BBSX(STD)

HA BBSX(STD)

HB BBSX(STD)

CCHX-l BBSX(STD)

HE BBSX (STD)

To Fluid Zone DC Water DO Water DE Water BX Water AD Waler DG Waler OH Water 01 Waler OJ Water Cont Ref2A Water OM Waler OM Waler ON Water OU Waler OV Water GC Water DO Water OGJWC-2A Waler OT Waler OU Water JA Water AG Water HA Water HB Water CC HX-l Water HE Water GF Water PIPELINES Status xxx Flow (USgpm) 4805 3118 1545 1119 24778 1545 3118 4805 6354 1039 1039 5315 6354 6354 6354 6725 o

o o

20 16110 16110 16000 16000 16000 16110 APPENDIX A Velocity (fUsee)

Size (In) 11.19 14 7.262 14 6.29 10 7.182 8

8.152 36 6.29 10 7.262 14 11.19 14 11.17 16 2.951 12 2.951 12 9.343 16 11.17 16 11.17 16 7.01 20 7.419 20 o

10 10 o

10 o

10 0.222 6

5.301 36 7.698 30 7.646 30 7.646 30 7.646 30 7.698 30 dP (psI)

Length (II) 0.716 26.07 1.516 144 (4.816) 36.95 20.28 248.6 2.409 18.75 6.64 64.54 1.341 130.7 1.249 42.43 12.43 223.5 0.966 20.75 0.048 24.5 2.462 9.25 (1.985) 18.5 (4.47) 31.5 (8.253) 29.75 (4.678) 246 5.948 101.3 112.8 (0.757) 115.8 (7.57) 52.25 0.545 110.8 0.161 42.25 2.517 8.25 8.502 62.75 0.116 12.25 (2.863) 55.75 0.425 13.6 PageA20 10106/10 2:10 pm HL (ft)

K 1.685 0.263 3.504 0.934 1.658 1.47 63.95 68.82 2.609 2.403 4.699 5.505 3.1 0.749 2.887 0.503 15.66 3.757 0.384 2.288 0.312 1.656 5.692 4.024 1.463 0.397 1.917 0.38 0.422 0.123 4.937 2.222 o

2.816 32.21 o

69.77 o

2.138 0.009 3.04 0.373 0.569 1.568 1.635 1.154 0.736 0.267 0.19 1.632 1.323 0.982 0.952 pg3

CALCULATION NO. NED-M-MSD-009 REVISION NO. 88 PipeWne 368 369 370 372 384 387 388 389 390 391 393 394 396 397 398 399 4

400 401 402 403 405 406 407 423 425 463 PIPE-FLO 2005 From Specification GF BBSX(STD)

CF BBSX(STD)

CG BBSX(STD)

HF BBSX(STD)

CCHX-2 BBSX(STD)

HI BBSX(STD)

GI BBSX(STD)

GH BBSX(STD)

GE BBSX(XS)

GO BBSX(XS)

GC BBSX(XS)

AH BBSX(STD)

SXPump lB Steel Sch. 20 AK BBSX(STD)

AL BBSX(STD)

EA SleelStd AD BBSX(STD)

EN Steel Sch. 30 EO Steel Sch. 30 EO Steel Sch. 40 EP Steel Sch. 40 DGJWC*1B Steel Sch. 40 ES Steel Sch. 40 EV Steel Sch. 40 EV Steel Sch. 40 CRRef.OB Steel Sch. 40 EZ Steel Sch. 40 To Fluid Zone GE Water CG Water HF Water CC HX-2 Waler HI

Wale, GI Water GH Water GE Water GO Water GC Waler GB Water SXPump lB Water AK Water AL Water AM Water AM Water AE Waler EA Water EN Water EP Water OGJWC..1B Water ES Water ET Water EN Water CR Ref.OB Water EY Water EY Water PIPELINES Slatus xxx xxx xxx xxx xxx xxx Flow (USgpm) 16110 16114 16114 16000 16000 16000 16000 16114 32224 40872 47597 o

o 0.234 24778 6.332 5.583 o

o 0.749 0.749 APPENDIX A Velocity (ft/sec)

Size (In) 3.871 42 5.302 36 7.7 30 7.646 30 7.646 30 7.646 30 3.644 42 3.872 42 5.964 48 7.564 48 8.809 48 36 24 o

38 o

36 o

20 8.152 36 0.Q15 14 0.013 14 o

10 10 10 o

10 0.003 10 8

8 0.003 10 dP (psi)

Length (tI) 0.053 20.75 0.033 4.5 0.602 3.75 13.05 110.8 (4.452) 17.5 0.793 12 0.013 8.5 0.228 123 0.048 14.75 0.144 32.25 15.89 956.2 71.3 7.22 o

0.01 o

6.25 (22.71) 149 1.462 0.01 (1.622) 3.75 o

2 10.01 137 223.8 209 (10.38) 86.5 (1.406) 5.75 233 254.5 o

4.5 Page A21 10106/10 2:10 pm HL (tI)

K 0.122 0.407 0.071 0.146 1.393 1.482 1.91 1,159 0.309 0.191 1.833 1,919 0.030 0,081 0.528 1.579 0.110 0,129 0.333 0.222 7.473 1.678 1.054 0.651 o

3,278 o

0.322 o

2.446 3.38 3,278 o

0.606 o

0.457 o

2.558 32.8 43.4 o

2.916 o

0,868 9.791 107.9 o

1.78 pg4

CALCULATION NO. NED-M-MSD-009 REVISION NO. 88 Pipeline 464 465 466 467 5

514 538 560 561 562 564 565 566 568 569 570 571 6

60 602 603 604 605 607 608 609 61 PIPE*FLO 2005 From SpecifICation EA Steel Sell. 30 EB Steel Sell. 30 EC Steel Sell. 30 ED Steel Sell. 40 AE BBSX(STD)

EH Steel Sell. 30 EG Steel Sell. 30 EF Steel Sell. 40 EI Steel Sell. 30 EJ BBSX(STD)

Cont. Ref.1B BBSX(STD)

EJ Steel Sell. 30 EM Steel Sell. 30 ET Steel Sell. 20 EU Steel Sch. 20 IC To Fluid Zone EB Water EC Waler ED Water EE Waler AF Water EI Water EH Water EG Water EJ Water Cont. Ref. 1B Water EM Water EM Water ET Water EU Water EZ Water EO Steel Sch. 40 Water COOliNG WATER SOO.. IC Steel Sell. 40 Water AF BA Steel Std Water BA BB Steel Sch. 30 Water IG IF Steel Sch. 40 Water IG Steel Sch. 40 IH Steel Sch. 40 AH BBSX(STD)

SXPump2S Steel Sell. 20 CK BBSX(STD)

CL BSSX(STD)

BS Steel Sell. 30 IH Waler EU Waler SX Pump 2B Waler CK Water CL Water CM Water BC Waler PIPELINES Status xxx

<-~>

xxx xxx Flow (USgpm) 6.098 5.988 4.382 2.281 24778 5.988 4.382 2.281 6.098 o

6.098 6.098 6.098 20.51 5.583 5.583 8668 5446 5.583 14.42 14.42 o

o 4156 APPENDIX A Velocity (ft/sec)

Size (in) 0.011 16 0.014 14 0.010 14 0.009 10 8.152 36 0.014 14 0.010 14 0.009 10 0.011 16 12 o

12 0.011 16 0.011 16 0.007 20 0.023 20 0.036 8

0.062 6

9.563 20 9.573 16 0.062 6

0.160 6

0.160 6

36 24 o

36 o

36 9.678 14 dP (psi) length (ft) 9.409 141 o

28 (0.433) 145.8 (5.862) 48.75 0.166 6.75 2.596 62 o

127 5.407 69.57 3.028 149.5 27.25 0.692 32.75 0.043 13.5 (10.75) 44.75 o

11.75 (6.381) 17.5 0.433 97 1.082 16 23.45 85.1 14.87 214.2 o

2 0.649 22 (2.486) 99 87 6.82 o

0.01 o

5.75 0.613 29.25 PageA22 10106110 2:10 pm HL (It)

K o

3.161 o

0.265 o

0.932 o

1.216 0.383 0.326 o

0.832 o

0.748 o

5.919 o

2.388 1.491 o

2.28 o

1.147 o

0.523 o

0.265 o

0.333 o

3.09 o

7.422 4.715 2.094 11.41 3.871 o

0.112 0.001 0.812 0.004 2.903 1.875 0.416 o

3.278 o

0.322 1.417 0.296 pg5

CALCULATION NO. NED-M-MSD-009 REVISION NO. 88 PipeUne 610 611 612 613 614 616 617 62 63 670 671 672 673 7

711 725 747 748 749 751 752 753 754 759 760 761 762 PIPE-FLO 2005 From Specification FA Steel Sch. 20 FA Steel Seh. 30 FQ Steel Sch. 30 FR Steel Sch. 40 FS Steel Seh. 40 DGJWC-2B Sleel Seh. 40 FV Sleel Sch. 40 BC Sleel Sch. 30 BD Sleel Sch. 40 FB Sleel Sch. 30 FC Steel Sch. 30 FD Steel Sch. 30 FE Steel Sch. 40 BA Sleel Sch. 20 FJ Steel Seh. 30 FI Sleel Sch. 30 FH Sleel Sch. 40 FK Sleel Sch. 30 FK BBSX(STD)

Conl Rel2B BBSX(STD)

FN Steel Sch. 30 FO Sleel Sch. 30 FP Steel Sch. 30 FW Sleel Sch. 20 FW Steel Sch. 20 FR Sleel Seh. 40 JB Sleel Seh. 40 To Fluid Zone CM Water FQ Waler FR Waler FS Waler DGJWC-2B Water FV Water FP Water BD Water BE Water FA Waler FB Watar FC Waler FD Waler BN Waler FI Water FH Waler FF Water FJ Waler Cont. Rel2B Waler PIPELINES Status xxx xxx xxx FN XXX Waler FK Water FN Water FO Waler FP Water FX Water JB Water COOLING WATER BOO..

Water Flow (USgpm) 0.323 00402 o

o o

2790 1453 0.725 0.482 0.253 0.126 3222 0.482 0.253 0.126 0.725 0.725 0.725 0.725 0.725 19.28 o

o APPENDIX A Velocity (Illsee)

Size (in) o 20 o

14 o

14 10 10 o

10 o

10 6.498 14 5.917 10 0.001 16 0.001 14 o

14 o

10 3.555 20 0.001 14 o

14 o

10 0.001 16 12 12 0.001 16 0.001 16 0.001 16 o

20 0.021 20 o

8 o

6 dP (psi)

Length (II)

(22.67) 87.75 1.73 4

o 3.25 83 162.3 (1.622) 142.3 (8.76) 59.5 1.217 144.4 (4.005) 50.04 (9.448) 138.9 o

27.57 (0.004) 145.8 5.451 46.25 3.755 6.5 (2.596) 59 o

133.5 (6.273) 65.35 (3.028) 152.3 27.75 30.75 o

15.25 3.353 15.75 7.354 30.75 o

7.25 (6.381) 23.5 (0.497) 106.5 (1.081) 22.25 Page A23 10106/10 2:10 pm HL (It)

K a

1.986 o

0.607 o

0.457 2.371 31.43 a

125.2 o

2.595 2.813 0.932 1.552 1.188 o

2.988 o

0.299 o

0.932 o

1.224 0.179 0.819 a

0.628 o

0.751 o

5.466 o

2.379 1.375 1.93 o

4.447 o

0.288 o

0.259 o

0.265 o

0.265 o

3.998 o

7.422 pg6

CALCULATION NO. NED*M*MSD*009 REVISION NO. 88 Pipeline 792 793 794 795 8

809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 837 838 839 840 841 842 843 PIPE-FLO 2005 From Specification JE Steel Sch. 40 JF Sleel Sch. 40 AM BBSX(STO)

AO BBSX(STO)

BN Steel Sch. 30 AP B8SX(STO)

CCHX~

88SX(STO)

HK 8BSX(STO)

HM 88SX(STO)

HM 88SX(STO)

HL 88SX(STO)

HN 88SX(STO)

GG 8BSX(STO)

GJ 8BSX (STO)

EZ Steel Sch. 20 GG 88SX(STO)

GJ BBSX(STO)

GK 88SX(XS)

CM B8SX(STO)

CN 88SX(STO)

GL 88SX(XS)

FX Steel Sch. 20 GM BBSX(XS)

GN BBSX(XS)

CN BBSX(STO)

AN BBSX(STO)

FG(A)

BBSX(XS)

To Fluid Zone JF Water FW Water AD Water AN Water BO Water CCHX~

Water HK Water HL Water HL Water GG Water HN Water GJ Water GF Water GI Water GL Water GK Water GK Water GL Water CN Water AQ Water GM Water GM Water GN Water GO Water CG Water AG Water AA Water PIPELINES Status xxx xxx xxx xxx Flow (USgpm) o 20 0.234 0.075 1745 0.159 0.159 0.159 0.008 0.067 0.167 0.490 19.77 0.067 0.490 0.557 0.323 0.323 20.32 19.68

.40 40 47637 APPENDIX A Velocity (ft/sec)

Size (in) o 6

0.222 6

o 36 o

36 4.063 14 o

30 o

30 o

30 o

30 o

30 o

30 o

30 42 42 0.022 20 o

42 o

42 o

48 o

36 o

30 0.004 48 0.022 20 0.007 48 0.007 48 36 36 8.816 48 dP (psi)

Length (II)

(2.596) 16.5 (1.724) 170.8 o

4.5 o

2.5 0.053 1.83 12.55 107.3 o

0.01 (3.136) 27.75 o

12.5 (1.406) 24.75 (1.406) 89.75 o

10.5 23.25 29 (6.013) 213.5 o

104.8 o

19.75 0.800 45.75 o

4.5 o

3 0.606 23.75 (5.407) 12.5 o

2.25 11.25 1107 90.25 47.25 (19.57) 1021 PageA24 10106/10 2:10 pm HL (ft)

K o

1.557 0.014 5.01 o

0.146 o

0.097 0.124 0.44 o

1.705 o

o o

1.532 o

0.394 o

1.179 o

0.919 o

0.952 0.766 0.547 o

2.221 o

1.34 o

0.92 o

0.48 o

0.146 o

1.482 o

0.222 o

1.091 o

0.045 o

1.623 1.315 0.509 7.935 1.744 pg7

CALCULATION NO. NED-M-MSD-009 REVISION NO. 88 Pipeline 845 847 848 849 650 851 652 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 B70 871 874 875 897 PtPE-FLO 200S From Specification FG(B)

BBSX (XS)

GB BBSX(XS)

GO BBSX(XS)

GP Steel ScI1. 20 GP BBSX(XS)

KE Steel ScI1. 20 KE BBSX (XS)

KF Steel ScI1. 20 KF BBSX(XS)

KG Steel Sch. 20 KG BBSX(XS)

GA Steel ScI1. 20 GA BBSX(XS)

KA Steel ScI1. 20 KA BBSX(XS)

KB Steel ScI1. 20 KB BBSX(XS)

KC Steel ScI1. 20 KC BBSX(XS)

AO BBSX(STO)

AP BBSX (STO)

IB Steel ScI1. 40 BP Steel ScI1. 40 BS Steel Sch. 40 DO Steel ScI1. 40 OT Steel ScI1. 40 KH Steel ScI1. 20 To Fluid Zone AH Water GA Water GP Water Cell E Water KE Watar Cell F Water KF Water CallG Water KG Water CeIlH Water KH Water CelIA Water KA Water CeliB Water KB Water CeUC Water KC Water CeliO Water KO Water AP Water AQ Water IH Water EP Water ES Water FS Water FV Water basin-5 Water PIPELINES Status xxx xxx xxx xxx xxx xxx xxx Flow (USgpm) o 47597 40 1025 29.75 9.949 19.81 9.905 9.901 9.901 o

11829 35768 11691 24077 11628 12450 11613 837.2 0.159 APPENDIX A Velocity (ft/sec)

Size (In) o 4B B.809 48 0.007 48 O.OOB 24 0.006 48 0.008 24 0.004 48 0.007 24 0.002 48 0.007 24 o

48 8,846 24 6.62 48 8.842 24 4.456 48 8.794 24 2.304 48 8.783 24 0.155 48 o

30 30 6

10 10 10 10 24 dP (psi)

Length (ft)

(23) 1266 8,587 747.6 6.273 810.6 14,67 120.1 o

43 14,67 120.1 o

43 14.67 120.1 a

43 14.67 120.1 o

153.2 18.54 90.92 0.090 43 18.45 90.92 0.041 43 18,41 90.92 0,010 35.75 18.4 90.92 14.5 7.25 o

5.5 7

10.5 4.75 4.75 10.5 12 92.83 PageA25 10106110 2: 1 0 pm HL (ft)

K a

1.717 5.349 0.902 o

0.462 o

5,487 a

0.101 o

5.487 a

0.101 a

5.487 o

0.101 o

5.487 o

90000 8.949 6.172 0.207 0.101 8.741 6.172 0.094 0.101 8.647 6.172 0.023 0.101 8.624 6.172 33.52 90000 o

2.071 0.89 11.59 1.007 1.477 1.464 1.665 2.46 pg8

CALCULATION NO. NED*M*MSD*009 REVISION NO. 88 Pipeline 898 899 9

900 900-1 DO AFP-2B LOOP (939)

DDAFP-1B LOOP (938)

RCFC-1A (914)

RCFC-1A (915)

RCFC-l B (922)

RCFC-1B (923)

RCFC-1C (912)

RCFC-1C (913)

RCFC-1D (920)

RCFC-1D (921)

RCFC-2A (918)

RCFC-2A (919)

RCFC-2B (926)

RCFC-2B (927)

RCFC-2C (916)

RCFC-2C (917)

RCFC-2D (924)

RCFC-2D (925)

SX CC'S & 0C-1A (932)

SX CC'S & 0C-1B (934)

SX CC'S & OC-2A (933)

SX CC'S & OC-2B (935)

PIPE-FLO 2005 From Specification KH Steel Sch. 20 KD steel Sch. 20 BN Steel Sch. 40 KD To Fluid Zone basin-4 Water basin-4(OOl)

Waler BU Water New Pipe Steel Sch. 20 Water New Pipe Basin-3 Steel Sch. 20 Waler COOLING WATER BOO.* JE Water PIPELINES Stalus xxx xxx Sleel Sch. 40 IF Sleel Sch. 40 BD COOLING WATER BOO.. <->

Water Sleel Sch. 40 BE Steel Sch. 40 ED Sleel Sch. 40 EE Sleel Sch. 40 BB Steel Sch. 40 BC Sleel Sch. 40 EB Sleel Sch. 40 EC Steel Sch. 40 DO Steel Sch. 40 DE Sleel Sch. 40 FH Steel Sch. 40 FF Steel Sch. 40 DB Steel Sch. 40 DC Sleel Sch. 40 FJ Sleel Sch. 40 FI Sleel Sch. 40 HA Sleel Sch. 40 AN Sleel Sch. 40 HF Steel Sch. 40 AQ Sleel Sch. 40 BG Water BF Water EG Water EF Water BI Water BH Water EI Waler EH Water DG Waler OF Water FD Water FE Water 01 Water OH Waler FB Water FC Water HE Waler HM Water GH Water HN Waler Flow (USgpm) 477 1478 360.2 360.2 5.583 1337 1453 2.101 2.281 1290 1366 0.110 1.606 1574 1545 0.127 0.126 1550 1686 0.243 0.229 110.1 0.075 114.3 0.323 APPENDIX A Veloc~y (ft/sec)

Size (in) 24 0.361 24 6.017 10 0.272 24 0.397 20 8

0.036 8

6.583 8

9.327 8

0.013 8

0.015 8

6.277 8

8.766 8

o 8

0.010 8

10.1 8

9.915 8

o 8

o 8

9.946 8

10.82 8

0.002 8

0.001 8

2.777 4

0.002 4

2.882 4

0.008 4

dP (psi)

Length (ft) 77.4 3.463 63.92 1.718 6

2.38 29.58 1.083 22 0.01 (0.431) 0.01 27.5 0.01 24.1 0.01 (5.191) 0.01 (4.737) 0.01 31.2 0.01 29.75 0.01 (3.028) 0.01 (5.624) 0.01 21.07 0.01 19.25 0.01 5.624 0.D1 6.446 0.01 25.9 0.01 23.93 0,01 3.024 0.01 5.619 0.01 55.29 0.01 9.625 0.01 60.36 0.01 8.22 0.01 PageA26 10/06/10 2:10 pm HL (ft)

K 3.097 0.006 2.027 0.722 1.086 0.002 1.312 0.004 1.189 303 0.004 220 76.57 67 70.58 52.3 o

74.2 o

78.3 85.13 80.1 81.78 68.6 o

76.8 o

84.4 61.72 39 55.36 36.3 o

46.5 o

44.1 72.89 47.5 68.32 37.6 o

58.1 o

54.2 113.1 945 o

937.1 120.5 935.1 0.001 1026 pg9

CALCULATION NO. NED-M-MSD-009 REVISION NO. 88 APPENDIX A PageA27 piPELINES 10/06/10 2:10 pm Pipeline From To Status Flow Velocity dP HL (USgpm)

(ft/sec)

(psi)

(tt)

Specification FluldZooe Size Length K

(in)

(tt)

Train lA (928)

BU BX 358.8 2.303 34.5 106.2 Steel Sell. 40 Water 0.01 1292 TRAIN lB (930)

EY EV 0.749 0.005 10.71 0

Sleet Sell. 40 Waler B

0.01 1142 TRAIN 2A (929)

DO DV 370.8 2.38 39.37 114.3 Steel Sell. 40 Water 8

0.01 1301 TRAIN 2B (931)

FO FX 0.402 0.003 (9.366) 0 Steel Sell. 40 Water 8

0.01 1326 PIPE-FLO 2005 pg 10

CALCULATION NO. NED-M-MSD-009 REVISION NO. 88 APPENDIX A PageA28 NODES 10106110 2:10 pm Node Elev Status Pressure Grade (It)

(psi g)

(It)

M 354.33 19.57 399.6 AD 335.75 103.3 574.5 AE 335.75 101.8 571.1 AF 335.75 101.6 570.7 AG 335.75 101.5 570.3 AH 354.33 23 407.5 AI<

335.75 41.81 432.4 AL 335.75 41.81 432.4 AM 335.75 41.81 432.4 AN 335.75 41.81 432.4 AO 335.75 41.81 432.4 AP 335.75 41.81 432.4 AQ 335.75 41.81 432.4 SA 385.25 78.19 566 BB 408.22 63.32 554.6 BC 408.22 62.71 553.2 BO 408.22 61.49 550.4 BE 397.41 65.5 548.8 BF 382.55 41.39 478.2 BG 395.22 33.99 473.8 BH 395.22 32.96 471.4 BI 395.22 32.12 469.5 BJ 408.35 23.49 462.7 BM 408.35 22.88 461.2 BN 393.75 74.44 565.8 BO 393.75 74.39 565.7 BP 415.16 63.09 561 BS 409.25 23.29 463.1 BT 390 29.75 458.8 BU 397 72.72 565.1 BX 370.5 38.22 458.9 BY 370.5 37.77 457.8 CO 335.75 105.8 580.3 CE 335.75 104.6 577.5 CF 335.75 104.4 577.1 CG 335.75 104.4 577.1 CK 335.75 41.81 432.4 CL 335.75 41.81 432.4 CM 335.75 41.81 432.4 CN 335.75 41.81 432.4 COOLING WATER BOOSTER PUMp*l.. 388.5 18.99 432.4 COOLING WATER BOOSTER PUMP*2.. 388.5 18.99 432.4 DA 385.25 81.39 573.4 DB 408.25 64.41 557.2 DC 408.22 63.7 555.5 DO 408.22 62.18 552 DE 395.43 67 550.3 OF 384.57 47.75 494.9 DG 395.22 41.11 490.2 OH 395.22 39.77 487.1 01 395.22 38.52 484.3 OJ 408.3 26.09 468.6 OM 408.3 23.62 462.9 ON 402.25 25.61 461.4 DO 393.75 77.7 573.4 OP 393.75 77.7 573.4 DO 407.5 71.76 573.4 OT 407.5 22.51 459.5 OU 390 30.08 459.5 DV 370.5 38.33 459.1 EA 388.25 19.1 432.4 EB 410 9.69 432.4 PIPE-FLO 2005 pg 11

CALCULATION NO. NEO-M-MSO-O09 REVISION NO. 88 APPENDIX A Page A29 NODES 10/06110 2:10 pm Node Elev Status Pressure Grade (ft)

(psi g)

(II)

EC 410 9.69 432.4 ED 409 10.12 432.4 EE 395.45 15.9B 432.4 EF 384.5 20.72 432.4 EG 397 15.31 432.4 EH 397 15.31 432.4 EI 403 12.72 432.4 EJ 410 9.69 432.4 EM 410.1 9.847 432.4 EN 392 17.48 432.4 EO 392 17.48 432.4 EP 415.15 7.462 432.4 ES 409.25 10.01 432.4 ET 385.25 20.4 432.4 EU 385.25 20.4 432.4 EV 395.25 16.07 432.4 EY 370.5 26.78 432.4 EZ 370.5 26.78 432.4 FA 388.15 19.14 432.4 FB 409.99 9.695 432.4 FC 409.99 9.695 432.4 FD 410 9.69 432.4 FE 397.4 15.14 432.4 FF 382.5 21.59 432.4 FH 397 15.31 432.4 FI 397 15.31 432.4 FJ 403 12.72 432.4 FK 410 9.69 432.4 FN 410 9.69 432.4 FO 402.25 13.04 432.4 FP 385.25 20.4 432.4 FQ 392.15 17.41 432.4 FR 392.15 17.41 432.4 FV 405.5 11.84 432.4 FW 385.25 20.4 432.4 FX 370.5 26.78 432.4 GA 398.5 18.54 441.3 GB 384 27.12 44S.7 GC 354.75 43.01 454.2 GO 354.75 43.15 454.5 GE 354.75 43.2' 454.6 GF 354.75 43.25 454.7 GG 354.75 33.59 432.4 GH 354.75 43.43 455.1 GI 354.75 43.44 455.2 GJ 354.75 33.59 432.4 GK 354.75 33.59 432.4 GL 356.6 32.79 432.4 GM 358 32.19 432.4 GN 358 32.19 432.4 GO 384 20.94 432.4 GP 398.5 14.67 432.4 HA 340 98.97 568.8 HE 354.75 43.68 455.7 HF 335.75 103.8 575.7 HL 358 32.19 432.4 HM 358 32.19 432.4 HN 354.75 33.59 432.4 IC 391 17.91 432.4 IF 389.5 18.56 432.4 IH 391 17.91 432.4 JB 391 17.91 432.4 PIPE-FLO 2005 pg 12

CALCULATION NO. NED-M-MSD-009 REVISION NO. 88 APPENDIX A Page A30 NODES 10106/10 2:10 pm Node Elev Status Pressure Grade (ft)

{psi g)

(II)

JE 395.25 16.08 432.4 KA 396.5 18.45 441.1 KB 398.5 18.41 441 KC 398.5 18.4 441 KD 398.5 3.896 407.5 KE 398.5 14.67 432.4 KF 398.5 14.67 432.4 KG 398.5 14.67 432.4 KH 398.5 14.67 432.4 New Pipe 404 1.516 407.5 PIPE*FlO 2005 pg 13

CALCULATION NO. NED-M-MSD-009 REVISION NO. 88 APPENDIX A Page A3i PUMPS 10106110 2:10 pm Pump Flow Status Total h.... d dP Speed NPSHa SUction Discharge Suction Discharge (USgpm)

(H)

(psi)

(rpm)

(It)

(psi g)

(psi g)

(H)

(It)

SX Pump lA 24778 (179.1)

(77.48) 98.21 28.33 105.7 332.5 332.79

<no catalog data avaHabte>

SX Pump 2A 22859 (184.4)

(79.76) 97.57 28.05 107.7 332.5 332.79

<no catalog data avaMabte>

COMPONENTS Component Flow Status Head Loss dP Inlet Outlet Inlet Outlet (USgpm)

(It)

(psi)

(psi g)

(psi g)

(It)

(It)

CC HX-O 0.159 0

0 29.27 29.05 364.75 365.25 CC HX-l 16000 24.5 10.6 53.36 40.82 358.5 363 CC HX-2 16000 24.5 10.6 90.74 79.56 384 365.35 Conl Ref2A 1039 4.996 2.161 25.12 23.67 410.15 408.5 Cont. Ref.1A Off 410.1 408.35 Cont. Ref. lB Off 410.1 408.5 CR Ref. Cond OA 1119 26.36 11.4 70.44 58.51 386.35 387.56 OGJWC-1A 1725 20.57 8.899 55.93 45.23 405 409.15 OGJWC-2A Off 405.5 409.25 OGJWC-2B Off 405.5 409.25 CONTROLS Control SelValue Elev Flow Slalus dP HL Inlet Outlet (It)

(USgpm)

(psi)

(It)

(psi g)

(psi g)

HB FCV: 16000 358.5 16000 36.99 85.5 90.47 53.48

<no catalog data avatlab4e>

HI FCV: 16000 354.75 16000 39.77 91.94 84.01 44.24

<no catalog data avaMabte>

HK FCV: FuMy open 365.25 0.159 0

0 29.05 29.05

<no catalog data avaWabte>

PIPE-FLO 2005 pg 14

CALCULATION NO. NED*M*MSD-009 REVISION NO. 88 APPENDIX A Page A32 TANKS 10/06/10 2;10 pm Tank Surface Pressure Level Bottom Elevation Status FloW Pressure Grade (psi g)

(ft)

(ft)

(US gpm)

(psi)

(It)

Basin-3 0

406.5 360.2 0.433 407.5 Connecting pipelines Flow (US gpm)

Pressure (psi g)

Grade (It) 900-1@01t 360.2 0.433 407.5 Infinite tank/no geometry basin-4{ool }

0 406.5 477 0.433 407.5 Connecting pipelines Flow (US gpm)

Pressure (psi g)

Grade (It) 899@01l 477 0.433 407.5 Infinite tank/no geometry CatlA 0

0 432.4 11829 0

432.4 Connecting plpeNnes Flow (US gpm)

Pressure (psi g)

Grade (ft) 857@01t 11829 0

432.4 Infinile tankino geometry CellB 0

0 432.4 11691 0

432.4 Connecting pipeNnes Flow (US gpm)

Pressure (psi g)

Grade (ft) 859@Oft 11691 0

432.4 Infinile tank/no geometry Celie 0

0 432.4 11628 0

432.4 Connecting pipelines Flow (US gpm)

Pressure (psi g)

Grade (II) 861@01l 11628 0

432.4 Infinile tank/no geomeby CeliO 0

0 432.4 11613 0

432.4 Connecting plpeNnes Aow(USgpm)

Pressure (psi g)

Grade (ft) 863@01l 11613 0

432.4 Infinite tank/no geomeby CeliE 0

0 432.4 10.25 0

432.4 Connecting pipetines Flow (US gpm)

Pressure (psi g)

Grade (It) 849@Oft 10.25 0

432.4 Infinite tank/no geometry CelIF 0

0 432.4 9.949 0

432.4 Connecting pipelines Aow (US gpm)

Pressure (psi g)

Grade (II) 851@01l 9.949 0

432.4 Inflnfte tank/no geometry CellG 0

0 432.4 9.905 0

432.4 Connecting pipelines Flow (US gpm)

Pressure (psi g)

Grade (II) 853@Oft 9.905 0

432.4 Infinite tank/no geometry CellH 0

0 432.4 9.901 0

432.4 Connecting pipelines Flow (US gpm)

Pressure (psi g)

Grade (II) 855@Oft 9.901 0

432.4 Infinite tank/no geometry FG(A) 0 0

407.5 47637 0

407.5 Connecting pipelines Flow (US gpm)

Pressure (psi g)

Grade (II) 843@Ofl 47637 0

407.5 Infonite tank/no geometry PIPE-FLO 2005 pg 15

CALCULATION NO. NED-M-MSD-009 REVISION NO. 88 APPENDIX A Page A33 TANKS 10106110 2:10 pm Tank Surface Pressura Level Bottom Elevation Starus Row Pressure Grade (psi g)

(tt)

(It)

(USgpm)

(psi)

(tt)

FG(B) 0 0

407.5 0

0 407.5 Connecting pipeNnes Flow (US gpm)

Pressure (psi g)

Grade (tt) 845@Olt 0

0 407.5 Infmlte tank/no geometry DEMANDS Demand SelVatue Flow Rate Pressure Elev Status Grade (USgpm)

(psi g)

(ft)

(ft)

IA Row out 20 75.57 391 565.7 IG Flow in 20 18.56 389.5 432.4 JA Row out 20 77.16 395 573.4 JF Flow in 20 18.67 389.25 432.4 PIPE-FLO 2005 pg 16

CALCULATION NO. NED-M-MSD-009 PIPE*FLO 2005 REVISION NO. 88 NOTES SPECIFICATIONS FLUID ZONES PIPELINES NODES PUMPS COMPONENTS CONTROLS TANKS DEMANDS APPENDIX A PageA34 10106/10 2:10 pm pg 17

CALCULATION NO. NEO-M-MSO-O09 REVISION NO. 88 APPENDIX A Page A35

CALCULATION NO. NED*M*MSD*009 REVISION NO. 88 APPENDIX A (FINAL PAGE OF APPENDIX A)

Page A36 LULU o 0

  • c 'C

~ 8 u)Ul B

5~

u -'

.£i' c: "

'" }

CALCULATION NO. NED-M-MSD-009 REVISION NO. 8B APPENDIX B scenario 8E.TXT MRL/ESC MODEL FOR BYRON ESW COOLING TOWER 9/91 06-04-2010 10:52:09 INPUT DATA 29.92 BAROMETRIC PRESS (In HgA)

WATERFLOW (GPM)

MINIMUM 11441 82.00 75.00 10.00 MAXIMUM 11441 82.00 75.00 40.00 INCREMENT INLET WET BULB (F)

INLET REL HUMIDITY (%)

RANGES (F)

OUTPUT DATA Water Flow to Tower (GPM)

Air Inlet Dry Bulb (F)

Air Inlet Wet Bulb (F) cooling Range (F)

Air outlet Wet Bulb (F)

Evaporation (% of WF2) volumetric Air Flow Rate at Fan (CFM) 1 1.00 1.00 3.00 WF2 DB1 TWB1 RGE TWB2 EVAP CFM L/G KAV/L CW Water-To-Air Loading (lb/hr-water / lb/hr-dry air) cooling Tower Thermal Transfer Coefficient Predicted cold Water Temperature (F)

WF2 11441 11441 11441 11441 11441 11441 11441 11441 11441 11441 11441 DB1 88.91 88.91 88.91 88.91 88.91 88.91 88.91 88.91 88.91 88.91 88.91 RH1 TWB1 75.00 82.00 75.00 82.00 75.00 82.00 75.00 82.00 75.00 82.00 75.00 82.00 75.00 82.00 75.00 82.00 75.00 82.00 75.00 82.00 75.00 82.00 RGE TWB2 EVAP CFM 10.00 98.64 0.85 641829 13.00 102.75 1.09 641831 16.00 106.58 1.34 641832 19.00 110.16 1.60 641833 22.00 113.51 1.85 641829 25.00 116.66 2.11 641830 28.00 119.64 2.37 641831

31. 00 122.46 2.63 641832 34.00 125.14 2.90 641833 37.00 127.69 3.16 641831 40.00 130.12 3.43 641830 Page 1 L/G 2.23 2.27 2.31 2.34 2.38 2.42 2.45 2.49 2.53 2.57 2.61 Page B1 DESIGN 12500 78.00 75.00 23.20 KAV/L CW 1.798 90.62 1.788 92.42 1.778 93.99
1. 769 95.36
1. 759 96.57
1. 750 97.64
1. 741 98.60
1. 732 99.46 1.723 100.24
1. 714 100.96
1. 705 101. 62

CALCULATION NO. NED-M-MSD-009 REVISION NO. 88 APPENDIX 8 scenario 8E1.TXT MRL/ESC MODEL FOR BYRON ESW COOLING TOWER 9/91 06-04-2010 10:50:03 INPUT DATA 29.92 BAROMETRIC PRESS (In HgA)

WATERFLOW (GPM)

MINIMUM 11440 82.00 75.00 10.00 MAXIMUM 11440 82.00 75.00 40.00 INCREMENT INLET WET BULB (F)

INLET REL HUMIDITY (%)

RANGES (F)

OUTPUT DATA water Flow to Tower (GPM)

Air Inlet Dry Bulb (F)

Air Inlet Wet Bulb (F) cooling Range (F)

Air Outlet Wet Bulb (F)

Evaporation (% of WF2) volumetric Air Flow Rate at Fan (CFM) 1 1.00 1.00 3.00 WF2 DB1 TWB1 RGE TWB2 EVAP CFM L/G KAV/L CW Water-To-Air Loading (lb/hr-water / lb/hr-dry air) cooling Tower Thermal Transfer coefficient predicted cold water Temperature (F)

WF2 11440 11440 11440 11440 11440 11440 11440 11440 11440 11440 11440 OBI 88.91 88.91 88.91 88.91 88.91 88.91 88.91 88.91 88.91 88.91 88.91 RH1 TWB1 75.00 82.00 75.00 82.00 75.00 82.00 75.00 82.00 75.00 82.00 75.00 82.00 75.00 82.00 75.00 82.00 75.00 82.00 75.00 82.00 75.00 82.00 RGE TWB2 EVAP CFM 10.00 98.64 0.85 641848 13.00 102.75 1.09 641846 16.00 106.58 1.34 641847 19.00 110.16 1.60 641851 22.00 113.51 1.85 641851 25.00 116.66 2.11 641847 28.00 119.64 2.37 641848

31. 00 122.46 2.63 641848 34.00 125.13 2.90 641850 37.00 127.69 3.16 641847 40.00 130.12 3.43 641848 page 1 (FINAL PAGE OF APPENDIX 8)

L/G 2.23 2.27 2.30 2.34 2.38 2.42 2.45 2.49 2.53 2.57 2.61 Page 82 DESIGN 12500 78.00 75.00 23.20 KAV/L cw

1. 798 90.62
1. 788 92.42
1. 778 93.99
1. 769 95.35
1. 759 96.57
1. 750 97.64
1. 741 98.59
1. 732 99.46
1. 723 100.24
1. 714 100.96
1. 705 101. 61

CALCULATION NO. NEO*M-MSO-o09 REVISION NO. 88 APPENOIXC Page C1 Scenario 8E (BDG Failure)

Two Tower Model -

(Heat load for Power Uprate)

EDG Failure (Loss of SX Pump 2B) with no Cells OOS gal 6

ORIGIN!!! I in!!! I L Ibm!!! 1M F== lQ sec== IT gpm:= -. ~:= Ibm*F MBTU:= BTU* 10 mill Cooling Tower Performance

(

126.6 )

Thl:=

  • F 118.57

(

98.6 )

Tel:=

  • F 96.57

(

126.6)

Th2:=

  • F 118.57

(

98.6 )

Te2:=

  • F 96.57

(

126.6)

Th3 :=

  • F 118.57

(

98.6 )

Tc3:=

  • F 96.57

(

126.6)

Th4:=

  • F 118.57

(

98.6 )

Te4:=

  • F 96.57

CALCULATION NO. NED*M*MSD-009 REVISION NO. 88 APPENDIX C Page C2 Uprate Heat lQad (£42) 83 0.00 83 0.17 426 0.35 426 0.50 426 0.75 426 2.00 426 2.17 426 2.33 426 2.50 426 3.32 426 4.98 426 6.65 426 8.32 426 9.98 426 11.50 426 11.65 426 13.32 426 14.98 426 16.65 L2:= 426 MBTIJ T2 :=

18.32 *min hr 611 19.98 609 21.65 607 23.32 589 29.98 541 39.98 502 49.98 469 59.98 432 83.32 390 116.65 340 166.65 277 333.32 252 480.00 560 480.17 550 540.00 544 600.00 541 627.50 538 660.00 477 660.17 472 732.00

CALCULATION NO. NED-M-MSD-009 REVISION NO. 88 SX System Flow rate QI := 47599*gpm Q2 := 47599'gpm Basin Mass 6

V:=0.534*10 *gal Ibm p:= 8.33*-

gal Fans (Active/Total) fll := 0.961 fl2:= 0.961 f21 := 0.000 f22:= 0.000 (Total flow to T1 and T2 gpm)

(Total flow to T1 and T2 gpm)

(Design input 2.4)

BTU C :=1*--

P F.lbm 6

Mb = 4.45 x 10 Ibm Time Constant V

tl:=-

QI V

t2:=-

Q2 APPENDIXC Fraction of flow to Tower 1 Fraction of heat load to Tower 1 al := 1.000 a2:= 1.000

~I := 1.000 132:= 1.000 Find Slopes and Intercepts of cooling towers 1 and 2 Page C3 Mil := slopetThl, Tcl)

Bll:= intercept(ThI. Tcl)

MI2 := slope(Th3. Tc3)

BI2 := intercept(Th3. Tc3)

M21 := slope(Tb2, Tc2)

B21:= intercept(Th2, Tc2)

Mil = 0.253 M21 = 0.253 Bll = 66.595 F B21 = 66.595 F M22 := slope(Th4, Tc4)

B22 := intercept(Th4, Tc4)

MI2 = 0.253 M22 = 0.253 B 12 = 66.595 F B22 = 66.595 F

CALCULA rlON NO. NED-M-MSD-009 REVISION NO. 88 Calculate Intermediate Constants AI:= ( ~I}[I-al*[(I-fll) + fll*Mll] - (I - al).(1-f21 + f21*M21)]

A2 := ( ~)[ I - a2*[( 1 - f12) + fl2* M12] - (I - (2).(1 - f22 + f22* M22)]

pl*(l - f11 + f11*Mll) + (I - pJ).(l - f21 + f21*M21)

D I := -'---'--------'-----'--'--'---------'-

Mb*Cp p2*(l - f12 + f12*MI2) + (J - p2)*(l - f22 + f22*M22)

D2:=-'---'---------'------'--'--'---------'-

Mb*Cp al*f1I*Bll + (I - aI).f1l.B21 CI := QI*-----'------'---

V u2*f1"*Bl" + (I - (2).f2?B2?

C2 := Q2*

1 Al = -0.06-min I

A2= -0.06-min V

-8 F Dl = 6.34 x 10 --

BTU

-8 F D2 = 6.34 x 10 --

BTU Integrating to Solve for Basin Temperature F

CI=5.7-min F

C2= 5.7-min Ubi := 96*F i:= 1.. 299 H:=.I*min st.:= j*H

.i.,:= 300.. 7000

,!;J.,:=.I*min st.:= i*H 1

1 APPENDIXC Page C4

CALCULATION NO. NED-M-MSD-009 REVISION NO. 88 APPENDIXC Page C5 Results

,1= I, 20.. 7000 107 104.88 102.75 100.63 u.. Ubi 98.5 0

96.38 94.25 92.13 90 0

1.104 2.104 3.104 4.104 stj Basin Temperature Response vs. Time (sec) use uprate heat load max(Ub) = 98.17F @t=560min Ub300 = 97.6 F Ubjndex = 98.17 F st. d

33588 sec III ex maximum :

maximum +- 0 for i E 100.. 7000 maximum +- max(Ubj) if max(Ubi) ;?: maximum maximum = 98.17 F index:=

index +- 0 maximum+- 0 for i E 100.. 7000 maximum +- max(Ubj) if max(Ubj) ;?: maximum index +- i if ma~Ubj) ;?: maximum index = 5.6 x 103

CALCULATION NO. NED-M-MSD-009 REVISION NO. 88 APPENDIXC Basin Temperature and UHS Heat Load vs. Time Ub.

I F

96 95.96 95.99 96.01 96.03 96.05 96.07 96.08 96.26 96.7 97.06 97.35 97.58 97.75 97.87 97.94 linterp(T2, L2, S\\)

MBTU hr 83 426 426 426 426 426 426 426 610.86 607.86 602.19 595.43 588.42 576.42 564.42 552.42

,.i..:= 1,26.. 1000 st.

I min 0.1 2.6 5.1 7.6 10.1 12.6 15.1 17.6 20.1 22.6 25.1 27.6 30.1 32.6 35.1 37.6 Page C6

CALCULATION NO. NED-M-MSD-009 REVISION NO. 88 APPENDIX C Page C7

,1= 1,20.. 7000 1000.-------------------------------------------~

800 600 Iinterp{ T2, L2, slj)

(M::U) 400 200 O~------------------------------------------~

o 5000 1010"'

1.5 010"'

2 0104 205 0104 3 0104 305 0104 4 0104 st; Post LOeA Time (sec)

UHS Accident Heat Load Profile L42

CALCULATION NO. NED-M-MSD-009 REVISION NO. 88 APPENDIXC Scenario BEl (EDG Failure)

Two Tower Model -

(Heat load for Power Uprate)

EDG Failure (Loss of SX Pump 2B) with no Cells 005 and no fans initally running gal 6

ORIGIN== I in== IL Ibm== IMF== IQ see== IT gpm:= -. lll!1:= Ibm*F MBTU:= BTU* 10 mm Cooling Tower Performance

(

126.59)

Thl:=

  • F 118.57

(

126.59)

Th2:=

  • F 118.57

(

126.59)

Th3:=

  • F 118.57

(

126.59)

Th4:=

  • F 118.57

(

98.59)

Tel:=

  • F 96.57

(

98.59)

Te2:=

  • F 96.57 Te3:= (98.59).F 96.57

(

98.59)

Te4:=

  • F 96.57 Page C8

CALCULATION NO. NED-M-MSD-009 REVISION NO. 88 APPENDIXC Page C9 Uprate Heat load (L42) 83

( 0.00 83 0.17 426 0.35 426 0.50 426 0.75 426 2.00 426 2.17 426 2.33 426 2.50 426 3.32 426 4.98 426 6.65 426 8.32 426 9.98 426 11.50 426 11.65 426 13.32 426 14.98 426 16.65 L2 :=

426 MBTU T2:=

18.32 *min hr 611 19.98 609 21.65 607 23.32 589 29.98 541 39.98 502 49.98 469 59.98 432 83.32 390 116.65 340 166.65 277 333.32 252 480.00 560 480.17 550 540.00 544 600.00 541 627.50 538 660.00 477 660.17 472 732.00

CALCULATION NO. NED-M-MSO-O09 REVISION NO. 88 SX System Flow rate QI := 47598*gpm Q2 := 47598*gpm Basin Mass 6

V:= 0.534*10 *gal Ibm p:= 8.33*-

gal Fans (Active/Total) fll := 0.961 fl2:= 0.961 t21:= 0.000 f22:= 0.000 (Total flow to T1 and T2 gpm)

(Total flow to Tl and T2 gpm)

(Design Input 2.4)

BTU C :=1*--

P F.lbm 6

Mb = 4.45 x 10 Ibm Time Constant V

,1:=-

QI V

,2 := -

Q2 APPENDIXC Fraction of flow to Tower 1 Fraction of heat load to Tower 1 al := 1.000 a2:= 1.000

~I := 1.000 P2:= 1.000 Find Slopes and Intercepts of cooling towers 1 and 2 Page C10 Mil := slope(Thl, Tcl)

BII:= intercept(ThI, Tel)

MI2 := slope(Th3. Tc3)

B12:= intercept(Th3, Tc3)

M21:= slope(Th2,Tc2)

B21:= intercept(Th2,Tc2)

Mll = 0.252 M21 = 0.252 Bll = 66.706 F B21 = 66.706F M22 := slope(Th4, Tc4)

B22 := intercept(Th4, Tc4)

MI2 = 0.252 M22 = 0.252 BI2 = 66.706F B22 = 66.706 F

CALCULATION NO. NED-M-MSD-009 REVISION NO. 88 Calculate Intermediate Constants AI:= ( ~1}[1 _ al*[(l-fll) + fll*MII] - (I - aJ)'(I-f21 + f21.M21)]

A2:= ( ~}[I - a2.[(1-fl2) + f12*MI2] - (J - (2)*(1 - f22+ f22.M22)]

~2*(1 - fl2 + f12*MI2) + (t - 132).( I - f22 + f22*M22) 02 := =..::.::..~-=-=---..:..::..:::...;...:.;..~:.....:..;:...-..!:.::::....:..::....--.;;:::::....--=..:.-:.;::.::.::.

Mb'Cp aI*fll*Bll + (I - aI).f2I*B2I CI:= QI.----..;.y----.;---

a.2*fl2*B12 + (I - (2).f22.B22 C2 := Q2*----~-...:.--

y I

Al =-0.06-mm I

A2=-0.06-.

mm

-8 F 01 = 6.32x 10 --

BTU

-8 F 02 = 6.32 x 10 --

BTU Integrating to Solve for Basin Temperature F

CI=5.71-min F

C2 = 5.71-min UbI := 82*F i:= 1.. 99 H:=.I*min st.:= i*H 1

( Iinterp( T2, L2, sti) )

Vb. 1'- lJb. +

  • H 1+

1 Mb'Cp

..!,;= 100.. 299 Ji.:=.1* min st.:= j*H 1

..!,;= 300.. 7000 Ji.:=.1* min st. := i*H 1

APPENDIXC Page C11

CALCULATION NO. NED-M-MSD-009 REVISION NO. 88 APPENDIXC Page C12 Results 1..,:= 1,20.. 7000 107 104.88 102.75 100.63 i;'-

Ubi 98.5 96.38 94.25 92.13 90 0

1.104 2.104 3.104 4.104 sti Basin Temperature Response vs. Time (sec) use uprate heat load max(Ub) = 98.19 F @t=38.3 min Ub300 = 98F UblOO = 97.5F Ub. d

98.19 F In ex st. d = 2298 sec ill ex maximum :

maximum +- 0 for i E 100.. 7000 maximum +- ma~Ubi) if ma~Ubi) ~ maximum maximum = 98.19F index :=

index +- 0 maximum+- 0 for i E 100.. 7000 maximum +- m~Ubi) if m~Ubi) ~ maximum index +- i if m~Ubi) ~ maximum index = 383

CALCULATION NO. NED-M-MSD-009 REVISION NO. 88 APPENDIXC Page C13 Basin Temperature and UHS Heat Load vs. Time 1.;= 1,26.. 1000 Ub.

I MBTU st.

I F

hr min 82 83 0.1 85.72 426 2.6 89.71 426 5.1 93.7 426 7.6 97.52 426 10.1 97.32 426 12.6 97.15 426 15.1 97 426 17.6 97.05 610.86 20.1 97.36 607.86 22.6 97.62 602.19 25.1 97.83 595.43 27.6 97.99 588.42 30.1 98.1 576.42 32.6 98.16 564.42 35.1 98.19 552.42 37.6

CALCULATION NO. NEO-M-MSO-o09 REVISION NO. 88 APPENOIXC Page C14

,!.i= 1,20.. 7000

\\OOOr------------------------------------------,

800 600 linterp{ n, L2. sti)

(M~~U) 400 200 o~----------------------------------------~

o 5000

\\.\\04

\\.5.\\04 2.\\04 2.5'\\04 3'104 3.5'\\04 4'104 sti Post LOCA Time (sec)

UHS Accident Heat Load Profile L42 (FINAL PAGE OF APPENDIX C)

ATTACHMENT 3 Additional References

2. Calculation ATD-0063, Revision 0048, "Heat Load to the Ultimate Heat Sink During a Loss of Coolant Accident"

ATTACHMENT 2

[)UIgn Analysis Minor Revision Cover Sheet o.qn Analysis (Mnor R..,lslon, Anatpls Nc.;

ATO.0053 EClECR No.:

  • Statlon(a)::,

UnlNo.:~

smtvlQA aBS: '

IyIaIm Coft($): '"

311388 Byron 1 and 2 SR

$X P

1 CC-AA*309.. 1001 Revision 4 Is this D_un AM.,.1s ~rds Information?"

v_o Nor8l tfyu,u@SY~101-1oe

~.. 0.., ~.~n lJ'mIe~ AtoIYmplOn$? 1'$

V-181 No rr Vea, A WAR#:: 794928-02 This ~

AftiaIyW SUPERCEDE&:

NA in Us entirety.

ATD-0063 Rev. 004 W9S tavia@d to ~

1he I1isc:ellaneclI ** beet load from 1he abendoned ret:yae evapoflitor~" Additional)' a n.w tab,.

!he toW nut load 10 d'le UHS

  • calculated anumlng

~

action ia1a~n 10 reduce the hea input 10 the UHS from the RCFCa in the event ~Jited singde fdum of electr1c3 ~"

multin !he loss at two apar.!!lble SXCl D.poa~ of Changes: >lI See attadled pag_ b the revised hNt load Input.

i PeermiewO 1,$... bl_~~1

&ternM Approver. )'J M~A NenI

&akm RlWiewer lH

t,

2, 3,

4.
11.
14.
15.

CC...AA-309 Revision 1 Page 1 of 1 ATTACHMENT 2 OWners Acceptance Review CMckIht for Emma. Design Analysla Page 1 of1 REV: OI4B CALC PAGE NO.: 1.

Yes No NlA

... mptiona 1!f 0

0 AIe*aumptiOnt ~pd!Be baIis?

Do h deagl1 inputs have ~t rDnale?

Ar8 duign I'IpUbi ~

~nabll:1 Are delign inpult ~I&

wit!

"'I h plimt iI opemtsd and the bnlllg balis1 Ar8 Eng~

Judgrnentl dnrIy dooumerMd and judfied?

Are e:ngfneerlng*JudgmtWl_ compatible the -'I ~

pIMt is opwaled with llelclMlng b4i11iI?

lhl and col'ldulkml ~1h1 p~

and ~

the An~?

If 0

H 0

Jl 0

J!(l' o

o..

Are condIJliont compItible the w.; I'll pfant it ~

'd wllh lhe b4i1III'?

O(\\!ll)l the DeeigI1 Anel'fllt include the appbb\\e dnfgn b4i1_

0 da:::urmmtdcm?

~

HlIWe IR'f li~

on weofh reeub been ~

and hnlmitted Ie _ appn:!pria organlDtkm?

Ale there un~

"JmiP~11 aI un\\WIhd aMUmptllms Nwe a traddng ad elol!wre 10 HaIMd a~

design ~s bean ~nltd on ~A~

Documenm Lilt (ADL) for the ~ted Change?

~

dlopufS and analysis meahodology oM ~nt tec:hniai requ~nm and ~

~fS?

(If lie input IOUreet or a,.. mI1hodolcg'f SRI beIed on en 01A-CF-dete methodoklg'f or code.

additionat reI::'iOndlilitOOn may required site hE *'ce eoml1'litted to a mm~

Have wm:klr wpporting tec:hnical doeumenb and referencet IOOIIJOJRg

~~~~1 DATE!

o o

o o

o

(

o o

o

l...l I

CALCULATION NO. A 11).0013 REVISION NO. 0041 PAG!2 r

PURPOSE ATD-0063

~~

heat load from the abandoned recycle M.llIIIOiI't~dN ~.. ~Ry anN Ihe ~

hut bad m 1M UHS Is caJculad auumiftg Opel'eklr idkm is ~

to ~ beat input to the UHS the RCFCs in the event postuIad

~ca b~

raul In 1M Ion of two ~*

fans.

DeSIGN INPUTS boron ~

MtaPOrn:w II no longer ued

~

4.1). PIping.

3nd components ~_

wih the teMoe water supply and return for the tecyde ewporlton tla bMft ~nlld in ~

[Rti. 4.4]. Therefore 1M hefJt bad for It!e fll!iI!'!i~w~ ~

Is UlfO.

2.2 The ndM:eI~MIiOI~

liMed in Table 3.

The ~

and ~ent unit heat load inputs rome from Referef1Ge1 12, and 16 the bam

_::ulaltiOft as !Is. in Table e.

3.0 ASIUMPT10N8 For tie lOCAJLOOP event Wilt! Siftgr8 taifutee d~bed above. it II ~

that ~

will 5hed hMt !mid by ~uring two of RCFCs on lOCA untt within 30 mlnuta.. The time to tum 01 RCFCs was ~

'lritft the opaqb'8 and determined to be reasona*.

deCision to ~ure RCFCs

~Mna a lOCM.OOP want woUld ol'liy neoHafY fOr the In'IIting single failure of SX ~

11a..... rilhiiNi in UH&o1 (Ret 4.2] under the m<<:lSl severe design baSis ~

oonditiClnl (mmnum wet temperature,. Cummtty, there II no procedOOll guidance Ie iShed the RCFC load at minuta Guida~ woUld need to be added to the appro_. proceduree

~f1Ge of minor ~I"L (UHVDUF1ED) 3.2

~

two of folX Of the RCFCS ere aecured. the RCFC heat refl1O\\l'el is aQ~

to be of the RCFC 4.0 4.1 4.2 4.3 4.4 4.5 h.. ren'IfMII of RCFCs. 'iNIb two RCFOI ~tlng Ihe post4CCIMnlra of comalnment oooidown will be..

falX RCFC8 are MilUmed to be in operation. This would fWUil in highlf ~Ir tempe~ entaing N RCFC and somI mCfMM in hHl ~

fa' the two ~ng RCFCa.

Hn caliculating peak UHS.m~

the period of Interest is Ihe tnt fJOOO aaoonds (8M sa!lnanos 5. 8. 1, and 8 of NE~

(Ref. 4.3J). With RCFCa operating the calWlad aJl$inment Irtearnfair temperature drops from 188.7"f to 149.9"F from tiIrIIt III 1199 MCOOds to time::

5_ ~nds (Sea TatH 6 of the bale (Rev, 4) calCUls6)n). WIth only two RCFCa, end same SX su~ ~. drop in ttlmperature CWfW Ihe same ~

period 'would be ~m_y one hal or... 2()'l'F, Ttle c:aleuiallad fl'leXimum hMt itiput from the RCFC8 WBii con~ly besed on It! illiilUmed SX supply blmpeffiJre 3n [Rfilf. 4.6t During Ihe tIr'M period of ~

1M SX 18m~ wil actually be a~ng Ihe SX supply _ign ~

of 100"E ThiS provi<lel ~

68~

~

In the approach te~re for U. RCfC. which. greaterlhM Ihe ~

2CfF IRtreaM In the appl'Oileb blmperalUre due to ~ng two of the four RCFCs. Thue asuming SO~ at the RCFC load rlOOnlef\\ldva REFERNCES UFSAR ~~

9, December 2002, Sedon 9.3,4,2 UHS-Ot RM', 4, 'UIimIte ~

Sink DMign Bail Nt:;LJ*M~M~J..OO, RfiW" B. "Byron '"".. "'r..... '"

'ui:i'i~"a RM', 0, 'AbaooonABEw~I'AS WSC~ts, D. ~BYRONISRAIDWOOD UN.T 1 - Uprtli8 ~

lOCA Mus and Enetg)'

~

And Containment I~

An~

Using B&W Replacement Steam Generaklr,"

[ CALCULATION NO. ATD-OOI3 RlMSION No.. 0048 :

PAGE 3 I

5.0 METHOD OF ANAL YSII In Table 3 of the main body of ChIs aalculttlon the miscellaneous heat loads are IIRId.

A total mltoellaneou8 heat load of 103 )( 1r1 BIuItW' (fer both lOCA and ncwH.OCA units)

  • ueed jn this calcu~ aIIhough ¥IMn aI of the heat loads Mtsummed the total Is 90.7 x 10' Btulhr. ihIs dWferlnce (12.3 x lU'" BtuItlr)
  • eking with subbacting a 13)( 1at Btur'hr for the feCYde ev8l,XlnltOr package si1ce it was retinJd i\\ ptaoe [Ref.*s 4.1 and *.* J. ytalds a rtMsed toIII mlscelaneaus heal toad of 82..51 x 1d' Btv.thr.. A new Table 9 will be Q'eated by f8IriIi1g Table 8 from lie main body of tt1iI calcuratioo UIing the reduced mlSCldaneous heat load.

OtI1ng peliOds at limiting \\lIMIher concttlons. in order to rnaII'ttUllhe SX oooIlng rower beain _~

rea 1I18n 10C1'F dwing the postulated _gIe fallwes of elec:tJicat breakers seMng 1I1e SX syst8m components occurtIng conctJrrent with a lOCA and a lOOP on one unit wtth the oppoeite unit In nonnet shutdown. some heat load to the UHS may need to be.tied. In U1iI caM. it i8 assumed tmi: hllff of the RCFC heat load on the lOCA unit is Shed in 30 ml..... by SICUIlng two at four RCFCs (tee Assumptions 3.1 and U). In NeD-M-MSD-09 [Ref.... 3J the postuIat8d failure of an emergency diesel genet_ also c:onsicktra two of fout RCFCs to be inCIpetabIe (SCenario 3A). In tetm& of comainment cooing. Ihta IC8I'IIIrio with two of four RCFCs aand III bounded by the fall.... of an emergency dlelef generatot. A new Table 10 WiI be genef8led for the accident heat toad with redUCed RCFC heat load input starting at 30 minUIM. A new Table 11 will be aNted lor thllotIl UHS hut load Input with the reduCed milSCeleneoU15 heat roed and the redueed RCFC heet Joed,.

6.0 NUllERfCAl ANAL Y8I8 6.1 Nt'<< Aq;;ident Heat Loaa wjtb Redyced BCfC Inpyt In Table 8 of the bale (Rev. ") calculation, the accident heat loads are listed. The total heat load Is dl!M8tmlned by summing the RCFC heat removal heat Joad and the RHR HX heat kJed. Starting at 1799 sec:ondI (-30 minutes); half of the RCFC "atlo8d is ramcMld from the total hut toad. 1MIen Ihe time scale dkt not cotncide wlth the Table 8 time ecaie, n.... ln4etpolatiOn wee I,J$$(J. For exel'1'1Pe. at 28,800 secondt, the RCFC heat load was IntBrpofated bItInen 19.999 IICOnds and 29,m seconds. Art

~

of shedding half at the RCFC heat fOad 10t 1799 secondS is ShOwn beloW:

Half at the RCFC Heat Load ;: 348,2~,956 f 2 :; 113,123,478 BTUIhf Total Heat loed ;: 173,123,478 + 271,418,088;; ~,601,566 BTUIhr 7.0 RESUlTS AND CONCLUSIONS The new Table 9 sOOws the tatat UHS heat bad wtIh the reduced rNscaIIaneous heat kIad only. The new Table 10 showe the accident heat road with RCFC heat load teduCtion only. The newTabie 11 shows the tobJI UHS hut load with the reduced niscdlneous heat *oIId and the nllduced RCFC heat load.

I CALCULATION NO. ATI).(IOI3 REVISION NO. 004B PAGE 4 I

LoR Only

I CALClILAT10N NO. ATD-OOI3 REVISION NO. 0048 PAGEl I

I CALCULATION NO. ATD-OOI3 REVISION NO. ONS PAGEl I

No~

Heat load wfIh Mise Heat tteat RHR RCFC Load from Heat load Red~

Bath Unilla

\\ )

ATTACHMENT 4 Supporting Calculation The following list identifies those actions committed to by Exelon Generation Company, LLC, (EGC) in this submittal. Any other actions discussed in the submittal represent intended or planned actions by EGC, are described only for information, and are not regulatory commitments.

COMMITMENT TYPE ONE-TIME PROGRAM-ACTION MATIC COMMITTED DATE (YES/NO)

(YES/NO)

COMMITMENT OR "OUTAGE" EGC will revise appropriate Upon implementation of No Yes procedures to caution operators on the proposed change the non-accident unit to monitor Essential Service Water temperature during the cooldown and to manage the heat load inputs to the Ultimate Heat Sink from the non-accident unit to maintain Essential Service Water pump discharge temperature $.100 of.