L-2009-192, Response to Request for Additional Information on Confirmatory EPU Analyses

From kanterella
(Redirected from ML092600892)
Jump to navigation Jump to search
Response to Request for Additional Information on Confirmatory EPU Analyses
ML092600892
Person / Time
Site: Saint Lucie NextEra Energy icon.png
Issue date: 08/14/2009
From: Katzman E
Florida Power & Light Co
To:
Document Control Desk, Office of Nuclear Reactor Regulation
References
L-2009-192
Download: ML092600892 (105)


Text

0 FPL Florida Power & Light Company, 6501 S. Ocean Drive, Jensen Beach, FL 34957 Proprietary Information - Withhold Under 10 CFR 2.390 August 14, 2009 L-2009-192 10 CFR 50.4 10 CFR 2.390 U. S. Nuclear Regulatory Commission Attn: Document Control Desk Washington, DC 20555 RE:

St. Lucie Unit 1 Docket No. 50-335 Extended Power Uprate Data for NRC Confirmatory EPU Analyses This letter provides additional data requested by the NRC via emails dated May 28, 2008, and June 2, 2009, that is needed to build St. Lucie Unit 1-specific LOCA models for the NRC's confirmatory EPU analyses. This data is provided in Attachments I and 2.

Attachment I contains no proprietary information. Information contained in Attachment 2 is classified by AREVA NP as proprietary. The signed affidavit for withholding the information from public disclosure withholding from AREVA NP is provided in in accordance with the provisions of 10 CFR 2.390(b). Attachment 4 includes a nonproprietary version of information provided in Attachment 2.

Please contact Ken Frehafer at 772-467-7748 or Kathy Rydman at 772-467-7680 if there are any questions regarding this information.

Sincerely, Eric S. Katzman Licensing Manager St. Lucie Plant WAl&

serwL6 4a ck t

e t`_

L4 Ile'0

-Ic 01 ek-ZL j-.c lo ý-/ e-e7)e7- ?W7-J-OOT ESK/tlt Attachments (4)

Aoot an FPL Group company

ATTACHMENT 1

L-2009-192 Page 1 of 57 ST. LUCIE UNIT 1 EPU Input Data Request to NRC for LOCA Model Item Parameter -Description Units Value Comments No.

1.

Plant Operating Conditions la For rated power conditions (Current)

1. Primary and Secondary Flow rates:

1.1. Core flow Unc: +/- 14,945 gpm and gpm 410,922 min flow is 365,000 gpm 1.2. Main coolant pumps 95,000 (1A1) gpm 96,000 (1A2)

RCP Pump Test Data 94,000 (1B2) 1.3. Steam flow Ibm/s See Item la.7.1 1.4. Feedwater flow Ibm/hr See Item la.7.1 1.5 SG recirculation ratio/boiler section Power %Circ nlow Ratio Power-25 15.3 50 8.7

% CircRatio 75 5.95 90 4.9 100 4.

2.

Primary and Secondary Pressures:

2.1. Pressurizer Pressure range is 2225 to psia 2250 2275, with Unc: +/- 22 Normal, + 80 Accident

L-2009-192 Page 2 of 57 Item Parameter -Description Units Value Comments No.

2.2. Core inlet Estimate based on Rx vessel pressure losses of 35.4 psia and core outlet pressure.

2.3. Core outlet Assumed to be the same as the pressurizer.

2.4. Reactor coolant pump discharge Assume a 1 psi pressure psia 2286 drop from RCP discharge to core inlet.

2.5. Steam generator dome Steam Generator Outlet from Benchmarked Heat Balance plus pressure drop to Upstream Outlet Nozzle 2.6. Turbine control valve inlet psia See Item la.7.3 2.7. Detailed primary loop pressure drop distribution psi See Section 4.1

3. Primary and Secondary Teimperatures:i 3.1. Hot leg Assumed to be the same as the core outlet temperature OF 599 since the Rx vessel does not have upper head injection.

3.2. Cold leg OF 549 Tcold temperature at full Unc:++/- 3°F power.

3.3. C o re o u tle tOF5 9-33.4. Upper Head Assumed to be the same as

°F 599 the core outlet temperature since the Rx vessel does

L-2009-192 Attachment I Page 3 of 57 Item Parameter -Description No.

4. Water levels in the pressurizer and steam generators.
4. 1. Pressurizer

% Tap Span See Figure 1 4.2. Steam Generators Reference SG elevations ft 35.0 from bottom of support skirt base.

5.

Leakage flows (Bypass):

% of vessel flow 5.1. Outlet nozzle clearances percent 1.18 5.2. Downcomer to upper head percent 0.17 5.3. CEA shrouds Equivalent to a fraction of the leakage through guide tubes (item la.5.5.1). This has not been quantified.

5.4. Upper head to upper plenum (guide This has not been structure holes) percent N/A quantified.

5.5. Core bypass (guide tubes, barrel-baffle) 5.5.1. Guide tubes percent 1.86 5.5.2. Barrel-baffle percent 0.50

6. Steam generator recirculation ratio Power-

%CircRatio See Item a..5

L-2009-192 Page 4 of 57 Item Parameter -Description Units Value Comments No.

7.

Heat balance information, such as:

7.1. Feedwater and steam flows ibm/hr 11,851,050 Benchmarked Heat 11,784,590 Balance 7.2. Feedwater temperature OF 435 Benchmarked Heat Balance 7.3. Turbine inlet pressure Benchmarked Heat psia 816.4 Balance, Turbine Valve Inlet

1.

Plant Operating Conditions lb.

For EPU conditions.

1. Primary and Secondary Flow rates:
1. 1. Core flow Nominal value based on the most recent gpm 410,922 measurement. Unc:+/-

15,000 gpm; TS Min flow is 375,000 gpm 1.2. Main coolant pumps 95,000 (IAI) gpm 96,000 (1A2)

RCP Pump Test Data gpm95,000 (1 B1) 94,000 (1B2) 1.3. Steam flow Ibm/s See Item lb.7.1 1.4. Feedwater flow Ibm/hr See Item lb.7.1 1.5. SG recirculation ratio/boiler section flow Power

%Circ Ratio Power-Rai 25 14.18 50 7.92

% CircRatio 5

5.32 75 5.32 90 4.38

L-2009-192 Attachment I Page 5 of 57 Item Parameter -Description Units Value Comments No.

100 3.89

2.

Primary and Secondary Pressures:

2.1. Pressurizer psia 2225 to 2275 psia

~

Unc:++/- 40 2.2. Core inlet psia 2285 Assumed to remain similar to current conditions.

2.3. Core outlet psia 2250 Assumed to remain similar to current conditions.

2.4. Reactor coolant pump discharge psia 2286 Assumed to remain similar to current conditions.

2.5. Steam generator dome psia 864.6 2.6. Turbine control valve inlet psia See Item lb.7.3 2.7. Detailed primary loop pressure drop psi See Section 4.1 distribution

3. Primary and Secondary Temperatures:
2k 3.1. Hot leg OF 606.0 Assumes 10% SG tube plugging.

3.2. Cold leg 551 Corresponds to 100%

OF

+/- 3F Power. Tcold at 0% power is 5327F.

3.3. Core outlet OF 608.2 Assumes 10% SG tube plugging.

3.4. Upper Head 0F 608.2 Assumed to be the same as vessel outlet.

4.

Water levels in the pressurizer and steam generators.

4.1. Pressurizer

% Tap Span See Figure 1 4.2. Steam Generators Reference SG elevations from bottom of support skirt base. Assumes NWL does not change for EPU.

5.

Leakage flows (Bypass):

L-2009-192 Page 6 of 57 Item Parameter -Description Units Value Comments No.

5.1. Outlet nozzle clearances percent 1.27 5.2. Downcomer to upper head percent 0.18 5.3. CEA shrouds pThis has not been spercent N/A quantified.

5.4. Upper head to upper plenum (guide pretNAThis has not been structure holes) pretNAquantified.

5.5. Core bypass (guide tubes, barrel-5.5. 1. Guide tubes pecn

.0Guide and Instrument Tubes 5.5.2. Barrel-baffle percentIncludes Core Shroud Bypass

6.

Steam generator recirculation ratio Power-See Item lb.l.5.

%CircRatio S

7.

Heat balance information, such as:

7.71. Feedwater and steam flows Ibm/hr See Table 15 7.2. Feedw'ater temperature OF See Table 15 7.3. Turbine inlet pressure psia See Table 15

2.

Analysis Topical Reports See References provided below applicable to rated power:

1. Topical Report on the licensing analysis S

XN-NF-82-49(P)(A),

of record for LOCA at rated power and See See Comment Rev. 1, "Exxon Comment Nuclear Company EPU conditions.

Evaluation Model Revised EXEM PWR Small Break Model",

  • EMF-2328(P)(A),

L-2009-192 Attachment I Page 7 of 57 Item Parameter -Description Units Value Comments No.

"PWR Small Break LOCA Evaluation Model, S-RELAP5 Based",

" EMF-2087(P)(A),

"SEM/PWR-98: ECCS Evaluation Model for PWR LBLOCA Applications".

" EMF-2514, Rev. 0, "St.

Lucie Unit I Large Break LOCA/ECCS Analysis," Dec. 2000.

For EPU, the SBLOCA Topical Report from above will be used. For LBLOCA, the EPU Topical Report is: EMF-2103(P)(A), Rev. 0, "Realistic Large Break LOCA Methodology for PWRs". Analysis results are in the UFSAR.

Safety System Logic, Setpoints and Delay Times Critical Safety Parameters List (also called "Groundrules document") for the last reload for:

1. ESFAS See Table 1I See Table 11 See Table 11
2.

RPS See Table 11 See Table 11 See Table 11

3. SGIS/MSIS See Table 11 See Table II See Table 11

L-2009-192 Page 8 of 57 Item Parameter -Description Units Value Comments No.

4.

PORV See Table I1I See Table I11 See Table 11

5.

SRV See Table I11 See Table I11 See Table 11

4.

Primary and Secondary Pressure Drops

1. Primary side pressure drop distribution with corresponding flow rate, including leakage See Table 14 See Table 14 flows (from design data or vendor analyses).
2.

Secondary side pressure drop distribution with corresponding flow rate, including See Table 17 See Table 17 leakage flows (from design data or vendor analyses).

5.

Core and Fuel Design

1. Number of assemblies N/A 217
2.

Dimensions Array: 14 x 14, Pitch: 8.18 in, Length: 157.115 in

3.

Spacer grid locations and K-factors K-factors See Table 4 for Core inlet region/ bottom Grid locations, grid = 3.530 N/A Mid-grid 7 spacers = 8.496 See Comments for Outlet region/top grid =

K-factors.

4.63 Bare rod 3.971

4. Vessel pressure drops Current values:

a) 6.8 a) Inlet nozzle & 90 degree psi b) 21.5

turn, c) 7.1 b) Downcomer, lower plenum, support structure

L-2009-192 Page 9 of 57 Item Parameter -Description Units Value Comments No.

& fuel assembly, c) Fuel assembly outlet to outlet nozzle.

5.

Bypass and leakage flows

% of total See Comment See items la.5.5 & 1.b.5.5 flow above

6. Number and location of fuel rods N/A 176 per Assy.

See Figures 3 and 4 for N

38,192 total location.

7. Number and location of guide tubes 4 guide tubes and N/A I instrument tube See Figure 3 for location.

per Assy.

Equipment Drawings and Design

6.

Reports To confirm the calculation of flow path lengths and elevations, flow areas, volumes, metal mass and surface areas (including pipe schedules),

and form loss (due to bends, contractions, expansions, orifices, etc.) for the following equipment:

1. Reactor vessel and internals (identification of all core bypass flow paths and flow rates, See Table 6 including upper plenum or head to downcomer, if available).
2.

Primary loop piping (hot leg, cold leg, See Table 6 pump suction).

3. Reactor coolant pumps.

See Table 6

4.

Steam generators and internals (U-tube lengths, separators, inlet and outlet plenum, See Table 6 etc.), (TH Design Report).

5. Pressurizer, surge line, spray lines, safety See Table 6 and relief valves and connecting lines, etc.
6.

Main steam lines out to the turbine stop See Table 6

L-2009-192 Attachment I Page 10 of 57 Item Parameter -Description Units Value Comments No.

valves, including safety and relief valves and connecting lines, main steam isolation valves, flow restrictors, etc.

7.

Main feedwater lines from the isolation See Table 6 valves to the steam generator inlet.

8.

Auxiliary feedwater lines and feedwater See Table 6 pump type, configuration and capacity.

9.

Safety injection equipment including SITs, high and low pressure injection systems and See Table 6 connecting piping.

10. Charging and letdown system (CVCS).

See Table 6

11. Residual heat removal system.

See Item 6.9 for LPSI See Comment System. LPSI and RHR are the same system.

7.

Reactor Vessel Internals Dry weight and surface area of reactor:*,,

vessel internal structures:

1. Core support barrel Includes upper, center, and 103,500 /

lower portions of the core Lbs /sq. ft.

1046 Inside support barrel; upper and 1106 outside lower flange; inner and outer nozzle areas.

2. Cre srou 34,00/

Includes vertical and Lbs / sq. ft.

590 Inside horizontal surfaces of the 5outside core shroud. Weight includes Tie Rods.

3. Lower core support plate Includes top and bottom surfaces; surface areas Lbs / sq. ft.

7,900 / 243 indetehlsote inside the holes of the plate.

L-2009-192 Page Il of 57 Item Parameter -Description Units Value Comments No.

4.

Fuel alignment plate (Upper Core Plate)

Includes top and bottom surfaces; surface areas Lbs / sq. ft.

8,900 / 238 indetehlsote inside the holes of the plate.

5.

Upper guide structure Includes CEA shrouds with extensions; total Lbs / sq. ft.

94,400 / 6040 UGS plate, beam, &

cylinder areas; total fuel alignment plate area (Neglects guide tubes).

6.

Core support assembly Includes vertical webs; Lbs Isq. ft.

47,800/1371 flanges; cylinder; columns core support plate (Item 3 above); bottom plate.

7.

Flow skirt Includes top and bottom Lbs / sq. ft.

3,600 /292 surfaces; surface areas inside the holes of the plate.

8. Control element assembly (CEA) shroud 41,300/

Includes single and double Lbs / sq. ft.

1980 Inside shrouds.

2167 outside

9.

Shroud extensions 3,000 /

Includes single and double Lbs / sq. ft.

386 Inside shrouds.

476 outside

10. Grid assemblies 20.60 / 71.2892 Lbs I sq ft er Assy
8.

Steam Generator Internals

1. Weight of steam generator tube sheet and surface area of tube sheet exposed to*

= I.

p rim a ry sid e fl u id.

11
  • =

°"

94,334 Includes base metal dn

1. 1. Weight of Tube Sheet Ibm 9434 (93,23 9 Ibm) and claddin

L-2009-192 Attachment I Page 12 of 57 Item Parameter -Description No.

1.2. Area of Tube Sheet (Primary Side)

2.

Weight and surface area of steam generator wrapper.

2.1. Weight of SG wrapper Assume height ot wrapper Ibm 25,955 is 21.3 ft and material density is 0.284 Ibm/in3 2.2. Surface area of SG wrapper Inner: 842 Assume height of wrapper Outer: 850 is 21.3 ft.

9.

Steam Generator Fluid Volumes

1. Inlet plenum ft3 222.026 Including Manway
2.

Outlet plenum ft3 222.665 Including Manway

3. Active tubes, Outlet Inactive Tubes, Inlet W

1129.04 (Active),

Inactive Tubes 36.635 (Outlet),

36.635 (Inlet)

4.

Number of steam generator tubes N/A 8523

5. Length of shortest and longest tubes ft 50.786 70.981
10.

Steam Generator Parameters

1. Inventory and recirculation ratio versus load Power Secondary (essential at rated power conditions).

Mass 0

214393 Inventory at EPU Im 25 178823 conditions. Recirculation 50 160630 ratios provided in Item lb.

75 147181 1.5 90 140456 100 136456

2.

SG flow areas, K-factors and flows See Table See Table 17 See Table 17 See Table 17 See T17

L-2009-192 Page 13 of 57 Item No.

Parameter -Description Units Value Comments

11.

MS Line Flow Restrictor

1. Restrictor flow area.

Steam Generator and Reactor Vessel Heights t t W)..o 1 per "k I utilet Nozzle Area 2.35 her SG Flow Venturi Area

1. Volume versus height relationship for the steam generators, with downcomer and boiler regions provided separately.

ft3vs. ft See Table 3

2. Volume versus height for the reactor vessel 113 VS. ft See Table I with internals installed.
13.

Reactor Coolant Pump Rated Conditions I1. Head ft 273.5

2.

Flow gpm 95,000

3.

Torque lbf-ft 32,750

4.

Speed rpm 886.25

5. Density Derived using values in lbs/ft 3 46.90 13.1 - 13.4 above using an average efficiency of.8925
6.

Homologous pump curves (four quadrant)

N/A See Table 5

7.

Pump inertia and friction (coefficients of Ibm-ft2 101,900 polynomial in pump speed)

8.

Coolant primary system fluid volume ft3 112 within pump

9.

RCP metal mass, excluding motor lbs 75,000 Dry Weight

10. Reverse rotation device operational for N/A Yes Device prevents reverse RCPs rotation.

L-2009-192 Attachment I Page 14 of 57 Item Parameter -Description Units Value Comments No.

11. Pump power to primary fluid 14.6 MWt MW (nominal),

20 MWt (max)

12. Coastdown characteristics N/A See Figure 2 UFSAR Figure 15.2.5-1
13. Pump trip setpoints N/A Overcurrent Overload Trip.
14. Pump time delays and logic N/A N/A No safety related RCP trips.
14.

Core Cooling System

1. HPSI and LPSI delivery curves See Revised SBLOCA does not use gpm Tables 12A, 12B LPSI flow in the analysis and 13
2.

SIT total volume 2020

3. SIT initial pressure and liquid volume 230 psig was used as minimum value for psig / ft3

[200 to 280]

SBLOCA analysis. All

/ [1090 to 1170]

other analyses used a minimum of 200 psig.

4.

CST minimum capacity gal 110,000

5. Charging pump flow versus pressure Reciprocal pump. Flow is 40 (nominal) to 49 per charging pump.

gpm (mimum)

Nominal value does not m(maximum) include 4 gpm for RCP bleed off.

15.a Control Systems Rated power operation of the primary and secondary control systems for:

1. SG water level instrumentation and control N/A See Comment Pre-EPU description of the (three-element)

ISG water level control Jj

L-2009-192 Page 15 of 57 Item Parameter -Description Units Value Comments No.

system is provided in UFSAR Figure 7.7-5.

Additional information is contained in System Description 0711408 "Steam Generators and Feedwater Control System"

2.

SG pressure (including bypass and ADV)

Pre-EPU description of the Steam Bypass Control System is contained in UFSAR Figure 7.7-6 (drawing 8770-883).

Additional information is contained in System N/A See Comment Description PSL OPS SYS 406 "Steam Bypass Control System". See Essential Valve Characteristics Table 19 for operation of Atmospheric Dump Valves

3.

Pressurizer heaters and sprays Pre-EPU description of the Pressurizer Pressure Control System is provided in Figure 5

4.

Pressurizer level Pre-EPU description of the Pressurizer Level Control System is contained in Figure 1 and Table 18

5.

Auxiliary feedwater See Table 11 for Auxiliary N/A See Comment Feedwater Actuation I System setpoints.

L-2009-192 Page 16 of 57 Item Parameter -Description Units Value Comments No.

The Auxiliary Feedwater Actuation System logic is described in UFSAR Section 7.3.1.1.13 and UFSAR Figure 7.3-46

6. CVCS (charging and letdown)

Pre-EPU description of the N/A See Comment CVCS System is contained in UFSAR Section 9.3.4 15.b Control Systems EPU condition operation of the primary and Y

s secondary control systems for:

7

7.

SG water level instrumentation and control Feedwater Control System (three-element) will be rescaled to reflect new FW pumps, new FW control valves and an expanded nominal flow N/A See Comment rate. The post-trip transition logic for main to low power FW control valves will also be revised to improve SG level response.

8.

SG pressure (including bypass and ADV)

EPU does not change ADV control logic or setpoints. Steam Bypass valve capacity will be increased by EPU to N/A See Comment restore design capacity in

%RTP. The SBCS will be functionally implemented in the plant Distributed Control System (DCS).

SBCS will be rescaled to

L-2009-192 Attachment I Page 17 of 57 Item Parameter -Description Units Value Comments No.

match new valve Cv curves. Quick Open setpoint for sudden loss of load will be decreased from 30%to 15%.

Transition from Quick Open logic to Modulation control will be modified (through the use of controller output signal tracking) to smooth the steam header pressure response.

9.

Pressurizer heaters and sprays EPU does not change the N/A See Comment Pressurizer Pressure control logic or setpoints.

10. Pressurizer level The Pressurizer Level Control Program will be rescaled to reflect the N/A See Comment increased Tavg range from 0 to 100% RTP. Program endpoints in terms of volume will remain as is.
11. Auxiliary feedwater EPU does not change the N/A See Comment AFAS actuation logic or setpoints.
12. CVCS (charging and letdown)

EPU does not change N/A See Comment CVCS control logic or setpoints

16.

Reactor Vessel Upper Head See item 1.b.3.4 Assume to be the same as

1. Upper head fluid temperature at normal te erature

L-2009-192 Page 18 of 57 Item Parameter -Description Units Value Comments No.

operating conditions.

since the Rx vessel does not have upper head injection.

17.

Essential Valve Characteristics Number of valves, full open flow area, forward/ reverse flow coefficients (CV's),

open/close rate, minimum flow at rated conditions, logic for opening and closing the valves for:

I.

Pressurizer PORVs See Tables 2 & 19

2.

Pressurizer safety valves See Tables 2 & 19

3.

Main steam safety valves See Tables 2 & 19

4. Atmospheric dump valves See Tables 2 & 19
5.

TCVs (turbine control valves)

See Tables 2 & 19

6. Turbine bypass valves See Tables 2 & 19
7.

TSVs, (turbine stop valves)

See Tables 2 & 19

8.

MFIVs See Tables 2 & 19

9.

MSIVs See Tables 2 & 19 18 to 20 Reactor Core Parameters

1. Control rod insertion versus time after seconds 3.1 Time for 9 0% insertion scram.
2.

CEA worth versus insertion (with and without highest worth rod stuck out of N/A See Attachment 2 core).

3.

Reactivity versus fuel temperature and N/A See Attachment 2 reactivity versus moderator density.

L-2009-192 Page 19 of 57 Item Parameter -Description Units Value Comments No.

4.

Moderator temperature coefficient.

N/A See Attachment 2

5.

Typical top peaked axial power profile.

N/A See Attachment 2

6.

Minimum and maximum average fuel clad gap conductivity at rated power conditions.

7.

Minimum local gap conductance as a N/A See Attachment 2 function of LHGR.

8.

Gap conductance.

N/A See Attachment 2

9.

Linear heat rate.

N/A See Attachment 2

10. Fuel average and centerline temperature as a function of burnup for the hot rod in the N/A See Attachment 2 hot bundle.
11. Specifications for modeling a small break LOCA, in particular what models/ assumptions are used regarding loop seal clearing and hot channel conservatisms. The AREVA SBLOCA methodology topical report was provided and this is very useful. The FSAR or a report on the N/A See Attachment 2 analysis of record is needed to move from the generic methodology to the plant specific application. Plots of key variables for the EPU LBLOCA and SBLOCA analyses, including containment pressure for LBLOCA.
21.

Operator Actions During LOCA

1. Reactor coolant pump trips (conditions to Accident analysis assumes trip pumps - automatic or manual)

LOOP concurrent with Pumps LOCA, and pumps are not None automatically trip loaded onto EDGs or on LOOP manually operated. Same assumption for EPU analysis.

L-2009-192 Attachment I Page 20 of 57 Item Parameter -Description Units Value Comments No.

1

2.

HPSL throttling criteria None See Comment If HPSI pumps are operating, and ALL of the following conditions are satisfied:

- RCS subcooling is greater than or equal to minimum subcooling

- Pressurizer level is at least 30%

and NOT lowering,

- At least ONE S/G is available for RCS heat removal with level being restored to or maintained between 60 and 70% NR,

- Rx Vessel level indicates sensors 4 through 8 are covered, or NO abnormal differences (greater than 20'F) between THOT and Representative CET temperature, Then, THROTTLE SI flow. Same assumption for EPU analysis.

3.

MS line break auxiliary feedwater control.

AFW is manually stopped Min 10 10 minutes after a MSLB event. Same assumption

L-2009-192 Page 21 of 57 Item Parameter -Description Units Value Comments No.

for EPU analysis.

Current Operating Cycle 22 COLR provided to NRC via FPL letter L-See 2008-244, dated 11 22.

Core Operating Limits Report Comment See Comment 2008. EPU COLR to be provided later with FPL EPU submittal. EPU Fr value is expected to be changed to 1.65 from 1.70.

23.

RCS Material Property Data For the various materials in the reactor coolant system (stainless steel, inconel, etc.):

1. Density lb/ft3 See Table 16
2.

Specific heat BTU/ Ibm-°F See Table 16

3.

Thermal conductivity BTU/hr-ft-See Table 16 OF

4.

Emissivity versus temperature See Table 16 Power Level / Uncertainty

24.

(New Reuests)

1. Current Power Level MWth 2700
2. Current Power Uncertainty 2

Applicable for both (LBLOCA/SBLOCA)

LBLOCA and SBLOCA

3. EPU Power Level Mwth 3020
4. EPU Power Uncertainty 0.3 Applicable for both (LBLOCA/SBLOCA)

LBLOCA and SBLOCA

L-2009-192 Attachment I Page 22 of 57 Figure 1 PRESSURIZER LEVEL PROGRAM 100.0 80.0 0.

U)

C.

I-

-jw N

U)

W)

CL 60.0 40.0 20.0 0.0 +-

506 522 538 554 570 586 VESSEL AVERAGE TEMPERATURE, TAVE (F) 602 Notes: 1. Values in the figure are nominal values.

2. The above figure may change due to new calculations. However, the minimum and maximum % level is not expected to change.

1401 Z..

HEMI FLUK TOTAL. PRINARY COOLANIT FLOV 19 fto U

.2 9

fto 9~0.

D.0O 1.0 P-.0 3.0 4.0 5.0 6.0 7.0 8.0 9-0 10.0 TIME.

SEC Figure 15.2.5-1 St. Lucie Unit I Power, heat Flux and Flow

-Loss Of Coolant Flow j

100

L-2009-192 Attachment I Page 24 of 57 Figure 3 - Location of Fuel Rods and Guide Tubes in Fuel Assemblies 1

S Am. 3-7/85 6

FLORIDA Figure POWER & LIGHT CO, REACTOR COR1 CROSS-SECTION St. Lucie Plant

'4.1-O Unit 11

L-2009-192 Page 25 of 57 Figure 4 - Location of Fuel Assemblies in the Core Amendment No. 22 (05/07)

L-2009-192 Attachment I Page 26 of 57 Figure 5 - PSL-1 Pressurizer Pressure Control Program Pressure (psia) 2500

-t t

2400 2340

-4 2300 2275 2250 2225 2220 2200 2100

-*1-

-Safety Valves Open (2500 psia)

High Pressure Trip (2400 psia)

PORVs Open (2400 psia)

Spray Valves Fully Open (Above 2340 psia)

High Pressure Alarm (2340 psia)

Spray Valves Fully Closed (Below 2300 psia)

Proportional Heaters "OFF" (2275 psia)

Control Setpoint (2250 psia)

Proportional Heaters "ON" (2225 psia)

Backup Heaters "ON" Below 2200 psia (Backup Heaters "OFF" Above 2220 psia)

Low Pressure Alarm (2100 psia)

-4 i.

f

+

I Net Heat In Net Heat Out (Not To Scale)

Nominal Values Shown

L-2009-192 Page 27 of 57 Table 1 Volume vs. Height for the Reactor Vessel with Internals Installed.

Region Elevation Volume vs. Height Volume

( ft)

(ft3 per ft)

(ft 3)

UGS support plate to top of vessel 6.6 699 (Region V6)

FAP to UGS support plate (Region 10.6 114.2 1210 V5)

Core Region (Fuel Alignment Plate (FAP) to CSP) (Regions V2, V3 &

12.8 69.7 892 V4)

CSB to vessel annulus (Region V1, 29.7 35 1039.5 Annulus)

Bottom of vessel to Core Support Plate (CSP) (Region V1, Lower 10 950.5 Plenum)

Sources.: Ref, 1, Tables 4.4-4B, 4.4-4C and Figure 4.4-21.

L-2009-192 Attachment I Page 28 of 57 Table 2 Comonent Data Reauired Component 1 Flow Diagram Component Information Pressurizer PORVs V 1402 8770-G-078 Sheet I 1A, Rev 30 8770-9676 Rev 1 V 1404 8770-9677 Rev 2 8770-9678 Rev 1 8770-9679 Rev 2 8770-9680 Rev 4 8770-9681 Rev 7 8770-9682 Rev 2 8770-9683 Rev 1 Pressurizer Safety Valves V1200 8770-G-078 Sheet I 1A, Rev 30 8770-13730, Rev I V1201 8770-13731, Rev I V1202 Main Steam Safety Valves V8201 8770-G-079, Sheet 1, Rev. 53 8770-993, Rev 4 V8202 8770-990, Rev 9 V8203 V8204 V8205 V8206 V8207 V8208 V8209 V8210 V8211 V8212 V8213 V8214 V8215 V8216 Atmospheric Dump Valves HCV-08-2A 8770-G-079, Sheet 1, Rev. 53 8770-12944, Rev I HCV-08-2B 8770-8971, Rev 1 Turbine Control Valves (Governor)

FCV-08-644 8770-G-079, Sheet 2, Rev. 45 FCV-08-645 8770-103, Rev 7 8770-115, Rev 11

L-2009-192 Attachment I Page 29 of 57 Component Flow Diagram Component Information FCV-08-646 8770-116, Rev 24 FCV-08-647 Turbine By-Pass Valves PCV-8801 8770-G-079, Sheet 2, Rev. 45 8770-2082, Rev 10 PCV-8802 8770-2083, Rev 11 PCV-8803 PCV-8804 PCV-8805 Turbine Stop Valves (Throttle)

FCV-08-640 8770-G-079, Sheet 2, Rev. 45 8770-103, Rev 7 FCV-08-641 8770-115, Rev 11 FCV-08-642 8770-116, Rev 24 FCV-08-643 Main Feed Isolation Valves HCV-09-7 8770-G-080, Sheet 3, Rev 54 8770-14210, Rev 0 HCV-09-8 8770-14211, Rev 0 Main Steam Isolation Valves HCV-08-IA 8770-G-079, Sheet 1, Rev. 53 8770-9673, Rev 10 HCV-08-1B Main Steam Check Valves V08117 8770-G-079, Sheet 1, Rev. 53 8770-8950, Rev 4 V08148 8770-895 1, Rev 2 8770-8952, Rev 0 8770-9673, Rev 10 8770-9674, Rev 8 Miscellaneous Components V2526 V2501 V2118 V2623 V2500 V2101 V2322 SS (Suction Stabilizer for Charging Pump IC)

SS-02-1C CHG PP IC (Charging Pump IC)

PD (Pulsation Damper on CHG PP IC) 8770-G-078 Sheet 121A Rev. 38 8770-G-078 Sheet 120B Rev 17 8770-1380, Rev. 7 8770-1589, Rev. 9 8770-2699, Rev 2 8770-853, Rev 1 8770-1589, Rev 9 8770-1592 Rev. 10 8770-9301 Rev. 1 8770-9302 Rev. 5 8770-205 Rev. 0 8770-364 Rev. 4 8770-12137 Rev. 5 8770-12138 Rev. 0 8770-9982 Rev. 1 8770-9981 Rev. 1

L-2009-192 Attachment I Page 30 of 57 Component [

Flow Diagram I

Component Information V02134 V2336 FE-2212 V2429 V2430 MV-02-2 Regen HT EXCH (Regenerative Heat Exchanger)

V2319 SS-02-1B SS (Suction Stabilizer for Charging Pump IB)

CHG PP lB (Charging Pump IB)

PD (Pulsation Damper on CHG PP 1B)

V02133 V2337 V2316 SS-02-1A SS (Suction Stabilizer for Charging Pump IA)

CHG PP IA (Charging Pump 1A)

PO (Pulsation Damper on CHG PP IA)

V2339 V02132 V2338 SE-02-2 8770-14099 Rev. 1 8770-14084 Rev. 1 8770-14345 Rev. 1 8770-9379 Rev. 1 8770-23 10 Rev. 0 8770-1588 Rev. 5 8770-1571 Rev. 8 8770-10468 Rev. 0 8770-420 Rev. 2 8770-1592 Rev. 10 8770-9301 Rev. 1 8770-9302 Rev. 5 8770-12137 Rev. 5 8770-205 Rev. 0 8770-364 Rev. 4 8770-12138 Rev. 0 8770-9982 Rev. 1 8770-9981 Rev. 1 8770-14084 Rev. 1 8770-14099 Rev. 1 8770-14345 Rev. 1 8770-9379 Rev. 1 8770-1592 Rev. 10 8770-9301 Rev. 1 8770-9302 Rev. 5 8770-12137 Rev. 5 8770-364 Rev. 4 8770-12138 Rev. 0 8770-205 Rev. 0 8770-14345 Rev. 1 8770-9378 Rev. 0 8770-10883 Rev. 2 8770-1588 Rev. 5 8770-12507 Rev. 0 8770-12508 Rev. 0

L-2009-192 Page 31 of 57 Component Flow Diagram Component Information V2433 SE-02-1 V2432 V2519 V2515 V2516 V2341 LCV-21 lOP V2342 LTDN (Letdown Heat Exchanger)

V2347 PCV-2201 Q V2349 FE-2202 V2358 Purif FLTR IA (Purification Filter IA)

V2360 V2520 V2369 V2370 V2378 V2382 V2395 S2900 V2415 V2418 Purif FLTR lB (Purification Filter IB)

V2452 FE-8011 FE-8021 2998-19678 Rev. 0 2998-19677 Rev. 0 8770-14084 Rev. 1 8770-14099 Rev. 1 8770-i2507 Rev. 0 8770-12508 Rev. 0 2998-19677 Rev. 0 8770-1570 Rev. 10 8770-926 Rev. 13 8770-858 Rev. 2 8770-928 Rev. 8 8770-860 Rev. 4 8770-928 Rev. 8 8770-860 Rev. 4 8770-1588 Rev. 5 8770-16166 Rev. 0 8770-787 Rev. 4 8770-1588 Rev. 5 8770-419 Rev. 2 8770-G-078 Sheet 120A Rev. 023 8770-G-079, Sheet 1, Rev. 53 8770-1578 Rev. 4 8770-971 Rev. 9 8770-1591 Rev. 5 8770-2301 Rev. 1 8770-1592 Rev. 10 8770-14147 Rev. 1 8770-558 Rev. 3 8770-8852 Rev. 2 8770-8617 Rev. 3 8770-1592 Rev. 10 8770-853 Rev. 1 8770-1592 Rev. 10 8770-1589 Rev. 9 8770-1592 Rev. 10 8770-1592 Rev. 10 8770-1592 Rev. 10 8770-1480 Rev. 1 8770-1592 Rev. 10 8770-1592 Rev. 10 8770-14147 Rev. 1 8770-558 Rev. 3 8770-8852 Rev. 2 8770-8617 Rev. 3 8770-1592 Rev. 10 8770-965, Rev 5 8770-965, Rev 5

L-2009-192 Page 32 of 57 Component I

Flow Diagram Component Information V09252 V09294 AFW PP IA AFW PP 1B AFW PP IC V09139 V09140 FE-09-2C MV-09-11 MV-09-12 V09151 V09157 V09152 V09158 V09123 V09107 V09108 V09124 FE-09-2A FE-09-2B MV-09-9 MV-09-10 V09119 V09135 V09120 V09136 V 1403 V 1405 V 1406 V 1407 PZR Quench Tank V1252 V1253 PCV-1100E PCV-1100F V 1248 V1249 V1250 V1251 SO-03-13 SO-03-14 8770-G-080, Sheet 3, Rev 54 8770-G-080, Sheet 4, Rev. 41 8770-G-078 Sheet I 0A, Rev 30 8770-G-078 Sheet 130A, Rev 27 8770-5736, Rev 4 8770-7139, Rev 3 8770-3044, Rev 3 8770-4409, Rev 0 8770-15879, Rev 0 8770-3183, Rev 7 8770-4408, Rev 0 8770-1398, Rev 6 8770-1257, Rev 3 8770-3544, Rev 0 8770-3294, Rev 4 8770-6967, Rev 5 8770-6967, Rev 5 8770-3775, Rev 6 8770-3775, Rev 6 8770-3774, Rev 3 8770-1251, Rev 2 2998-20110, Rev 1 8770-3775, Rev 6 8770-125 1, Rev 2 8770-125 1, Rev 2 8770-3294, Rev 4 8770-3544, Rev 0 8770-6966, Rev 5 8770-6966, Rev 5 8770-3775, Rev 6 8770-3775, Rev 6 8770-3774, Rev 3 8770-1251, Rev 2 8770-1374, Rev 10 8770-1374, Rev 10 8770-1750, Rev 5 8770-1750, Rev 5 8770-898, Rev 3 8770-1769, Rev 4 8770-1769, Rev 4 8770-864, Rev 2 8770-970, Rev 15 8770-6586, Rev 3 8770-6777, Rev 1 8770-16184, Rev 0 8770-1769, Rev 4 8770-16184, Rev 0 8770-1769, Rev 4

L-2009-192 Page 33 of 57 Component Flow Diagram

[

Component Information SO-03-15 V3427 V3405 V3414 V3654 V3656 HCV-3616 HCV-3626 HCV-3636 HCV-3646 V3113 V3123 V3133 V3143 FE-3311 FE-3321 FE-3331 FE-3341 HCV-3615 HCV-3625 HCV-3635 HCV-3645 V3114 V3124 V3134 V3144 FE-3312 FE-3322 FE-3332 FE-3342 HCV-3617 HCV-3627 HCV-3637 HCV-3647 V3106 V3107 V3206 V3207 FCV-3306 8770-G-078 Sheet 13 IA, Rev 27 8770-G-078 Sheet 130B, Rev 31 8770-1768, Rev 8 8770-1768, Rev 8 8770-1768, Rev 8 8770-1377, Rev 6 8770-1377, Rev 6 8770-1376, Rev 5 8770-1376, Rev 5 8770-1376, Rev 5 8770-1376, Rev 5 8770-12709, Rev 10 8770-1570, Rev 10 8770-1570, Rev 10 8770-1570, Rev 10 8770-1375, Rev 6 8770-1375, Rev 6 8770-1375, Rev 6 8770-1375, Rev 6 8770-1748, Rev 7 8770-1748, Rev 7 8770-1748, Rev 7 8770-1748, Rev 7 8770-2301, Rev 1 8770-2301, Rev 1 8770-2301, Rev 1 8770-2301, Rev 1 8770-1376, Rev 5 8770-1376, Rev 5 8770-1376, Rev 5 8770-1376, Rev 5 8770-3646, Rev 1 8770-3646, Rev 1 8770-9348, Rev 3 8770-9348, Rev 3 8770-861, Rev 2 8770-930, Rev 8 8770-2301, Rev 1 FE-3306

L-2009-192 Attachment I Page 34 of 57 Table 3 Secondary Side Volume per Unit Height ( ft/ft)

SI1.552 49.947 41.677 40.344 39.240

-35.

000

-32.583 30.191

-28.833 28.125 25.5-73 22.271 18.802 15.333 Ii I.865 8.396 4.927 2.0 0

HT ABOVE T/S SEC.

rAcE (FT) 4.8679 4.679 178.960 --- 178.960

-239.1 67,227

-12S.294 52.285 10.178

-- 282.671 37.679

-210.601 97.753 70.432

-" 70.432 70.432 70.432 70.432

-69.829 70.345

-282.671 L

276.779

-277.828 K

164.980 227.047

- 150.038 80.810 80.610 80.610 80.610 80.610 80.007 80.523 O014N0~ERTOTI DOWNCOMER TOTAL

L-2009-192 Page 35 of 57 Table 4 Spacer Grid Locations Grid #

Distance (in) 1 6.302 2

18.185 3

36.797 4

55.656 5

74.515 6

93.374 7

112.233 8

131.092 9

148.272 Notes: Measured from bottom of fuel assembly to top of grid.

L-2009-192 Attachment I Page 36 of 57 Table 5 - Single Phase Homologous Head and Torque Curves CURVE 1 CURVE 2 CURVE 3 CURVE4 CURVE 5 CURVE 6 CURVE 7 CURVE 8 HAN Head HVN Head HAD Head HVD Head HAT Head HVT Head HAR Head Curve Curve Curve Curve Curve Curve Curve HVR Head Curve 0.0 1.580 0.0

-1.420

-1.0 3.150

-1.0 3.150 0.0 0.433 0.0 1.220

-1.0

-3.100

-1.0

-3.100 0.1 1.500 0.1

-1.215

-0.9 2.930

-0.9 2.810 0.1 0.474 0.1 1.182

-0.9

-2.550

-0.9

-3.010 0.2 1.420 0.2

-1.082

-0.8 2.700

-0.8 2.490 0.2 0.502 0.2 1.140

-0.8

-2.050

-0.8

-2.930 0.3 1.370 0.3

-0.912

-0.7 2.470

-0.7 2.180 0.3 0.512 0.3 1.085

-0.7

-1.600

-0.7

-2.810 0.4 1.330 0.4

-0.728

-0.6 2.300

-0.6 1.930 0.4 0.524 0.4 1.045

-0.6

-1.035

-0.6

-2.690 0.5 1.295 0.5

-0.494

-0.5 2.130

-0.5 1.720 0.5 0.546 0.5 1.000

-0.5

-0.830

-0.5

-2.520 0.6 1.270 0.6 0.000

-0.4 2.000

-0.4 1.550 0.6 0.583 0.6 0.950

-0.4

-0.513

-0.4

-2.340 0.7 1.240 0.7 0.208

-0.3 1.870

-0.3 1.440 0.7 0.641 0.7 0.900

-0.3

-0.246

-0.3

-2.150 0.8 1.182 0.8 0.435

-0.2 1.760

-0.2 1.345 0.8 0.712 0.8 0.870

-0.2 0.0112

-0.2

-1.960 0.9 1.105 0.9 0.708

-0.1 1.660

-0.1 1.285 0.9 0.800 0.9 0.865

-0.1 0.343

-0.1

-1.715 1.0 1.000 1.0 1.000 0.0 1.580 0.0 1.220 1.0 0.908 1.0 0.908 0.0 0.433 0.0

-1.420 CURVE9 CURVE 10 CURVE 11 CURVE 12 CURVE 13 CURVE 14 CURVE 15 CURVE 16 BAN Torque BVN Torque BAD Torque BVD Torque BAT Torque BVT Torque BAR Torque Curve Curve Curve Curve Curve Curve Curve BVR Torque Curve 0.0 0.770 0.0

-1.450

-1.0 2.290

-1.0 2.290 0.0

-1.440 0.0 1.315

-1.0

-5.030

-1.0

-5.030 0.1 0.802 0.1

-1.112

-0.9 2.040

-0.9 2.120 0.1

-0.920 0.1 1.245

-0.9

-4.540

-0.9

-4.610 0.2 0.845 0.2

-0.872

-0.8 1.785

-0.8 1.960 0.2

-0.630 0.2 1.180

-0.8

-4.050

-0.8

-4.230 0.3 0.866 0.3

-0.648

-0.7 1.580

-0.7 1.830 0.3

-0.420 0.3 1.110

-0.7 -3.600

-0.7

-3.840 0.4 0.885 0.4

-0.442

-0.6 1.390

-0.6 1.720 0.4

-0.250 0.4 1.042

-0.6 -3.240

-0.6

-3.490 0.5 0.910 0.5

-0.270

-0.5 1.235

-0.5 1.640 0.5

-0.100 0.5 0.975

-0.5 -2.830

-0.5

-3.150 0.6 0.930 0.6 0.260

-0.4 1.090

-0.4 1.580 0.6 0.020 0.6 0.905

-0.4

-2.490

-0.4

-2.850 0.7 0.953 0.7 0.430

-0.3 0.980

-0.3 1.510 0.7 0.130 0.7 0.817

-0.3

-2.190

-0.3

-2.520 0.8 0.973 0.8 0.613

-0.2 0.880

-0.2 1.450 0.8 0.251 0.8 0.728

-0.2

-1.910

-0.2

-2.200 0.9 0.989 0.9 0.800

-0.1 0.810

-0.1 1.380 0.9 0.390 0.9 0.628

-0.1

-1.660

-0.1

-1.850 1.0 1.000 1.0 1.000 0.0 0.770 0.0 1.315 1.0 0.562 1.0 0.562 0.0

-1.440 0.0

-1.450

L-2009-192 Page 37 of 57 Table 6 Unit 1 Piping Isometric Drawings by P&ID Flow Diagram Isometric/Component Drawing Reactor Vessel 8770-G-078, Sheet 10OB, Rev. 26 8770-44, Rev 5 8770-8862, Rev 0 8770-8863, Rev 0 8770-8864, Rev 0 8770-8865, Rev 0 8770-8873, Rev 1 8770-8874, Rev 0 8770-8877, Rev 0 8770-15672, Rev 0 8770-15673, Rev 0 Primary Loop Piping (RCS) 8770-G-078, Sheet 11 OB, Rev. 26 8770-39, Rev 3 8770-40, Rev 3 8770-530, Rev 3 8770-781, Rev 3 8770-880, Rev 1 8770-1496, Rev 2 Reactor Coolant Pumps 8770-G-078, Sheet Il1A, Rev. 15 8770-15, Rev 8 8770-G-078, Sheet I1IB, Rev. 15 8770-178, Rev 11 8770-G-078, Sheet 11 IC, Rev. 14 8770-54, Rev 9 8770-G-078, Sheet 1I1D, Rev. 16 Steam Generators 8770-G-078, Sheet I1OB, Rev. 26 8770-13348, Rev 1 8770-G-080, Sheet 3, Rev. 54 8770-G-079, Sheet 1, Rev. 53 Pressurizer/Surge Line/Spray Lines/Relief Lines 8770-G-078, Sheet 11OA, Rev. 30 8770-G-125 Sheet RC-AB-I, Rev 3 8770-15377, Rev 0 8770-15287, Rev 0 8770-15307, Rev 0 8770-16184, Rev 0 8770-1658, Rev 0 8770-15820, Rev 0 8770-6624, Rev 2 8770-15298, Rev 0 8770-15819, Rev 0 8770-B-124 Sheet RC-187, Rev I

L-2009-192 Page 38 of 57 Main Steam Lines Out to the Turbine Stop Valves 8770-G-079, Sheet 1, Rev. 53 8770-G-125, Sheet MS-L-1, Rev 6 8770-G-079, Sheet 2, Rev. 45 8770-G-125, Sheet MS-L-6, Rev 6 Main Feedwater Lines from the Isolation Valves to the Steam Generator Inlet 8770-G-080, Sheet 3, Rev. 54 8770-G-125, Sheet BF-M-06, Rev 4 Auxiliary Feedwater Lines 8770-G-080, Sheet 4, Rev. 41 8770-G-125, Sheet BF-M-07, Rev 6 8770__G_080,_Sheet_4,_Rev._41___71"8770-G-125, Sheet BF-M-08, Rev 10 Safety Injection 8770-G-078, Sheet 130A, Rev. 27 8770-G-125, Sheet SI-N-5, Rev 2 8770-G-078, Sheet 130B, Rev. 31 8770-G-125, Sheet SI-N-6, Rev 4 8770-G-078, Sheet 131 A, Rev. 27 8770-G-125, Sheet SI-N-7, Rev 3 8770-G-078, Sheet 131B, Rev. 19 8770-G-125, Sheet SI-N-8, Rev 4 8770-G-125, Sheet SI-N-10, Rev 3 8770-G-125, Sheet SI-N-12, Rev 2 8770-B-124 Sheet SI-27 Rev 13 8770-B-124 Sheet SI-28 Rev 12 8770-B-124 Sheet SI-29 Rev 12 8770-B-124 Sheet SI-30 Rev 11 8770-B-124 Sheet SI-31 Rev 13 8770-B-124 Sheet SI-32 Rev 9 8770-B-124 Sheet SI-33 Rev 14 8770-B-124 Sheet S1-34 Rev 10 8770-B-124 Sheet SI-128 Rev I 8770-B-124 Sheet SI-129 Rev 3 8770-B-124 Sheet SI-130 Rev 4 8770-B-124 Sheet SI-131 Rev 2 Charging and Letdown System (CVCS) 8770-G-078, Sheet I IOB, Rev. 26 8770-G-078, Sheet 120A, Rev. 23 8770-G-078, Sheet 120B, Rev. 17 8770-G-078, Sheet 121A, Rev. 38 8770-G-078, Sheet 121B, Rev. 32 8770-G-088, Sheet 1, Rev. 51 8770-G-125 Sheet CH-G-1 Rev. 2 8770-G-125 Sheet CH-G-2 Rev 1 8770-G-125 Sheet CH-G-3 Rev 4 8770-G-125 Sheet CH-G-4 Rev 0 8770-G-125 Sheet CH-G-5 Rev 0 8770-G-125 Sheet CH-G-8 Rev 2 8770-G-125 Sheet CH-G-9 Rev 4 8770-G-125 Sheet CH-G-12 Rev 6 8770-G-125 Sheet CH-G-13 Rev 1 8770-B-124 Sheet CH-I Rev 2 8770-B-124 Sheet CH-2 Rev 2 8770-B-124 Sheet CH-3 Rev 3 8770-B-124 Sheet CH-4 Rev 4 8770-B-124 Sheet CH-37 Rev 2 8770-B-124 Sheet CH-43 Rev 5

L-2009-192 Attachment I Page 39 of 57 8770-B-124 Sheet CH-63 Rev 7 8770-B-124 Sheet CH-64 Rev 5 8770-B-124 Sheet CH-65 Rev 12 8770-B-124 Sheet CH-66 Rev 9 8770-B-124 Sheet CH-68 Rev 10 8770-B-124 Sheet CH-69 Rev 8 8770-B-124 Sheet CH-70 Rev 7 8770-B-124 Sheet CH-71 Rev 6 8770-B-124 Sheet CH-72 Rev 8 8770-B-124 Sheet CH-74 Rev 12 8770-B-124 Sheet CH-75 Rev 7 8770-B-124 Sheet CH-77 Rev 10 8770-B-124 Sheet CH-78 Rev 5 8770-B-124 Sheet CH-79 Rev 8 8770-B-124 Sheet CH-80 Rev 14 8770-B-124 Sheet CH-82 Rev 21 8770-B-124 Sheet CH-92 Rev 11 8770-B-124 Sheet CH-124 Rev 11 8770-B-124 Sheet CH-125 Rev 7 8770-B-124 Sheet CH-126 Rev 8 8770-B-124 Sheet CH-128 Rev 5 8770-B-124 Sheet CH-129 Rev 8 8770-B-124 Sheet CH-130 Rev 6 8770-B-124 Sheet CH-141 Rev 11 8770-B-124 Sheet CH-142 Rev 7 8770-B-124 Sheet CH-143-1 Rev 2 8770-B-124 Sheet CH-143-2 Rev 6 8770-B-124 Sheet CH-178 Rev 4 8770-B-124 Sheet CH-187 Rev I 8770-B-124 Sheet CH-188 Rev 0 8770-B-124 Sheet CH-189 Rev 0 8770-B-124 Sheet CH-193 Rev 2 8770-B-124 Sheet CH-232 Rev 0 8770-B-124 Sheet CH-264 Rev 0 8770-B-124 Sheet RC-1 Rev 6 8770-B-124 Sheet RC-2 Rev 7 8770-B-124 Sheet RC-3 Rev 6 8770-B-124 Sheet RC-4 Rev 5 8770-B-124 Sheet RC-6 Rev I

L-2009-192 Attachment I Page 40 of 57 Table 7. TEMPERATURE vs. DOPPLER REACTIVITY WORTH Current Analysis Value EPU Analysis Value FUEL TEMPERATURE DOPPLER REACTIVITY FUEL TEMPERATURE DOPPLER REACTIVITY

(°F)

(Ap)

(OF)

(Ap) 0.0 0.0*

250.0 0.0 400.0

-0.0037338 667.5

-0.0098574 808.1

-0.0128639 No changes from current No changes from current 946.5

-0.0156432

94.

00542 analysis analysis 1077.9

-0.0181490 1199.1

-0.0203649 1309.0

-0.0222887 1445.5

-0.0246159 5000.0

-0.0246159**

Notes:

assumed/extrapolated to be the same as the next value.

assumed/extrapolated to be the same as the previous value.

Table 8. CHANGE IN REACTIVITY vs. MODERATOR DENSITY Current Analysis Value EPU Analysis Value CHANGE IN MODERATOR CHANGE IN MODERATOR REACTIVITY (Ap)

DENSITY (Ibm/ft3)

REACTIVITY (Ap)

DENSITY (Ibmlft3)

-0.350 0.0 No changes from current No changes from current

-0.270 2.1 analysis analysis

-0.190 5.0

-0.100 10.0

-0.090 12.1

-0.060 15.0

-0.030 20.0

-0.020 22.1

-0.012 25.0

-0.005 30.0

-0.0001 32.1

-0.0000 35.0

+0.0020 36.7 0.0 40.0 0.0 43.0 0.0 45.0 0.0 1.0x10 6 Note:

  • Reactivity corresponding to the most positive MTC @ HFP, BOC

L-2009-192 Attachment I Page 41 of 57 Table 9. RCS TEMPERATURE vs. MODERATOR REACTIVITY Current Analysis Value EPU Analysis Value RCS MODERATOR RCS MODERATOR TEMPERATURE (°F)

REACTIVITY (Ap)

TEMPERATURE (*F)

REACTIVITY (Ap) 68.0 0.06345*

300.0 0.06345 No changes from No changes from 450.0 0.03959 current analysis.

current analysis.

532.0 0.01627 572.0**

0.0000"*

Notes:

Assumed/extrapolated to be the same as the next value.

Assumed to the nominal temperature at which the MTC would be equal to 0.0.

Table 10.

AXIAL HEIGHT vs. AXIAL POWER SHAPE Current Analysis Value EPU Analysis Value (WEC)

(FPL)

AXIAL HEIGHT Axial Power Shape AXIAL HEIGHT Axial Power Shape (ft).....

{~*)

t)...

2.2783 0.38000 2.278 0.81301 4.5566 0.710 4.556 0.92260 6.8349 1.370 6.834 1.00900 9.1132 1.635 9.112 1.21700 11.3917 1.020 11.390 1.04567 Notes:

FPL can not confirm the current values provided by Westinghouse for the Axial Power Shape data. FPL has provided values for the EPU from the current LOCA Containment Re-Analysis.

Axial height from the bottom of core.

L-2009-192 Page 42 of 57 Table 11 - PSL Unit-1 RPS, ESFAS and AFAS Setpoints and Safety Analysis Limits Functional Description Monthly Tech Spec Setpoint Current Setpoint or EPU Setpoint or Comments Surveillance Uncertainty Req.

Uncertainty Setpoint (current cycle)

Requirement RPS PZR Press Hi 2397.5 psia

< 2400 psia

+/- 22 psi (Normal)

+/- 40 psi (Normal)

Current cycle safety analysis parameter document

+/- 80 psi (Accident)

+/- 80 psi (Accident) includes a target analysis value of+/- 40 psi (Normal)

RPS Cont. Press Hi 3.175 psig

< 3.3 psig

+/- 1.3 psi

+/- 1.3 psi RPS S/G Press Lo 626.1 psia

> 600 psia

+/- 32 psi (Normal)

+/- 40 psi (Normal)

Current cycle safety analysis parameter document

+/- 80 psi (Worst Normal) includes target analysis value of+/- 80 psi (Worst Normal). Worst Normal defined as Containment Temperature > I11 F but < 2000F.

RPS S/G Level Lo 21.0%

> 20.5%

+/- 3% (Normal)

+/- 5% (Normal)

Current cycle safety analysis parameter document

+/- 14% (Accident)

+/- 14% (Accident) includes a target analysis value of+/- 5% (Normal)

RPS RCS Low Flow

> 95% Design Flow 3.5%

4%

SIAS/CIS Cont. Press Hi 4.375 psig

< 5.0 psig

+/- 1.3 psi

+/- 1.3 psi CSAS Cont. Press Hi-Hi 9.375 psig

< 10.0 psig

+/- 1.3 psi

+/- 1.3 psi SIAS PZR Press Lo 1612.5 psia

> 1600 psia

+/- 22 psi (Normal)

+/- 40 psi (Normal)

+/- 80 psi (Accident)

+/- 80 psi (Accident)

MSIS S/G Press Lo 600 psig

> 585 psig

+/- 32 psi (Normal)

+/- 40 psi (Normal)

Current cycle safety analysis parameter document

+/- 80 psi (Worst Normal) includes a target analysis value of+/- 80 psi (Worst Normal). Worst Normal is defined as Containment Temperature>11

>IF but < 200 0F.

RAS RWT Level Lo 48 inches 48 inches

+/- 6 inches

+/- 6 inches AFAS S/G Level Lo 19.5%

> 19.0%

+/- 3% (Normal)

+/- 5% (Normal)

Current cycle safety analysis parameter document

+/- 14% (Accident)

+/- 14% (Accident) includes a target analysis value of+/- 5% (Normal)

AFAS S/G Press DP Hi 270 psid

< 275 psid Not specified

+/- 64 psi (Normal)

Worst Normal is defined as Containment

+/- 160 psi (Worst Normal)

Temperature > I 11OF but < 200 0F.

AFAS FW Press DP Hi 142.5 psid

< 150.0 psid Not specified

< 245 psid (setpoint)

AFAS logic time delay 235 sec 170 sec 170 sec (minimum act. time)

PORV Open Pressure N/A 2400 psia (nominal) 2400 psia (nominal)

For non-LTOP conditions, PORVs operate on RPS (setpoint)

PZR Press Hi Main Steam Safety RV N/A 1000 psia (nominal)

+ 1%, - 3% (tolerance) 3% (tolerance)

Current cycle safety analysis parameter document 1040 psia (nominal) 3% (accumulation) 3% (accumulation) includes a target analysis value of+/- 3% (tolerance)

PZR Safety RV N/A 2500 psia (nominal)

+ 3%, - 2.5% (tolerance)

+ 3%, - 2.5% (tolerance) 3% (accumulation) 3% (accumulation)

Note: When revised, Safety Analysis limits are set equal to the Tech Spec setpoint plus or minus the defined uncertainty.

L-2009-192 Page 43 of 57 Table 12A - Realistic LBLOCA LPSI Minimum Flow (1 valves)

  • pump and 2 RCS pressure Broken Loop Intact Loop 1 Intact Loop 2 Intact Loop 3**

psia gpm gpm gpm 9pm 18.32 1287 0

0 1226 23.48 1261 0

0 1202 33.47 1210 0

0 1153 43.02 1158 0

0 1104 47.64 1132 0

0 1080 52.14 1107 0

0 1055 69.04 1005 0

0 957 87.73 877 0

0 835 103.73 748 0

0 713 117.05 620 0

0 591 127.72 492 0

0 469 135.41 364 0

0 347 140.64 236 0

0 225 143.98 82 0

0 79 144.37 31 0

0 30 144.44 0

0 0

0

    • Analysis conservatively assumes an additional 300 gpm reduction in the Intact Loop (3),

which is not reflected here.

Table 12B - Realistic LBLOCA HPSI Minimum Flow (1 DumD)

  • RCS pressure Broken Loop Intact Loop 1 Intact Loop 2 Intact Loop 3**

psia 9pm 9pm gpm gpm 15 160 151.7 151.7 151.7 315 137 130 130 130 615 109 103.7 103.7 103.7 815 85 81.3 81.3 81.3 1015 51 48.7 48.7 48.7 1115 16 15.3 15.3 15.3 1125 8

5.7 5.7 5.7 1129 0

0 0

0

"*Analysis assumes 0 gpm through Intact Loop 3, which is not reflected here.

  • Failure of 1 EDG or 1 Train of ECCS

L-2009-192 Attachment I Page 44 of 57 Table 13 - SBLOCA HPSI Minimum Flow (1 pump)*

Intact Loop1 + Intact Loop 2 + Intact Loop 3 RCS pressure Broken Loop Combined psia 9pm gpm 15 160.6 455.7 315 138.4 392.9 615 110.6 313.8 815 88.6 251.2 1015 57.3 162.6 1115 32 87.5 1125 27.3 74.7 1135 17.8 48.6 1145 1.8 4.9 1145.5 0.3 0.7 1145.5 0

0.0

  • Failure of I EDG or I Train of ECS

L-2009-192 Page 45 of 57 Table 14 Primary Loop Pressure Drop Distribution Current Best Estimate Conditions (4)

Location Pressure Drop Conditions Value (psi)

VESSEL INLET AVG )

6.395 REACTOR CORE 20.292 RC Pump Flow per Loop 75.69E6 lb/hr VESSEL OUTLET AVG t' 6.773 Total RC Pump Flow 401,885 gpm SG INLET NOZZLE AVG. *'

4.907 Core Flow 151.4E6 Ib/hr SG INLET PLENUM AVG.z) 0.960 Core Bypass Flow 3.9% of total core flow SG TUBE FRICTION AVG.Az) 36.432 SG Tube Plugging 10%

SG TUBE BENDS AVGY) 0.434 SG OUTLET NOZZLE AVG. T'T 0.812 RCS HOT LEG PIPING AVGW")

0.956 RCS SUCTION LEG PIPING 3.384 AVG. (3)

RCS COLD LEG PIPING AVG.

1.361 Notes:

(1) Four vessel inlet nozzles and two outlet nozzles.

(2) Two SG inlet nozzles, two inlet plenums, two tube friction, two tube bends, two outlet plenums, and four outlet nozzles.

(3) Two RCS hot legs, four suction legs, and four cold legs.

(4) The above pressure drop data could be used for the EPU analysis since a slight increase in RCS EPU temperature will not cause a large increase in pressure drops in the system, given that all other RCS parameters are expected to remain unchanged.

Table 15 Heat Balance Information

% EPU Power Feedwater Flow Steam Flow Feedwater Turbine Inlet lbm/hr (2 SG) ibm/hr (2 SG)

Temperature, F Pressure, psia 100 13,303,150 13,236,690 436.2 751.4 90 11,834,340 11,767,890 427.0 664.6 75 9,666,014 9,599,566 410.5 538.4 50 6,199,094 6,132,645 375.3 337.5 25 2,972,477 2,905,988 323.7 173.4

L-2009-192 Attachment I Page 46 of 57 Table 16 RCS Pressure Boundary Material Property Data Material Density Specific Thermal Emissivity Comment (lbm/ft3 )

Heat Conductivity vs Temp (Btu/lbm-F)

(Btu/hr-ft-F)

Carbon 483.8

  • 0.129*

22.92*

0.78-0.82

  • SA-516 Gr 70 Steel

@130-530

    • smooth oxidized C**

iron Stainless 499.4*

0.13*

10.44*

0.57-0.66

  • 304/304L SS Steel

@230-870

    • 316 SS repeated C**

heating Inconel 528.8 0.106 8.58 0.85-0.98 600

@480-1090 C Inconel 511.5 0.107 7.75 0.85-0.98 Emissivity assumed 690

@480-1090 C same as Inconel 600

L-2009-192 Page 47 of 57 Table 17 Secondary Side Circuit Losses 100 % EPU 0% Plug Parameters Units 3034 MWt Steam Flow Ibm/hr 6.6162E+06 Circulation Ratio 3.89 Riser Flow Ibm/hr 2.5737E+07 Feedwater Flow Ibm/hr 6.6607E+06 Blowdown Flow (Fraction) 0.0067341 SINGLE PHASE Annular Entrance psi 0.200 Annular Friction psi 0.735 Bundle Entrance Psi 1.939 Total Single Phase Losses psi 2.873 TWO PHASE Total Lattice Grid Psi 0.723 Bundle Friction psi 0.441 U-Bend Psi 1.104 Neck Shock psi 0,021 Primary Cyclone 1,556 Total Two Phase Losses 3.844 Total Circulation Loss psi 6.717 Riser Static Head Losses Tu.besheet - Support 1 psi 0.657 Support ' - 2 psi 0.860 psi 0.751 Support 3 - 4 psi 0,541 Support 4 - 5 psi 0.423 Support 5 - 6 psi 0.348

_,Support 6 - 7 psi 0.295 U-Bend psi 0.544 Neck including Primary Cyclone psi 0.613 Separator Static Head p

Total Riser Static Head Loss psi 5.031

L-2009-192 Attachment I Page 48 of 57 Secondary Separators and Steam Outlet Nozzle Losses and K-factors 100 % EPU 0% Plug

.Parameters Unifts 3034 MWt Steam Flow Ibm/hr 6,6143E+06 Pressure at Entrance to Secondary Cyclones psia_.

867.2 Secondary Cyclones Loss pD.,i= K.ý(wlAj,)/ (2'rho'g,*144i Where, K, - resistance factor 5.918 Area, A,-

ft 18.77590 rho -saturated steam density Ibm/ft3 2.3717 w-flow Ibm/s 1837.30 g,- gravitational constant, Ibm-ftMlbf-sec2 32.174 Secondary Cyclones Loss, PD...

psi 2.58 Steam Pressure Upsteam of Outlet Nozzle psia 864.60 Steam Outlet Nozzle Loss PDnoz= Knc,ý,(w/Anoz)^2! (2'rho*g,144)

..Where, Kno, - resistance factor 0.8462 Area, Anoz ft2 6.3514 rho - saturated steam density Ibm/ft' 1.9122 w -flow Ibm/s 1837.30 9,- gravitational constant, Ibm-flbf-sec2 3Z 174 Steam Outlet Nozzle Pressure Loss, PD,,,,

psi 400 Steam Outlet Stagnation Pressure, P,,,

la 860.60

L-2009-192 Attachment I Page 49 of 57 Feedwater System Irrecoverable Pressure Losses and K-factors 100 % EPU Parameters Units 3034 MWt Feedwater Flow Ibm/hr 6.66074E+06 Feedwater Temperature deg. F 436.20 rho - feedwater density at 924 psia Ibm/ft3 52.3076 w - flow Ibm/s 1850.21 g, - gravitational constant, Ibm-ft/Ibf-sec2 32.174 Inlet Nozzle Loss PDnoz= Kiozz*(W/Ano.) 2/ (2*rho*g*144)

Where, K,0* - resistance factor 0.0112

.Idno, (straight section) in 14.31 Area, Ano..

ft2 1.11688 Inlet Nozzle Loss, PDn..

psi 0.06 Gooseneck Loss PD0,= Kqn*(w/A.n)2/ (2*rho*g,*144)

Where, K,, - resistance factor 0.645 Id,,..

in 14.31 Area, A,,,

ft 2

1.11688 Gooseneck Loss, PDn psi 3.65 Tee Intersection Loss Equation [3] PDtee= Ktee,(w/Atee)2/ (2*rho*gc*144)

Where, Ktee - resistance factor 1.189 Idtee (at inlet) in 14.31 Area, Atee (each leg) ft2 1.11688 Tee Intersection Loss, PDn psi 6.73 Header and J-tubes Loss PDhdr= Khdr*(W/Ahdr) 2/ (2*rho*g,*! 44)........

Where, Khdr - resistance factor 2.157 ldhdr (ID of header ring) in 11.37 Area, A,,, (each leg) ft2 0.70510 w - flow (equal flow split in each leg)

Ibm/s 925.10 Header and J-tubes Loss, PD,,

psi 7.66 Total FW System Irrecoverable Loss PDt,= Kf,*(w/Af,)2/(2*rho*gc*144)

Where, Kt,, - resistance factor for entire FW system 3.2 Idt, (typical ID) in 14.31 Area, Af, (area selected to determine K-factor) ft2 1.11688 Total FW System Irrecoverable Loss, PDfw psi 18.12

L-2009-192 Page 50 of 57 Average Fluid Flow Axeas ( ft) 6.31 STEAM OUTLET NOZZLE (AVG, JUST ABOVE SEC.

DECk) oWNCOMER JUST ABOVE HEADER) 125.29 25.48 AT PRIMARY DECK 1.1. FEEDWATER (TW-ERMA SLEEVE)

FI HEADER LATTICE GRIDS

'0.04 &0¶4O'N HFEADER

L-2009-192 Attachment I Page 51 of 57 Table 18 -PSL-1 Pressurizer Level Error Setpoints (Deviations from nominal level)

Deviation (% Tap Span) 1

-3%/-1%

(LC-1110-1) 2

-4%/-2%

(LC-1110-2) 3

+10%

(LA-IIIOXH,YH) 4

-5%

(LA-I 10XL,YL) 5

+3.6%

(LC-IIIOXH,YH) 6

-5%

(LA-11IOXL,YL) 8

-1%

(LIC-1I1OX) 9

+9%

(LIC-1IIOY)

1.

Start/Stop 1st Charging Pump

2.

Start/Stop 2 nd Charging Pump

3.

High Level Error Alarm

4.

Low Level Error Alarm, All Charging Pumps on

5.

Pressurizer Proportional Heaters Cut-off (Energized)

6.

Backup Signal to Start All Charging Pumps

8.

Minimum Letdown

9.

Maximum Letdown

L-2009-192 Attachment I Page 52 of 57 Table 19 - Unit I Essential Valve Characteristics Component Full Open Flow Forward/

Open/Close Rate Min Flow at Rated Open/Close Logic Area Backward CV Conditions Pressurizer 0.00761 Ft2 N/A 1 sec open (this 153,000 Ibm/hr per valve PORVs are actuated on high PZR pressure PORVs This is an effective value is for non-using 2/4 logic (same bistables as used for area, back LTOP evaluations)

RPS). The nominal (TS) setpoint is calculated from the

<2400psia. This setpoint will not change for identified flow rate EPU. See Table 11 for additional (preliminary based information.

on Draft Calc.)

PORVs are also actuated by the LTOP logic.

The LTOP logic and existing setpoints is shown in Figure 7 below.

Pressurizer Safety 0.008997 Ft2 N/A 0.05 sec open 200,000 Ibm/hr per valve Spring loaded valve that opens at nominal set Valves This is an effective

@ setpressure + 3%

pressure, achieves full open position at 103%

area, back accumulation of setpressure; recloses at a pressure of 99%

calculated from the to 85% of setpressure; see Table 11 for identified flow rate additional information (preliminary based on Draft Calc.)

Main Steam 0.10469 Ft2 for the N/A 1.0 sec open 743,481 lbm/hr per valve Spring loaded valve that opens at nominal set Safety Valves 1000 psia valves.

@ 1000 psia pressure, full open at 103% of setpressure; This is an effective 773,242 Ibm/hr per valve recloses at a pressure of 99% to 90% of area, back

@1040 psia setpressure; see Table 11 for additional calculated from the information identified flow rate; 0.1046 Ft2 for the 1040 psia valves.

This is an effective area, back calculated from the identified flow rate (preliminary based on Draft Calc.)

L-2009-192 Attachment I Page 53 of 57 Component Full Open Flow Forward/

Open/Close Rate Min Flow at Rated Open/Close Logic Area Backward CV Conditions Atmospheric Open / Close (sec)

Dump Valves HCV-08-2A 0.0989 sq ft per 408 12.4-20.6 /

626,646 Ibm/hr @900 ADV control is via pressure indicating valve, effective 14.1-23.4 psia; 80,000 lbm/hr @

controllers PIC-08-IA & PIC-08-1B. In the area back 115 psia (design capacity)

Manual mode of operation, the controller is HCV-08-2B calculated from 13.1-21.7 /

used to directly set valve position. In the identified flow rate 17.5-29.1 Automatic mode of operation, valve position (preliminary based is varied to maintain the desired pressure.

on Draft Calc.)

PSL1 ADV controllers are normally maintained in Manual during full power plant operation. This normal control mode is based on PSL-2 TS LCO 3.7.1.7 and Unit standardization. ADV control will not change for EPU.

Turbine Control Data unavailable; Data N/A 12,266,130 Ibm/hr at EPU Valves close on Turbine Trip. Trip logic Valves (Governor) requested from unavailable; for total of four valves includes: Reactor Trip, High-High SG Level, vendor requested from Overspeed, Generator Lockout and various vendor equipment protection functions.

Turbine governor valves are currently operated in Sequential Valve mode with valve position controlled by the DEH computer.

Various control strategies (feedback loops) are available including: Impulse Pressure, Megawatt Control and Speed Control.

As part of EPU main turbine upgrades, the governor valves will be operated in Single Valve mode.

L-2009-192 Page 54 of 57 Component Full Open Flow Forward/

Open/Close Rate Min Flow at Rated Open/Close Logic Area Backward CV Conditions Turbine By-Pass Not available due An upgraded valve An upgraded system Steam Bypass Control System (SBCS) has Valves to planned valve open time in the capacity of approximately both modulation and quick open control capacity upgrade quick open mode 6.9E6 Ibm/hr. is planned modes. A control block diagram, including of approximately 2 as part of EPU setpoints where applicable, is shown in Figure sec is planned as 6 below.

part of EPU Minor changes to the SBCS logic are planned as part of EPU. QO load rejection setpoint will be reduced to -15%. Valve demand curves will be revised to reflect new valve capacities and valve trim. Transition from QO to modulation mode will be enhanced.

Turbine Stop Data unavailable; Data 0.26 sec (close) 12,266,130 Ibm/hr at EPU Valves close on Turbine Trip. Trip logic Valves (Throttle) requested from unavailable; for total of four valves includes: Reactor Trip, High-High SG Level, vendor requested from Overspeed, Generator Lockout and various vendor equipment protection functions.

Turbine stop valves are normally full open during power operation. The stop valves are opened in a DEH speed control mode during initial turbine startup.

Main Feed 1.576 Ft 2 22700 Close stroke time 13,303,150 Ibm/hr 100%

.MFIVs close on either SIAS or MSIS. See Isolation Valves (Estimate based on 7.9 to 14.0 sec.

Flow Table 11 for SIAS/MSIS actuation signals full flow of 20" and associated setpoints.

Sch 120 pipe)

Main Steam 4.508 sq ft N/A After MSIS signal 13,236,690 Ibm/hr 100%

MSIVs close on MSIS. See Table 11 for Isolation Valves is generated. 6.9 Flow MSIS actuation signals and associated sec-value includes setpoints.

sensor response time of 0.9 secs and valve closure time of 6.0 secs.

L-2009-192 Page 55 of 57 Figure 6 - Unit I SBCS Simplified Block Diagram

4.

L-;:w I &.t.Vi-z1 II

?

?

I~~~~~~~~~rT W.~ Pd.&I 72

~

~

tI~&C

~

0 TID IISV

PICI541, l.1J,..Jl~

15*?b IJtI l

t.

44 W

L-2009-192 Attachment I Page 56 of 57 Figure 7 - LTOP PORV ACTUATION SCHEMATIC

+125 VDC 63X P-112" HS-1402 117 54 55 120 VAC N

L SS/117-1 NORM SS/117-1 NORM J

CLOSED IN liT-]

HS1402 LOWRANGE 11 T 117 TA-1i115 5

CLOSE*

1 8 TA-1115 CLOSE 7

307° F--

16 PA-1103 6

CLOSE 1 8 PA-1103 CLOSE 7

524 PSIA 17 344 PSIA 7

74-2 1

DISABLES H21

\\

ACTUATES UPON PORV

/

PORV -1402,'

ACTUATION AND ACTUATES H22 I

/

//

/

/

/

/

/

PORV V-1402 (ENERGIZE TO OPEN)

(P/l&C/1-IMP-D1.21/Fig.3-1/Rev.alO/t

L-2009-192 Attachment I Page 57 of 57 Appendix A - Calculation of Fuel Assembly Grid Weight and Surface Area AREVA GRID WEIGHT AND SURFACE AREA HTP Zirc-4 weight gms Ref 1.

Zirc 4 density gm/cc Ref. 2, 3 vol cc wt in pounds Strip thickness inches Ref 1.

Volume in3 Area in2 wetted area X2 Wetted area sq ft HMP Inconel 714 weight gms Ref 1.

Inconel density lb/in3 Ref 4.

Strip thickness inches Ref 1.

wt in pounds Volume in3 AREA in2 Wetted area X2 Wetted area sq ft 1046 6.6 158.48 2,306 0.017 9,671 568.88 1137.76 7.90 976 0.296 0.0125 2.15 7.27 581.54 1163.09 8.08 453,592 gm/Ib Note 1.

Note 2.

Reference:

1. Areva Document 32-0979930-000 PSL-1 Cycle 22
2. Zirconium Associatilon Bulletin # 6, "General Data Covering Zirconium and Zirconium Alloys"
3. ATI Wah Chang,Technical Data Sheet Properties of Zircaloy-4
4. Special Metals Handbook Notes:
1. Assume that all 56 strips are the same thickness 0.017 in. (4 side strips 0.025 in thick)
2. Assume that all 56 strips are the same thickness 0.0125 in. (4 side strips 0.025 in thick)

Per Assembly HTP HMP Total Weight lbs Area ft2 18.45 63.2092 2.15 8.08

/

j/tf 20.60 71-286-2 23q2Z Performed Byj,,414;-/

Verified By:

4 2)/2 HTP HMP Grid wts Area.xis

-Iq ATTACHMENT 4 NONPROPRIETARY VERSION OF ATTACHMENT 2

L-2009-192 Page 1 of 41

L-2009-192 Page 2 of 41 18.2. CEA worth vs. insertion (with and without hiahest worth rod stuck out of core)

RLBLOCA SBLOCA 0

Time after scram vs. normalized worth Normalized Normalized Time (sec)

Scram Worth Time (sec)

Scram Worth 0.00 0.0000 1.56 0.0212 0.50 0.0000 1.62 0.0230 0.56 0.0010 1.72 0.0263 0.60 0.0017 1.80 0.0293 0.72 0.0038 1.88 0.0326 0.80 0.0051 2.00 0.0394 0.84 0.0058 2.14 0.0492 0.88 0.0064 2.28 0.0619 0.94 0.0071 2.43 0.0856 1.00 0.0084 2.56 0.1101 1.04 0.0093 2.72 0.1770 1.07 0.0100 2.80 0.2047 1.12 0.0111 2.84 0.2185 1.16 0.0118 2.91 0.2853 1.20 0.0126 2.96 0.3339 1.28 0.0145 3.04 0.4112 1.36 0.0163 3.10 0.4694 1.41 0.0174 3.25 0.7144 1.48 0.0189 3.40 1.0000 r-

L-2009-192 Page 3 of 41 18.3. Reactivity vs. fuel temperature and reactivity vs. moderator density (Note: AREVA NP's model does not model reactivity feedback)

RLBLOCA and SBLOCA L

AREVA does not separate moderator temperature and density. The reactivity effect of both is correlated against density with the temperature impact imbedded.

o Based on Tech. Spec. HZP MTC = +7 pcm/°F j

L-2009-192 Page 4 of 41 Based on Tech. Spec. HFP MTC = +2 pcm/°F 18.4. Moderator temperature coefficient (Note: AREVA NP's model does not model reactivity feedback)

RLBLOCA and SBLOCA Moderator temperature coefficient (Tech. Spec., HFP positive limit) = +2 pcm/°F Moderator temperature coefficient (Tech. Spec. / Core Operating Limits Report, negative limit) =

-32 pcm/°F 18.5. Typical top peaked axial power shape RLBLOCA

[

]

SBLOCA See below for a typical axial power profile:

I I

L-2009-192 Page 5 of 41 18.6. Minimum and maximum average fuel clad gap conductivity at rated power conditions RLBLOCA

L-2009-192 Page 6 of 41 7-

-/

L-2009-192 Page 7 of 41 SBLOCA I

L-2009-192 Page 8 of 41 18.7. Minimum local gap conductance as a function of LHR RLBLOCA

L-2009-192 Page 9 of 41 SBLOCA See response to 18.6 (SBLOCA).

18.8. Gap conductance RLBLOCA See response to 18.6 (RLBLOCA).

See "Additional Information with regards to 18.6, 18.8, and 18.10" (below) for more supporting information.

SBLOCA See response to 18.6 (SBLOCA).

18.9. Linear heat rate RLBLOCA The table below presents the LHRs used by the 59 RLBLOCA uncertainty analysis runs, and is provided below.

The corresponding S-RELAP5 output files would provide additional information.

L-2009-192 Page 10 of 41 r

Note: The LHGR could vary from about.3 times the average KW/ft for the plant to FQ times the average KW/ft for the plant. It seems unlikely that this would be considered responsive. The peak linear heat rate used in the limiting LBLOCA analysis for the hot rod will be sufficient.

SBLOCA Tech. Spec. COLR peak LHR limit = 14.7 kW/ft 18.10. Fuel average and centerline temperature as a function of burnup for the hot rod in the hot bundle RLBLOCA The values desired are those that are used for LOCA conditions.

See "Additional Information with regards to 18.6, 18.8, and 18.10" (below) for more supporting information.

SBLOCA Not applicable to SBLOCA.

L-2009-192 Page 11 of 41 Additional Information with regards to 18.6, 18.8, and 18.10 (RLBLOCA ONLY)

)

L-2009-192 Page 12 of 41 HOT UO2 ROD

L-2009-192 Page 13 of 41 HOT 6% GAD ROD

/I-

L-2009-192 Page 14 of 41 AVERAGE ROD

L-2009-192 Page 15 of 41 18.11. Additional Supportinq Data NRC request - Specifications for modeling a small break LOCA, in particular what models/assumptions are used regarding loop seal clearing and hot channel conservatisms. The AREVA SBLOCA methodology topical report was provided and this is very useful. The FSAR or a report on the analysis of record is needed to move from the generic methodology to the plant specific application. Plots of key variables for the EPU LBLOCA and SBLOCA analyses, including containment pressure for LBLOCA.

The following pages contain plots for the key variables. Plots for the RLBLOCA analysis are presented in Figures 1 through 12 (these figures represent the limiting case: Case No. 3, 6% gad rod, PCT = 1686 *F). Plots for the SBLOCA analysis are presented in Figures 13 through 26 (these figures represent the limiting 0.08 ft2 case, which has a PCT of 1776 'F).

L-2009-192 Page 16 of 41 J

L-2009-192 Page 17 of 41

L-2009-192 Page 18 of 41

\\I-

L-2009-192 Page 19 of 41

-I

L-2009-192 Page 20 of 41

L-2009-192 Page 21 of 41

\\I,-I

-1

L-2009-192 Page 22 of 41 J

L-2009-192 Page 23 of 41

-- l

L-2009-192 Page 24 of 41

L-2009-192 Page 25 of 41 K-

-/

L-2009-192 Page 26 of 41

L-2009-192 Page 27 of 41

-.1

L-2009-192 Page 28 of 41 ID:4251 3 30.ApO2CIN OZ:322:07 --aLpu_OOSf-,2_DNX 0.08ft2 Break 120 110 100 CO t-a,,

cr 90 70 60 50 40 30 20 10 Actual Reactor Power (CV 101) 4, L

0 500 1000 Time (sec) 1500 2000 Figure 13 Reactor Power for 0.08 ft2 Break

L-2009-192 Page 29 of 41 0D:42513 30Apr2009 05:3l:07 s*,a e1u*_03.Xf2 DMX 0.08ft2 Break 2400 2200 PZR Pressure (CV 1702) 2000 Gu SG-1 Pressure (CV 5600)

- - -,SG-2 Pressure (CV 7600) 1800 1600

.* 1400 1200 800-600 400 200 0

500 1000 1500 2000 Time (sec)

Figure 14 Pressurizer and Steam Generator Pressure for 0.08 ft2 Break

L-2009-192 Page 30 of 41 ID:42513 30Apr2009 05:32:07 -4a.epuo_.Oef2_DMX 1.00 0.90 0.80 0.70

, 0.60 0.40 0.30 p

0.20 0.10 0.00 050 0.08ft2 Break 1000 1500 Time (sec) 2000 Figure 15 Break Void Fraction for 0.08 ft2 Break

L-2009-192 Page 31 of 41 ID:42513 30Apr2009 05:32:07 slaepu_0.08ft2_DMX 0.08ft2 Break 2000 Break Flow Rate (mflowj-900000000) 1500 1000 0

500 0

5 0

1 0

500 1000 1500 20 Time (sec)

Figure 16 Break Flow Rate for 0.08 ft2 Break

L-2009-192 Page 32 of 41 ID:42513 30Apr2009 05:3207 sla epu_0.08ft2_DMX 0,08ft2 Break 1.00 0.90 0.80 0.70

........... U U

U A

A I

C U.UU 0

' 0.50

> 0.40 I-Lr Loop 1 A - Loop Seal Void Fraction (voidg-130070000)

Loop IB - Loop Seal Void Fraction (voidg-230070000)

- Loop 2A - Loop Seal Void Fraction (voidg-330070000)

Loop 2B - Loop Seal Void Fraction (voidg-430070000)

IN A

-,," W', /w 7 7 030 10 0.20 0.10 1-0.00 I-0 500 1000 Time (sec) 1500 2000 Figure 17 Loop Seal Void Fractions for 0.08 ft2 Break

L-2009-192 Page 33 of 41 ID:42513 30Apr2GG9 05:32:07 sla_epu_0.08ft2_DMX 0.08ft2 Break 100

-s Loop 1A Flow Rate (CV 1405) 90 Loop 'B Flow Rate (CV 2405)

Loop 2A Flow Rate (CV 3405) 80 Loop 2B Flow Rate (CV 4405) 70 60 50 U-40 30 20 10 0

500 1000 1500 2000 Time (sec)

Figure 18 RCS Loop Flow Rate for 0.08 ft2 Break

L-2009-192 Page 34 of 41 ID:42513 30Apr20O9 05 32,07 slaepu_0.08ft2_DMX 0.08ft2 Break 110 100 SG-1 MFW Flow Rate (CV 5001) 90 SG-2 MFW Flow Rate (CV 7001) 80 Z,

70

LL 60 50 40 30 0U-,

10

-10 0 500 1000 1500 2000 Time (sec)

Figure 19 Main Feedwater Flow Rate for 0.08 ft2 Break

L-2009-192 Page 35 of 41 ID:42513 30Apr2009 05:32107 slaepu 0.08ft2_DMX 0.08ft2 Break 50 s SG-1l AFW Flow Rate (mflowj-503000000) 40 SG-2 AFW Flow Rate (mflowj-703000000) 30 E

20 6

10 0

-10 0

500 1000 1500 2000 Time (sec)

Figure 20 Auxiliary Feedwater Flow Rate for 0.08 ft2 Break

L-2009-192 Page 36 of 41 ID:42513 30Apr2009 05:32:07 slaepu_0081t2_DMX 170000

'160000 150000 E 140000 130000

'120000

'110000 100000 0.08ft2 Break 0

500 1000 1500 Time (sec) 2000 Figure 21 Steam Generator Total Mass for 0.08 ft2 Break

L-2009-192 Page 37 of 41 ID:42513 30Apr2009 05:32:07 sla-epuO.08ft2_DMX 0.08ft2 Break 100 90 Total HPSI Flow Rate (CV 840) 80 70 S60 E

.0 50

  • - 40 40 30 20 10 0500 1000 1500 2000 Time (sec)

Figure 22 Total HPSI Mass Flow Rate for 0.08 ft2 Break

L-2009-192 Page 38 of 41 ID:42513 30Apr2009 0532:07 sla_epu_0.08ft2_DMX 400 350 Total SI 300 250 E

.0 200 o '150 C.L 100 50 0

0.08ft2 Break 0

500

'1000 Time (sec)

'1500 2000 Figure 23 Total SIT Mass Flow Rate for 0.08 ft 2 Break

L-2009-192 Page 39 of 41 ID:42513 30Apr2009 05732:07 sla_epu_0.08t2_DMX 500000 450000 400000 350000 300000 250000 200000 150000 100000 50000 0

0 500 O.08ft2 Break 1000 1500 Time (sec) 2000 Figure 24 RCS and Reactor Vessel Mass Inventories for 0.08 ft2 Break

L-2009-192 Page 40 of 41 ID:42513 30Apr2009 05:32:07 sla epu_0,08ft2_DMX 0.08ft2 Break 14 12 Hot Assembly Collapsed Liquid Level (CV 160) 10

-8 C-0 4

2 0 0 500 1000 1500 2000 Time (sec)

Figure 25 Hot Assembly Collapsed Liquid Level for 0.08 ft2 Break

L-2009-192 Page 41 of 41 0D:42513 30Apr2009 05:32:07 sla epu_0.0Sft2_DMX 2000 1800 Hot Sp "1600 1400 "1200 E

'- 1000 800 600 400 0.08ft2 Break 0

500 1000 1500 Time (sec) 2000 Figure 26 Hot Spot Cladding Temperature for 0.08 ft 2 Break

ATTACHMENT 3

L-2009-192 Page 1 of 3 AFFIDAVIT COMMONWEALTH OF VIRGINIA

)

ss.

CITY OF LYNCHBURG

1.

My name is Mark J. Burzynski. I am Manager, Product Licensing, for AREVA NP Inc. and as such I am authorized to execute this Affidavit.

2.

I am familiar with the criteria applied by AREVA NP to determine whether certain AREVA NP information is proprietary. I am familiar with the policies established by AREVA NP to ensure the proper application of these criteria.

3.

I am familiar with the AREVA NP information provided to the NRC in support of a Florida Power and Light letter numbered L-2009-192 entitled Data for NRC Confirmatory EPU Analyses. Attachment 2 of that letter is provided and referred to herein as the "Document."

Information contained in this Document has been classified by AREVA NP as proprietary in accordance with the policies established by AREVA NP for the control and protection of proprietary and confidential information.

4.

This Document contains information of a proprietary and confidential nature and is of the type customarily held in confidence by AREVA NP and not made available to the public.

Based on my experience, I am aware that other companies regard information of the kind contained in this Document as proprietary and confidential.

5.

This Document has been made available to the U S. Nuclear Regulatory Commission in confidence with the request that the information contained in this Document be withheld from public disclosure. The request for withholding of proprietary information is made in accordance with 10 CFR 2.390. The information for which withholding from disclosure is

L-2009-192 Page 2 of 3 requested qualifies under 10 CFR 2.390(a)(4) "Trade secrets and commercial or financial information".

6.

The following criteria are customarily applied by AREVA NP to determine whether information should be classified as proprietary:

(a)

The information reveals details of AREVA NP's research and development plans and programs or their results.

(b)

Use of the information by a competitor would permit the competitor to significantly reduce its expenditures, in time or resources, to design, produce, or market a similar product or service.

(c)

The information includes test data or analytical techniques concerning a process, methodology, or component, the application of which results in a competitive advantage for AREVA NP.

(d)

The information reveals certain distinguishing aspects of a process, methodology, or component, the exclusive use of which provides a competitive advantage for AREVA NP in product optimization or marketability.

(e)

The information is vital to a competitive advantage held by AREVA NP, would be helpful to competitors to AREVA NP, and would likely cause substantial harm to the competitive position of AREVA NP.

The information in this Document is considered proprietary for the reasons set forth in paragraphs 6(b), 6(c) and 6(d) above.

7.

In accordance with AREVA NP's policies governing the protection and control of information, proprietary information contained in this Document has been made available, on a limited basis, to others outside AREVA NP only as required and under suitable agreement providing for nondisclosure and limited use of the information.

8.

AREVA NP policy requires that proprietary information be kept in a secured file or area and distributed on a need-to-know basis.

L-2009-192 Page 3 of 3

9.

The foregoing statements are true and correct to the best of my knowledge, information, and belief.

SUBSCRIBED before me on this day of M

u 2009.

Sherry L. McFaden NOTARY PUBLIC, COMMONWEALTH OF VIRGINIA MY COMMISSION EXPIRES: 10/31/2010 Registration # 7079129