ML083460051

From kanterella
Jump to navigation Jump to search

R. E. Ginna Nuclear Power Plant - License Amendment Request: Revision of Tech Spec. 3.9.3 to Allow Refueling Operations Inside Containment with Both Personnel Hatch Air Lock Doors Open Under Administrative Control, and Obtain Regulatory Rev
ML083460051
Person / Time
Site: Ginna Constellation icon.png
Issue date: 12/04/2008
From: John Carlin
Constellation Energy Group
To:
Document Control Desk, Office of Nuclear Reactor Regulation
References
Download: ML083460051 (184)


Text

John Carlin R.E. Ginna Nuclear Power Plant, LLC Site Vice President 1503 Lake Road Ontario, New York 14519-9364 585.771.5200 585.771.3943 Fax John.Carlin @constellation.com Constellatilon lnergys Nuclear Generation Group December 4, 2008 U. S. Nuclear Regulatory Commission Washington, DC 20555 ATTENTION:

Document Control Desk

SUBJECT:

R.E. Ginna Nuclear Power Plant Docket No. 50-244 License Amendment Request: Revision of Technical Specification 3.9.3 to Allow Refueling Operations inside Containment with Both Personnel Hatch Air Lock Doors Open Under Administrative Control, and Obtain Regulatory Review of the Supporting Dose Analysis.

In accordance with the provisions of 10 CFR 50.90, R.E. Ginna Nuclear Power Plant, LLC (Ginna LLC) is submitting a request for an amendment to change the required configuration of the containment personnel hatch during refuefing operations. Specifically, Ginna is requesting that Technical Specification (TS) Section 3.9.3, Containment Penetrations, be revised to allow refueling operations with both personnel interlock doors to be open under administrative control.

Additionally, to support this amendment and future operations, Ginna has recalculated the non Loss of Coolant Accident (LOCA) gas gap fractions and the Fuel Handling Accident (FHA) using the new gap fractions and a shorter decay time of 72 hours8.333333e-4 days <br />0.02 hours <br />1.190476e-4 weeks <br />2.7396e-5 months <br />. The new non-LOCA gap fractions are considered a methodology change, while the increase in calculated dose for the FHA analysis exceeds the criteria for regulatory review as directed in NEI 96-07, Guidelines for 10 CFR 50.59 Implementation, Revision 1. Ginna is requesting review and approval of these analyses which also supports the change to TS Section 3.9.3.

TS Section 3.9.3 currently requires that one door in the containment personnel hatch be closed during refueling operations. To meet this requirement it is necessary to have the interlocks in service and to cycle them frequently during the period of refueling operations in containment.

Historically, this excessive cycling of the doors has resulted in damage to the doors and subsequent costly repairs. Additionally, having the interlocks installed has the potential to increase the time required to evacuate the containment in the event of an emergency. To alleviate this unnecessary expense and potential safety issue, Ginna is requesting that TS Section

!u~

Document Control Desk December 4, 2008 Page 2 3.9.3.b be revised to allow both interlocked doors to be open during refueling operations under administrative control. This is consistent with NUREG-1431, Standard Technical Specification Westinghouse Plants, Revision 3.1. The enclosure to this letter contains Ginna's evaluation of the proposed change, and Attachment 1 to the enclosure contains the marked up changes being requested.

We have considered the possibility of significant hazards associated with this proposed change and have determined that there are none. We have also determined that operation with the proposed change would not result in any significant change in the types or amounts of any effluents that may be released offsite, nor would it result in any significant increase in individual or cumulative occupational radiation exposure. Therefore, the proposed change is eligible for categorical exclusion as set forth in 10 CFR 51.22(c)(9). Pursuant to 10 CFR 51.22(b), no environmental impact statement or environmental assessment is needed in connection with the proposed amendment.

This proposed change to the Technical Specifications and our determination of significant hazards have been reviewed by our Plant Operation Review Committee (PORC), and it has concluded that implementation of these changes will not result in an undue risk to the health and safety of the public. A copy of this letter with attachments has been provided to the appropriate state representative per 1 OCFR50.91 (b)(1).

We request that this change be approved by August 14, 2009 to support the scheduled 2009 Fall refueling outage. Once approved, the amendment shall be implemented within 30 days.

This submittal contains one new regulatory commitment.

Should you have questions regarding this matter, please contact Mr. David Wilson at (585) 771-5219 or David.F.Wilson @ constellation.com.

R.E. Ginna Nuclear Power Plant, LLC

Document Control Desk December 4, 2008 Page 3 STATE OF NEW YORK TO WIT:

COUNTY OF WAYNE I, John T. Carlin, being duly sworn, state that I am Vice President, R.E. Ginna Nuclear Power Plant, LLC (Ginna LLC), and that I am duly authorized to execute and file thisý request on behalf of Ginna LLC.

To the best of my knowledge and belief, the statements contained in this document are true and correct. To the extent that these statements are not based on my personal knowledge, they are based upon information provided by other Ginna LLC employees and/or consultants. Such information has been reviewed in accordance wit company practice and I believe it to be reliable.

Subscribed and sworn befqr me, a Notry Public in and for the State of New York and County of hifof rvI-

,this M day of 0_(_QY"..-

2008.

WITNESS my Hand and Notarial Seal:

u jv

~Notary Publfce '

My Commission Expires:

SHARON U-ILLER--

Notary Public, Statdof New York' Registration N&01M16017755 0

Monroe County-f, Commission Expires Deceftof 1, AL Date JC/MR

Enclosure:

Evaluation of the Proposed Change cc:

S. J. Collins, NRC D.V. Pickett, NRC Resident Inspector, NRC (Ginna)

P.D. Eddy, NYSDPS J. P. Spath, NYSERDA R.E. Ginna Nuclear Power Plant, LLC

ENCLOSURE Evaluation of the Proposed Change TABLE OF CONTENTS 1.0 2.0 3.0 4.0

SUMMARY

DESCRIPTION DETAILED DESCRIPTION TECHNICAL EVALUATION REGULATORY EVALUATION 4.1 Applicable Regulatory Requirements/Criteria 4.2 Precedent 4.3 Significant Hazards Consideration 4.4 Conclusions

5.0 ENVIRONMENTAL CONSIDERATION

6.0 REFERENCES

ATTACHMENTS

1. Technical Specification Page Markups
2. Design Analysis DA-NS-08-049, Ginna Gas Gap Isotopic Fraction Calculations, Revision 0
3.

Design Analysis DA-NS-08-050, Ginna Fuel Handling Accident Offsite and Control Room Doses, Revision 0

4. Regulatory Commitments R.E. Ginna Nuclear Power Plant, LLC December 4, 2008 Page 1 of 8

ENCLOSURE Evaluation of the Proposed Change 1.0

SUMMARY

DESCRIPTION This evaluation supports a request to amend Operating License No. DPR-18, for the R. E. Ginna Nuclear Power Plant (Ginna).

The proposed change would revise the Operating License to amend the required configuration of the containment personnel hatch during refueling operations. Specifically, Ginna is requesting that Technical. Specification (TS) Section 3.9.3, Containment Penetrations, be revised to allow refueling operations with both personnel interlock doors to be open under administrative control. to this enclosure contains the markups for the proposed TS changes. Additionally, to support future operations, and the above TS amendment, Ginna is requesting regulatory review of Design Analysis DA-NS-08-049, Ginna Gas Gap Isotopic Fraction Calculations, Revision 0 (Attachment 2) and Design Analysis DA-NS-08-050, Ginna Fuel Handling Accident Offsite and Control Room Doses, Revision 0 (Attachment 3). Following NRC review and approval, these analyses will become the analyses of record. Attachment 4 contains a regulatory commitment to close one personnel hatch door within 30 minutes of a Fuel Handling Accident within containment.

2.0 DETAILED DESCRIPTION Use of the Alternate Source Term per 10 CFR 50.67 was approved for Ginna as part of Amendment 87 to the Ginna TS. Regulatory Guide (RG) 1.183, Alternative Radiological Source Terms for Evaluating Design Basis Accidents at Nuclear Power Reactors, was used in the development of the analyses for conversion to the Alternate Source Term (AST). Table 3 of RG 1.183 provides "Non-LOCA Fraction of Fission Product Inventory in Gap." Footnote 11 to Table 3 provides peak power and burnup criteria for use of the provided fractions and provisions to provide plant specific analysis if these criteria are exceeded. Ginna has determined that the footnote criteria have been previously exceeded, and that a small number of fuel rods may exceed the criteria in future cores. Therefore, Ginna is submitting the appropriate plant specific analysis (Attachment 2) for NRC review and approval. Upon NRC approval, this analysis will become Ginna's analysis of record.

Ginna's current FHA analysis assumes100 hours0.00116 days <br />0.0278 hours <br />1.653439e-4 weeks <br />3.805e-5 months <br /> of fission product decay prior to the accident.

Accordingly, Ginna TS Bases and other administrative requirements require that 100 hours0.00116 days <br />0.0278 hours <br />1.653439e-4 weeks <br />3.805e-5 months <br /> has elapsed since plant shutdown prior to starting refueling operations. Improvements in refueling equipment and outage planning tools have greatly reduced the time needed to prepare for refueling operation after the reactor is shut down. In order take advantage of these advances, Ginna has reanalyzed the FHA dose consequences using 72 hours8.333333e-4 days <br />0.02 hours <br />1.190476e-4 weeks <br />2.7396e-5 months <br /> of decay (Attachment 3) to demonstrate acceptable dose consequences with the reduced decay time. The revised gap R.E. Ginna Nuclear Power Plant, LLC December 4, 2008 Page 2 of 8

ENCLOSURE Evaluation of the Proposed Change fractions (Attachment 2) were also considered. The results of the revised analysis indicated that the increase in calculated dose from the previous analysis exceeded the criteria for implementing the change under 10 CFR 50.59, as described in NEI 96-07, Guidelines for 10 CFR 50.59 Implementation, Revision 1. Therefore, Ginna is submitting the revised analysis (Attachment 3) for NRC review and approval, whereupon it will become the analysis of record.

At Ginna, movement and storage of irradiated fuel in the Spent Fuel Pool (SFP) is controlled by the Technical Requirements Manual (TRM) and TS LCO 3.7.13. It is recognized that addresses only the FHA aspects of SFP operations and that prior to moving irradiated fuel which has decayed less that 100 hours0.00116 days <br />0.0278 hours <br />1.653439e-4 weeks <br />3.805e-5 months <br /> into the SFP, additional analysis addressing the Tornado Missile Accident (TMA) will be required. Since the TMA analysis is not required to support the focus of this submittal (TS 3.9.3), that analysis is not included in this submittal.

When complete, the TMA analysis will be evaluated under 10 CFR 50.59 and submitted for NRC approval, if required.

TS Section 3.9.3.b currently requires that one door in the containment personnel hatch be closed during refueling operations. To meet this requirement it is necessary to have the interlocks in service and to cycle the doors frequently during the period of refueling operations in containment. Historically, this excessive cycling of the doors has resulted in damage to the doors mechanisms and subsequent costly repairs. Additionally, having the door interlocks installed could delay the evacuation of personnel in the event of an emergency inside containment. To alleviate this unnecessary expense and potential safety hazard, Ginna is requesting an amendment to revise TS Section 3.9.3, Containment Penetrations, LCO (b) to require that the personnel air lock have one door closed or capable of being closed under administrative control. This would allow the flexibility to perform refueling operations with both airlock doors open. The TS Bases will also be modified to require that one door be closed within 30 minutes for consistency with the current containment equipment hatch requirements.

Please note that this change, although consistent with NUREG 1431, Standard Technical Specifications Westinghouse Plants, Revision 3.1, and TSTF-68 and TSTF-312, is not identical because of the unique design of Ginna's Equipment hatch configuration (see current TS 3.9.3(a)).

3.0 TECHNICAL EVALUATION

The technical aspects of the gap fraction analyses (Attachment 2) and the FHA dose analysis (Attachment 3) are contained within the analyses themselves and no further technical discussion is necessary. However, in order to evaluate the technical aspects of the requested TS amendment (Attachment 1), Ginna reviewed plant and building configurations, the various dose analysis, and the inputs to those analysis.

The Ginna personnel hatch consists of a hatch barrel with a personnel access door on each end in a conventional air lock design. During operation, the doors are interlocked such that only one R.E. Ginna Nuclear Power Plant, LLC December 4, 2008 Page 3 of 8

ENCLOSURE Evaluation of the Proposed Change door can be open at any given time. Each door is capable of acting as a fission product barrier if required. The intermediate building consists of a radiologically controlled area (where the flow of air and radioactive contamination is controlled through the use of walls, doors and ventilation components) and a non-radiologically controlled area. The personnel hatch connects the containment with the intermediate building radiologically controlled side.

In the refueling configuration allowed by the current TS the containment purge would be in operation, the equipment hatch (located on the opposite side of containment from the personnel hatch) would be open to the outside atmosphere, and at least one door in the personnel hatch would be closed. If a FHA were to occur inside containment while in this configuration, the purge system would automatically isolate and the release path would be out through the equipment hatch to the control room receptor. If in the proposed configuration, the release could be from the equipment hatch, the personnel hatch, or a combination of both paths. Any portion of the release from the personnel hatch would enter the intermediate building radiologically controlled side. The released activity would then be directed by the ventilation system through the intermediate building exhaust fans to the auxiliary building exhaust fan suction plenum and out through the plant vent. Should the intermediate exhaust fans trip, or otherwise not be operating, the release would be assumed to be to the environment from various openings in the building. The radiologically controlled side of the intermediate building is isolated from other adjacent buildings by normally closed security doors, dampers and back flow dampers. Any release to these adjacent buildings would be minimal and dose to other plant personnel would be controlled and limited by Ginna's procedures governing local radiation emergencies. analyzed the most conservative release points from the intermediate building, which bounds the controlled side of the building.

In 2005, Ginna obtained approval for use of the AST. To obtain that approval Ginna reanalyzed off-site and control room dose consequences for all design basis accidents per Regulatory Guide

  • 1.183, Alternative Radiological Source Terms for Evaluating Design Basis Accidents at Nuclear Power Reactors. The atmospheric dispersion factors (x/Q) were also re-calculated as part of this effort. The NRC approval for conversion to the (AST) is documented in Reference (a) and Reference (b). Subsequent to this approval, Ginna re-performed the dose analysis as part of the Extended Power Uprate (EPU). Approval of the EPU is documented in Reference (c).

Following the approval of the EPU, Ginna applied for and received approval of TS amendment 98 (Reference (d)) to allow refueling operations inside containment with the equipment hatch open. Attachment 2 and Attachment 3 update the assumptions used in the analysis supporting these amendments by updating the non-LOCA gap fractions and reducing the assumed decay time from 100 hours0.00116 days <br />0.0278 hours <br />1.653439e-4 weeks <br />3.805e-5 months <br /> to 72 hours8.333333e-4 days <br />0.02 hours <br />1.190476e-4 weeks <br />2.7396e-5 months <br />. The changes are performed with accepted methodology and result in a dose estimate less than regulatory limits, and are therefore acceptable.

The change to TS section 3.9.3 would create another potential release path through the personnel hatch doors for a fuel handling accident within containment. As indicated above, the credible release points to the environment from the personnel hatch doors would be either the plant vent and/or the limiting release points from the intermediate building structure. Attachment 3, Table R.E. Ginna Nuclear Power Plant, LLC December 4, 2008 Page 4 of 8

ENCLOSURE Evaluation of the Proposed Change 11.2a, indicates that the Atmospheric Dispersion Coefficient (x/Q) for the equipment hatch roll-up door bounds these other release paths. Attachment 3 then assumes that 100 percent of the activity exits the equipment hatch opening roll-up door over the prescribed 2-hour duration.

Since the assumed release activity and release time are not impacted by the proposed change to TS 3.9.3, the new release paths from the personnel hatch doors are bounded by the dose results of Attachment 3. In fact, other release points, or a combination of release points, would actually reduce the dose to the control room and will not affect the dose to the general public. Therefore, refueling operations inside containment with the personnel hatch doors open will not result in a dose to the control room operators or the public in excess of regulatory limits or guidelines.

In summary, the analyses presented in Attachment 2 and Attachment 3 was preformed using accepted methodologies with the appropriate input variables. The results of the analyses indicate that the dose incurred as a result of a FHA is within regulatory guidelines, and that the change to TS 3.9.3 is bounded and is therefore acceptable.

4.0 REGULATORY EVALUATION

4.1 Applicable Regulatory Reguirements/Criteria 10CFR50.67 provides the requirements for a license seeking to revise its current accident source term in design basis radiological consequence analysis.

GDC-19, Control Room, requires, in part, that a control room be provided with adequate radiation protection to permit access and occupancy under accident conditions.

GDC-56, Primary Containment Isolation, requires that each line that connects directly to the containment atmosphere and penetrates primary containment shall be provided with. containment isolation valves.

NRC approved Generic Changes to the Standard TS:

TSTF-68, Revision 2, Containment Personnel Airlock Doors Open During Fuel Movement, August 16, 1999.

0 TSTF-312, Revision 1, Administratively Control Containment Penetrations, August 16, 1999.

Regulatory Guide 1.183, Alternative Radiological Source Terms for Evaluating Design Basis Accidents at Nuclear Power Reactors.

R.E. Ginna Nuclear Power Plant, LLC December 4, 2008 Page 5 of 8

ENCLOSURE Evaluation of the Proposed Change 4.2 Precedent Although not identical because of Ginna's equipment hatch design and plant building configuration, this amendment request is consistent with NUREG 1431, Standard Technical Specifications Westinghouse Plants, Revision 3.1, Section 3.9.4, and with the Calvert Cliffs Nuclear Power Plant TS Section 3.9.3.

4.3 Significant Hazards Consideration R.E. Ginna Nuclear Power Plant, LLC has evaluated whether or not a significant hazards consideration is involved with the proposed amendment by focusing on the three standards set forth in 10 CFR 50.92, "Issuance of amendment," as discussed below:

1. Does the proposed change involve a significant increase in the probability or consequences of an accident previously evaluated?

Response: No.

The accident in question for this submittal is the Fuel Handling Accident (FHA). Thechange in analyzed decay time and the non-LOCA gap fractions result in an increase in the estimated dose to the control room and off site receptors. However, the increased estimated dose maintains significant margin to the regulatory limits, and is therefore acceptable. The proposed amendment to TS 3.9.3 only impacts the release pathway for the accident and not the probability that this accident will occur. The above technical evaluation demonstrates that the consequences of the control room dose will be either unaffected or may actually be reduced by creating the additional pathway. The consequences to the general public at the exclusion area boundary will not be affected. No other analyzed accident is affected. Therefore, the probability or consequences of an accident previously evaluated will not be significantly increased.

2. Does the proposed change create the possibility of a new or different kind of accident from any accident previously e-aluated?

Response: No.

The change only impacts the design inputs to the analyses and containment requirements during refueling operations within the containment. The only accident which could result in significant releases of radioactivity in the plant mode where refueling is possible, and this Technical Specification applies, is the FHA. No other initiators or accident precursors are created by this change. Therefore, the possibility of a new or different kind of accident not previously evaluated is not created.

R.E. Ginna Nuclear Power Plant, LLC December 4, 2008 Page 6 of 8

ENCLOSURE Evaluation of the Proposed Change

3. Does the proposed change involve a significant reduction in a margin of safety?

Response: No.

The change in analyzed decay time and the non-LOCA gap fractions result in an increase in estimated dose to the control room and off site receptors. However, the dose remains within regulatory guidelines and limits with adequate margin, and is therefore acceptable. Regarding the proposed change to TS 3.9.3, the control room dose either remains constant or is decreased and the dose to the public remains unchanged. Therefore, a significant reduction in the margin of safety does not occur due to this change.

Based on the above, R.E. Ginna Nuclear Power Plant, LLC concludes that the proposed amendment(s) present no significant hazards consideration under the standards set forth in 10 CFR 50.92(c), and, accordingly, a finding of "no significant hazards consideration" is justified.

4.4 Conclusions Based on the considerations discussed above, (1) there is reasonable assurance that the health and safety of the public will not be endangered by operation in the proposed manner, (2) such activities will be conducted in compliance with the Commission's regulations, and (3) the issuance of the amendment will not be inimical to the common defense and security or to the health and safety of the public.

5.0 ENVIRONMENTAL CONSIDERATION

A review has determined that the proposed amendment would change a requirement with respect to installation or use of a facility component located within the restricted area, as defined in 10 CFR 20, or would change an inspection or surveillance requirement. However, the proposed amendment does not involve (i) a significant hazards consideration, (ii) a significant change in the types or significant increase in the amounts of any effluent that may be released offsite, or (iii) a significant increase in individual or cumulative occupational radiation exposure.

Accordingly, theproposed amendment meets the eligibility criterion for categorical exclusion set forth in 10 CFR 51.22(c) (9). Therefore, pursuant to 10 CFR 51.22(b), no environmental impact statement or environmental assessment need be prepared in connection with the proposed amendment.

R.E. Ginna Nuclear Power Plant, LLC December 4, 2008 Page 7 of 8

ENCLOSURE Evaluation of the Proposed Change

6.0 REFERENCES

(a) Letter to Mary Korsnick (Ginna LLC) from Donna Skay (NRC),

Subject:

R.E. Ginna Nuclear Power Plant - Amendment Re: Modification of the Control Room Emergency Air Treatment System and Change to Dose Calculation Methodology to Alternate Source Term (TAC No.

MB9123), Dated February 25, 2005.

(b) Letter to Mary Korsnick (Ginna LLC) from Donna Skay (NRC),

Subject:

R.E. Ginna Nuclear Power Plant - Correction to Amendment No. 87 Re: Modification of the Control Room Emergency Air Treatment System (TAC No. MB9123), Dated May 18, 2005.

(c) Letter to Mary Korsnick (Ginna LLC) from Patrick Milano (NRC),

Subject:

Notice of Issuance of Amendment to Facility Operating License - Extended Power Uprate - R.E. Ginna Nuclear Power Plant (TAC No. MC7382), Dated July 11, 2006.

(d) Letter to Mary Korsnick (Ginna, LLC) from Patrick Milano (NRC),

Subject:

R.E. Ginna Nuclear Power Plant - Amendment Re: Refueling Operations with Equipment Hatch Open (TAC No. MC89 10), Dated July 26, 2006.

R.E. Ginna Nuclear Power Plant, LLC December 4, 2008 Page 8 of 8 Technical Specification Page Markups

Containment Penetrations 3.9.3 3.9 REFUELING OPERATIONS 3.9.3 Containment Penetrations LCO 3.9.3 The containment penetrations shall be in the following status:

a.

The equipment hatch shall be either:

1.

bolted in place with at least one access door closed or capable of being closed under administrative control,

2.

isolated by a closure plate that restricts air flow from containment with the associated emergency egress door closed or capable of being closed under administrative control, or

3.

isolated by a roll up door and enclosure building with the roll up door closed or capable of being closed under administrative control.

I

b.

One door in the personnel air lock shall be close*, and

c.

Each penetration providing direct access from the containment o r CA h0 atmosphere to the outside atmosphere shall be either:

1.

closed by a manual or automatic isolation valve, blind flange, do 4 J tr,'tA 4 or equivalent, or

2.

capable of being closed by an OPERABLE Containment Ventilation Isolation System.

APPLICABILITY:

During CORE ALTERATIONS, During movement of irradiated fuel assemblies within containment.

ACTIONS CONDITION REQUIRED ACTION COMPLETION TIME A.

One or more containment A.1 Suspend CORE Immediately penetrations not in ALTERATIONS.

required status.

AND Amendment-9&7 R.E. Ginna Nuclear Power Plant 3.9.3-1

Containment Penetrations 3.9.3 CONDITION REQUIRED ACTION COMPLETION TIME A.2 Suspend movement of Immediately irradiated fuel assemblies within containment.

SURVEILLANCE REQUIREMENTS SURVEILLANCE FREQUENCY SR 3.9.3.1 Verify each required containment penetration is in the 7 days required status.

SR 3.9.3.2 Verify each required containment purge and exhaust 24 months valve actuates to the isolation position on an actual or simulated actuation signal.

AmendmenVW R.E. Ginna Nuclear Power Plant 3.9.3-2 Design Analysis DA-NS-08-049, Ginna Gas Gap Isotopic Fraction Calculations, Revision 0

ATTACHMENT 1, CALCULATION COVER SHEET A.. INITIATION Page L of So Site E CCNPP El NMP REG Calculation No.,:

DA-NS-08-049 Revision No.:

0 Vendor Calculatioi- (Check one);

E Yes.

No Responsible Groupý Nuclear Analysis Unit, Responsible Engineer.

Gerard E-Gryczkowski B. CALCULATION ENGbNEERlNG DISCIPLINE.

l 'Civil 0

Electrical

0. Instr &.Controls 0l Mechanical 0 Nuclear El Other_

Title; GINNA GAs GIA IsoTopic FRACTION CALcUtATIONS Unit 021 E]2' COMMON Proprietary or Safeguards.Calculatloi 01 YENS 0

NO Comments:

N/A Vendor. Cakir, No.:

N/A RFVISION No:

N/A Vendor Name' N/A Safety Class.(Check one):

ED SR

.l AUGMENTEO QUALITY E. NSR There,are assumptions that require Verification during Walkdown:

"TRACkING IOD:

N/A This calculation SUPERSEDES:

DA7NS-2002-0O4 REvN4 C. REVIEW AND APPROVAL-RSDesign:Verifih tionR4 Gerard E. GryczkowOski rinted Narord A

Sjiqaturj is Deslgn verification Requited?

0Yes, 1]b po I Date It yes, Desiqn Verification Form is BX Attached' E Filed with:

Independent Reviewer, Chu kai Yin 6-,126 "i.

oo J. B. Couch Printed blam n

rDate Approval:

John R. Mass

/o 7 0 e

.Printed Signature Oat6

DA-NS-08-049 Rev.0 Page 1 of 52 DA-NS-08-049 Rev.0 Ginna Gas Gap Isotopic Fraction Calculations

DA-NS-08-049 Rev. 0 Page 2 of 52

2. LIST OF EFFECTIVE PAGES Page Latest Rev 001 0

006 0

011 0

016 0

021 0

026 0

031 0

036 0

041 0

046 0

Page Latest Rev 002 0

007 0

012 0

017 0

022 0

027 0

032 0

037 0

042 0

047 0

Page Latest Rev 003 0

008 0

013 0

018 0

023 0

028 0

033 0

038 0

043 0

048 0

Page Latest Rev 004 0

009 0

014 0

019 0

024 0

029 0

034 0

039 0

044 0

049 0

Page Latest Rev 005 0

010 0

015 0

020 0

025 0

030 0

035 0

040 0

045 0

050 0

DA-NS-08-049 Rev. 0 Page 3 of 52

03. TABLE OF CONTENTS
01. COVER SHEET 01
02. LIST OF EFFECTIVE PAGES 02
03. TABLE OF CONTENTS 03
04. PURPOSE AND SCOPE 04
05. CONCLUSIONS 05
06. DESIGN INPUTS 06 6.1 Applicability 6.2 Limiting Power History 6.3 Axial Shape Profile 6.4 Radial Profile-6.5 Core and Assembly Mass Calculations 6.6 Gap and Plenum Free Volume Calculations 6.7 Linear Power Density Calculations 6.8 INTERPIN Inputs 6.9 EXCEL Spreadsheet Inputs
07. TECHNICAL ASSUMPTIONS 16
08. REFERENCES 17
09. DOCUMENTATION OF COMPUTER CODES 19
10. METHOD OF ANALYSIS 20 10.1 Low Temperature Calculations for Long-Lived Nuclides 10.2 Low Temperature Calculations for Short-Lived Nuclides 10.3 High Temperature Calculations for Long-Lived Nuclides 10.4 High Temperature Calculations for Short-Lived Nuclides
11. ACCEPTANCE CRITERIA 23
12. CALCULATIONS and RESULTS 24 12.1 INTERPIN Calculations 12.2 EXCEL Spreadsheet Calculations 12.3 INTERPIN Temperature Results 12.4 EXCEL High Temperature Gas Gap Release Fraction Results 12.5 EXCEL Low Temperature Gas Gap Release Fraction Results
13. ACRONYMS 45
14. ATTACHMENTS 48 (A) MAXIMUM PIN POWER VS BURNUP (B) BOL RELATIVE AXIAL POWER DISTRIBUTION (C) EOL RELATIVE AXIAL POWER DISTRIBUTION LAST PAGE OF REPORT 50

DA-NS-08-049 Rev. 0 Page 4 of 52

4. PURPOSE AND SCOPE Originally, for Nuclear Power Plant (NPP) Design Basis Accidents (DBAs) in which cladding failure released the gas gap activity of the affected fuel rods, the gas gap fractions were extracted from Safety Guide 25 (Ref.4). All of the gas gap activity in the damaged rods was released and consisted of 10% of the total noble gases other than Kr-85, 30% of the Kr-85, and 10% of the total radioactive iodines.

In December 1999, the NRC issued a new regulation, 10 CFR 50.67, "Accident Source Term," which provided a mechanism for licensed power reactors to replace the traditional accident source term (TID-14844 Ref.3) used in their DBA analyses with an alternative source term (AST). Regulatory guidance for the implementation of these ASTs was provided in Regulatory Guide (RG) 1.183 (Ref. 1) issued in July of 2000.

In addition, the methodology for Standard Source Terms (SSTs) was upgraded in May 2003 via RG 1.195 (Ref.2). For the AST and updated SST methodologies, all of the gas gap activity in the damaged rods is released and consists of 5% of the total noble gases other than Kr-85, 10% of the Kr-85, 5% of the total radioactive iodines except 1-131, and 8% of the 1-131 inventory at the time of the accident.

However, footnotes in Ref. 1-2 state that "The release fractions listed here have been determined to be acceptable for use with currently approved LWR fuel with a peak burnup up to 62000 MWd/MTU provided that the maximum linear heat generation rate does not exceed 6.3 kw/ft peak rod average power for rods with burnups that exceed 54 GWd/MTU.

As an alternative, fission gas release calculations performed using NRC-approved methodologies may be considered on a case-by-case basis.

To be acceptable, these calculations must use a projected power history that will bound the limiting projected plant-specific power history for the specified fuel load."

Assembly and peak pin burnups and linear heat generation rates were examined for R.E.Ginna (REG)

NPP cycle 33 in Ref.14. It was discovered that linear heat generation rates in excess of 6.3 kw/ft exist for pins with burnups in excess of 54 GWd/MTU. Thus, alternative fission gas release fractions must be calculated using an NRC-approved methodology.

An approved NRC methodology is that presented in ANSI/ANS-5.4-1982 (Refs.7-8) for high and low temperature releases. Beginning-of-life (BOL - Ref.16), end-of-life (EOL - Ref.16), and peak thermal power (Ref. 17) axial power profiles are combined with the peak pin power versus burnup (Ref. 18) and the instrument error uncertainty factor of 1.02 per Regulatory Guide 1.49 (Ref. 15) to yield limiting projected power histories for REG NPP. The fuel temperature radial and axial profiles were modeled using the Studsvik computer code INTERPIN (Ref.9), which conservatively showed large increases in fuel temperature with increasing burnup. The worst-case release fraction for each isotope is extracted from these cases, and a bounding value was applied to bound all cases. For conservatism, the bounding gas gap release fractions are applied to all failed fuel rods, regardless of bumup or power level.

The results indicate that gas gap fractions must be significantly increased for the limiting pins with burnups over 54 GWdIMTU and with linear heat generation rates in excess of 6.3 kw/ft. Doubling of the 1-131, 1-132, 1-134, 1-135, Xe-135, Xe-135m, Xe-138, Kr-85, Kr-85m, Kr-87, and Kr-88 gas gap release fractions detailed in Refs.1-2 and tripling of the 1-133, Xe-133, and Xe-133m gas gap release fractions detailed in Refs. 1-2 yield bounding and conservative results. All of the gas gap activity in the damaged rods is released and consists of 20% of the Kr-85, 15% of Xe-133 and Xe-133m, 10% of the other noble gases, 16% of the 1-131, 15% of 1-133, and 10% of the other iodine isotopic inventories at the time of the accident.

Note that these results are more bounding than those proposed by Fort Calhoun Station, D.C.Cook Units 1 and 2, and Calvert Cliffs Units land 2 in Refs.25, 26, and 27.

DA-NS-08-049 Rev. 0 Page 5 of 52

5. CONCLUSIONS The worst-case release fraction for each gas gap isotope is extracted from the bounding case results listed in Section 12, and a limiting value was applied to bound all cases.

Table 5.1 Gas Gap Fractions RG 1.183 Ginna 1-131 0.08 0.16 1-132 0.05 0.10 1-133 0.05 0.15 1-134 0.05 0.10 1-135 0.05 0.10, Xe-133 0.05 0.15 Xe-133m 0.05 0.15 Xe-135 0.05 0.10 Xe-135m 0.05 0.10 Xe-138 0.05 0.10 Kr-85 0.10 0.20 Kr-85m 0.05 0.10 Kr-87 0.05 0.10 Kr-88 0.05 0.10 For conservatism, the bounding gas gap release fractions are applied to all failed fuel rods, regardless of bumup or power level.

DA-NS-08-049 Rev. 0 Page 6 of 52

6. DESIGN INPUTS 6.1 Applicability To, determine if it is acceptable to use the gas gap fractions of Table 3 of RG 1.183 (Ref.1), it was necessary to determine if any assemblies with peak pin average burnups in excess of 54 GWd/MTU sustained linear heat generation rates in excess of 6.3 kw/ft. Westinghouse performed a pin census (Ref. 14) of the pins in cycle 33 at various burnups. The results indicated that at an EOC burnup of 21308 MWd/MTU approximately 2.5% of the pins in the core and 23.5% of the pins in certain assemblies would exceed the bumup and linear heat generation limits. Thus the requirements of RG 1.183 (Ref. 1) footnote 11 of peak pin average bumups in excess of 54 GWd/MTU with sustained linear heat generation rates less than 6.3 kw/ft are not met for all peak pins.

6.2 Limiting Power History Footnotes in Ref. 1-2 state that "To be acceptable, these calculations must use a projected power history that will bound the limiting projected plant-specific power history for the specified fuel load."

Westinghouse calculation CN-RG-34-21 (Ref.18) lists a table of maximum rod powers from PAD consolidated power histories.

These maximum pin powers as a function of bumup are presented in Attachment A. A pin power vs bumup correlation that bounds the maximum pin power vs burnup data of Ref. 18 was developed and used in the INTERPIN executions to determine limiting temperature profiles.

Table 6.1: Maximum Pin Power vs Burnuo Pin Maximum Pin Burnup Power 0

1.750 24000 1.750 30000 1.600 36000 1.400 44000 1.300 48000 1.250 50000 1.200 52000 1.150 59174 0.800 ANSI/ANS-5.4-1982 (Ref. 07) requires that The irradiation period shall be divided into a series of bumup (time) increments such that the temperature and power in each increment can be assumed constant. These increments shall not exceed 2000 MWd/t provided that the bumup values used in the analysis correspond to the midpoint of the bumup increments. Otherwise, the bumup increments shall not exceed 1000 MWd/t.

For each bumup interval at a constant power, the temperature and thus release fractions increase with increasing burnup. This is easily verified by examining the isotopic release fractions for Case 5, which assumes a constant power from BOL to EOL at 62000 MWd/MTU.

DA-NS-08-049 Rev. 0 Page 7 of 52 Tahle 6 2: Case 5 Iodine Release Fractions vs Burnun Burnup Release Release Release Release Release MWd/MTU Fractions Fractions Fractions Fractions Fractions 1131 1132 1133 1134 1135 0

0.0000 0.0000 0.0000 0.0000 0.0000 7000 0.0002 0.0000 0.0001 0.0000 0.0000 14000 0.0003 0.0000 0.0001 0.0000 0.0001 21000 0.0006 0.0001 0.0002 0.0000 0.0001 28000 0.0015 0.0002 0.0005 0.0001 0.0003 35000 0.0039 0.0004 0.0013 0.0003 0.0007 42000 0.0103 0.0011

. 0.0034 0.0007 0.0019 49000 0.0268 0.0031 0.0092 0.0019 0.0052 56000 0.0634 0.0083 0.0240 0.0044 0.0138 62000 0.1176 0.0203 0.0549 0.0128 0.0332 Max 0.1176 0.0203 0.0549 0.0128 0.0332 Table 6.3: Case 5 K pton Release Fractions vs Burnup Burnup Release Release Release Release MWd/MTU Fractions Fractions Fractions Fractions Kr85 Kr85m Kr87 Kr88 0

0.0000 0.0000 0.0000 0.0000 7000 0.0002 0.0000 0.0000 0.0000 14000 0.0004 0.0000 0.0000 0.0000 21000 0.0008 0.0000 0.0000 0.0000 28000 0.0018 0.0001 0.0000 0.0001 35000 0.0048 0.0002 0.0001 0.0002 42000 0.0126 0.0006 0.0003 0.0005 49000 0.0326 0.0016 0.0009 0.0013 56000 0.0762 0.0044 0.0024 0.0035 62000 0.1313 0.0110 0.0059 0.0088 Max 0.1313 0.0110 0.0059 0.0088 Table 6.4: Xenon Release Fractions vs Burnup Burnup Release Release Release Release Release MWd/MTU Fractions Fractions Fractions Fractions Fractions Xe133 Xe133m Xe135 Xe135m Xe138 0

0.0000 0.0000 0.0000 0.0000 0.0000 7000 0.0001 0.0000 0.0000 0.0000 0.0000 14000 0.0001 0.0001 0.0000 0.0000 0.0000 21000 0.0002 0.0001 0.0000 0.0000 0.0000 28000 0.0005 0.0003 0.0001 0.0000 0.0000 35000 0.0012 0.0008 0.0003 0.0001 0.0001 42000 0.0032 0.0021 0.0009 0.0001 0.0001 49000 0.0086 0.0056 0.0023 0.0004 0.0004 56000 0.0223 0.0147 0.0063 0.0011 0.0010 62000 0.0516 0.0352 0.0155 0.0027 0.0026 Max 0.0516 0.0352 0.0155 0.0027 0.0026

DA-NS-08-049 Rev.0 Page 8 of 52 Thus, for each constant power interval listed in Table 6.1, a single burnup interval using the maximum burnup and power in the interval is employed and is conservative.

6.3 Axial Shape Profile ANSI/ANS-5.4-1982 (Ref. 07) requires that 0

ten or more axial nodes of equal length shall be used, unless otherwise justified.

Ten cases were modeled to examine limiting axial profiles and other effects.

6.3.1 Case 5: Single Axial Node - Power Peaking Factor of Unity - Plenum Volume of 14.14 cc Case 5 modeled a fuel pin with a single axial node and with a bumup-independent power peaking factor of unity. The plenum volume 14.14 cc was that calculated in Section 6.6. The purpose of this case was to verify that for each burnup interval at a constant power, the temperature and thus release fractions increase with increasing bumup (See Section 6.2).

6.3.2 Case 5a: Single Axial Node - Power Peaking Factor of Unity - Plenum Volume of 9.14 cc Case 5a modeled a fuel pin with a single axial node and with a bumup-independent power peaking factor of unity. The plenum volume was set to 9.14 cc. The purpose of this case was to verify that the gas gap fraction results are relatively insensitive to plenum volume.

6.3.3 Case 5b: Single Axial Node - Power Peaking Factor of Unity - Plenum Volume of 19.14 cc Case 5b modeled a fuel pin with a single axial node and with a burnup-independent power peaking factor of unity. The plenum volume was set to 19.14 cc. The purpose of this case was to verify that the gas gap fraction results are relatively insensitive to plenum volume.

6.3.4 Case A: Single Axial Node - Power Peaking Factors from Table 6.1 Case A modeled a fuel pin with a single axial node and with the bumup-dependent power peaking factors of Table 6.1. The plenum volume was set to 14.14 cc.,

6.3.5 Case B: Single Axial Node - Power Peaking Factors from Table 6.1 and RG 1.49 Case B modeled a fuel pin with a single axial node and with the burnup-dependent power peaking factors of Table 6.1 increased by a factor of 1.02 per Regulatory Guide 1.49 (Ref. 15). The plenum volume was set to 14.14 cc.

6.3.6 Case A: 24 EOL Axial Nodes - Power Peaking Factor from Table 6.1 Case A modeled a fuel pin with 24 axial nodes and with the burnup-dependent power peaking factors of Table 6.1. The cycle 34 EOL axial profile was extracted from Ref. 16, is displayed in Attachment C, and was applied to each burnup step throughout the cycle.

The profile is divided into 24 equal axial increments. A limiting relative power was applied to each axial increment except for the 4 lowest power end increments, where the relative power was determined in such a way as to keep the average relative pin power equal to unity (See Section 6.7 Linear Power Density).

Since the axial intervals are independent from each other, the 24 axial nodes can be modeled by five INTERPIN cases:

4 nodes at 0.61 relative power 4 nodes at 1.05 relativepower 11.5 nodes at 1.07 relative power 2 nodes at 1.10 relative power

DA-NS-08-049 Rev. 0 Page 9 of 52 2.5 nodes at 1.15 relative power The plenum volume was set to 14.14 cc.

6.3.7 Case B: 24 EOL Axial Nodes - Power Peaking Factor from Table 6.1 and RG 1.49 Case B modeled a fuel pin with 24 axial nodes and with the burnup-dependent power peaking factors of Table 6.1 increased by a factor of 1.02 per Regulatory Guide 1.49 (Ref.15). The cycle 34 EOL axial profile was extracted from Ref. 16, is displayed in Attachment C, and was applied to each bumup step throughout the cycle. The profile is divided into 24 equal axial increments. A limiting relative power was applied to each axial increment except for the 4 lowest power end increments, where the relative power was determined in such a way as to keep the average relative pin power equal to 1.02 (See Section 6.7 Linear Power Density). Since the axial intervals are independent from each other, the 24 axial nodes can be modeled by five INTERPIN cases:

4 nodes at 0.61* 1.02 relative power 4 nodes at 1.05* 1.02 relative power 11.5 nodes at 1.07* 1.02 relative power 2 nodes at 1.10*1.02 relative power 2.5 nodes at 1.15* 1.02 relative power The plenum volume was set to 14.14 cc.

6.3.8 Case C: 24 BOL Axial Nodes - Power Peaking Factor from Table 6.1 Case C modeled a fuel pin with 24 axial nodes and with the bumup-dependent power peaking factors of Table 6.1. The cycle 34 BOL axial profile was extracted from Ref. 16, is displayed in Attachment B, and was applied to each bumup step throughout the cycle.

The profile is divided into 24 equal axial increments. A limiting relative power was applied to each axial increment except for the 8 lowest power end increments, where the relative power was determined in such a way as to keep the average relative pin power equal to unity (See Section 6.7 Linear Power Density).

Since the axial intervals are independent from each other, the 24 axial nodes can be modeled by six INTERPIN cases:

  • 8 nodes at 0.66 relative power 1.5 nodes at 1.05 relative power 2.5 nodes at 1.10 relative power 2 nodes at 1.15 relative power
  • 5 nodes at 1.20 relative power
  • 5 nodes at 1.23 relative power The plenum volume was set to 14.14 cc.

6.3.9 Case D: 24 BOL Axial Nodes - Power Peaking Factor from Table 6.1 and RG 1.49 Case D modeled a fuel pin with 24 axial nodes and with the burnup-dependent power peaking factors of Table 6.1 increased by a factor of 1.02 per Regulatory Guide 1.49 (Ref.15). The cycle 34 BOL axial profile was extracted from Ref. 16, is displayed in Attachment B, and was applied to each burnup step throughout the cycle. The profile is divided into 24 equal axial increments. A limiting relative power was applied to each axial increment except for the.8 lowest power end increments, where the relative power was determined in such a way as to keep the average relative pin power equal to 1.02 (See Section 6.7 Linear Power Density). Since the axial intervals are independent from each other, the 24 axial nodes can be modeled by six INTERPIN cases:

8 nodes at 0.66* 1.02 relative power 1.5 nodes at 1.05*1.02 relative power 2.5 nodes at 1.10* 1.02 relative power 0

2 nodes at 1.15*1.02 relative power 5 nodes at 1.20* 1.02 relative power 5 nodes at 1.23* 1.02 relative power The plenum volume was set to 14.14 cc.

DA-NS-08-049 Rev.0 Page 10 of 52 6.3.10 Case E: 24 EOC Axial Nodes - Peak Thermal Power and RG 1.49 Case E modeled a fuel pin with 24 axial nodes and with the burnup-dependent power peaking factors of Table 6.1 increased by a factor of 1.02 per Regulatory Guide 1.49 (Ref. 15). The axial profile was divided into 24 equal axial increments. A limiting relative power based on the cycle 33 COLR (Ref.17) was applied to the middle eight axial increments (1.75

  • 1.50
  • 1.02 = 2.6775 relative power peak at BOL, which exceeds the COLR CFQ value of 2.60). In the end increments, the relative power was determined in such a way as to keep the average relative pin power equal to 1.02 (See Section 6.7 Linear Power Density). Since the axial intervals are independent from each other, the 24 axial nodes can be modeled by two INTERPIN cases:

16 nodes at 0.75* 1.02 relative power

  • 8 nodes at 1.50*1.02 relative power The plenum volume was set to 14.14 cc.

6.4 Radial Profile ANSI/ANS-5.4-1982 (Ref. 07) requires that Six or more radial nodes of equal volume or equal radial increment shall be used, unless otherwise justified.

The INTERPIN code (Ref.9) generates radial temperatures for the fuel pellet at six radial nodes: 0.0, 0.2, 0.4, 0.6, 0.8, and 1.0 relative radius. Gas gap fractions are then calculated at the six radial positions (0, 0.2R, 0.4R, 0.6R, 0.8R, and 1.OR) for each burnup step and are volumetrically weighted to obtain an overall gas gap fraction. If multiple axial nodes are considered, the volumetric weighting is then both radial and axial.

Region 1 : f=(0.12-0.0 2)/(1.0 2-0.0 2)=0.01 Region 2: f=(0.32-0.1 2)/(1.0 2-0.0 2)=0.08 Region 3: f=(0.52-0.3 2)/( 1.02_0.02)=0. 16 Region 4: f=(0.72-0.52)/(1.0 2-0.0 2)=0.24 Region 5: f=(0.92_0.7 2)/(1.02-0.02)=0.32 Region 6: f=(1.02-0.92)/(1.02-0.02)=0.19 6.5 Core and Assembly Mass Calculations The core and assembly masses were calculated for Ginna fuel types 422V+ and OFA/V+ for 5.0 and 4.5 w/o U235 fuel.

DA-NS-08-049 Rev. 0 Page 11 of 52

____Table 6.5: Assembly and Core Masses Fuel West 422V+

C33 in 2006 UFSAR 1.2.11.5 Minimum Maximum 117682 120481 Ibm UO2 weight core UFSAR Table 4.2-1, Table 4.2-2 53379658.35 54649263.41 qm U02 weight core 235.043922 gm/mole Molecular weight U5 Chart of Nuclides, GE Nuclear, 15 Ed 238.050785 gm/mole Molecular weight U8 Chart of Nuclides, GE Nuclear, 15 Ed 15.9994 gm/mole Molecular weight 0 Chart of Nuclides, GE Nuclear, 15 Ed 5.00 U5 enrichment Maximum 237.9004419 gm/mole Molecular weight U (MWU5*EU5+MWU8*(100-EU5))/100 269.8992419 gm/mole Molecular weight U02 (MWU+2*MWO) 103729.82 106196.98 Ibm U weight core Wt(Ibm)*MWU/MWUO2 47051055.86 48170138.69 gm U weight core Wt(Ibm)*453.592379 388851.70 398100.32 gm U weight assembly Wt(gm)/121 Fuel West OFA/V+

UFSAR Figure 4.2-3 Minimum Maximum 103748 105996 Ibm U02 weight core UFSAR Table 4.2-2 47059302.14 48078977.8 gm U02 weight core 235.043922 gm/mole Molecular weight U5 Chart of Nuclides, GE Nuclear, 15 Ed 238.050785 gm/mole Molecular weight U8 Chart of Nuclides, GE Nuclear, 15 Ed 15.9994 im/mole Molecular weight 0 Chart of Nuclides, GE Nuclear, 15 Ed 5.00 U5 enrichment Maximum 237.9004419 gm/mole Molecular weight U (MWU5*EU5+MWU8*(1 00-EU5))/1 00 269.8992419 gm/mole Molecular weight U02 (MWU+2*MWO) 91447.81 93429.29 Ibm U weight core Wt(Ibm)*MWU/MWUO2 41480030.45 42378815.09 gm U weight core Wt(Ibm)*453.592379 342810.17 350238.14 gm U weight assembly Wt(gm)/121 Fuel West 422V+

C33 in 2006 UFSAR 1.2.11.5 Minimum Maximum 117682 120481 Ibm U02 weight core UFSAR Table 4.2-1, Table 4.2-2 53379658.35 54649263.41 gm U02 weight core

__235.043922 gm/mole Molecular weight U5 Chart of Nuclides, GE Nuclear, 15 Ed

__238.050785 gm/mole Molecular weight U8 Chart of Nuclides, GE Nuclear, 15 Ed 15.9994 gm/mole Molecular weight 0 Chart of Nuclides, GE Nuclear, 15 Ed 4.50 U5 enrichment Maximum 237.9154762 gm/mole Molecular weight U (MWU5*EU5+MWU8*(1 00-EU5))/1 00 269.9142762 gm/mole Molecular weight U02 (MWU+2*MWO) 103730.60 106197.77 Ibm U weight core Wt(Ibm)*MWU/MWU02 47051408.37 48170499.58 am U weightcore Wt(Ibm)*453.592379 388854.61 398103.30 gm U weight assembly Wt(gm)/121 Fuel West OFA/V+

UFSAR Figure 4.2-3 Minimum Maximum 103748 105996 Ibm U02 weight core UFSAR Table 4.2-2

DA-NS-08-049 Rev. 0 Page 12 of 52 47059302.14 48078977.8 gm U02 weight core 235.043922 gm/mole Molecular weight U5 Chart of Nuclides, GE Nuclear, 15 Ed 238.050785 gm/mole Molecular weight U8 Chart of Nuclides, GE Nuclear, 15 Ed 15.9994 gm/mole Molecular weight 0 Chart of Nuclides, GE Nuclear, 15 Ed 4.50 U5 enrichment Maximum 237.9154762 gm/mole Molecular weight U (MWU5*EU5+MWU8*(100-EU5))/100 269.9142762 gm/mole Molecular weight U02 (MWU+2*MWO) 91448.50 93429.99 Ibm U weight core Wt(Ibm)*MWU/MWUO2 41480341.22 42379132.59 gm U weight core Wt(Ibm)*453.592379 342812.74 350240.77 gm U weight assembly Wt(gm)/121 The limiting uranium mass is that of the 4.5 w/o U235 422V+ fuel assembly.

6.6 Gap and Plenum Free Volume Calculations The gap and plenum free volume is calculated as follows:

Table 6.6: Gap and Plenum Free Volume Calculation West 422V+

422V+

Clad ID (cm)

CID 0.9484 UFSAR T4.2-2 Pellet OD (cm)

POD 0.9294 UFSAR T4.2-2 Pellet ID (cm)

PID 0.4648 LA97-S2.8.2 Plenum Length (cm)

PL 22.1234 CN-RG34-021 Fuel Annular Length (cm)

FAL 30.4800 UFSAR 4.1.2 Fuel Length (cm)

FL 363.8550 UFSAR 4.1.2 Core U02 Mass (gin)

CM 53379658.35 54649263.41 Mass Spreadsheet Density (gm/cc)

D 10.412 10.522 UFSAR T4.2-3, NF-RG-08-7 Fuel pin vol (cc)

FV 234.2371 242.3325 FV=CM/D/121/179 Fuel annulus/gap vol (cc)

FAGV 22.8226 14.7271 FAGV=FL*Pl*(CID/2)^2-FV Plenum Volume (cc)

PV 15.6299 15.6299 PV=PI*PL*(CID/2)^2 Spring Volume (cc)

SV 1.4866 1.4866 CN-RG34-021 Plenum Free Volume (cc)

PFV 14.1434 14.1434 PFV=PV-SV Total Gap Volume (cc)

TGV 36.9660 28.8705 TGV=PFV+FAGV West OFAN+

OFAN_+

Clad ID (cm)

CID 0.8926 UFSAR T4.2-2 Pellet OD (cm)

POD 0.8748 UFSAR T4.2-2 Pellet ID (cm)

PID 0.4315 LA97-$2.8.2 Plenum Length (cm)

PL 17.6835 CN-RG34-021 Fuel Annular Length (cm)

FAL 30.48 UFSAR 4.1.2 Fuel Length (cm)

FL 359.1560 UFSAR T4.2-2 Core UO2 Mass (gim)

CM 47059302.14 48078977.80 Mass Spreadsheet Density (gm/cc)

D 10.4120 10.4120 UFSAR T9.4-2 Fuel pin vol (cc)

FV 208.6762 213.1978 FV=CM/D/121/179 Fuel annulus/gap vol (cc)

FAV 16.0448 11.5232' FAGV=FL*PI*(CID/2)A2-FV Plenum Volume PV 11.0644 11.0644 PV=PI*PL*(CID/2)A2 Spring Volume SV 1.5134 1.5134 CN-RG34-021 Plenum Free Volume (cc)

PFV 9.5510 9.5510 PFV=PV-SV Total Gap Volume (cc)

TGV 25.5958 21.0742 TGV=PFV+FAGV

DA-NS-08-049 Rev. 0 Page 13 of 52 A plenum free volume of 14.14 cc is the calculated value for INTERPIN input; however, cases with 14.14

+/- 5 cc were run to determine the sensitivity of this value on gas gap release fractions.

DA-NS-08-049 Rev. 0 Page 14 of 52 6.7 Linear Power Density Calculations Linear power densities were calculated for the ten cases delineated in Section 6.3.

T~hI~ A 7 I ino~, ~

fl~n~ih, Inn,,t fl~t~

1775 Power MWt UFSAR T4.2-1 121 assms/core UFSAR T4.2-3 179 pins/assm UFSAR T4.2-3 143.25 in UFSAR T4.2-2 398103.30 gm/assm Mass Spreadsheet 48.1705 mtu/core Mass Spreadsheet Limit: 6.3 kw/ft for bumups exceeding 54 GWd/MTU

.Single Axial Node Cases 5, 5a, 5b, A, B Radial PF kw/ft kw/m Case VPLEN(cc)

Profile 1.000 6.8651 22.5233 5

14.14 Constant 1.000 6.8651 22.5233 5a 9.14 Constant 1.000 6.8651 22.5233 5b 19.14 Constant 1.000 6.8651 22.5233 A

14.14 Table 6.1 1.02 7.0024 22.9737 B

14.14 Table 6.1 Case A EOL Limiting Pin Power Vs Burnup - 24 Axial Nodes PF PPF kw/ft kw/m Case Nodes 0.610 1.00 4.1877 13.7392 Case A061 4

1.050 1.00 7.2084 23.6494 Case A105 4

1.070 1.00 7.3457 24.0999 Case Al07 11.5 1.100 1.00 7.5516 24.7756 Case A110 2

1.150 1.00 7.8949 25.9018 Case Al15 2.5 1.0008 Case B EOL Limiting Pin Power Vs Burnup -24 Axial Nodes PF PPF kw/ft kw/m Case Nodes 0.610 1.02 4.2715 14.0140 Case B061 4

1.050 1.02 7.3525 24.1224 Case B105 4

1.070 1.02 7.4926 24.5819 Case B107 11.5 1.100 1.02 7.7026 25.2711 Case Bl10 2

1.150 1.02 8.0528 26.4198 Case B15 2.5 1.0209 Case C BOL Limiting Pin Power Vs Burnup -24 Axial Nodes PF PPF kw/ft kw/m Case Nodes 0.6600 1.00 4.5310 14.8654 Case C066 8

1.050 1.00 7.2084 23.6494 Case Al05 1.5 1.100 1.00 7.5516 24.7756 Case Al10 2.5 1.150 1.00 7.8949 25.9018 Case Al15 2

1.200 1.00 8.2381 27.0279 Case C120 5

1.230 1.00 8.4441 27.7036 Case C123 5

1.0023

DA-NS-08-049 Rev. 0 Page 15 of.52 Case D BOL Limiting Pin Power Vs Burnup -24 Axial Nodes PF PPF kw/ft kw/m Case Nodes 0.6600 1.02 4.6216 15.1627 Case D066 8

1.050 1.02 7.3525 24.1224 Case B105 1.5 1.100 1.02 7.7026 25.2711 Case B110 2.5 1.150 1.02 8.0528 26.4198 Case B115 2

1.200 1.02 8.4029 27.5685 Case D120 5

1.230 1.02 8.6129 28.2577 Case D123 5

1.0223 Case E Peak Thermal Power Case Pin Power Vs Burnup -24 Axial Nodes PF PPF kw/ft kw/m Case Nodes 0.75 1.02

.5.2518 17.2303 Case E075 16 1.500 1.02 10.5036 34.4606 Case E150 8

1.0200 6.8 INTERPIN Inputs Utilizing the above inputs and assumptions, the following inputs for the INTERPIN utilized:

executions were Table 6.8: INTERPIN INPUTS West 422V+

TIT Ginna - Fuel Temperature Calculation COR TIN 555.483 de K Coolant Inlet Temp UFSAR T1.3-3 PRES 2250 psia Operating pressure UFSAR T4.4-1 ROD ZCRIN 0.4742 cm Cladding IR UFSAR T4.2-2 ZCRON 0.5359 cm Cladding OR UFSAR 4.1.2 ZSTACK 363.8550 cm Fuel stack length UFSAR 4.1.2 PINT 289.6960 psia Fill gas pressure NF-RG-08-27 R1 VPLEN 14.1434 cc Plenum free volume Plenum Spreadsheet NNODES 1

Number of axial nodes-(1 8)

PEL FTDN 10.5216 gm/cc Fuel density UFSAR T4.2-3 ZPRON 0.4647 cm Pellet radius UFSAR T4.2-2 ZPRDN cm Dish Radius ZPRCN cm Chamfer radius POW PAM See linear power density tables.

PRO PRORL 1

Relative powers for temp ed WAT NOPT 2

cladding surfacce temp opt TYP SQR Square lattice FLOW 0.376964 kg/sec Per rod mass flow UFSAR T5.4-2 PITCH 1.41224 cm Lattice pitch UFSAR 4.2.3.1

DA-NS-08-049 Rev. 0 Page 16 of 52 6.9 EXCEL Spreadsheet Inputs The following isotopic decay constants were extracted from Ref.20 and were used in the gas gap fraction spreadsheet calculations:

Table 6.9: Isotooic Decav Constants ISOTOPE DECAY CONSTANT 1/SEC 1-131 9.976E-07 1-132 8.425E-05 1-133 9.211E-06 1-134 2.200E-04 1-135 2.912E-05 XE-131M 6.815E-07 XE-133M 3.663E-06 XE-133 1.528E-06 XE-135M 7.380E-04 XE-135 2.115E-05 XE-138 8.151E-04 KR-83M 1.052E-04 KR-85M 4.297E-05 KR-85 2.054E-09 KR-87 1.514E-04 KR-88 6.731 E-05

DA-NS-08-049 Rev. 0 Page 17 of 52

7. TECHNICAL ASSUMPTIONS (01) Axial heat transfer was conservatively neglected. The conservatism is apparent by comparing a 24 axial node case against the corresponding single axial node case.

(02) The bounding gas gap release fractions are conservatively applied to all failed fuel rods, regardless of burnup or power level.

(03) The isotopic release fractions behave similarly for all of the cases examined: elevated releases of I-131, 1-133, Xe-133, Xe-133m, and Kr-85 and lower releases of the remaining isotopes. These releases are thus characteristic of Ginna.

The resultant release fractions of Table 5.1 were conservatively increased to bound all case results.

DA-NS-08-049 Rev.0 Page 18 of 52

8. REFERENCES (01) "Alternative Radiological Source Terms for Evaluating Design Basis Accidents at Nuclear Power Reactors", Regulatory Guide 1.183:

(02) "Methods and Assumptions for Evaluating Radiological Consequences of Design Basis Accidents at Light Water Nuclear Power reactors", Regulatory Guide 1.195 (03) TID-14844, "Calculation of Distance Factors for Power and Test Reactor Sites" (04) Safety Guide 25: Assumptions Used for Evaluating the Potential Radiological Consequences of a Fuel Handling Accident in the Fuel Handling and Storage Facility for Boiling an d Pressurized Water Reactors (05) "Locked Rotor Offsite and Control Room Doses", DA-NS-2002-054, Rev.2.

(06) "Fuel Handling Accident Offsite and Control Room Doses", DA-NS-2002-004, Rev.3.

(07) ANSI/ANS-5.4-1982: ANS Method for Calculating the Fractional Release of Volatile Fission Products from Oxide Fuel (08) NUREG/CR-2507: Background and Derivation of ANS-5.4 Standard Fission Product Release Model (09) Studsvik Scandpower SSP-01/430: INTERPIN-3 Studsvik CMS Fuel Performance Code (10) "Verification of INTERPIN on the HP Workstation RP3440-1", CA06948.

(11) "Fuel Temperature Validation for INTERPIN-Y', CA06599.

(12) "Cycle 34 Final Reload Safety Evaluation Report", Westinghouse Calculation NF-RG-08-7

-(13) "Chart of the Nuclides", Nuclides and Isotopes Fifteenth Edition, GE Nuclear Energy.

(14) "REG NPP Cycle 33 Core Pin Census Information", Westinghouse Calculation NF-RG-08-8, 1/24/2008.

(15) "Power Levels of Nuclear Power Plants", Regulatory Guide 1.49 Rev. 1 (16) "Constellation Energy REG NPP Cycle 34 Nuclear Design Report - WCAP-16930-P Rev.l",

Westinghouse Report NF-RG-08-27 Rev. 1 (17) "REG NPP Core Operating Limits Report (COLR) Cycle 33 Rev.0 (18) "Fuel Rod Design for Ginna Cycle 34", Westinghouse Report CN-RG-34-021 (19) License Amendment 87, 2/25/05: "R.E.Ginna NPP: Modification of the CREATS and Change to Dose Calculation Methodology to AST" (20) LOCADOSE User's Manual

DA-NS-08-049 Rev.0 Page 19 of 52 (25) "Implementation of Alternate Source Terms Site Boundary and Control Room Dose Analyses for Fort Calhoun Station", Stone and Webster, January 2001 (26) "Licensing Report for the Radiological Consequences of Accidents Using NUREG-1465 Source Term Methodology for D.C.Cook Units 1 and 2", Westinghouse Electric Company, 2/28/2000 (27) Calvert Cliffs Units 1 and 2 License Amendments 281/258, 8/29/2007, "Implementation of AST" (28) "CCNPP Units 1 and 2 LAR: Revision to Accident Source Term and Associated Technical Specifications", 12/3/2005.

(29) "SAS2H: A Coupled One-Dimensional Depletion and Shielding Analysis Module", NUREG/CR-0200 Rev.6.

(30) NUREG/CR-6604 Supplement 2, 10/2002: RADTRAD A Simplified Model for Radionuclide Transport and Removal and Dose Estimation

DA-NS-08-049 Rev. 0 Page 20 of 52

9. DOCUMENTATION OF COMPUTER CODES The INTERPIN-3 computer code package was obtained from Studsvik Scandpower and calculates the steady-state performance of U0 2, zircaloy-clad fuel operating in light water reactor cores. INTERPIN-3 models a single fuel rod and its surrounding coolant. The system is represented by discrete axial and radial nodes to allow for variations in power and coolant temperature. The program was designed to produce fuel temperature input data for CASMO and SIMULATE.

INTERPIN-3 incorporates a comprehensive set of physical submodels for fuel performance analysis. The methodology has been benchmarked against approximately 130 fuel rod experiments.

The INTERPIN-3 verification package is documented in Ref. 10. The combined test suite verified that the code was correctly installed on the subject PC, by comparing the computer outputs of Ref. 10 with those provided from Studsvik.

The INTERPIN-3 benchmark calculations are documented in Reference 11.

The methodology for calculating gas gap fractions via ANSI/ANS-5.4-1982 (Refs.7-8) and via INTERPIN-3 radial and axial temperature profiles was submitted to the NRC in the CCNPP AST LAR (Ref.28) and accepted by the NRC in the CCNPP License Amendments 281/258 (Ref.27).

'N

DA-NS-08-049 Rev. 0 Page 21 of 52

10. METHOD OF ANALYSIS ANSI/ANS-5.4-1982 (Refs.7-8) requires that releases for long-lived and short-lived nuclides of interest be calculated with both the high-temperature and the low-temperature models with the larger of the two calculated releases to be taken as the result.

Note that ANSI/ANS-5.4-1982 (Refs.7-8) suggests that Xe-133 and Xe-135 gas gap release fractions should be corrected for precursor effects. This is unnecessary, since the activity transport and dose code RADTRAD (Ref.30) also includes the effects of daughters. Thus, correcting for daughters in the gas gap fractions would double count their effect.

10.1 Low Temperature Calculations for Long-Lived Nuclides Long-lived nuclides are defined as those with half-lives greater than one year. The cumulative fractional release F is independent of temperature and given by:

F = 7E-08

  • Bu where Bu is the rod-averaged accumulated bumup in MWdIMTU.

10.2 Low Temperature Calculations for Short-Lived Nuclides Short-lived nuclides are defined as those with half-lives less than one year. The release fraction F is given by:

F = (1/X) * (1.E-7*sqrt(,) + 1.6E-12*P) where P is the specific power in MW/MTU and ?, is the decay constant in 1/sec. For conservatism, the specific power P should correspond to the maximum power level during the last two half-lives of operation.

10.3 High Temperature Calculations for Long-Lived Nuclides For nuclides with half-lives greater than one year (e.g. Kr-85), equations for stable nuclides are assumed to apply. The fractional release F(ij) at the end of bumup increment "j" and at radial position "i" is F(ij) = 1 - g(ij) where Mp = Uranium Assembly Mass in MTU Q = 72300 cal/mol (ANSI/ANS-5.4-1982)

R = 1.987 cal/mol-K (ANSI/ANS-5.4-1982)

Do/a 2 = 0.61/sec (ANSI/ANS-5.4-1982)

X = Decay Constant (Ref. 13)

Bu(ij) = Burnup in MWd/MTU Tf(ij) = Fuel temperature in degrees Kelvin from Interpin pf = Radial power peaking factor

DA-NS-08-049 Rev. 0 Page 22 of 52 af = Axial power peaking factor af* pf = FQ = 2.60 rgf = 1.02 = Regulatory Guide 1.49 power factor Na = 121 assemblies per core P = 1775 MWt core power Sp = pf

  • af
  • rgf
  • P / Na / Mp = Specific power in MW/MTU EFPD(ij) = EFPD(i j-1) + (Bu(ij) - Bu(i,j-1)) / Sp = Effective Full Power Days t(ij) = EFPD(ij)
  • 24
  • 3600 = Effective Full Power Seconds.

D'(i,j) = f* Do/a2

  • exp(-Q / R / Tf(ij))

T(ij) = T(ij-1) + D'(ij) * (t(ij) - t(ij-1))

g(ij) = 1 - 4*sqrt(T(ij)/nc) + 1.5* '(ij)

T(i~j)_<0. t g(i,j)

= 1/(15 *T(ij))-(6/T(i~j))* {exp(-7r2*T(i j))/nE4+exp(-4*7n2*.(i~j))/(1 6nt4)+exp(-9*7n *T(i j))/(8 1 *74)}

T(ij)>0. 1 Gas gap fractions are calculated at six'radial positions (0, 0.2Rp, 0.4Rp, 0.6Rp, 0.8Rp, and 1.0Rp) for each burnup step and are volumetrically weighted to obtain an overall gas gap fraction. If multiple axial nodes are considered, the volumetric weighting is then both radial and axial.

10.4 High Temperature Calculations for Short-Lived Nuclides For nuclides with half-lives less than one year, the fractional release F(ij) at the end of bumup increment "j" and at radial position 'i" at constant temperature and power is F(ij)=3/(1-exp(-gI*T))* {( /sqrt( j))*[erf(sqrt(

1*T))-2*sqrt(

L*T/n)*exp(-I*T)]-[l-(1+ji*T)*exp(-Ji*T)]/J}

T(ij)<0. 1 F(ij)=3* {coth(sqrt(.i))/sqrt(g)-/p.}-6*p/(exp(ix*T)-1) * {(1-exp(-7n T)/(n 2*(71 2 IR))) + (1 -exp(-4*n2T)/

(4 *n *(4 *2+))) + (1-exp(-9*rt)/(9*ir *(9*n2+gi)))}

T(ij)>0. 1 where Mp = Uranium Assembly Mass in MTU Q = 72300 cal/mol (ANSI/ANS-5.4-1982)

R = 1.987 cal/mol-K (ANSI/ANS-5.4-1982)

Do/a2 = 0.61/sec (ANSI/ANS-5.4-1982)

X = Decay Constant (Ref. 13)

DA-NS-08-049 Rev. 0 Page 23 of 52 Bu(ij) = Bumup in MWd/MTU Tf(ij) = Fuel temperature in degrees Kelvin from Interpin pf = Radial power peaking factor af= Axial power peaking factor af* pf = FQ = 2.60 rgf = 1.02 = Regulatory Guide 1.49 power factor Na = 121 assemblies per core P = 1775 MWt core power Sp = pf

  • af
  • rgf
  • P / Na / Mp = Specific power in MW/MTU EFPD(ij) = EFPD(ij-1) + (Bu(ij) - Bu(ij-1)) / Sp = Effective Full Power Days t(ij) = EFPD(ij)
  • 24
  • 3600 = Effective Full Power Seconds D'(ij) = f
  • Do/a2
  • t(ij) j*t(ij) =XL/D'(i,j)

DA-NS-08-049 Rev. 0 Page 24 of 52

11. ACCEPTANCE CRITERIA There are no acceptance criteria associated with this work.

The results are the gas gap fractions calculated by the ANSI/ANS-5.4-1982 (Refs.7-8) and the INTERPIN-3 methodology. These gas gap fractions will be used in later DBA calculations to determine activity releases and the offsite and control room doses associated with those releases.

DA-NS-08-049 Rev.0 Page 25 of 52

12. CALCULATIONS AND RESULTS Eight high-temperature and one low-temperature cases are analyzed in this work. A detailed description of each case is included in the input section (Section 6).

12.1 INTERPIN Calculations The INTERPIN input, data, and output files for the eight high-temperature cases as a function of pin power fraction, pin power uncertainty factor, and pin power in kw/m are listed in Table 12.1.

Table 12.1: INTERPIN Calculation Files Case Axial INTERPIN Files Power Factors Nodes Input Data Output Pin Power Uncertainty kw/m 5

1 case05.inp caseO5.dat caseO5.out 1.00 1.00 22.5233 5a 1

case05a.inp case05a.dat case05a.out 1.00 1.00 22.5233 5b 1

caseO5b.inp case05b.dat case0b.out 1.00 1.00 22,5233 A

1 caseA.inp caseA.dat caseA.out 1.00 1.00 22.5233 B

1 caseB.inp caseB.dat caseB.out 1.00 1.02 22.9737 A

24 caseA061.inp caseA061.dat caseA061.out 0.61 1.00 13.7392 A

24 caseA105.inp caseA105.dat caseA105.out 1.05 1.00 23.6494 A

24 caseA107.inp caseA107.dat caseA107.out 1.07 1.00 24.0999 A

24 caseA110.inp caseA110.dat caseA110.out 1.10 1.00 24.7756 A

24 caseA115.inp caseA115.dat caseA115.out 1.15 1.00 25.9018 B

24 caseB06l.inp caseB061.dat caseB061 out 0.61 1.02 14.0140 B

24 caseB105.inp caseB105.dat caseB105.out 1.05 1.02 24.1224 B

24 caseB107.inp caseB107.dat caseB107.out 1.07 1.02 24.5819 B

24 caseB110.inp caseB110.dat caseB110.out 1.10 1.02 25.2711 B

24 caseB115.inp caseB115.dat caseB115.out 1.15 1.02 26.4198 C

24 caseC066.inp caseC066.dat caseC066.out 0.66 1.00 14.8654 C

24 caseC120.inp caseC120.dat caseC120.out 1.20 1.00 27.0279 C

24 caseC123.inp caseC123.dat caseC123.out 1.23 1.00 27.7036 D

24 caseDO66.inp caseD066.dat caseD066.out 0.66 1.02 15.1627 D

24 caseD120.inp caseD120.dat caseD120.out 1.20 1.02 27.5685 D

24 caseD123.inp caseD123.dat caseD123.out 1.23 1.02 28.3577 E

24 caseE075.inp caseE075.dat caseE075.out 0.75 1.02 17.2303 E

24 caseE150.inp caseE150.dat caseE150.out 1.50 1.02 34.4606 All files are stored on the accompanying CDROM.

DA-NS-08-049 Rev. 0 Page 26 of 52 12.2 EXCEL Spreadsheet Calculations The EXCEL Spreadsheets used to calculate the isotopic gas gap fractions for the eight high-temperature cases as a function of pin power fraction, pin power uncertainty factor, and pin power in kw/m are listed in Table 12.2.

Table 12.2: FXCFL Calculation Files Case Axial Isotope

. Power Factors EXCEL EXCEL Nodes Pin Power Uncertainty kw/m Spreadsheet Sheet 5

1 1131 1.00 1.00 22.5233 Case5-1.xls 1131 1132 1132 1133 1133 1134 1134 1135 1135 5

1 Kr85 1.00 1.00 22.5233 Case5-K.xls Kr85 Kr85m Kr85m I Kr87 I

Kr87 Kr88 Kr88 5

1 Xe133 1.00 1.00 22.5233 Case5-X.xls Xe133 Xe133m Xe133m Xe135 Xe135 1 Xe135m Xe135m Xe138 Xe138 5a 1

1131 1.00 1.00 22.5233 Case5a-I.xls 1131 1132 1132 S1133 1133 1134 1134 1135 1135 5a 1

Kr85 1.00 1.00 22.5233 Case5a-K.xls Kr85 Kr85m Kr85m Kr87 Kr87 Kr88 Kr88 5a 1

Xe133 1.00 1.00 22.5233 Case5a-X.xls Xe133 Xe133m Xe133m Xe135 Xe135 Xe135m Xe135m Xe138 Xe138 5b 1

1131 1.00 1.00 22.5233 Case5b-I.xls 1131 1132 1132 1133 1133 1134 1134 1135 1135 5b 1

Kr85 1.00 1.00 22.5233 Case5b-K.xls Kr85 Kr85m Kr85m Kr87 Kr87 Kr88 Kr88 5b 1

Xe133 1.00 1.00 22.5233 Case5b-X.xls Xe133 Xe133m Xe133m Xe135 Xe135

DA-NS-08-049 Rev. 0 Page 27 of 52 Xel35m Xel35m Xel38 Xe138 A

1 1131 1.00 1.00 22.5233 CaseA-I.xls 1131 1132 1132 1133 1133 1134 1134 1135 1135 A

24 1131 0.61 1.00 13.7392 CaseA-I.xls 1131A061 1132 1132A061 1133 1133A061 1134 1134A061 1135 1135A061 A

24 1131 1.05 1.00 23.6494 CaseA-I.xls 1131A105 1132 1132A105 1133 1133A105 1134 1134A105 1135 1135A105 A

24 1131 1.07 1.00 24.0999 CaseA-I.xls 1131A107 1132 1132A107 1133 1133A107 1134 1134A107 1135 1135A107 A

24 1131 1.10 1.00 24.7756 CaseA-I.xls 1131A110 1132 1132A110 1133 1133Al10 1134 1134A110 1135 1135A110 A

24 1131 1.15 1.00 25.9018 CaseA-I.xls 1131A115 1132 1132A115 1133 1133A115 1134 1134A115 1135 1135A115 A

1 Kr85 1.00 1.00 22.5233 CaseA-Kr.xls Kr85 Kr85m Kr85m Kr87 Kr87 Kr88 Kr88 A

24 Kr85 0.61 1.00 13.7392 CaseA-Kr.xls Kr85A061 Kr85m Kr85mAO61 Kr87 Kr87A061 Kr88 Kr88A061 A

24 Kr85 1.05 1.00 23.6494 CaseA-Kr.xls Kr85A1 05 Kr85m Kr85mAl 05 Kr87 Kr87A105 Kr88 Kr88A105 A

24 Kr85 1.07 1.00 24.0999 CaseA-Kr.xls Kr85A107 Kr85m Kr85mA107 I

Kr87 I

I Kr87A107

DA-NS-08-049 Rev. 0 Page 28 of 52 Kr88 Kr88A107 A

24 Kr85 1.10 1.00 24.7756 CaseA-Kr.xls Kr85A110 Kr85m Kr85mA110 Kr87 Kr87A1 10 Kr88 Kr88A1 10 A

24 Kr85 1.15 1.00 25.9018 CaseA-Kr.xls Kr85A115 Kr85m Kr85mA115 Kr87 Kr87A115 Kr88 Kr88A1 15 A

1 Xe133 1.00 1.00 22.5233 CaseA-I.xls Xe133 Xel33m Xel33m Xe135 Xe135 Xel35m Xel35m Xe138 Xel 38 A

24 Xe133 0.61 1.00 13.7392 CaseA-Xe.xls Xe133A061 Xel33m Xel33mA061 Xe135 Xel 35A061 Xel35m Xel 35mA061 Xe138 Xel38A061 A

24 Xe133 1.05 1.00 23.6494 CaseA-Xe.xls Xe133A105 Xel33m Xel33mAlO5 1 Xe135 Xe135A105 Xel35m Xel35mA105 Xe138 Xel38A105 A

24 Xe133 1.07 1.00 24.0999 CaseA-Xe.xls Xe133A107 Xel33m Xel33mAlO7 Xe135 Xel35A107 Xel35m Xel35mA107 Xe138 Xel38A107 A

24 Xe133 1.10 1.00 24.7756 CaseA-Xe.xls Xe133A11O Xel33m Xel33mAllO Xe135 Xe135A11O Xel35m Xel35mAllO Xe138 Xe138A11O A

24 Xe133 1.15 1.00 25.9018 CaseA-Xe.xls Xe133A115 Xel33m Xel33mAl15 Xel35 Xe135A115 Xel35m Xel35mAll5 Xe138 Xe138A115 B

1 1131 1.00 1.02 22.9737 CaseB-I.xls 1131 1132 1132 1133 1133 1134 1134 1135 1135 B

24 1131 0.61 1.02 14.0140 CaseB-I.xls 1131B061 1132 1132B061 1133 1133B061

DA-NS-08-049 Rev. 0 Page 29 of 52 1134 1134B061 1135 1135B061 B

24 1131 1.05 1.02 24.1224 CaseB-I.xls 1131B105 1132 1132B105 1133 1133B105 1134 1134B105 1135 1135B105 B

24 1131 1.07 1.02 24.5819 CaseB-I.xls 1131B107 1132 1132B107 1133 1133B107 1134 1134B107 1135 1135B107 B

24 1131 1.10 1.02 25.2711 CaseB-I.xls 1131B110 1132 1132B110 1133 1133B110 1134 1134B110 1135 1135B110 B

24 1131 1.15 1.02 26.4198 CaseA-I.xls 1131B115 1132 1132B115 1133 1133B115 1134 1134B115 1135 1135B115 B

1 Kr85 1.00 1.02 22.9737 CaseB-Kr.xls Kr85 Kr85m Kr85m Kr87 Kr87 Kr88 Kr88 B

24 Kr85 0.61 1.02 14.0140 CaseB-Kr.xls K r85B061 Kr85m Kr85mBO61 Kr87 Kr87BO61 Kr88 I

Kr88B061 B

24 Kr85 1.05 1.02 24.1224 CaseB-Kr.xls Kr85B1O5 Kr85m Kr85mBlO5 Kr87 Kr87BI05 Kr88 Kr88B105 B

24 Kr85 1.07 1.02 24.5819 CaseB-Kr.xls Kr85B107 Kr85m Kr85mBl 07 Kr87 Kr87B 107 Kr88 Kr88B107 B

24 Kr85 1.10 1.02 25.2711 CaseB-Kr.xls Kr85B110 Kr85m Kr85mB110 Kr87 Kr87B110 Kr88 Kr88B110 B

24 Kr85 1.15 1.02 26.4198 CaseB-Kr.xls Kr85B115 Kr85m Kr85mB115 Kr87 Kr87B115 Kr88 Kr88B1 15 B

1 Xe133 1.00 1.02 22.9737 CaseB-Xe.xls Xe133

DA-NS-08-049 Rev. 0 Page 30 of 52 Xel33m Xel33m Xe135 Xe135 Xel35m Xel35m Xe138 Xe138 B

24 Xe133 0.61 1.02 14.0140 CaseB-Xe.xls Xe133B061 Xel33m Xel33mB061 Xe135 Xe135B061 Xel35m Xel35mB061 Xe138 Xel38B061 B

24 Xe133 1.05 1.02 24.1224 CaseB-Xe.xls Xe133B105 Xel33m Xel33mB105 Xel35 Xel35B105 Xel35m Xel35mBlO5 Xe138 Xel38B105 B

24 Xe133 1.07 1.02 24.5819 CaseB-Xe.xls Xe133B107 Xel33m Xe133mB107 Xe135 Xe135B107 Xel35m Xel35mBlO7 Xel38 Xel38B107 B

24 Xe133 1.10 1.02 25.2711 CaseB-Xe.xls Xe133B11O Xel33m Xel33mB110 Xe135 Xe135B11O Xel35m Xel35mBllO Xel38 Xe138B110 B

24 Xe133 1.15 1.02 26.4198 CaseB-Xe.xls Xe133B115 Xe133m Xel33mBll5 Xe135 Xe135B115 Xel35m Xel35mB115 Xe138 Xe138B115 C

24 1131 0.66 1.00 14.8654 CaseC-I.xis 1131C066 1132 1132C066 1133 1133C066 1134 1134C066 1135 1135C066 C

24 1131 1.20 1.00 27.0279 CaseC-I.xls 1131C120 1132 1132C120 1133 1133C120 1134 1134C120 1135 1135C120 C

24 1131 1.23 1.00 27.7036 CaseC-I.xls 1131C123 1132 1132C123 1133 1133C123 1134 1134C123 1135 1135C123 C

24 Kr85 0.66 1.00 14.8654 CaseC-Kr.xls Kr85C066 Kr85m Kr85mC066 Kr87 Kr87C066

DA-NS-08-049 Rev. 0 Page 31 of 52 Kr88 Kr88C066 C

24 Kr85 1.20 1.00 27.0279 CaseC-Kr.xls Kr85C120 Kr85m Kr85mCl2O Kr87 Kr87C1 20 Kr88 Kr88C120 C

24 Kr85 1.23 1.00 27.7036 CaseC-Kr.xls Kr85C123 Kr85m Kr85mC123 Kr87 Kr87C123 Kr88 Kr88C123 C

24 Xe133 0.66 1.00 14.8654 CaseC-Xe.xls Xe133C066 Xel33m Xe133mC066 Xe135

__Xe135C066 Xe135m Xel35mC066 Xe138 Xel38C066 C

24 Xe133 1.20 1.00 27.0279 CaseC-Xe.xls Xe133C120 Xe133m Xe133mC120 Xe135 Xe135C120 Xe135m Xel35mCl2O Xel38 Xe138C120 C

24 Xe133 1.23 1.00 27.7036 CaseC-Xe.xls Xe133C123 Xel33m Xe133mC123 Xe135 Xe135C123 Xel35m Xe135mC123 Xe138 Xel38C123 D

24 1131 0.66 1.02 15.1627 CaseD-I.xls 1131D066 1132 1132D066 1133 1133D066 1134 1134D066 1135 1135D066 D

24 1131 1.20 1.02 27.5685 CaseD-I.xls 1131D120 1132 1132D120 1133 1133D120 1134 1134D120 1135 1135D120 D

24 1131 1.23 1.02 28.3577 CaseD-I.xls

'1131D123 1132 11320123 1133 1133D123 1134 1134D123 1135 1135D123 D

24 Kr85 0.66 1.02 15.1627 CaseD-Kr.xls Kr85D066 Kr85m Kr85mD066 Kr87 Kr87D066 Kr88 Kr88D066 D

24 Kr85 1.20 1.02 27.5685 CaseD-Kr.xls Kr85D120 Kr85m Kr85mDl20 Kr87 Kr870120 Kr88 Kr88D120

DA-NS-08-049 Rev. 0 Page 32 of 52 D

24 Kr85 1.23 1.02 28.3577 CaseD-Kr.xls Kr85D123 Kr85m Kr85mD123 Kr87 Kr87D123 Kr88 Kr88D123 D

24 Xe133 0.66 1.02 15.1627 CaseD-Xe.xls Xe133D066 Xel33m Xel33mD066 Xe135 Xe135D066 Xel35m Xe135mD066 Xe138 Xel38D066 D

24 Xe133 1.20 1.02 27.5685 CaseD-Xe.xls Xe133D120 Xel33m Xel33mDl2O Xel35 Xe135D12O Xel35m Xe135mD120 Xe138 Xe138D120 D

24 Xe133 1.23 1.02 28.3577 CaseD-Xe.xls Xe133D123 Xe133m Xe133mD123 Xe135 Xe135D123 Xel35m Xe135mD123 Xe138 Xe138D123 E

24 1131 0.75 1.02 17.2303 CaseE-I.xls 1131E075 1132 1132E075 1133 1133E075 1134 1134E075 1135 1135E075 E

24 1131 1.50 1.02 34.4606 CaseE-I.xis 1131E150 1132 1132E150 1133 1133E150 1134 1134E150 1135 1135E150 E

24 Kr85 0.75 1.02 17.2303 CaseE-Kr.xls Kr85E075 Kr85m Kr85mE075 Kr87 Kr87E075 Kr88 Kr88E075 E

24 Kr85 1.50 1.02 34.4606 CaseE-Kr.xls Kr85E150 Kr85m Kr85mEl50 Kr87 Kr87E150 Kr88 Kr88E15O E

24 Xe133 0.75 1.02 17.2303 CaseE-Xe.xls Xe133E075 Xel33m Xel33mE075 Xe135 Xel35E075 Xel35m Xel35mE075 Xe138 Xel 38E075 E

24 Xe133 1.50 1.02 34.4606 CaseE-Xe.xls Xe133E150 Xe133m Xel33mE150 Xe135 Xel35E150 Xel35m Xel35mEl5O Xe138 Xe138E150

DA-NS-08-049 Rev. 0 Page 33 of 52 The low temperature gas gap fraction spreadsheet is LOWTEMP.XLS sheet LT. All spreadsheets are stored on the accompanying CDROM.

DA-NS-08-049 Rev. 0 Page 34 of 52 12.3 INTERPIN Temperature Results The INTERPIN radial temperature profiles (in degrees Kelvin) as a function of burnup were extracted from the INTERPIN-output files and are listed in Tables 12.3-12.8.

Table 12.3 Radial Temperature Profiles in Kelvin for Case A CaseA 0.0 0.2 0.4 0.6 0.8 1.0 0

1785.6 1726.1 1574.0 1349.8 1078.2 797.0 24 1894.3 1774.5 1494.7 1138.4 797.1 745.1 30 1808.8 1697.9 1438.1 1105.3 783.0 734.5 36 1657.3 1560.9 1334.5 1042.9 758.0 715.2 44 1613.3 1521.0 1303.5 1022.3 745.0 703.2 48 1593.3 1502.7 1289.1 1012.4 738.8 697.6 50 1557.9 1470.7 1264.9 997.8 732.4 692.2 52 1522.9 1438.9 1240.5 982.6 725.9 686.7 62 1216.5 1162.5 1032.6 859.0 677.5 649.1 Case A061 0.0 0.2 0.4 0.6 0.8 1.0 0

1257.6 1229.5 1156.0 1044.7 904.6 748.8 24 1238.1 1190.8 1074.5 913.3 734.6 654.0 30 1190.5 1147.0 1039.4 889.2 720.3 644.4 36 1114.3 1076.8 983.7 851.9 701.2 632.9 44 1106.3 1068.9 975.8 844.1 693.3 625.5 48 1098.5 1061.6 969.6 839.2 689.7 622.5 50 1080.6 1045.1 956.3 830.2 685.1 619.8 52 1063.2 1028.9 943.3 821.4 680.6 617.0 62 908.9 886.9 830.6 747.3 646.0 598:2 Case A064 0.0 0.2 0.4 0.6 0.8 1.0 0

1294.6 1264.5 1186.0 1067.3 918.6 754.1 24 1277.7 1226.1 1100.2 927.1 737.5 657.3 30 1229.3 1181.6 1064.6 902.7 723.1 647.5 36 1146.2 1105.6 1005.0 863.8 703.8 635.8 44 1133.9 1093.7 994.1 854.2 695.5 628.6 48 1126.1 1086.4 987.9 849.3 691.9 625.6 50 1109.0 1070.6 975.1 840.5 687.3 622.7 52 1089.9 1053.0 961.2 831.5 683.2 620.4 62 930.6 906.5 845.1 755.4 647.7 600.4 Case A105 0.0 0.2 0.4 0.6 0.8

.1.0 0

1853.0 1789.2 1626.2 1386.5 1096.8 799.0 24 2026.5 1894.4 1586.4 1195.2 822.5 779.5 30 1927.0 1804.7 1519.1 1155.4 806.8 767.1 36 1767.3 1660.2 1409.7 1089.6 780.9 746.0 44 1717.1 1614.9 1375.0 1067.2 767.9 734.0 48 1692.7 1592.6 1357.7 1055.7 761.3 728.2 50 1653.4 1557.0 1330.5 1039.0 753.8 721.6 52 1615.3 1522.2 1303.5 1021.8 746.0 714.8

DA-NS '-08-049 Rev. 0 Page 35 of 52 62 1275.9 1216.2 1073.8 885.4 691.9 669.6 Case A107 0.0 0.2 0.4 0.6 0.8 1.0 0

1879.7 1814.2 1646.9 1401.0 1104.0 799.6 24 2065.2 1928.8 1611.1 1208.2 825.5 786.0 30 1969.7 1843.2 1547.9 1172.5 814.0 777.4 36 1805.4 1694.5 1435.2 1104.7 787.3 755.1 44 1753.2 1647.1 1398.7 1080.8 773.1 742.0 48 1725.7 1622.1 1379.3 1068.2 766.4 736.0 50 1685.0 1585.2 1351.2 1050.9 758.7 729.2 52 1645.6 1549.3 1323.3 1033.1.

750.8 722.1 62 1295.7 1234.0 1086.9 893.2 695.4 675.1 Case Al 10 0.0 0.2 0.4 0.6 0.8 1.0 0

1920.0 1851.9 1677.9 1422.6 1114.6 800.2 24 2129.0 1985.7 1652.2 1230.5 831.8 798.8 30 2034.8 1901.5 1591.0 1197.5 824.0 793.6 36 1863.6 1746.5 1473.4 1126.6 796.2 769.3 44 1808.2 1696.3 1434.7 1101.3 781.1 755.1 48 1779.1 1669.8 1414.1 1087.8 773.8 748.3 50 1733.6 1628.5 1382.6

.1068.5 765.7 741.2 52 1692.8 1591.2 1353.6 1050.0 757.4 733.7 62 1331.5 1266.2 1111.2 907.9 702.1 684.8 Case All15 0.0 0.2 0.4 0.6 0.8 1.0 0

1986.0 1913.5 1728.5 1457.5 1131.4 800.8 24 2229.4 2074.4 1714.8 1262.0 837.8 817.8 30 2123.6 1979.5 1645.0 1223.2 827.1 808.5 36 1943.9 1816.4 1520.6 1148.1 799.3 783.1 44 1886.7 1764.6 1480.8 1122.4 784.6 769.1 48 1856.9 1737.6 1459.9 1108.7 776.9 761.8 50 1808.7 1693.9 1426.8 1088.8 769.0 754.4 52 1759.7 1649.6 1393.2 1068.6 761.2 747.0 62 1388.3 1315.8 1145.2 924.6 707.3 697.9

DA-NS-08-049 Rev. 0 Page 36 of 52

______________Table 12.4: Radial Temperature Profiles in Kelvin for Case B Case B 0.0 0.2 0.4 0.6 0.8 1.0 0

1811.9 1750.8 1594.4 1364.2 1085.6 798.0 24 1945.6 1820.9 1530.0 1160.0 806.6 757.6 30 1859.8 1744.3 1474.0 1128.3 794.8 749.5 36 1704.1 1603.4 1367.2 1063.9 769.1 729.3 44 1656.4 1560.1 1333.7 1041.9 755.8 717.1 48 1636.4 1541.9 1319.5 1032.3 749.9 711.7 50 1599.0 1508.0, 1293.7 1016.5 742.8 705.8 52 1562.6 1474.9 1268.0 1000.3 735.6 699.7 62 1242.1 1185.7 1050.7 871.1 684.5 658.6 Case B061 0.0 0.2 0.4 0.6 0.8 1.0 0

1273.9 1244.9 1169.3 1054.7 910.8 751.2 24 1257.4 1208.0 1087.2 920.3 736.1 655.4 30 1204.3 1159.2 1048.1 893.6 721.1 645.9 36 1126.6 1087.9 991.9 856.4 702.1 634.2 44 1118.8 1080.1 984.1 848.7 694.3 627.0 48 1111.0 1072.8 977.8 843.8 690.7 623.9 50 1094.3 1057.3 965.4 835.2 686.2 621.1 52 1075.0 1039.5 951.1 825.7 681.5 618.3 62 917.9 895.1 836.6 750.6 646.6 599.2 Case B064 0.0 0.2 0.4 0.6 0.8 1.0 0

1314.9 1283.7 1202.4 1079.6 926.1 756.9 24 1298.5 1244.7 1113.6 934.2 738.9 659.1 30, 1244.1 1194.7 1073.8 907.1 723.8 649.4 36 1161.1 1118.7 1014.3 868.4 704.6 637.5 44 1144.5 1103.2 1001.1 858.0 696.3 630.4 48 1137.6 1096.7 995.5 853.4 692.7 627.3 50 1117.5 1078.2 980.7 843.5 687.9 624.3 52 1099.7 1061.7 967.4 834.5 683.3 621.4 62 940.6 915.3 851.4 758.5 648.0 601.3 Case Bi105 0.0 0.2 0.4 0.6 0.8 1.0 0

1881.1 1815.5 1647.9 1401.7 1104.4 799.6 24 2067.4 1930.7 11612.4 1208.8 825.7 786.4 30 1972.0 1845.2 1549.4 1173.3 814.2 778.0 36 1807.5 1696.3 1436.6 1105.4 787.7 755.7 44 1755.3 1649.0 1400.2 1081.6 773.5 742.6 48' 1727.8 1624.0 1380.7 1069.0 766.8 736.6 50 1687.0 1587.0 1352.6 1051.7 759.1 729.7 52 1647.6 1551.0 1324.6 1033.9 751.1 722.6 62 1297.0 1235.1 1087.8 893.7 695.6 675.5

DA-NS-08-049 Rev. 0 Page 3 7 of 52 Case B 107 0.0 0.2 0.4 0.6 0.8 1.0 0

1908.6 1841.2 1669.1 1416.5 1111.6 800.1 24 2104.6 1963.7 1635.9 1221.0 828.4 792.4 30 2002.6 1872.2 1568.5 1183.4 817.8 784.6 36 1840.8 1726.3 1458.9 1118.4 792.3 762.6 44 1790.9 1680.7 1423.2 1094.5 778.3 749.7 48 1762.0 164.5 1402.9 1081.4 771.2 743.2 50 1718.1 1614.6 1372.4 1062.6 763.2 736.2 52 1675.1 1575.7 1342.8 1044.4 755.2 729.0 62 1321.9 1257.4 1104.3 903.4 699.7 680.9 Case 81 10 0.0 0.2 0.4 0.6 0.8 1.0 0

1948.9 1878.9 1700.2 1437.9 1122.0 800.5 24 2183.9 2034.8 1688.4 1251.0 839.1 813.8 30 2079.8 1941.1 1618.7 1211.3 827.2 803.9 36 1903.6 1781.3 1496.9 1~137.6 798.5 778.2 44 1847.2 1730.4 11458.0 1112.4 783.7 764.1 48 1817.3 1703.0 1436.7 1098.3 775.9 756.9 50 1770.1 1660.2 1404.0 1078.5 768.0 749.7 52 1726.8 1620.7 1373.4 1059.2 759.7 742.0 62 1359.2 1290.7 1128.6 917.5 706.3 693.3 Case 81 15 0.0 0.2 0.4 0.6 0.8 1.0 0

2015.8 1941.3 1751.3 1473.1 1138.7 800.9 24 2275.5 2114.4 1741.4 1273.4 838.6 828.0 30 2164.2 2014.8 1668.8 1234.1 829.1 819.2 36 1989.3 1856.6 1549.1 1163.3 804.4 795.7 44 1928.8 1801.7 1506.7 1135.5 788.2 780.2 48 1897.6 1773.2 1484.4 1120.7 779.9 772.2 50 1848.6 1728.9 1451.0 1100.8 772.3 764.7 52 1800.5 1685.0 1417.1 1079.9 764.3 756.9 62 1415.9 1340 1161.9 1

933.1 710.3 704.8

DA-NS-08-049 Rev.0 Page 38 of 52 Table 12.5: Radial Temperature Profiles in Kelvin for Case C Case C066 0.0 0.2 0.4 0.6 0.8 1.0 0

1324.3 1292.6 1210.0 1085.4 929.6 758.2 24 1309.3 1254.4 1120.7 938.0 739.8 660.0 30 1256.1 1205.4 1081.6 911.4 724.8 650.2 36 1169.2 1126.0 1019.4 870.8 704.7 637.8 44 1151.9 1109.9 1006.0 860.7 696.9 631.1 48 1144.6 1103.0 1000.1 855.9 693.3 628.0 50 1124.5 1084.5 985.3 846.1 688.4 625.0 52 1107.0 1068.4 972.5 837.6 684.4 622.6 62 945.9 920.2 855.0 760.5 648.5 601.9 Case C120 0.0 0.2 0.4 0.6 0.8 1.0 0

2050.9 1974.0 1778.1 1491.4 1147.2 800.8 24 2325.9 2159.7 1774.8 1292.0 843.1 836.2 30 2219.7 2065.4 1707.7 1257.3 836.0 829.1 36 2032.1 1895.2 1578.3 1180.9 811.6 805.6 44 1970.1 1838.6 1533.7 1150.5 792.9 787.3 48 1934.4 1805.8 1507.5 1132.7 783.2 777.8 50 1886.6 1762.4 1474.5 1112.6 774.9 769.8 52 1834.5 1715.3 1439.0 1091.4 767.0.

761.9 62 1437.1 1358.9 1175.7 941.0 713.6 709.8 Case C123 0.0 0.2 0.4 0.6 0.8 1.0 0

2089.4 2009.8 1807.3 1511.2 1156.3 800.6 24 2400.2 2226.1 1823.2 1318.5 850.9 857.9 30 2282.2 2120.6 1746.2 1276.4 839.2 844.6 36 2088.6 1944.3 1611.2 1195.9 814.7 819.4 44 2026.1 1887.4 1566.9 1166.4 797.1 802.1 48 1989.3 1853.5 1539.8 1148.0 786.9 792.0 50 1940.1 1809.0 1506.1 1127.6 778.7 783.7 52 1886.4 1760.4 1469.3 1105.6 770.5 775.2 62 1475.4 1392.2 1198.1 951.8 717.5 720.6

DA-NS-08-049 Rev. 0 Page 39 of 52 Table 12.6: Radial Temoerature Profiles in Kelvin for Case D Case D066 0.0 0.2 0.4 0.6 0.8 1.0 0

1341.9 1309.2 1224.1 1096.0 936.1 760.5 24 1326.7 1269.8 1131.7 943.7 740.8 661.7 30 1270.9 1218.5 1090.9 916.0 725.5 651.8 36 1185.3 1140.2 1029.5 875.9 705.4 639.0 44 1164.7 1121.4 1014.5 865.2 697.8 632.5 48 1157.4 1114.5 1008.5 860.4 694.1 629.3; 50 1137.2 1095.9 993.6.

850.5 689.3 626.4 52 1119.1 1079.2 980.4 841.8 685.1 623.8 62 956.6 929.8 862.1 764.4 649.3 602.9 Case D120 0.0 0.2 0.4 0.6 0.8 1.0 0

2081.6 2002.6 1801.4 1507.2 1154.4 800.6 24 2386.7 2214.4 1815.5 1315.0 850.0 853.3 30 2265.9 2106.5 1737.1 1273.2 841.2 843.2 36 2080.0 1937.4 1607.9 1196.1 816.5 818.5 44 2012.9 1875.8 1558.9 1162.3 795.6 797.9 48 1977.2 1843.0 1532.8 1144.6 786.0 788.4 50 1928.8 1799.3 1499.6 1124.7 778.0 780.5 52 1875.3 1750.8 1463.0 1102.8 769.8 772.2 62 1461.3 1379.0 1187.0 943.3 711.4 714.1 Case D123 0.0 0.2 0.4 0.6 0.8 1.0 0

2120.5 2038.8 1830.8 1527.1 1163.3 800.2 24 2448.2 2267.0 1848.5 1326.3 846.4 866.2 30 2322.4 2154.9 1767.9 1284.4 838.7 855.3 36 2132.0 1981.5 1635.0 1205.3 815.2 829.3 44 2070.4 1925.7 1592.0 1177.2 798.6 812.9 48 2032.9 1891.2 1564.7 1158.8 788.8 803.0 50 1982.6 1845.7 1530.1 1137.9 780.4 794.2 52 1927.6 1795.8 1492.4 1115.3 772.0 785.3 62 1500.0 1412.1 1208.4 952.5 714.1 724.7

DA-NS-08-049 Rev. 0 Page 40 of 52 Table 12.7: Radial Tempnerature Profiles in Kelvin for Case E Case E150 0.0 0.2 0.4 0.6 0.8 1.0 0

2432.2 2327.7 2062'5 1677.1 1218.3 775.7 24 2930.7 2702.7 2167.2 1478.2 805.1 1004.5 30 2815.8 2596.8 2086.1 1436.8 817 996.4 36 2630.6 2421 1940.9 1350.9 826 970.6 44 2566.5 2365.1 1903.3 1334.3 825 966.6 48 2535 2336.2 1880.8 1321.2 823.5 961.7 50 2482.9 2287.1 1840.6 1296.3 820.5 950.9 52 2421.1 2229.6 1794.6 1268.3 816.1 938.1 62 1862.6 1724 1413.7 1048.9 756.7 831.4 Case E075 0.0 0.2 0.4 0.6 0.8 1.0 0

1463.2 1423.7 1321.5 1168.6 979.4 775.1 24 1455.2 1383.8 1212.7 984.9 748.1 673.9 30 1396.5 1330.2 1170.9 957.6 734 664.6 36 1305.2 1247.1 1106.5 916.7 714.7 651.8 44 1276.3 1220.8 1086 903.1 706.4 645.2 48 1262.4 1208.2 1076.5 896.8 702.5 641.3 50 1233 1181.6 1056.3 884.6 697.4 638 52 1206.2 1157.3 1037.6 873 692.3 634.8 62 1024.5 990.6 906.6 788.6 654.6 611 t

DA-NS-08-049 Rev. 0 Page 41 of 52 Table 12.8: Radial Temoerature Profiles in Kelvin for Cases 5. 5a. and 5b Case 5 0.0 0.2 0.4 0.6 0.8 1.0 0

1221.1 1195.0 1126.5 1022.3 890.7 743.3 7

1174.4 1137.6 1046.4 917.9 771.9 692.9 14 1175.9 1136.7 1039.5 903.3 749.2 671.9 21 1185.0 1143.1 1039.6 894.7 731.6 653.6 28 1217.4 1172.1 1060.5 904.7 730.0 648.8 35 1252.7 1204.2 1084.6 918.0 731.6 646.5 42 1289.7 1237.9 1110.3 932.7 734.5 644.9 49 1330.8 1275.4 1139.0 949.8 739.1 644.5 56 1371.8 1313.6 1170.2 971.0 748.9 649.1 62 1417.7 1356.2 1204.8 994.5 760.0 654.7 Case 5a 0.0 0U2 0.4 0.6 0.8 1.0 0

1221.5 1195.3 1126.8 1022.6 891.0 743.6 7

1174.8 1138.0 1046.7 918.3 772.2 693.2 14 1176.3 1137.1 1039.9 903.6 749.5 672.2 21 1185.3 1143.4 1039.8 894.9 731.8 653.8 28 1217.4 1172.2 1060.6 904.8 730.0 648.9 35 1252.7 1204.2 1084.6 918.0 731.6 646.5 42 1289.5 1237.7 1110.1 932.6 734.4 644.8 49 1330.3 1274.9 1138.6 949.4 738.8.

644.2 56 1369.1 1310.9 1167.8 968.8 747.1 647.5 62 1416.3 1354.8 1203.6 993.4 759.1 653.9 Case 5b 0.0 0.2 0.4 0.6 0.8 1.0 0

1220.9 1194.8 1126.3 1022.1 890.5 743.2 7

1174.1 1137.4 1046.2 917.7 771.8 692.8 14 1175.7 1136.4 1039.3 903.1 7491 671.7 21 1184.8 1142.9 1039.4 894.5 731.4 653.4 28 1217.3 1172.1 1060.5 904.7 730.0 648.8 35 1252.7 1204.2 1084.6 918.0 731.6 646.5 42 1289.9 1238.1 1110.5 932.9 734.6 645.0 49 1331.2 1275.7 1139.3 950.0 739.4 644.7 56 1373.5 1315.2 1171.7 972.3 750.0 650.1 62 1419.1 1357.5 1206.1 995.6 761.0 655.6

DA-NS-08-049 Rev. 0 Page 42 of 52 12.4 EXCEL High-Temperature Gas Gap Release Fraction Results The high-temperature gas gap fraction results for the eight cases are listed in Tables 12.9-12.15.

Table 12.9: Single Axial Node Results RG 1.183 Case A Case B.

Case C Case D Case 5 1-131 0.08 0.1139 0.1313 0.1139 0.1313 0.1176 1-132 0.05 0.0221 0.0293 0.0221 0.0293 0.0203 1-133 0.05 0.0575 0.0723 0.0575 0.0723 0.0549 1-134 0.05 0.0140 0.0188 0.0140 0.0188 0.0128 1-135 0.05 0.0357 0.0466 0.0357 0.0466 0.0332 Xe-133 0.05 0.1026 0.1196 0.1026 0.1196 0.0516 Xe-133m 0.05 0.0798 0.0963 0,0798 0.0963 0.0352 Xe-135 0.05 0.0410 0.0530 0.0410 0.0530 0.0155 Xe-135m 0.05 0.0078 0.0105 0.0078 0.0105 0.0027 Xe-138 0.05 0.0074 0.0100 0.0074 0.0100 0.0026 Kr-85 0.10 0.1303 0.1446 0.1303 0.1446 0.1313 Kr-85m 0.05 0.0300 0.0395 0.0300 0.0395 0.0110 Kr-87 0.05 0.0167 0.0224 0.0167 0.0224 0.0059 Kr-88 0.05 0.0245 0.0325 0.0245 0.0325 0.0088 Note that single node cases C and D are identical to single node cases A and B.

Table 12.10: Single Axial Node Results for Cases 5, 5a, and 5b Case 5a Case 5 Case 5b 5 to 5a % Diff 5 to 5b % Diff 1-131 0.1166 0.1176 0.1185

-0.8503 0.7653 1-132 0.0200 0.0203 0.0206

-1.4778 1.4778 1-133 0.0542 0.0549 0.0555

-1.2750 1,0929 1-134 0.0126 0.0128 0.0130

-1.6530 1.4692 1-135 0.0328 0.0332 0.0337

-1.3491 1.3578 Xe-133 0.0509 0.0516 0.0522

-1.2750 1.2464 Xe-133m 0.0348 0.0352 0.0357

-1.1817 1.3739 Xe-135 0.0153 0.0155 0.0157

-1.3441 1.2351 Xe-135m 0.0027 0.0027 0.0027

-0.4018

-0.4018 Xe-138 0.0025 0.0026 0.0026

-3.1121 0.7634 Kr-85 0.1302 0.1313 0.1323

-0.8000 0.8000 Kr-85m 0.0109 0.0110 0.0112

-0.9774 1.7480 Kr-87 0.0059 0.0059 0.0060 40.6521 1.0318 Kr-88 0.0087 0.0088 0.0090

-1.6175 1.7750 The Case 5 gas gap fraction results, which assume a constant 6.87 kw/ft linear heat rate, bounded the Regulatory Guide 1.183 limits (Ref.1). Thus the ANSI/ANS-5.4-1982 methodology is conservative and is suitable for calculation of limiting gas gap fractions.

Note that comparison of the radial and bumup dependent fuel temperature results for cases cases 5, 5a, and 5b show that the fuel temperature and gas gap release fraction results are insensitive to variations in plenum free volume. Thus, uncertainties associated with plenum free volume are inconsequential.

DA-NS-08-049 Rev. 0 Page 43 of 52 ThbIA 1211 Case A EOC Axial PrnfiI~ RA~ult~

Power 61 105 107 110 115 100.08 Axial Nodes 4.0 4.0 11.5 2.0 2.5 24.00 1-131 0.0015 0.1540 0.1674 0.1892 0.2149 0.1443 1-132 0.0002 0.0409 0.0487 0.0627 0.0835 0.0441 1-133 0.0005 0.0920 0.1031 0.1206 0.1434 0.0898 1-134 0.0001 0.0267 0.0323 0.0427 0.0599 0.0297 1-135 0.0003 0.0628 0.0729 0.0896 0.1116 0.0645 Xe-133 0.0012 0.1412 0.1538 0.1748 0.2015 0.1330 Xe-133m 0.0008 0.1167 0.1282 0.1468 0.1723 0.1112 Xe-135 0.0003 0.0705 0.0811 0.0981 0.1202 0.0714 Xe-135m 0.0001 0.0152 0.0185 0.0249 0.0364 0.0173 Xe-138 0.0001 0.0145 0.0176 0.0238 0.0348 0.0165 Kr-85 0.0028 0.1675 0.1812 0.2034 0.2294 0.1561 Kr-85m 0.0002 0.0541 0.0634 0.0794 0.1012 0.0566 Kr-87 0.0001 0.0317 0.0380 0.0499 0.0687 0.0348 Kr-88 0.0002 0.0450 0.0534 0.0681 0.0894 0.0481 Table 12.12: Case B EOC Axial Profile Results Power 61 105 107 110 115 102.09 Axial Nodes 4.0 4.0 11.5 2.0 2.5 24.00 1-131 0.0018 0.1683 0.1822 0.2025 0.2262 0.1561 1-132 0.0002 0.0493 0.0581 0.0729 0.0944 0.0520 1-133 0.0006 0.1038 0.1150 0.1318 0.1558 0.0997 1-134 0.0001 0.0326 0.0391 0.0508 0.0697 0.0357 1-135 0.0003 0.0736 0.0843 0.1006 0.1227 0.0739 Xe-133 0.0015 0.1546 0.1680 0.1883 0.2143 0.1445 Xe-133m 0.0009 0.1289 0.1408 0.1593 0.1860 0.1218 Xe-135 0.0004 0.0818 0.0927 0.1092 0.1314 0.0809 Xe-135m 0.0001 0.0187 0.0227 0.0302 0.0435 0.0211 Xe-138 0.0001 0.0178 0.0217 0.0289 0.0417 0.0201 Kr-85 0.0034 0.1821 0.1951 0.2180 0.2389 0.1675 Kr-85m 0.0003 0.0641 0.0742 0.0903 0.1122 0.0655 Kr-87 0.0001 0.0385 0.0459 0.0589 0.0791 0.0416 Kr-88 0.0002 0.0539 0.0632 0.0786 0.1003 0.0563

DA-NS-08-049 Rev. 0 Page 44 of 52 ThhIA 12 12~ ~

C ROC A~iM PrnfiIe~ R~uIt~

Power 66 105 110 115 120 123.00 100.23 Axial Nodes 8.0 1.5 2.5 2.0 5:0 5.00 24.00 1-131 0.0029 0.1540 0.1892 0.2149 0.2352 0.2450 0.1483 1-132 0.0003 0.0409 0.0627 0.0835 0.1043 0.1178 0.0624 1-133 0.0009 0.0920 0.1206 0.1434 0.1678 0.1845 0.1040 1-134 0.0002 0.0267 0.0427 0.0599 0.0791 0.0924 0.0469 1-135 0.0005 0.0628 0.0896 0.1116 0.1329 0.1476 0.0812 Xe-133 0.0023 0.1412 0.1748 0.2015 0.2248 0.2367 0.1407 Xe-133m 0.0015 0.1167 0.1468 0.1723 0.1985 0.2142 0.1234 Xe-135 0.0006 0.0705 0.0981 0.1202 0.1421 0.1573 0.0872 Xe-135m 0.0001 0.0152 0.0249 0.0364 0.0507 0.0620 0.0301 Xe-138 0.0001 0.0145 0.0238 0.0348 0.0487 0.0597 0.0289 Kr-85 0.0057 0.1675 0.2034 0.2294 0.2472 0.2548 0.1573 Kr-85m 0.0004 0.0541 0.0794 0.1012 0.1222 0.1363 0.0741 Kr-87 0.0002 0.0317 0.0499 0.0687 0.0888 0.1023 0.0528 Kr-88 0.0004 0.0450 0.0681 0.0894 0.1102 0.1239 0.0662 Table 12.14: Case D BOC Axial Profile Results Power 66 105 110 115 120 123.00 102.23 Axial Nodes 8.0 1.5 2.5 2.0 5.0 5.00 24.00 1-131 0.0034 0.1683 0.2025 0.2262 0.2431 0.2509 0.1545 1-132 0.0004 0.0493 0.0729 0.0944 0.1149 0.1280 0.0693 1-133 0.0011 0.1038 0.1318 0.1558 0.1809 0.1969 0.1123 1-134 0.0002 0.0326 0.0508 0.0697 0.0895 0.1025 0.0532 1-135 0.0006 0.0736 0.1006 0.1227 0.1444 0.1590 0.0887 Xe-133 0.0028 0.1546 0.1883 0.2143 0.2343 0.2438 0.1477 Xe-133m 0.0018 0.1289 0.1593 0.1860 0.2110 0.2245 0.1315 Xe-135 0.0007 0.0818 0.1092 0.1314 0.1540 0.1693 0.0950 Xe-135m 0.0001 0.0187 0.0302 0.0435 0.0595 0.0712 0.0352 Xe-1 38 0.0001 0.0178 0.0289 0.0417 0.0572 0.0688 0.0339 Kr-85 0.0068 0.1821 0.2180 0.2389 0.2536 0.2584 0.1629 Kr-85m 0.0005 0.0641 0.0903 0.1122 0.1332 0.1472 0.0813 Kr-87 0.0003 0.0385 0.0589 0.0791 0.0994 0.1123 0.0593 Kr-88 0.0004 0.0539 0.0786 0.1003 0.1209 0.1342 0.0732

DA-NS-08-049 Rev. 0 Page 45 of 52 Table 12.15: Case E Peak-Thermal Power Case Axial Profile Results Power 75 150 102.00 Axial Nodes 16.0 8.0 24.00 1-131 0.0113 0.3218 0.1148 1-132 0.0013 0.2416 0.0814 1-133 0.0038 0.2736 0.0937 1-134 0.0008 0.2192 0.0736 1-135 0.0021 0.2582 0.0875 Xe-133 0.0092 0.3093 0.1092 Xe-133m 0.0060 0.2890 0.1003 Xe-135 0.0025 0.2624 0.0891 Xe-135m 0.0004 0.1806 0.0605 Xe-138 0.0004 0.1772 0.0593 Kr-85 0.0218 0.3221 0.1219 Kr-85m 0.0018 0.2528 0.0854 Kr-87 0.0009 0.2290 0.0770 Kr-88 0.0014 0.2457 0.0828

DA-NS-08-049 Rev.O Page 46 of 52 12.5 EXCEL Low-Temperature Gas Gap Release Fraction Results The low-temperature gas gap fraction results are listed in Table 12.16.

Table 12.16: Gas Gap Fractions: I, Xe, Kr at Low Temperature Core Power 1775 MWt Pin Peaking Factor 2.60 RG 1.49 Power Factor 1.02 Assemblies per core 121 Uranium mass per assembly 0.3981 MTU Max Assembly Power 38.9033 MW/assm Specific Power 97.7224 MW/MTU BU 62000.00 MWd/MTU DECAY CONSTANT F

1/SEC 1-131 9.976E-07 0.0003 1-132 8.425E-05 0.0000 1-133 9.211E-06 0.0000 1-134 2.200E-04 0.0000 1-135 2.912E-05 0.0000 XE-131M 6.815E-07 0.0004 XE-133M 3.663E-06 0.0001 XE-133 1.528E-06 0.0002 XE-135M 7.380E-04 0.0000 XE-135 2.115E-05 0.0000 XE-138 8.151E-04 0.0000 KR-83M 1.052E-04 0.0000 KR-85M 4.297E-05 0.0000 KR-85 2.054E-09 0.0043 KR-87 1.514E-04 0.0000 KR-88 6.731E-05 0.0000

DA-NS-08-049 Rev. 0 Page 47 of 52

13. ACRONYMS AB Auxiliary Building ADV Atmospheric Dump Valve AEB Accident Evaluation Branch AFR Active Fuel Region AFW Auxiliary Feedwater ANS American Nuclear Society ANSI American National Standards Institute AOO Anticipated Operational Occurrence, AST Alternative Source Term BGE Baltimore Gas and Electric Company BOC Beginning of Cycle BOL Beginning of Life BWR Boiling Water Reactor CCNPP Calvert Cliffs Nuclear Power Plant CE Combustion Engineering CEAEE Control Element Assembly EjectionEvent CEDE Committed Effective Dose Equivalent CFQ Maximum Heat Flux Hot Channel Factor CFR Code of Federal Regulations COD Containment Outage Door COLR Core Operating Limits Report CP Charging Pump CR Control Room CRETS Control Room Emergency Temperature System CREVS Control Room Emergency Ventilation System CST Condensate Storage Tank DBA Design Basis Accident DCF Dose Conversion Factor DDE Deep Dose Equivalent DF Decontamination Factor DFI Inorganic Decontamination Factor DFO Organic Decontamination Factor DWG Drawing EAB Exclusion Area Boundary ECCS-Emergency Core Cooling System EDG Emergency Diesel Generator EOC End of Cycle EOL End of Life EPRI Electric Power Research Institute ETP Engineering Test Procedure FGR Federal Guidance Report FHA Fuel Handling Accident GDC General Design Criteria GL Generic Letter GWd GigaWatt Day HVAC Heating, Ventilation, and Air Conditioning HEPA High-Efficiency Particulate Air Filters ICRP International Commision on Radiological Protection IFBA Integral Fuel Burnable Absorbers IFI Inorganic Iodine Fraction

DA-NS-08-049 Rev. 0 Page 48 of 52 IFO Organic Iodine Fraction IRS Iodine Removal System KI Potassium Iodide Tablets LAR License Amendment Request LEF Assembly Lower End Fitting LOCA Loss of Coolant Accident LOOP Loss of Offsite Power LWR Light Water Reactor LPZ Low Population Zone MFIV Main Feedwater Isolation Valve MFW Main Feedwater MSIV Main Steam Isolation Valve MSLB Main Steam Line Break MSSV Main Steam Safety Valve MTU Metric Ton Uranium MWd MegaWatt Day MWt MegaWatt Thermal NEI Nuclear Energy Institute NFE Nuclear Fuel Elevator NPP Nuclear Power Plant NRC Nuclear Regulatory Commission NRR Nuclear Reactor Regulation OFA Optimized Fuel Assembly ORNL Oak Ridge National Laboratory PAL Personnel Air Lock PFT Perfluorocarbon Tracer Gas Test PMH Probable Maximum Hurricane PREFS Pump Room Exhaust Filtration System PSB Pin Storage Basket PWR Pressurized Water Reactor PZR Pressurizer RAI Request for Additional Information RCS Reactor Coolant System REG R.E.Ginna RFP Refueling Pool RG Regulatory Guide RWT Refueling Water Tank SCBA Self Contained Breathing Apparatus SDC Shutdown Cooling SFHM Spent Fuel Handling Machine SER Safety Evaluation Report SFP Spent Fuel Pool SFPC Spent Fuel Pool Cooling SFPEVS Spent Fuel Pool Exhaust Ventilation System SG Steam Generator SGTR Steam Generator Tube Rupture SIT Safety Injection Tank SRE Seized Rotor Event SRP Standard Review Plan SSC Structure, System, or Component SST Standard Source Term STP Surveillance Test Procedure TEDE Total Effective Dose Equivalent=DDE+CEDE TID Technical Information Document

DA-NS-08-049 Rev. 0 Page 49 of 52 TRM Technical Requirements Manual TS Technical Specifications TSB Technical Specification Bases TSP Trisodium Phosphate UEF Assembly Upper End Fitting UFSAR Updated Final Safety Analysis Report V+

Vantage Plus Fuel Assembly VAP Value Added Pellet WES Westinghouse Electric Company X/Q Atmospheric Dispersion Coefficient

DA-NS-08-049 Rev. 0 Page 50 of 52

14. ATTACHMENTS ATTACHMENT' A MAXIMUM PIN POWER VS BURNUP Iii I

I-7

  • ý If
ik I

C.

con), ý io=" ýOD '

8 s

s

<..to C>

JA41 404

DA-NS-08-049 Rev. 0 Page 51 of 52 ATTACHMENT B BOL RELATIVE AXIAL POWER DISTRIBUTION f

,"t I

,7 I
.

T-I Ltý Cu 3

~

I

DA-NS-08-049 Rev. 0 Page 52 of 52 ATTACHMENT C EOL RELATIVE AXIAL POWER DISTRIBUTION 49 t

y. vj 1.0e IIZ P3 Design Analysis DA-NS-08-050, Ginna Fuel Handling Accident Offsite and Control Room Doses, Revision 0

ATTACHMENT 1, CALCULATION COVER SHEET A, INITIATION

.,Page I of 112 Site L1 CCN>PP K] NMP nI REG3 Calculation No:

OA-NS-OS-05O:

Revision No.,0 Veddor Calculation (Check one)"

L

Yes, O

No Responsibil Group-,

Nuclear AnalysisUnit Responrsible Engineer.-

Gerald E.Gryckowski S. CALCULATION E NGIN,'Erti-G DiSCIPLINE:

cI tivil F] Electrical El Inst- & Controls L-mechanlcal, b

Other Title-GINNA FUEL HANDLING ACcODENT OFFSITE AND CONTROL RooM DosEs

unit, 1

[2.

[

COMMON Proprietary orSafeguards Calcu]ation El YES

, NO, Comments:

N/A Y -j0irQ3 lo

1.

...... RmvsioN No...

N/A Vendor Namecf N/A..

S~afely Cass (C~hentk n SR El AmmFNTmn QijALiT-v -C]N NSR There are assujmlptions that require Verinfication dur`*n" alkdwn:

TRCKING tD NIA This calculation SUPERSEDES:

DA-NS-2002-004 REv*.4 A/

C, REVIEW AND APPROVAL:

Respi:nsible Engileer.

Gera Is. Design Vet ificaiion Requi red?

rd E. Gry czko*WSr 91512008 Date Printed N/i~ e nd Signath LYes LN;/

If yes, OesirrV.Verification Formn is F1 Attached LiFiled wfth:

,niependerit R-eviewer.

S~nane R. Gardnier

~

?~t 30 zc,

Prinite~d Nale Dale Approval:

JhR.massar//3 to$

Printed N otand Signature.at

DA-NS-08-050 Rev.0 Page 1 of 112 DA-NS-08-050 Rev.0 Ginna Fuel Handling Accident Offsite and Control Room Doses

DA-NS-08-050 Rev.0 Page 2 of 112

2. LIST OF EFFECTIVE PAGES Page Latest Rev 001 0

006 0

011 0

016 0

021 0

026 0

031 0

036 0

.041 0

046 0

051 0

056 0

061 0

066 0

071 0

076 0

081 0

086 0

091 0

096 0

101 0

106 0

111 0

Page Latest Rev 002 0

007 0

012 0

017 0

022 0

027 0

032 0

037 0

042 0

047 0

052 0

057 0

062 0

067 0

072 0

077 0

082 0

087 0

092 0

097 0

102 0

107 0

112 0

Page Latest Rev 003 0

008 0

013 0

018 0

023 0

028 0

033 0

038 0

043 0

048 0

053 0

058 0

063 0

068 0

073 0

078 0

083 0

088 0

093 0

098 0

103 0

108 0

Page Latest Rev 004 0

009 0

014 0

019 0

024 0

029 0

034 0

039 0

044 0

049 0

054 0

059 0

064 0

069 0

074 0

079 0

04 0 089 0

'094 0

099 0

104 0

109 0

Page Latest Rev 005 0

010 0

015 0

020 0

025 0

030 0

035 0

040 0

045 0

050 0

055 0

060 0

065 0

070 0

075 0

080 0

085 0

090 0

095 0

100 0

105 0

110 0

DA-NS-08-050 Rev.0 Page 3 of 112

03. TABLE OF CONTENTS
01. COVER SHEET 01
02. LIST, OF EFFECTIVE PAGES 02
03. TABLE OF CONTENTS 0
04. PURPOSE AND SCOPE 05
05. CONCLUSIONS 07
06. DESIGN INPUTS AND METHOD OF ANALYSIS 08 6.1 ARCON96 Methodology and Inputs
6. 1.1 Containment Surface to Control Room Intake 6.1.2 Plant Vent Point Source to Control Room Intake 6.1.3 Plant Vent Area Source to Control Room Intake 6.1.4 Containment Vent Point Source to Control Room Intake 6.1.5 Containment Vent Area Source to Control Room Intake 6.1.6 Equipment Hatch Roll-Up Door Point Source to Control Room Intake 6.1.7 Equipment Hatch Roll-Up Door Area Source to Control Room Intake 6.1.8 Equipment Hatch Barrel Access Door Point Source to Control Room Intake 6.1.9 Equipment Hatch Barrel Access Door Area Source to Control Room Intake
6. 1.10 Auxiliary Building Point Source to Control Room Intake
6. 1.11 Auxiliary Building Roof Area Source to Control Room Intake 6.1.12 Auxiliary Building Wall Area Source to Control Room Intake 6.1.13 Intermediate Building Point Source to Control Room Intake 6.1.14 Intermediate Building Roof Area Source to Control Room Intake-6.1.15 Intermediate Building Wall Area Source to Control Room Intake 6.1.16 Auxiliary Building Roll-Up Door Point Source to Control Room Intake 6.1.17 Auxiliary Building Roll-Up Door Area Source to Control Room Intake 6.2 RADTRAD Methodology and Inputs 6.2.1 Nuclear Inventory File Source Terms 6.2.2 Dose Conversion Factor File 6.2.3 Release Fraction and Timing File 6.2.4 RADTRAD Plant and Scenario File Inputs
07. TECHNICAL ASSUMPTIONS 44
08. REFERENCES 45
09. DOCUMENTATION OF COMPUTER CODES 48
10. ACCEPTANCE CRITERIA 49
11. CALCULATIONS and RESULTS 50
11. 1 ARCON96 Calculations 11.2 ARCON96 Results 11.3 RADTRAD Calculations 11.4 RADTRAD Results
12. ACRONYMS 553

DA-NS-08-050 Rev. 0 Page 4 of 112

13. ATTACHMENTS 56 (A) ARCON96 OUTPUT FILE SELECTION REGABCB.OUT (B) ARCON96 OUTPUT FILE SELECTION REGABCBR.OUT (C) ARCON96 OUTPUT FILE SELECTION REGABCBW.OUT (D) ARCON96 OUTPUT FILE SELECTION REGCTCB.OUT (E) ARCON96 OUTPUT FILE SELECTION REGCVCB.OUT (F) ARCON96 OUTPUT FILE SELECTION REGCVCB 1.OUT (G) ARCON96 OUTPUT FILE SELECTION REGCVCB2.OUT (H) ARCON96 OUTPUT FILE SELECTION REGCVCBA.OUT (I) ARCON96 OUTPUT FILE SELECTION REGHBCB.OUT (J) ARCON96 OUTPUT FILE SELECTION REGHBCBA.OUT (K) ARCON96 OUTPUT FILE SELECTION REGIBCB.OUT (L) ARCON96 OUTPUT FILE SELECTION REGIBCBR.OUT (M) ARCON96 OUTPUT FILE SELECTION REGIBCBW.OUT (N) ARCON96 OUTPUT FILE SELECTION REGPVCB.OUT (0) ARCON96 OUTPUT FILE SELECTION REGPVCBA.OUT (P) ARCON96 OUTPUT FILE SELECTION REGRDCB.OUT (Q) ARCON96 OUTPUT FILE SELECTION REGRDCBA.OUT (R) RADTRAD INPUT FILE FGR14.INP (S) RADTRAD RELEASE FRACTION AND TIMING FILE FHA.RFT (T) RADTRAD NUCLEAR INVENTORY FILE FHACO.NIF (U) RADTRAD OUTPUT FILE FHACTMTCO.oO (V) RADTRAD OUTPUT FILE FHASFPCO.oO (W) ARCON96 OUTPUT FILE SELECTION RGARDCB.OUT (X) ARCON96 OUTPUT FILE SELECTION RGARDCBR.OUT (Y) RADTRAD OUTPUT FILE FHASFPC 1.oO (Z) E-MAIL AB OVERHEAD DOOR PCR 2004-0070 LAST PAGE OF REPORT 112

DA-NS-08-050 Rev. 0 Page 5 of 112

4. PURPOSE AND SCOPE The purpose of this calculation is to determine the offsite and control room doses (TEDE) for a fuel handling accident (FHA) in containment and in the spent fuel pool (SFP). This calculation supersedes DA-NS-2002-004 Rev.4 (Ref.8.13) and incorporates the following revisions:

This analysis supports an open personnel air lock (PAL) during fuel movement in containment, an open equipment hatch (EH) during fuel movement in containment, and an open roll-up door in the south wall of the Auxiliary Building during fuel movement in the SFP.

This analysis supports operation of the containment purge via the containment vent during fuel movement in containment and after the fuel handling accident (FHA).

This analysis supports operation of the plant vent during fuel movement and after a FHA.

This analysis supports a minimum 72 hour8.333333e-4 days <br />0.02 hours <br />1.190476e-4 weeks <br />2.7396e-5 months <br /> decay time prior to fuel movement in containment after shutdown.

This analysis incorporates gas gap fractions meeting the requirements of Regulatory Guide 1.183 (Ref.8.2).

This analysis incorporates atmospheric dispersion coefficients meeting the requirements of Regulatory Guide 1.194 (Ref. 8.3).

This work uses revised gas gap fractions from those utilized in the previous design-basis analysis DA-NS-2002-004 Rev.4 (Ref.8.13) and from those listed in Regulatory Guide (RG) 1.183 (Reference 8.2) Table 3, because the footnote 11 criteria associated with Table 3 are exceeded by some high burnup fuel pins.

Footnote 11 states "The release fractions listed here have been determined to be acceptable for use with currently approved LWR fuel with a peak bumup up to 62000 MWd/MTU provided that the maximum linear heat generation rate does not exceed 6.3 kw/ft peak rod average power for burnups exceeding 54 GWdIMTU.

As an alternative, fission gas release calculations performed using NRC approved methodologies may be considered on a case-by-case basis. To be acceptable, these calculations must use a projected power history that will bound the limiting projected plant specific power history for the specific fuel load."

The revised gas gap fraction releases were determined in calculation DA-NS-08-049 (Ref.8.21). The results indicate that gas gap fractions must be significantly increased for the limiting pins with burnups over 54 GWd/MTU and with linear heat generation rates in excess of 6.3 kw/ft. Doubling of the 1-131, 1-132, 1-134, 1-135, Xe-135, Xe-135m, Xe-138, Kr-85, Kr-85m, Kr-87, and Kr-88 gas gap release fractions detailed in RG 1.183 and tripling of the 1-133, Xe-133, and Xe-133m gas gap release fractions detailed in RG 1.183 yield bounding and conservative results. All of the gas gap activity in the damaged rods is released and consists of 20% of the Kr-85, 15% of Xe-133 and Xe-133m, 10% of the other noble gases, 16% of the 1-131, 15% of 1-133, and 10% of the other iodine isotopic inventories at the time of the accident.

This work assumes that the radionuclides released from a FHA in containment are released to the environment via the most limiting pathway associated with an isolated containment, an open equipment hatch (EH), an open personnel air lock (PAL), or an open and operating containment vent. The activity released via the PAL is assumed to reach the environment via either the plant vent, the intermediate building (IB) walls or roof, or the auxiliary building (AB) walls or roof. Note that structures not contiguous to the containment were not modeled as release pathways (e.g. Service Building, Turbine Building). If the 1B fans are functioning, the PAL release will be from the plant vent, while if they are not functioning, the release should be uniformly distributed from the building roof and walls. Thus the following release pathways were modeled:

Containment Walls Plant Vent Containment Vent Equipment Hatch Roll-Up Door

DA-NS-08-050 Rev.0 Page 6 of 112 Equipment Hatch Barrel Access Door Auxiliary Building Roof Auxiliary Building Walls Intermediate Building Roof Intermediate Building Walls Note that the above are modeled as diffuse and point releases. The point release from a given structure will bound all other releases from that structure, since the point release assumes the minimum separation between source and receptor and minimum initial diffusion coefficients which maximize the atmospheric dispersion coefficients.

Conservative CR atmospheric dispersion coefficient :(X/Q) values were calculated using the ARCON96 code (Refs.8.4-8.5) per Regulatory Guide 1.194 methodology (Ref.8.3).

The radionuclides released from a FHA in the SFP area are assumed to be released via the plant vent, which contains HEPA and charcoal filters and which is the current design-basis pathway (Ref.8.13) and via the roll-up door on the Auxiliary Building south wall, which is an unfiltered pathway and which constitutes the new design-basis pathway.

The receptor for the control room is assumed to be the control room air intake on the roof of the control building (CB), which is consistent with the previous design-basis assumption in DA-NS-2002-004 Rev.4 (Ref.8.13).

Doses are calculated using the alternative source term (AST) methodology of 10 CFR 50.67 (Ref.8.1) and Regulatory Guide 1.183 (Ref.8.2) with the accompanying TEDE dose measurement via the RADTRAD 3.03 computational code. The dose methodology requires construction of two RADTRAD models, modeling a FHA in containment and in the SFP incorporating the limiting atmospheric dispersion coefficient values. The RADTRAD computer code calculates TEDE and thyroid doses per 10 CFR 50.67 and thyroid and whole body doses per TID-14844 (Ref.8.18) to individuals at the exclusion area boundary (EAB), outer boundary of the low population zone (LPZ), and control room (CR) resulting from any postulated accident which releases radioactivity within the containment, spent fuel pool, or within any primary system. RADTRAD models the transport of radioactivity (elemental, particulate, and organic iodine isotopes and krypton and xenon isotopes for the FHA) from the sprayed and unsprayed regions of a primary containment or a SFP area, through the secondary containment if any, and then to the environment and to the control room. The code includes the capability to model time-dependent activity release; containment spray, filtration, and leakage; control room filtration and inleakage; primary and secondary containment purge filters; control room intake filters; atmospheric dispersion; and natural decay.

DA-NS-08-050 Rev. 0 Page 7 of 112

5. CONCLUSIONS Table 5: RADTRAD Dose Results Acceptance Criteria Results Containment Rem Rem EAB 6.3 1.4820E+00 LPZ 6.3 1.7142E-01 CR 5

4.0416E+00 SFP EAB 6.3 1.4820E+00 LPZ 6.3 1.7142E-01 CR 5

8.0831E-01 Offsite and Control Room TEDE doses have been conservatively calculated for Fuel Handling Accidents in the Containment and in the SFP.

This analysis assumes limiting gas gap fractions.

This analysis assumes 72 hours8.333333e-4 days <br />0.02 hours <br />1.190476e-4 weeks <br />2.7396e-5 months <br /> of decay prior to fuel offload.

This analysis assumes limiting atmospheric dispersion coefficients.

This analysis supports an open personnel air lock during fuel movement in containment, an open equipment hatch during fuel movement in containment, and an open roll-up door in the south wall of the Auxiliary Building during fuel movement in the SFP.

This analysis supports operation of the containment purge via the containment vent during fuel movement in containment and after the fuel handling accident.

" This analysis supports operation of the plant vent during fuel movement and after a FHA.

The resulting TEDE doses are shown in Table 5. All of the calculated TEDE doses are less than the regulatory acceptance values listed in Section 10 and in Table 5.

DA-NS-08-050 Rev. 0 Page 8 of 112

6. DESIGN INPUTS AND METHOD OF ANALYSIS 6.1 ARCON96 Methodology and Inputs This work assumes that the radionuclides released from a FHA in containment are released to the environment via the most limiting pathway associated with an isolated containment, an open equipment hatch (EH), an open personnel air lock (PAL), or an open and operating containment vent. The activity released via the PAL is assumed to reach the environment via either the plant vent, the intermediate building (IB) walls or roof, or the auxiliary building (AB) walls or roof. Note that structures not contiguous to the containment were not modeled as release pathways (e.g. Service Building, Turbine Building). If the IB fans are functioning, the PAL release will be from the plant vent, while if they are not functioning, the release should be uniformly distributed from the building roof and walls.

The radionuclides released from a FHA in the SFP area are assumed to be released via the plant vent, which contains HEPA and charcoal filters and which is the current design-basis pathway (Ref.8.13) and via the roll-up door on the Auxiliary Building south wall, which is an unfiltered pathway and which constitutes the new design-basis pathway. Thus the following release pathways were modeled:

Containment Walls Plant Vent Containment Vent Equipment Hatch Roll-Up Door Equipment Hatch Barrel Access Door Auxiliary Building Roof Auxiliary Building Walls Auxiliary Building Roll-Up Door Intermediate Building Roof Intermediate Building Walls Note that the above are modeled as diffuse and point releases. The point release from a given structure should bound all other releases from that structure, since the point release assumes minimum separation between source and receptor and minimum initial diffusion coefficients, which maximize the atmospheric dispersion coefficients.

Conservative CR atmospheric dispersion coefficient (X/Q) values were calculated using the ARCON96 code (Refs.8.4-8.5) per Regulatory Guide 1.194 methodology (Ref.8.3).

The general inputs and references for ARCON96 are the following:

Table 6.1a: ARCON96 General Inputs ARCON96 Input Description ARCON96 Input Value Reference Number of Meteorological Data Files 5

Ref. 8.15 Meteorological Data File Names RGE99B.MET Ref. 8.15 RGE00B.MET Ref. 8.15 RGE01B.MET Ref. 8.15 RGE02B.MET Ref. 8.15 RGE03B.MET Ref. 8.15 Height of Lower Wind Instrument (m) 10.06 UFSAR 2.3.4.2.3 Height of Upper Wind Instrument (m) 45.72 UFSAR 2.3.4.2.3 Wind Speed Units (1) m/sec Ref. 8.15 Release Type (1) Ground-level Ref. 8.2 Release Height Case Dependent Building Area Wake (m2) 2000 Ref. 8.2, Section 11.2 Effluent Vertical Velocity (m/sec) 0 Ref. 8.2 Vent or Stack Flow (m3/sec) 0 Ref. 8.2 Vent or Stack Radius (m) 0 Ref. 8.2

DA-NS-08-050 Rev.0 Page 9 of 112 Direction - Intake to Source (deg)

Case Dependent Wind Direction Sector Width (deg) 90 Ref. 8.2 Distance to Intake (m)

Case Dependent Intake Height (m)

Case Dependent Terrain Elevation Difference (m) 0 Ref. 8.2 Output File Name Case Dependent JFD File Name Case Dependent Surface Roughness Length (m) 0.2 Ref. 8.2 Minimum Wind Speed (m/sec) 0.5 Ref. 8.2 Sector Averaging Constant 4.3 Ref. 8.2 Hours in Averages 1,2,4,8,12,24,96,168,360,720 Ref. 8.2 Minimum Number of Hours 1,2,4,8,11,22,87,152,324,648 Ref. 8.2 Initial Value of Sigima-Y Case Dependent Initial Value of Sigma-Z Case Dependent The case dependent inputs are the distances, directions, and source areas associated with each pathway.

To determine distances, directions, and diffuse source areas, the following Ginna plant dimensions and elevations were extracted from plant drawings:

Table 6.1b: Distances Column Column Distance Distance Reference Number Number ft in ft 1

2 32 6

32.5000 33013-2110 R4 2

2b 20 6

20.5000 33013-2110 R4 2b 3

27 0

27.0000 33013-2110 R4

.3 4a 26 10 26.8333 33013-2108R1/2121R2 4a 4d 18 10 18.8333 33013-2108R1/2121R2 4d 5a 8

0 8.0000 33013-2108R1/2121R2 5a 6a 26 10 26.8333 33013-2108R1/2121R2 6a 7a 24 10 24.8333 33013-2108R1/2121R2 7a 8a 32 4

32.3333 33013-2108R1/2121R2 8a 9a 25 8

25.6667 33013-2108 R1 9a 10a 25 8

25.6667 33013-2108 R1 10a 11a 25 5

25.4167 33013-2108 R1 3

4d 45.6667 33013-2121 R2 1

3 80.0000 33013-2110 R4 3

11a 214 5

214.4167 33013-2108 R1 8a 11a 76.7500 3

5a 53 8

53.6667 33013-2108R1/2121R2 1

2 32 6

32.5000 33013-2110 R4 2

2b 20 6

20.5000 33013-2110 R4 2b 3

27 0

27.0000 33013-2110 R4 3

3a 6

4 6.3333 33013-2110 R4 3a 3b 15 10.5 15.8750 33013-2110R4 1

3a 86.3333 33013-2110 R4 3

Ctmt cl 71 8

71.6667 33013-2108R1/2121R2

DA-NS-08-050 Rev. 0 Page 10 of 112 Ctmtcl 6a 8

10 8.8333 33013-2108R1/2121R2 3

6a 80 6

80.5000 33013-2121 R2 3

12 231.7500 11 CR Inlet 15.45 15.4500 33013-2127 R2 CR Inlet 12 10.3 0

10.3000 33013-2127 R2 3

CR Inlet 221.4500 Ctmt cl CR inlet E-W 149.7833 ctmt cl-cr in=149.78' J

Ctmtcl 1

6 1.5000 33013-2101 R3 F

J 72.7500 33013-2121 R2 F

Ctmt cl 74.2500 F

CR Inlet 10.3500 33013-2127 R2 CR Inlet Ctmt cl N-S 63.9000 3

4 25 9

25.7500 33013-2105R3/2121R2 4

5 25 9

25.7500 33013-2105R3/2121 R2 5

6 25 9

25.7500 33013-2105R3/2121 R2 6

7 13 1.25 13.1042 33013-2105R3/2121R2 7

7b 13 10.75 13.8958 33013-2121 R2 7b 7c 7

5.625 7.4688 33013-2121 R2 7c 8

13 4.625 13.3854 33013-2121 R2 8

9 34 9

34.7500 33013-2105 R3 9

10 20 4.75 20.3958 33013-2105 R3 10 11 25 9

25.7500 33013-2105 R3 11 12 25 9

25.7500 33013-2104 R6 12 13 25 9

25.7500 33013-2104 R6 13 14 6

0 6.0000 33013-2119 R2 14 15 26 6

26.5000 33013-2119 R2 15 16 26 6

26.5000 33013-2119 R2 3

13 257.5000 33013-2120 R4 11 13 51.5000 33013-2136 R2 14 16 53.0000 33013-2119 R2 3

7c 111.7188 33013-2105 R3 5

11 154.5000 6

11 128.7500 7

11 115.6458 7c 11 94.2813 A

B 27 6

27.5000 33013-2120 R4 B

C 24 3

24.2500 33013-2120R4/2119R4 C

D 24 3

24.2500 33013-2120R4/2119R4 D

E 24 3

24.2500 33013-2120R4/2119R4 E

F 24 3

24.2500 33013-2120R4/2119R4 F

G 24 3

24.2500 33013-2121 R2 G

H 24 3

24.2500 33013-2121 R2 H

J 24 3

24.2500 33013-2121 R2 J

K 24 3

24.2500 33013-2121 R2 K

L 11 9

11.7500 33013-2121 R2

DA-NS-08-05O Rev.O Page 11 of 112 L

M 12 6

12.5000 33013-2121 R2 M

N 12 3

12.2500 33013-2121 R2 N

0 11 6

11.5000 33013-2110r4 O

P 25 0

25.0000 33013-2110r4 P

Q 8

6 8.5000 33013-2110r4 Q

R 15 6

15.5000 33013-2110r4 A

F 124.5000 33013-2120 R4 F

N 133.5000 33013-2105 R3 F

H 48.5000 33013-2105 R3 H

N 85.0000 33013-2105 R3 L

Q 70.7500 33013-2108 R1 N

Q 46.0000 33013-2108 R1 A

R 319.5000 33013-2109R3/2110R4 F

L 108.7500 F

F' 23 6

23.5000 33013-2136 R2 F'

G' 17 4

17.3333 33013-2136 R2 F

G' 40.8333 33013-2136 R2 L

outer wall 1

3 1.2500 33013-2108 R1 Q

outer wall 1

3 1.2500 33013-2108 R1 11a outer wall 1

3 1.2500 33013-2108 R1 7c outer wall 1

2.25 1.1875 33013-2121 R2

DA-NS-08-050 Rev. 0 Page 12 of 112 Table 6.1c: Dimensions Location Description References Plant Grade Elevation 270.0000 ft 33013-2131 R1 Containment Inner radius 52.5000 ft 33013-2131 Ri 33013-2132 R1 Liner 0.0313 ft 33013-2131 RI 33013-2132 R1 Concrete thickness 3.5000 ft 33013-2132 Ri Outer radius 56.0313 ft 33013-2134 Ri Spring line EL 330.6667.

ft 33013-2134 R1 33013-2131 R1 Dome outer EL 385.6979 ft 33013-2131 R1 Dome inner radius 52.5000 ft 33013-2131 R1 Dome liner 0.0313 ft 33013-2131 R1 Dome concrete thickness 2.5000 ft 33013-2131 R1 Dome outer radius 55.0313 ft 33013-2134 R1 PAL-Pen 1000 CL EL 283.7500 ft 33013-2131 R1 33013-2135 R1 PAL-Pen 1000 Sleeve Size 9.5625 ft 33013-2135 R1 PAL-Pen 1000 Azimuthal Loc 277.8750 deg 33013-2135 R1 EH-Pen 2000 CL EL 281.5938 ft 33013-2131 R1 33013-2135 Ri EH-Pen 2000 Sleeve Size 14.0000 ft 33013-2135 R1 EH-Pen 2000 Azimuthal Loc 100.1250 deg 33013-2135 R1 MiniPurgeEx-Pen 132 CL EL 256.2500 ft 33013-2135 R1 MiniPurgeEx-Pen 132 Sleeve Size 0.8333 ft 33013-2135 R1 MiniPurgeEx-Pen 132 Azimuthal Loc 181.1250 deg 33013-2135 R1 SDPurgeSup-Pen 204 CL EL 263.0000 ft 33013-2135 R1 SDPurgeSup-Pen 204 Sleeve Size 4.5000 ft 33013-2135 R1 SDPurgeSup-Pen 204 Azimuthal Loc 235.1250 deg 33013-2135 R1 SDPurgeEx-Pen 300 CL EL 310.0000 ft 33013-2135 RI SDPurgeEx-Pen 300 Sleeve Size 4.5000 ft 33013-2135 R1 SDPurgeEx-Pen 300 Azimuthal Loc 3.3750 deg 33013-2135 R1 Reactor Hot Leg CL EL 246.8333 ft 33013-2132 R1 AB Roof EL 328.0156 ft 33013-2132 R1 33013-2133 R2 CB Air intake duct cl EL 315.4167 ft 33013-2136 R2 CB Roof Parapet EL 313.0000 ft 33013-2136 R2 IB Roof EL (H-7c) 336.3229 ft 33013-2134 R1 33013-2133 R2 Roof EL (4d-H) 318.4688 ft 33013-2134 RI 33013-2133 R2 TB TB Roof Parapet EL 361.0000 ft 33013-2136 R2 See Figure 6.1.14 for a graphical representation of the plant layout.

DA-NS-08-050 Rev.O Page 13 of 112 6.1.1 Containment Surface to Control Room Intake

[

h*

1 1 '

CAt*'JON~q Inn~,f* fnr flnnfainm~nt Cxlinci~r + rflnm* tn flR InlI~t X

Source to Receptor E-W 149.7833 ft 45.6540 m

Y Source to Receptor N-S 63.9000 ft 19.4767 m

R Ctmt Radius 56.0313 ft 17.0783 m

S sqrt(X^2+Y^2)-R 106.8130 ft 32.5566 m

theta 270-arcsin(Y/(R+S))

246.8961 deg Zsu Source elevation upper 373.1168 ft 113.7260 m

ZsI Source elevation lower 270.0000 ft 82.2960 m

Hs Source elevation=(Zsu-Zsl)/2 51.5584 ft 15.7150 m

sigma-z (Zsu-Zsl)/6 17.1861 ft 5.2383 m

Zi Inlet elevation 315.4167 ft 96.1390 m

Hi Inlet Elevation above Grade 45.4167 ft 13.8430 m

Zg Grade elevation 270.0000 ft 82.2960

,m W

Source width 112.0625 ft 34.1567 m

sigma-y W/6 18.6771 ft 5.6928 m

A graphical representation is shown in Figure 6.1.1.

X is the East-West distance from the containment centerline to the CR inlet per Table 6. lb.

Y is the North-South distance from the containment centerline to the CR inlet per Table 6. lb.

R is the containment outer radius per Table 6.1 c.

Zsu=weighted upper source elevation = lr*Rd2/(2*R)+Esl = 7r*(55.0313)2/(4*56.0313)+330.6667

= 373.1168' o

Rd is the containment dome radius (Table 6.1 c) o R is the containment cylinder radius (Table 6.1 c) o Esl is the containment spring line elevation (Table 6.1c)

Zsl and Zg are the plant grade elevations (Table 6.1 c).

Per RG 1.183 (Ref.8.2) 3.2.4.5: "The height and width of the area source are taken as the maximum vertical and horizontal dimensions of the above-grade building cross-sectional area perpendicular to the line of sight from the building center to the control room intake. These dimensions are projected onto a vertical plane perpendicular to the line of sight and located at the closest point to the building surface to the control room intake. The release height is set at the vertical center of the projected plane." Thus, o

The source elevation is Hs=(Zsu-Zsl)/2.

o The projected source width is W=2*R.

o The distance from the projected plane to the inlet is S=sqrt(XA2+YA2)-R.

,o The direction from inlet to source is theta-270-arcsin(Y/(R+S)).

Per RG 1.183 3.2.4.4, the vertical initial diffusion coefficient (sigma-z) should be the source height divided by 6.

Per RG 1.183 3.2.4.4, the horizontal initial diffusion coefficient (sigma-y) should be the source width divided by 6.

Zi is the inlet elevation per Table 6. lc.

Hi is the inlet elevation above grade Hi=Zi-Zg.

DA-NS-08-050 Rev. 0 Page 14 of 112 6.1.2 Plant Vent Point Source to Control Room Intake Table 6.1.2: ARCON96 Inouts for Plant Vent Point Source to CR Inlet X "

Source to Receptor E-W 172.6167 ft 52.6136 m

Y Source to Receptor N-S 5.3500 ft 1.6307 m

D sqrt(XA2+YA2) 172.6996 ft 52.6388 m

S D-W/2 170.4079 ft 51.9403 m

theta 360-arcsin(X/S) 271.7752 deg Zsu Source elevation 387.0000 ft 117.9576 m

Hs Source height 117.0000 ft 35.6616 m

sigma-z Point Source 0.0000 ft 0.0000 m

Zi Inlet elevation 315.4167 ft 96.1390 m

Hi Inlet Height 45.4167 ft 13.8430 m

ZI Grade elevation 270.0000 ft 82.2960 m

W Source diameter 4.5833 ft 1.3970 m

sigma-y Point source 0.0000 ft 0.0000 m

A graphical representation is shown in Figure 6.1.2.

" X is the East-West distance from the plant vent center to the CR inlet. Figure 6.1.15 shows a distance of 2'8" from the plant vent to column 5. Column 5 to column 11 is 154.5' per Table 6.lb. Column 11 to the control room inlet is 15.45' per Table 6. lb. The sum is 172.6167'.

Y is the North-South distance from the plant vent center to the CR inlet. Figure 6.1.15 shows a distance of 5'0" from the plant vent to column F. Column F to the control room inlet is 10.35' per Table 6.lb. The difference is 5.35'.

" Zsu is the plant vent discharge elevation per Ref. 8.13, while Hs is the discharge height relative to plant grade.

Zi is the inlet elevation per Table 6. lc, while Hi is the inlet elevation relative to grade.

Zg is the plant grade elevations (Table 6.1c).

Per RG 1.183 (Ref.8.2) 3.2.4.7 for horizontal area sources: "The distance to the receptor is measured from the closest point on the perimeter of the assumed area source. For assumed areas that are not circular, the area width is measured perpendicular to the line of sight from the center of the assumed source to the control room intake. The initial diffusion coefficient Yyo is found by equation 3 (area source width divided by 6); azo is assumed to be zero." Thus, The source width W is 55" per Ref. 8.13.

o The distance from the source to the inlet is S=sqrt(X^2+YA2)-W/2.

o The direction from inlet to source is theta=360-arcsin(X/S).

o A point source is assumed in this case, so sigma-y and sigma-z are set to zero.

DA-NS-08-050 Rev. 0 Page 15 of 112 6.1.3 Plant Vent'Area Source to Control Room Intake Tahle~ 6.1.3 ARCON96 Innuits for Plant Vent Area Sou~rce to CR Inlet 6 1...

to In le X

Source to Receptor E-W 172.6167 ft 52.6136 m

Y Source to Receptor N-S 5.3500 ft 1.6307 m

D sqrt(X^2+Y^2) 172.6996 ft 52.6388 m

S D-W/2 170.4079 ft 51.9403 m

theta 360-arcsin(X/S) 271.7752 deg I Zsu Source elevation 387.0000 ft 117.9576 m

Hs Source height 117.0000 ft 35.6616 m

sigma-z Area source 0.0000 ft 0.0000 m

Zi Inlet elevation 315.4167 ft 96.1390 m

Hi Inlet Height 45.4167 ft 13.8430 m

ZI Grade elevation 270.0000 ft 82.2960 m

W Source diameter 4.5833 ft 1.3970 m

sigma-y W/6 0.7639 ft 0.2328 m

A graphical representation is shown in Figure 6.1.2.

X is the East-West distance from the plant vent center to the CR inlet. Figure 6.1.15 shows a distance of 2'8" from the plant vent to column 5. Column 5 to column 11 is 154.5' per Table 6.lb. Column 11 to the control room inlet is 15.45' per Table 6;lb. The sum is 172.6167'.

Y is the North-South distance from the plant vent center to the CR inlet. Figure 6.1.15 shows a distance of 5'0" from the plant vent to column F. Column F to the control room inlet is 10.35' per Table 6.lb. The difference is 5.35'.

Zsu is the plant vent discharge elevation per Ref. 8.13, while Hs is the discharge height relative to plant grade.

Zi is the inlet elevation per Table 6.1 c, while Hi is the inlet elevation relative to grade.

Zg is the plant grade elevations (Table 6.1 c).

Per RG 1.183 (Ref.8.2) 3.2.4.7 for horizontal area sources: "The distance to the receptor is measured from the closest point on the perimeter of the assumed area source. For assumed areas that are not circular, the area width is measured perpendicular to the line of sight from the center of the assumed source to the control room intake. The initial diffusion coefficient yo, is found by equation 3 (area source width divided by 6); Ozo is assumed to be zero." Thus, o

The source width W is 55" per Ref, 8.13.

o The distance from the source to the inlet is S=sqrt(X^2+Y^2)-W/2.

o The direction from inlet to source is theta=360-arcsin(X/S).

o An area source is assumed in this case, so sigma-y is set to W/6 sigma-z is set to zero.

DA-NS-08-050 Rev. 0 Page 16 of 112 6.1.4 Containment Vent Point Source to Control Room Intake Tnhln R 1 4A ARfl")N~qFR Inniit,* frnr f'l.ntn'inmAnt VIAnt Pnint 5*ni ri.p tn flR Inl~t X

Source to Receptor E-W 167.2833 ft 50.9879 m

Y Source to Receptor N-S 5.3500 ft 1.6307 m

D sqrt(XA2+YA2) 167.3688 ft 51.0140 m

S S=D-W/2 165.9522 ft 50.5822 m

theta 360-arcsin(X/S) 271.8318 deg Zsu Source elevation 387.0000 ft 117.9576 m

Hs Source height 117.0000 ft 35.6616 m

sigma-z Point source 0.0000 ft 0.0000 m

Zi Inlet elevation 315.4167 ft 96.1390

.m Hi Inlet Height 45.4167 ft 13.8430 m

Zg Grade elevation 270.0000 ft 82.2960 m

W Source diameter 2.8333 ft 0.8636 m

sigma-y Point source 0.0000 ft 0.0000 m

A graphical representation is shown in Figure 6.1.3.

X is the East-West distance from the containment vent center to the CR inlet. Figure 6.1.15 shows a distance of -2'8" from the containment vent center to column 5. Column 5 to column 11 is 154.5' per Table 6.lb. Column 11 to the control room inlet is 15.45' per Table 6.lb. The sum is 167.2833'.

Y is the North-South distance from the containment vent center to the CR inlet. Figure 6.1.15 shows a distance of 5'0" from the containment vent to column F. Column F to the control room inlet is 10.35' per Table 6.lb. The difference is 5.35'.

Zsu is the plant vent discharge elevation per Ref. 8.13, while Hs is the discharge height relative to plant grade.

Zi is the inlet elevation per Table 6.1 c, while Hi is the inlet elevation relative to grade.

Zg is the plant grade elevations (Table 6.1 c).

Per RG 1.183 (Ref.8.2) 3.2.4.7 for horizontal area sources: "The distance to the receptor is measured from the closest point on the perimeter of the assumed area source. For assumed areas that are not circular, the area width is measured perpendicular to the line of sight from the center of the assumed source to the control room intake. The initial diffusion coefficient Gyo is found by equation 3 (area source width divided by 6); aro is assumed to be zero." Thus, o

The source width W is 34" per Ref. 8.13.

o The distance from the source to the inlet is S=sqrt(X^2+Y^2)-W/2.

o The direction from inlet to source is theta=360-arcsin(X/S).

o A point source is assumed in this case, so sigma-y and sigma-z are set to zero.

DA-NS-08-050 Rev.0 Page 17 of 112 6.1.5 Containment Vent Area Source to Control Room Intake T~hlA R1~ I ARC.OISg6 Inniit. fnr Cohntainment Ve~nt Area Snirnm. to~ fR Inlet I....

....Input.....

nt........

u....

t..

In..

t X

Source to Receptor E-W 167.2833 ft 50.9879 m

Y Source to Receptor N-S 5.3500 ft 1.6307 rm D

sqrt(XA2+YA2) 167.3688 ft 51.0140 m

S S=D-W/2 165.9522 ft 50.5822 m

theta 360-arcsin(X/S) 271.8318 deg I Zsu Source elevation 387.0000 ft 117.9576 m

Hs Source height 117.0000 ft 35.6616 m

sigma-z Area Source 0.0000 ft 0.0000 m

Zi Inlet elevation 315.4167 ft 96.1390 m

Hi Inlet Height 45.4167 ft 13.8430 m

Zg Grade elevation 270.0000 ft 82.2960 m

W Source diameter 2.8333 ft 0.8636 m

sigma-y W/6 0.4722 ft 0.1439 m

A graphical representation is shown in Figure 6.1.3.

X is the East-West distance from the containment vent center to the CR inlet. Figure 6.1.15 shows a distance of-2'8" from the containment vent center to.column 5. Column 5 to column 11 is 154.5' per Table 6.lb. Column 11 to the control room inlet is 15.45' per Table 6.lb. The sum is 167.2833'.

Y is the North-South distance from the containment vent center to the CR inlet. Figure 6.1.15 shows a distance of 5'0" from the containment vent to column F. Column F to the control room inlet is 10.35' per Table 6.lb. The difference is 5.35'.

Zsu is the plant vent discharge elevation per Ref. 8.13, while Hs is the discharge height relative to plant grade.

Zi is the inlet elevation per Table 6.1 c, while Hi is the inlet elevation relative to grade.

Zg is the plant grade elevations (Table 6.1 c).

Per RG 1.183 (Ref.8.2) 3.2.4.7 for horizontal area sources: "The distance to the receptor is measured from the closest point on the perimeter of the assumed area source. For assumed areas that are not circular, the area width is measured perpendicular to the line of sight from the center of the assumed source to the control room intake. The initial diffusion coefficient Gyo is found by equation 3 (area source width divided by 6); ozo is assumed to be zero." Thus, o

The source width W is 34" per Ref. 8:13.

o The distance from the source to the inlet is S=sqrt(X^2+YA2)-W/2.

o The direction from inlet to source is theta=360-arcsin(X/S).

o An area source is assumed in this case, so sigma-y is set to W/6 sigma-z is set to zero.

DA-NS-08-050 Rev.0 Page 18 of 112 6.1.6 Equipment Hatch Roll-Up Door Point Source to Control Room Intake Table 6.1.6: ARCON96 Inputs for Equipment Hatch Roll-Up Door Point Source to CR Inlet X

Source to Receptor E-W 68.2800 ft 20.8117 m

Y Source to Receptor N-S 64.1900 ft 19.5651 m

S sqrt(XA2+YA2) 93.7151 ft 28.5644 m

theta 270-arcsin(Y/S) 226.7684 deg Zsu Source elevation upper 292.0000 ft 89.0016 m

Zsl Source elevation lower 270.0000 ft 82.2960 m

Hs Source height 11.0000 ft 3.3528 m

silma-z Point source 0.0000 ft 0.0000 m

Zi Inlet elevation 315.4167 ft 96.1390 m

Hi Inlet Height

/ 45.4167 ft 13.8430 m

ZI Grade elevation 270.0000 ft 82.2960 m

sigma-y Point source 0.0000 ft 0.0000 m

A graphical representation is shown in Figure 6.1.4.

X is the East-West distance from the EH northeast comer to the CR inlet per Ref.8.13.

& Y is the North-South distance from the EH northeast comer to the CR inlet per Ref.8.13.

Zsu is the upper source elevation per Refs. 8.13 and 8.32.

Zsl is the lower source elevation per Refs. 8.13 and 8.32.

Zg is the plant grade elevations (Table 6. l c).

Per RG 1.183 (Ref.8.2) 3.2.4.5: "The height and width of the area source are taken as the maximum vertical and horizontal dimensions of the above-grade building cross-sectional area perpendicular to the line of sight from the building center to the control room intake. These dimensions are projected onto a vertical plane perpendicular to the line of sight and located at the closest point to the building surface to the control room intake. The release height is set at the vertical center of the projected plane." Thus, o

The source elevation is Hs=(Zsu-Zsl)/2.

o The minimum distance from the northeast comer of the EH Roll-Up Door to the inlet is S=sqrt(XA2+Y/2).

o The direction from inlet to source is theta=270-arcsin(Y/S).

o A point source is assumed in this case, so sigma-y and sigma-z are set to zero.

Zi is the inlet elevation per Table 6.1 c.

Hi is the inlet elevation above grade Hi=Zi-Zg.

DA-NS-08-050 Rev. 0 Page 19 of 112 6.1.7 Equipment Hatch Roll-Up Door Area Source to Control Room Intake Table 6.1.7: ARCON96 Inputs for Equipment Hatch Roll-Up Door Area Source to CR Inlet X

Source to Receptor E-W 68.2800 ft 20.8117 m

Y Source to Receptor N-S 64.1900 ft 19.5651 m

S sqrt(X^2+Y^2) 93.7151 ft 28.5644 m

theta 270-arcsin(Y/S)-arctan(W'/2/S) 221.5489 deg Zsu Source elevation upper 292.0000 ft 89.0016 m

ZsI Source elevation lower 270.0000 ft 82.2960 m

Hs Source height 11.0000 ft 3.3528 m

sigma-z (Zsu-Zsl)/6 3.6667 ft 1.1176 m

Zi Inlet elevation 315.4167 ft 96.1390 m

Hi Inlet Height 45.4167 ft 13.8430 m

Z I

Grade elevation 270.0000 ft 82.2960 m

W Source width 23.5000 ft 7.1628 m

W.

Projected width = W*X/S 17.1219 ft 5.2188 m

sigma-y W'/6 2.8536 ft 0.8698 m

A graphical representation is shown in Figure 6.1.5.

X is the East-West distance from the EH northeast comer to the CR inlet per Ref.8.13.

Y is the North-South distance from the EH northeast comer to the CR inlet per Ref.8.13.

Zsu is the upper source elevation per Refs. 8.13 and 8.32.

Zsl is the lower source elevation per Refs. 8.13 and 8.32.

Zg is the plant grade elevations (Table 6. lc).

Per RG 1.183 (Ref.8.2) 3.2.4.5: "The height and width of the area source are taken as the maximum vertical and horizontal dimensions of the above-grade building cross-sectional area perpendicular to the line of sight from the building center to the control room intake. These dimensions are projected onto a vertical plane perpendicular to the line of sight and located at the closest point to the building surface to the control room intake. The release height is set at the vertical center of the projected plane." Thus, o

The source elevation is Hs=(Zsu-Zsl)/2.

o The minimum distance from the EH Roll-Up Door to the inlet is S=sqrt(XA2+Y^2).

o The width of the EH Roll-Up Door is 23.5' per Ref. 8.38.

o The projected width of the EH Roll-Up Door is W*X/S.

o The direction from inlet to mid-point of the projected planar source is theta=270-arcsin(Y/S)-arctan(W'/2/S).

Per RG 1.183 3.2.4.4, the vertical initial diffusion coefficient (sigma-z) should be the source height divided by 6.

Per RG 1.183 3.2.4.4, the horizontal initial diffusion coefficient (sigma-y) should be the projected source width divided by 6.

Zi is the inlet elevation per Table 6. l c.

Hi is the inlet elevation above grade Hi=Zi-Zg.

DA-NS-08-050 Rev.0 Page 20 of 112 6.1.8 Equipment Hatch Barrel Access Door Point Source to Control Room Intake I :IUIe 0. I..

,'r-,,.A.jiNUl II1ULS u

IU Irr-qUipllmll L hi:I..Il [a dlC l

'..0t0 L'UUI F-UIIIS cUUll.es LUr o...1r, IIIo X

Source to Receptor E-W 73.1919 ft 22.3089 m

Y Source to Receptor N-S 77.2967 ft 23.5600 m

S sqrt(XA2+YA2) 106.4511 ft 32.4463

.-m theta 270-arcsin(Y/S) 223:4376 deg Zsu Source elevation midpoint 281.6563 ft 85.8488 m

Hs Source height 11.6563 ft 3.5528 m

sigma-z Point source 0.0000 ft 0.0000 m

Zi Inlet elevation 315.4167 ft 96.1390 m

Hi Inlet Height 45.4167 ft 13.8430 m

Zg Grade elevation 270.0000 ft 82.2960 m

sigma-y Point source 0.0000 ft 0.0000 m

A graphical representation is shown in Figures 6.1.6 and 6.1.13.

e. X is the East-West distance and Y is the North-South distance from the Equipment Hatch Barrel Access Door (EHBAD) northeast comer to the CR inlet.

o The width (W) of the EHBAD is 3.625' per Ref. 8.14.

o The width of the Equipment Hatch Barrel (EHB) is 14' per Ref. 8.36.

o Thus, the distance between the outsides of the EHBAD and the EHB is 5.1875'.

o The EHB centerline is at 100.1250 from true north.

o The East-West distance from the EH northeast cormer to the CR inlet is 68.28' per Ref.8.13.

o The North-South distance from the EH northeast comer to the CR inlet is 64.19' per Ref.8.13.

o The East-West distance from the EH to the EHB is 4' per Ref.8.14.

o The North-South distance from the EH to the EHB is 8' per Ref. 8.14.

o Thus, X=68.28' + 4' + 5.1875'

  • sin(l0.125) =73.1919' o

Thus, Y=64.19' + 8' + 5.1875'

  • cos(10.125°) = 77.2967'

" Zsu is the source elevation midpoint per Ref. 8.14.

o The bottom of the EHBAD is at elevation 278.2604'.

.o The height of the EHBAD is 6.7917'.

o Thus the EHBAD midpoint is at 281.6563'.

Zg is the plant grade elevations (Table 6.1c).

  • Per RG 1.183 (Ref.8.2) 3.2.4.5: "The height and width of the area source are taken as the maximum vertical and horizontal dimensions of the above-grade building cross-sectional area perpendicular to the line of sight from the building center to the control room intake. These dimensions are projected onto a vertical plane perpendicular to the line of sight and located at the closest point to the building surface to the control room intake. The release height is set at the vertical center of the projected plane." Thus, o

The source elevation is Hs=(Zsu-Zg).

o The minimum distance from the northeast comer of the EHBAD to the inlet is S=sqrt(X^2+YA2).

o The direction from inlet to source is theta=270-arcsin(Y/S).

o A point source is assumed in this case, so sigma-y and sigma-z are set to zero.

" Zi is the inlet elevation per Table 6.1 c.

Hi is the inlet elevation above grade Hi=Zi-Zg.

DA-NS-08-050 Rev.0 Page 21 of 112 6.1.9 Equipment Hatch Barrel Access Door Area Source to Control Room Intake

[Tnhln R 1 Q" AR(CONqR Inniitk fnr Fniiinmnnt HnItg-.h RnrrAl Ac:*A.*

fl'nnr Area Sniwrr.A tc, fR Inl~t X

Source to Receptor E-W 73.1919 ft 22.3089 m

Y Source to Receptor N-S 77.2967 ft 23.5600 m

S sqrt(XA2+YA2) 106.4511 ft 32.4463 m

phi arcsin(X/S) 43.4376 deg gaamma Barrel angle from 90 degrees 10.1250 deg beta arctan(W'/2/S) 0.5358 deg theta 180+phi-beta 222.9018 deg Zsu Source elevation upper 285.0521 ft 86.8839 m

Zsl Source elevation lower 278.2604 ft 84.8138 m

Hs Source height 11.6563 ft 3.5528 m

sigma-z (Zsu-Zsl)/6 1.1320 ft 0.3450 m

Zi Inlet elevation 315.4167 ft 96.1390 m

Hi Inlet Height 45.4167 ft 13.8430 m

Zg Grade elevation 270.0000 ft 82.2960 m

W Source width 3.6250 ft 1.1049 m

W, Projected width=W*cos(90+gamma-phi) 1.9909 ft 0.6068 m

sigma-y W'/6 0.3318 ft 0.1011 m

A graphical representation is shown in Figures 6.1.7 and 6.1.13.

X is the East-West distance and Y is the North-South distance from the Equipment Hatch Barrel Access Door (EHBAD) northeast comer to the CR inlet.

o The width (W) of the EHBAD is 3.625' per Ref. 8.14.

o The width of the Equipment Hatch Barrel (EHB) is 14' per Ref. 8.36.

o Thus, the distance between the outsides of the EHBAD and the EHB is 5.1875'.

o The EHB centerline is at 100.125' from true north.

o The East-West distance from the EH northeast comer to the CR inlet is 68.28' per Ref.8.13.

o The North-South distance from the EH northeast comer to the CR inlet is 64.19' per Ref.8.13.

o The East-West distance from the EH to the EHB is 4' per Ref.8.14.

o The North-South distance from the EH to the EHB is. 8' per Ref. 8.14.

o Thus, X=68.28' + 4' + 5.1875'

  • sin(10.125°)

73.1919' o

Thus, Y=64.19' + 8' + 5.1875'

  • cos(10.125°)

77.2967' Zsu and Zsl are the upper and lower source elevations per Refs. 8.14.

o The bottom of the EHBAD is at elevation 278.2604'.

o The height of the EHBAD is 6.7917'.

o Thus the top of the EHBAD is at 285.0521'.

o The source midpoint elevation is Hs=(Zsl-Zg)+(Zsu-Zsl)/2=1 1.6563.

Zg is the plant grade elevations (Table 6. lc).

Per RG 1.183 (Ref.8.2) 3.2.4.5: "The height and width of the area source are taken as the maximum vertical and horizontal dimensions of the above-grade building cross-sectional area perpendicular to the line of sight from the building center to the control room intake. These dimensions are projected onto a vertical plane perpendicular to the line of sight and located at the closest point to the building surface to the control room intake. The release height is set at the vertical center of the projected plane." Thus, o

The minimum distance from the northeast comer of the EHBAD to the inlet is S=sqrt(X^2+Y^2).

DA-NS-08-050 Rev. 0 Page 22 of 112 o

The direction from inlet to source is theta=180+phi-beta=180-arcsin(X/S)-

arctan(W'/2/S) o The projected width (W') of the EHBAD is 3.625'*cos(90+gamma-phi).

o The vertical initial diffusion coefficient (sigma-z) should be the source height (Zsu-Zsl) divided by 6.

o The horizontalinitial diffusion coefficient (sigma-y) should be the projected source width (W') divided by 6.

" Zi is the inlet elevation per Table 6.1 c.

Hi is the inlet elevation above grade Hi=Zi-Zg.

6.1.10 Auxiliary Building Point Source to Control Room Intake Table 6.1.10: ARCON96 Inputs for Auxiliarv Buildina Point Source to CR Inlet X

Source to Receptor E-W 5.7833 ft 1.7627 m

Y Source to Receptor N-S 97.1500 ft 29.6113 m

S sqrt(X^2+Y^2) 97.3220 ft 29.6637 m

theta 270-arcsin(Y/S) 183.4068 deg_

Zsu Source elevation upper 328.0156 ft 99.9792 m

Hs Source height 29.0078 ft 8.8416 m

sigma-z Point source 0.0000 ft 0.0000 m

Zi Inlet elevation 315.4167 ft 96.1390 m

Hi Inlet Height 45.4167 ft 13.8430 rn Zq Grade elevation 270.0000 ft 82.2960 m

sigma-y Point source 0.0000 ft 0.0000 m

A graphical representation is shown in Figure 6.1.8.

X is the East-West distance from the AB northeast comer to the CR inlet per Table 6. 1b.

Column 3 to the CR Inlet is 221.45' o

Column 3 to column 1 la is 214.4167'.

o Column 1 la to the AB outer wall is 1.25' o

Distance= 221.45-214.4167 - 1.25 = '5.7833' Y is the North-South distance from the EH northeast comer to the CR inlet per Table 6. lb.

o Column F to L is1O8.75' o

Column F to the CR Inlet is 10.35'.

o Column L to the AB outer wall is 1.25'.

o Distance = 108.75 - 10.35 - 1.25 = 97.15' Zsu is the upper source elevation per Table 6. lc.

Zg is the plant grade elevation per Table 6.1 c.

Per RG 1.183 (Ref.8.2) 3.2.4.5: "The height and width of the area source are taken as the maximum vertical and horizontal dimensions of the above-grade building cross-sectional area perpendicular to the line of sight from the building center to the control room intake. These dimensions are projected onto a vertical plane perpendicular to the line of sight and located at the closest point to the building surface to the control room intake. The release height is set at the vertical center of the projected plane." Thus, o

The source elevation is Hs=(Zsu-Zg)/2.

o The minimum distance from the northeast comer of the AB to the CR inlet is S=sqrt(XA2+YA2).

o The direction from inlet to source is theta=270-arcsin(Y/S).

o. A point source is assumed in this case, so sigma-y and sigma-z are set to zero.

Zi is the inlet elevation per Table 6.1 c.

Hi is the inlet elevation above grade Hi=Zi-Zg.

DA-NS-08-050 Rev.0 Page 23 of 112 6.1.11 Auxiliary Building Roof Area Source to Control Room Intake r

Table 6.1.11 ARCON96 Inniuts for Auxiliarv Buildino Roof A*rea Source to CR Inlet Table 1..

A R O

9 for v Bu n

Roof.......

X Source to Receptor E-W 5.7833 ft 1.7627 m

Y Source to Receptor N-S 97.1500 ft 29.6113 m

S sqrt(X^2+Y^2) 97.3220 ft 29.6637 m

W Source width 215.6667 ft 65.7352 m

V Source width 47.2500 ft 14.4018 m

U Source width 73.2500 ft 22.3266 m

a W/2+X 113.6167 ft 34.6304 m

b U/2+Y 133.7750 ft 40.7746 m

theta 270-phi 220.3416 deg phi arctan(b/a) 49.6584 deg Zsu Source elevation upper 328.0156 ft 99.9792 m

Hs Source height 58.0156 ft 17.6832 m

Zi Inlet elevation 315.4167

  • ft 96.1390 m

Hi Inlet Height 45.4167 ft 13.8430 m

Zg Grade elevation 270.0000 ft 82.2960 m

L V cos(phi) + W sin(phi) 194.9677 ft 59.4262 m

sigma-z area source 0.0000 ft 0.0000 m

sigma-y L/6 32.4946 ft 9.9044 m

A graphical representation is shown in Figure 6.1.9.

X is the East-West distance from the AB northeast comer to the CR inlet per Table 6. lb.

o Column 3 to the CR Inlet is 221.45' o

Column 3 to column 1 la is 214.4167'.

o Column I la to the AB outer wall is 1.25' o

Distance = 221.45-214.4167 - 1.25 = '5.7833' Y is the North-South distance from the EH northeast comer to the CR inlet per Table 6.lb.

o Column F to L is108.75' o

Column F to the CR Inlet is 10.35'.

o Column L to the AB outer wall is 1.25'.

o Distance = 108.75 - 10.35 - 1.25 = 97.15' U,is the AB East Wall width between columns L and Q (70.75') plus twice the wall thickness (2*1.25') to yield a total width of 73.25' (Table 6.lb).

V is the AB West Wall width between columns N and Q (46') plus the wall thickness (1.25') to yield a total width of 47.25' (Table 6.1b).

W is the AB south wall width between columns 3 and lla (214.4167') plus the wall thickness (1.25') to yield a total width of 215.6667' (Table 6.1b).

Zsu is the upper source elevation per Table 6.1 c.

Zg is the plant grade elevation per Table 6. 1 c.

Per RG 1.183 (Ref.8.2) 3.2.4.7 for horizontal area sources: "The distance to the receptor is measured from the closest point on the perimeter of the assumed area source. For assumed areas that are not circular, the area width is measured perpendicular to the line of sight from the center of the assumed source to the control room intake. The initial diffusion coefficient oyo is found by equation 3 (area source width divided by 6); azO is assumed to be zero." Thus, o

The minimum distance from the source to the inlet is S=sqrt(X^2+YA2).

o The center of the AB roof area source is a

a=X+W/2

DA-NS-08-050 Rev. 0 Page 24 of 112 b = Y + U/2 o

The direction from inlet to source is theta=360-phi o phi = arctan(b/a).

o The source height relative to grade is Hs=Zsu-Zg o

An area source is assumed in this case, so

" sigma-y is set to one-sixth of the width of the projected area: L/6 0

L = V*cos(phi) + W*sin(phi)

" sigma-z is set to zero.

Zi is the inlet elevation per Table 6.1 c.

" Hi is the inlet elevation above grade Hi=Zi-Zg.

6.1.12 Auxiliary Building Wall Area Source to Control Room Intake I

Table 6.1.12: ARCON96 Inouts for Auxiliarv Buildina Walls Area Source to CR Inlet X

Source to Receptor E-W 5.7833 ft 1.7627 rn Y

Source to Receptor N-S 97.1500 ft 29.6113 m

S sqrt(XA2+YA2) 97.3220 ft 29.6637 m

phi arcsin(Y/S) 86.5932 deg beta 90-phi 3.4068 deg theta 270-arcsin(Y/S)+arctan((W-V')/2/S) 204.0963 deg Zsu Source elevation upper 328.0156 ft 99.9792 m

Hs Source height 29.0078 ft 8.8416 m

sigma-z (Zsu-Zsl)/6 9.6693 ft 2.9472 m

Zi Inlet elevation 315.4167 ft 96.1390 m

Hi Inlet Height 45.4167 ft 13.8430 m

ZI Grade elevation 270.0000 ft 82.2960 m

W Source width 78.0000 ft 23.7744 m

W.

Projected width = W*cos(beta) 77.8622 ft 23.7324 m

V Source width 73.2500 ft 22.3266 m

V.

Projected width = V*sin(beta) 4.3528 ft 1.3267 m

sigma-y (W'+V')/6

  • 13.7025 ft 4.1765 m

A graphical representation is shown in Figure 6.1.10.

" X is the East-West distance from the AB northeast comer to the CR inlet per Table 6.lb.

o Column 3 to the CR,lnlet is 221.45' o

Column 3 to column Ila is 214.4167'.

o Column Ila to the AB outer wall is 1.25' o

Distance = 221.45 - 214.4167 - 1.25 = '5.7833' Y is the North-South distance from the EH northeast comer to the CR inlet per Table 6.1 b.

o Column F to L is108.75' o

Column F to the CR Inlet is 10.35'.

o Column L to the AB outer wall is 1.25'.

o Distance = 108.75 - 10.35 - 1.25 = 97.15' V is the AB East Wall width between columns L and Q (70.75') plus twice the wall thickness

,(2*1.25') to yield a total width of 73.25' (Table 6.1b).

W is the AB north wall width between columns 8a and 1 la (76.75') plus the wall thickness (1.25') to yield a total width of 78' (Table 6.1b).

Zsu is the upper source elevation per Table 6.1c.

Zg is the plant grade elevation per Table 6.1 c.

DA-NS-08-050 Rev. 0 Page 25 of 112 Per RG 1.183 (Ref.8.2) 3.2.4.5: "The height and width of the area source are taken as the maximum vertical and horizontal dimensions of the above-grade building cross-sectional area perpendicular to the line of sight from the building center to the control room intake. These dimensions are projected onto a vertical plane perpendicular to the line of sight and located at the closest point to the building surface to the control room intake. The release height is set at the vertical center of the projected plane." Thus, o

The minimum distance from the northeast comer of the AB to the inlet is S=sqrt(X^2+Y^2).

o The direction from inlet to source is theta=270-arcsin(Y/S)+arctan((W'-V')/2/S) o Phi is defined as the angle between "S" and 270'.

o Beta, which is 900 - phi, is then the angle between W and W'.

o Phi is then the angle between V and V'.

o The projected width (W') is W*cos(beta).

o The projected width (V') is V*sin(beta).

o The vertical initial diffusion coefficient (sigma-z) should be the source height (Zsu-Zg) divided by 6.

o The horizontal initial diffusion coefficient (sigma-y) should be the projected source width (W'+V') divided by 6.

Zi is the inlet elevation per Table 6.1 c.

Hi is the inlet elevation above grade Hi=Zi-Zg.

6.1.13 Intermediate Building Point Source to Control Room Intake Table 6.1.13: ARCON96 Inputs for Intermediate Building Point Source to CR Inlet X

Source to Receptor E-W 108.5438 ft 33.0842 m

Y Source to Receptor N-S 0.0000 ft 0.0000 m

S sqrt(XA2+YA2) 108.5438 ft 33.0842 m

theta 270-arcsin(Y/S) 270.0000 deg Zsu Source elevation upper 336.3229 ft 102.5112 m

Hs Source height 33.1615 ft 10.1076 m

sigma-z Point source 0.0000 ft 0.0000 m

Zi Inlet elevation 315.4167 ft 96.1390 m

Hi Inlet Height 45.4167 ft 13.8430 m

Zl Grade elevation 270.0000 ft 82.2960 m

sigma-y Point source 0.0000 ft 0.0000 m

A graphical representation is shown in Figure 6.1.11.

X is the East-West distance from the IB to the CR inlet per Table 6.lb.

o Column 11 to the CR Inlet is 15.45' o

Column 7c to column 11 is 94.2813'.

o Column 7c to the IB outer wall is 1.1875' o

Distance = 15.45 + 94.2813 - 1.1875 = 108.5438' Y is the North-South distance from the IB to the CR inlet per Table 6. lb.

o To minimize the distance, set Y=0.

Zsu is the upper source elevation per Table 6.1 c.

Zg is the plant grade elevation per Table 6.1 c.

Per RG 1.183 (Ref.8.2) 3.2.4.5: "The height and width of the area source are taken as the maximum vertical and horizontal dimensions of the above-grade building cross-sectional area perpendicular to the line of sight from the building center to the control room intake. These

DA-NS-08-050 Rev. 0 Page 26 of 112 dimensions are projected onto a vertical plane perpendicular to the line of sight and located at the closest point to the building surface to the control room intake. The release height is set at the vertical center of the projected plane." Thus, o

The source elevation is Hs=(Zsu-Zg)/2.

o The minimum distance from the LB to the CR inlet is S=sqrt(XA2+YA2).

o The direction from inlet to source is theta=270-arcsin(Y/S).

o A point source is assumed in this case, so sigma-y and sigma-z are set to zero.

Zi is the inlet elevation per Table 6. lc.

" Hi is the inlet elevation above grade Hi=Zi-Zg.

6.1.14 Intermediate Building Roof Area Source to Control Room Intake Table 61.14: ARCON96 Inputs for Intermediate Building Roof Area Source to CB Inlet X

Source to Receptor E-W=Min Dist 108.5438 ft 33.0842 m

Y Source to Receptor N-S 7.1834 ft 2.1895 m

S sqrt(XA2+YA2) 108.7812 ft 33.1565 m

theta 270-arcsin(Y/S) 266.2137 deg Zsu Source elevation upper 336.3229 ft 102.5112 m

Hs Source height 66.3229 ft 20.2152 m

sigma-z Area source 0.0000 ft 0.0000 m

Zi Inlet elevation 315.4167 ft 96.1390 m

Hi Inlet Height 45.4167 ft 13.8430 m

ZI Grade elevation 270.0000 ft 82.2960 m

W Source width 35.0667 ft 10.6883 m

W.

Projected source width 34.9902 ft 10.6650 m

sigma-y W'/6 5.8317 ft 1.7775 m

A graphical representation is shown in Figure 6.1.12.

X is the East-West distance from the 1B to the CR inlet per Table 6.lb.

o Column 11 to the CR Inlet is 15.45' o

Column 7c to column 11 is 94.2813'.

o Column 7c to the LB outer wall is 1.1875' o

Distance = 15.45 + 94.2813 -

1.1875 = 108.5438' (Note that this value is input into ARCON96 as the minimum separation distance.)

Y is the North-South distance from the midpoint of the 1B roof to the CR inlet per Table 6. lb.

o Containment centerline to column 7c is 40.0521'.

o Column F to the containment centerline is 74.25'.

o Column F to the CR inlet is 10.35'.

o The containment outer radius is 56.0313' (Table 6.1 c).

o Thus, Y=(74.25 -sqrt(56.0313 2-40.0521 2))/2-10.35 = 7.1834' o

The roof width W = 74.25 - sqrt(56.0313 2-40.0521 2) = 35.0667' Zsu is the upper source elevation per Table 6.1 c.

Zg is the plant grade elevation per Table 6.1 c.

Per RG 1.183 (Ref.8.2) 3.2.4.7 for horizontal area sources: "The distance to the receptor is measured from the closest point on the perimeter of the assumed area source. For assumed areas that are not circular, the area width is measured perpendicular to the line of sight from the center of the assumed source to the control room intake. The initial diffusion coefficient Gyo is found by equation 3 (area source width divided by 6); azo is assumed to be zero." Thus, o

The minimum distance from the source to the CR inlet is X.

DA-NS-08-05O Rev. 0 Page 27 of 112 o

The distance from the 1B roof midpoint to the CR inlet is S=sqrt(X2+y 2) oý The direction from the CR inlet to the source midpoint is theta=270-arcsin(Y/S) o The source height relative to grade is Hs=Zsu-Zg o

An area source is assumed in this case, so sigma-y is set to one-sixth of the width of the projected area: W'/6 The roof width W = 74.25 - sqrt(56.0313 2-40.05212) = 35.0667' The projected roof width W' = W*X/S = 34.9902' sigma-z is set to zero.

" Zi is the inlet elevation per Table 6. lc.

" Hi is the inlet elevation above grade Hi=Zi-Zg.

6.1.15 Intermediate Building Wall Area Source to Control Room Intake Table 6.1.15: ARCON96 Inouts for Intermediate Buildina Wall Area Source to CR Inlet X

Source to Receptor E-W=Min Dist 108.5438 ft 33.0842 m

Y Source to Receptor N-S 7.1834 ft 2.1895 m

S sqrt(XA2+YA2) 108.7812 ft 33.1565.

m theta 270-arcsin(Y/S) 266.2137 degl Zsu Source elevation upper 336.3229 ft 102.5112 m

Hs Source height 33.1615 ft 10.1076 m

sigma-z (Zsu-Zg)/6 11.0538 ft 3.3692 m

Zi Inlet elevation

- 315.4167 ft 96.1390 m

Hi Inlet Height 45.4167 ft 13.8430 m

Zg Grade elevation 270.0000 ft 82.2960 m

W Source width 35.0667 ft 10.6883 m

W' Projected source width 34.9902 ft 10.6650 m

sigma-y W'/6 5.8317 ft 1.7775 m

A graphical representation is shown in Figure 6.1.12.

X is the East-West distance from the LB to the CR inlet per Table 6.lb.

o Column I 1 to the CR Inlet is 15.45' o

Column 7c to column 11 is 94.2813'.

o Column 7c to the LB outer wall is 1.1875' o

Distance = 15.45 + 94.2813 -

1.1875 = 108.5438' (Note that this value is input into ARCON96 as the minimum separation distance.)

Y is the North-South distance from the midpoint of the 1B roof to the CR inlet per Table 6. lb.

o Containment centerline to column 7c is 40.0521'.

o Column F to the containment centerline is 74.25'.

o Column F to the CR inlet is 10.35'.

o, The containment outer radius is 56.0313' (Table 6.1 c).

o Thus, Y=(74.25 - sqrt(56.0313 2-40.0521 2))/2-10.35 = 7.1834' o

The wall width W = 74.25 - sqrt(56.0313 2-40.05212) = 35.0667' Zsu is the upper source elevation per Table 6.1 c.

Zg is the plant grade elevation per Table 6.1 c.

Per RG 1.183 (Ref.8.2) 3.2.4.5: "The height and width of the area source are taken as the maximum vertical and horizontal dimensions of the above-grade building cross-sectional area perpendicular to the line of sight from the building center to the control room intake. These dimensions are projected onto a vertical plane perpendicular to the line of sight and located at the closest point to the building surface to the control room intake. The release height is set at the vertical center of the projected plane." Thus,

DA-NS-08-05O Rev.0 Page 28 of 112 o

The minimum distance from the source to the CR inlet is X.

o The distance from the 1B wall midpoint to the CR inlet is S=sqrt(X2+y 2) o The direction from the CR inlet to the source midpoint is theta=270-arcsin(Y/S) o The source height relative to grade is Hs=(Zsu-Zg)/2 o

An area source is assumed in this case, so

" sigma-y is set to one-sixth of the width of the projected area: W'/6 The wall width W = 74.25 - sqrt(56.0313 2-40.05212) = 35.0667' The projected roof width W' = W*X/S = 34.9902'

" sigma-z is set to (Zsu-Zg)/6 Zi is the inlet elevation per Table 6.1 c.

" Hi is the inlet elevation above grade Hi=Zi-Zg.

6.1.16 Auxiliary Building Roll-Up Door Point Source to Control Room Intake Table 6.1.16: ARCON96 Inputs for Auxiliary Building Roll-Up Door to CR Inlet X

Source to Receptor E-W 168.3250 ft 51.3055 m

Y Source to Receptor N-S 170.4000 ft 51.9379 m

S sqrt(XA2+YA2) 239.5192 ft 73.0055 m

phi arcsin(X/S) 44.6490 deg theta 180+phi 224.6490 degl Zsu Source elevation upper 307.6667 ft 93.7768 m

Zsl Source elevation lower 278.3333 ft 84.8360 m

Hs Source height 58.0156 ft 17.6832 m

sigma-z Point source 0.0000 ft 0.0000 m

Zi Inlet elevation 315.4167 ft 96.1390 m

Hi Inlet Height 45.4167 ft 13.8430 m

Zg Grade elevation 270.0000 ft 82.2960 m

sigma-y Point source 0.0000 ft 0.0000 m

A graphical representation is shown in Figure 6.1.16.

" X is the East-West distance from the eastern edge of the AB roll-up door to the CR inlet.

o Column 3 to the CR Inlet is 221.45' per Table 6.lb.

o Column 3 to column 5a is 53.6667' per Table 6.lb.

o AB roll-up door to'Column 5a is 0.5417' per Refs. 8.43 and 8.44.

o Distance - 221.45 - 53.6667 + 0.5417 = 168.3250'.

Y is the North-South distance from the eastern edge of the AB roll-up door to the CR inlet.

Column Q to L is 70.75' per Table 6.lb.

Column L to F is 108.75' per Table 6.lb.

o, Column F to the CR Inlet is 10.35' per Table 6.lb.

o Column Q to the AB outer wall is 1.25' per Table 6. lb.

Distance = 108.75 + 1.25 +70.75 - 10.35 = 170.40'

" Zsu is the upper source elevation per Refs. 8.43-8.44 and Attachment Z.

Zsl is the lower source elevation per Refs. 8.43-8.44.

" Zg is the plant grade elevation per Table 6.1c.

Per RG 1.183 (Ref.8.2) 3.2.4.5: "The height and width of the area source are taken as the maximum vertical and horizontal dimensions of the above-grade building cross-sectional area perpendicular to the line of sight from the building center to the control room intake. These dimensions are projected onto a vertical plane perpendicular to the line of sight and located at the

DA-NS-08-050 Rev. 0 Page 29 of 112 closest point to the building surface to the control room intake. The release height is set at the vertical center of the projected plane." Thus, o

The source elevation Hs is assumed to be the top of the AB, since there is no direct line of sight between the AB roll-up door and the CR.

o The minimum distance from the source to the CR inlet is S=sqrt(X^2+Y^2).

o The direction from inlet to source is theta=180 + phi.

o The angle between S and Y is phi=arcsin(X/S).

o A point source is assumed in this case, so sigma-y and sigma-z are set to zero.

Zi is the inlet elevation per Table 6. l c.

Hi is the inlet elevation above grade Hi=Zi-Zg.

6.1.17 Auxiliary Building Roll-Up Door Area Source to Control Room Intake Table 6.1.17: ARCON96 Inouts for Auxiliary Buildina Roll-Uo Door to CR Inlet X

Source to Receptor E-W 168.3250 ft 51.3055 m

Y Source to Receptor N-S 170.4000 ft 51.9379 m

S sqrt(X^2+Y^2) 239.5192 ft 73.0055 m

W Source width 25.7500 ft 7.8486 m

phi arcsin(X/S) 44.6490 deg W.

W*cos(phi) 18.3192 ft 5.5837 m

ksi arctan(W'/2/S) 2.1900 deg theta 180+phi+ksi 226.8390 deg Zsu Source elevation upper 307.6667 ft 93.7768 rn Zsl Source elevation lower 278.3333 ft 84.8360 m

Hs Source height 58.0156 ft 17.6832 m

Zi Inlet elevation 315.4167 ft 96.1390 m

Hi Inlet Height 45.4167 ft 13.8430 m

Zg Grade elevation 270.0000 ft 82.2960 m

sigma-z line source 0.0000 ft 0.0000 m

sigma-y W/6 3.0532 ft 0.9306 m

A graphical representation is shown in Figure 6.1.17.

X is the East-West distance from the eastern edge of the AB roll-up door to the CR inlet.

o Column 3 to the CR Inlet is 221.45' per Table 6.lb.

o Column 3 to column 5a is 53.6667' per Table 6.lb.

o AB roll-up door to Column 5a is 0.5417' per Refs. 8.43 and 8.44.

o Distance = 221.45 - 53.6667 + 0.5417 = 168.3250'.

Y is the North-South distance from the eastern edge of the AB roll-up door to the CR inlet.

o Column Q to L is 70.75' per Table 6.lb.

o Column L to F is 108.75' per Table 6.lb.

o Column F to the CR Inlet is 10.35' per Table 6.lb.

o Column Q to the AB outer wall is 1.25' per Table 6.lb.

o Distance = 108.75 + 1.25 +70.75 - 10.35 = 170.40' Zsu is the upper source elevation per Refs. 8.43-8.44 and Attachment Z.

Zsl is the lower source elevation per Refs. 8.43-8.44.

Zg is the plant grade elevation per Table 6.1c.

Per RG 1.183 (Ref.8.2) 3.2.4.5: "The height and width of the area source are taken as the maximum vertical and horizontal dimensions of the above-grade building cross-sectional area

DA-NS-08-050 Rev.0 Page 30 of 112 perpendicular to the line of sight from the building center to the control room intake. These dimensions are projected onto a vertical plane perpendicular to the line of sight and located at the closest point to the building surface to the control room intake. The release height is set at the vertical center of the projected plane." Thus, o

The source elevation Hs is assumed to be the top of the AB, since there is no direct line of sight between tlhe AB roll-up door and the CR.

o The minimum distance from the source to the CR inlet is S=sqrt(XA2+Y^2).

o The source width W is 25'9" per Attachment Z.

o The angle between S and Y is phi=arcsin(X/S).

o The projected source width W' is W*cos(phi).

o The angle ksi defined in Figure 6.1.17 is arctan(W'/2/S).

o The direction from inlet to source is theta=1 80 + phi + ksi.

o Since there is no direct line of sight between the AB roll-up door and the CR, the source is projected onto the AB roof and sigma-z is zero.

o Sigma-y is W'/6.

Zi is the inlet elevation per Table 6. lc.

Hi is the inlet elevation above grade Hi=Zi-Zg.

DA-NS-08-050 Rev.0 Page 31 of 112 Figure 6.1.1 Containment to Control Room Inlet Figure 6.1.2 Plant Vent to Control Room Inlet

DA-NS-08-050 Rev. 0 Page 32 of 112 Figure 6.1.3,Containment Vent to Control Room Inlet Figure 6.1.4 Equipment Hatch Roll-Up Door (Point Source) to Control Room Inlet

DA-NS-08-05O Rev. 0 Page 33 of 112 Figure 6.1.5 Equipment Hatch Roll-Up Door (Area Source) to Control Room Inlet Figure 6.1.6 Equipment Hatch Barrel Access Door (Point Source) to Control Room Inlet

DA-NS-08-050 Rev. 0 Page 34 of 112 Figure 6.1.7 Equipment Hatch Barrel Access Door (Area Source) to Control Room Inlet Figure 6.1.8 Auxiliary Building (Point Source) to Control Room Inlet

DA-NS-08-050 Rev. 0 Page 35 of 112 Figure 6.1.9 Auxiliary Building Roof (Area Source) to Control Room Inlet Figure 6.1.10 Auxiliary Building Walls (Area Source) to Control Room Inlet

DA-NS-08-050 Rev. 0 Page 36 of 112 Figure 6.1.11 Intermediate Building (Point Source) to Control Room Inlet Figure 6.1.12 Intermediate Building Roof and Walls (Area Source) to Control Room Inlet

DA-NS-08-05O Rev. 0 Page 37 of 112 5.! ~77' 4r.!

Z~5~k.~67 Barrel Access Door (Area Source)

Figure 6.1.14 Plant Layout

DA-NS-08-050 Rev.0 Page 38 of 112 Figure 6.1.15 Plant Vent and Containment Vent Layout (Dwg 33013-2121 R2)

DA-NS-08-05O Rev.0 Page 39 of 112 1

4 ~leyZ jIO#~,~,Lcf

~j Mz2ýr4 j~kzI&~r:2

~

I

% Itg i i..q Y

Figure 6.1.16 Auxiliary Building Roll-Up Door (Point Source) to Control Room Inlet 01 I

Figure 6.1.17 Auxiliary Building Roll-Up Door (Area Source) to Control Room Inlet

DA-NS-08-050 Rev.0 Page 40 of 112 6.2 RADTRAD Methodology and Inputs 6.2.1 Nuclear Inventory File Source Terms The core isotopic activities at shutdown, 100 hours0.00116 days <br />0.0278 hours <br />1.653439e-4 weeks <br />3.805e-5 months <br /> post-shutdown, and 1440 hours0.0167 days <br />0.4 hours <br />0.00238 weeks <br />5.4792e-4 months <br /> post-shutdown were extracted from Design Input 3.7 of Ref. 8.13. The core isotopic activities at 72 hours8.333333e-4 days <br />0.02 hours <br />1.190476e-4 weeks <br />2.7396e-5 months <br /> post-shutdown (Technical Assumption 7.9) were estimated by calculating the shutdown precursor activities that would yield the correct activities at 100 and 1440 hours0.0167 days <br />0.4 hours <br />0.00238 weeks <br />5.4792e-4 months <br /> post-shutdown and then using those values together with the original shutdown activities to calculate the 72 hour8.333333e-4 days <br />0.02 hours <br />1.190476e-4 weeks <br />2.7396e-5 months <br /> post-shutdown values.

Table 6.2.1.a: Core Isotopic Activity Shutdown(hrs) 0 72 100 1440 Nuclide Ci Ci Ci Ci 1-131 5.080E+07 4:026E+07 3.640E+07 2.920E+05 1-132 7.510E+07 3.953E+07 3.070E+07 1.717E+02 1-133 1.030E+08 9.610E+06 3.780E+06 1.528E-13 1-134 1.140E+08 8.525E-17 2.070E-26 0.000E+00 1-135 9.720E+07

'5.218E+04 2.720E+03 1.090E-58 Kr-85m 1.360E+07 1.975E+02 2.595E+00 2.364E-90 Kr-85 5.850E+05 5.847E+05 5.846E+05 5,788E+05 Kr-87 2.620E+07 2.247E-10 5.184E-17 0.OOOE+00 Kr-88 3.680E+07 8.592E-01 9.252E-04 8.533E-146 Xe-133m 3.170E+06 1.817E+06 1.310E+06 2.921E-02 Xe-133 1.010E+08 8.200E+07 7.130E+07 4.495E+04 Xe-135m 2.040E+07 8.364E+03 4.360E+02 1.747E-59 Xe-135 2.560E+07 1.042E+06 1.320E+05 6.536E-40 Xe-138 8.610E+07 5.068E-85 6.880E-121 0.OOOE+00 The activity released into the atmosphere post-FHA can then be calculated via Table 6.2.1.b.

Table 6.2.1.b: FHA Inventory at 1811 MWt Ao d

CDF PF DF GF A

Core Released Activity Decay Core Overall Activity 72 Constant damage Peaking pool Gap 72 Nuclide Ci 1/sec fraction factor DF fraction Ci 1-131 4.03E+07 1.OOOE-06 0.0082645 1.75 200 0.16 4.66E+02 1-132 3.95E+07 8.445E-05 0.0082645 1.75 200 0.10 2.86E+02 1-133 9.61E+06 9.257E-06 0.0082645 1.75 200 0.15 1.04E+02 1-134 8.52E-17 2.196E-04 0.0082645 1.75 200 0.10 6.16E-22 1-135 5.22E+04 2.931E-05 0.0082645 1.75 200 0.10 3.77E-01 Kr-85m 1.97E+02 4.298E-05 0.0082645 1.75 1

0.10 2.86E-01 Kr-85 5.85E+05 2.043E-09 0.0082645

.1.75 1

0.20 1.69E+03 Kr-87 2.25E-10 1.516E-04 0.0082645 1.75 1

0.10 3.25E-13 Kr-88 8.59E-01 6.780E-05 0.0082645 1.75 1

0.10 1.24E-03 Xe-133m 1.82E+06 3.663E-06 0.0082645 1.75 1

0.15 3.94E+03 Xe-133 8.20E+07 1.530E-06 0.0082645 1.75 1

0.15 1.78E+05 Xe-135m 8.36E+03 7.551E-04 0.0082645 1.75 1

0.10 1.21E+01 Xe-135 1.04E+06 2.116E-05 0.0082645 1.75 1

0.10 1.51E+03 Xe-138 5.07E-85 8.19E-04 0.0082645 1.75 1

0.10 7.33E-88

DA7NS-08-050 Rev. 0 Page 41 of 112 Where The core activity at 72 hours8.333333e-4 days <br />0.02 hours <br />1.190476e-4 weeks <br />2.7396e-5 months <br /> post-shutdown was extracted from Table 6.2.1.a. Note that this inventory incorporates the 1.02 power measurement uncertainty factor -required by Regulatory Guide 1.49 (Ref.8.40).

The decay constants were calculated from the decay half-lives listed in Ref. 8.39.

Per Technical Assumption 7.2, all 179 fuel rods from the highest power fuel assembly are assumed to fail in the FHA. Per UFSAR 4.1.1 and UFSAR Table 4.2-3, there are 121' assemblies in a fully loaded core. Thus, the release fraction is 1/121 = 0.00826446.

Per Technical Assumption 7.2, all 179 fuel rods from the highest power fuel assembly are assumed to fail in the FHA. Per Ref. 8.13 and UFSAR 4.4.2.2.5, a power peaking factor of 1.75 is conservatively applied to the average assembly inventory.

An overall pool decontamination factor (DF) of 200 for iodine and 1 for noble gases was utilized in this work per RG 1.183 (Ref. 8.2).

The isotopic gas gap fractions were extracted from DA-NS-08-049 (Ref.8.21). The DA-NS 049 results indicate that gas gap fractions must be significantly increased over those recommended in RG 1.183 (Ref.8.2) for the limiting pins with burnups over 54 GWd/MTU and with linear heat generation rates in excess of 6.3 kw/ft.

The isotopic release activity is thus A=Ao*CDF*PF*GF/DF.

The isotopic release activity was manually inserted into the nuclear inventory file FHAC0.NIF listed in Attachment T. The activities are the total gas gap activities that are released from the pool water at the appropriate decay time and are not per unit power. Thus a power of one should be designated when employing these files.

6.2.2 Dose Conversion Factor File The dose conversion factors (DCFs) were extracted from Federal Guidance Reports 11 and 12 (Refs.8.16 and 8.17). This data is included in the Conversion Factor File FGR14.INP listed in Attachment R for use by RADTRAD. Note that the cloudshine data in FGR14.INP corresponds to the FGR-12 data, while the inhaled chronic data in FGR14.INP corresponds to the worst-case effective data in FGR-11.

The remaining data in FGR14.INP is extraneous and not used by RADTRAD.

6.2.3 Release Fraction and Timing File The Release Fraction and Timing (RFT) File is displayed in Attachment S. This file directs RADTRAD to release the entire iodine and noble gas activity that resides in the failed fuel pin gas gaps as defined by the unclear inventory file instantaneously (0.0001 hour1.157407e-5 days <br />2.777778e-4 hours <br />1.653439e-6 weeks <br />3.805e-7 months <br />) to the containment or spent fuel environment.

6.2.4 RADTRAD Plant and Scenario File Inputs The RADTRAD Plant and Scenario File (PSF) inputs are as follows:

Table 6.2.4: Radtrad Plant and Scenario File Inputs Reference Containment Volume L.00E+06 cf UFSAR 1.2.3.2 Fuel Building Volume L.OOE+06 cf Note 1.

Control Room Volume 36211 cf Ref. 8.41 Table 10.3 Reactor Power 1.00 Section 6.2.1 Containment to Environment Exhaust 76800 cfm Note 2 Fuel Building to Environment Exhaust 76800 cfm Note 2 Vent Stack Filter Eff elemental 90 Ref. 8.42 Section 3.2.2 or anic 70 Control Room Inleakage 0

hrs 2200 cfm Ref. 8.42 Section 3.10

DA-NS-08-050 Rev. 0 Page 42 of 112 0.0167 hrs 300 cfm 720 hrs Control Room Recirculation Flow 0

hrs 0

cfm Ref. 8.42 Section 3.2.2 0.0194 hrs 5400 cfm 720 hrs I CR Filter Eff elemental 90 1

Ref. 8.42 Section 3.2.2 organic 70 particulate 98 I Species Fraction elemental 0.57 Ref. 8.2 App.B organic 0.43 particulate 0.00 X/Q EAB 0

hr 2.17E-04 sec/m3 Ref. 8.42 Table 3 2

hr LPZ 0

hr 2.51 E-05 sec/m3 Ref. 8.42 Table 3 8

hr 1.78E-05 sec/m3 I 24 hr 8.50E-06 sec/m3 96 hr 2.93E-06 sec/m3 720 hr Ctmt to CR 0

hr 6.90E-03 sec/m3 Section 11.2 via Equipment Hatch 2

hr 5.99E-03 sec/m3 8

hr 2.22E-03 sec/m3 24 hr 2.05E-03 sec/m3 96 hr 1.67E-03 sec/m3 720 hr SFP to CR 0

hr 2.04E-03 sec/m3 Section 11.2 via Plant Vent 2

hr 1.53E-03 sec/m3 8

hr 6.57E-04 sec/m3 24 hr 5.19E-04 sec/m3 96 hr 4.58E-04 sec/m3 720 hr SFP to CR 0

hr.

1.38E-03 sec/m3 Section 11.2 via Roll-Up Door 2

hr 1.13E-03 sec/m3 8

hr 3.96E-04 sec/m3 24 hr 3.79E-04 sec/m3 96 hr 3.15E-04 sec/m3 720 hr CR Occupancy Factor 0

hr 1.0 Ref. 8.2 Section 4.1.3 24 hr 0.6 96 hr 0.4 720 hr Breathing Rate 0

hr 3.47E-04 m3/sec Ref. 8.2 Section 4.2.6 8

hr 1.75E-04 m3/sec 24 hr 2.32E-04 m3/sec 720 hr Notes:

1. The fuel building volume is an arbitrary value selected in DA-NS-2002-004 (Ref.8.13). It was selected to be the same volume as the inside containment volume. It is used in combination with

DA-NS-08-050 Rev. 0 Page 43 of 112 the fuel building exhaust flow rate to transfer the released activity from the fuel building to the environment in two hours.

2.

Per RG 1.183 (Ref.8.2), the radioactive material that escapes from the fuel pool to the fuel building or to containment is assumed to be released to the environment over a two hour time period. The value of 76800 cfm was selected in Ref.8.13 to release 99.99% of the released activity in the two hour time period: exp(-76800*120/1E6) = 0.0001.

DA-NS-08-050 Rev. 0 Page 44 of 112

7. TECHNICAL ASSUMPTIONS The following technical inputs were assumed in this work.

7.1 This work conservatively calculates atmospheric dispersion coefficients from the source to the receptor assuming no thermal plume or momentum plume rise.

7.2 All 179 fuel rods from the highest power fuel assembly are assumed to fail in the FHA.

7.3 No credit is taken for atmospheric cleanup systems in containment (spray, filter, plateout).

7.4 The radioactive release from a FHA in the SFP area is assumed to be discharged into the environment through the plant vent which contains HEPA and charcoal filters or through the Auxiliary Building Roll-Up Door which is unfiltered.

7.5 No credit is taken for deposition of the plume on the ground or decay of isotopes in transit to the site boundary.

7.6 Buildup of daughter nuclides is taken into account as source term nuclides decay.

7.7 The results indicate that gas gap fractions must be significantly increased for the limiting pins with burnups over 54 GWd/MTU and with linear heat generation rates in excess of 6.3 kw/ft. These gas gap fractions are conservatively applied to all failed fuel pins.

7.8 The limiting point-source atmospheric dispersion coefficients from the equipment hatch roll-up door to the control room inlet were assumed for the FHA in containment.

7.9 The FHA is assumed to occur 72 hours8.333333e-4 days <br />0.02 hours <br />1.190476e-4 weeks <br />2.7396e-5 months <br /> following reactor shutdown.

DA-NS-08-050 Rev. 0 Page 45 of 112

8. REFERENCES 8.1 10 CFR 50.67, "Accident Source Term" 8.2 Regulatory Guide 1.183, "Alternate Radiological Source Terms for Evaluating Design Basis Accidents at Nuclear Power Reactors", July 2000.

8.3 Regulatory Guide 1.194, "Atmospheric Relative Concentrations for Control Room Radiological Habitability Assessments at Nuclear Power Plants", June, 2003.

8.4 NUREG/CR-6331 Rev. 1, "Atmospheric Relative Concentrations in Building Wakes", May 1997.

8.5 NUREG/CR-6331, "Atmospheric Relative Concentrations in Building Wakes", May, 1995.

8.6 CA03940

"ARCON96: Atmospheric Relative Concentrations in Building Wakes"

8.7 CA06734

"ARCON96 Installation and Verification on PCG2487" 8.8 NUREG/CR-6604, SAND98-0272, "RADTRAD: A Simplified Model for Radionuclide Transport and Removal and Dose Estimation" 8.9 NUREG/CR-6604, SAND98-0272/1, Supplement 1, "RADTRAD: A Simplified Model for Radionuclide Transport and Removal and Dose Estimation" 8.10 NUREG/CR-6604, Supplement 2, "RADTRAD: A Simplified Model for Radionuclide Transport and Removal and Dose Estimation" 8.11 CA06735, "RADTRAD 3.03 Installation and Verification on PCG2487" 8.12 CA06207, "RADTRAD 3.03 Validation" 8.13 DA-NS-2002-004, Rev.4, "Fuel Handling Accident Offsite and Control Room Doses" 8.14 KRE Applied Technology, "Additional X/Q Cases for Containment Equipment Hatch", 4/27/2006.

8.15 DA-NS-2001-060, Rev.2, "Atmospheric Dispersion Factors for the Control Room Air Intake" 8.16 Federal Guidance Report No. 11, "Limiting Values of Radionuclide Intake and Air Concentration and Dose Conversion Factors for Inhalation, Submersion, and Ingestion," Keith F. Eckerman, et al., Oak Ridge National Laboratory, 1989.

8.17 Federal Guidance Report No. 12, "External Exposure to Radionuclides in Air, Water, and Soil,"

Keith F. Eckerman, et al., Oak Ridge National Laboratory, 1993.

8.18 TID-14844, "Calculation of Distance Factors for Power and Test Reactor Sites", 3/23/62 8.19 Calvert Cliffs Units 1 and 2 License Amendments 281/258, "Implementation of AST", 8/29/2007 8.20 "CCNPP Units 1 and-2 LAR: Revision to Accident Source Term and Associated Technical Specifications", 12/3/2005.

8.21 DA-NS-08-049 Rev.0, "Ginna Gas Gap Isotopic Fraction Calculations"

DA-NS-08-05O Rev. 0 Page 46 of 112 8.22 RG&E Letter, "Input for Ginna Dose Reassessment," September 6, 2001.

8.23 REG DWG 33013-2101 R3, Plant Arrangement Cont Structure & Intermediate Building Plan-Basement Fl.El.235'8" 8.24 REG DWG 33013-2104 R6, Plant Arrangement Turbine Building Plan-Basement Floor El.253'6" 8.25 REG DWG 33013-2105 R3, Plant Arrangement Cont Structure & Intermediate Building Plan-Intermediate FI.El.253'3" 8.26 REG DWG 33013-2108 RI, Plant Arrangement Auxiliary Building Plan-Intermediate FI.EI.253'0" 8.27 REG DWG 33013-2109 R3, Plant Arrangement Service Building Plan-Basement F1.El.253'6" 8.28 REG DWG 33013-2110 R4, Plant Arrangement Service Building Plan-Basement Fl.El.253'6" 8.29 REG DWG 33013-2119 R4, Plant Arrangement Technical Support Center Plan Above El.271'0" and 272'0" 8.30 REG DWG 33013-2120 R4, Plant Arrangement Turbine Building Plan-Operating Floor El.289'6" 8.31 REG DWG 33013-2121 R2, Plant Arrangement Intermediate Building Plans-El.293'0",EI.298'4", &

El.315'4" 8.32 REG DWG 33013-2131 RI, Plant Arrangement Reactor Containment Structure Section 1-1 8.33 REG DWG 33013-2132 RI, Plant Arrangement Reactor Containment Structure Section 2-2 8.34 REG DWG 33013-2133 R2, Plant Arrangement Reactor Containment Structure Stretch-Out Az360 to Azl80 8.35 REG DWG 33013-2134 RI, Plant Arrangement Reactor Containment Structure Stretch-Out Az180 to AzO 8.36 REG DWG 33013-2135 RI, Plant Arrangement Reactor Containment Structure, Penetration Schedule 8.37 REG DWG 33013-2136 R2, Plant Arrangement Control Building Sections 8.38 REG DWG 33013-2126 R5, Plant Arrangement Transformer Yard Plan El. 270' 8.39 GE Nuclear Energy Chart of the Nuclides, Nuclides and Isotopes, Fifteenth Edition.

8.40 Regulatory Guide 1.49 Rev. 1, "Power Levels of Nuclear Power Plants" 8.41 RGE LAR Regarding Revision to Ginna TS Sections 1.1, 3.3.6, 3.4.16, 3.6.6, 3.7.9, 5.5.10, 5.5.16, and 5.6.7 Resulting from Modification of the CREATS and Change in Dose Calculation Methodology to AST, 5/21/2003.

8.42 License Amendment No. 87, R.E.Ginna Nuclear Power Plant - Amendment Re: Modification of the CREATS and Change in Dose Calculation Methodology to AST, 2/25/2005.

DA-NS-08-050 Rev.0 Page 47 of 112 8.43 REG DWG 33013-4160 Rev.0, Dry Cask Storage Project, Architectural, Auxiliary Building Partial South Wall Elevation 8.44 REG DWG 33013-4177 Rev.0, Dry Cask Storage Project, Structural, South Wall Auxiliary Building Supplemental Door Frame Support

DA-NS-08-050 Rev. 0 Page 48 of 112

9. DOCUMENTATION OF COMPUTER CODES 9.1 ARCON96 ARCON96 implements a computational model for calculating atmospheric dispersion coefficients (X/Q's) in the vicinity of buildings. An atmospheric dispersion coefficient is simply the ratio of the relative concentration at the receptor (gm/m 3) to the release rate at the release point (gm/sec).

Thus atmospheric dispersion coefficients are in units of sec/m 3. The model estimates impacts from ground-level, vent, and elevated releases using a single year or multi-years of hourly meteorological data. This model also treats diffusion more realistically under low wind speed conditions than previous NRC-issued models. ARCON96 is a revision of ARCON95. The differences between ARCON96 and ARCON95 are relatively modest. ARCON96 allows users to enter initial diffusion coefficients that may be used to approximate dimensions of diffuse area sources.

The method of calculating average relative concentrations for periods longer than two hours was also changed. Centerline concentrations are now used for the first eight hours in each time period, while sector-average concentrations are used for the remaining hours.

The ARCON96 computer code was documented and described in NUREG/CR-6331 (Refs.8.4-8.5). The code was benchmarked and validated in Ref.8.6.

The installation on the safety-related computer PCG2487 is documented in Ref.8.7.

The methodology for calculating atmospheric dispersion coefficients via ARCON96 was submitted to the NRC in the CCNPP AST LAR (Ref.8.20) and accepted by the NRC in the CCNPP License Amendments 281/258 (Ref.8.19).

9.2 RADTRAD 3.03 The RADTRAD computer code can calculates TEDE and thyroid doses to personnel at the site boundary, low population zone, and control room per the alternate source term methodology 10 CFR 50.67 (Ref.8.1) and Regulatory Guide 1.183 (Ref.8.2) or can calculates whole body and thyroid doses to personnel at the site boundary, low population zone, and control room per the standard source term methodology of TID-14844 (Ref.8.18) resulting from any postulated accident which releases radioactivity within the containment, spent fuel pool, or within any primary system.

RADTRAD models the transport of radioactivity from up to 63 radioisotopes from the sprayed and unsprayed regions of a primary containment or a SFP area, through the secondary containment if any, and then to the environment and to the control room. The code includes the capability to model time-dependent activity release; containment spray, filtration, and leakage; control room filtration and inleakage; primary and secondary containment purge filters; control room intake filters; atmospheric dispersion; and natural decay. Doses are calculated for individuals residing at the site boundary or low population zone and in the control room.

The RADTRAD computer code was benchmarked and documented in Refs.8.8-8.10 and models the transport of halogen and noble gas isotopes from a primary containment to a secondary containment and thence to the environment and control room.

The installation of RADTRAD on the safety-related computer PCG2487 is detailed in Ref.8.11 and the validation in Ref.8.12.

The methodology for calculating offsite and control roomdoses via RADTRAD 3.03 was submitted to the NRC in the CCNPP AST LAR (Ref.8.20) and accepted by the NRC in the CCNPP License Amendments 281/258 (Ref.8.19).

9.3 EXCEL SPREADSHEETS Some inputs for the RADTRAD and ARCON96 computer programs were generated via an EXCEL spreadsheet.

DA-NS-08-050 Rev. 0 Page 49 of 112

10. ACCEPTANCE CRITERIA Per 10 CFR 50.67(b)(2)(iii) (Ref.8.1), "adequate radiation protection is provided to permit access to and occupancy of the control room under accident conditions without personnel receiving radiation exposures in excess of 0.05 Sv (5 rem) total effective dose equivalent (TEDE) for the duration of the accident."

Regulatory Guide 1.183 Section 4.4 and Table 6 (Ref.8.2) detail the radiological criteria for the EAB and the outer boundary of the LPZ. These criteria are stated for evaluating reactor accidents of exceedingly low probability of occurrence and low risk of public exposure to radiation. For the fuel handling accident (FHA), the limiting EAB and LPZ dose criteria are 6.3 Rem TEDE for a two hour release duration.

Maximum Site Boundary LPZ Control Room (any 2-hour period)

(0-30 days)

(0-30 days) 6.3 6.3 5.0 Reference 4.2 Table 6 Reference 4.1

DA-NS-08-05O Rev. 0 Page 50 of 112 11 CALCULATIONS AND RESULTS 11.1 ARCON96 Calculations Table 11. 1 lists the ARCON96 input, joint frequency data (JFD), and output files for the cases of interest.

Table 11.1: ARCON96 Cases and File Names Rece tor in all cases is the CR Intake.

Source Input Area Wake Input JFD Output Section m2 File File File AB 6.1.10 Point 2000 REGABCB.dat REGABCB.jfd REGABCB.out AB Roof 6.1.11 Area 2000 REGABCBr.dat REGABCBr.jfd REGABCBr.out AB Wall 6.1.12 Area 2000 REGABCBw.dat REGABCBw.jfd REGABCBw.out Containment 6.1.1 Area 2000 REGCTCB.dat REGCTCB.]fd REGCTCB.out Containment Vent 6.1.4 Point 2000 REGCVCB.dat REGCVCB.jfd REGCVCB.out Containment Vent 6.1.4 Point 1500 REGCVCB1.dat REGCVCB1.jfd REGCVCB1.out Containment Vent 6.1.4 Point 2500 REGCVCB2.dat REGCVCB2.jfd REGCVCB2.out Containment Vent 6.1.5 Area 2000 REGCVCBa.dat REGCVCBa.jfd REGCVCBa.out EH Barrel Access Door 6.1.8 Point 2000 REGHBCB.dat REGHBCB.]fd REGHBCB.out EH Barrel Access Door 6.1.9 Area 2000 REGHBCBa.dat REGHBCBa.jfd REGHBCBa.out IB 6.1.13 Point 2000 REGIBCB.dat REGIBCB.jfd REGIBCB.out IB Roof 6.1.14 Area 2000 REGIBCBr.dat REGIBCBr.jfd REGIBCBr.out IB Wall 6.1.15 Area 2000 REGIBCBw.dat REGIBCBw.jfd REGIBCBw.out Plant Vent 6.1.2 Point 2000 REGPVCB.dat REGPVCB.jfd REGPVCB.out Plant Vent 6.1.3 Area 2000 REGPVCBa.dat REGPVCBa.jfd REGPVCBa.out EH Roll-Up Door 6.1.6 Point 2000 REGRDCB.dat REGRDCB.]fd REGRDCB.out EH Roll-Up Door 6.1.7 Area 2000 REGRDCBa.dat REGRDCBa.jfd REGRDCBa.out AB Roll-Up Door 6.1.16 Point 2000 RGARDCB.dat RGARDCB.jfd RGARDCB.out AB Roll-Up Door 6.1.17 Area 2000 RGARDCBr.dat RGARDCBr.jfd RGARDCBr.out 11.2 ARCON96 Results Table I 1.2a lists the ARCON96 results for the cases catalogued in Section 11.1.

.Table 11.2a Revised Atmospheric Dispersion Coefficients (sec/m3)

Source Wake 0-2 hrs 2-8 hrs 8-24 hrs 1-4 days 4-30 days Ctmt - CR Intake Area 2000 1.74E-03 1.22E-03 4.70E-04 4.20E-04 3.62E-04 Plant Vent - CR Intake Point 2000 2.04E-03 1.53E-03 6.57E-04 5.19E-04 4.58E-04 Plant Vent - CR Intake Area 2000 2.03E-03 1.52E-03 6.56E-04 5.15E-04 4.56E-04 Ctmt Vent - CR Intake Point 2000 2.14E-03 1.59E-03 6.89E-04 5.45E-04 4.86E-04 Ctmt Vent - CR Intake Point 1500 2.15E-03 1.60E-03 6.92E-04 5.46E-04 4.87E-04 Ctmt Vent - CR Intake Point 2500 2.14E-03 1.59E-03 6.87E-04 5.44E-04 4.85E-04 Ctmt Vent - CR Intake Area 2000 2.13E-03 1.59E-03 6.86E-04 5.44E-04 4.84E-04 EH Roll-Up Door - CR Intake Point 2000 6.90E-03 5.99E-03 2.22E-03 2.05E-03 1.67E-03 EH Roll-Up Door - CR Intake Area 2000 5.46E-03 4.60E-03 1.64E-03 1.56E-03 1.31E-03 EH Barrel Access Door-CR Intake Point 2000 5.66E-03 4.85E-03 1.79E-03 1.65E-03 1.35E-03 EH Barrel Access Door-CR Intake Area 2000 5.35E-03 4.59E-03 1.68E-03 1.57E-03 1.29E-03 Auxiliary Building-CR Intake Point 2000 6.87E-03 5.94E-03 2.17E-03 1.74E-03 1.50E-03 Auxiliary Building Roof-CR Intake Area 2000 3.89E-03 3.07E-03 l.OOE-03 1.01E-03 8.59E-04

DA-NS-08-05O Rev. 0 Page 51 of 112 Auxiliary Building Side-CR Intake Area 2000 3.23E-03 2.54E-03 8.74E-04 8.26E-04 7.14E-04 AB Roll-Up Door-CR Intake Point 2000 1.38E-03 1.13E-03 3.96E-04 3.79E-04 3.15E-04 AB Roll-Up Door-CR Intake Area 2000 1.37E-03 1.1OE-03 3.86E-04 3.70E-04 3.10E-04 Intermediate Building-CR Intake Point 2000 5.49E-03 4.24E-03 1.84E-03 1.36E-03 1.09E-03 Intermediate Building Roof-CR Intake Area 2000 5.06E-03 3.59E-03 1.53E-03 1.19E-03 9.80E-04 Intermediate Building Side-CR Intake Area 2000 2.67E-03 1.97E-03 8.73E-04 6.65E-04 5.45E-04 Table 1 1.2b lists the ARCON96 results for the cases analyzed in Refs.8.14 and 8.15.

Table 11.2b Current Atmospheric Dispersion Coefficients (sec/m3)

Case Ref 0-2 hrs 2-8 hrs 8-24 hrs 1-4 days 4-30 days EH Roll-Up Door-CR Intake (superseded) 3 8.15 5.58E-03 4.66E-03 1.65E-03 1.58E-03 1.32E-03 Plant Vent - CR Intake (superseded) 5 8.15 1.99E-03 1.46E-03 6.35E-04 5.01E-04 4.47E-04 AB North Wall - CR Intake 7

8.15 3.76E-03 3.01E-03, 1.02E-03 9.85E-04 8.48E-04 AB North Wall Damper - CR Intake 7a 8.15 4.69E-03 3.97E-03 1.40E-03 1.32E-03

1. 11E-03 AB Roof Vent - CR Intake 7b 8.15 4.24E-03 3.51E-03 1.19E-03 1.17E-03 9.87E-04 AB East Wall Steel Door - CR Intake 7c' 8.15 3.62E-03 3.11 E-03 1.14E-03 9.13E-04 7.89E-04 AB North Wall Steel Door-CR Intake 7d 8.15 4.14E-03 3.65E-03 1.32E-03 1.21E-03 1.01E-03 AB Roll-Up Door - CR Intake (superseded) 10 8.15 1.17E-03 9.81E-04 3.58E-04 3.36E-04 2.79E-04 Ref. 8.15: DA-NS-2001-060 Rev.2, "Atmospheric Dispersion Factors for the Control Room Air Intake" Ref. 8.14: Memo from KRE Applied Technology to Mike Ruby, "Additional X/Q Cases for Containment Equipment Hatch" Note the following conclusions:

The limiting atmospheric dispersion coefficients for a containment generated FHA are those of a point source from the Equipment Hatch Roll-Up Door to the Control Room Intake.

" The limiting atmospheric dispersion coefficients for a SFP generated FHA are those of a point source from the Plant Vent to the Control Room Intake. Since the plant vent pathway is filtered, use of the unfiltered Auxiliary Building Roll-Up Door to Control Room Inlet pathway results in more conservative off-site and control room doses.

The point release from a given structure will bound all other releases from that structure, since the point release assumes the minimum separation between source and receptor and minimum initial diffusion coefficients which maximize the atmospheric dispersion coefficients. Note that the Auxiliary Building to Control Room Inlet point-source X/Q values from Table 11.2a bound all of the Auxiliary Building to Control Room Inlet values displayed in Table 11.2b.

Comparison of the three point source Containment Vent to Control Room Intake cases shows that the building area wake input has negligible effect on the X/Q results over a typical range of values. In addition, the methodology for calculation of the building area wake is fairly arbitrary.

Thus the default value of 2000 m2 will be used in all calculations per RG 1.183 (Ref.8.2).

11.3 RADTRAD Calculations Table 11.3 lists the RADTRAD input files (INP), the release fraction and timing file (RFT), the nuclear inventory file (NIF), the plant scenario files (PSF), and the output files (OUT) for the containment and SFP cases.

DA-NS-08-050 Rev. 0 Page 52 of 112 Table 11.3: RADTRAD Cases and Filenames Containment SFP (Plant Vent)

SFP (AB Roll-Up Door)

Plant Scenario File fhactmthcO.psf fhasfpcO.psf fhasfpcl.psf Output File fhactmthcO.oO (Att.U) fhasfpcO.oO (Att.V) fhasfpcl.oO (Att.Y)

DCF Input File fgrl4.inp (Att.R) fgrl4.inp (Att.R) fgrl4.inp (Att.R)

RFT File fha.rft (Att.S) fha.rft (Att.S) fha.rft (Att.S)

Nuclear Inventory File fhacO.nif(Att.T) flhacO.nif (Att.T) fhacO.nif (Att.T) 11.4 RADTRAD Results Table 11.4 lists the RADTRAD results for the cases catalogued in Section 11.3.

Table 11.4: Radtrad Dose Results Acceptance Criteria Results Containment Rem Rem EAB 6.3 1.4820E+00 LPZ 6.3 1.7142E-01 CR 5

4.0416E+00 SFP-Plant Vent EAB 6.3 4.7230E-01 LPZ 6.3 5.4630E-02 CR 5

3.1252E-01 SFP-AB Roll-Up Door EAB 6.3 1.4820E+00 LPZ 6.3 1.7142E-01 CR 5

8.0831E-01 Offsite and Control Room TEDE doses have been conservatively calculated for Fuel Handling Accidents in the Containment and in the SFP assuming limiting gas gap fractions 72 hours8.333333e-4 days <br />0.02 hours <br />1.190476e-4 weeks <br />2.7396e-5 months <br /> of decay prior to fuel offload limiting atmospheric dispersion coefficients The resulting TEDE doses are shown in Table 11.4. All of the calculated TEDE doses are less than the regulatory acceptance values listed in Section 10 and in Table 11.4.

DA-NS-08-05O Rev. 0 Page 53 of 112

12. ACRONYMS AB Auxiliary Building ADV Atmospheric Dump Valve AEB Accident Evaluation Branch AFR Active Fuel Region AFW Auxiliary Feedwater ANS American Nuclear Society ANSI American National Standards Institute AOO Anticipated Operational Occurrence ARV Atmospheric Relief Valve AST Alternative Source Term BGE Baltimore Gas and Electric Company BOC Beginning of Cycle BOL Beginning of Life BWR Boiling Water Reactor CB Control Building CCNPP Calvert Cliffs Nuclear Power Plant CE Combustion Engineering CEAEE Control Element Assembly Ejection Event CEDE Committed Effective Dose Equivalent CFQ Maximum Heat Flux Hot Channel Factor CFR Code of Federal Regulations COD Containment Outage Door COLR Core Operating Limits Report CP Charging Pump CR Control Room CRETS Control Room Emergency Temperature System CREVS Control Room Emergency Ventilation System CST Condensate Storage Tank CV Containment Vent DBA Design Basis Accident DCF Dose Conversion Factor DDE Deep Dose Equivalent DF Decontamination Factor DFI Inorganic Decontamination Factor DFO Organic Decontamination Factor DWG Drawing EAB Exclusion Area Boundary ECCS Emergency Core Cooling System EDG Emergency Diesel Generator EH Equipment Hatch EOC End of Cycle EOL End of Life EPRI Electric Power Research Institute ETP Engineering Test Procedure FGR Federal Guidance Report FHA Fuel Handling Accident GDC General Design Criteria GL Generic Letter GWd GigaWatt Day HVAC Heating, Ventilation, and Air Conditioning,

DA-NS-08-050 Rev.0 Page 54 of 112 HEPA High-Efficiency Particulate Air Filters IB Intermediate Building ICRP International Commission on Radiological Protection IFBA Integral Fuel Burnable Absorbers IFI Inorganic Iodine Fraction IFO Organic Iodine Fraction IRS Iodine Removal System JFD Joint Frequency Data KI Potassium Iodide Tablets LAR License Amendment Request LEF Assembly Lower End Fitting LOCA Loss of Coolant Accident LOOP Loss of Offsite Power LRE Locked Rotor Event LWR Light Water Reactor LPZ Low Population Zone MFIV Main Feedwater Isolation Valve MFW Main Feedwater MSIV Main Steam Isolation Valve MSLB Main Steam Line Break MSSV Main Steam Safety Valve MTU Metric Ton Uranium MWd MegaWatt Day MWt MegaWatt Thermal NEI Nuclear Energy Institute NFE Nuclear Fuel Elevator NIF Nuclear Inventory File NMP Nine Mile Point NPP Nuclear Power Plant NRC Nuclear Regulatory Commission NRR Nuclear Reactor Regulation OFA Optimized Fuel Assembly ORNL Oak Ridge National Laboratory PAL Personnel Air Lock PFT Perfluorocarbon Tracer Gas Test PMH Probable Maximum Hurricane PREFS Pump Room Exhaust Filtration System PSB Pin Storage Basket PSF Plant Scenario File PV Plant Vent PWR Pressurized Water Reactor PZR Pressurizer RAI Request for Additional Information RCS Reactor Coolant System REG R.E.Ginna RFP Refueling Pool RFT Release Fraction and Timing File RG Regulatory Guide RWT Refueling Water Tank SB Service Building SCBA Self Contained Breathing Apparatus SDC Shutdown Cooling SFHM Spent Fuel Handling Machine SER Safety Evaluation Report

DA-NS-08-050 Rev. 0 Page 55 of 112 SFP Spent Fuel Pool SFPC Spent Fuel Pool Cooling SFPEVS Spent Fuel Pool Exhaust Ventilation System SG Steam Generator SGTR Steam Generator Tube Rupture SIT Safety Injection Tank SRE Seized Rotor Event SRP Standard Review Plan SSC Structure, System, or Component SST Standard Source Term STP Surveillance Test Procedure TB Turbine Building TEDE Total Effective Dose Equivalent=DDE+CEDE TID Technical Information Document TRM Technical Requirements Manual TS Technical Specifications TSB Technical Specification Bases TSC Technical Support Center TSP Trisodium Phosphate UEF Assembly Upper End Fitting UFSAR Updated Final Safety Analysis Report V+

Vantage Plus Fuel Assembly VAP Value Added Pellet WES Westinghouse Electric Company X/Q Atmospheric Dispersion Coefficient

DA-NS-08-050 Rev.0 Page 56 of 112 13 ATTACHMENTS ATTACHMENT A ARCON96 OUTPUT FILE SELECTION REGABCB.OUT ARCON INPUT Number of Meteorological Data Files 5

Meteorological Data File Names RGE99B.MET RGEOOB.MET RGE01B.MET RGE02B.MET RGE03B.MET Height of lower wind instrument (m)

Height of upper wind instrument (m)

Wind speeds entered as meters/second Ground-level release Release height (m)

Building Area (m^2)

Effluent vertical velocity (m/s)

Vent or stack flow (m^3/s)

Vent or stack radius (m)

Direction.. intake to source (deg)

Wind direction sector width (deg)

Wind direction window (deg)

Distance to intake (m)

Intake height (m)

Terrain elevation difference (m) 10.1 45.7 8.8 2000.0

=

.00

=

.00

=

.00

=

183

=

90

=

138 -

228 29.7

=

13.8

.0 Output file names REGABCB.out REGABCB.jfd Minimum Wind Speed (mis)

Surface roughness length (m)

Sector averaging constant Initial value of sigma y Initial value of sigma z

.5

=

.20 4.3

.00

.00 Expanded'output for code testing not selected Total Hours Hours Hours Hours Hours number of hours of data processed =

of missing data direction in window elevated plume w/ dir. in window of calm winds direction not in window or calm 43824 556 14463 0

505 28300 95% X/Q for standard averaging intervals 0 to 2 hours2.314815e-5 days <br />5.555556e-4 hours <br />3.306878e-6 weeks <br />7.61e-7 months <br /> 2 to 8 hours9.259259e-5 days <br />0.00222 hours <br />1.322751e-5 weeks <br />3.044e-6 months <br /> 8 to 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> 1 to 4 days 4 to 30 days 6.87E-03

5. 94E-03 2.17E-03
1. 74E-03 1.50E-03

DA-NS-08-050 Rev. 0 Page 57 of 112 ATTACHMENT B ARCON96 OUTPUT FILE SELECTION REGABCBR.OUT ARCON INPUT

  • Number of Meteorological Data Files

=

5 Meteorological Data File Names RGE99B.MET RGEOOB.MET RGE01B.MET RGE02B.MET RGE03B.MET Height of lower wind instrument (m)

=

10.1 Height of upper wind instrument (m)

=

45.7 Wind speeds entered as meters/second Ground-level release Release height (m) 17.7 Building Area (m^2) 2000.0 Effluent vertical velocity (m/s)

.00 Vent or stack flow (m^3/s)

.00 Vent or stack radius (m)

.00 Direction intake to source (deg) 220 Wind direction sector width (deg) 90 Wind direction window (deg) 175 -

265 Distance to intake (m) 29.7 Intake height (m) 13.8 Terrain elevation difference (m)

=

.0 Output file names REGABCBr.out REGABCBr.jfd Minimum Wind Speed (m/s)

.5 Surface roughness length (m)

=

.20 Sector averaging constant

=

4.3 Initial value of sigma y

=

9.90' Initial value of sigma z

=

.00 Expanded output for code testing not selected Total number of hours of data processed 43824 Hours of missing data 556 Hours direction in window 18277 Hours elevated plume w/ dir. in window

=

0 Hours of calm winds

=

505 Hours direction not in window or calm

=

24486 95% X/Q for standard averaging intervals 0 to 2 hours2.314815e-5 days <br />5.555556e-4 hours <br />3.306878e-6 weeks <br />7.61e-7 months <br /> 3.89E-03 2 to 8 hours9.259259e-5 days <br />0.00222 hours <br />1.322751e-5 weeks <br />3.044e-6 months <br /> 3.07E-03 8 to 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> 1.OOE-03 1 to 4 days 1.01E-03 4 to 30 days 8.59E-04

DA-NS-08-050 Rev. 0 Page 58 of 112 ATTACHMENT C ARCON96 OUTPUT FILE SELECTION REGABCBW.OUT ARCON INPUT Number of Meteorological Data Files

=

Meteorological Data File Names RGE99B.MET RGE0OB.MET RGE01B.MET RGE02B.MET RGE03B.MET Height of lower wind instrument (m)

=

Height of upper wind instrument (m)

=

Wind speeds entered as meters/second Ground-level release Release height (m)

Building Area (m^2)

Effluent vertical velocity (m/s)

=

Vent or stack flow (m^3/s)

Vent or stack radius (m) 5 10.1 45.7 8.8 2000.0

.00

.00

.00 Direction intake to source (deg)

Wind direction sector width (deg)

Wind direction window (deg)

Distance to intake (m)

Intake height (m)

Terrain elevation difference (m) output file names REGABCBw.out REGABCBw.jfd Minimum Wind Speed (m/s)

Surface roughness length (m)

Sector averaging constant Initial value of sigma y Initial value of sigma z Expanded output for code testing not 204

=

90

=

159 -

249 29.7

=

13.8

=

.0

=

.5

.20

=

4.3 4.18 2.95 selected Total Hours Hours Hours Hours Hours number of hours of data processed =

of missing data direction in window elevated plume w/ dir.

in window

=

of calm winds direction not in window or calm 43824 556 17189 0

505 25574 95% X/Q for standard averaging intervals 0 to 2 to 8 to 1 to 4 to 2 hours2.314815e-5 days <br />5.555556e-4 hours <br />3.306878e-6 weeks <br />7.61e-7 months <br /> 8 hours 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> 4 days 30 days 3.23E-03 2.54E-03

8. 74E-04 8.26E-04 7.14E-04

DA-NS-08-050 Rev.O Page 59 of 112 ATTACHMENT D ARCON96 OUTPUT FILE SELECTION REGCTCB.OUT ARCON INPUT

  • Number of Meteorological Data Files 5

Meteorological Data File Names RGE99B.MET RGE00B.MET RGE01B.MET RGE02B.MET RGE03B.MET Height of lower wind instrument (m)

=

10.1 Height of upper wind instrument (m)

=

45.7 Wind speeds entered as meters/second Ground-level release Release height (m) 15.7 Building Area (m^2) 2000.0 Effluent vertical velocity (m/s)

=

.00 Vent or stack flow (m^3/s)

=

.00 Vent or stack radius (m)

=

.00 Direction..

intake to source (deg)

=

247 Wind direction sector width (deg)

=

90 Wind direction window (deg)

=

202 -

292 Distance to intake (m)

=

32.6 Intake height (m) 13.8 Terrain elevation difference (m)

=

.0 Output file names REGCTCB.out REGCTCB.jfd Minimum Wind Speed (m/s)

=

.5 Surface roughness length (m)

=

.20 Sector averaging constant 4.3 Initial value of sigma y

=

5.69 Initial value of sigma z

=

5.24 Expanded output for code testing not selected Total, number of hours of data processed =

43824 Hours of missing data

=

556 Hours direction in window

=

17224 Hours elevated plume w/ dir.

in window 0

Hours of calm winds

=

505 Hours direction not, in window or calm

=

25539 95% X/Q for standard averaging intervals 0 to 2 hours2.314815e-5 days <br />5.555556e-4 hours <br />3.306878e-6 weeks <br />7.61e-7 months <br /> 1.74E-03 2 to 8 hours9.259259e-5 days <br />0.00222 hours <br />1.322751e-5 weeks <br />3.044e-6 months <br /> 1.22E-03 8 to 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> 4.70E-04 1 to 4 days 4.20E-04 4 to 30 days 3.62E-04

DA-NS-08-050 Rev. 0 Page 60 of 112 ATTACHMENT E ARCON96 OUTPUT FILE SELECTION REGCVCB.OUT Program Run 9/

8/2008 at 13:34:33 ARCON INPUT Number of Meteorological Data Files Meteorological Data File Names RGE99B.MET RGEOOB.MET RGEO1B.MET RGE02B.MET RGE03B.MET

=

5 Height of lower wind instrument (m)

=

Height of upper wind instrument (m)

=

Wind speeds entered as meters/second 10.1 45.7 Ground-level release Release height (m)

Building Area (m^2)

Effluent vertical velocity (m/s)

Vent or stack flow (m^3/s)

Vent or stack radius (m)

Direction..

intake to source (deg)

Wind direction sector width (deg)

Wind direction window (deg)

Distance to intake (m)

Intake height (m)

Terrain elevation difference (m)

Output file names REGCVCB.out REGCVCB.jfd Minimum Wind Speed (m/s)

Surface roughness length (m)

Sector averaging constant Initial value of sigma y Initial value of sigma z

=

35.7 2000.0

=

.00

.00

.00 272 90

=

227 -

317 50.6 13.8

=

.0

.5

.20

=

4.3

.00

.00 Expanded output for code testing not selected Total Hours Hours Hours Hours Hours number of hours of data processed of missing data direction in window elevated plume w/ dir. in window of calm winds direction not in window or calm 43824

=

556

=

17533

=

0

=

810

=

24925 95% X/Q for standard averaging intervals 0 to 2 hours2.314815e-5 days <br />5.555556e-4 hours <br />3.306878e-6 weeks <br />7.61e-7 months <br /> 2 to 8 hours9.259259e-5 days <br />0.00222 hours <br />1.322751e-5 weeks <br />3.044e-6 months <br /> 8 to 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> 1 to 4 days 4 to 30 days 2.14E-03

1. 59E-03
6. 89E-04 5.45E-04 4.86E-04

DA-NS-08-050 Rev. 0 Page 61 of 112 ATTACHMENT F ARCON96 OUTPUT FILE SELECTION REGCVCB1.OUT Program Run 9/

8/2008 at 13:34:37 ARCON INPUT Number of Meteorological Data Files

=

Meteorological Data File Names RGE99B.MET RGEOOB.MET RGE01B.MET RGE02B.MET RGE03B.MET Height of lower wind instrument (m)

=

Height of upper wind instrument (m)

Wind speeds entered as meters/second 5

10.1 45.7 Ground-level release Release height (m)

Building Area (m^2)

Effluent vertical velocity (m/s)

Vent or stack flow (m^3/s)

Vent or stack radius (m)

Direction intake to source (deg)

Wind direction sector width (deg)

Wind direction window (deg)

Distance to intake (m)

Intake height (m)

Terrain elevation difference (m)

Output file names REGCVCB1.out REGCVCB1.jfd Minimum Wind Speed (m/s)

Surface roughness length (m)

Sector averaging constant Initial value of sigma y Initial value of sigma z 35.7 1500.0

.00

.00

.00 272 90 227 -

317

=

50.6 13.8

.0

=

.5

=

.20

=

4.3

.00

.00 Expanded output for code testing not selected Total Hours Hours Hours Hours Hours number of hours of data processed of missing data direction in window elevated plume w/ dir. in window

=

of calm winds direction not in window or calm

=

43824 556 17533 0

810 24925 95% X/Q for standard averaging intervals 0 to 2 to 8 to 1 to 4 to 2 hours2.314815e-5 days <br />5.555556e-4 hours <br />3.306878e-6 weeks <br />7.61e-7 months <br /> 8 hours 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> 4 days 30 days 2.15E-03

1. 60E-03
6. 92E-04 5.46E-04
4. 87E-04

DA-NS-08-050 Rev. 0 Page 62 of 112 ATTACHMENT G ARCON96 OUTPUT FILE SELECTION REGCVCB2.OUT Program Run 9/ 8/2008 at 13:34:41 ARCON INPUT Number of Meteorological Data Files

=

5 Meteorological Data File Names RGE99B.MET RGE0OB.MET RGE01B.MET RGE02B.MET RGE03B.MET Height of lower wind instrument (m)

=

10.1 Height of upper wind instrument (m)

=

45.7 Wind speeds entered as meters/second Ground-level release Release height (m)

Building Area (m^2)

Effluent vertical velocity (m/s)

Vent or stack flow (m^3/s)

Vent or stack radius (m)

Direction intake to source (deg)

Wind direction sector width (deg)

Wind direction window (deg)

Distance to intake (m)

Intake height (m)

Terrain elevation difference (m)

Output file names REGCVCB2.out REGCVCB2.jfd Minimum Wind Speed (m/s)

Surface roughness length (m)

Sector averaging constant Initial value of sigma y Initial value of sigma z

=

35.7 2500.0

.00

.00

.00 272 90 227 -

317 50.6 13.8

=

.0

=

.5

=

.20

=

4.3

=

.00

.00 Expanded output for code testing not selected Total Hours Hours Hours Hours Hours number of hours of data processed of missing data direction in window elevated plume w/ dir. in window of calm winds direction not in window or calm

=

43824

=

556

=

17533

=

0

=

810

=

24925 95% X/Q for standard averaging intervals 0 to 2 to 8 to 1 to 4 to 2 hours2.314815e-5 days <br />5.555556e-4 hours <br />3.306878e-6 weeks <br />7.61e-7 months <br /> 8 hours 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> 4 days 30 days 2.14E-03

1. 59E-03
6. 87E-04 5.44E-04 4.85E-04

DA-NS-08-050 Rev.0 Page 63 of 112 ATTACHMENT H ARCON96 OUTPUT FILE SELECTION REGCVCBA.OUT ARCON INPUT Number of Meteorological Data Files

=

5 Meteorological Data File Names RGE99B.MET RGEOOB.MET RGE01B.MET RGE02B.MET RGE03B.MET Height of lower wind instrument (m)

Height of upper wind instrument (m)

Wind speeds entered as meters/second Ground-level release Release height (m)

Building Area (m^2)

Effluent vertical velocity (m/s)

Vent or stack flow (m^3/s)

Vent or stack radius (m)

Direction intake to source (deg)ý Wind direction sector, width (deg)

Wind direction window (deg)

Distance to intake (m)

Intake height (m)

Terrain elevation difference (m)

Output file names REGCVCBa.out REGCVCBa.jfd Minimum Wind Speed (m/s)

Surface roughness length (m)

Sector averaging constant Initial value of sigma y Initial value of sigma z 10.1 45.7 35.7 2000.0

.00

.00

.00 272 90 227 -

317

=

50.6 13.8 0

=.5

=

.20 4.3

.14

.00 Expanded output for code testing not selected Total Hours Hours Hours Hours Hours number of hours of data processed =

43824 of missing data 556 direction in window

=

17533 elevated plume w/ dir. in window

=

0 of calm winds 810 direction not in window or calm

=

24925 95% X/Q for standard averaging intervals 0 to 2 to 8 to 1 to 4 to 2 hours2.314815e-5 days <br />5.555556e-4 hours <br />3.306878e-6 weeks <br />7.61e-7 months <br /> 8 hours 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> 4 days 30 days 2.13E-03

1. 59E-03 6.86E-04 5.44E-04
4. 84E-04

DA-NS-08-050 Rev.O Page 64 of 112 ATTACHMENT I ARCON96 OUTPUT FILE SELECTION REGHBCB.OUT

              • -ARCON INPUT Number of Meteorological Data Files Meteorological Data File Names RGE99B.MET RGE0OB.MET RGE01B.MET RGE02B.MET RGE03B.MET Height of lower wind instrument (m)

Height of upper wind instrument (m)

Wind speeds entered as meters/second Ground-level release Release height (m)

Building Area (m^2)

Effluent vertical velocity (m/s)

Vent or stack flow (m^3/s)

Vent or stack radius (m)

Direction..

intake to source (deg)

Wind direction sector width (deg)

Wind direction window (deg)

Distance to intake (m)

Intake height (m)

Terrain elevation difference (m)

Output file names REGHBCB.out REGHBCB.jfd Minimum Wind Speed (m/s)

Surface roughness length (m)

Sector averaging constant Initial value of sigma y Initial value of sigma z 5

10.1 45.7 3.5 2000.0

=

.00

=

.00

=

.00 223 90 178 -

268 32.4 13.8 S

.0

=

.5

.20

=

4.3

=

.00

=

.00 Expanded output for code testing not selected Total Hours Hours Hours Hours Hours number of hours of data processed of missing data direction in window elevated plume w/ dir.

in window of calm winds direction not in window or calm 43824

=

556

=

18245

=

0

=

505

=

24518 95% X/Q for standard averaging intervals 0 to 2 hours2.314815e-5 days <br />5.555556e-4 hours <br />3.306878e-6 weeks <br />7.61e-7 months <br /> 2 to 8 hours9.259259e-5 days <br />0.00222 hours <br />1.322751e-5 weeks <br />3.044e-6 months <br /> 8 to 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> 1 to 4 days 4 to 30 days

5. 66E-03 4.85E-03
1. 79E-03
1. 65E-03 1.35E-03

DA-NS-08-050 Rev. 0 Page 65 of 112 ATTACHMENT J ARCON96 OUTPUT FILE SELECTION REGHBCBA.OUT ARCON INPUT

  • Number of Meteorological Data Files

=

5 Meteorological Data File Names RGE99B.MET RGEOOB.MET RGE01B.MET RGE02B.MET RGE03B.MET Height of lower wind instrument (m)

=

10.1 Height of upper wind instrument (m) 45.7 Wind speeds entered as meters/second Ground-level release Release height (m) 3.5 Building Area (m^2)

=

2000.0 Effluent vertical velocity (m/s)

=

.00 Vent or stack flow (m^3/s)

=

.00 Vent or stack radius (m)

=

.00 Direction..

intake to source (deg)

=

223 Wind direction sector width (deg) 90 Wind direction window (deg) 178 -

268 Distance to intake (m)

=

32.4 Intake height (m) 13.8 Terrain elevation difference (m)

=

.0 Output file names REGHBCBa.out REGHBCBa.jfd Minimum. Wind Speed (m/s)

=

.5 Surface roughness length (m)

=

.20 Sector averaging constant

=

4.3 Initial value of sigma y

.10 Initial value of sigma z

.34 Expanded output for code testing not selected Total number of hours of data processed =

43824 Hours of missing data

=

556 Hours direction in window

=

18245 Hours elevated plume w/ dir.

in window

=

0 Hours of calm winds

=

505 Hours direction not in window or calm

=

24518 95% X/Q for standard averaging intervals 0 to 2 hours2.314815e-5 days <br />5.555556e-4 hours <br />3.306878e-6 weeks <br />7.61e-7 months <br /> 5.35E-03 2 to 8 hours9.259259e-5 days <br />0.00222 hours <br />1.322751e-5 weeks <br />3.044e-6 months <br /> 4.59E-03 8 to 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> 1.68E-03 1 to 4 days 1.57E-03 4 to 30 days 1.29E-03

DA-NS-08-050 Rev.O Page 66 of 112 ATTACHMENT K ARCON96 OUTPUT FILE SELECTION REGIBCB.OUT ARCON INPUT Number of Meteorological Data Files

=

5 Meteorological Data File Names RGE99B.MET RGE00B.MET RGE01B.MET RGE02B.MET RGE03B.MET Height of lower wind instrument (m)

=

Height of upper wind instrument (m)

=

Wind speeds entered as meters/second 10.1 45.7 Ground-level release Release height (m)

Building Area (m^2)

Effluent vertical velocity (m/s)

Vent or stack flow (m^3/s)

Vent or stack radius (m)

Direction..

intake to source (deg)

Wind direction sector width (deg)

Wind direction window (deg)

Distance to intake (m)

Intake height (m)

Terrain elevation difference (m)

Output file names REGIBCB.out REGIBCB.jfd Minimum Wind Speed (mis)

Surface roughness length (m)

Sector averaging constant Initial value of sigma y Initial value of sigma z 10.1 2000.0

=

.00

=

.00

=

.00 270

=

90

=

225 -

315

=

33.1

=

13.8

.0

.5

=

.20 4.3

.00

.00 Expanded output for code testing not selected Total Hours Hours Hours Hours Hours number of hours of data processed of missing data direction in window elevated plume w/ dir.

in window of calm winds direction not in window or calm

=

43824

=

556

=

16549

=

0

=

505

=

26214 95% X/Q for standard averaging intervals 0 to 2 hours2.314815e-5 days <br />5.555556e-4 hours <br />3.306878e-6 weeks <br />7.61e-7 months <br /> 2 to 8 hours9.259259e-5 days <br />0.00222 hours <br />1.322751e-5 weeks <br />3.044e-6 months <br /> 8 to 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> 1 to 4 days 4 to 30 days 5.49E-03 4.24E-03 1.84E-03 1.36E-03 1.09E-03

DA-NS-08-050 Rev. 0 Page 67 of 112 ATTACHMENT L ARCON96 OUTPUT FILE SELECTION REGIBCBR.OUT ARCON INPUT Number of Meteorological Data Files

=

5 Meteorological Data File Names RGE99B.MET RGE0OB.MET RGE01B.MET RGE02B.MET RGE03B.MET Height.of lower wind instrument (m)

=

Height of upper wind instrument (m)'

=

Wind speeds entered as meters/second 10.1 45.7 Ground-level release Release height (m)

Building Area (m^2)

Effluent vertical velocity (m/s)

Vent or stack flow (m^3/s)

Vent or stack radius (m)

Direction.. intake to source (deg)

Wind direction sector width (deg)

Wind direction window (deg)

Distance to intake (m)

Intake height (m)

Terrain elevation difference (m)

Output file names REGIBCBr.out REGIBCBr.jfd Minimum Wind Speed (m/s)

Surface roughness length (m)

Sector averaging constant Initial value of sigma y Initial value of sigma z

=

20.2 2000.0

=

.00

=

.00

=

.00

=

266 90

=

221 -.311 33.1

=

13.8

=

.0

.5

.20 4.3 1.78

.00 Expanded output for code testing not selected Total Hours Hours Hours Hours Hours number of hours of data processed =

of missing data direction in window elevated plume w/ dir, in window of calm winds direction not in window or calm

=

43824 556 16678 0

505 26085 95% X/Q for standard averaging intervals 0 to 2 hours2.314815e-5 days <br />5.555556e-4 hours <br />3.306878e-6 weeks <br />7.61e-7 months <br /> 2 to 8 hours9.259259e-5 days <br />0.00222 hours <br />1.322751e-5 weeks <br />3.044e-6 months <br /> 8 to 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> 1 to 4 days 4 to 30 days 5.06E-03 3.59E-03 1.53E-03

1. 19E-03 9.80E-04

DA-NS-08-050 Rev. 0 Page 68 of 112 ATTACHMENT M ARCON96 OUTPUT FILE SELECTION REGIBCBW.OUT ARCON INPUT Number of Meteorological Data Files

=

5 Meteorological Data File Names RGE99B.MET RGE00B.MET RGE01B.MET RGE02B.MET RGE03B.MET Height of lower wind instrument (m)

=

10.1 Height of upper wind instrument (m) 45.7 Wind speeds entered as meters/second Ground-level release Release height (m) 10.1 Building Area (m^2) 2000.0 Effluent vertical velocity (m/s)

.00 Vent or stack flow (m^3/s)

.00 Vent or stack radius (m)

=

.00 Direction..

intake to source (deg)

=

266 Wind direction sector width (deg)

=

90 Wind direction window (deg)

=

221 -

311 Distance to intake (m)

=

33.1 Intake height (m)

=

13.8 Terrain elevation difference (m)

=

.0 Output file names REGIBCBw.out REGIBCBw.jfd Minimum Wind Speed (m/s)

=

.5 Surface roughness length (m)

=

.20 Sector averaging constant 4.3 Initial value of sigma y 1.78 Initial value of sigma z 3.36 Expanded output for code testing not selected Total number of hours of data processed =

43824 Hours of missing data

=

556 Hours direction in window 16678 Hours elevated plume w/ dir. in window

=

0 Hours of calm winds

=

505 Hours direction not in window or calm

=

26085 95% X/Q for standard averaging intervals 0 to 2 hours2.314815e-5 days <br />5.555556e-4 hours <br />3.306878e-6 weeks <br />7.61e-7 months <br /> 2.67E-03 2 to 8 hours9.259259e-5 days <br />0.00222 hours <br />1.322751e-5 weeks <br />3.044e-6 months <br /> 1.97E-03 8 to 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> 8.73E-04 1 to 4 days 6.65E-04 4 to 30 days 5.45E-04

DA-NS-08-050 Rev. 0 Page 69 of 112 ATTACHMENT N ARCON96 OUTPUT FILE SELECTION REGPVCB.OUT Program Run 9/

8/2008 at 13:34:51

  • ARCON INPUT Number of Meteorological Data Files

=

5 Meteorological Data File Names RGE99B.MET RGEOOB.MET RGE01B.MET RGE02B.MET RGE03B.MET Height of lower wind instrument (m) 10.1 Height of upper wind instrument (m) 45.7 Wind speeds entered as meters/second Ground-level release Release height (m)

Building Area (m^2)

Effluent vertical velocity (m/s)

Vent or stack flow (m^3/s)

Vent or stack radius (m)

Direction intake to source (deg)

Wind direction sector width (deg)

Wind direction window (deg)

Distance to intake (m)

Intake height (m)

Terrain elevation difference (m)

Output file names REGPVCB.out REGPVCB.jfd Minimum Wind Speed (m/s)

Surface roughness length (m)

Sector averaging constant Initial value of sigma y Initial value of sigma z 35.7 2000.0

.00

.00

.00 272

=

90 227 -

317

=

51.9

=

13.8

.0

=

.5

.20

=

4.3

.00

.00 Expanded output for code testing not selected Total Hours Hours Hours Hours Hours number of hours of data processed of missing data direction in window elevated plume w/ dir. in window of calm winds direction not in window or calm

=

43824

=

556

=

17533 0

=

810

=

24925 95% X/Q for standard averaging intervals 0 to 2 to 8 to 1 to 4 to 2 hours2.314815e-5 days <br />5.555556e-4 hours <br />3.306878e-6 weeks <br />7.61e-7 months <br /> 8 hours 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> 4 days 30 days

2. 04E-03 1.53E-03 6.57E-04 5.19E-04 4.58E-04

DA-NS-08-050 Rev. 0 Page 70 of 112 ATTACHMENT 0 ARCON96 OUTPUT FILE SELECTION REGPVCBA.OUT ARCON INPUT Number of Meteorological Data Files 5

Meteorological Data File Names RGE99B.MET RGE0OB.MET RGE01B.MET RGE02B.MET RGE03B.MET Height of lower wind instrument (m)

=

10.1 Height of upper wind instrument (m)

=

45.7 Wind speeds entered as meters/second Ground-level release Release height (m)'

35.7 Building Area (m^2) 2000.0 Effluent vertical velocity (m/s)

=

.00 Vent or stack flow (m^3/s)

=

.00 Vent or stack radius (m)

=

.00 Direction..

intake to source (deg)

=

272 Wind direction sector width (deg).

=

90 Wind direction window (deg)

=

227 -

317 Distance to intake (m)

=

51.9 Intake height (m)

=

13.8 Terrain elevation difference (m)

=

.0 Output file names REGPVCBa.out REGPVCBa.jfd Minimum Wind Speed (m/s)

=

.5 Surface roughness length (m)

=

.20 Sector averaging constant

=

4.3 Initial value of sigma y

.23 Initial value of sigma z

.00 Expanded output for code testing not selected Total number of hours of data processed =

43824 Hours of missing data 556 Hours direction in window 17533 Hours elevated plume w/ dir. in window 0

Hours of calm winds 810 Hours direction not in window or calm 24925 95% X/Q for standard averaging intervals 0 to 2 hours2.314815e-5 days <br />5.555556e-4 hours <br />3.306878e-6 weeks <br />7.61e-7 months <br /> 2.03E-03 2 to 8 hours9.259259e-5 days <br />0.00222 hours <br />1.322751e-5 weeks <br />3.044e-6 months <br /> 1.52E-03 8 to 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> 6.56E-04 1 to 4 days 5.15E-04 4 to 30 days 4.56E-04

DA-NS-08-050 Rev. 0 Page 71 of 112 ATTACHMENT P ARCON96 OUTPUT FILE SELECTION REGRDCB.OUT ARCON INPUT Number of Meteorological Data Files

=

5 Meteorological Data File Names RGE99B.MET RGEOOB.MET RGE01B.MET RGE02B.MET RGE03B.MET Height of lower wind instrument (m)

=

10.1 Height of upper wind instrument (m)

=

45.7 Wind speeds entered as meters/second Ground-level release Release height (m) 3.3 Building Area (m^2) 2000.0 Effluent vertical velocity (m/s)

=

.00 Vent or stack flow (m^3/s)

=

.00 Vent or stack radius (m)

=

.00 Direction intake to source (deg) 227 Wind direction sector width (deg)

=

90 Wind direction window (deg)

=

182 -

272 Distance to intake (m)

=

28.6 Intake height (m) 13.8 Terrain elevation difference (m)

=

.0 Output file names REGRDCB.out REGRDCB.jfd Minimum Wind Speed (m/s)

=

.5 Surface roughness length (m)

=

.20 Sector averaging constant

=

4.3 Initial value of sigma y

.00 Initial value of sigma z

.00 Expanded output for code testing not selected Total number of hours of data processed =

43824 Hours of missing data 556 Hours direction in window

=

18198 Hours elevated plume w/ dir. in window 0

Hours of calm winds 505 Hours direction not in window or calm

=

24565 95% X/Q for standard averaging intervals 0 to 2 hours2.314815e-5 days <br />5.555556e-4 hours <br />3.306878e-6 weeks <br />7.61e-7 months <br /> 6.90E-03 2 to 8 hours9.259259e-5 days <br />0.00222 hours <br />1.322751e-5 weeks <br />3.044e-6 months <br /> 5.99E-03 "8 to 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> 2.22E-03 1 to 4 days 2.05E-03 4 to 30 days 1.67E-03

DA-NS-08-050 Rev. 0 Page 72 of 112 ATTACHMENT Q ARCON96 OUTPUT FILE SELECTION REGRDCBA.OUT ARCON INPUT Number of Meteorological Data Files 5

Meteorological Data File Names RGE99B.MET RGE0OB.MET RGE01B.MET RGE02B.MET RGE03B.MET Height of lower wind instrument (m) 10.1 Height of upper wind instrument (m)

=

45.7 Wind speeds entered as meters/second Ground-level release Release height (m)

=

3.3 Building Area (m^2) 2000.0 Effluent vertical velocity (m/s)

.00 Vent or stack flow (m^3/s)

.00 Vent or stack radius (m)

.00 Direction intake to source (deg) 222 Wind direction sector width (deg) 90 Wind direction window (deg) 177 -

267 Distance to intake (m)

=

28.6 Intake height (m) 13.8 Terrain elevation difference (m)

=

.0 Output file names REGRDCBa.out REGRDCBa.jfd Minimum Wind Speed (m/s)

=

.5 Surface roughness length (m)

=

.20 Sector averaging constant

=

4.3 Initial value of sigma y

.87 Initial value of sigma z

.1.12 Expanded output for code testing not selected Total number of hours of data processed =

43824 Hours of missing data

=

556 Hours direction in window 18262 Hours elevated plume w/ dir. in window

=

0 Hours of calm winds

=

505 Hours direction not in window or calm

=

24501 95% X/Q for standard averaging intervals 0 to 2 hours2.314815e-5 days <br />5.555556e-4 hours <br />3.306878e-6 weeks <br />7.61e-7 months <br /> 5.46E-03 2 to 8 hours9.259259e-5 days <br />0.00222 hours <br />1.322751e-5 weeks <br />3.044e-6 months <br /> 4.60E-03 8 to 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> 1.64E-03

. to 4 days 1.56E-03 4 to 30 days 1.31E-03

DA-NS-08-050 Rev.0 Page 73 f 112 ATTACHMENT R RADTRAD INPUT FILE FGR14.INP 9 ORGANS DEFINED IN THIS FILE:

GONADS BREAST LUNGS RED MARR BONE SUR THYROID REMAINDER EFFECTIVE SKIN(FGR) 14 NUCLIDES DEFINED IN THIS FILE:

Kr-85 Kr-85m Kr-87 Kr-88 1-131 D

1-132 D

1-133 D

1-134 D

1-135 D

Including:Xe-135m Xe-133 Xe-135 Xe-133m Xe-135m Xe-138 CLOUDSHINE GROUND GROUND GROUND INHALED INHALED INGESTION SHINE 8HR SHINE 7DAY SHINE'RATE ACUTE CHRONIC Kr-85 GONADS 1.170E-16 8.121E-14 1.704E-12 2.820E-18L1.000E+00 O.OOOE+00 0.OOOE+00 BREAST 1.340E-16 7.891E-14 1.656E-12 2.740E-18-1.OOOE+00 O.OOOE+00 O.OOOE+00 LUNGS 1.140E-16 7.056E-14 1.481E-12 2.450E-18-1.OOOE+00 O.OOOE+00 O.OOOE+00 RED MARR 1.090E-16 6.998E-14 1.469E-12 2.430E-18-1.OOOE+00 O.OOOE+00 O.OOOE+00 BONE SUR 2.200E-16 1.287E-13 2.702E-12 4.470E-18-1.OOOE+00 O.OOOE+00 O.OOOE+00 THYROID 1.180E-16 7.459E-14 1.565E-12 2.590E-18-1.OOOE+00 O.OOOE+00 O.OOOE+00 REMAINDER 1.090E-16 6.941E-14 1.457E-12 2.410E-18-1.OOOE+00 O.OOOE+00 O.OOOE+00 EFFECTIVE 1.190E-16 7.603E-14 1.596E-12 2.640E-18-1.OOOE+00 O.OOOE+00 O.OOOE+00 SKIN(FGR) 1.320E-14 2.304E-11 4.835E-10 8.OOOE-16-1.OOOE+00 O.000E+00 O.OOOE+00 Kr-85m GONADS 7.310E-15 2.594E-12 3.653E-12 1.570E-16-1.OOOE+00 O.OOOE+00 0.OOOE+00 BREAST 8.410E-15 2.527E-12 3.560E-12 1.530E-16-1.OOOE+00 O.OOOE+00 O.OOOE+00 LUNGS 7.040E-15 2.379E-12 3.351E-12 1.440E-16-1.OOOE+00 O.OOOE+00 O.OOOE+00 RED MARR 6.430E-15 2.346E-12 3.304E-12 1.420E-16-1.OOOE+00 O.OOOE+00 O.OOOE+00 BONE SUR 1.880E-14 5.286E-12 7.446E-12 3.200E-16-1.OOOE+00 O.OOOE+00 O.OOOE+00 THYROID 7.330E-15 2.395E-12 3.374E-12 1.450E-16-1.OOOE+00 O.OO0E+00 O.OOOE+00 REMAINDER 6.640E-15 2.313E-12 3.257E-12 1.400E-16-1.OOOE+00 O.OOOE+00 O.OOOE+00 EFFECTIVE 7.480E-15 2.511E-12 3.537E-12 1.520E-16-1.OOOE+00 O.OOOE+00 O.OOOE+00 SKIN(FGR) 2.240E-14 2.247E-11 3.164E-11 1.360E-15-1.OOOE+00 O.OOOE+00 O.OOOE+00 Kr-87 GONADS 4.OOOE-14 4.962E-12 5.026E-12 7.610E-16-1.000E+00 O.OOOE+00 O.OOOE+00 BREAST 4.500E-14 4.740E-12 4.802E-12 7.270E-16-1.OOOE+00 O.OOOE+00 O.OOOE+00 LUNGS 4.040E-14 4.603E-12 4.663E-12 7.060E-16-1.OOOE+00 O.OOOE+00 O.OOOE+00 RED MARR 4.OOOE-14 4.708E-12 4.769E-12 7.220E-16-1.OOOE+00 O.OOOE+00 O.OOOE+00 BONE SUR 6.020E-14 6.514E-12 6.598E-12 9.990E-16-1.OOOE+00 O.OOE+00 O.OOOE+00 THYROID 4.130E-14 4.473E-12 4.531E-12 6.860E-16-1.OOOE+00 O.OOOE+00 O.OOOE+00 REMAINDER 3.910E-14 4.590E-12 4.650E-12 7.040E-16-1.OOOE+00 O.OOOE+00 O.OOOE+00 EFFECTIVE 4.120E-14 4.773E-12 4.835E-12 7.320E-16-1.OOOE+00 O.OOOE+00 O.OOOE+00 SKIN(FGR) 1.370E-13 8.802E-11 8.916E-11 1.350E-14-1.OOOE+00 O.OOOE+00 O.OOOE+00 Kr-88 GONADS 9.900E-14 2.278E-11 2.655E-11 1.800E-15-1.OOOE+00 0.OOOE+00 O.OOOE+00 BREAST 1.110E-13 2.177E-11 2.537E-11 1.720E-15-1.OOOE+00 O.OOOE+00 O.OOOE+00 LUNGS 1.010E-13 2.139E-11 2.493E-11 1.690E-15-1.000E+00 O.OOOE+00 O.OOOE+00 RED MARR 1.000E-13 2.190E-11 2.552E-11 1:730E-15-1.OOOE+00 O.OOOE+00 0.OOOE+00 BONE SUR 1.390E-13 2.886E-11 3.363E-11 2.280E-15-1.OOOE+00 O.OOOE+00 O.OOOE+00 THYROID 1.030E-13 2.012E-11 2.345E-11 1.590E-15-1.OOOE+00 O.OOOE+00 O.OOOE+00 REMAINDER 9.790E-14 2.139E-11 2.493E-11 1.690E-15-1.OOOE+00 O.OOOE+00 O.OOOE+00 EFFECTIVE 1.020E-13 2.202E-11 2.567E-11 1.740E-15-1.OOOE+00 O.OOOE+00 O.OOOE+00 SKIN(FGR) 1.350E-13 5.607E-11 6.534E-11 4.430E-15-1.OOOE+00 O.OOOE+00 O.OOOE+00 1-131 GONADS 1.780E-14 1.119E-11 1.789E-10 3.940E-16-1.OOOE+00 2.530E-11 4.070E-11 BREAST 2.040E-14 1.082E-11 1.730E-10 3.810E-16-1.OOOE+00 7.880E-11 1.210E-10

DA-NS-08-050 Rev. 0 Page 74 of 112 LUNGS 1.760E-14 1.016E-11 1.626E-10 3.580E-16-1.OOOE+00 6.570E-10 1.020E-10 RED MARR 1.680E-14 1.022E-11 1.635E-10 3.600E-16-1.OOOE+00 6.260E-11 9.440E-11 BONE SUR 3.450E-14 1.675E-11 2.679E-10 5.900E-16-1.OOOE+00 5.730E-11 8.720E-11 THYROID 1.810E-14 1.053E-11 1.685E-10 3.710E-16-1.OOOE+00 2.920E-07 4.760E-07 REMAINDER 1.670E-14 9.908E-12 1.585E-10 3.490E-16-1.OOOE+00 8.030E-11 1.570E-10 EFFECTIVE 1.820E-14 1.067E-11 1.707E-10 3.760E-16-1.OOOE+00 8.890E-09 1.440E-08 SKIN(FGR) 2.980E-14 1.825E-11 2.920E-10 6.430E-16-1.OOOE+00 O.OOOE+00 O.OOOE+00 1-132 GONADS 1.090E-13 2.523E-11 2.771E-11 2.320E-15-1.OOOE+00 9.950E-12 2.330E-11 BREAST 1.240E-13 2.414E-11 2.652E-11 2.220E-15-1.000E+00 1.410E-11 2.520E-11 LUNGS 1.090E713 2.305E-11 2.532E-11 2.120E-15-1.OOOE+00 2.710E-10 2.640E-11 RED MARR 1.070E-13 2.360E-1I 2.592E-11 2.170E-15-1.OOOE+00 1.400E-11 2.460E-11 BONE SUR 1.730E-13 3.327E-11 3.655E-11 3.060E-15-1.OOOE+00 1.240E-11 2.190E-11 THYROID 1.120E-13 2.381E-11 2.616E-11 2.190E-15-1.oo0E+00 1.740E-09 3.870E-09 REMAINDER 1.050E-13 2.283E-11 2.509E-11 2.100E-15-1.OOOE+00 3.780E-11 1.650E-10 EFFECTIVE 1.120E-13 2.403E-11 2.640E-11 2.210E-15-1.OOOE+00 1.030E-10 1.820E-10 SKIN(FGR) 1.580E-13 8.199E-11 9.007E-11 7.540E-15-1.OOOE+00 O.OOOE+00 O.OOOE+00 1-133 GONADS 2.870E-14 1.585E-11 6.748E-11 6.270E-16-1.OOOE+00 1.950E-11 3.630E-11 BREAST 3.280E-14 1.519E711 6.468E-11 6.010E-16-1.OOOE+00 2.940E-11 4.680E-11 LUNGS 2.860E-14 1.446E-11 6.156E-I1 5.720E-16-1.OOOE+00 8.200E-10 4.530E-11 RED MARR 2.770E-14 1.466E-11 6.242E-11 5.800E-16-1.OOOE+00 2.720E-11 4.300E-11 BONE SUR 4.870E-14 2.161E-11 9.202E-11 8.550E-16-1.OOOE+00 2.520E-11 4.070E-11 THYROID 2.930E-14 1.502E-11 6.393E-11 5.940E-16-1.OOOE+00 4.860E-08 9.100E-08 REMAINDER 2.730E-14 1.418E-11 6.038E-11 5.610E-16-1.OOOE+00 5.OOOE-11 1.550E-10 EFFECTIVE 2.940E-14 1.509E-11 6.425E-11 5.970E-16-1.OOOE+00 1.580E-09 2.800E-09 SKIN(FGR) 5.830E-14 1.150E-10 4.897E-10 4.550E-15-1.OOOE+00 O.OOOE+00 O.OOOE+00 1-134 GONADS 1.270E-13 1.200E-11 1.202E-11 2.640E-15-1.OOOE+00 4.250E-12 1.100E-11 BREAST 1.440E-13 1.145E-11 1.147E-11 2.520E-15-1.OOOE+00 6.170E-12 1.170E-11 LUNGS 1.270E-13 1.100E-11 1.102E-11 2.420E-15-1.OOOE+00 1.430E-10 1.260E-11 RED MARR 1.250E-13 1.127E-11 1.129E-11 2.480E-15-1.OOOE+00 6.080E-12 1.090E-11 BONE SUR 1.960E-13 1.568E-11 1.571E-11 3.450E-15-1.OOOE+00 5.310E-12 9.320E-12 THYROID 1.300E-13 1.127E-11 1.129E-11 2.480E-15-1.O0OE+00 2.880E-10 6.210E-10 REMAINDER 1.220E-13 1.091E-11 1.093E-11 2.400E-15-1.OOOE+00 2.270E-11 1.340E-10 EFFECTIVE 1.300E-13 1.150E-11 1.152E-11 2.530E-15-1.OOOE+00 3.550E-11 6.660E-11 SKIN(FGR)

I.'870E-13 4.477E-11 4.485E-11 9.850E-15-1.OOOE+00 O.OOOE+00 O.OOOE+00 1-135 GONADS 8.078E-14 3.113E-11 5.489E-11 1.599E-15-1.OOOE+00 1.700E-11 3.610E-11 BREAST 9.143E-14 2.971E-11 5.240E-11 1.526E-15-1.OOOE+00 2.340E-11 3.850E-11 LUNGS 8.145E-14 2.886E-11 5.089E-11 1.482E-15-1.OOOE+00 4.410E-10 3.750E-11 RED MARR 8.054E-14 2.965E-11 5.228E-11 1.523E-15-1.OOOE+00 2.240E-11 3.650E-11 BONE SUR 1.184E-13 3.983E-11 7.024E-11 2.046E-15-1.OOOE+00 2.010E-11 3.360E-11 THYROID 8.324E-14 2.852E-11 5.030E-11 1.465E-15-1.OOOE+00 8.460E-09 1.790E-08 REMAINDER 7.861E-14 2.883E-11 5.084E-11 1.481E-15-1.OOOE+00 4.700E-11 1.540E-10 EFFECTIVE 8.294E-14 2.989E-11 5.271E-11 1.535E-15-1.OOOE+00 3.320E-10 6.080E-10 SKIN(FGR) 1.156E-13 9.826E-11 1.733E-10 5.047E-15-1.OOOE+00 O.OOOE+00 O.OOOE+00 Xe-133 GONADS 1.610E-15 1.465E-12 2.052E-11 5.200E-17-1.OOOE+00 O.OOOE+00 O.OOOE+00 BREAST 1.960E-15 1.505E-12 2.107E-11 5.340E-17-1.OOOE+00 O.OOOE+00 O.OOOE+00 LUNGS 1.320E-15 1.045E-12 1.464E-11 3.710E-17-1.OOOE+00 O.OOOE+00 O.OOOE+00 RED MARR 1.070E-15 8.791E-13 1.231E-11 3.120E-17-1.OOOE+00 O.OOOE+00 O.OOOE+00 BONE SUR 5.130E-15 4.254E-12 5.958E-11 1.510E-16-1.OOOE+00 O.OOOE+00 O.OODE+00 THYROID 1.510E-15 1.181E-12 1.653E-11 4.190E-17-1.OOOE+00 O.OOOE+00 O.OOOE+00 REMAINDER 1.240E-15 1.042E-12 1.460E-11 3.700E-17-1.OOOE+00 O.OOOE+00 O.OO0E+00 EFFECTIVE 1.560E-15 1.299E-12 1.819E-11 4.610E-17-1.OOOE+00 O.OOOE+00 O.OOOE+00 SKIN(FGR) 4.970E-15 1.953E-12 2.734E-11 6.930E-17-1.OOOE+00 O.OOOE+00 O.OOOE+00 Xe-135 GONADS 1.170E-14 5.455E-12 1.194E-1i 2.530E-16-1.OOOE+00 O.OOOE+00 O.OOOE+00 BREAST 1.330E-14 5.325E-12 1.166E-1I 2.470E-16-1.OOOE+00 O.OOOE+00 O.OOOE+00 LUNGS 1.130E-14 4.959E-12 1.086E-11 2.300E-16-1.OOOE+00 O.OO0E+00 O.OOOE+00 RED MARR 1.070E-14 4.959E-12 1.086E-11 2.300E-16-1.OOOE+00 O.OOOE+00 O.OOOE+00 BONE SUR 2.570E-14 9.120E-12 1.997E-11 4.230E-16-1.OOOE+00 O.OOOE+00 O.OOOE+00 THYROID 1.180E-14 5.023E-12 1.100E-11 2.330E-16-1.OOOE+00 O.OOOE+00 O.OOOE+00 REMAINDER 1.080E-14 4.829E-12 1.058E-11 2.240E-16-1.OOOE+00 O.OOOE+00 O.OOOE+00 EFFECTIVE 1.190E-14 5.217E-12 1.142E-11 2.420E-16-1.OOOE+00 O.OOOE+00 O.OOOE+00 SKIN(FGR) 3.120E-14 4.506E-11 9.867E-11 2.090E-15-1.OOOE+00 0.000E+00 0.000E+00 Xe-133m GONADS 1.420E-15 O.OOOE+00 O.OOOE+00 O.OOOE+00-1.OOOE+00 O.OOOE+00 O.OOOE+00 BREAST 1.700E-15 O.OOOE+o0 O.OOOE+00 O.OOOE+00-1.OOOE+00 O.OOOE+00 O.OOOE+00 LUNGS 1.190E-15 O.OOOE+00 O.OOOE+00 O.OOOE+00-1.OOOE+00 O.OOOE+00 O.OOOE+00 RED MARR 1.100E-15 O.OOOE+00 O.OOOE+00 O.OOOE+00-1.OOOE+00 O.OOOE+00 O.OOOE+00 BONE SUR 3.230E-15 O.OOOE+00 O.OOOE+00 O.OOOE+00-1.OOOE+00 O.OOOE+00 O.OOOE+00 THYROID 1.360E-15 O.OOOE+00 O.OOOE+00 O.OOOE+00-1.OOOE+00 O.OOOE+00 O.OOOE+00 REMAINDER 1.150E-15 O.OOE+00 O.OOOE+00 O.OOOE+00-1.OOOE+00 O.OOOE+00 O.OOOE+00

DA-NS-08-050 Rev. 0 Page 75 of 112 EFFECTIVE 1.370E-15 O.OOOE+00 O.OOOE+00 O.OOOE+00-1.OOOE+00 O.OOOE+00 O.OOOE+00 SKIN(FGR) 1.040E-14 O.OOOE+00 O.OOOE+00 O.OOOE+00-1.OOOE+00 O.OOOE+00 O.OOOE+00 Xe-l35m GONADS 2.OOE-14 O.OOOE+00 O.ODOE+00 O.OOOE+00-1.OOOE+00 O.OOOE+00 O.OOOE+00 BREAST 2.290E-14 O.OOOE+00 O.OOOE+00 O.OOE+00-1.OOOE+00 O.OOOE+00 0.000E+00 LUNGS 1.980E-14 O.OOOE+00 O.OOOE+00 O.OOOE+00-1.OOOE+00 O.OOOE+00 O.OOOE+00 RED MARR 1.910E-14 O.OOOE+00 O.OOOE+00 O.OOOE+00-1.OOOE+00 O.OOOE+00 O.OOOE+00 BONE SUR 3.500E-14 O.OOOE+00 O.OOOE+00 O.OOOE+00-1.OOOE+00 O.OOOE+00 O.000E+00 THYROID 2.040E-14 O.OOOE+00 O.OOOE+00 O.OOOE+00-1.OOOE+00 O.OOOE+00 O.OOOE+00 REMAINDER 1.890E-14 O.OOOE+00 O.OOOE+00 O.OOOE+00-1.OOOE+00 O.OOOE+00 O.OOOE+00 EFFECTIVE 2.040E-14 O.OOOE+00 O.OOOE+00 O.OOOE+00-1.OOOE+00 O.OOOE+00 O.OOOE+00 SKIN(FGR) 2.970E-14 O.OOOE+00 O.OOOE+00 O.OOOE+00-1.OOOE+00 O.OOOE+00 O.OOOE+00 Xe-138 GONADS 5.590E-14 O.OOOE+00 O.OOOE+00 0.000E+00-1.000E+00 O.OOOE+00 O.OOOE+00 BREAST 6.320E-14 O.OO0E+00 0.000E+00 O.OOOE+00-1.OOOE+00 O.OOOE+00 O.OOOE+00 LUNGS 5.660E-14 O.OOOE+00 O.OOOE+00 O.OOOE+00-1.OOOE+00 O.OOOE+00 O.OOOE+00 RED MARR 5.600E-14 O.OOOE+00 O.OOOE+00 O.OOOE+00-1.OOOE+00 O.OOOE+00 O.OOOE+00 BONE SUR 8.460E-14 O.OOOE+00 O.OOOE+00 O.OOOE+00-1.OOOE+00 O.OOOE+00 O.OOOE+00 THYROID 5.770E-14 O.OOOE+00 O.OOOE+00 O.OOOE+00-1.OOOE+00 O.OOOE+00 O.OOOE+00 REMAINDER 5.490E-14 O.OOOE+00 O.OOOE+00 O.OOOE+00-1.OOOE+00 O.OOOE+00 O.OOOE+00 EFFECTIVE 5.770E-14 O.OOOE+00 O.OOOE+00 O.OOOE+00-1.OOOE+00 O.OOOE+00 O.OOOE+00 SKIN(FGR) 1.070E-13 O.OOOE+00 O.OOOE+00 0.000E+00-1.000E+00 O.OOOE+00 O.OOOE+00

DA-NS-08-050 Rev. 0 Page 76 of 112 ATTACHMENT S RADTRAD RELEASE FRACTION AND TIMING FILE FHA.RFT Release Fraction and Timing Name:

PWR, RG 1.183, Table 2 Section 3.2 Duration (h) :

Design Basis Accident 0.0001E+00 0.OOOOE+00 0.OOOOE+00 O.OOOOE+00 Noble Gases:

1.OOOOE+00 O.OOOOE+00 O.OOOOE+00 O.OOOOE+00 Iodine:

1.OOOE+00 O.OOOOE+00 O.OOOOE+00 0.0000E+00 Cesium:

0.0000E+00 0.0000E+00 0.OOOOE+00 0.0000E+00 Tellurium:

0.OOOOE+00 0.OOOOE+00 0.0000E+00 0.0000E+00 Strontium:

0.0000E+00 0.0000E+00 0.0000E+00 0.OOOOE+00 Barium:

0.OOOOE+00 0.0000E+00 0.OOOOE+00 0.0000E+00 Ruthenium:

0.0000E+00 0.0000E+00 0.OOOOE+00 0.0000E+00 Cerium:

0.OOOOE+00 0.0000E+00 0.0000E+00 0.OOOOE+00 Lanthanum:

0.OOOOE+00 0.0000E+00 0.0000E+00 0.000OOE+00 Non-Radioactive Aerosols (kg):

0.0000E+00 0.OOOOE+00 0.OOOOE+00 0.OOOOE+00 End of Release File

DA-NS-08-050 Rev.O0 Page 77 of 112 ATTACHMENT T RADTRAD NUCLEAR INVENTORY FILE FHACO.NIF Nuclide Inventory Name:

Normalized MACCS Sample 3412 MWth PWR Core Inventory Power Level:

0.1000E+01 Nuclides:

14 Nuclide 001:

Kr-85 1

0.3382974720E+09 0.8500E+02 1.6900E+03 none 0.0000E+00 none 0.0000E+00 none 0.0000E+00 Nuclide 002:

Kr-85m 1

0.1612800000E+05 0.8500E+02 2.8600E-01 Kr-85 0.2100E+00 none 0.0000E+00 none 0.0000E+00 Nuclide 003:

Kr-87 1

0.4578000000E+04 0.8700E+02 3.2500E-13 Rb-87 0.1000E+01 none 0.0000E+00 none

,0.00005+00 Nuclide 004:

Kr-88 1

0.1022400000E+05 0.8800E+02 1.2400E-03 Rb-88 0.1000E+01 none 0.0000E+00 none 0.OOOOE+00 Nuclide 005:

1-131 2

0.6946560000E+06 0.1310E+03 4.6600E+02 Xe-131m 0.1100E-01 none 0.OOOOE+00 none 0.0000E+00 Nuclide 006:

1-132 2

0.8280000000E+04 0.1320E+03 2.8600E+02 none 0.0000E+00 none 0.0000E+00 none 0.OOOOE+00 Nuclide 007:

1-133 2

0.7488000000E+05 0.1330E+03 1.0400E+02 Xe-133m 0.2900E-01 Xe-133 0.9700E+00 none 0.0000E+00 Nuclide 008:

DA-NS-08-050 Rev. 0 Page 78 of 112 1-134 2

0.3156000000E+04 0.1340E+03 6.16002-22 none 0.OOOOE+0o none 0.00006+00 none 0.0000£+00 Nuclide 009:

1-135 2

0.2379600000E+05 0.1350E+03 3.7700E-01 Xe-135m 0.1500E+00 Xe-135 0.8500E+00 none 0.0000E+00 Nuclide 010:

Xe-133 1

0.4531680000E+06 0.1330E+03 1.7800E+05 none 0.0000E+00 none 0.0000E+00 none 0.0000E+00 Nuclide 011:

Xe-135 1

0.3272400000E+05 0.1350E+03 1.5100E+03 Cs-135 0.1000E+01 none 0.0000E+00 none 0.OOOOE+00 Nuclide 012:

Xe-133m 1

0.1892200000E+06 0.1330E+03 3.9400E+03 Xe-133 0.1000E+01 none 0.OOOOE+00 none 0.0000E+00 Nuclide 013:

Xe-135m 1

0.9180000000E+03 0.1350E+03 1.2100E+01 Xe-135 0.1000E+01 none 0.0000E+00 none 0.OOOOE+00 Nuclide 014:

Xe-138 1

0.8460000000E+03 0.1380E+03 1.0000E-12 none 0.OOOOE+00 none 0.0000E+00 none 0.OOOOE+00 End of Nuclear Inventory File

DA-NS-08-05O Rev. 0 Page 79 of 112 ATTACHMENT U RADTRAD OUTPUT FILE FHACTMTCO.oO RADTRAD Version 3.03 (Spring 2001) run on 9/04/2008 at 7:54:33

                                                                              1. 444#############################

File information Plant file

= C:\\Program Files\\radtrad303\\Files\\GinnaFHA\\fhactmtc0.psf Inventory file

= c:\\program files\\radtrad3o3\\files\\ginnafha\\fhac0 nif Release file

= c:\\program files\\radtrad303\\files\\ginnafha\\fha.rft Dose Conversion file = c:\\program files\\radtrad303\\files\\ginnafha\\fgrl4.inp 4ata 4.0 4/4154442440441 444

  1. 4 44 4 4# 4444 4#.

4 4

4#

44# 444 4#

4 Radtrad 3.03 4/15/2001 Nuclide Inventory File:

c:\\program files\\radtrad303\\files\\ginnafha\\fhacO.nif Plant Power Level:

1.0000E+00 Compartments:,

3 Compartment 1:

ctmt 3

1.0000E+06 0

0 0

0 0

Compartment 2:

env 2

0.0000E+00 0

0 0

0 0

Compartment 3:

cr 1

3.6211E+04 0

0 1

0 0

Pathways:

3 Pathway 1:

ctmt to env 1

2 2

Pathway 2:

env to cr

DA-NS-08-050 Rev. 0 Page 80 of 112 2

3 2

Pathway 3:

cr to env 3

2 2

End of Plant Model File Scenario Description Name:

Plant Model Filename:

Source Term:

1 1

1.OOOOE+00 c:\\program files\\radtrad303\\files\\ginnafha\\fgrl4.inp c:\\program files\\radtrad303\\files\\ginnafha\\fha.rft 0.OOOOE+00 1

0.OOOOE+00 5.7000E-01 4.3000E-01 1.0000E+00 Overlying Pool:

0 0.0000E+00 0

0 0

0 Compartments:

3 Compartment 1:

0 1

0 0

0 0

0 0

Compartment 2:

0 1

0 0

0 0,

0 0

0 Compartment 3:

0 1

0 0

0 0

1 5.4000E+03 5

o.OOOOE+00 1.6700E-02 1.9400E-02 8.OOOOE+00 7.2000E+02 0

0 Pathways:

3 Pathway 1:

0 0

0 0

0 0.0000E+00 o.OOOOE+00 9.8000E+01 9.8000E+01 o.OOOOE+00 0.OOOOE+00 o.OOOOE+00 9.OOOOE+01

9. OOOOE+01 0.OOOOE+00 0.0000E+00 0.0000E+00
7. OOOOE+01
7. 0000E+01 0.OOOOE+00

DA-NS-08-050 Rev. 0 Page 81 of 112 1

3 o.ooooE+oo 2.0000E+00 7.2000E+02 0

0 0

0 0

0 Pathway 2:

0 0

0 0

0 1

3 0.OOOOE+00 1.6700E-02 7.2000E+02 0

0 0

0 0

0' Pathway 3:

0 0

0 b

0 1

3 o.OOOOE+00 1.6700E-02 7.2000E+02 0

0 0

0 0

0 Dose Locations:

3 Location 1:

eab 2

1 2

0.OOOOE+00 7.2000E+02 1

4

.0.0000E+00 8.0000E+00 2.4000E+01 7.2000E+02 0

Location 2:

ipz 2

1 5

0.0000E+00 8.0000E+00 2.4000E+01 9.6000E+01 7.2000E+02 1

4 0.0000E+00 8.OOOOE+00 7.6800E+04 0.0000E+00 0.OOOOE+00 0.0000E+00 0.0000E+00 0.0000E+00 0.OOOOE+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 2.2000E+03 0.0000E+00 0.0000E+00 0.OOOOE+00 3.0000E+02 0.0000E+00 0.0000E+00 0.OOOOE+00 0.OOOOE+00 0.0000E+00 0.0000E+00 0.0000E+00 2.2000E+03 3.0000E+02 0.OOOOE+00 0.00005+00 0.OOOOE+00 0.00005+00 0.00005+00 0.OOOOE-'00 0.00005+00 0.00005+00 0.OOOOE+00 0.OOOOE+00 2.1700E-04 0.0000E+00 3.4700E-04 1.7500E-04 2.3200E-04 0.0000E+00

2. 5100E-05 1.7800E-05 8.5000E-06 2.9300E-06 0.0000E+00 3.4700E-04 1.7500E-04

DA-NS-08-05O Rev. 0 Page 82 of 112 2.4000E+01 2.3200E-04 7.2000E+02 0.0000E+00 0

Location 3:

cr 3

0 1

2 0.0000E+00 3.4700E-04 7.2000E+02 0.0000E+00 1

4 0.0000E+00 1.0000E+00 2.4000E+01 6.0000E-01 9.6000E+01 4.0000E-01 7.2000E+02 0.0000E+00 Effective Volume Location:

1 6

0.0000E+00 6.9000E-03 2.0000E+00 5.9900E-03 8.0000E+00 2.2200E-03 2.4000E+01 2.0500E-03 9.6000E+01 1.6700E-03 7.2000E+02 0.0000E+00 Simulation Parameters:

1 0.OOOOE+00 0.OOOOE+00 Output Filename:

C:\\Program Files\\radtrad303\\Files\\GinnaFHA\\fhactmtc0.oO 1

1 1

0 0

End of Scenario File

                                                      1. ý############################################

RADTRAD Version 3.03 (Spring 2001) run on 9/04/2008 at 7:54:33 Plant Description Number of Nuclides =

14

.Inventory Power =

1.OOOOE+00 MWth Plant Power Level =

1.OOOOE+00 MWth Number of compartments

=

3 Compartment information Compartment number 1

(Source term fraction =

1.OOOOE+00 Name:

ctmt Compartment volume =-

1.0000E+06 (Cubic feet)

Compartment type is Normal Pathways into and out of compartment 1

Exit Pathway Number 1: ctmt to env Compartment number 2

Name: env Compartment type is Environment Pathways into and out of compartment 2

Inlet Pathway Number 1:-ctmt to env Inlet Pathway Number 3: cr to env Exit Pathway Number 2: env to cr Compartment number 3

Name: cr Compartment volume =

3.6211E+04 (Cubic feet)

Compartment type is Control Room

DA-NS-08-05O Rev.0 Page 83 of 112 Removal devices within compartment:

Filter (s)

Pathways into and out of compartment 3

Inlet Pathway Number 2: env to cr Exit Pathway Number 3: cr to env Total number of pathways 3

                                                                          1. f##################################

RADTRAD Version 3.03 (Spring 2001) run on 9/04/2008 at 7:54:33 Scenario Description

                                                                        1. f##############'#####################

Radioactive Decay is enabled Calculation of Daughters is enabled Release Fractions and Timings GAP EARLY IN-VESSEL 0.000100 hr 0.0000 hrs NOBLES 1.OOOOE+00 0.OOOOE+00 IODINE 1.OOOOE+00 0.0000E+00 CESIUM 0.0000E+00 0.OOOOE+00 TELLURIUM 0.OOOOE+00 0.OOOOE+00 STRONTIUM 0.0000E+00 0.0000E+00 BARIUM 0.0000E+00 0.OOOOE+00 RUTHENIUM 0.OOOOE+00 0.OOOOE+00 CERIUM 0.OOOOE+00J 0.OOOOE+00 LANTHANUM 0.0000E+00 0.0000E+00 LATE RELEASE 0.0000 hrs 0.OOOOE+00 0.OOOOE+00 0.OOOOE+00 0.OOOOE+00 0.OOOOE+00 0.OOOOE+00 O.OOOOE+00 O.OOOOE+00 O.OOOOE+00 RELEASE MASS (gm) 5.268E+00 3.878E-03 0.OOOE+00 0.OOOE+00 0.000E+00 0.OOOE+00 0.OOOE+00 0.OOOE+00 0.000E+00 Inventory Power =

1. MWt Nuclide Name Kr-85 Kr-85m Kr-87 Kr-88 1-131 1-132 1-133 1-134 1-135 Xe-133 Xe-135 Xe-133m Xe-135m Xe-138 Group Specific Inventory (Ci/MWt) 1 1.690E+03 1

2.860E-01 1

3.250E-13 1

1.240E-03 2

4.660E+02 2

2.860E+02 2

1.040E+02 2

6.160E-22 2

3.770E-01 1

1.780E+05 1

1.510E+03 1

3.940E+03 1.210E+01 1

1.000E-12 half Whole Body Inhaled Inhaled life (s)

3. 383E+08 1.613E+04
4. 578E+03
1. 022E+04
6. 947E+05 8.280E+03 7.488E+04 3.156E+03
2. 380E+04
4. 532E+05
3. 272E+04 1.892E+05
9. 180E+02 8.460E+02 DCF (Sv-m3/Bq-s) 1.190E-16 7.480E-15 4.120E-14 1.020E-13 1.820E-14 1.120E-13
2. 940E-14 1.300E-13 8.294E-14 1.560E-15 1.190E-14 1.370E-15 2.040E-14 5.770E-14 Thyroid (Sv/Bq) 0.OOOE+00 0.000E+00
0. 000E+00
0. OOOE+00
2. 920E-07 1.740E-09 4.860E-08 2.880E-10 8.460E-09
0. OOOE+00 0.000E+00 0.000E+00 0.OOOE+00 0.OOOE+00 Effective (Sv/Bq) 0.000E+00 0.OOOE+00 0.OOOE+00 0.000E+00 8.890E-09 1.030E-10 1.580E-09 3.550E-11 3.320E-10 0.OOOE+00 0.OOOE+00 0.000E+00 0.OOOE+00 0.OOOE+00 Nuclide Daughter Kr-85m Kr-85 Kr-87 Rb-87 Kr-88 Rb-88 1-131 Xe-131m 1-133 Xe-133m 1-135 Xe-135m Xe-135 Cs-135 Xe-133m Xe-133 Xe-135m Xe-135 Iodine fractions Aerosol Elemental

=

Organic COMPARTMENT DATA Compartment number Compartment number Compartment number Fraction Daughter Fraction Daughter Fraction 0.21 1.00 1.00 0.01 0.03 0.15 1.00 1.00 1.00 none none none none Xe-133 Xe-135 none none none 0.00 0.00 0.00 0.00 0.97 0.85 0.00 0.00 0.00 none none none none none none none none none 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0000E+00

5. 7000E-01
4. 3000E-01 1: ctmt 2: env 3: cr

DA-NS-08-050 Rev. 0 Page 84 of 112 Compartment Filter Data Time (hr) 0.0000E+00 1.6700E-02 1.9400E-02 8.00OOE+00 7.2000E+02 Flow Rate (cfm) 5.4000E+03 5.4000E+03 5.4000E+03 5.4000E+03 5.4000E+03 Filter Aerosol o.OOOOE+00 o.OOOOE+00 9.8000E+01 9.8000E+01 O.OOOOE+O0 Efficiencies Elemental o.OOOOE+00 o.OOOOE+00 9.OOOOE+01 9.OOOOE+01 0.OOOOE+00

(%)

Organic 0.OOOOE+00 o.0000E+00

7. OOOOE+01
7. OOOOE+01 o.0000E+00 PATHWAY DATA Pathway number 1: ctmt to env Pathway Filter:

Removal Data Time (hr)

Flow Rate (cfm) 0.OOOOE+00 7.6800E+04 2.OOOOE+00 0.OOOOE+00 7.2000E+02 0.OOOOE+00 Pathway number 2: env to cr Pathway Filter:

Removal Data Time (hr)

Flow Rate (cfm) 0.0000E+00 2.2000E+03 1.6700E-02 3.OOOOE+02 7.2000E+02 0.0000E+00 Pathway number 3: cr to env Pathway Filter:

Removal Data Filter Efficiencies

(%)

Aerosol Elemental Organic 0.OOOOE+00 0.OOOOE+00 0.OOOOE+00 0.OOOOE+00 0.OOOOE+00 0.OOOOE+00 0.OOOOE+00 0.0000E+00 0.O0O0E+00 Filter Efficiencies

(%)

Aerosol Elemental Organic 0.OOOOE+00 0.OOOOE+00 0.OOOOE+00 0.OOOOE+00 0.OOOOE+00 0.OOOE+00 0.OOOOE+00 0.OOOOE+00 0.0000E+00 Time (hr)

Flow Rate (cfm) 0.OOOOE+00 2.2000E+03 1.6700E702 3.OOOOE+02 7.2000E+02 0.OOOOE+00 LOCATION DATA Location eab is in comp Location X/Q Data Time (hr)

X/Q (s

0.OOOOE+00 2.170 7.2000E+02 0.00C Location Breathing Rate Dat Time (hr)

Breathir o.0O00E+00 8.0000E+00 2.4000E+01 7.2000E+02 Location lpz is in comp Location X/Q Data Time (hr)

X/Q (s

0.OOOOE+00 2.51(

8.0O00Ef00 1.780 2.4000E+01 8.500 9.6000E+01 2.930 7.2000E+02 0.000 Location Breathing Rate Dat Time (hr)

Breathir o.0000E+00 8.0000E+00 2.4000E+01 7.2000E+02 Location cr is in compa Filter Efficiencies

(%)

Aerosol Elemental Organic 0.0000E+00 O.000E+00 0.0000E+00 0.0C00E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00

,artment 2

m^-3)

OE-04 O0E+00 ta ng Rate (m^3 sec^-l) 3.4700E-04 1.7500E-04 2.3200E-04 C.0000E+00 artment 2

m^-3) 0CE-05 OCE-05 OCE-06 O0E-06 00E+00 ta ng Rate (m^3

  • sec^-l) 3.4700E-04 1.7500E-04 2.3200E-04 C.0000E+00 artment 3

DA-NS-08-050 Rev.0 Page 85 of 112 Location X/Q Data Time (hr) o.OOOOE+00 2.000OE+00 8.OOOOE+00 2.4000E+01 9.6000E+01 7.2000E+02 Location Breathing Time (hr) 0.OOOOE+00 7.2000E+02 Location Occupancy Time (hr) o.0000E+00 2.4000E+01

9. 6000E+01 7.2000E+02 X/Q (s
  • m^-3) 6.9000E-03 5.9900E-03 2.2200E-03 2.0500E-03 1.6700E-03 0.0000E+00 Rate Data Breathing Rate (m^3'*

sec^-l) 3.4700E-04 0.0000E+00 Factor Data Occupancy Factor 1.OOOOE+00 6.0000E-01 4.0000E-01 O.OOOOE+00 USER SPECIFIED TIME STEP DATA -

SUPPLEMENTAL TIME STEPS Time Time step O.O000E+00 O.OOOOE+00 4444#####################44##############################################

RADTRAD Version 3.03 (Spring 2001) run on 9/04/2008 at 7:54:33

        1. 4444444#################################################################

444444 4 44 4#####

4#####

4 44 #

44 44 4

S 44 44 44 44

      1. 4444 44 4444 44 44
  1. 4 #

4#

4 44

      1. 44 444444 44 44
  1. 4444 44 44 44
  1. 4 4

444444 4

                        1. 4444444#44444#######4##4444
                  1. 444444444###44#####444#########444444#44###

Dose Output

                    1. 444444#4#4#44#444##4444#####4#######4####4444###44#####4#44##4444444###444444 eab Doses:

Time (h)

=

0.0001 Whole Body Delta dose (rem) 6.3829E-05 Accumulated dose (rem) 6.3829E-05 Thyroid TEDE 9.0898E-03 3.4216E-04 9.0898E-03 3.4216E-04 lpz Doses:

Time (h)

=

0.0001 Delta dose (rem)

Accumulated dose (rem)

Whole Body 7.3830E-06 7.3830E-06 Thyroid 1.0514E-03 1.0514E-03 TEDE 3.9577E-05 3.9577E-05 cr Doses:

Time (h)

=

0.0001 Whole Body Delta dose (rem) 1.0955E-08 Accumulated dose (rem) 1.0955E-08 eab Doses:

Time (h)

=

0.0167 Delta dose (rem)

Accumulated dose (rem) lpz Doses:

Time (h)

=

0.0167 Delta dose (rem)

Accumulated dose (rem)

Whole Body 2.0399E-02 2.0463E-02 Whole Body 2.3595E-03 2.3669E-03 Thyroid TEDE 5.2674E-05 1.6238E-06 5.2674E-05 1.6238E-06 Thyroid TEDE 2.9050E+00 1.0935E-01 2.9141E+00 1.0969E-01 Thyroid TEDE.

3.3602E-01 1.2649E-02 3.3707E-01 1.2688E-02

DA-NS-08-050 Rev. 0 Page 86 of 112 cr Doses:

Time (h)

=

0.0167 Whole Body Delta dose (rem) 5.6864E-04 Accumulated dose (rem) 5.6865E-04 eab Doses:

Thyroid TEDE 2.7341E+00 8.4286E-02 2.7341E+00 8.4288E-02 Time (h)

=

0.0194 Whole Body Thyroid Delta dose (rem) 3.1709E-03 4.5181E-01 Accumulated dose (rem) 2.3634E-02 3.3659E+00 lpz Doses:

TEDE 1.7005E-02 1.2670E-01 Time (h)

=

0.0194 Delta dose (rem)

Accumulated dose (rem) cr Doses:

Whole Body Thyroid TEDE 3.6677E-04 5.2260E-02 1.9669E-03 2.7337E-03 3.8933E-01 1.4655E-02 Whole Body Thyroid TEDE 1.8573E-04 8.9349E-01 2.7544E-02 7.5439E-04 3.6276E+00 1.1183E-01 Time (h)

=

0.0194 Delta dose (rem)

Accumulated dose (rem) eab Doses:

Time (h)

=

2.0000 Delta dose (rem)

Accumulated dose (rem)

Whole Body 2.5167E-01 2.7530E-01 lpz Doses:

Time (h)

=

2.0000 Whole Body Delta dose (rem) 2.9110E-02 Accumulated dose (rem) 3.1844E-02 cr Doses:

Time (h)

=

2.0000 Whole Body Delta dose (rem) 1.9851E-01 Accumulated dose (rem) 1.9927E-01 eab Doses:

Thyroid

3. 6050E+01
3. 9416E+01 Thyroid 4.1698E+00 4.5591E+00 TEDE 1.3553E+00 1.4820E+00 TEDE 1.5677E-01 1.7142E-01 Thyroid TEDE 1.1768E+02 3.8011E+00 1.2131E+02 3.9130E+00 Time (h)

=

8.0000 Delta dose (rem)

Accumulated dose (rem)

Whole Body Thyroid TEDE 0.0000E+00 0.0000E+00 0.0000OE+00 2.7530E-01 3.9416E+01 1.4820E+00 lpz Doses:

Time (h)

=

8.0000 Whole Body Delta dose (rem) 0.OOOOE+00 Accumulated dose (rem) 3.1844E-02 cr Doses:

Thyroid 0.OOOOE+00

4. 5591E+00 TEDE 0.0000E+00 1.7142E-01 Time (h)

=

8.0000 Delta dose (rem)

Accumulated dose (rem) eab Doses:

Whole Body 1.2200E-01 3.2127E-01 Time (h)

=

24.0000 Whole Body Delta dose (rem) 0.0000E+00 Accumulated dose (rem) 2.7530E-01 Thyroid TEDE 1.3645E-02 1.2242E-01 1.2132E+02 4.0354E+00 Thyroid TEDE 0.0000E+00 0.0000E+00 3.9416E+01 1.4820E+00 Thyroid TEDE 0.0000E+00 0.0000E+00 4.5591E+00 1.7142E-01 lpz Doses:

Time (h) =

24.0000 Delta dose (rem)

Accumulated dose (rem)

Whole Body 0.0000E+00 3.1844E-02 cr Doses:

DA-NS-08-050 Rev. 0 Page 87 of 112 Time (h)

=

24.0000 Delta dose (rem)

Accumulated dose (rem) eab Doses:

Time (h)

=

96.0000 Delta dose (rem)

Accumulated dose (rem) lpz Doses:

Time (h)

=

96.0000 Delta dose (rem)

Accumulated dose (rem)

Whole Body Thyroid TEDE 6.1920E-03 2.0184E-20 6.1920E-03 3.2746E-01 1.2132E+02 4.0416E+00 Whole Body Thyroid TEDE 0.OOOOE+00 0.0000E+00 0.OOOOE+00 2.7530E-01 3.9416E+01 1.4820E+00 Whole Body Thyroid TEDE 0.OOOOE+00 0.0000E+O0 0.OOOOE+00 3.1844E-02 4.5591E+00 1.7142E-01 cr Doses:

Time (h)

=

96.0000 Delta dose (rem)

Accumulated dose (rem) eab Doses:

Time (h)

= 720.0000 Delta dose (rem)

Accumulated dose (rem) lpz Doses:

Whole Body Thyroid 1.1953E-06 3.8989E-67 3.2746E-01 1.2132E+02 Whole Body Thyroid 0.0000E+00 0.0000E+00 2.7530E-01 3.9416E+01 TEDE 1.1953E-06 4.0416E+00 TEDE O.O000E+00 1.4820E+00 TEDE 0.OOOOE+00 1.7142E-01 TEDE 1.5165E-22 4.0416E+00 Time (h)

= 720.0000 Whole Body Thyroid Delta dose (rem) 0.0000E+00 0.0000E+00 Accumulated dose (rem) 3.1844E-02 4.5591E+00 cr Doses:

Time (h)

= 720.0000 Delta dose (rem)

Accumulated dose (rem) 839 Whole Body 1.5165E-22 3.2746E-01 Thyroid 7.9542-279 1.2132E+02 1-131 Summary Time (hr) 0.000 0.017 0.019 0.419 0.719 1.019 1.319 1.619 1.919 2.000 2.300 2.600 2.900 3.200 3.500 3.800 4.100 4.400 4.700 5.000 5.300 5.600 5.900 6.200 6.500 6.800 7.100 ctmt 1-131 (Curies) 4.6589E+02 4.3156E+02 4.2622E+02 6.7378E+01 1.6892E+01 4.2349E+00 1.0617E+00 2.6618E-01 6.6732E-02 4.6016E-02 4.5966E-02 4.5917E-02 4.5867E-02 4". 5818E-02 4.5769E-02 4.5719E-02 4.5670E-02 4.5621E-02 4.5572E-02 4.5523E-02 4.5474E-02 4.5425E-02 4.5376E-02 4.5327E-02 4.5278E-02 4.5229E-02 4.5181E-02 env 1-131 (Curies) 1.0735E-01 3.4414E+01

3. 9750E+01 3.9824E+02 4.4868E+02 4.6132E+02 4.6449E+02 4.6529E+02 4.6549E+02 4.6551E+02
4. 6551E+02 4 6551E+02 4.6551E+02 4.6551E+02 4.6551E+02 4.6551E+02 4.6551E+02 4.6551E+02 4.6551E+02 4.6551E+02 4.6551E+02
4. 6551E+02
4. 6551E+02 4.6551E+02 4.6551E+02 4.6551E+02 4.6551E+02 cr 1-131 (Curies) 7.6898E-04 2.3912E-01 2.4401E-01 8.1330E602 2.3395E-02 6.2172E-03 1.6017E-03 4.0694E-04 1.0271E-04 7.0909E-05 7.6852E-06 8.8450E-07 1.0661E-07 1.3271E-08 1.6873E-09
2. 1740E-10 2.8239E-11 3.6859E-12 4.8250E-13 6.3268E-14 8.3043E-15 1.0906E-15 1.4329E-16 1.8828E-17 2.4744E-18 3.2521E-19 4.2744E-20

DA-NS-08-050 Rev.0 Page 88 of 112 7.400 7.700 8.000 8.300 8.600 8.900 9.200 9.500 9.800 10.100 10.400 24.000 96.000 720.000

4. 5132E-02 4.5083E-02 4.5035E-02 4.4 986E-02 4.4 938E-02
4. 4889E-02 4 4841E-02
4. 4793E-02
4. 4744E-02 4.4 696E-02 4.4648E-02 4.2519E-02 3.2829E-02
3. 4896E-03
4. 6551E+02
4. 6551E+02
4. 6551E+02
4. 6551E+02
4. 6551E+02
4. 6551E+02 4.6551E+02 4.6551E+02 4.6551E+02
4. 6551E+02
4. 6551E+02
4. 6551E+02
4. 6551E+02
4. 6551E+02
5. 6182E-21 7.3845E-22 9.7062E-23 1.2758E-23 1.6769E-24 2.2042E-25 2.8972E-26 3.8081E-27 5.0055E-28 6.5793E-29 8.6480E-30 9.6749E-70 3.0082-281 0.OOOOE+00 Cumulative Dose Summary eab lpz cr Time Thyroid TEDE Thyroid (hr) 0.000 0.017 0.019 0.419 0.719 1.019 1.319 1.619 1.919 2.000 2.300 2.600 2.900 3.200 3.500 3.800 4..100 4.400 4.700 5.000 5.300 5.600 5.900 6.200 6.500 6.800 7.100 7.400 7.700 8.000 8.300 8.600 8.900 9.200 9.500 9.800 10.100 10.400 24.000 96.000 720.000 (rem) 0.0000E+00
2. 914 1E+00 3.3659E+00
3. 3725E+01 3.7993E+01 3.9062E+01
3. 9330E+01 3.9397E+01 3.9414E+01 3.9416E+01 3.9416E+01 3.9416E+01
3. 9416E+01
3. 9416E +01 3.9416E+01 3.9416E+01
3. 9416E+01
3. 9416E+01 3.9416E+01 3.9416E+01 3.9416E+01 3.9416E+01 3.9416E+01 3.9416E+01 3 9416E+01 3.9416E+01 3.9416E+01 3.9416E+01
3. 9416E+01 3.9416E+01
3. 9416E+01
3. 9416E+01 3.9416E+01 3.9416E+01 3.9416E+01 3.9416E+01 3.9416E+01
3. 9416E+01
3. 9416E+01 3.9416E+01
3. 9416E+01 (rem) 0.0000E+00 1.0969E-01 1.2670E-01 1.2686E+00 1.4287E+00 1.4688E+00 1.4788E+00 1.4813E+00 1.4819E+00 1.4820E+00 1.4820E+00 1.4820E+00 1.4820E+00 1.4820E+00 1.4820E+00 1.4820E+00 1.4820E+00 1.4820E+00 1.4820E+00 1:4820E+00

,1.4820E+00 1.4820E+00 1.4820E+00 1.4820E+00 1.4820E+00 1.4820E+00 1.4820E+00 1.4820E+00 1.4820E+00 1.4820E+00 1.4820E+00 1.4820E+00 1.4820E+00 1.4820E+00 1.4820E+00 1.4820E+00 1.4820E+00 1.4820E+00 1.4820E+00 1.4820E+00 1.4820E+00 (rem) 0.0000E+00 3.3707E-01 3.8933E-01 3.9009E+00 4.3945E+00 4.5182E+00 4.5492E+00 4.5570E+00 4.5589E+00 4.5591E+00

4. 5591E+00 4.5591E+00
4. 5591E+00
4. 5591E+00
4. 5591E+00 4.5591E+00 4.5591E+00 4.5591E+00 4.5591E+00 4.5591E+00
4. 5591E+00
4. 5591E+00
4. 5591E+00
4. 5591E+00
4. 5591E+00
4. 5591E+00 4.5591E+00 4.5591E+00 4.5591E+00 4.5591E+00 4.5591E+00 4.5591E+00 4.5591E+00 4.5591E+00
4. 5591E+00 4.5591E+00 4.5591E+00 4.5591E+00 4.5591E+00 4.5591E+00 4.5591E+00 TEDE Thyroid (rem)

(rem) 0.OOOOE+00 0.0000E+00 1.2688E-02 2.7341E+00 1.4655E-02 3.6276E+00 1.4673E-01 9.4461E+01 1.6526E-01 1.1400E+02 1.6989E-01 1.1942E+02 1.7105E-01 1.2085E+02 1.7134E-01 1.2121E+02 1.7141E-01 1.2130E+02 1.7142E-01 1.2131E+02 1.7142E-01 1.2132E+02 1.7142E-01 1.2132E+02 1.7142E-01 1.2132E+02 1.7142E-01 1.2132E+02 1.7142E-01 1.2132E+02 1.7142E-01 1.2132E+02 1.7142E-01 1.2132E+02 1.7142E-01 1.2132E+02 1.7142E-01 1.2132E+02 1.7142E-01 1.2132E+02 1.7142E-01 1.2132E+02 1.7142E-01 1.2132E+02 1.7142E-01 1.2132E+02 1.7142E-01 1.2132E+02 1.7142E-01 1.2132E+02 1.7142E-01 1.2132E+02 1.7142E-01 1.2132E+02 1.7142E-01 1.2132E+02 1.7142E-01 1.2132E+02 1.7142E-01 1.2132E+02 1.7142E-01 1.2132E+02 1.7142E-01 1.2132E+02 1.7142E-01 1.2132E+02 1.7142E-01 1.2132E+02 1.7142E-01 1.2132E+02 1.7142E-01 1.2132E+02 1.7142E-01 1.2132E+02 1.7142E-01 1.2132E+02 1.7142E-01 1.2132E+02 1.7142E-01 1.2132E+02 1.7142E-01 1.2132E+02 TEDE (rem) 0.0000E+00 8.4288E-02 1.1183E-01

2. 9376E+00 3.5733E+00 3.7731E+00 3.8461E+00 3.8826E+00 3.9073E+00 3.9130E+00
3. 9314E+00 3.9469E+00
3. 9603E+00
3. 9717E+00 3.9815E+00 3.9900E+00 3.9972E+00 4.0035E+00 4.0088E+00 4.0134E+00 4.0174E+00 4.0208E+00 4.0237E+00
4. 0262E+00 4.0284E+00
4. 0302E+00
4. 0318E+00 4.0332E+00 4.0344E+00 4.0354E+00 4.0362E+00 4.0370E+00 4.0376E+00 4.0382E+00 4.0387E+00 4.03 91E+00 4.0394E+00 4.0397E+00
4. 0416E+00 4.0416E+00 4.0416E+00 Worst Two-Hour Doses eab Time Whole Body Thyroid TEDE (hr)

(rem)

(rem)

(rem) 0.0 2.7530E-01 3.9416E+01 1.4820E+00

DA-NS-08-05O Rev. 0 Page 89 of 112 ATTACHMENT V RADTRAD OUTPUT FILE FHASFPCO.oO

                                                                                    1. 4#############################

RADTRAD Version 3.03 (Spring 2001) run on 9/15/2008 at 14:37:19 File information Plant file

= C:\\Program Files\\radtrad303\\Files\\GinnaFHA\\New\\fhasfpc0.psf Inventory file

= c:\\program files\\radtrad303\\files\\ginnafha\\fhac0.nif Release file

= c:\\program files\\radtrad303\\files\\ginnafha\\fha.rft Dose Conversion file

= c:\\program files\\radtrad303\\files\\ginnafha\\fgrl4.inp

  1. 4444 4

4 #####

4 44444 4

4#

  1. 4 44 44#

4 4

444 444 4#4 4##44#

4#

4 4

4

  1. 4#
  1. 4#
  1. 4#

4 4

4 4##

44 444 4

4 4

4 4 4 4 4 4#4#

4 Radtrad 3.03 4/15/2001 Nuclide Inventory File:

c:\\program files\\radtrad303\\files\\ginnafha\\fhacO.nif Plant Power Level:

1.0000E+00 Compartments:

3 Compartment 1:

sfp 3

1.0000E+06 0

0 0

0 0

Compartment 2:

env 2

0.0000E+00 0

0 0

00 Compartment 3:

cr 1

3.6211E+04 0

0 1

0 0

Pathways:

3 Pathway 1:

sfp to env 1

2 2

Pathway 2:

env to cr

DA-NS-08-05O Rev. 0 Page 90 of 112

.2 3

2 Pathway 3:

cr to env 3

2 2

End of Plant Model File Scenario Description Name:

Plant Model Filename:

Source Term:

1 1

1.0000E+00 c:\\program files\\radtrad303\\files\\ginnafha\\fgrl4.inp c:\\program files\\radtrad303\\files\\ginnafha\\fha.rft o.OOOOE+00 1

O.OOOOE+00 5.7000E-01 4.3000E-01 1.0000E+00 Overlying Pool:

0 o.0000E+00 0

0 0

0 Compartments:

3 Compartment 1:

1 0

0 0

0 0

0 0

Compartment 2:

0 1

0 0

0 0

0 0

0 Compartment 3:

0 1

0 0

0 0

1 5.4000E+03 5

0.OOOOE+00 1.6700E-02 1.9400E-02 8.0000E+00 7.2000E+02 0

0 Pathways:

3 Pathway 1:

0 0

0 0

0 o.OOOOE+00 o.o000E+00 9.8000E+01 9.8000E+01 o.0000E+00 o.OOOOE+00 o.0000E+00 9.0000E+01 9.OOOOE+01 0.0000E+00 0.0000E+00 0.0000E+00 7.OOOOE+01

7. 0000E+01 0.OOOOE+00

DA-NS-08-050 Rev.0 Page 91 of 112 1

3 o.OOOOE+00 2.OOOOE+00 7.2000E+02 0

0 0

0 0

0 Pathway 2:

0 0

0 00 1

3 0.OOOOE+00 1.6700E-02 7.2000E+02 0

0 0

0 00 Pathway 3:

0 7.6800E+04 0.OOOOE+00 9.0000E+01 7.OOOOE+01 0.0000E+00 0.OOOOE+00 0.OOOOE+00 0.0O00E+00 0.OOOOE+00 0.OOOOE+00 0.OOOOE+00 0.OOOOE+00 2.2000E+U3 i3.OOO0E+02 I 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E00 0.0000E+00 0.0000E-+00 O.0000E+00 O.0000E+00 0.0000E+00 0

0 0

0

0. 0000E+/-00
1. 6700E-02
7. 2000E+02 0

0 0

0 0

0 Dose Locations:

3 Location 1:

eab 2

1 2

0. OOOOE+00
7. 2000E+02 1

4 0.OOOOE+00

8. OOOOE+00 2.4000E-01 7.2000E+02 0

Location 2:

lpz 2

1 5

0.OOOOE+00

8. OOOOE+00
2. 4000E+01 9.600EQO01t 7.2000E+02 1

4 0.OOOOE+00 8.OOOOE+00 2.2000E+03 0.OOOOE+00 0.OOOOE+00 0.OOOOE+00 3.OOOOE+02 0.0000E+00 0.OOOOE+00 0.OOOOE+00 0.0000E+00 0.OOOOE+00 0.OOOOE+00 0.OOOOE+00 2.1700E-04 0.OOOOE+00 3.4700E-04 1.7500E-04 2.3200E-04 0.OOOOE+00 2.5100E-05 1.7800E-05 8.5000E-06 2.9300E-06 0.OOOOE+00 3.4700E-04 1.7500E-04

DA-NS-08-05O Rev. 0 Page 92 of 112 2.4000E+01 2.3200E-04 7.2000E+02 0.0000E+00 0

Location 3:

cr 3

0 1

2 0.0000E+00

,3.4700E-04 7.2000E+02 0.0000E+00 1

4 0.0000E+00 1.0000Et00 2.4000E+01 6.'OOOOE-01 9.6000E+01 4.OOOOE-01 7.2000E+02 0.0000E+00 Effective Volume Location:

1 6

0.0000E+00 2.0400E-03 2.0000E+00 1.5300E-03 8.0000E+00 6.5700E-04 2.4000E+01 5.1900E-04 9.6000E+01 4.5800E-04 7.2000E+02 0.OOOOE+00 Simulation Parameters:

1 0.0000E+00 0.OOOOE+00 Output Filename:

C:\\Program Files\\radtrad303\\Files\\GinnaFHA\\New\\fhasfpc0.o0 1

1 1

0 0

End of Scenario File RADTRAD Version 3.03 (Spring 2001) run on 9/15/2008 at 14:37:19 Plant Description Number of Nuclides =

14 Inventory Power 1.0000E+00 MWth Plant Power Level =

1.OOOOE+00 MWth Number of compartments

=

3 Compartment information Compartment number 1

(Source term fraction =

1.OOOOE+00 Name: sfp Compartment volume =

1.OOOOE+06 (Cubic feet)

Compartment type is Normal Pathways into and out of compartment 1

Exit Pathway Number 1: sfp to env Compartment number 2

Name: env Compartment type is Environment Pathways into and out of compartment 2

Inlet Pathway Number 1: sfp to env Inlet Pathway Number 3: cr to env Exit Pathway Number 2: env to cr Compartment number 3

Name:

cr Compartment volume =

3.6211E+04 (Cubic feet)

Compartment type is Control Room

DA-NS-08-05O Rev. 0 Page 93 of 112 Removal devices within compartment:

Filter(s)

Pathways into and out of compartment 3

Inlet Pathway Number 2: env to cr Exit Pathway Number 3: cr to env Total number of pathways =

3 RADTRAD Version 3.03 (Spring 2001) run on 9/15/2008 at 14:37:19

                                                        1. 0###########################################

Scenario Description Radioactive Decay is enabled Calculation of Daughters is enabled Release Fractions and Timings GAP EARLY IN-VESSEL 0.000100 hr 0.0000 hrs NOBLES 1.0000E+00 0.0000E+00 IODINE 1.0000E+00 0.0000E+00 CESIUM 0.0000E+00 0.0000E+00 TELLURIUM 0.0000E+00 0.0000E+00 STRONTIUM 0.0000E+00 0.0000E+00 BARIUM 0.0000E+00 0.0000E+00 RUTHENIUM 0.OOOOE+00 0.OOOOE+00 CERIUM 0.OOOOE+00 0.OOOOE+00 LANTHANUM 0.OOOOE+00 0.OOOOE+00 LATE RELEASE 0.0000 hrs

0. 0000E+00 0.0000E+00 0.0000OOE+00 0.OOOOE+O0 0.OOOOE+00 O.OOOOE+00 O.OOOOE+00 O.OOOOE+00 O.OOOOE+00 RELEASE MASS (gm) 5.268E+00 3.878E-03 0.OOOE+00 0.OOOE+00 0.OOOE+00 0.000E+00 0.000E+00 O.OOOE+00 0.OOOE+00 Inventory Power =
1. MWt Nuclide Name Kr-85 Kr-85m Kr-87 Kr-88 1-131 1-132 1-133 1-134 1-135 Xe-133 Xe-135 Xe-133m Xe-135m Xe-138 Group Specific Inventory (Ci/MWt) 1 1.690E+03 1

2.860E-01 1

3.250E-13 1

1.240E-03 2

4.660E+02 2

2.860E+02 2

1.040E+02 2

6.160E-22 2

3.770E-01 1

1.780E+05 1

1.510E+03 I

3.940E+03 1

1.210E+01 1

1.OOOE-12 half life (s) 3.383E+08 1 613E+04

4. 578E+03 I. 022E+04
6. 947E+05
8. 280E+03
7. 488E+04 3.156E+03
2. 380E+04
4. 532E+05
3. 272E+04
1. 892E+05
9. 180E+02 8.460E+02 Whole Body DCF (Sv-m3/Bq-s) 1.190E-16 7.480E-15 4.120E-14 1.020E-13 1.820E-14 1.120E-13 2.940E-14 1.300E-13 8.294E-14 1.560E-15 1.190E-14 1.370E-15 2.040E-14 5.770E-14 Inhaled Thyroid (Sv/Bq) 0.OOOE+00 0.OOOE+00 0.OOOE+00 0.OOOE+00 2.920E-07 1.740E-09 4.860E-08 2.880E-10 8.460E-09
0. OOOE+00
0. OOOE+00 0.OOOE+00 0.OOOE+00 0.OOOE+00 Daughter none none none none none none none none none Inhaled Effective (Sv/Bq) 0.OOOE+00 0.OOOE+00 0.OOOE+00 0.OOOE+00 8.890E-09 1.030E-10 1.580E-09 3.550E-I1 3.320E-10 0.OOOE+00 0.000E+00 0.OOOE+00 0.OOOE+00 0.000E+00 Fraction 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Nuclide Daughter Kr-85m Kr-85 Kr-87 Rb-87 Kr-88 Rb-88 1-131 Xe-131m 1-133 Xe-133m 1-135 Xe-135m Xe-135 Cs-135 Xe-133m Xe-133 Xe-135m Xe-135 Iodine fractions Aerosol

=

Elemental

=

Organic COMPARTMENT DATA Compartment number Compartment number Compartment number Fraction 0.21 1.00 1..00 0.01 0.03 0.15 1.00 1.00 1.00 0.000OE+00 5.7000E-01 4.3000E-01 Daughter none none none none Xe-133 Xe-135 none none none Fraction 0.00 0.00 0.00 0.00 0.97 0.85 0.00 0.00 0.00 1: sfp 2: env 3: cr

DA-NS-08-050 Rev. 0 Page 94 of 112 Compartment Filter Data Time (hr) 0.OOOOE+00 1.6700E-02 1.9400E-02 8.OOOOE+00 7.2000E+02 Flow Rate (cfm)

"5.4000E+03 5.4000E+03 5.4000E+03 5.4000E+03 5.4000E+03 Filter Aerosol 0.0000E+00 o.OOOOE+00

9. 8000E+01
9. 8000E+01 o.OOOE+00 Efficiencies Elemental o.OOOOE+00 0.0000E+00 9.OOOOE+01 9.OOOOE+0O o.OOOOE+00

(%)

Organic o.OOOOE+00 o.OOOOE+00 7.OOOOE+01

7. OOOOE+01 o.OOOOE+00 PATHWAY DATA Pathway number 1: sfp to env Pathway Filter:

Removal Data Time (hr)

Flow Rate (cfm) 0.0000E+00 7.6800E+04 2.OOOOE+00 O.OOOOE+00 7.2000E+02 O.OOOOE+00 Filter Efficiencies

(%)

Aerosol Elemental Organic O.OOOOE+00 9.OOOOE+01 7.0000E+01 O.OOOOE+00 0.0000E+00 O.OOOOE+00 O.OOOOE+00 0.OOOOE+00 O.OOOOE+00 Pathway number 2: env to cr Pathway Filter:

Removal Data Time (hr)

Flow Rate (cfm)

O.OOOOE+00 2.2000E+03 1.6700E-02 3.OOOOE+02 7.2000E+02 O.OOOOE+00 Filter Efficiencies

(%)

Aerosol Elemental Organic O.OOOOE+00 O.OOOOE+00 O.OOOOE+00 O.OOOOE+00 0.OOOOE+00 O.OOOOE+00 O.OOOOE+00 O.OOOOE+00 O.OOOOE+00 Pathway number 3: cr to env Pathway Filter:

Removal Data Time (hr)

Flow Rate (cfm)

O.OOOOE+00 2.2000E+03 1.6700E-02 3.OOOE+02 7.2000E+02 O.OOOOE+00 Filter Efficiencies (%)

Aerosol Elemental Organic O.OOOOE+/-00 O.OOOOE+00 O.0000E+00 0.OOOOE+00 O.OOOOE+00 O.OOOOE+00 0.0000E+00 O.OOOOE+00 O.OOOOE+00 LOCATION DATA Location eab Location X/Q Data Time (hr) o.OOOOE+00 7.2000E+02 is in compartment 2

X/Q (s

  • m^-3) 2.1700E-04 0.OOOOE+00 Location Breathing Rate Data Time (hr)

Breathing Rate (m^3

  • sec^-l) 0.OOOOE+00 3.4700E-04 8.OOOOE+00 1.7500E-04 2.4000E+01 2.3200E-04 7.2000E+02 O.OOOOE+00 Location lpz is in compartment 2

Location X/Q Data Time (hr) 0.OOOOE+00 8.OOOOE+00 2.4000E+01 9.6000E+01 7.2000E+02 X/Q (s

  • m^-3)
2. 5100E-05 1.7800E-05 8.5000E-06 2.9300E-06 0.0000E+00 Location Breathing Rate Data Time (hr)

Breathing Rate (m^3

  • sec^-l) 0.0000E+00 3.4700E-04 8.OOOE+00 1.7500E-04 2.4000E+01 2.3200E-04 7.2000E+02 O.OOOOE+00 Location cr is in compartment 3

DA-NS-08-050 Rev. 0 Page 95 of 112 Location X/Q Data Time (hr)

0. 0000E+00 2.0000E+00 8.0000E+00 2.4000E+01
9. 6000E+01
7. 2000E+02 Location Breathing Time (hr) 0.0000E+00 7.2000E+02 Location Occupancy Time (hr) o0.OOOOE+00 2.4000E+01 9,.6000E+01 7.2000E+02 X/Q (s
  • m^-3) 2.0400E-03 1.5300E-03 6.5700E-04 5.1900E-04 4.5800E-04 0.0000E+00 Rate Data Breathing Rate (m^3 sec^-l) 3.4700E-04 0.0000E+00 Factor Data Occupancy Factor 1.0000E+00 6.0000E-01 4.0000E-01 0.0000E+00 USER SPECIFIED TIME STEP DATA -

SUPPLEMENTAL TIME STEPS Time Time step 0.0000E+00 0.0000E+00 RADTRAD Version 3.03 (Spring 2001) run on 9/15/2008 at 14:37:19 t

  1. t
  1. t I It It It It It It It It It It#

It I ###~

It It It It It It It It It It It It It It##t#

I###

It It It t### I It It It It It

  1. t Dose Output eab Doses:

Time (h)

=

0.0001.

Whole Body Delta dose (rem) 5.7265E-05 Accumulated dose (rem) 5.7265E-05 lpz Doses:

Thyroid TEDE 1.6907E-03 1.0903E-04 1.6907E-03 1.0903E-04 Thyroid TEDE 1.9556E-04 1.2612E-05 1.9556E-04 1.2612E-05 Time (h)

=

0.0001 Whole Body Delta dose (rem) 6.6237E-06 Accumulated dose (rem) 6.6237E-06 cr Doses:

Time (h)

=

0.0001 Delta dose (rem)

Accumulated dose (rem)

Whole Body Thyroid 2.9059E-09 2.8966E-06 2.9059E-09 2.8966E-06 TEDE 9.1600E-08 9.1600E-08 eab Doses:

Time (h)

=

0.0167 Delta dose (rem)

Accumulated dose (rem) ipz Doses:

Whole Body 1.8301E-02 1.8359E-02 Thyroid TEDE 5.4034E-01 3.4847E-02 5.4203E-01 3.4956E-02 Thyroid TEDE 6.2500E-02 4.0306E-03 6.2695E-02 4.0433E-03 Time (h)

=

0.0167 Whole Body Delta dose (rem) 2.1169E-03 Accumulated dose (rem) 2.1235E-03 cr Doses:

DA-NS-08-05O Rev. 0 Page 96 of 112 Time (h) 0.0167 Delta dose (rem)

Accumulated dose (rem) eab Doses:

Whole Body Thyroid TEDE 1.5083E-04 1.5035E-01 4.7546E-03 1.5083E-04 1.5035E-01 4.7547E-03 Time (h)

=

0.0194 Whole Body Thyroid TEDE Delta dose (rem) 2.8458E-03 8.4036E-02 5.4189E-03 Accumulated dose (rem) 2.1204E-02 6.2606E-01 4.0375E-02 lpz Doses:

Time (h)

=

0.0194 Whole Body Thyroid TEDE Delta dose (rem) 3.2917E-04 9.7203E-03 6.2680E-04 Accumulated dose (rem) 2.4527E-03 7.2416E-02 4.6701E-03 cr Doses:

Time (h) 0.0194 Whole Body Thyroid TEDE Delta dose (rem) 4.9282E-05 4.9134E-02 1.5538E-03 Accumulated dose (rem) 2.0012E-04 1.9949E-01 6.3084E-03 eab Doses:

Time (h) =

2.0000 Delta dose (rem)

Accumulated dose (rem) lpz Doses:

Time (h)

=

2.0000 Delta dose (rem)

Accumulated dose (rem)

Whole Body Thyroid TEDE 2.2665E-01 6.7053E+00 4.3193E-01 2.4785E-01 7.3313E+00 4.7230E-01 Whole Body Thyroid TEDE 2.6216E-02 7.7558E-01 4.9960E-02 2.8669E-02 8.4800E-01 5.4630E-02 cr Doses:

Time (h) =

2.0000 Whole Body Thyroid Delta dose (rem) 5.7994E-02 6.8693E+00 Accumulated dose (rem) 5.8194E-02 7.0688E+00 TEDE 2.6828E-01 2.7459E-01 eab Doses:

Time (h)

=

8.0000 Whole Body Thyroid TEDE Delta dose (rem) 0.0000E+00 0.0000E+00 0.OOOOE+00 Accumulated dose (rem) 2.4785E-01 7.3313E+00 4.7230E-01 lpz Doses:

Time (h)

=

8.0000 Delta dose (rem)

Accumulated dose (rem)

Whole Body Thyroid TEDE 0.0000E+00 0.0000E+00 0.0000E+00 2.8669E-02 8.4800E-01 5.4630E-02 cr Doses:

Time (h)

=

8.0000 Delta dose (rem)

Accumulated dose (rem) eab,Doses:

Time (h)

=

24.0000 Delta dose (rem)

Accumulated dose (rem) lpz Doses:

Whole Body Thyroid 3.6069E-02 9.1067E-04 9.4263E-02 7.0697E+00 TEDE 3.6097E-02 3.1069E-01 Whole Body 0.0000E+00 2.4785E-01 Thyroid TEDE 0.0000E+00 0.0000E+00 7.3313E+00 4.7230E-01 Thyroid TEDE 0.0000E+00 0.0000E+00 8.4800E-01 5.4630E-02 Time (h)

=

24.0000 Whole Body Delta dose (rem) 0.0000E+00 Accumulated dose (rem) 2.8669E-02 cr Doses:

Time (h)

=

24.0000 Whole Body Thyroid Delta dose (rem) 1.8307E-03 1.7902E-21 Accumulated dose (rem) 9.6094E-02 7.0697E+00 TEDE 1.8307E-03 3.1252E-01

DA-NS-08-05O Rev. 0 Page 97 of 112 eab Doses:

Time (h) =

96.0000 Delta dose (rem)

Accumulated dose (rem) lpz Doses:

Time (h) =

96.0000 Delta dose (rem)

Accumulated dose (rem)

Whole Body Thyroid TEDE 0.OOOOE+00 0.0000E+00 0.OOOOE+00 2.4785E-01 7.3313E+00 4.7230E-01 Whole Body Thyroid TEDE O.O000E+00 O.O000E+00 O.OOOOE+00 2.8669E-02 8.4800E-01 5.4630E-02 Whole Body Thyroid TEDE 3.5339E-07 3.4581E-68 3.5339E-07 9.6094E-02 7.0697E+00 3.1252E-01 cr Doses:

Time (h)

=

96.0000 Delta dose (rem)

Accumulated dose (rem) eab Doses:

Time (h)

= 720.0000 Whole Body Thyroid TEDE Delta dose (rem) 0.0000E+00 0.0000E+00 0.0000E+00 Accumulated dose (rem) 2.4785E-01 7.3313E+00 4.7230E-01 lpz Doses:

Time (h)

= 720.0000 Whole Body Thyroid Delta dose (rem) 0.0000E+00 0.0000E+00 Accumulated dose (rem) 2.8669E-02 8.4800E-01 TEDE 0.0000E+00 5.4630E-02 cr Doses:

Time (h)

= 720.0000 Delta dose (rem)

Accumulated dose (rem)

Whole Body 4.4835E-23 9.6094E-02 Thyroid TEDE 7.0550-280 4.4835E-23 7.0697E+00 3.1252E-01 839 1-131 Summary

                                                                                                        1. f################

Time (hr) 0.000 0.017 0.019 0.419 0.719 1.019 1.319 1.619 1.919 2.000 2.300 2.600 2.900 3.200 3.500 3.800 4;100 4.400 4.700 5.000 5.300

  • 5.600 5.900 6.200 6.500 6.800 7.100 7.400 7.700 8.000 sfp 1-131 (Curies) 4.6589E+02 4.3156E+02 4.2622E+02 6.7378E+01 1.6892E+01 4.2349E+00 1.0617E+00 2.6618E-01 6.6732E-02 4.6016E-02 4.5966E-02 4.5917E-02 4.5867E-02 4.5818E-02 4.5769E-02 4.5719E-02 4.5670E-02 4.5621E-02 4.5572E-02 (4.5523E-02 4.5474E-02 4.5425E-02 4.5376E-02 4.5327E-02 4.5278E-02 4.5229E-02 4.5181E-02 4.5132E-02 4.5083E-02 4.5035E-02 env 1-131 (Curies) 1,9967E-02 6.4010E+00 7.3935E+00 7.4073E+01 8.3454E+01 8.5806E+01 8.6396E+01
8. 6544E+01
8. 6581E+01 8.6584E+01
8. 6584E+01
8. 6584E+01
8. 6584E+01
8. 6584E+01
8. 6584E+01
8. 6584E+01
8. 6584E+01
8. 6584E+01
8. 6584E+01
8. 6584E+01
8. 6584E+01
8. 6584E+01
8. 6584E+01
8. 6584E+01 8.6584E+01 8.6584E+01
8. 6584E+01 8.6584E+01
8. 6584E+01
8. 6584E+01 cr 1-131 (Curies) 4.2287E-05 1.3150E-02 1.3418E-02 4.8875E-03 1.4454E-03 3.9001E-04 1.0132E-04 2.5858E-05 6.5422E-06 4.5185E-06 5.4557E-07 6.7996E-08 8.6521E-09 1.1153E-09 1.4491E-10 1.8918E-11 2.4767E-12 3.2478E-13 4.2630E-14 5.5989E-15 7.3558E-16 9.6660E-17 1.2703E-17 1.6696E-18 2.1944E-19 2.8842E-20 3.7910E-21 4.9829E-22 6.5496E-23 8.6089E-24

DA-NS-08-050 Rev.0 Page 98 of 112 8.300 8.600 8.900 9.200 9.500 9.800 10.100 10.400 24.000 96.000 720.000 4.4986E-02 4.4938E-02 4.4889E-02 4.4841E-02 4.4793E-02 4.4744E-02 4.4696E-02 4.4648E-02 4.2519E-02 3.2829E-02 3.4896E-03 8.6584E+01

8. 6584E+01
8. 6584E+01
8. 6584E+01
8. 6584E+01
8. 6584E+01
8. 6584E+01
8. 6584E+01
8. 6584E+01

.8.6584E+01

8. 6584E+01
1. 1316E-24
1. 4874E-25
1. 9550E-26
2. 5697E-27 3.3777E-28 4.4396E-29
5. 8356E-30
7. 6704E-31
8. 5812E-71 2.6681-282 0 OOOOE+00 Cuimulative Dose Summary eab Time Thyroid TEDE (hr)

(rem)

(rem) 0.000 0.0000E+00 0.0000E+00 0.017 5.4203E-01 3.4956E-02 0.019 6.2606E-01 4.0375E-02 0.419 6.2728E+00 4.0427E-01 0.719 7.0666E+00 4.5532E-01 1.019 7.2655E+00 4.6809E-01 1.319 7.3154E+00 4.71288-01 1.619 7.3279E+00 4.7208E-01 1.919 7.3310E+00 4.7228E-01 2.000 7.3313E+00 4.7230E-01 2.300 7.3313E+00 4.7230E-01 2.600 7.3313E+00 4.7230E-01 2.900 7.3313E+00 4.7230E-01 3.200 7.3313E+00 4.7230E-01 3.500 7.3313E+00 4.7230E-01 3.800 7.3313E+00 4.7230E-01 4.100 7.33138+00 4.72308-01 4.400 7.33138+00 4.7230E-01 4.700 7.3313E+00 4.72308-01 5.000 7.3313E+00 4.7230E-01 5.300 7.3313E+00 4.7230E-01 5.600 7.33138+00 4.72308-01 5.900 7.33138+00 4.7230E-01 6.200 7.3313E+00 4.7230E-01 6.500 7.3313E+00 4.72308-01 6.800 7.33138+00 4.7230E-01 7.100 7.3313E+00 4.7230E-01 7.400 7.3313E+00 4.72308-01 7.700 7.33138+00 4.7230E-01 8.000 7.3313E+00 4.72308-01 8.300 7.33138+00 4.7230E-01 8.600 7.3313E+00 4.7230E-01 8.900 7.33138+00 4.7230E-01 9.200 7.33138+00 4.72308-01 9.500 7.33138+00 4.72308-01, 9.800 7.3313E+00 4.72308-01 10.100 7.3313E+00 4.7230E-01 10.400 7.33138+00 4.7230E-01 24.000 7.3313E+00 4.7230E-01 96.000 7.33138+00 4.72308-01 720.000 7.3313E+00 4.7230E-01 lpz cr Thyroid TEDE Thyroid (rem)

(rem)

(rem) 0.0000E+00 0.0000E+00 0.0000E+00 6.2695E-02 4.04338-03 1.5035E-01 7.2416E-02 4.6701E-03 1.9949E-01 7.2556E-01 4.67618-02 5.42468+00 8.1738E-01 5.2666E-02 6.61268+00 8.4039E-01 5.41438-02 6.94988+00 8.4616E-01 5.4512E-02 7.0392E+00 8.4760E-01 5.4605E-02 7.06238+00 8.4796E-01 5.46288-02 7.0682E+00 8.4800E-01 5.4630E-02 7.0688E+00 8.4800E-01 5.46308-02 7.06968+00 8.4800E-01 5.4630E-02 7.0697E+00 8.4800E-01 5.4630E-02 7.0697E+00 8.4800E-01 5.4630E-02 7.0697E+00 8.4800E-01 5.46308-02 7.06978+00 8.4800E-01 5.4630E-02 7.0697E+00 8.4800E-01 5.4630E-02 7.06978+00 8.4800E-01 5.4630E-02 7.0697E+00 8.4800E-01 5.4630E-02 7.0697E+00 8.48008-01 5.46308-02 7.06978+00 8.4800E-01 5.46308-02 7.0697E+00 8.48008-01 5.4630E-02 7.0697E+00 8.4800E-01 5.46308-02 7.0697E+00 8.4800E-01 5.46308-02 7.0697E+00 8.4800E-01 5.46308-02 7.0697E+00 8.4800E-01 5.4630E-02 7.0697E+00 8.48008-01 5.46308-02 7.06978+00 8.4800E-01 5.4630E-02 7.06978+00 8.4800E-01 5.4630E-02 7.06978+00 8.4800E-01 5.46308-02 7.06978+00 8.4800E-01 5.4630E-02 7.06978+00 8.4800E-01 5.4630E-02 7.06978+00 8.48008-01 5.4630E-02 7.06978+00 8.4800E-01 5.46308-02 7.06978+00 8.4800E-01 5.4630E-02 7.0697E+00 8.4800E-01 5.46308-02 7.06978+00 8.4800E-01 5.46308-02 7.0697E+00 8.4800E-01 5.46308-02 7.06978+00 8.4800E-01 5.46308-02 7.0697E+00 8.4800E-01 5.46308-02 7.06978+00 8.4800E-01 5.4630E-02 7.0697E+00 TEDE (rem) 0.0000OE+00 4.7547E-03 6.3084E-03 1.78988-01 2.2636E-01 2.46678-01 2.58128-01 2.66358-01 2.7299E-01 2.74598-01 2.7995E-01 2.8454E-01 2.88488-01 2.91868-01 2.94778-01 2.9726E-01 2.99418-01 3.0125E-01 3.02848-01 3.0420E-01 3.0537E-01 3.0637E-01 3.0724E-01 3.0798E-01 3.08628-01 3.0916E-01 3.09638-01 3.1004E-01 3.1039E-01 3.10698-01 3.1094E-01 3.1116E-01 3.1135E-01 3.11528-01 3.11668-01 3.11788-01 3.11888-01 3.1197E-01 3.1252E-01 3.1252E-01 3.1252E-01 Worst Two-Hour Doses eab Time Whole Body Thyroid TEDE (hr)

(rem)

(rem).

(rem) 0.0 2.4785E-01 7.3313E+00 4.7230E-01

DA-NS-08-050 Rev. 0 Page 99 of 112 ATTACHMENT W ARCON96 OUTPUT FILE SELECTION RGARDCB.OUT ARCON INPUT Number of Meteorological Data Files

=

5 Meteorological Data File Names RGE99B.MET RGE00B.MET RGE01B.MET RGE02B.MET RGE03B.MET Height of lower wind instrument (m)

=

Height of upper wind instrument (m)

Wind speeds entered as meters/second 10.1 45.7 Ground-level release Release height (m)

Building Area (m^2)

Effluent vertical velocity (m/s)

Vent or stack flow (m^3/s)

Vent or stack radius (m)

Direction intake to source (deg)

Wind direction sector width (deg)

Wind direction window (deg)

Distance to intake (m)

Intake height (m)

Terrain elevation difference (m) output file names RGARDCB.out RGARDCB.jfd Minimum Wind Speed (m/s)

Surface roughness length (m)

Sector averaging constant Initial value of sigma y Initial value of sigma z 17.7

=

2000.0

=

.00

.00

=

.00 225 90 180 -

270 73.0 13.8

.0

.5

.20

=

4.3

=

.00

.00 Expanded output for code testing not selected Total number of hours of data processed =

43824 Hours of missing data 556.

Hours direction in window

=

18256 Hours elevated plume w/ dir. in window

=

0 Hours of calm winds

=

505 Hours direction not in window or calm

=

24507 95% X/Q for standard averaging intervals 0

2 8

1 4

to 2 hours2.314815e-5 days <br />5.555556e-4 hours <br />3.306878e-6 weeks <br />7.61e-7 months <br /> to 8 hours9.259259e-5 days <br />0.00222 hours <br />1.322751e-5 weeks <br />3.044e-6 months <br /> to 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> to 4 days to 30 days 1.38E-03

1. 13E-03
3. 96E-04 3.79E-04
3. 15E-04

DA-NS-08-050 Rev.0 Page -100 of 112 ATTACHMENT X ARCON96 OUTPUT FILE SELECTION RGARDCBR.OUT ARCON INPUT Number of Meteorological Data Files

=

5 Meteorological Data File Names RGE99B.MET RGEOOB.MET RGE01B.MET RGE02B.MET RGE03B.MET Height of lower wind instrument (m)

=

10.1 Height of upper wind instrument (m)

=

45.7 Windspeeds entered as meters/second Ground-level release Release height (m) 17.7 Building Area (m^2) 2000.0 Effluent vertical velocity (m/s)

=

.00 Vent or stack flow (m^3/s)

=

.00 Vent or stack radius (m)

=

.00 Direction..

intake to source (deg)

=

227 Wind direction sector width (deg)

=

90 Wind direction window (deg)

=

182 -

272 Distance to intake (m)

=

73.0 Intake height (m) 13.8 Terrain elevation difference (m)

.0 Output file names RGARDCBR.out' RGARDCBR.jfd Minimum Wind Speed (m/s)

=

.5 Surface roughness length (m)

=

.20 Sector averaging constant

=

4.3 Initial value of sigma y

=

.93 Initial value of sigma z

=

.00 Expanded output for code testing not selected Total number of hours of data processed =

43824 Hours of missing data 556 Hours direction in window 18198 Hours elevated plume w/ dir.

in window

=

0 Hours of calm winds

=

505 Hours direction not in window or calm

=

24565 95% X/Q for standard averaging intervals 0 to 2 hours2.314815e-5 days <br />5.555556e-4 hours <br />3.306878e-6 weeks <br />7.61e-7 months <br /> 1.37E-03 2 to 8 hours9.259259e-5 days <br />0.00222 hours <br />1.322751e-5 weeks <br />3.044e-6 months <br /> 1.10E-03 8 to 24 hours2.777778e-4 days <br />0.00667 hours <br />3.968254e-5 weeks <br />9.132e-6 months <br /> 3.86E-04 1 to 4 days 3.70E-04 4' to 30 days 3.10E-04

DA-NS-08-05O Rev.O Page 101 of 112 ATTACHMENT Y RADTRAD OUTPUT FILE FHASFPC 1.o0 RADTRAD Version 3.03 (Spring 2001) run on 10/28/2008 at 8:15:31 File information Plant file

= C:\\Program Files\\radtrad303\\Files\\GinnaFHA\\New\\fhasfpcl.psf Inventory file

= c:\\program files\\radtrad303\\files\\ginnafha\\fhaco.nif Release file

= c:\\program files\\radtrad303\\files\\ginnafha\\fha.rft Dose Conversion file

= c:\\program files\\radtrad303\\files\\ginnafha\\fgrl4.inp 4

444#

4 #

4 4 44444 4

4 4

    1. 4 4#

44 # 4 4

4 4444#

4 44

.44

  1. 444 Radtrad 3.03 4/15/2001 Nuclide Inventory File:

c:\\program files\\radtrad303\\files\\ginnafha\\fhac0.nif Plant Power Level:

1.0000E+00 Compartments:

3 Compartment 1:

sfp 3

1.OOOOE+06 0

0 0

0 0

Compartment 2:

env 2

0.OOOOE+00 0

0 0

0 0

Compartment 3:

cr 1

3.6211E+04 0

0 1

0 0

Pathways:

3 Pathway 1:

sfp to env 1

2 2

Pathway 2:

env to cr 2

3 2

Pathway 3:

DA-NS-08-050 Rev.0 Page 102 of 112 cr to env 3

2 2

End of Plant Model File Scenario Description Name:

Plant Model Filename:

Source Term:

I 1

1.OOOOE+00 c:\\program files\\radtrad303\\files\\ginnafha\\fgrl4.inp c:\\program files\\radtrad303\\files\\ginnafha\\fha.rft 0.OOOOE+00 1

0.OOOOE+00 5.7000E-01 4.3000E-01 1.0000E+00 Overlying Pool:

0 o.0000E+00 0

0 0

0 Compartments:

3 Compartment 1:

0 1

0 0

0 0

0 0

0 Compartment 2:

0 1

0 0

0 0

0 0

0 Compartment 3:

0 1

0 0

0 0

1 5.4000E+03 5

0.0000E+00 0.OOOOE+00 0.OOOOE+00 O.OOOOE+00 1.6700E-02 0.OOOOE+00 0.OOOOE+00 0.OOOOE+00 1.9400E-02 9.8000E+01 9.O000E+01 7.OOOOE+01 8.0000E+00 9.8000E+01 9.OOOOE+01 7.OOOOE+01 7.2000E+02 0.OOOOE+00 0.OOOOE+00 0.0000E+00 0

0 Pathways:

3 Pathway 1:

0 0

0 0

0 1

3 0.0000E+00 7.6800E+04 0.OOOOE+00 0.0000E+00 0.OOOOE+00 2.OOOOE+00 0.OOOOE+00 0.0000+E00 0.OOOOE+00 0.0000E+00

DA-NS-08-0S Rev. 0 Page 103 of 112 7.2000E+02 0

0 0

0 0

0 Pathway 2:

0 0

0 0

0 1

3 o.OOOOE+00 1.6700E-02 7.2000E+02 0

0 0

0 0

0 Pathway 3:

0 0

0 0

0 1

3 o.0000E+00 1.6700E-02 7.2000E+02 0

0 0

0 0

0 Dose Locations:

3 Location 1:

eab 2

1 2

O.0000E+00 7.2000E+02 1

4 o.OOOOE+00 8.0000E+00

2. 4000E+01 7.2000E+02 0

Location 2:

lpz 2

1 5

o.0000E+00 8.OOOOE+00 2.4000E+01

9. 6000E+01 7.2000E+02 1

4 o.O000E+00 8.OOOOE+00 2.4000E+01 7.2000E+02 0

Location 3:

0.OOOOE+00 0.00005+00 0.00005+/-00 0.00005+00 2.2000E+03 3.OOOOE+02 0.0000E+00 o. 000E+/-00 o. 0000500 o.OOOOE+00 o.OOOOE+00 o. 0000+00 o. 0000+00

0. 0000E+00
0. 00005+00
0. 0000E+00 2.2000E+03 0.0000E+00 0.0000E+00 0.OOOOE+00 3.OOOOE+02 0.OOOOE+00 0.OOOOE+00 0.0000E+00 0.0000E+00 0.0000E+00 O.OOOOE+00 0.OOOOE+00 2.1700E-04 o.OOOOE+00 3.4700E-04 1.7500E-04 2.3200E-04 o.0000E+00 2.5100E-05 1.7800E-05 8.5000E-06 2.9300E-06 0.0000E+00 3.4700E-04 1.7500E-04 2.3200E-04 0.0000E+00

DA-NS-08-050 Rev.0 Page 104 of 112 cr 3

0 1

2 0.0000E+00 3.4700E-04 7.2000E+02 0.0000E+00 1

4 0.0000E+00 1.0000E+00 2.4000E+01 6.0000E-01 9.6000E+01 4.0000E-01 7.2000E+02 0.0000E+00 Effective Volume Location:

1 6

0.OOOOE+00 1.3800E-03 2.0000OOE+00 1.1300E-03 8.0000E+00 3.9600E-04 2.4000E+01 3.7900E-04 9.6000E+01 3.1500E-04 7.2000E+02 0.0000E+00 Simulation Parameters:

1 O.OOOOE+O0 0.000E+0O0 Output Filename:

C:\\Program Files\\radtrad303\\Files\\GinnaFHA\\New\\fhasfpcl.oO 1

1 1

0 0

End of Scenario File

                                                                                                                              1. 4########

RADTRAD Version 3.03 (Spring 2001) run on 10/28/2008 at 8:15:31 Plant Description Number of Nuclides =

14 Inventory Power =

1.OOOOE+00 MWth Plant Power Level =

1.0000E+00 MWth Number of compartments

=

3 Compartment information Compartment number 1

(Source term fraction =

1.0000E+00 Name: sfp Compartment volume =

1.OOOOE+06 (Cubic feet)

Compartment type is Normal Pathways into and out of compartment 1

Exit Pathway Number 1: sfp to env Compartment number 2

Name: env Compartment type is Environment Pathways into and out of compartment 2

Inlet Pathway Number 1: sfp to env Inlet Pathway Number 3: cr to env Exit Pathway Number 2: env to cr Compartment number 3

Name: cr Compartment volume =

3.6211E+04 (Cubic feet)

Compartment type is Control Room Removal devices within compartment:

Filter(s)

Pathways into and out of compartment 3

Inlet Pathway Number 2: env to cr

DA-NS-08-050 Rev.0 Page 105 of 112 Exit Pathway Number 3: cr to env Total number of pathways =

3 RADTRAD Version 3.03 (Spring 2001) run on 10/28/2008 at 8:15:31 Scenario Description Radioactive Decay is enabled Calculation of Daughters is enabled Release Fractions and Timings GAP EARLY IN-VESSEL 0.000100 hr 0.0000 hrs NOBLES "1.0000E+00 0.OOOOE+00 IODINE 1.0000E+00 0.0000E+00 CESIUM 0.0000E+00 0.0000E+00 TELLURIUM 0.OOOOE+00 0.OOOOE+00 STRONTIUM 0.OOOOE+00 0.OOOOE+00 BARIUM 0.0000E+00 0.0000E+00 RUTHENIUM 0.OOOOE+00 0.OOOOE+00 CERIUM 0.OOOOE+00 0.OOOOE+00 LANTHANUM 0.OOOOE+00 0.0000E+00 LATE RELEASE 0.0000 hrs 0 OOOOE+00 0 OOOOE+00

0. 000OE+00 0 OOOOE+00 0 OOOOE+00 0.OOOOE+00 0.OOOOE+00 0.0000E+00
0. 0000E+00 RELEASE MASS (gm) 5.268E+00 3.878E-03 O.O00E+O0 O.OOOE+00 O.O00E+00 O.OOOE+00 O.OOOE+00 O.OOOE+00 0.OOOE+00 Inventory Power
1. MWt Nuclide Name Kr-85 Kr-85m Kr-87 Kr-88 1-131 1-132 1-133 1-134 1-135 Xe-133 Xe-135 Xe-133m Xe-135m Xe-138 Nuclide Kr-85m Kr-87 Kr-88 1-131 1-133 1-135 Xe-135 Xe-133m Xe-135m Group Specific Inventory (Ci/MWt) 1 1.690E+03 1

2.860E-01 1

3.250E-13 1

1.240E-03 2

4;660E+02 2

2.860E+02 2

1.040E+02 2

6.160E-22 2

3.770E-01 1

1.780E+05 1

1.510E+03 1

3.940E+03 1

1210E+01 I

1.OOOE-12 half life (s)

3. 383E+08 1..613E+04
4. 578E+03 1.022E+04
6. 947E+05
8. 280E+03 7.488E+04 3.156E+03 2.380E+04 4.532E+05 3.272E+04 1.892E+05
9. 180E+02 8.460E+02 Whole Body DCF (Sv-m3/Bq-s) 1.190E-16 7.480E-15 4.120E-14 1.'020E-13 1.820E-14 1.120E-13 2.940E-14 1.300E-13 8.294E-14 1.560E-15 1.190E-14 1.370E-15 2.040E-14 5.770E-14 Inhaled Thyroid (Sv/Bq)
0. OOOE+00
0. OOOE+00
0. OOOE+00
0. OOOE+00
2. 920E-07 1.740E-09
4. 860E-08 2.880E-10
8. 460E-09 0.OOOE+00
0. 000E+00
0. 000E+00
0. OOOE+00
0. OOOE+00 n

Daughter none none none none none none none none none Inhaled Effective (Sv/Bq) 0.OOOE+00 0.OOOE+00 0.OOOE+00 0.OOOE+00 8.890E-09 1.030E-10 1.580E-09 3.550E-11 3.320E-10 0.OOOE+00 0.OOOE+00 0.000E+00 0.OOOE+00 0.OOOE+00 Fraction 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Daughter Kr-85 Rb-87 Rb-88 Xe-131m Xe-133m Xe-135m Cs-135 Xe-133 Xe-135 Fraction 0.21 1.00 1.00 0.01 0.03 0.15 1.00 1.00 1.00 Daughter none none none none Xe-133 Xe-135 none none none Fractior 0.00 0.00 0.00 0.00 0.97 0.85 0.00 0.00 0.00 Iodine fractions Aerosol Elemental Organic COMPARTMENT DATA 0.OOOOE+00

=

5.7000E-01

=

4.3000E-01 Compartment number Compartment number Compartment number 1: sfp 2: env 3: cr Compartment Filter Data Time (hr)

Flow Rate Filter Efficiencies

(%)

DA-NS-08-050 Rev.0 Page 106 of 112 0.OOOOE+00 1.6700E-02 1.9400E-02 8.0000E+00 7.2000E+02 PATHWAY DATA (cfm) 5.4000E+03 5.4000E+03 5.4000E+03 5.4000E+03 5.4000E+03 Aerosol 0.0000E+00 0.OOOOE+00 9.8000E+01 9.8000E+01 0.0000E+00 Elemental 0.0000E+00 0.0000E+00 9.0000E+01 9.0000E+01 0.0000E+00 Organic 0.0000E+00 0.0000E+00 7.0000E+01 7.0000E+01 0.0000E+00 Pathway number 1: sfp to env Pathway Filter:

Removal Data Time (hr)

Flow Rate (cfm) 0.0000E+00 7.6800E+04 2.0000E+00 0.0000E+00 7.2000E+02 0.0000E+00 Pathway number 2: env to cr Pathway Filter:

Removal Data Time (hr)

Flow Rate (cfm) 0.0000E+00 2.2000E+03 1.6700E-02 3.0000E+02 7.2000E+02 0.0000E+00 Pathway number 3: cr to env Pathway Filter:

Removal Data Time (hr)

Flow Rate (cfm) 0.0000E+00 2.2000E+03 1.6700E-02 3.0000E+02 7.2000E+02 0.0000+/-E00 LOCATION DATA Location eab is in compam Location X/Q Data Time (hr)

X/Q (s

  • V 0.0000E+00 2.1700E 7.2000E+02 0.0000E Location Breathing Rate Data Time (hr)

Breathing 0.0000E+00 8.0000E+00 2.4000E+01 7.2000E+02 Location lpz is in compam Filter Efficiencies (%)

Aerosol Elemental

Organic, 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000OOE+00 Filter Efficiencies (%)

Aerosol Elemental Organic 0.0000OOE+00 0.0000E+00 0.0000OOE+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 0.0000E+00 Filter Efficiencies

(%)

Aerosol Elemental Organic 0.0000E+00 0.0000E+00 0.0000OOE+00 0.0000E+00 0.0000OOE+00 0.0000OOE+00 0.0000E+00 0.0000E+00 0.0000E+00 rtment 2

m^-3)

-04

+00 Location X/Q Data Time (hr) 0.0000OOE+00 8.0000OOE+00 2.4000E+01 9.6000E+01 7.2000E+02 X/Q (s

  • 2.51001 1.78001 8.50001 2.93001 0.0000o Rate,(m^3
  • sec^-l) 3.4700E-04 1.7500E-04 2.3200E-04 0.0000E+00 rtment 2

m^-3)

E-05 E-05 E-06 E-06 E+00 Location Breathing Rate Data Time (hr)

Breathing Rate (m^3

  • sec^-l) 0.0000OOE+00 3.4700E-04 8.0000E+00 1.7500E-04 2.4000E+01 2.3200E-04 7.2000E+02 0.0000E+00 Location cr is in compartment 3

Location X/Q Data Time (hr) 0.0000E+00 2.0000E+00 X/Q (s

  • m^-3) 1.3800E-03 1.1300E-03

DA-NS-08-050 Rev. 0 Page 107 of 112 8.0000E+00

,2.4000E+01

9. 6000E+01 7.2000E+02 3.9600E-04 3.7900E-04 3.1500E-04 0.0000E+00 Location Breathing Time (hr) 0.0000E+00 7.2000E+02 Location Occupancy Time (hr) 0.OOOOE+00 2.4000E+01 9.6000E+01 7.2000E+02 Rate Data Breathing Rate (m^3
  • sec^-l) 3.4700E-04 0.0000E+00 Factor Data Occupancy Factor 1.0000E+00 6.00O0E-01
4. 0000E-01 0.0000E+00 USER SPECIFIED TIME STEP DATA -

SUPPLEMENTAL TIME STEPS Time Time step 0.OOOOE+00 0.0000E+00 RADTRAD Version 3.03 (Spring 2001) run on 10/28/2008 at 8:15:31 4

44 4

4 4

4 4

Dose Output

                                                1. 444#########################################

eab Doses:

Time (h) =

0.0001 Whole Body Delta dose (rem) 6.3829E-05 Accumulated dose (rem) 6.3829E-05 lpz Doses:

Time (h)

=

0.0001 Delta dose (rem)

Accumulated dose (rem)

Whole Body 7.3830E-06 7.3830E-06 cr Doses:

Time (h) =

0.0001 Whole Body Delta dose (rem) 2.1911E-09 Accumulated dose (rem) 2.1911E-09 eab Doses:

Thyroid TEDE 9.0898E-03 3.4216E-04 9.0898E-03 3.4216E-04 Thyroid TEDE 1.0514E-03 3.9577E505 1.0514E-03 3.9577E-05 Thyroid TEDE 1.0535E-05 3.2477E-07 1.0535Er05 3.2477E-07 Thyroid TEDE 2.9050E+00 1.0935E-01 2.9141E+00 1.0969E-01 Thyroid TEDE 3.3602E-01 1.2649E-02 3.3707E-01 1.2688E-02 Thyroid TEDE 5.4681E-01 1.6857E-02 5.4683E-01 1.6858E-02 Time (h)

=

0.0167 Delta dose (rem)

Accumulated dose (rem) lpz Doses:

Whole Body 2.0399E-02 2.0463E-02 Time (h)

=

0.0167 Whole Body Delta dose (rem) 2.3595E-03 Accumulated dose (rem) 2.3669E-03 cr Doses:

Time (h)

=

0.0167 Whole Body Delta dose (rem) 1.1373E-04 Accumulated dose (rem) 1.1373E-04 eab Doses:

DA-NS-08-050 Rev. 0 Page 108 of 112 Time (h)

=

0.0194 Delta dose (rem)

Accumulated dose (rem) lpz Doses:

Time (h)

=

0.0194 Delta dose (rem)

Accumulated dose (rem)

Whole Body Thyroid TEDE 3.1709E-03 4.5181E-01 1.7005E-02 2.3634E-02 3.3659E+00 1.2670E-01 Whole Body Thyroid TEDE 3.6677E-04 5.2260E-02 1.9669E-03 2.7337E-03 3.8933E-01 1.4655E-02 cr Doses:

Time (h)

=

0.0194 Delta dose (rem)

Accumulated dose (rem) eab Doses:

Whole Body 3.7147E-05 1.5088E-04 Thyroid 1.7870E-01 7.2552E-01 TEDE 5.5088E-03 2.2366E-02 Time (h)

=

2.0000 Whole Body Delta dose (rem) 2.5167E-01 Accumulated dose (rem) 2.7530E-01 lpz Doses:

Time (h) 2.0000 Whole Body Delta dose (rem) 2.9110E-02 Accumulated dose (rem) 3.1844E-02 cr Doses:

Time (h)

=

2.0000 Whole Body Delta dose (rem) 3.9703E-02 Accumulated dose (rem) 3.9854E-02 Thyroid TEDE 3.6050E+01 1.3553E+00 3.9416E+01 1.4820E+00 Thyroid TEDE 4.1698E+00 1.5677E-01 4.5591E+00 1.7142E-01 Thyroid TEDE 2.3537E+01 7.6023E-01 2.4262E+01 7.8259E-01 eab Doses:

Time (h)

=

8.0000 Delta dose (rem)

Accumulated dose (rem) lpz Doses:

Time (h)

=

8.0000 Delta dose (rem)

Accumulated dose (rem) cr Doses:

Time (h)

=

8.0000 Delta dose (rem)

Accumulated dose (rem) eab Doses:

Whole Body Thyroid TEDE 0.OOOOE+00 0.OOOOE+00 0.OOOOE+00 2..7530E-01 3.9416E+01 1.4820E+00 Whole Body 0.0000E+00 3.1844E-02 Whole Body 2.4400E-02 6.4254E-02 Thyroid 0.OOOOE+00

4. 5591E+00 TEDE' 0.0000E+00 1.7142E-01 Thyroid TEDE 2.7291E-03 2.4483E-02 2.4265E+01 8.0708E-01 Thyroid TEDE 0.0000E+00 0.OOOOE+00 3.9416E+01 1.4820E+00 Time (h)

=

24.0000 Whole Body Delta dose (rem) 0.OOOOE+00 Accumulated dose (rem) 2.7530E-01 lpz Doses:

Time (h)

=

24.0000 Delta dose (rem)

Accumulated dose (rem)

Whole Body Thyroid TEDE 0.OOOOE+00 0.OOOOE+00 0.OOOOE+00 3.1844E-02 4.5591E+00 1..7142E-01 cr Doses:

Time (h)

=

24.0000 Delta dose (rem)

Accumulated dose (rem) eab Doses:

Whole Body 1.2384E-03 6.5492E-02 Whole Body 0.OOOOE+00 2.7530E-01 Thyroid TEDE 4.0367E-21 1.2384E-03 2.4265E+01 8.0831E-01 Time (h)

=

96.0000 Delta dose (rem)

Accumulated dose (rem)

Thyroid 0.OOOOE+00

3. 9416E+01 TEDE 0.0000E+00 1.4820E+00

DA-NS-08-050 Rev. 0 Page 109 of 112 lpz Doses:

Time (h)

=

96.0000 Whole Body Delta dose (rem) 0.0000E+00 Accumulated dose (rem) 3.1844E-02 cr Doses:

Time (h) =

96.0000 Whole Body Delta dose (rem) 2.3906E-07 Accumulated dose (.rem) 6.5492E-02 eab Doses:

Thyroid TEDE 0.0000E+00 0.0000E+00 4.5591E+00 1.7142E-01 Thyroid TEDE 7.7977E-68 2.3906E-07 2.4265E+01 8.0831E-01 Thyroid TEDE O.OOOOE+00 O0.0O000E+00 3.9416E+01 1.4820E+00 Thyroid TEDE 0.0000E+00 0.OOOOE+00 4.5591E+00 1.7142E-01 Time (h)

= 720.0000 Whole Body Delta dose (rem) 0.0000E+00 Accumulated dose (rem) 2.7530E-01 lpz Doses:

Time (h)

= 720.0000 Delta dose (rem)

Accumulated dose (rem)

Whole Body 0.0000E+00 3.1844E-02 cr Doses:

Time (h)

= 720.0000 Whole Body Thyroid TEDE Delta dose (rem) 3.0329E-23 1.5908-279 3.0329E-23 Accumulated dose (rem) 6.5492E-02 2.4265E+01 8.0831E-01 839 1-131 Summary Time (hr) 0.000 0.017 0.019 0.419

'0.719 1.019 1.319 1.619 1.919 2.000 2.300 2.600 2.900 3.200 3.500 3.800 4.100 4.400 4.700 5.000 5.300 5.600 5.900 6.200 6.500 6.800 7.100 7.400 7.700 8.000 8.300 8.600 8.900 9.200 9.500 9.800 sfp 1-131 (Curies) 4.6589E+02 4.3156E+02 4.2622E+02 6.7378E+01 1.6892E+01 4.2349E+00 1.0617E+00 2.6618E-01 6.6732E-02 4.6016E-02 4.5966E-02 4.5917E-02 4.5867E-02 4.5818E-02 4.5769E-02 4.5719E-02 4.5670E-02 4.5621E-02 4.5572E-02 4.5523E-02 4.5474E-02 4.5425E-02 4.5376E-02 4.5327E-02 4.5278E-02 4.5229E-02 4.5181E-02 4.5132E-02 4.5083E-02 4.5035E-02 4.4986E-02 4.4938E-02 4.4889E-02 4.4841E-02 4.4793E-02 4.4744E-02 env 1-131 (Curies) 1.0735E-01

3. 4414E+01 3.9750E+01 3.9824E+02 4.4868E+02 4.6132E+02 4.6449E+02 4.6529E+02 4.6549E+02 4.6551E+02 4.6551E+02 4.6551E+02.

4.6551E+02 4.6551E+02 4.6551E+02 4 6551E+02 4.6551E+02 4.6551E+02

.4.6551E+02 4.6551E+02 4.6551E4-02 4.6551E+02 4.6551E+02" 4.6551E+02

4. 6551E+02
4. 6551E+02
4. 6551E+02 4.6551E+02 4.6551E+02 4.6551E+02 4.6551E+02 4.6551E+02 4.6551E+02
4. 6551E+02
4. 6551E+02
4. 6551E+02 cr 1-131 (Curies) 1.5380E-04 4.7824E-02 4.8801E-02 1.6266E-02 4.6789E-03 1.2434E-03 3.2033E-04 8.1388E-05 2.0542E-05 1.4182E-05 1.5370E-06 1.7690E-07 2.1321E-08 2.6541E-09 3.3746E-10 4.3480E-11 5.6478E-12 7.3719E-13 9.6500E-14 1.2654E-14 1.6609E-15 2.1813E-16 2.8657E-17 3.7657E-18 4.9489E-19 6.5043E-20 8.5488E-21 1.1236E-21 1.4769E-22 1.9412E-23 2.5516E-24 3.3539E-25 4.4084E-26 5.7944E-27 7.6163E-28 1.0011E-28

DA-NS-08-050 Rev.0 Page 110 of 112 10.100 10.400 24.000 96.000 720.000 4.4696E-02 4.4648E-02 4.2519E-02 3.2829E-02 3.4896E-03

4. 6551E+02 4.6551E+02
4. 6551E+02
4. 6551E+02
4. 6551E+02
1. 3159E-29 1.7296E-30 1.9350E-70 6.0163-282 0.0000E+00 Cumulative Dose Summary eab ipz Time Thyroid (hr) 0.000 0.017 0.019 0.419 0.719 1.019 1.319 1.619 1.919 2.000 2.300 2.600 2.900 3.200 3.500 3.800 4.10.0
4. 400 4.700 5.000 5.300 5.600 5.900 6.200 6.500 6.800 7.100 7.400 7.700 8.000 8.300 8.600 8.900 9.200 9.500 9.800 10.100 10.400 24.000 96.000 720.000 (rem) 0.0000E+00 2.9141E+00 3.3659E+00 3.3725E+01 3.7993E+01 3.9062E+01
3. 9330E+01
3. 9397E+01 3.9414E+01 3.9416E+01 3.9416E+01 3.9416E+01 3.9416E+01 3.9416E+01
3. 9416E+01 3 9416E+01 3.9416E+01 3.9416E+01 3.9416E+01 3.9416E+01 3.9416E+01 3.9416E+01
3. 9416E+01 3.9416E+01 3.9416E+01 3.9416E+01 3.9416E+01 3.9416E+01 3.9416E+01 3.9416E+01 3.9416E+01 3.9416E+01 3.9416E+01 3.9416E+01 3.9416E+01 3.9416E+01 3.9416E+01 3.9416E+01 3.9416E+01 3.9416E+01 3.9416E+01 TEDE Thyroid (rem)

(rem) 0.0000E+00 0.0000E+00 1.0969E-01 3.3707E-01 1.2670E-01 3.8933E-01 1.2686E+00 3.9009E+00 1.4287E+00 4.3945E+00 1.4688E+00 4.5182E+00 1.4788E+00 4.5492E+00 1.4813E+00 4.5570E+00 1.4819E+00 4.5589E+00 1.4820E+00 4.5591E+00 1.4820E+00 4.5591E+00 1.4820E+00 4.5591E+00 1.4820E+00 4.5591E+00 1.4820E+00 4.5591E+00 1.4820E+00 4.5591E+00 1.4820E+00 4.5591E+00 1.4820E+00 4.5591E+00 1.4820E+00 4.5591E+00 1.4820E+00 4.5591E+00 1.4820E+00 4.5591E+00 1.4820E+00 4.5591E+00 1.4820E+00 4.5591E+00 1.4820E+00 4.5591E+00 1.4820E+00 4.5591E+00 1.4820E+00 4.5591E+00 1.4820E+00 4.5591E+00 1.4820E+00 4.5591E+00 1.4820E+00 4.5591E+00 1.4820E+00 4.5591E+00 1.4820E+00 4.5591E+00 1.4820E+00 4.5591E+00 1.4820E+00 4.5591E+00 1.4820E+00 4.5591E+00 1.4820E+00 4.5591E+00 1.4820E+00 4.5591E+00 1.4820E+00 4.5591E+00 1.4820E+00 4.5591E+00 1.4820E+00 4.5591E+00 1.4820E+00 4.5591E+00 1.4820E+00 4.5591E+00 1.4820E+00 4.5591E+00 0.0 1.2 1.4 1.4 1.6 1.6 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.

1.7 1.

17 1.7 17 1.7 cr TEDE Thyroid (rem)

(rem) 000E+00 0.0000E+00 688E-02 5.4683E-01 655E-02 7.2552E-01 673E-01 1.8892E+01 526E-01 2.2800E+01 989E-01 2.3885E+01 7105E-01 2.4169E+01 7134E-01 2.4242E+01

'141E-01 2.4260E+01 7142E-01 2.4262E+01

'142E-01 2.4265E+01

'142E-01 2.4265E+01

'142E-01 2.4265E+01

'142E-01 2.4265E+01

'142E-01 2.4265E+01

'142E-01 2.4265E+01

'142E-01 2.4265E+01

'142E-01 2.4265E+01

'142E-01 2.4265E+01

'142E-01 2.4265E+01

'142E-01 2.4265E+01

'142E-01 2.4265E+01 7142E-01 2.4265E+01 7142E-01 2.4265E+01 7142E-01 2.4265E+01

'142E-01 2.4265E+01

'142E-01 2.4265E+01 142E-01 2.4265E+01 142E-01 2.4265E+01

'142E-01 2.4265E+01

'142E-01 2.4265E+01 142E-01 2.4265E+01 142E-01 2.4265E+01 142E-01 2.4265E+01 142E-01 2.4265E+01 142E-01 2.4265E+01 7142E-01 2.4265E+01 7142E-01 2.4265E+01 7142E-01 2.4265E+01 7142E-01 2.4265E+01 7142E-01 2.4265E+01 TEDE (rem) 0.0000E+00 1.6858E-02 2.2366E-02 5.8752E-01 7.1465E-01 7.5462E-01 7.6921E-01 7.7653E-01 7.8147E-01 7.8259E-01 7.8628E-01 7.8939E-01 7.9205E-01 7.9434E-01 7.9631E-01 7.9800E-01 7.9945E-01 8.0069E-01 8.0177E-01 8.0269E-01 8.0348E-01 8.0416E-01 8.0474E-01 8.0524E-01 8.0568E-01 8.0605E-01 8.0637E-01 8.0664E-01 8.0687E-01 8.0708E-01 8.0725E-01 8.0740E-01 8.0753E-01 8.0764E-01 8.0773E-01 8.0781E-01 8.0788E-01 8.0794E-01 8.0831E-01

8. 0831E-01 8.0831E-01 Worst Two-Hour Doses eab Time Whole Body Thyroid TEDE (hr)

(rem)

(rem)

(rem) 0.0 2.7530E-01 3.9416E+01 1.4820E+00

DA-NS-08-05O Rev. 0 Page 111 of 112 ATTACHMENT Z E-MAIL AB OVERHEAD DOOR PCR 2004-0070 From: Fitzsimmons, Mark Sent: Monday, October 27, 2008 9:27 AM To: Gryczkowski, Gerard E Cc: Lilley,'Michael; Valenta, Heidi M; Rapin, William

Subject:

RE: AB overhead door PCR 2004-0070

Jerry, Drawing 33013-4177 was preliminary and not accepted by site engineering. Do not use. You can use 25'-9" wide x 29'-4" tall as "clear opening" dimensions for your calculation. An MDCN will be written documenting these changes and indicating the correct construction outputs. I will forward a copy when available.

Mark Fitz From: Gryczkowski, Gerard E Sent: Monday, October 27, 2008 8:59 AM To: Valenta, Heidi M; Fitzsimmons, Mark Cc: Rapin, William; Lilley, Michael; Massari, John; Gardner, Shane R

Subject:

RE: AB overhead door PCR 2004-0070 Drawing 33013-4177 seems to indicate a clear opening of 25'9" vs 29'2".(not 29'4").

Please confirm number.

Jerry Gryczkowski From: Valenta, Heidi M Sent: Wednesday, September 24, 2008 1:29 PM To: Fitzsimmons, Mark Cc: Rapin, William; Lilley, Michael; Gryczkowski, Gerard E; Massari, John; Gardner, Shane R

Subject:

RE: AB overhead door PCR 2004-0070 Fuels will add a change notice to their calc to address the door size. They need to be copied on this MDCN so they can input the correct size in the calc.. Thanks.

Heidi From: Fitzsimmons, Mark Sent: Wednesday, September 24, 2008 1:23 PM To: Valenta, Heidi M Cc: Rapin, William; Lilley, Michael

Subject:

RE: AB overhead door PCR 2004-0070

Heidi, Attached are specification and drawing (drawing is an attachment t6 spec). To accommodate door framing attachment to building columns the overall door clearance opening is increased to 25'-9". The door height opening is 29'-4". I am working with the door manufacturer to secure acceptable fabrication drawings. An MDCN will be written against the specification to correct the actual door dimensions. Mark Fitz

DA-NS-08-050 Rev. 0 Page 112 of 1i2 From: Valenta, Heidi M Sent: Wednesday, September 24, 2008 11:24 AM To: Fitzsimmons, Mark; Rapin, William Cc: Flynn, Brian; Lilley, Michael; Gryczkowski, Gerard E

Subject:

AB overhead door PCR 2004-0070 Mark Fuels needs the reference information for the overhead door. Please confirm that the following is accurate. Thanks.

Dwg. 33013-4152 Spec CE-174 Attachment #1 Door size 25'9" (per your latest comments) x 29' Fuels will use this information to update their accident calc.

Heidi Regulatory Commitments Regulatory Commitments The following table identifies actions committed to in this document by R.E. Ginna NPP. Any other statements in this submittal are provided for information purposes and are not considered to be regulatory commitments. Direct questions regarding these commitments to David Wilson at 585.771.5219, or David.F.Wilson @Constellation.com.

Regulatory Commitment Due Date Implement administrative requirements to Upon approval and implementation of this close one personnel hatch door within 30 amendment.

minutes of a Fuel Handling Accident within containment.