ML082740207

From kanterella
Jump to navigation Jump to search
WCAP-15571-NP, Revision 1, Analysis of Capsule Y from Beaver Valley Unit 1 Reactor Vessel Radiation Surveillance Program.
ML082740207
Person / Time
Site: Beaver Valley
Issue date: 04/30/2008
From: Jurcevich N
Westinghouse, Westinghouse
To:
Office of Nuclear Reactor Regulation
References
L-08-289 WCAP-15571-NP, Rev 1
Download: ML082740207 (260)


Text

ENCLOSURE B Beaver Valley Power Station (BVPS), Unit Nos. 1 and 2 Letter L-08-289 WCAP-1 5571-NP, "Analysis of Capsule Y from First Energy Company Beaver Valley Unit I Reactor Vessel Radiation Surveillance Program,"

Revision 1, April 2008

Westinghouse Non-Propritafy Class 3 WO'AP-15571-NP R'v April 2008 Revision 1 4

4 Analysis of Capsule Y from Beaver Valley Unit 1 Reactor I.

Vessel Radiation Surveillance Program I

MOSInghouse

WESTINGHOUSE NON-PROPRIETARY CLASS 3 WCAP-15571-NP Revision 1 Analysis of Capsule Y from Beaver Valley Unit 1 Reactor Vessel Radiation Surveillance Program April 2008 Prepared By: ElectronicallyApproved*

N. R. Jurcevich, Senior Engineer Primary Component and Asset Management Approved: ElectronicallyApproved*

P. C. Paesano, Manager Primary Component and Asset Management

  • Electronically approved records are authenticatedin the Electronic DocumentManagement System.

Westinghouse Electric Company LLC P.O. Box 355 Pittsburgh, PA 15230-0355

© 2008 Westinghouse Electric Company LLC All Rights Reserved Beaver Valley Unit 1 Capsule Y WCAP-15571-NP, Rev. 1 April 2008

!11 TABLE OF CONTENTS L IST OF TAB L E S ........................................................................................................................................ iv L IST OF F IG U RE S .................................................................................................................................... vii P REFA C E ..... ............................................................................................ .......................................... ix EXECUTIVE

SUMMARY

..................................................................................................... . ..............x 1

SUMMARY

OF RESULTS ......................................................................................................... 1-1 2 INT R O DU C T IO N ........................................................................................................................ 2-1 3 BACKGROUND ......................................................................................................................... 3-1 4 DESCRIPTION OF PROGRAM ................................................................................................ 4-1 5 TESTING OF SPECIMENS FROM CAPSULE Y ..................................................................... 5-1 5.1 O V ERV IE W .................................................................................................................... 5-1 5.2 CHARPY V-NOTCH IMPACT TEST RESULTS .......................................................... 5-3 5.3 TENSILE TEST RESULTS ........................................................................................... 5-5 5.4' WEDGE OPENING LOADING (WOL) ........................................................................ 5-5 6 RADIATION ANALYSIS AND NEUTRON DOSIMETRY ....................................................... 6-1

6.1 INTRODUCTION

........................................................................................................ 6-1 6.2 DISCRETE ORDINATES ANALYSIS .......................................................................... 6-2 6.3 NEUTRON DOSIMETRY .............................................................................................. 6-4 6.4 PROJECTIONS OF REACTOR VESSEL EXPOSURE ................................................ 6-8 7 SURVEILLANCE CAPSULE REMOVAL SCHEDULE ....................................................... 7-1 8 REFERENCES ............................................................................................................... 8-1 APPENDIX A LOAD-TIME RECORDS FOR CHARPY SPECIMEN TESTS ......................... A-0 APPENDIX B CHARPY V-NOTCH SHIFT RESILTS FOR EACH CAPSULE HAND-DRAWN VS. HYPERBOLIC TANGENT CURVE-FITTING METHOD (CVGRAPGH, VERSION 4.1) .......................................................................... B-0 APPENDIX C CHARPY V-NOTCH PLOTS FOR EACH CAPSULE USING HYPERBOLIC TANGENT CURVE-FITTING METHOD ................................ C-0 APPENDIX D BEAVER VALLEY UNIT I SURVEILLANCE PROGRAM CREDIBILITY ANALYSIS ......................................................................................................... D-0 Beaver Valley Unit 1 Capsule Y WCAP-15571-NP, Rev. 1 April 2008

iv LIST OF TABLES Table 4-1 Chemical Composition (wt%) of the Unirradiated Beaver Valley Unit 1 Reactor Vessel Surveillance M aterials .......... ........................................................................................... 4-2 Table.4-2 Heat Treatment of Beaver Valley Unit 1.Reactor Vessel Surveillance Materials ........... 4-3 Table 4-3 Chemical Composition of the Beaver Valley Unit I Charpy Specimens Removed from Surveillance Capsule Y ................................................................................................... 4-3 Table 4-4 Chemistry Results from the Low Alloy Steel NBS Certified Reference Standards 362, 363, and 364 .................................................................................................................... 4-4 Table 5-1 Charpy V-Notch Data for the Beaver Valley Unit I Lower Shell Plate B6903-1 Irradiated to a Fluence of 2.15 x 10'9 n/cm2 (E:> 1.0 MeV)

(Longitudinal Orientation) .............................................................................................. 5-6 Table 5-2 Charpy V-notch Data for the Beaver Valley Unit I Lower Shell Plate B6903-1 Irradiated to a Fluence of 2.15 x 1019 n/cm2 (E> 1.0 MeV)

(Transverse Orientation) ......................................... 5-7 Table 5-3 Charpy V-notch Impact Data for the Beaver Valley Unit 1 Surveillance Weld Metal Irradiated to a Fluence of 2.15 x 10'9 n/cm2 (E> 1.0 MeV) ...... ...................... 5-8 Table 5-4 Charpy V-notch Impact Data for the Beaver Valley Unit 1 Representative Heat-Affected-Zone Material Irradiated to a Fluence of 2.15 x 10'9 n/cm2 (E> 1.0 MeV) .................... 5-9 Table 5-5 Instrumented Charpy Impact Test Results for the Beaver Valley Unit 1 Lower Shell Plate B6903-1 Irradiated to a Fluence of 2.15 x 10'9 n/cm2 (E> 1.0 MeV)

(Longitudinal O rientation) ............................................................................................ 5-10 Table 5-6 Instrumented Charpy Impact Test Results for the Beaver Valley Unit I Lower Shell Plate B6903-1 Irradiated to a Fluence of 2.15 x 10'9 n/cm2 (E> 1.0 MeV)

(Transverse Orientation) ............................................................................................... 5-11 Table 5-7 Instrumented Charpy Impact Test Results for the Beaver Valley Unit 1 Surveillance Weld Metal Irradiated to a Fluence of 2.15 x 10'9 n/cm2 (E> 1.0MeV) ....................... 5-12 Table 5-8 Instrumented Charpy Impact Test Results for the Beaver Valley Unit I Heat-Affected-Zone (HAZ) Metal Irradiated to a Fluence of 2.15 x 10'9 n/cm2 (E> 1.0MeV) ............ 5-13 Beaver Valley Unit I Capsule Y WCAP-15571-NP, Rev. I April 2008

v LIST OF TABLES (Cont.)

Table 5-9 Effect of Irradiation to 2.15 x 10"' n/cm2 (E> 1.0 MeV) on the Notch Toughness Properties of the Beaver Valley Unit I Reactor Vessel Surveillance Materials ............ 5-14 Table 5-10 Comparison of the Beaver Valley Unit I Surveillance Material 30 ft-lb Transition Temperature Shifts and Upper Shelf Energy Decreases with Regulatory G uide 1.99, Revision 2, Predictions .............................................................................. 5-15 Table 5-11 Tensile Properties of the Beaver Valley Unit 1 Reactor Vessel Surveillance Materials Irradiated to 2.15 x 10'9 n/cm2 (E> 1.0MeV) ................................................ 5-16 Table 6-1 Calculated Fast Neutron Exposure Rates at the Surveillance Capsule Center ............. 6-12 Table 6-2 Calculated Azimuthal Variation of Fast Neutron Exposure Rates and Iron Atom Displacement Rates at the Reactor Vessel Clad/Base Metal Interface ....... 6-13 Table 6-3 Relative Radial Distribution of 4(E> 1.0 MeV) within the Reactor Vessel Wall ......... 6-15 Table 6-4 Relative Radial Distribution of O(E> 0.1 MeV) within the Reactor Vessel Wall ......... 6-15 Table 6-5 Relative Radial Distribution of dpa/sec within the Reactor Vessel Wall ...................... 6-16 Table 6-6 Nuclear Parameters used in the Evaluation of Neutron Sensors ................................... 6-17 Table 6-7 Monthly Thermal Generation During the First Thirteen Fuel Cycles of the Beaver Valley Unit 1 Reactor (Reactor Power of 2652 MWt) ...................................... 6-18 Table 6-8 Measured Sensor Activities and Reaction Rates

- Surveillance Capsule V .............................................................................. 6-26

- Surveillance Capsule U .............................................................................. 6-27

- Surveillance Capsule W .............................................................................. 6-28

- Surveillance Capsule Y ............................................................................... 6-29 Table 6-9 Summary of Neutron Dosimetry Results Surveillance Capsules V, U, W, and Y ......... 6-30 Table 6-10 Comparison of Measured, Calculated and Best Estimate Reaction Rates at the Surveillance Capsule Center ............................................................................... 6-31 Table 6-I1 Best Estimate Neutron Energy Spectrum at the Center of Surveillance Capsules

- C apsule V ................................................................................................... 6-33

- C apsule U .................................................................................................... 6-34

- C apsule W ............................................ *................................................. 6-35

- C apsule Y .................................................................................................... 6-36 Beaver Valley Unit I Capsule Y WCAP-15571-NP, Rev. 1 April 2008

vi LIST OF TABLES (Cont-)

Table 6-12 Comparison of Calculated and Best Estimate Integrated Neutron Exposure of Beaver Valley Unit I Surveillance Capsules V, U, W, and Y ................... 6-37 Table 6-13 Azimuthal Variations of the Neutron Exposure Projections on the Reactor Vessel Clad/Base Metal Interface at the Elevation of Maximum Fluence ............................... 6-38 Table 6-14 Neutron Exposure Values within the Beaver Valley Unit 1 Reactor Vessel ................. 6-40 Table 6-15 Calculated Fast Neutron Fluence (E>1.0 MeV) for Materials Comprising the Beltline Region of the Reactor Vessel ............................................................ 6-44 Table 6-16 Calculated Fast Neutron Fluence (E>0. 1 MeV) for Materials Comprising the Beltline Region of the Reactor Vessel ........................................................................... 6-44 Table 6-17 Calculated Iron Atom Displacements for Materials Comprising the Beltline Region of the Reactor Vessel ........................................................................................ 6-45 Table 6-18 Updated Lead Factors for Beaver Valley Unit 1 Surveillance Capsules which have been Removed ...................................... 6-45 Table 6-19 Projected Lead Factors for Beaver Valley Unit I Surveillance Capsules which have Not been Removed .............................................................................. 6-46 Table 7-1 Beaver Valley Unit I Reactor Vessel Surveillance Capsule Withdrawal Schedule ........ 7-1 Beaver Valley Unit I Capsule Y WCAP-15571-NP, Rev. 1 April 2008

vii LIST OF FIGURES Figure 4-1 Arrangement of Surveillance Capsules in the Beaver Valley Unit I R eactor Vessel ................................................................................................................. 4-5 Figure 4-2 Capsule Y Diagram Showing the Location of Specimens, Thermal M onitors, and D osimeters ............................................................................................... 4-6 Figure 5-1 Charpy V-Notch Impact Energy vs. Temperature for Beaver Valley Unit 1 Reactor Vessel Lower Shell Plate B6903-1 (Longitudinal Orientation) .................... 5-17 Figure 5-2 Charpy V-Notch Lateral Expansion vs. Temperature for Beaver Valley Unit 1 Reactor Vessel Lower Shell Plate B6903-1 (Longitudinal Orientation) ....................... 5-18 Figure 5-3 Charpy V-Notch Percent Shear vs. Temperature for Beaver Valley Unit I Reactor Vessel Lower Shell Plate B6903-1 (Longitudinal Orientation) .................................... 5-19 Figure 5-4 Charpy V-Notch Impact Energy vs. Temperature for Beaver Valley Unit 1 Reactor Vessel Lower Shell Plate B6903-1 (Transverse Orientation) ....................................... 5-20 Figure 5-5 Charpy V-Notch Lateral Expansion vs. Temperature for Beaver Valley Unit I Reactor Vessel Lower Shell Plate B6903-1 (Transverse Orientation) .......................... 5-21 Figure 5-6 Charpy V-Notch Percent Shear vs. Temperature for Beaver Valley Unit I Reactor Vessel Lower Shell Plate B6903-1 (Transverse Orientation) ................. 5-22 Figure 5-7 Charpy V-Notch Impact Energy vs. Temperature for Beaver Valley Unit I Reactor Vessel Weld M etal ......................................................................................................... 5-23 Figure 5-8 Charpy V-Notch Lateral Expansion vs. Temperature for Beaver Valley Unit I Reactor Vessel Weld M etal ........................................................................................... 5-24 Figure 5-9 Charpy V-Notch Percent Shear vs. Temperature for Beaver Valley Unit I Reactor Vessel Weld M etal ......................................................................................................... 5-25 Figure 5-10 Charpy V-Notch Impact Energy vs. Temperature for Beaver Valley Unit 1 Reactor Vessel Heat-Affected-Zone M aterial ............................................................................. 5-26 Figure 5-11 Charpy V-Notch Lateral Expansion vs. Temperature for Beaver Valley Unit I Reactor Vessel Heat-Affected-Zone Material ............................................................... 5-27 Figure 5-12 Charpy V-Notch Percent Shear vs. Temperature for Beaver Valley Unit I Reactor Vessel Heat-Affected-Zone M aterial ............................................................................. 5-28 Figure 5-13 Charpy Impact Specimen Fracture Surfaces for Beaver Valley Unit 1 Reactor Vessel Lower Shell Plate B6903-1 (Longitudinal Orientation) ................... 5-29 Beaver Valley Unit I Capsule Y WCAP-15571-NP, Rev. 1 April 2008

viii LIST OF FIGURES (Cont.)

Figure 5-14 Charpy Impact Specimen Fracture Surfaces for Beaver Valley Unit 1 Reactor Vessel Lower Shell Plate B6903-1 (Transverse Orientation) ...................... I................ 5-30 Figure 5-15 Charpy Impact Specimen Fracture Surfaces for Beaver Valley Unit 1 Reactor Vessel Weld M etal Specimen ........................................................................................ 5-31 Figure 5-16 Charpy Impact Specimen Fracture Surfaces for Beaver Valley Unit I Reactor Vessel Heat-Affected-Zone Metal ............................................................................... 5-32 Figure 5-17 Tensile Properties for Beaver Valley Unit I Reactor Vessel Plate Material ............. 5-33 Figure 5-18 Tensile Properties for Beaver Valley Unit I Reactor Vessel Weld Metal ..................... 5-34 Figure 5-19 Fractured Tensile Specimens from Beaver Valley Unit I Reactor Vessel Lower Shell Plate B6903-1 (Transverse Orientation) ................................................. 5-35 Figure 5-20 Fractured Tensile Specimens from Beaver Valley Unit I Reactor Vessel Weld Metal ................................................................................................................... 5-36 Figure 5-21 Engineering Stress-Strain Curves for Beaver Valley Unit 1 Reactor Vessel Lower Shell Plate B6903-1, Capsule Y, Transverse Tensile Specimens DTI5 and DT16 ...... 5-37 Figure 5-22 Engineering Stress-Strain Curves for Beaver Valley Unit I Reactor Vessel Weld Metal, Capsule Y, Tensile Specimens DW15 and DWl6 ............................................. 5-38 Figure 6-1 Surveillance Capsule Geometry .................................... 6-11 Beavme Valley Unit I Capsule Y WCAP-15571-NP, Rev. 1 April 2008

ix PREFACE Revision 1 has been technically reviewed by:

Reviewer (Revision 1): F.C. Gift, Jr.*

RECORD OF REVISIONS Revision 0: Original Issue Revision 1: Per CAPS IR #08-100-M014, pages D-8 and D-9 ofAppendix D were missing from the EDMS copy of WCAP-15571, Revision 0. Therefore, these missing pages were inserted into this revision. Furthermore, a few editorial corrections were made to Appendix D.

Additional formatting changes were made to be consistent with the current standards of EDMS.

  • Electronically approved records are authenticatedin the Electronic Document Management System.

Beaver Valley Unit 1 Capsule Y

x EXECUTIVE

SUMMARY

The purpose of this report is to document the results of the testing of surveillance capsule Y from the Beaver Valley Unit I reactor vessel. Capsule Y was removed at 14.3 EFPY and post irradiation mechanical tests of the Charpy V-notch and tensile specimens was performed, along with a fluence evaluation. The peak clad base/metal vessel fluence after 14.3 EFPY of plant operation was 1.76 x 1019 n/cm 2 (E> 1.0 MeV). A brief summary of the Charpy V-notch testing results can be found in Section 1 and the updated capsule removal schedule can be found in Section 7. A supplement to this report is a credibility evaluation, which can be found in Appendix D, that shows the Beaver Valley Unit I surveillance data is not credible.

Beaver Valley Unit I Capsule Y WCAP-15571-NP, Rev. 1 April 2008

1-1 1

SUMMARY

OF RESULTS The analysis of the reactor vessel materials contained in surveillance capsule Y, the fourth capsule to be removed from the Beaver Valley Unit I reactor pressure vessel, led to the following conclusions:

The Charpy V-notch data presented in WCAP-84751 1' , WCAP-98601541, WCAP-l 08671"]1, and WCAP-12005 51 61 were based on hand-fit Charpy curves using engineering judgment. However, the results presented in this report are based on a re-plot of all capsule data using CVGRAPH, Version 4.1, which is a hyperbolic tangent curve-fitting program. Appendix B presents a comparison of the Charpy V-Notch test results for each capsule based on hand fit vs. hyperbolic tangent fit. Appendix C presents the CVGRAPH, Version 4.1, Charpy V-notch plots and the program input data.

0 Cycle 14 is projected assuming the average exposure rate of cycles 11 through 13. Cycle 15 is projected with the cycle 8 exposure rate, which represents low leakage cycles and an assumption that the hafinium is removed from the PSA assembly locations. From end of cycle 15 to 28 and 45 EFPY, the exposure projection is the cycle 8 exposure rate increased by 1.055 to allow for a "5.5 %

core power uprating."

o The capsule received an average fast neutron fluence (E> 1.0 MeV) of 2.15 x 10'9 n/cm2 after 14.3 effective full power years (EFPY) of plant operation.

e Irradiation of the reactor vessel lower shell plate B6903-1 Charpy specimens, oriented with the longitudinal axis of the specimen parallel to the major rolling direction (longitudinal orientation),

to 2.15 x 109 n/cm2 (E> 1.0MeV) resulted in a 30 ft-lb transition temperature increase of 142.18'F and a 50 ft-lb transition temperature increase of 151.29'F. This results in an irradiated 30 ft-lb transition temperature of 138.73TF and an irradiated 50 ft-lb transition temperature of 179.29TF for the longitudinal oriented specimens.

  • Irradiation of the reactor vessel lower shell plate B6903-1 Charpy specimens, oriented with the longitudinal axis of the specimen perpendicular to the major rolling direction of the plate (transverse orientation), to 2.15 x 10'9 n/cm2 (E> 1.0 MeV) resulted in a 30 ft-lb transition temperature increase of 166.93*F and a 50 ft-lb transition temperature increase of 178.61T1. This results in an irradiated 30 ft-lb transition temperature of 184.89°F and an irradiated 50 ft-lb transition temperature of 240.50TF for transverse oriented specimens.
  • Irradiation of the weld metal Charpy specimens to 2.15 x 1019 n/cm2 (E> 1.0MeV) resulted in a 30 ft-lb transition temperature increase of i 79.69°F and a 50 ft-lb transition temperature increase of 213.41 F. This results in an irradiated 30 ft-lb transition temperature of 111 .96°F and an irradiated 50 ft-lb transition temperature of 169.35°F.

Irradiation of the weld Heat-Affected-Zone (HAZ) metal Charpy specimens to 2.15 x 10'9 n/cm 2 (E> 1.0 MeV) resulted in a 30 ft-lb transition temperature increase of 18.36°F and a 50 ft-lb transition temperature increase of 62.51 TF. This results in an irradiated 30 ft-lb transition temperature of-56.16°F and an irradiated 50 ft-lb transition temperature of 20.36T.

WCAP-15571-NP, Rev. 1 Beaver Valley Unit I Capsule Y April2008

1-2 The average upper shelf energy of the lower shell plate B6903-1 (longitudinal orientation) resulted in an average energy decrease of 25 ft-lb after irradiation to 2.15 x 10'9 n/cm2 (E > 1.0 MeV). Hence, this results in an irradiated average upper shelf energy of 110 ft-lb for the longitudinal oriented specimens.

The average upper shelf energy of the lower shell plate B6903-1 (transverse orientation) resulted in an average energy decrease of 10 ft-lb after irradiation to 2.15 x 1019 n/cm2 (E> 1.0 MeV).

Hence, this results in an irradiated average upper shelf energy of 71 ft-lb for the transverse oriented specimens.

The average upper shelf energy of the weld metal Charpy specimens resulted an average energy decrease of 35 ft-lb after irradiation to 2,15 x I0'9 n/cm2 (E> 1.0 MeV). Hence, this results in an irradiated average upper shelf energy of 77 ft-lb for the weld metal specimens.

The average upper shelf energy of the weld HAZ metal Charpy specimens resulted in an average energy decrease of 14 ft-lb after irradiation to 2.15 x 1019 n/cm2 (E> 1.0MeV). This results in an irradiated average upper shelf energy of 114 ft-lb for the weld HAZ metal.

A comparison of the Beaver Valley Unit I reactor vessel beltline material test results with the Regulatory Guide 1.99, Revision 2t33 predictions (See Table 5-10) led to the following conclusions:

- The measured 30 ft-lb shift in transition temperature of all the materials contained in capsule Y are less than the Regulatory Guide 1.99, Revision 2, predictions.

- The measured percent decrease in upper shelf energy (USE) of all the capsule Y surveillance materials is less than the Regulatory Guide 1.99, Revision 2, predictions.

o The calculated and best estimate end-of-license (28 EFPY) neutron fluence (E> 1.0 MeV) at the core midplane for the Beaver Valley Unit I reactor vessel using the Regulatory Guide 1.99, Revision 2 attenuation formula (ie. Equation # 3 in the guide) is as follows:

Calculated: Vessel inner radius* = 3.54 x 1019 n/cm 2 Vessel 1/4 thickness = 2.21 x 10' 9 n/cm2 Vessel 3/4 thickness = 8.58 x 10"8 n/cm2 2

Best Estimate: Vessel inner radius* = 3.42 x 1019 n/cm Vessel 1/4 thickness = 2.13 x 10' 9 1n/cm 2 Vessel 3/4 thickness = 8:29 x 1018 n/cm 2

  • Clad/base metal interface Beaver Valley Unit I Capsule Y. WCAP-15571-NP, Rev. I April 2008

1-3

  • The credibility evaluation of the Beaver Valley Unit I surveillance program presented in Appendix D of this report indicates that the surveillance results of the Beaver Valley Unit 1 surveillance program are not credible.

o All beltline materials exhibit a more than adequate upper shelf energy level for continued safe plant operation and are expected to maintain an upper shelf energy greater than 50 ft-lb through end of license (28 EFPY) as required by 10CFR50, Appendix G'4 ].

Beaver Valley Unit I Capsule Y WCAP-15571-NP, Rev. 1 April 2008

2-1 2 INTRODUCTION This report presents the results of the examination of Capsule Y, the fourth capsule removed from the reactor in the continuing surveillance program which monitors the effects of neutron irradiation on the First Energy Beaver Valley Unit I reactor pressure vessel materials under actual operating conditions.

The surveillance program for the First Energy Beaver Valley Unit I reactor pressure vessel materials was designed and recommended by the Westinghouse Electric Company. A description of the surveillance program and the preirradiation mechanical properties of the reactor vessel materials is presented in WCAP-8457, "Duquesne Light Company Beaver Valley Unit 1 Reactor Vessel Radiation Surveillance Program" I'l. The surveillance program was planned to cover the 40-year design life of the reactor pressure vessel and was based on ASTM E 185-73, "Standard Recommended Practice for Surveillance Tests for Nuclear Reactor Vessels"' 4 . Capsule Y was removed from the reactor after 14.3 EFPY of exposure and shipped to the George Westinghouse Technology Center Hot Cell Facility, where the postirradiation mechanical testing of the Charpy V-notch impact and tensile surveillance specimens was performed.

The Charpy V-notch data presented in WCAP-8457t 11 , WCAP-986043, WCAP-1 08671'], and WCAP-12005[561 were based on hand-fit Charpy curves using engineering judgment. However, the results presented in this report are based on a re-plot of all capsule data using CVGRAPH, Version 4.1, which is a hyperbolic tangent curve-fitting program. Appendix B presents a comparison of the Charpy V-Notch test results for each capsule based on hand fit vs. hyperbolic tangent fit. Appendix C presents the CVGRAPH, Version 4.1, Charpy V-notch plots and the program input data.

This report summarizes the testing of and the post-irradiation data obtained from surveillance capsule Y removed from the First Energy Beaver Valley Unit 1 reactor vessel and discusses the analysis of the data.

Beaver Valley Unit 1 Capsule Y WCAP-15571-NP, Rev. I April 2008

3-1 3 BACKGROUND The ability of the large steel pressure vessel containing the reactor core and its primary coolant to resist fracture constitutes an important factor in ensuring safety in the nuclear industry. The beltline region of the reactor pressure vessel is the most critical region of the vessel because it is subjected to significant fast neutron bombardment. The overall effects of fast neutron irradiation on the mechanical properties of low alloy, ferritic pressure vessel steels such as SA533 Grade B Class I plate (base material of the Beaver Valley Unit I reactor pressure vessel beltline) are well documented in the literature. Generally, low alloy ferritic materials show an increase in hardness and tensile properties and a decrease in ductility and toughness during high-energy irradiation.

A method for ensuring the integrity of reactor pressure vessels has been presented in "Fracture Toughness Criteria for Protection Against Failure," Appendix G to Section XI of the ASME Boiler and Pressure Vessel Code [6). The method uses fracture mechanics concepts and is based on the reference nil-ductility transition temperature (RTNDT).

RTNDT is defined as the greater of either the drop weight nil-ductility transition temperature (NDIXT per ASTM E-208[71) or the temperature 60'F less than the 50 ft-lb (and 35-mil lateral expansion) temperature as determined from Charpy specimens oriented normal (transverse) to the major working direction of the material. The RTNDT of a given material is used to index that material to a reference stress intensity factor curve (Klc curve) which appears in Appendix G to the ASME Codel 61. The Klc curve is a lower bound of static fracture toughness results obtained from several heats of pressure vessel steel. When a given material is indexed to the K1c curve, allowable stress intensity factors can be obtained for this material as a function of temperature. Allowable operating limits can then be determined using these allowable stress intensity factors.

RTrDT and, in turn, the operating limits of nuclear power plants can be adjusted to account for the effects of radiation on the reactor vessel material properties. The changes in mechanical properties of a given reactor pressure vessel steel, due to irradiation, can be monitored by a reactor surveillance program, such as the Beaver Valley Unit 1 reactor vessel radiation surveillance program1t1 , in which a surveillance capsule is periodically removed from the operating nuclear reactor and the encapsulated specimens tested. The increase in the average Charpy V-notch 30 ft-lb temperature (ART.DT) due to irradiation is added to the initial RTNDT, along with a margin (M) to cover uncertainties, to adjust the RTNDT (ART) for radiation embrittlement. This ART (RTvDT initial + M + ARTNDT) is used to index the material to the Kic curve and, in turn, to set operating limits for the nuclear power plant that take into account the effects of irradiation on the reactor vessel materials.

Beaver Valley Unit I Capsule Y WCAP-15571-NP, AprilRev.

1 2008

4-1 4 DESCRIPTION OF PROGRAM Eight surveillance capsules for monitoring the effects of neutron exposure on the Beaver Valley Unit 1 reactor pressure vessel core region (beltline) materials were inserted in the reactor vessel prior to initial plant start-up. The eight capsules were positioned in the reactor vessel between the thermal shield and the vessel wall as shown in Figure 4-1. The vertical center of the capsules is opposite the vertical center of the core. The capsules contain specimens made from Lower Shell Plate B6903-1 (Heat No. C6317-1),

weld metal fabricated with 3/16-inch Mil B-4 weld filler wire heat number 305424 Linde 1092 flux lot number 3889, which is identical to that used in the actual fabrication of the beltline region intermediate shell longitudinal weld seams.

Capsule Y was removed after 14.3 effective full power years (EFPY) of plant operation. This capsule contained Charpy V-notch impact and tensile specimens made from Lower Shell Plate B6903-1 and submerged arc weld metal identical to the vessel intermediate shell longitudinal weld seams. In addition, this capsule contained Charpy V-notch specimens from the weld Heat-Affected-Zone (HAZ) of Intermediate Shell Plate B6607-1.

Test material obtained from Lower Shell Plate B6903-1 (after the thermal heat treatment and forming of the plate) was taken at least one plate thickness from the quenched ends of the plate. All test specimens were machined from the /4thickness locations of the plate after performing a simulated post-weld stress-relieving treatment on the test material. All base metal Charpy V-notch impact specimens were oriented with the longitudinal axis of the specimen both normal to (transverse orientation) and parallel to (longitudinal orientation) principal working direction of the plate. Base metal tensile specimens were oriented in the transverse direction. Charpy V-notch and tensile specimens from the weld metal were oriented with the longitudinal axis of the specimens transverse to the weld direction. The wedge opening loading test specimens in Capsule Y were machined transverse to the welding direction. All WOL specimens were fatigue precracked per ASTM E399-70T. The chemical composition of the unirradiated surveillance material is presented in Table 4-1, while the results of chemical testing of charpy specimens from Capsule Y are presented in Table 4-3. The NIST standards are given in Table 4-4. The heat treatment of the surveillance materials is given in Table 4-2.

Capsule Y contained dosimeter wires of pure copper, iron, nickel, and aluminum-0. 15 weight percent cobalt (cadmium-shielded and unshielded). In addition, cadmium shielded dosimeters of neptunium (Np 237) and uranium (U238) were placed in the capsule to measure the integrated flux at specific neutron energy levels.

The capsule contained thermal monitors made from two low-melting-point eutectic alloys and sealed in Pyrex tubes. These thermal monitors were used to define the maximum temperature attained by the test specimens during irradiation. The composition of the two eutectic alloys and their melting points are as follows:

2.5% Ag, 97.5% Pb Melting Point: 579°F (304°C) 1.75% Ag, 0.75% Sn, 97.5% Pb Melting Point: 590°F (310*C)

Beaver Valley Unit I Capsule Y WCAP-15571-NP, Rev. 1 April 2008

4-2 The arrangement of the various mechanical specimens, dosimeters and thermal monitors contained in capsule Y is shown in Figure 4-2.

TABLE 4-1 Chemical Composition (wt%) of the Unirradiated Beaver Valley Unit 1 Reactor Vessel Surveillance Materials Element(* B6903-1 As Deposited Weld Metal Capsule U Analysis(C)

Ht. C6317-1 Analysis(b)

C 0.20 0.110 0.124 Mn 1.310 1.370 1.42 P 0.010 0.018 0.008 S 0.015 0.006 0.004 Si 0.180 0.270 0.277 Ni 0.540 0.620 0.637 Mo 0.550 0.480 - - (d)

Cr 0.140 0.015 0.029 Cu 0.200 0.260 0.230 Al 0.028 0.010 0.028 Co 0.014 0.014 0.009 V 0.001 0.001 0.008 Sn 0.010 0.008 --

N2 0.004 0.014 Notes:

a. Elements not listed are less tan 0.01 weight percent.
b. Surveillance weld used the same heat of weld wire (#305424) and flux lot (3889) as used to fabricate the intermediate shell vertical seams.
c. Analysis performed on irradiated weld metal specimen DW-63
d. Analysis not performed on this material Beaver Valley Unit I Capsule Y WCAP-15571-NP, Rev. 1 April 2008

4-3 Table 4-2 Heat Treatment of Beaver Valley Unit 1 Reactor Vessel Surveillance Materials Material Temperature (*F) Time (hrs.) Coolant Lower Shell Plates 1550- 1650 4 - Water quenched Plate B6903-1 1200- i250 4 Air cooled 1150-1175 40 Furnace Cooled Weldment 1150 + 25 15 Furnace Cooled W . . ,,,

TABLE 4-3 Chemical Composition of the Beaver Valley Unit I Charpy Specimens Removed from Surveillance Capsule Y Weld Metal Plate B6903-1 Element DW-91 DW-92 DW-96 DL-57 C 0.140 0.140 0.140 0.220 S 0.009 0.005 0.007 0.016 Si 0.029 0.040 0.053 0.047 Cr 0.022 0.022 0.019 0.140 Cu 0.230 0.220 0.230 0.210 Fe Balance Balance Balance Balance Mn 1.403 1.384 1.426 1.195 Mb 0.510 0.500 0.500 0.580 Ni 0.611 0.605 0.615 0.529 P 0.018 0.020 0.018 <0.010 V <0.005 <0.005 <0.005 <0.005 METHOD OF ANALYSIS:

Metals - Inductiveley Coupled Plasma Spectrometry Carbon - LECO Analyzer Sulfur - CombUstion/titration Silicon - Gravimetric Beaver Valley Unit I Capsule Y WCAP-15571-NP, Rev. 1 April 2008

4-4 TABLE 4-4 Chemistry Results from the Low Alloy Steel NIBS Certified Reference Standards 362, 363, and 364 Concentration in Weight Percent Element NIST 362- NIST 363 NIST 364 Certified Measured Certified Measured Certified Measured C 0.160 0.162 0.620 0.620 0.870 0.870 SiO 2 0.390 0.420 0.740 0.763 0.060 0.064 Cr 0.300 0.287 1.310 1.238 0.060 0.057 Cu 0.500 0.430 0.100 0.105 0.240 0.219 Fe 95.30 98.064 94.40 93.078 96.70 94.283 Mn 1.040 0.952 1.500 1.362 0.250 0.240 Mb 0.068 0.062 0.028 0.027 0.490 0.498 Ni 0.590 0.544 0.300 0.267 0.140 0.123 P 0.041 0.041 0.020 0.017 0.010 0.011.

V 0.040 0.037 0.310 0.284 0.100 0.096 Notes-NBS 361: Certified C % = 0.383 Measured C % = 0.387 Beaver Valley Unit I Capsule Y WCAP-15571-NP, Rev. 1 April 2008

4-5 2700 x CAPSULE (TYPICAL)

REACTOR VESSEL-THERMAL O0 V.

90O Figure 4-1 Arrangement of Surveillance Capsules in the Beaver Valley Unit 1 Reactor Vessel Beaver Valley Unit I Capsule Y WCAP-15571-NP, Rev. 1 April 2008

4-6 SPECIMEN CODE:

DL LOWER SHELL PLATE B6903-1 (LONGITUDINAL DIRECTION)

DT LOWER SHELL PLATE B6903-1 (TRANSVERSE DIRECTION)

DW WELD METAL DH HEAT-AFFECTED-ZONE MATERIAL SURVEILLANCE CAPSULE Y DOSIMETER WOL WOL WOL WOL CHARPY CHARPY BLOCK CHARPY CHARPY CHARPY CHARPY CHARPY CIIARPY CHAARPY CIIARPY 196101 19164 9 OHN DT TW1 FTOWD OT D I

DH DH HWLI 951931J~~J OH 87~J 59 ~ DL H OL 85 57j DINlOT-I DINTWI D WIDTo IoW ~IDT wDlT j 1~j 8919 8 871Jj 5 Co(Cd1 Ni- Cu Ni MONITOR Fe

- Fe CENTER REGION OF VESSEL TO TOP OF VESSEL TO BOTTOM OF VESSEL Figure 4-2 Capsule Y Diagram Showing the Location of Specimens, Thermal Monitors, bn and Dosimeters.

saver, Valley Unit Capsul Y

5-1 5 TESTING OF SPECIMENS FROM CAPSULE Y 5.1 OVERVIEW The post-irradiation mechanical testing of the Charpy V-notch impact specimens and tensile specimens was performed in the Remote Metallographic Facility (RMF) at the George Westinghouse Technology Center. Testing was performed in accordance with 10CFR50, Appendix H118 , ASTM Specification E1 85.-

82151, and Westinghouse Procedure MHL 8402, Revision 2 as modified by Westinghouse RMF Procedures 8102, Revision 1, and 8103, Revision 1.

Upon receipt of the capsule at the hot cell laboratory, the specimens and spacer blocks were carefully removed, inspected for identification number, and checked against the master list in WCAP-84571". No discrepancies were found.

Examination of the two low-melting point 579'F (304'C) and 590'F (3 !0*C) eutectic alloys indicated no melting of either type of thermal monitor. Based on this examination, the maximum temperature to which the test specimens were exposed was less than 579*F (304 0C).

The Charpy impact tests were performed per ASTM Specification E23-98 19and Procedure RMF 8103, on a Tinius-Olsen Model 74, 358J machine. The tup (striker) of the Charpy impact test machine is instrumented with a GRC 930-1 instrumentation system, feeding information into an IBM compatible computer. With this system, load-time and energy-time signals can be recorded in addition to the standard measurement of Charpy energy (ED). From the load-time curve (Appendix A), the load of general yielding (PGy), the time to general yielding (toy), the maximum load (PM), and the time to maximum load (tM) can be determined. Under some test conditions, a sharp drop in load indicative of fast fracture was observed. The load at which fast fracture was initiated is identified as the fast fracture load (Ps), and the load at which fast fracture terminated is identified as the arrest load (PA).

The energy at maximum load (EM) was determined by comparing the energy-time record and the load-time record. The energy at maximum load is approximately equivalent to the energy required to initiate a crack in the specimen. Therefore, the propagation energy for the crack (Ep) is the difference between the total energy to fracture (ED) and the energy at maximum load (EM).

The yield stress (ay) was calculated from the three-point bend formula having the following expression:

o =(Pay *L)/ [B *(W- a) 2*C] (1) where: L = distance between the specimen supports in the impact machine B = the width of the specimen measured parallel to the notch W = height of the specimen, measured perpendicularly to the notch a = notch depth Beaver Valley Unit I Capsule Y WCAP-15571-NP, Rev. 1 April 2008

5-2 The constant C is dependent on the notch flank angle (f), notch root radius (p) and the type of loading (i.e., pure bending or three-point bending). In three-point bending, for a Charpy specimen in which 4s 450 and P = 0.010 inch, Equation I is valid with C = 1.21. Therefore, (for L = 4W),

  • =(PGy*L) [B *(W- a)' *121 = (3.33 *P *W) /[B* (W - a) (2)

For the Charpy specimen, B = 0.394 inch, W = 0.394 inch and a = 0.079 inch. Equation 2 then reduces to:

'y=33.3 *PGr (3) where cry is in units of psi and PGY is in units of lbs. The flow stress was calculated from the average of the yield and maximum loads, also using the three-point bend formula.

The symbol A in columns 4, 5, and 6 of Tables 5-5 through 5-8 is the cross-section area under the notch of the Charpy specimens:

A = B *(W - a) = 0.1241 sq.in. (4)

Percent shear was determined from post-fracture photographs using the ratio-of-areas methods in compliance with ASTM E23-98191and A370-971'0 1. The lateral expansion was measured using a dial gage rig similar to that shown in the same specification.

Tensile tests were performed on a 20,000-pound Instron, split-console test machine (Model 1115) per ASTM Specification E8-991 ") and E21-92121, and RMF Procedure 8102, Revision 1.

Extension measurements were made with a linear variable displacement transducer extensometer. The extensometer knife edges were spring-loaded to the specimen and operated through specimen failure.

The extensometer gage length was 1.00 inch. The extensometer is rated as Class B-2 per ASTM E83-961131.

Elevated test temperatures were obtained with a three-zone electric resistance split-tube furnace with a 9-inch hot zone. All tests were conducted in air.

The yield load, ultimate load, fracture load, total elongation, and uniform elongation were determined directly from the load-extension curve. The yield strength, ultimate strength, and fracture strength were calculated using the original cross-sectional area. The final diameter and final gage length were determined from post-fracture photographs. The fracture area used to calculate the fracture stress (true stress at fracture) and percent reduction in area was computed using the final diameter measurement.

Beaver Valley Unit I Capsule Y WCAP-15571-NP, Rev. 1 April 2008

5-3 5.2 CHARPY V-NOTCH IMPACT TEST RESULTS The results of the Charpy V-notch impact tests performed on the various materials contained in capsule Y, irradiated to a fluence of 2.15 x 10irn/cm 2 (E> 1.0 MeV) in 14.3 EFPY of operation are presented in Tables 5-1 through 5-8 and are compared with unirradiated resultsKIl in Figures 5-1 through 5-12. The transition temperature increases and upper shelf energy decreases for the capsule Y materials are summarized in Table 5-9.

A comparison of the surveillance material 30 ft-lb transition temperature shifts and the upper shelf energy decreases with the Regulatory Guide 1.99, Revision 2, predictions is given in Table 5-10. These results led to the following conclusions:

  • Irradiation of the reactor vessel lower shell plate B6903-1 Charpy specimens, oriented with the longitudinal axis of the specimen parallel to the major rolling direction (longitudinal orientation),

to 2.15 x 10'9 n/cm 2 (E> 1.0MeV) resulted in a 30 ft-lb transition temperature increase of 142.18'F and a 50 ft-lb transition temperature increase of 151.29°F. This results in an irradiated 30 ft-lb transition temperature of 138.73°F and an irradiated 50 ft-lb transition temperature of 179.29*F for the longitudinal oriented specimens.

  • Irradiation of the reactor vessel lower shell plate B6903-1 Charpy specimens, oriented with the longitudinal axis of the specimen perpendicular to the major rolling direction of the plate (transverse orientation), to 2.15 x 1019 n/cm2 (E> 1.0 MeV) resulted in a 30 ft-lb transition temperature increase of 166.93°F and a 50 ft-lb transition temperature increase of 178.61°F. This results in an irradiated 30 ft-lb transition temperature of 184.89 0 F and an irradiated 50 ft-lb transition temperature of 240.501F for transverse oriented specimens.
  • Irradiation of the weld metal Charpy specimens to 2.15 x 10"' n/cm2 (E> 1.0MeV) resulted in a 30 ft-lb transition temperature increase of 179.69*F and a 50 ft-lb transition temperatu're increase of 213.41*F. This results in an irradiated 30 ft-lb transition temperature of 11 t.96°F and an irradiated 50 ft-lb transition temperature of 169.35*F.

0 Irradiation of the weld Heat-Affected-Zone (HAZ) metal Charpy specimens to 2.15 x 1019 n/cm 2 (E> 1.0 MeV) resulted in a 30 ft-lb transition temperature increase of 18.36*F and a 50 ft-lb transition temperature increase of 62.51 'F. This results in an irradiated 30 ft-lb transition temperature of-56.161F and an irradiated 50 ft-lb transition temperature of 20.36 0 F.

o The average upper shelf energy of the lower shell plate B6903-1 (longitudinal orientation) resulted in an average energy decrease of 25 ft-lb after irradiation to 2.15 x 10' 9 n/cm 2 (E > 1.0 MeV). Hence, this results in an irradiated average upper shelf energy of 110 ft-lb for the longitudinal oriented specimens.

  • The average upper shelf energy of the lower shell plate B6903-1 (transverse orientation) resulted in an average energy decrease of 10 ft-lb after irradiation to 2.15 x 10'9 n/cm 2 (F> 1.0 MeV).

Hence, this results in an irradiated average upper shelf energy of 71 ft-lb for the transverse oriented specimens.

Beaver Valley Unit I Capsule Y WCAP-15571-NP, Rev. 1 April 2008

5-4 The average upper shelf energy of the weld metal Charpy specimens resulted an average energy decrease of 35 ft-lb after irradiation to 2.15 x 10'9 n/cm 2 (E> 1.0 MeV). Hence, this results in an irradiated average upper shelf energy of 77 ft-lb for the weld metal specimens.

o The average upper shelf energy of the weld HAZ metal Charpy specimens resulted in an average energy decrease of 14 ft-lb after irradiation to 2.15 x 10'9 rnlcm 2 (E> 1.0MeV). This results in an irradiated average upper shelf energy of 114 ft-lb for the weld HAZ metal.

0 A comparison of the Beaver Valley Unit I reactor vessel beltline material test results with the Regulatory Guide 1.99, Revision 2f31 predictions (See Table 5-10) led to the following conclusions:

- The measured 30 ft-lb shift in transition temperature of all the materials contained in capsule Y are less than the Regulatory Guide 1.99, Revision 2, predictions.

- The measured percent decrease in upper shelf energy (USE) of all the capsule Y surveillance materials is less than the Regulatory Guide 1.99, Revision 2, predictions.

The fracture appearance of each irradiated Charpy specimen from the various surveillance capsule Y materials is shown in Figures 5-13 and 5-16 and show an increasingly ductile or tougher appearance with increasing test temperature.

All beltline materials exhibit a more than adequate upper shelf energy level for continued safe plant operation and are expected to maintain an upper shelf energy of no less than 50 ft-lb throughout the current license of the vessel (28 EFPY) as required by 10CFR50, Appendix G141.

The load-time records for individual instrumented Charpy specimen tests are shown in Appendix A.

The Charpy V-notch data presented in WCAP-8457[1', WCAP-9860I1s4, WCAP-10867csS],and WCAP-12005[56] were based on hand-fit Charpy curves using engineering judgment. However, the results presented in this report are based on a re-plot of all capsule data using CVGRAPH, Version 4.1, which is a hyperbolic tangent curve-fitting program. Appendix B presents a comparison of the Charpy V-Notch test results for each capsule based on hand fit vs. hyperbolic tangent fit. Appendix C presents the CVGRAPH, Version 4.1, Charpy V-notch plots and the program input data.

Appendix D of this report contains a credibility evaluation of the surveillance data from the Beaver Valley Unit I reactor vessel surveillance program. This evaluation indicates that the surveillance results are not credible.

Beaver Valley Unit I Capsule Y WCAP-1 5571-NP, Rev. 1 April 2008

5-5 5.3 TENSILE TEST RESULTS The results of the tensile tests performed on the various materials contained in capsule Y irradiated to 2.15 x 10'9 n/cm2 (E> 1.0 MeV) are presented in Table 5-11 and are compared with unirradiated results 11 ]

as shown in Figures 5-17 and 5-18.

The results of the tensile tests performed on the lower shell plate B6903-1 (transverse orientation) indicated that irradiation to 2.15 x 10'9 n/cm 2 (E> 1.0 MeV) caused approximately a 26 ksi increase in the 0.2 percent offset yield strength and approximately a 15 to 20 ksi increase in the ultimate tensile strength when compared to unirradiated data")J (Figure 5-17).

The results of the tensile tests performed on the surveillance weld metal indicated that irradiation to 2.15 x 109 n/cm2 (F> 1.0 MeV) caused approximately a 19 ksi increase in the 0.2 percent offset yield strength and a 15 to 20 ksi increase in the ultimate tensile strength when compared to unirradiated data11 i (Figure 5-18).

The fractured tensile specimens for the lower shell plate B6903-1 material are shown in Figure 5-19 and, while the fractured tensile specimens for the surveillance weld metal are shown in Figure 5-20. The engineering stress-strain curves for the tensile tests are shown in Figures 5-21 and 5-22.

5.4 WEDGE OPENING LOADING (WOL)

Per the surveillance capsule testing contract, the WOL Specimens were not tested and are being stored at the George Westinghouse Technology Center Hot Cell facility.

Beaver Valley Unit I Capsule Y WCAP-15571-NP, Rev. 1 April 2008

5-6 Table 5-1 Charpy V-notch Data for the Beaver Valley Unit I Lower Shell Plate B6903-1 Irradiated to a Fluence of 2.15 x 1019 n/cm 2 (E> 1.0 MeV)

(Longitudinal Orientation)

Sample Temperature Impact Energy Lateral Expansion Shear Number F C Ft-lbs Joules mils Mm  %

DL62 100 38 10 14 5 0.13 10 DL58 110 43 16 22 10 0.25 15 DL63 125 52 38 52 20 0.51 20 DL59 150 66 43 58 26 -0.66 25 DL61 200 93 44 60 28 0.71 35 DL64 250 121 91 123 63 1.60 75 DL57 300 149 106 144 74 1.88 95 DL60 375 191 113 153 78 1.98 100

-lli---- ..

Beaver Valley Unit I Capsule Y WCAP-15571-NP, Rev. 1 April 2008

5-7 Table 5-2 Charpy V-notch Data for the Beaver Valley Unit I Lower Shell Plate B6903-1 Irradiated to a Fluence of 2.15 x 1019 n/cm2 (E> 1.0 MeV)

(Transverse Orientation)

Sample Temperature Impact Energy Lateral Expansion Shear Number F C ft-lbs Joules mils MM  %

DT95 100 38 12 16 5 0.13 10 DT90 150 66 25 34 15 0.38 15 DT89 180 82 26 35 18 0.46 20 DT87 195 91 34 46 20 0.51 25 DT88 200 93 31 42 21 0.53 25 DT91 225 107 37 50 29 0.74 40 DT96 235 113 51 69 37 0.94 60 DT93 250 121 58 79 48 1.22 0 DT92 275 135 59 80 49 1.24 95 DT94 300 149 67 91 55 1.40 95 DT85 350 177 70 95 53 1.35 100 DT86 375 191 72 98 64 1.63 100 Beaver Valley Unit I Capsule Y WCAP-15571-NP, Rev. 1 April 2008

5-8 Table 5-3 Charpy V-notch Impact Data for Beaver Valley Unit 1 Surveillance Weld Metal Irradiated to a Fluence of 2.15 x 109 n/cm1 (E> 1.0 MeV)

Sample Temperature Impact Energy Lateral Expansion Shear Number F C Ft-lbs Joules mils mm  %

DW93 0 -18 16 22 4 0.10 5 DW86 50 10 13 18 4 0.10 5 DW95 100 38 24 33 16 0.41 55 DW88 110 43 32 43 20 0.51 35 DW87 115 46 32 43 20 0.51 40 DW94 135 57 37 50 25 0.64 50 DW89 150 66 43 58 28 0.71 50 DW85 175 79 48 65 37 0.94 75 DW90 200 93 50 68 37 0.94 80 DW92 225 107 74 100 57 1.45 95 DW91 250 121 74 100 55 1.40 98 DW96 300 149 80 108 60 1.52 100

  • --. m,_

Beaver Valley Unit I Capsule Y WCAP-15571-NP, Rev. 1 April 2008

5-9 Table 5-4 Charpy V-notch Impact Data for Beaver Valley Unit 1 Representative Heat Affected Zone Material Irradiated to a Fluence of 2.15 x 10"9 n/cm2 (E> 1.0 MeV)

Sample Temperature Impact Energy Lateral Expansion Shear Number F C Ft-lbs Joules mils mm  %

DH86 -100 -73 19 26 9 0.23 5 DH78 -50 -46 24 33 12 0.30 20 DH88 -40 -40 28 38 13 0.33 20 DH85 -25 -32 53 72 26 0.66 35 DH94 0 -18 43 58 20 0.51 50 DH87 10 -12 46 62 12 0.30 60 DH93 50 10 54 73 30 0.76 45 DH96 72 22 81 110 49 1.24 50 DH92 125 52 68 92 41 1.04 80 DH95 175 79 86 117 54 1.37 85 DH91 225 107 106 144 68 1.73 100 DH90 300 149 107 145 62 1.57 100

_ - = - -,-

Beaver Valley Unit I Capsule Y WCAP-15571-NP, Rev. 1 April 2008

5-10 Table 5-5 Instrumented Charpy Impact Test Results for the Beaver Valley Unit I Lower Shell Plate B6903-1 Irradiated to a Fluence of 2.15 x I0'9 n/cm2 (E>1.0 MeV)(Longltudlnal Orientation)

Normalized Energies (ft-lb/in ' )

Charpy Yield Time to Max. Time to Fast Yield Test Energy Load Yield tGy Load Max. Fract. Arrest Stress Sy Flow Sample Temp. ED Charpy Max. Prop. PGV (msec) PM Tm Load PF Load PA (ksi) Stress No. ("F) (ft-lb) ED/A EM/A EWA (lb.) (lb.) (msec) (lb.) (lb.) (ksi)

DL62 100 10 81 44 36 3950 0.18 3957 0.18 3950 0 132 132 DL58 110 16 129 64 65 4116 0.17 4424 0.21 4424 0 137 142 DL63 125 38 306 251 .55 3950 0.17 4856 0.53 4827 0 132 147 DL59 150 43 346 251 96 3939 0.17 4835 0.53 4764 0 131 146 DL61 200 44 355 236 119 3891 0.17 4786 0.51 4777 880 130 144 DL64 250 91 733 323 410 3611 0.17 4649 0.68 4042 2780 120. 138 DL57 300 106 854 311 543 3547 0.17 4585 0.67 3653 3019 118 135 DL60 375 113 910 315 595 3422 0.17 4506 0.69 n/a n/a 114 132 0

N') CD o

COe<

0D Beaver Valley Unit I Capsule Y

5-11 5-11 Table 5-6 Instrumented Charpy Impact Test Results2 for the Beaver Valley Unit 1 Lower Shell Plate B6903-1 Irradiated to a Fluenee of 2.15 x 10'9 n/cm (E>I.0 MeV* (Transverse Orientationa*

Normalized Energies (ft.lb/in')

Charpy Yield Time to Max. Time to Fast Arrest Yield Test Energy Load Yield Load Max. Fract. Load Stress Sy Flow Stres Sample Temp. ED Charpy Max. Prop. PGY t(GV PM tM Load Pv, PA (ksl) (ksl)

No. (*F) ED/A E, 1tA EIA (lb.) (msec) (lb.) (msec) (Ib.) (lb.)

DT95 100 12 97 50 47 4059 0.17 4192 0.19 4176 0 135 137 DT90 150 25 201 143 59 3817 0.17 4457 0.36 4284 0 127 138 DT89 180 26 209 115 95 3839 0.17 4214 0.31 4119 1170 128 134 DT87 195 34 274 172 102 3883 0.17 4503 0.41 4479 921 129 140 DT88 200 31 250 139 110 3790 0.17 4338 0.35 4302 1298 126 135 DT91 225 37 298 139 159 3671 0.17 4237 0.36 4184 1857 122 132 DT96 235 51 411 223 188 3685 0.17 4522 0.51 4453 2361 123 137 DT93 250 58 467 202 265 3616 0.17 4304 0.48 3486 2724 120 132 DT92 275 59 475 176 300 3586 0.17 4267 0.44 3458 2535 119 131 DT94 300 67 560 214 326 3588 0.17 4440 0.5 3367 2480 119 134 DT85 350 70 264 212 352 3566 0.17 4385 0.5 n/a n/a 119 132 DT86 375 72 580 209 371 3447 0.17 4257 0.5 n/a n/a 115 128 C,'

M.X CO fl)0< CD 0'

Beaver Vallcy Unit I Capsule Y

5-12 Table 5-7 Instrumented Charpy Impact Test Results for the Beaver Valley Unit 1 Surveillance Weld Metal Irradiated to a Fluence of 2.15 x 1019 n/cm1 (E>1.0 MeV)

Normalized Energies (ft-lb/in')

Charpy Yield Time to Time to Fast Test Energy Load Yield tGy Max. Max. Fract. Arrest Yield Flow Sample Temp. ED Charpy Max. Prop. PGY (msec) Load Pm tM Load Pp Load PA Stress Sy Stress No. (-F) (ft-lb) ED/A Em/A EJ/A (lb.) (lb.) (msec) (lb.) (lb.) (ksi) (ksi)

DW93 0 16 129 73 56 4493 0.17 4860 0.22 4851 0 150 156 DW86 50 13 105 60 45 4344 0.17 4578 0.20 4578 0 145 149 DW95 100 24 193 72 122 4175 0.17 4571 0.22 4423 911 139 146 DW88 110 32 258 169 89 4139 0.17 4520 0.38 4495 363 138 144 DW87 115 32 258 175 83 3882 0.17 4642 0.54 4627 670 129 142 DW94 135 37 298 199 99 4095 0.17 4577 0.44 4544 1111 136 144 DW89 150 43 346 232 114 3914 0.17 4617 0.51 4581 1345 130 142 DW85 175 48 387 229 158 3939 0.17 4597 0.50 4363 1610 131 142 DW90 200 50 403 216 186 3945 0.17 4524 0.48 4637 625 131 141 DW92 225 74 596 226 370 3892 0.17 4539 0.50 n/a n/a 130 140 DW91 250 74 596 218 378 3901 0.17 4571 0.48 n/a n/a 130 141 0 DW96 300 80 645 224 420 3727 0.17 4427 0.51 n/a n/a 124 136

..4~

o <

0.

Beamvr Valley Unit I Capsule Y

5-13 Table 5-8 Instrumented Charpy Impact Test Results for the Beaver Valley Unit 1 Representative Heat-Affected-Zone (HAZ) Metal Irradiated to a Fluence of 2.15 x 1019 n/era2 (E>1.0 MeV)

Normalized Energies Charpy Yield Time to Time to Fast Test Energy Load Yield try Max. Max. Fract. Arrest Yield Flow Sample Temp. ED Charpy Max. Prop. PGY (rnsec) Load PNI tM Load PF Load Stress Sy Stress No. (OF) (ft-lb) ED/A EM/A Ep/A (lb.) (lb.) (msec) (lb.) PA (lb.) (ksl) (ksi)

DH86 -100 19 153 95 58 4599 0.17 5707 0.25 5703 0 153 172 DH78 -50 24 193 85 109 4508 0.17 5160 0.23 50,14 0 150r 161 DH88 -40 28 226 79 147 4755 0.17 5217 0.22 5021 0 158 166 DH85 -25 53 427 260 167 4673 0.17 5216 0.50 5024 625 156 165 DH94 0 43 346 .228 119 4639 0.17 5238 0.45 5196 1199 154 164 blH87 to 46 37'1 231 140 4473 0.17 5109 0.46 5039 1286 149 160 DH93 50 54 435 250 185 4443 0.17 5114 0.50 4999 598 148 159 DH96 72 81 653 257 395 4487 0.17 5164 0.50 4317 1544 149 161 DH92 125 68 548 237 311 4291 0.17 4830 0.49 4344 1260 143 152 DH95 175 86 693 254 469 4101 0.17 4843 0.53 4086 1828 137 149 DH91 225 106 854 344 511 4121 0.17 4859 0.68 n/a n/a 137 150 DH90 300 107 862 322 540 3850 0.17 4612 0.67 n/a n/a 128 141 N) M co 0*

Beaver Valley Unit I Capsule Y

5-14 Table 5-9 Effect of Irradiation to 2.15 x 10"'n/cm' (E>1.0 MeV) on the Notch Toughness Properties of the Beaver Valley Unit 1 Reactor Vessel Surveillance Materials Average 30 (ft-lb)(n) Average 35 mil Lateral~b,) Average 50 ft-lb) Average Energy Absorption(A Transition Temperature (OF) Expansion Temperature (*F) Transition Temperature (*F) at Full Shear (ft-lb)

Material Unirradiated Irradiated AT Unirradiated Irradiated AT Unirradiated Irradiated AT Unirradiated Irradiated AE Lower Shell Plate

-3.45 138.73 142,18 25.52 191.60 166.07 06903-1 (Long.) 27.99 179.29 151,29 135 110 -25 Lower Shell Plate 17.95 184.89 166.93 43.59 230.43 186.84 61.89 240.50 178.61 81 B6903-1 (Trans.) 71 -10 Weld Metal -67.72 1 111.96 179.69 -48.77 169.8 218.58 -44.05 169.35 213.41 112 77 -35 HIAZMetal -74.53 -56.16 18.36 05 63.24 95.29 -42.15 20.36 .62.51 128 114 -14

a. "Average" is defined as the value read from the curve fit through the data points of the Charpy tests (see Figures 5-1, 5-4, 5-7 and 5-10).
b. "Average" is defined as the value read from the curve fit through the data points of the Charpy tests (see Figures 5-2, 5-5, 5-8 and 5-11)

C)

.-,4 0.

  • 0 05 Beaver Valley Unit I Capsule Y

5-15 Table 5-10 Comparison of the Beaver Valley Unit 1 Surveillance Material 30 ft-lb Transition Temperature Shifts and Upper Shelf Energy Decreases with Regulatory Guide 1.99, Revision 2, Predictions 30 ft-lb Transition Upper Shelf Energy Temperature Shift Decrease Material Capsule Fluence Predicted Measured Predicted Measured (x 109 n/cm2 ) (OF) (2) (OF) (b) (%) (a) (%)(C)

V .323 101.4 128.49 23 16 Lower Shell Plate B6903-1 U .646 129.2 118.93 28 22 (Longitudinal) W .986 146.6 148.52 31 16 Y 2.15 178.1 142.18 37 19 V .323 101.4 137.81 23 7 Lower Shell Plate U .646 129.2 131.84 28 4 B6903-1 (Transverse) U.4 2. 3.42 W .986 146.6 179.99 31 27 Y 2.15 178.1 166.93 37 12 V .323 125.1 159.72 31 21

.646 159.4 166.32 36 26 Weld Metal U W .986 180.9 187.73 40 30 Y 2.15 219.7 179.69 44 31 V . - - 0(d) --- 15

.646 -- 49.67 - 18 HAZMetal U W .986 - - 61.4 - 16 Y 2.15 -- 18.36 --- 11 Notes:

(a) Based on Regulatory Guide 1.99, Revision 2, methodology using the mean weight percent values of copper and nickel of the surveillance material.

(b) Calculated using measured Charpy data plotted using CVGRAPH, Version 4.1 (See Appendix C)

(c) Values are based on the definition of upper shelf energy given in ASTM E 185-82.

(d) The actual measured capsule Y ARTNDT value is -8.62°F. This physically should not occur, therefore for conservatism a value of zero will be reported.

Beaver Valley Unit I Capsule Y WCAP-15571-NP, Rev. 1 April 2008

5-16 Irradiated to 2.15 x 10t9 n/cmi (E > 1.0 Table 5-11 Tensile Properties of the Beaver Valley Unit I Reactor Vessel Surveillance Materials MeV)

Ultimate Fracture Fracture Fracture Uniform Total Reduction Material Sample Test 0.2% Yield Strength Load Stress Strength Elongation Elongation in Area Number Temp. Strength (ksi) (ksi) (M) (/) (0)

(OF) (ksi) (ksi) (kip) 100.2 3.93 185.9 80.0 10.4 19,0 57 Plate B6903-1 DT 15 200 81.8 97.6 4.11 151.3 83.7 9.3 15.5 45 (Transverse) DT 16 550 81.0 100.7 3,37 180.8 68.6 10.3 21.9 62 DW 15 150 86.6 WeldI 137.5 81.1 9.4 16.5 41 DW 16 550 78.9 95.6 3.98 .* ° T .'. . .

7'3 C) 0*

00a Beaver Valley Unit I Capsule Y

(

5-17 LOWER SHELL PLATE 6903-1 (LONGITUDINAL)

CVGRAPH 4.1 Hyperbolic Tangent Curve Printed at 10t14"2 on 05-15-2000 Results Curve Fluence ISE d-LSE USE d-USE T

  • 30 d-T o 30 T o 50 d-T o 50 1 0 219 0 135 0 -3A45 0 2799 0 2 0 2-19 0 114 -21 125.04 128.49 1593 1313 3 0 219 0 105 -30 115.47 118.93 158.7 130-7 4 0 219 0 114 -21 145.07 148.2 17423 14623 5 0 219 0 110 -25 138-73 142.18 17929 15129 CD)

-A) z

-3W0 -200 -100 0 100 200 3W0 4W0 50 600 Temperature in Degrees F Curve Legend 1 -- 20 .----------- 3 0- 4- 5-Data Set(s) Plotted Curve Plant Catsule Material Ori Heatd 1 BVl UNIRR PLATE SA533BI LT C6317-1 2 BVi V PLATE SA533BI LT O6317-1 3 BVI U PLATE SA533BI LT C6317-1 4 BVl W PLATE SA533BI LT C6317-1 5 BVI Y PLATE SA533BI LT C6317-1 Figure 5-1 Charpy V-Notch Impact Energy vs. Temperature for Beaver Valley Unit 1 Reactor Vessel Lower Shell Plate B6903-1(Longitudinal Orientation)

Beaver Valley Unit I Capsule Y WCAP-15571-NP, Rev. 1 April 2008

5-18 LOWER SHELL PLATE 6903-1 (LONGITUDINAL)

CNIGRAPH 4J Hyperbolic Tangent Curve Printed at 101723 on 05-15--2000 Results Curve Fluence USE d-USE T o LE35 d-T

  • LE35 1 0 805 0 2552 0 2 0 -.15 86.69 1479 12237 3 0 79.79 -7.06 15227 126.74 4 0 8M72 -313 163.9 13837 5 0 83.12 -3.73 191.6 16607 co 4-)

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Curve Legend 0 D- 2 ..------ 30 4 - 5-Data Set(s) Plotted Curve Plant Capsule Material O0. Heat#,

BVI UNIRR PLATE SA533BI LT C6317-I 2 VIM V PLATE SA533B] LT C6317-1 3 BVI U PLATE SA533BI LT C317-1 4 D\I W PLATE SA533BI LT C6317-1 5 BVI Y PLATE SA533BI LT C01l7-1 Figure 5-2 Charpy V-Notch Lateral Expansion vs. Temperature for Beaver Valley Unit I Reactor Vessel Lower Shell Plate B6903-1(Longitudinal Orientation)

Beaver Valley Unit I Capsule Y WCAP-15571-NP, Rev. 1 April 2008

5-19 LOWER SHELL PLATE 6903-1 (LONGITUDINAL)

CVGRAPH 41 Hyperbolic Tangent Curve Printed at 1M32 on 05-15-2000 Results Curve Fluence T 0 T/z Shear d-T o '.qShear 1 0 5718 0 2 0 173.43 11625 3 0 1773 12012 4 0 17535 119.17 5 0 20631 14912 C-q C-)

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Curve Legend SO1- 20 .----------- 30- - 4 - 5--

Data Set(s) Plotted Curve Plant Capsule Material O6 Heat#

BVI UNIRR PLATE SA533BI LT C6317-1 2 B11! V PLATE SA533BI LT *6317-1 3 BVI u PLATE SA533BI LT C6317-1 4 Bil W PLATE SA533E1 LT C6317-1 5 BVI Y PLATE SA533BI LT C6317-1 Figure 5-3 Charpy V-Notch Percent Shear vs. Temperature for Beaver Valley Unit 1 Reactor Vessel Lower Shell Plate B6903-1 (Longitudinal Orientation)

Beaver Valley Unit I Capsule Y WCAP-15571-NP, Rev. 1 April 2008

5-20 LOWER SHELL PLATE 6903-1 (TRANSVERSE)

CGRAPH 4.1 Hyperbolic Tangent Curve Printed at 10,29t45 on 05-15-2000 Resuts Curve Fluence [SE d-LSE USE d-USE T

  • 30 d-T
  • 30 T o 50 d-T o 50 1 0 2.19 0 81 0 17.95 0 61.89 0 2 0 219 0 75 -6 155.77 137.31 206.14 14425 3 0 0 78 -3 149.8 13184 21328 15139 4 0 22 2.19 0 59 -;2 19794 179.99 23757 175-68 5 0 2.19 0 71 -10 184B9 166.93 240.5 178.61 (I2 7

a)

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Curve Legend 1o-0 2 ----------

. 3 -- 4 5-.

Data Set(s) Plotted Curve Plant Capsule Material Ori. Heat#

1 BVI UNIRR PLATE SAM33BI TL C6317-1 2 BVI V PLATE SAM33BI TL C6317-1 3 BVI U PLATE SA533BI TL C6317-1 4 BYI W PLA TE SA533BI TL C6317-1 5 BVI Y PLATE SAM33BI TL 05317-1 Figure 5-4 Charpy V-Notch Impact Energy vs. Temperature for Beaver Valley Unit 1 Reactor Vessel Lower Shell Plate B6903-1(Transverse Orientation)

Beaver Valley Unit I Capsule Y WCAP-15571-NP, Rev. 1 April 2008

5-21 LOWER SHELL PLATE C6317-1 (TRANSVERSE)

CVGRAPH 41 Hyperbolic Tangent Curve Printed at P30.41 on 07-10-200 Results Curve Fluence USE d-USE T o LE35 d-To LE35 1 0 0 69.04 0 4359 2 0 6127 -7.77 I755 13M96 3 0 70.57 152 14606 4 8 5619 -I.75 214.58 170-9 5 0 61.54 -7.49 230.43 18684 P.4

ý-4 4-)

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F cum Iqed 10 20... . 30" 4- 5-Data Set(s) Plotted Curve Plant Capsule Material Oft Heat#

1 BVI UNIRR PLATE SA533BI TL C6317-1 2 BV! V PLATE SA533BI TL 06317-1 3 BYI U PLATE SASM3I TL C317-1 4 BVI PLATE SA533BI Th 05317-1 5 BVI Y PLATE SA533B1 TL C6317-1 Figure 5-5 Charpy V-Notch Lateral Expansion vs. Temperature for Beaver Valley Unit I Reactor Vessel Lower Shell Plate B6903-1((Transverse Orientation)

Beaver Valley Unit I Capsule Y WCAP-15571-NP, Rev. 1 April 2008

5-22 LOWER SHELL PLATE C6317-1 (TRANSVERSE)

CVGRAPH 4J Hyperbolic Tangent Curve Printed at 0727"39 on 07-10-2aOO Results Curve Fluence T o 5Nz- Shear d-T o 5Ti. Shear 0 7734 0 2 0 =029 l255 3 0 22315 I45.8I 4 0 2175 1401J5 5 0 22M6 145.31 Cl) a.)

C-,

-300 -200 -100 0 100 200 300 -ý 400 500 600 1 Temperature in Degrees F Curve Legend 1&- 20 ------ 30-- 4 - 5v Data Set(s) Plotted Curve Plant Capsule Material On. Heat#

1 BVI UNIRR PLATE SA533BI TL 06317-1 2 BVI V PLATE SAS,.3BI SA533BI TL C6317-1 3 BY' U PLATE TL OB317-1 4 BVI IV PLATE SA533BI C6317-1 TL 5 BVI Y PLATE SA533B1 C6317-1 Figure 5-6. Charpy V-Notch Percent Shear vs. Temperature for Beaver Valley Unit 1 Reactor Vessel Lower Shell Plate B6903-1(Transverse Orientation)

Beaver Valley Unit I Capsule Y WCAP-15571-NP, Rev. 1 April2008

5-23 SURVEILLANCE PROGRAM WELD METAL i.'\ ;RAPH 4.1 H-yperbolic Tangent Curve Printed at 0ft2BM8 on 05-16-21)00 Results Curve Fhl.enoi ISE d-lSE USE d-USE T o .30 d-T a 30 T o 50 d-T

  • 50 1 0 2.1) 0 112 0 -67.t2 0 -44.05 0 2 0 .j19 0 8u -24 91.99 159.72 143.49 187.55 3 0 2.19 0 t3 -29 9&59 16632 161W2 205.5 4 0 2.19 0 78 -34 12001 187.73 17315 217.6 5 0 219 0 77 -35 111.,6 179 169.,5 213.41

-r L)

-300 -200 -100 0 100 200 300 400 500 609 Temperature in Degrees F Curve Legend 1o0 2(2D .......... 30- - - 4*'- -- 5-IlAta Set(,) Plotted Curve I l;bl. Capsule Material Ori. HeatO 1 11\'1 1NIRR WELD 304 2 DVI V WELD 305424 3 Dlvi ti WELD 305424 4 BVI IV WELD 305424 5 BIv Y WELD 305424 Figure 5-7 Charpy V-Notch Impact Energy vs. Temperature for Beaver Valley Unit I Reactor Vessel Weld Metal Beaver Valley Unit I Capsule Y WCAP-15571-NP, Rev. 1 April 2008

5-24 SURVEILLANCE PROGRAM WELD METAL CYCRAPH 4.1 Hyperbolic Tangent Curve Printed at 0&382l on 0&-16-2000 Results Curve Fluence USE d-IJSE T *LE:35 d-T oLE35 1 0 MA8 0 -48.77 0 2 0 80.7 -3.18 12428 173.05 3 0 70.44 -13.44 143.72 1925 4 0 7338 -10.5 1492 .197.98 5 0 65.72 -1&16 169.8 218.58 Cr)

X 4ý

-300 -200 -100 0 100 200 30o 400 5oo 600 Temperature in Degrees F Curve Legend 10 - 20 ---------- 30 4" - 5 -

Data Set(s) Plotted Curve Plant CaDSule Material Ori Heat#

I BVI UNIRR WELD 305424 2 BVI V WELD 305424 3 B%,I U WELD 305424 4 BVI W WEL 305424 5 BVI Y WELD 305424 Figure 5-8 Charpy V-Notch Lateral Expansion vs. Temperature for Beaver Valley Unit 1 Reactor Vessel Weld Metal Beaver Valley Unit I Capsule Y WCAP-15571-NP, Rev. 1 April 2008

5-25 SURVEILLANCE PROGRAM WELD METAL CVGRAPH 4.1 Hyperbolic Tangent Curve Printed at 08:4145 on 05--15-2000 Results Curve Fluence T 0 5a/ Shear d-T 50"T.Shear 1 0 -572 0 2 0 12656 183,76 3 0 13681 194.02 4 0 166.4 5 0 13037 18757 U)4

-300 -200 -100 0 .100 200 300 400 500 600 Temperature in Degrees F Curve tegend 10- 20------------ 30 4 5.

Data Set(s) Plotted Curve Plant CaDsule Material Ori. Heat#

BVl UNIRR WELD 305424 2 BVI V WELD 305424 3 BVI U WaELD 305424 4 BV1 WELD 305424 Y

5 BVI WELD 305424 Figure 5-9 Charpy V-Notch Percent Shear vs Temperature for Beaver Valley Unit 1 Reactor Vessel Weld Metal Beaver Valley Unit I Capsule Y WCAP-15571-NP, Rev. 1 April 2008

5-26 HEAT AFFECTED ZONE CYGRAPH 41 Hyperbolic Tangent Curve Printed at 08fi.43 on 05-15-20M)

Reu]ts Curve Fluence ISE d-ISE USE d-USE T o 30 d-To 30 T o 50 d-T o 50 1 0 Z19 0 128 0 -74.53 0 -42.15 0 2 0 2.19 0 109 -19 -- 16 -62 -1329 28.75 3 0 219 0 105 -23 -24A6 49.67 4.93 47.08 4 0 219 0 107 -21 -13.13 6L4 2U 70.66 5 0 2I9 0 114 -14 -_56 18.3S 20.36 6251 T

bb

  • 0

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Curve Legend 1o - 2- .-.- 3 e- 4 - 5' Data Set(s) Plotted Curve Plant CasuSle Material Ori. HeatW BVI UNIRR HEAT AFFD ZONE 2 ByV V HEAT AFFD ZONE 3 BVI U HEAT AFFD ZONE 4 BVI w HEAT AFFD ZONE 5 BVI Y HEAT AFFD ZONE Figure 5-10 Charpy V-Notch Impact Energy vs. Temperature for Beaver Valley Unit I Reactor Vessel Heat-Affected-Zone Material Beaver Valley Unit I Capsule Y WCAP-15571-NP, Rev. 1 April 2008

5-27 HEAT AFFECTED ZONE MATERIAL CYGRAPH 41 Hyperbolic Tangent Curve Printed at 07"16:02 on 07-10-2000 RPAults Curve Fluence USE d-USE T o IZ35 d-T

  • LM 5-27 1 0 74A 0 0 2 ,0 89.4 1451 17B9 49.94 3 0 69M3 -525 693 399 4 0 77.55 -766 2513 5718 5 0 6752 -736 6324 9529 C.)

-300 -200 -100 0 100 .200 300 400 500 600 Temperature in Degrees F Curve Legend 0D - 2 ....... 39 - 4- 5 -

Data Set(s) Plotted Curve Plant Capsule Material On Heatff 1 BVI UNIRR HEAT AFFD ZONE 2 BV' V HEAT AFFI) ZONE 3 BVl U HEAT AFFD ZONE

4. BVI w HEAT AFFD ZONE 5 BVl Y HEAT AFFD ZONE Figure 5-11 Charpy V-Notch Lateral Expansion vs. Temperature for Beaver Valley Unit 1 Reactor Vessel Heat-Affected-Zone Material Beaver Valley Unit I Capsule Y WCAP-15571-NP, Rev. 1 April 2008

5-28 HEAT AFFECTED ZONE MATERIAL CVGRAPHI 41 Hyperbolic Tangent Curve Printed at 07I821 on 07-1D-2U00 Results Curve Fluence T o 50, Shear d-T 0 50/ Shear 1 0 -46.4 0 2 0 551 3 0 1021 56.71 4 0 2523 7224 5 0 34.01 80.41 4')

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Curve Legend 1 0- 2O--..... 3e 4- 5 Data Set(s) Plotted Curve Plant Capsule Material Orn Heat#

1 BVI BV1 UNIRR HEAT AFFD ZONE 2 BVI V HEAT AFFO ZONE 3 HVI U HEAT AFFI ZONE 4 BVI W H*AT AFFD ZONE 5 BVI Y HEAT AFDD ZONE Figure 5-12 Charpy V-Notch Percent Shear vs. Temperature for Beaver Valley Unit I Reactor Vessel Heat-Affected-Zone Material Beaver Valley Unit I Capsule Y WCAP-15571-NP, Rev. 1 April 2008

5-29 DL62, 100F DL58, 110°F DL63, 125°F DL59, 150°F DL61,200 0 F DL64,250°F DL57,300°F DL60,375°F Figure 5-13 Charpy Impact Specimen Fracture Surfaces for Beaver Valley.Unit 1 Reactor Vessel Lower Shell Plate B6903-1(Longitudinal Orientation)

Beaver Valley Unit I Capsule Y WCAP-15571-NP, Rev. 1

.April 2008

5-30 DT95, 100-F DT90, 150 0 F DT89, I 80°F DT87, 195WF DT88, 200WF DT91, 2250 F DT96, 235°F DT93, 250°F DT92, 275°F DT94, 300-F DT85, 350°F DT86, 375°F Figure 5-14 Charpy Impact Specimen Fracture Surfaces for Beaver Valley Unit I Reactor Vessel Lower Shell Plate B6903-1 (Transverse Orientation)

Beaver Valley Unit I Capsule Y WCAP-15571-NP, Rev. 1 April 2008

5-31 DW93, 0F DW86, 50°F DW95, 100-F DW88, 110° DW87, 115IIF DW94, 135F DW89, 150° DW85, 175°F DW90 200WF DW92,.225F DW91, 250°F DW96, 300-F Figure 5-15 Charpy Impact Specimen Fracture Surfaces for Beaver Valley Unit I Reactor Vessel Weld Metal Specimen Beaver Valley Unit I Capsule Y WCAP-15571-NP, Rev. 1 April 2008

5-32 DH86,-100°F DH89, -50°F DH88, -40 0 F DH85, -25°F DH94, 0F DH87, 10°F DH93, 50°F DH96, 72°F DH921I25°F DH95, 175°F DH91, 225 0 F DH90, 300OF Figure 5-16 Charpy Impact Specimen Fracture Surfaces for Beaver Valley Unit I Reactor Vessel Heat-Affected-Zone Metal Beaver Valley Unit I Capsule Y WCAP-15571-NP, Rev. 1 April 2008

5-33 (0 0 0 50 100 150 200 250 300 120 II I I I U0 800 ULTIMATE TENSILE STRENGTH 100 700 AA 90 600 En -A A ft

"- 80 2470 500 60 0 400 50 0

0.2% YIELD STRENGTH 300 40 LEGEND:

L* O UNIRRADIATED

, *tIRRADIATED TO A FLUENCE OF 2.15 X 1019 n/cm2 (E>1.OMeV) 80 70 REDUCTION IN AREA 60 1*-

50 ALA I- 40 C-)

30 TOTAL ELONGATION 20 10 _FAIUNIFORM R ELONGATION N

1 0 !I IL 0 100 200 300 40 500 600 TEMPERATURE (*F)

Figure 5-17 Tensile Properties for Beaver Valley Unit 1 Reactor Vessel Lower Shell Plate B6903-1 (Transverse Orientation)

Beaver Valley Unit I Capsule Y WCAP-15571-NP, Rev. 1 April 2008

5-34 (0) 0 50 100 150 200 250 300 120 800 110 ULTIMATE TENSILE STRENGTH 100 A- 700 90 U'

600 d 0*

80 AT C,'

LaJ 70 500 60 400 F~ 0.2% YIELD STRENGTH 50 300 40 LEGEND:

A 0 UNIRRADIATED 2 A 0 IRRADIATED TO A FLUENCE OF 2.15 X 1019 n/cm (E>1.0MeV) 80 REDUCTION IN AREA 70 60 AL I,.-

vJ 50 40 A 30 TOTAL ELONGATION 20 10 UNIFORM ELONGATION 0

0 100 200 300 400 500 600 TEMPERATURE (CF)

Material Figure 5-18 Tensile Properties for Beaver Valley Unit I Reactor Vessel Weld Beaver Valley Unit I Capsule Y WCAP-15571-NP, Rev. 1 April 2008

5-35 Specimen DT 15. Tested at 200°F Specimen DT16 Tested at 550.F Figure 5-19 Fractured Tensile Specimens from Beaver Valley Unit 1 Reactor Vessel Lower Shell Plate B6903-1 (Transverse' Orientation)

Beaver Valley Unit I Capsule Y WCAP-15571-NP, Rev. 1 April 2008

5-36 Specimen DW15 Tested at 150OF Specimen DWl6 Tested at 550°F Figure 5-20 Fractured Tensile Specimens from Beaver Valley Unit 1 Reactor Vessel Weld Metal Beaver Valley Unit I Capsule Y WCAP-15571-NP, Rev. 1 April 2008

5-37 STFESS-STRAJN CURVE BEAVERVALIEYULT 1 "Y'C:PSJLE 100 90 80 70 60

('5 COO 50 I-) 40 Or 15 200 F 30 10 0

0 0.05 0.1 0.15 0.2 0.3 STRAN, INiN STRESS-SRTPAN CURVE BEAVER VALLEY UNOT 1 Y' CAPSULE 100 90 80 70 60 C6 CO 50 i- 40 3D Ur 16 550 F 2D 10 0

0 005 0.1 0.15 02 0.25 0.3 STRAIN, IMN Figure 5-21 Engineering Stress-Strain Curves for Beaver Valley Unit 1 Reactor Vessel Lower Shell Plate B6903-1, Capsule Y, Transverse Tensile Specimens DT15 and DT16.

Beaver Valley Unit I Capsule Y WCAP-15571-NP, Rev. 1 April 2008

5-38 St-STRAIN C1JPVE EAVvERVALLEY ULNT 1 Y cAP 100 80 o60 ul)

U0 OW 15 f) 4 0 150 F 0

0 0.05 0.1 0.15 02 0.3 STRAJN INMN STFESSZSRAJN O.JVE BEAVERVA.LLEYyU I CAPSJ.LE 100 90 80 70 v60 (n

LI,,

50 co 40 DW 16 30 550 F 20 10 0

0 0.05 0.1 0.15 0.2 025 0.3 STRAJN, IN/lN Figure 5-22 Engineering Stress-Strain Curves for Beaver Valley Unit 1 Reactor Vessel Weld Metal, Capsule Y, Tensile Specimens DWI5 and DW16.

Beaver Valley Uniit I Capsule Y WCAP-15571-NP, Rev. 1 April 2008

6-1 6.0 RADIATION ANALYSIS AND NEUTRON DOSIMETRY

6.1 INTRODUCTION

Knowledge of the neutron environment within the reactor vessel and surveillance capsule geometry is required as an integral part of LWR reactor vessel surveillance programs for two reasons. First, in order to interpret the neutron radiation induced material property changes observed in the test specimens, the neutron environment (energy spectrum, flux, fluence) to which the test specimens were exposed must be known. Second, in order to relate the changes observed in the test specimens to the present and future condition of the reactor vessel, a relationship must be established between the neutron environment at various positions within the reactor vessel and that experienced by the test specimens. The former requirement is normally met by employing a combination of rigorous analytical techniques and measurements obtained with passive neutron flux monitors contained in each of the surveillance capsules. The latter information is generally derived solely from analysis.

The use of fast neutron fluence (E > 1.0 MeV) to correlate measured material property changes to the neutron exposure of the material has traditionally been accepted for development of damage trend curves as well as for the implementation of trend curve data to assess vessel condition. In recent years, however, it has been suggested that an exposure model that accounts for differences in neutron energy spectra between surveillance capsule locations and positions within the vessel wall could lead to an improvement in the uncertainties associated with damage trend curves as well as to a more accurate evaluation of damage gradients through the reactor vessel wall.

Because of this potential shift away from a threshold fluence toward an energy dependent damage function for data correlation, ASTM Standard Practice E853, "Analysis and Interpretation of Light-Water Reactor Surveillance Results," recommends reporting displacements per iron atom (dpa) along with fluence (E > 1.0 MeV) to provide a data base for future reference. The energy dependent dpa function to be used for this evaluation is specified in ASTM Standard Practice E693, "Characterizing Neutron Exposures in Iron and Low Alloy Steels in Terms of Displacements per Atom." The application of the dpa parameter to the assessment of embrittlement gradients through the thickness of the reactor vessel wall has already been promulgated in Revision 2 to Regulatory Guide 1.99, "Radiation Embrittlement of Reactor Vessel Materials."

This section provides the results of the neutron dosimetry evaluations performed in conjunction with the analysis of test specimens contained in surveillance Capsules V, U, W, and Y which were withdrawn at various intervals during the'first thirteen fuel cycles. This evaluation is based on current state-of-the-art methodology and nuclear data including neutron transport and dosimetry cross-section libraries derived from the ENDF/B-VI data base. This report provides a consistent up-to-date neutron exposure data base for use in evaluating the material properties of the Beaver Valley Unit I reactor vessel.

In each capsule dosimetry evaluation, fast neutron exposure parameters in terms of neutron fluence (E > 1.0 MeV), neutron fluence (E > 0.1 MeV), and iron atom displacements (dpa) are established for the capsule irradiation history. The analytical formalism relating the measured capsuleexposure to the exposure of the vessel wall is described and used to project the integrated exposure of the vessel wall.

Also, uncertainties associated with the derived exposure parameters at the surveillance capsules and with the projected exposure of the reactor vessel are provided.

Beaver Valley Unit I Capsule Y WCAP-15571-NP, Rev. 1 April 2008

6-2 All of the calculations and dosimetry evaluations presented in this section have been based on the latest available nuclear cross-section data derived from ENDF/B-VI and the latest available calculational tools and are consistent with the requirements of Draft Regulatory Guide DG-1053, "Calculational and Dosimetry Methods for Determining Pressure Vessel Neutron Fluence." Additionally, the methods used to develop the best estimate pressure vessel fluence are consistent with the NRC approved methodology described in WCAP-14040-NP-A, "Methodology Used to Develop Cold Overpressure Mitigating System Setpoints and RCS Heatup and Cooldown Limit Curves," January 1996.

6.2 DISCRETE ORDINATES ANALYSIS A plan view of the reactor geometry at the core midplane is shown in Figure 4-1. Eight irradiation capsules attached to the neutron pads are included in the reactor design to constitute the reactor vessel surveillance program. The capsules are located at azimuthal angles of 45', 55', 65', 1650, 2450, 2850, 2950 and 305' relative to the core cardinal axis as shown in Figure 4-1.

A plan view of a surveillance capsule holders attached to the thermal shield is shown in Figure 6-1. The stainless steel specimen containers are 1-inch square and approximately 40 inches in height. The containers are positioned axially such that the test specimens are centered on the core midplane, thus spanning the central 3.33 feet of the 12-foot high reactor core.

From a neutronic standpoint, the surveillance capsules and associated support structures are significant.

The presence of these materials has a marked effect on both the spatial distribution of neutron flux and the neutron energy spectrum in the water annulus between the thermal shield and the reactor vessel. In order to determine the neutron environment at the test specimen location, the capsules themselves must be included in the analytical model.

In performing the fast neutron exposure evaluations for the Beaver Valley Unit 1 surveillance capsules and reactor vessel, plant specific forward transport calculations were carried out using the following three-dimensional flux synthesis technique:

wi(r, i, z) 0(r, 0)

  • 0(r,z) 0(r) where d(r,0,z) is the synthesized three-dimensional neutron flux distribution, 4(rO) is the transport solution in rO geometry, ý(rz) is the two-dimensional solution for a cylindrical reactor model using the actual axial core power distribution, and +(r) is the one-dimensional solution for a cylindrical reactor model using the same source per unit height as that used in the r,0 two-dimensional calculation.

For the Beaver Valley Unit I analysis, all of the transport calculations were carried out using the DORT two-dimensional discrete ordinates code Version 3 .1t1"1 and the BUGLE-96 cross-section library 1 61 . The BUGLE-96 library provides a 67 group coupled neutron-gamma ray cross-section data set produced specifically for light water reactor application. In these analyses, anisotropic scattering was treated with a Ps legendre expansion and the angular discretization was modeled with an S16 order of angular quadrature.

Beaver Valley Unit I Capsule Y WCAP-15571-NP, Rev. 1 April 2008

6-3 The reactor core power distributions used in the plant specific transport calculations were taken from the fuel cycle design data for Beaver Valley Unit 1I1.7 ti~h,9]. In performing the analyses, the spatial variation of the neutron source was obtained from a burnup weighted average of the respective power distributions from each of the individual fuel cycles. The energy distribution of the source was based on an appropriate fission split for uranium and plutonium isotopes; and, from that fission split, composite values of energy release per fission, neutron yield per fission, and fission spectrum were determined.

The absolute cycle-specific data from the synthesized transport results provided the means to:

1. Evaluate neutron dosimetry obtained from surveillance capsules,
2. Relate dosimetry results to key locations at the inner radius and through the thickness of the reactor vessel wall,
3. Enable a direct comparison of analytical prediction with measurement, and
4. Establish a mechanism for projection of reactor vessel exposure as the design of each new fuel cycle evolves.

Selected results from the neutron transport analyses are provided in Tables 6-1 through 6-5. The data listed in these tables establish the means for absolute comparisons of analysis and measurement for the Capsules V, U, W, and Y irradiation periods and provide the means to correlate dosimetry results with the corresponding exposure of the reactor vessel wall.

In Table 6-1, the calculated exposure parameter [4(E > 1.0 MeV)] is given at the geometric center of the azimuthally symmetric surveillance capsule positions (15', 25', 35', and 450). The plant-specific data are meant to establish the absolute comparison of measurement with analysis. Similar data are given in Table 6-2 for the reactor vessel inner radius. The three pertinent exposure parameters [4(E > 1.0 MeV),

4(E > 0.1 MeV), and dpa/sec] are listed. It is important to note that the data for the vessel inner were taken at the clad/base metal interface, and, thus, represent the maximum predicted exposure levels of the vessel plates and welds.

Radial gradient information applicable to 4(E > 1.0 MeV), ý(E > 0.1 MeV), and dpa/sec is given in Tables 6-3, 6-4, and 6-5, respectively. The data[301 are presented on a relative basis for each exposure parameter at several azimuthal locations. Exposure distributions through the vessel wall may be obtained by normalizing the calculated or projected exposure at the vessel inner radius to the gradient data listed in Tables 6-3 through 6-5.

For example, the neutron flux ý(E > 1.0 MeV) at the 'AT depth in the reactor vessel wall along the 00 azimuth is given by:

0,,4T (0°) = (199.95.0°)F(204.95,00 )

where:

V.T(0°) = Projected neutron flux at the 'AT position on the 0' azimuth.

Beaver Valley Unit I Capsule Y WCAP-15571-NP, Rev. 1 April 2008

6-4 4(199.95,0) = Projected or calculated neutron flux at the vessel inner radius on the 0' azimuth.

F(204.95,0*) = Ratio of the neutron flux at the 'AT position to the flux at the vessel inner radius for the 0' azimuth. This data is obtained from Table 6-3.

Similar expressions apply for exposure parameters expressed in terms of 4b(E > 0.1 MeV) and dpa/sec where the attenuation function F is obtained from Tables 6-4 and 6-5, respectively.

6.3 NEUTRON DOSIMETRY The passive neutron sensors included in the Beaver Valley Unit 1 surveillance program are listed in Table 6-6. Also given in Table 6-6 are the primary nuclear reactions and associated nuclear constants that were used in the evaluation of the neutron energy spectrum within the surveillance capsules and in the subsequent determination of the various exposure parameters of interest [O(E > 1.0 MeV),

O(E > 0.1 MeV), dpa/sec]. The relative locations of the neutron sensors within the capsules are shown in Figure 4-2. The iron, nickel, copper, and cobalt-aluminum monitors, in wire form, were placed in holes drilled in spacers at several axial levels within the capsules. The cadmium shielded uranium and neptunium fission monitors were accommodated within the dosimeter block located near the center of the capsule.

The use of passive monitors such as those listed in Table 6-6 does not yield a direct measure of the energy dependent neutron flux at the point of interest. Rather, the activation or fission process is a measure of the integrated effect that the time and energy dependent neutron flux has on the target material over the course of the irradiation period. An accurate assessment of the average neutron flux level incident on the various monitors may be derived from the activation measurements only if the irradiation parameters are well known. In particular, the following variables are of interest:

o The measured specific activity of each monitor,

  • The physical characteristics of each monitor, o The operating history of the reactor,
  • The energy response of each monitor, and o The neutron energy spectrum at the monitor location.

The specific activity of each of the neutron monitors was determined using established ASTM procedures131 *"*4. Following sample preparation and weighing, the activity of each monitor was determined by means of a high resolution gamma spectrometer. The irradiation history of the Beaver Valley Unit I reactor was obtained from data reported in NUREG-0020, "Licensed Operating Reactors Status Summary Report," for the first six cycles of operation and equivalent data supplied by Duquesne Light for cycles 7 through 13. The irradiation history applicable to the exposure of Capsules V, U, W, and Y is given in Table 6-7.

Beaver Valley Unit I Capsule Y WCAP-15571-NP, Rev. 1 April 2008

6-5 Having the measured specific activities, the physical characteristics of the sensors, and the operating history of the reactor, reaction rates referenced to full-power operation were determined from the following equation:

R=P A No F YY Cj [I-e"f/][e&A"I where:

R Reaction rate averaged over the irradiation period and referenced to operation at a core power level of Pf (rps/nucleus).

A = Measured specific activity (dps/gm).

No = Number of target element atoms per gram of sensor.

F = Weight fraction of the target isotope in the sensor material.

Y = Number ofproduct atoms produced per reaction.

Pj Average core power level during irradiation period j (MW).

P~f = Maximum or reference power level of the reactor (MW).

Cj = Calculated ratio of 4(E > 1.0 MeV) during irradiation period j to the time weighted average 4(E > 1.0 MeV) over the entire irradiation period.

X = Decay constant of the product isotope (1/sec).

tj = Length of irradiation period j (sec).

td = Decay time following irradiation period j (sec).

and the summation is carried out over the total number of monthly intervals comprising the irradiation period.

In the equation describing the reaction rate calculation, the ratio [Pj]/[Pf accounts for month-by-month variation of reactor core power level within any given fuel cycle as well as over multiple fuel cycles. The ratio Cj, which can be calculated for each fuel cycle using the transport technology discussed in Section 6.2, accounts for the change in sensor reaction rates caused by variations in flux level induced by changes in core spatial power distributions from fuel cycle to fuel cycle. For a single cycle irradiation, Cj is normally taken to be 1.0. However, for multiple-cycle irradiations, particularly those employing low leakage fuel management, the additional Cj term must be employed. For the irradiation history of Capsules V, U, W, and Y, the flux level term in the reaction rate calculations was set to 1.0 for Capsule U only. The impact of changing flux levels for constant power operation can be quite significant for sensor sets that have been irradiated for many cycles in a reactor that has transitioned from non-low leakage to Beaver Valley Unit I Capsule Y WCAP-15571-NP, Rev. 1 April 2008

6-6 low leakage fuel management or for sensor sets contained in surveillance capsules that have been moved from one capsule location to another.

Measured and saturated reaction product specific activities as well as the derived full power reaction rates are listed in Table 6-8. The reaction rates of the 23 8U sensors provided in Table 6-8 include corrections for 35U impurities, plutonium build-in, and gamma ray induced fissions. Corrections for gamma ray induced fissions were also included in the reaction rates for the 23Np sensors.

In performing the dosimetry evaluations for the internal surveillance capsules, the sensor reaction rates measured at the locations in the capsule holder were indexed to the geometric center of the capsules prior to use in the spectrum adjustment procedure. This indexing procedure required correcting the measured reaction rates by the application of analytically determined spatial gradients. For the Beaver Valley Unit I surveillance capsules, the gradient correction factors for each sensor reaction were obtained from the reference forward transport calculation and were used in a multiplicative fashion to relate individual measured reaction rates to the corresponding value at the geometric center of the surveillance capsule.

Values of key fast neutron exposure parameters were derived from the measured reaction rates using the FERRET least squares adjustment code E45], The FERRET approach used the measured reaction rate data, sensor reaction cross-sections, and the calculated spectrum as input and proceeded to adjust the group fluxes to produce a best fit (in a least squares sense) within the constraints of the parameter uncertainties.

The best estimate exposure parameters, along with the associated uncertainties, were then obtained from the best estimate spectrum.

In the FERRET evaluations, a log-normal least squares algorithm weights both the a priori values and the measured data in accordance with the assigned uncertainties and correlations. In general, the measured values,f, are linearly related to the flux, 4, by some response matrix, A:

where i indexes the measured values belonging to a single data set s, g designates the energy group, and a delineates spectra that may be simultaneously adjusted. For example, relates a set of measured reaction rates, Ri, to a single spectrum, 4*, by the multi-group reaction cross-section, ci. The log-normal approach automatically accounts for the physical constraint of positive fluxes, even with large assigned uncertainties.

In the least squares adjustment, the continuous quantities ,(i.e., neutron spectra and cross-sections) were approximated in a multi-group format consisting of 53 energy groups. The calculated spectrum was converted to the FERRET 53 group structure using the SAND-11 code1461. This procedure was carried out by first expanding the 47 group calculated spectrum into the SAND-I] 620 group structure using a SPLINE interpolation procedure in regions where group boundaries do not coincide. The 620 point spectrum was then re-collapsed into the group structure used in FERRET.

Beaver Valley Unit I Capsule Y WCAP-15571-NP, Rev. 1 April 2008

6-7 The sensor set reaction cross-sections, obtained from the ENDF/B-VI dosimetry file 4*, were also collapsed into the 53 energy group structure using the SAND-Il code. In this instance, the calculated spectrum, as expanded to 620 groups, was employed as a weighting function in the cross-section collapsing procedure. Reaction cross-section uncertainties in the form of a 53 x 53 covariance matrix for each sensor reaction were also constructed from the information contained on the ENDF/B-VI data files.

These matrices included energy group to energy group uncertainty correlations for each of the individual reactions. However, correlations between cross-sections for different sensor reactions were not included.

The omission of this additional uncertainty information does not significantly impact the results of the adjustment.

The calculated neutron spectrum input to the FERRET evaluation was taken from the center of the surveillance capsule. While the 53 x 53 group covariance matrices applicable to the sensor reaction cross-sections were developed from the ENDFiB-VI data files, the covariance matrix for the input trial spectrum was constructed from the following relation:

M. = + R, R,. P8.

where R&specifies an overall fractional normalization uncertainty (i.e., complete correlation) for the set of values. The fractional uncertainties, R., specify additional random uncertainties for group g that are correlated with a correlation matrix given by:

P. [1-o0a,. + Oe" where:

H (g-g'/

2 yr The first term in the correlation matrix equation specifies purely random uncertainties, while the second term describes short range correlations over a group range y (0 specifies the strength of the latter term).

The value of 5 is I when g = g' and 0 otherwise. For the calculated spectra used in the current evaluations, a short range correlation of y = 6 groups was used. This choice implies that neighboring groups are strongly correlated when 0 is close to 1. Strong long-range correlations (or anti-correlations) were justified based on information presented by R. E. Maerker[ 481. The uncertainties associated with the measured reaction rates included both statistical (counting) and systematic components. The systematic component of the overall uncertainty accounts for counter efficiency, counter calibrations, irradiation history corrections, and corrections for competing reactions in the individual sensors.

Results of the FERRET evaluation of the Capsules U, X, Y and V dosimetry are given in Table 6-9. The data summarized in this table include fast neutron exposure evaluations in terms of (D(E > 1.0 MeV),

((E > 0.1 MeV), and dpa. In general, excellent results were achieved in the fits of the best estimate spectra to the individual measured reaction rates. The measured, calculated and best estimate reaction rates for each reaction are given in Table 6-10. An examination of Table'6-10 shows that, in all cases, reaction rates calculated with the best estimate spectra match the measured reaction rates to better than 11%. The best estimate spectra from the least squares evaluation is given in Table 6-11 in the FERRET 53 energy group structure.

Beaver Valley Unit I Capsule Y WCAP-15571-NP, Rev. 1 April 2008

6-8 In Table 6-12, absolute comparisons of the best estimate and calculated fluence at the center of Capsules V, U, W, and Y are presented. The results for the Capsules V, U, W, and Y dosimetry evaluation

[average BE/C ratio of 0.97 for D(E > 1.0 MeV)] are consistent with results obtained from similar evaluations of dosimetry from other reactors using methodologies based on ENDF/B-VI cross-sections.

6.4 PROJECTIONS OF REACTOR VESSEL EXPOSURE The best estimate exposure of the Beaver Valley Unit I reactor vessel was developed using a combination of absolute plant specific transport calculations and all available in-vessel plant specific measurement data. In the case of Beaver Valley Unit 1, this in-vessel measurement data base contains measurements from the four surveillance capsules discussed in this report.

Combining this measurement data base with the plant-specific calculations, the best estimate vessel exposure is obtained from the following relationship:

Es,. =t K (DC~r/c.

where:

D*E-t E,. = The best estimate fast neutron exposure at the location of interest.

K = The plant specific best estimate/calculation (BE/C) bias factor derived from the surveillance capsule dosimetry data.

(Dcalc. The absolute calculated fast neutron exposure at the location of interest.

The approach defined in the above equation is based on the premise that the measurement data represent the most accurate plant-specific information available at the locations of the dosimetry; and further, that the use of the measurement data on a plant-specific basis essentially removes biases present in the analytical approach and mitigates the uncertainties that would result from the use of analysis alone.

That is, at the measurement points the uncertainty in the best estimate exposure is dominated by the uncertainties in the measurement process. At locations within the reactor vessel wall, additional.

uncertainty is incurred due to the analytically determined relative ratios among the various measurement points and locations within the reactor vessel wall.

For Beaver Valley Unit 1, the derived plant specific bias factors were 0.97, 0.99, and 0.98 for 1(E > 1.0 MeV), (NE > 0.1 MeV), and dpa, respectively. Bias factors of this magnitude developed with BUGLE-96 are fully consistent with experience using the ENDF/B-VI based cross-section library.

The use of the bias factors derived from the measurement data base acts to remove plant-specific biases associated with the definition of the core source, actual versus assumed reactor dimensions, and operational variations in water density within the reactor. As a result, the overall uncertainty in the best estimate exposure projections within the vessel wall depends on the individual uncertainties in the measurement process, the uncertainty in the dosimetry location, and in the uncertainty in the calculated ratio of the neutron exposure at the point of interest to that at the measurement location.

Beaver Valley Unit I Capsule Y WCAP-15571-NP, Rev. 1 April 2008

6-9 The uncertainty in the derived neutron flux for an individual measurement is obtained directly from the results of a least-squares evaluation of dosimetry data. The least-squares approach combines individual uncertainty in the calculated neutron energy spectrum, the uncertainties in dosimetry cross-sections, and the uncertainties in measured foil specific activities to produce a net uncertainty in the derived neutron flux at the measurement point. The associated uncertainty in the plant specific bias factor, K, derived from the BE/C data base, in turn, depends on the total number of available measurements as well as on the uncertainty of each measurement.

In developing the overall uncertainty associated with the reactor vessel exposure, the positioning uncertainties for dosimetry are taken from parametric studies of sensor position performed as part a series of analytical sensitivity studies included in the qualification of the methodology. The uncertainties in the exposure ratios relating dosimetry results to positions within the vessel wall are again based on the analytical sensitivity studies of the vessel thickness tolerance, downcomer water density variations, and vessel inner radius tolerance. Thus, this portion of the overall uncertainty is controlled entirely by dimensional tolerances associated with the reactor design and by the operational characteristics of the reactor.

The net uncertainty in the bias factor, K, is combined with the uncertainty from the analytical sensitivity study to define the overall fluence uncertainty at the reactor vessel wall. In the case of Beaver Valley Unit 1, the derived uncertainties in the bias factor, K, and the additional uncertainty from the analytical sensitivity studies combine to yield a net uncertainty of+ 7.8%.

Based on this best-estimate approach, neutron exposure projections at key locations on the reactor vessel inner radius are given in Table 6-13; furthermore, calculated neutron exposure projections are also provided for comparison purposes. Along with the current (14.3 EFPY) exposure at the end of Cycle 13, projections are also provided for exposure periods to the end of Cycle 14 ( 15.7 EFPY), end of Cycle 15

( 17.0 EFPY ), to 28 EFPY, and to 45 EFPY. Cycle 14 is projected assuming the average exposure rate of Cycles II through 13. The Cycle 15 is projected with the Cycle 8 exposure rate, which represents low leakage cycles and an assumption that the hafnium is removed from the PSA assembly locations. From end of Cycle 15 to 28 and 45 EFPY, the exposure projection is the Cycle 8 exposure rate increased by 1.055 to allow for a "5.5% core power uprating".

In the derivation of best estimate and calculated exposure gradients within the reactor vessel wall for the Beaver Valley Unit 1 reactor vessel, exposure projections to 15.7, 17.0, 28, and 45 EFPY were also employed. Data based on both a (D(E > 1.0 MeV) slope and a plant-specific dpa slope through the vessel wall are provided in Table 6-14.

In order to assess RTNDT versus fluence curves, dpa equivalent fast neutron fluence levels for the 1/T and 3

/ 4T positions were defined by the relations:

Or(1/4 ) = 0(07O) dpa(1/4T7) and Orl,7) =0(07) dpa(r% T) dpa(OT) dpa(7T)

Using this approach results in the dpa equivalent fluence values listed in Table 6-14.

The calculated results applicable to the vessel inner surface are incorporated into Table 6-15 through 6-17 for exposure parameters expressed in terms of Flux (E> 1.0 MeV), Flux (E> 0.1 MeV), and dpa, Beaver Valley Unit I Capsule Y WCAP-15571-NP, Rev. 1 April 2008

6-10 respectively. Exposure distributions through the vessel wall can be developed using these surface exposures and radial distribution functions from Section 6.2.

In Table 6-18, updated lead factors are listed for each of the Beaver Valley Unit I surveillance capsules which have been removed.

Table 6-19 presents the lead factors for the surveillance capsules at Beaver Valley Unit I which have not been removed reflecting the relocation of Capsule T from a.35' location to a 250 location and Capsule Z from a 350 location to a 150 location at the conclusion of Cycle 10. As was done for the projection of vessel fluences, Cycle 14 is projected assuming the average exposure rate of Cycles 11 through 13.

Cycle 15 assumes the hafnium is removed from the PSA assembly locations and the Cycle 8, representing low leakage cycles, exposure rate applies. From end of Cycle 15 to 28 and 45 EFPY, it is assumed that there is a "5.5% core power uprating" and the exposure rate assumed is the Cycle 8 exposure rate increased by 1.055.

Beaver Valley Unit I Capsule Y WCAP-15571-NP, Rev. 1 April 2008

6-11 Figure 6-1 Surveillance Capsule Geometry REACTOR GEOMETRY SHOWING A 450 rO SECTOR 0- (MAJOR AXIS)

(CAPSUJLES V.X),

25o (CRP S V.W.u) z~35' (CAPSULES Z.T) 45* (CAP.SULs)

\~N--

\BAFFLE CaRn 'BARREL REACTOR CR Beaver Valley Unit I Capsule Y WCAP-15571-NP, Rev. 1 April 2008

6-12 Table 6-1 Calculated Fast Neutron Exposure Rates At the Surveillance Capsule Center 4(E > 1.0 MeV) (n/cm 2-sec)

Cycle No. 150 250 350 . 450-1 8.79E+ 10 5.70E+10 3.84E+10. 2.99E+ 10 2 9.05E+10 5.94E+ 10 4.06E+10 3.16E+ 10 3 1.02E+11 6.53E+10 4.35E+10 3.31E+10 4 7.51E+10 4.81E+10 3.14E+10 2.41E+10 5 7.33E+10 4.64E+10 3.09E+10 2.43E+10 6 6.42E+10 4.69E+10 3.11E+10 2.38E+10 7 7.12E+10 4.53E+10 2.98E+10 2.35E+10 8 7.33E+10 4.79E+10 3.04E+ 10 2.33E+10 9 6.79E+10 4.70E+10 3.27E+10 2.64E+10 10 5.01E+10 3.88E+10 2.85E+10 2.28E+10 tt 5.01E+10 4.09E+ 10 3.13E+10 2.58SE+10 12 5.44E+ 10 4.50E+10 2.99E+10 2.23E+10 13 5.40E+10 4.17E+10 2.93E+10 2.33E+10 Beaver Valley Unit I Capsule Y WCAP-15571-NP, Rev. 1 April 2008

6-13 Table 6-2 Calculated Azimuthal Variation Of Fast Neutron Exposure Rates And Iron Atom Displacement Rates At The Reactor Vessel Clad/Base Metal Interface WE > 1.0 MeV) (n/cm2-sec)

Cycle No. 00 150 300 450 1 5.50E+10 2.67E+ 10 1.45E+10 9.66E+09 2 5.39E+10 2.65 E+ 10 1.47E+ 10 9.84E+09 3 6.30E+10 3.04E+ 10 1.62E+10 1.05E+10 4 4.59E+10 2.26E+10 1.19E+ 10 7.72E+09 5 4.48E+I0 2.21 E+10 1.16E+ 10 7.80E+09 6 3.35E+10 1.94E+10 1.18E+10 7.68E+09 7 4.12E+10 2.17E+10 1.14E+10 7.66E+09 8 4.07E+ 10 2.21E+10 1.17E+10 7.54E+09 9 3.64E+10 2.03E+10 1.19E+10 8.38E+09 10 2.79E+10 1.56E+10 1.05E+10 7.50E+09 11 2.59E+10 1.39E+10 1.09E+10 8.19E+09 12 2.70E+10 1.53E+10 1.13E+10 7.23E+09 13 2.76E+10 1.50E+10 1.08E+10 7.52E+09 Beaver Valley Unit I Capsule Y WCAP-15571-NP, Rev. 1 April 2008

6-14 Table 6-2 cont'd 4(E > 0. 1 MeV) (n/cm 2-sec)

Cycle No. 00 150 300 450 1 1.47E+ 11 7.18E+10 3.72E+10 2.42E+ 10 2 1.44E+ 11 7.13E+10 3.77E+10 2.47E+10 3 1.69E+11 8.18E+10 4.17E+10 2.64E+10 4 1.22E+11 6.03E+10 3.04E+10 1.93E+10 5 1.19E+1l 5.90E+10 2.96E+10 1.95E+10 6 8.94E+ 10 5.12E+10 3.01E+10 1.92E+10 7 1.1OE+I1 5.77E+10 2.91 E+ 10 1.91E+10 8 1.09E+I 5.86E+10 3.OOE+10 1.88E+10 9 9.72E+10 5.39E+10 3.04E+10 2.09E+10 10 7.43E+1 0 4.13E+10 2.68E+10 1.87E+10 11 6.81E+10 3.65E+10 2.77E+10 2.04E+10 12 7.11E+10 4.OOE+10 2.88E+10 1.80E+10 13 7.28E+10 3.96E+10 2.74E+ 10 1.87E+10 Iron Atom Displacement Rate (dpa/sec)

Cycle No. 00 150 300 450 1 8.84E-1 1 4.34E-1 1 2.33E-11 1.55E-11 2 8.66E- I1 4.30E- 1I 2.35E-11 1.58E-11 3 1.OIE-10 4.93E-11 2.60E-I 1 1.69E-11 4 7.38E-I1 3.66E- 11 1.91E-11 1.24E- 11 5 7.19E-11 3.58E-1 1 1.86E-11 1.25E-1 1 6 5.39E-11 3.13E- I1 1.89E-11 1.23E-11 7 6.62E-1 1 3.5IE-11 1.83E-11 1.23E-11 8 6.54E-1 1 3.57E-1 1 1.88E-11 1.21E-11 9 5.85E-1 I 3.28E-11 1.91E-11 1.34E- I1 10 4.49E-I I 2.52E-1 I 1.69E-11 1.20E-11 11 4.14E- II 2.25E- I1 1.74E- 11 1.31E-11 12 4.32E- I1 2.47E-1 I 1.81E-11 1.16E-11 13 4.43E-11 2.43E-11 1.72E-11 1.21E-11 Beaver Valley Unit I Capsule Y WCAP-15571-NP, Rev. 1 April 2008

6-15 Table 6-3 Relative Radial Distribution Of 4(E > 1.0 MeV)

Within The Reactor Vessel Wall Radius Azimuthal Angle (crm) 00 150 300 450 199.95 1.000 1.000 1.000 1.000 204.95 0.577 0.589 0.583 0.584 209.95 0.290 0.305 0.298 0.302 214.95 0.141 0.152 0.148 0.151 219.95 0.064 0.074 0.073 0.077 Note: Base Metal Inner Radius = 199.95 cm Base Metal 'AT = 204.95 cm Base Metal 1/T = 209.95 cm Base Metal 3AT = 214.95 cm Base Metal Outer Radius = 219.95 cm Table 6-4 Relative Radial Distribution Of W(E > 0.1 MeV)

Within The Reactor Vessel Wall Radius Azimuthal Angle (cm) 00 150 300 450 199.95 1.000 1.000 1.000 1.000 204.95 0.850 0.885 0.872 0.880 209.95 0.621 0.673 0.657 0.674 214.95 0.413 0.467 0.457 0.477 219.95 0.228 0.285 0.287 0.313 Note: Base Metal Inner Radius = 199.95 cm 1

Base Metal 4T = 204.95 cm Base Metal 1/22T = 209.95 cm Base Metal /T = 214.95 cm Base Metal Outer Radius = 219.95 cm Beaver Valley Unit I Capsule Y WCAP-15571-NP, Rev. 1 April 2008

6-16 Table 6-5 Relative Radial Distribution Of dpa/sec Within The Reactor Vessel Wall Radius Azimuthal Angle (Cm) 00 150 300 450 199.95 1.000 1.000 1.000 1.000 204.95 0.668 0.687 0.674 0.674 209.95 0.416 0.444 0.427 0.432 214.95 0.250 0.278 0.266 0.273 219.95 0.133 0.164 0.161 0.172 Note: Base Metal Inner Radius = 199.95 cm Base Metal 1/4T= 204.95 cm Base Metal 1/2T= 209.95 cm Base Metal %T = 214.95 cm Base Metal Outer Radius = 219.95 cm Beaver Valley Unit I Capsule Y WCAP-15571-NP, Rev. 1 April 2008

6-17 Table 6-6 Nuclear Parameters Used In the Evaluation of Neutron Sensors Target Fission Monitor Reaction of Atom Response Product Yield Material Interest Fraction Range Half-life 63Cu 0.6917 5.271 y Copper (n,a) E > 4.7 MeV 54 Iron Fe (np) 0.0585 E > 1.0 MeV 312.3 d Nickel 58Ni (np) 0.6808 E > 1.0 MeV 70.82 d Uranium-238 13U (n,f) 0.9996 E > 0.4 MeV 30.07 y 6.02 231 Neptunium-237 Np (n,f) 1.0000 E > 0.08 MeV 30.07 y 6.17 59 Cobalt-Al Co (n,y) 0.0015 non-threshold 5.271 y Note: 231U and 237Np monitors are cadmium shielded.

Beaver Valley Unit I Capsule Y WCAP-15571-NP, Rev. 1 April 2008

6-18 Table 6-7 Monthly Thermal Generation During The First Thirteen Fuel Cycles Of The Beaver Valley Unit 1 Reactor (Reactor Power of 2652 MWt)

Thermal Thermal Year Month Generation (MW-hr) Year Month Generation(MW-hr) 1976 5 250 1979 1 787965 1976 6 101578 1979 2 1433040 1976 7 109048 1979 3 336146 1976 8 112413 1979 4 0 1976 9 431584 1979 5 0 1976 10 608570 1979 6 0 1976 11 199669 1979 7 0 1976 12 410132- 1979 8 650167 1977 1 189115 1979 9 1419642 1977 2 0 1979 10 786544 1977 3 708513 1979 11 692354 1977 4 965179 1979 12 0 1977 5 1688148 1980 1 0 1977 6 1049724 1980 2 0 i977 7 1489440 1980 3 0 1977 8 1116291 1980 4 0 1977 9 0 1980 5 0 1977 10 40194 1980 6 0 1977 11 1030814 1980 7 0 1977 12 1828830 1980 8 0 1978 1 1570520 1980 9 0 1978 2 1672227 1980 10 0 1978 3 1903683 1980 11 216989 1978 4 1385543 1980 12 916651 1978 5 0 1981 1 1118512 1978 6 141161 1981 2 878386 1978 7 1621228 1981 3 0 Beaver Valley Unit I Capsule Y WCAP-15571-NP, Rev. 1 April 2008

6-19 Table 6-7 cont'd Monthly Thermal Generation During The First Thirteen Fuel Cycles Of The Beaver Valley Unit I Reactor (Reactor Power of 2652 MWt)

Thermal Thermal Year Month Generation (MW-hr) Year Month Generation (MW-hr) 1978 8 0 1981 4 915873 1978 9 0 1981 5 1453681 1978 10 0 1981 6 1874754 1978 11 0 1981 7 1080807 1978 12 504540 1981 8 1850579 1981 9 1765793 1981 10 1651329 1981 11 1782396 1981 12 1148933 Beaver Valley Unit I Capsule Y WCAP-15571-NP, Rev. 1 April 2008

6-20 Table 6-7 cont'd Monthly Thermal Generation During The First Thirteen Fuel Cycles Of The Beaver Valley Unit 1 Reactor (Reactor Power of 2652 MWt)

Thermal Thermal Year Month Generation (MW-hr) Year Month Generation (MW-br) 1982 1 0 1985 1 1230666 1982 2 0 1985 2 1495792 1982 3 0 1985 3 1567714 1982 4 0 1985 4 1519174 1982 5 0 1985 5 1568263 1982 6 0 1985 6 1888526 1982 7 975423 1985 7 1815511 1982 8 1597914 1985 8 1799541 1982 9 994760 1985 9 1627814 1982 10 1633910 1985 10 1491565 1982 11 1868403 1985 11 1668503 1982 12 1810831 1985 12 1951848 1983 1 1734339 1986 1 1949567 1983 2 1598708 1986 2 1543257 1983 3 1939771 1986 3 1955574 1983 4 1885670 1986 4 1776190 1983 5 1732947 1986 5 825172 1983 6 585214 1986 6 0 1983 7 0 1986 7 0 1983 8 0 1986 8 170868 1983 9 233976 1986 9 1689361 1983 10 1779388 1986 10 1845418 1983 11 1695803 1986 11 1790031 1983" 12 1893541 1986 12 1955537 1994 1 1552319 1987 1 1901768 1984 2 1811481 1987 2 1685908 1984 3 1263132 1987 3 1952434 Beaver Valley Unit I Capsule Y WCAP-15571-NP, Rev. 1 April 2008

6-21 Table 6-7 cont'd Monthly Thermal Generation During The First Thirteen Cycles Of The Beaver Valley Unit 1 Reactor (Reactor Power of 2652 MWt)

Thermal Thermal Year Month Generation (MW-hr) Year Month Generation (MW-hr) 1984 4 1815222 1987 4 1506172 1984 5 1812753 1987 5 20911 1984 6 1533814 1987 6 1667777 1984 7 1737076 1987 7 1886816 1984 8 1949986 1987 8 1841589 1984 9 1674388 1987 9 1752375 1984 10 658805 1987 10 1945202 1984 11 0 1987 11 1762196 1984 12 0 1987 12 469765 Beaver Valley Unit I Capsule Y WCAP-15571-NP, Rev. 1 April2008

6-22 Table 6-7 cont'd Monthly Thermal Generation During The First Thirteen Cycles Of The Beaver Valley Unit 1 Reactor (Reactor Power of 2652 MWt)

Thermal Thermal Year Month Generation (MW-hr) Year Month Generation (MW-hr) 1988 1 0 1991 1 962970 1988 2 0 1991 2 1698024 1988 3 1677626 1991 3 1920600 1988 4 1884007 1991 4 734753 1988 5 1929940 1991 5 0 1988 6 1577195 1991 .6 0 1988 7 1941312 1991 7 223412 1988 8 1816437 1991 8 1900996 1988 9 1615227 1991 9 1406382 1988 1541992 1991 10 '1348372 10 1988 11 1202942 1991 11 60240 1988 12 1242361 1991 12 1967980 1989 1 1392655 1992 1 1968906 1989 2 1379326 1992 2 1839523 1989 3 1720567 1992 3 1966962 1989 4 1457829 1992 4 1821532 1989 5 1348415 1992 5 1878892 1989 6 1542116 1992 6 1902940 1989 7 1946984 1992 7 1965639 1989 8 1819779 1992 8 1604887 1989 9 43522 1992 9 1629699 1989 10 0 1992 10 494631 1989 11 0 1992 11 1620623 1989 12 82504 1992 12 1768591 1990 1 1717462 1993 1 1769550 1990 2 1766224 1993 2 1599541 1990 3 1862208 1993 3 1318121 Beaver Valley Unit I Capsule Y WCAP-15571-NP, Rev. 1 April 2008

6-23 Table 6-7 cont'd Monthly Thermal Generation During The First Thirteen Cycles Of The Beaver Valley Unit 1 Reactor (Reactor Power of 2652 MWt)

Thermal Thermal Year Month Generation (MW-hr) Year Month Generation (MW-hr) 1990 4 1546013 1993 4 0 1990 5 1751901 1993 5 0 1990 6 1871935 1993 6 522652 1990 7 1053499 1993 7 1967310 1990 8 1779924 1993 8 1899044 1990 9 1851557 1993 9 1903751 1990 10 1671278 1993 10 735881 1990 11 1899189 1993 11 779517 1990 12 1437202. 1993 12 1935108 Beaver Valley Unit I Capsule Y.

WCAP-15571-NP, Rev. 1 April2008

6-24 Table 6-7 cont'd Monthly Thermal Generation During The First Thirteen Cycles Of The Beaver Valley Unit I Reactor (Reactor Power of 2652 MWt)

Thermal Thermal Year Month Generation (MW-hr) Year Month Generation(MW-hr) 1994 1 1306074 1997 .1 1957638, 1994 2 1769531 1997 2 1744174 1994 3 1920450 1997 3 1153954 1994 4 1892679 1997 4 1023580 1994 5 1064786 1997 5 1963402 1994 6 39682 1997 6 1705565 1994 7 670158 1997 7 11589 1994 8 1759891 1997 8 1752251 1994 .9 1902497 1997 9 1683909 1994 l0 1968574 1997 10 0 1994 11 1902781 1997 11 0 1994 12 1724487 1997 12 0 1995 1 72153 1998 1 468225 1995 2 0 1998 2 0 1995 3 1225380 1998 3 0 1995 4 1903021 1998 4 0 1995 5 1967916 1998 5 0 1995 6 1900816 1998 6 0 1995 7 1961257 1998 7 0 1995 8 1381737 1998 8 973181 1995 9 1902415 1998 9 1909045 1995 10 1968103 1998 10 1974419 1995 11 1854945 1998 11 1906308 1995 12 1457253 1998 12 1968795 1996 1 1965199 1999 1 1709974 1996 2 1810977 1999 2 1019933 1996 3 1164783 1999 3 1940265 Beaver Valley Unit I Capsule Y WCAP-15571-NP, Rev. 1 April2008

6-25 Table 6-7 cont'd Monthly Thermal Generation During The First Thirteen Cycles Of The Beaver Valley Unit 1 Reactor (Reactor Power of 2652 MWt)

Thermal Thermal Year Month Generation (MW-hr) Year Month Generation (MW-hr) 1996 4 0 1999 4 716664 1996 5 1103853 1999 5 1410478 1996 6 1767857 1999 6 1906371 1996 7 1965530 1999 7 1967597 1996 8 847659 1999 8 1958611 1996 9 1901486 1999 9 1494468 1996 10 1965965 1999 10 1951486 1996 11 1898890 1999 11 1823131 1996 12 1959481 1999 12 1970481 2000 1 1968186 2000 2 746198 Beaver Valley Unit I Capsule Y WCAP-15571-NP, Rev. 1 April 2008

6-26 Table 6-8 Measured Sensor Activities and Reaction Rates Surveillance Capsule V Measured Saturated Reaction Activity Rate Activity Reaction LOCATION (dps/2r) (dps/m) (rps/atom) 63 Cu (n,ca) 6°Co Top-Mid 4.240E+04 3.853E+05 5.620E-17 Middle 4.420E+04 4.017E+05 5.858E-17 Bot-Mid 4.280E+04 3.890E+05 5.673E-17 54 5.840E+05 3.758E+06 6.254E-15

-4Fe (np) Mn Top Top-Mid 5.350E+05 3.442E+06 5.730E-15 Middle 5.620E+05 3.616E+06 6.0119E-15 Bot-Mid 5.320E+05 3.423E+06 5.697E-15 Bottom 5.370E+05 3.455E+06 5.751E-15 58 Ni (n,p) "8Co Top-Mid 9.570E+05 4.968E+07 8.222E-15 Mid 9.750E+05 5.061E+07 8.376E-15 Bot-Mid 9.060E+05 4.703E+07 7.784E-1 5 59 Co (n,y) 60Co Top 7.240E+06 6.580E+07 4.108E-12 Bottom 7.240E+06 6.580E+07 4.108E-12 59 Co (n,y) 6°Co (Cd) Top 2.590E+06 2.354E+07 1.777E-12 Bottom 2.550E+06 2.317E+07 1.749E-12 238 U (n,f) 13 7 Cs Middle 1.360E+05 5.388E+06 3.539E-14 Including 2 5

U, 239Pu, and y"fission corrections 2.952E-14 237Np (n,f) 137 Cs Middle 9.700E+05 3.843E+07 2.452E-1 3 Including y,fission correction 2.411E-13 Beaver Valley Unit I Capsule Y WCAP-15571-NP, Rev. 1 April 2008

6-27 Table 6-8 cont'd Measured Sensor Activities and Reaction Rates Surveillance Capsule U Measured Saturated Reaction Activity Activity Rate Reaction LOCATION (dps/r) (dps/nm) (rps/atom) 63 Cu (n,cC) 60Co Top-Mid 9.440E+04 3.162E+05 4.611E-17 Middle 1.010E+05 3.383E+05 4.934E-17 Bot-Mid 9.300E+04 3.115E+05 4.543E-17 54 Fe (n,p) 54Mn Top 1.210E+06 2.723E+06 4.536E-15 Top-Mid 1.130E+06 2.543E+06 4.236E- 15 Middle 1.220E+06 2.745E+06 4.573E-15 Bot-Mid 1 .160E+06 2.610E+06 4.349E-15 Bottom 1.140E+06 2.563E+06 4.274E-15

'SNi (n,p) 5"Co Top-Mid 4.810E+06 3.529E+07 5.876E-15 Mid 5.220E+06 3.830E+07 6.377E-15 Bot-Mid 4.920E+06 3.610E+07 6.010E-15 59 Co (n,y) 6Co Top 1.170E+07 3.919E+07 2.444E-12 Bottom 1. 160E+07 3.885E+07 2.423E-12 59Co (n,y) °Co (Cd) Top 4.270E+06 1.430E+07 1.078E-12 Bottom 4.180E+06 1.400E+07 1.055E-12 23 8 U (n,f) 137Cs Middle 2.890E+05 3.816E+06 2.507E-14 Including 23

.U, 23"Pu, and y,fission corrections 2.070E-14 23 7 Np (n,f) 137Cs Middle 2.140E+06 2.826E+07 1.803E-13 Including 7,fission correction 1.775E-13 Beaver Valley Unit I Capsule Y WCAP-15571-NP, Rev. 1 April 2008

6-28 Table 6-8 cont'd Measured Sensor Activities and Reaction Rates Surveillance Capsule W Measured Saturated Reaction Activity Activity Rate Reaction LOCATION (dps9m) (dos/min) (rps/atom) 63 CU (n,a) 6°Co Top-Mid 1.140E+05 2.783E+05 4.059E-17 Middle 1.200E+05 2.929E+05 4.272E-17 Bot-Mid 1.180E+05 2.881E+05 4.2011E-17

'4Fe (n,p) 54Mn Top 1.000E+06 2 .474E+06 4.1211E-15 Top-Mid 9.200E+05 2.276E+06 3.792E-15 Top-Mid 8.800E+05 2.177E+06 3.627E-15 Middle 9.440E+05 2.335E+06 3.890E-15 Bot-Mid 8.850E+05 2.189E+06 3.647E-15 Bot-Mid 8.920E+05 2.206E+06 3.676E-15 Bottom 9.190E+05 2.273E+06 3.787E-15 58 Ni (n,p) 5 Co Top-Mid 2.170E+06 3.046E+07 5.071E-15 Bot-Mid 2.200E+06 3.088E+07 5.141E-15 59Co (n,y) 6 0Co Top 1.360E+07 3.320E+07 2.071E-12 Bottom 1.400E+07 3.418E+07 2.132E-12 59 Co (ny) 6 Co0 (Cd) Top 4.930E+06 1.203E+07 9.069E-13 Bottom 4.990E+06 1.21 8E+07 9.179E-13 238U (n,f) 13 7Cs (lost)

Including 2 35 U, 239Pu, and yfission corrections 2 37 Np (n,f) 137 Cs Middle 2.570E+06 2.142E+07 1.367E-13 Including y,fission correction 1.346E-13 Beaver Valley Unit I Capsule Y "

WCAP-15571-NP, Rev. 1 April 2008

6-29 Table 6-8 cont'd Measured Sensor Activities and Reaction Rates Surveillance Capsule Y Measured Saturated Reaction Activity Activity Rate Reaction LOCATION (dos/urn) (d1/2s/g) (rps/atom) 63 Cu (na',) 60Co Top-Mid 1.560E+05 2.638E+05 3.847E-17 Middle 1.670E+05 2.824E+05 4.118E-17 Bot-Mid 1.560E+05 2.638E+05 3.847E-1 7 54 Fe (n,p) 54 Mn Top 1.420E+06 2.335E+06 3.891E-15 Top-Mid 1.350E+06 2.220E+06 3.699E-15 Middle 1.430E+06 2.352E+06 3.918E-15 Bot-Mid 1.370E+06 2.253E+06 3.754E-15 Bottom 1.330E+06 2.187E+06 3.644E-15 58Ni (n,p) 58Co Top-Mid 1.710E+07 3.063E+07 5.099E-15 Middle 1.840E+07 3.296E+07 5.487E-15 Bot-Mid 1.730E+07 3.099E+07 5.159E-15 59Co (ny) 60Co Top 1.810E+07 3.060E+07 1.909E-12 Bottom 1.610E+07 2.722E+07 1.698E-12 59Co (n~y) OCo (Cd) Top 6.780E+05 1.146E+07 8.638E-13 Bottom 6.790E+06 1.148E+07 8.65]E-13 238u (n,f) 137Cs Middle 7.790E+05 3.035E+06 1.993E-14 Including 235U, 239pu, and yfission corrections 1.540E-14 237 Np (n,f) 137Cs Middle 5.390E+06 2.1OOE+07 1.340E-13 Including -1,fission correction 1.319E-13 Beaver Valley Unit I Capsule Y WCAP-15571-NP, Rev. 1 April 2008

6-30 Table 6-9 Summary Of Neutron Dosimetry Results Surveillance Capsules V, U, W, and Y Best Estimate Flux and Fluence for Capsule V Flux Fluence Ia 2

Quantit [n/cm sec] Quantity [n/cm] Uncertainty

  • (E > 1.0 MeV) 8.355E+10 D (E > 1.0 MeV) 3.060E+18 6%
  • (E>0.I MeV) 2.780E+1 1 (D (E > 0.1 MeV) 1.018E+19 10%

dpa/sec 1.394E-10 dpa 5.106E-03 7%

  • (E < 0.414 eV) .1.01 2E+I 1 4 (E < 0.414 eV) 3.707E+18 12%

Best Estimate Flux and Fluence for Capsule U Flux Fluence 1la Quantit [r/cm2-secl Quantity __ Uncertainty

  • (E > 1.0 MeV) 5.833E+10 (D (E > 1.0 MeV) 6.604E+18 6%
  • (E > 0.1 MeV) 1.822E+11 (E > 0.1 MeV) 2.063E+19 9%

dpa/sec 9.483E-1 1 dpa 1.074E-02 7%

  • (E < 0.414 eV) 5.910E+10 4 (E < 0.414 eV) 6.692E+18 12%

Best Estimate Flux and Fluence for Capsule W Flux Fluence Ia 2 2 Quantity fn/cm secI Quantity fn/cm ] Uncertainty

  • (E > 1.0 MeV) 4.834E+10 (D(E > 1.0 MeV) 8.985E+18 6%
  • (E > 0.1 MeV) 1.502E+11 D (E > 0.1 MeV) 2.792E+19 10%

dpa/sec 7.873E-11 dpa 1.463E-02 7%

(E < 0.414 eV) 5.142E+10 4 (E < 0.414 eV) 9.558E+18 12%

Best Estimate Flux and Fluence for Capsule Y Flux Fluence l0 Quantit [rn/cm 2-secl Quantity [n/cm 2] Uncertainty

  • (E > 1.0 MeV) 4.697E+10 (D (E > 1.0 MeV) 2.117E+19 6%

(E>0.1 MeV) 1.428E+1 I (D(E > 0.1 MeV) 6.437E+ 19 9%

dpa/sec 7.566E-11 dpa 3.410E-02 7%

(E < 0.414 eV) 4.146E+10 4) (E < 0.414 eV) 1.869E+19 13%

Beaver Valley Unit I Capsule Y WCAP-15571-NP, Rev. 1 April 2008

6-31 Table 6-10 Comparison of Measured, Calculated, And Best Estimate Reaction Rates At the Surveillance Capsule Center Surveillance Capsule V Best Reaction Measured Calculated Estimate BE / Meas BE/ Calc Meas/Calc 63Cu (n,a) 5.72E-17 .5.87E-17 5.63E-17 0.98 0.96 0.97 4Fe (n,p) 5.89E-15 6.42E-15 5.99E-15 1.02 0.93 0.92 58 Ni (n,p) 8.13E-15 8.81E-15 8.23E-15 1.01 0.93 0.92 23 1U (n,f) (Cd) 2.95E-14 3.10E-14 2.92E-14 0.99 0.94 0.95 2"Np (n,f) (Cd) 2.35E-13 2.33E-13 2.41E-13 0.97 0.99 1.03 59Co (ny) 4.11E-12 3.85E-12 4.09E-12 1.00 1.06 1.07 59Co (ny) (Cd) 1.76E-12 1.86E-12 1.77E-12 1.01 0.95 0.95 Surveillance Capsule U Best Reaction Measured Calculated Estimate BE / Meas BE/ Calc Meas/Calc 63 CU (n,cL) 4.70E-17 4.41E-17 4.58E-17 0.97 1.04 1.07

'4Fe (n,p) 4.39E-1 5 4.52E-15 4.52E-15 1.03 1.00 0.97 58Ni (np) 6.09E-15 6.15E-15 6.17E-15 1.01 1.00 0.99

"'U (n,f) (Cd) 2.07E-14 2.06E-14 2.09E-14 1.01 1.01 1.00

'37Np (n,f) (Cd) 1.77E-13 1.47E-13 1.64E-13 0.93 1.12 1.20 59Co (n,y) 2.43E-12 2.16E-12 2.42E-12 1.00 1.12 1.13 9

S Co (n,y) (Cd) 1.07E-12 1.05E-12 1.07E-12 1.00 1.02 1.02 Beaver Valley Unit I Capsule Y WCAP-15571-NP; Rev. 1 April 2008

6-32 Table 6-10 cont'd Comparison of Measured, Calculated, And Best Estimate Reaction Rates At the Surveillance Capsule Center Surveillance Capsule W Best Reaction Measured Calculated Estimate BE / Meas BE/ Calc Meas/Calc 63Cu (n,ct) 4.18E-17 4.13E-17 4.04E-17 0.97 0.98 1.01

'4Fe (n,p) 3.79E-15 4.22E-15 3.87E-15 1.02 0.92 0.90 58Ni (n,p) 5.11E-15 5.73E- 15 5.23E-15 1.02 0.91 0.89 2U (n,f) (Cd) 237 Np (n,f) (Cd) 1.35E-13 1.37E-13 1.30E-13 0.96 0.95 0.99

"'Co (ny) 2.10E-12 2.00E-12 2.09E-12 1.00 1.05 1.05 59Co (n,y) (Cd) 9.12E-13 9.75E-13 9.16E- 13 1.00 0.94 0.94 Surveillance Capsule Y Best Reaction Measured Calculated Estimate BE / Meas BE/ Calc Meas/Calc 63 Cu (n,a) 3.94E-1 7 3.76E-17 3.88E-17 0.98 1.03 1.05 4

1 Fe (np) 3.78E-15 3.81E-15 3.81E-15 1.01 1.00 0.99 58Ni (np) 5.25E-15 5.18E-15 5.20E-15 0.99 1.00 1.01 2381u (n,f) (Cd) 1.54E-14 1.73E-14 1.71E-14 1.11 0.99 0.89 237 Np (n,f) (Cd) 1.32E-13 1.23E-13 1.26E-13 0.95 1.02 1.07 "Co (n,y) 1.80E-12 1.79E-12 1.80E-12 1.00 1.01 1.01 59 8.64E-13 8.72E-13 8.65E13 1.00 0.99 0.99 Co (n,y) (Cd)

Beaver Valley Unit I Capsule Y WCAP-15571-NP, Rev. 1 April 2008

6-33 Table 6-11 Best Estimate Neutron Energy Spectrum at the Center of Surveillance Capsules Capsule V Energy Flux Energy Flux Group # (MeV) (rler 2-sec) Group # (n/cml-sec) 1 1.73E+0 1 7.086E+06 28 9.12E-03 1.327E+10 2 1.49E+01 1.522E+07 29 5.53E-03 1.375E+10 3 1.35E+01 5.617E+07 30 3.36E-03 4.324E+09 4 1.16E+01 1.549E+08 31 2.84E-03 4.182E+09 5 1.OOE+01 3.595E+08 32 2.40E-03 4.150E+09 6 8.61E+00 6.324E+08 33 2.04E-03 1.264E+10 7 7.41 E+00 1.551E+09 34 1.23E-03 1.294E+10 8 6.07E+00 2.400E+09 35 7.49E-04 1.258E+10 9 4.97E+00 4.929E+09 36 4.54E-04 1.083E+10 10 3.68E+00 5.658E+09 37 2.75E-04 1.206E+10 11 2.87E+00 1.058E+ 10 38 1.67E-04 1.245E+10 12 2.23E+00 1.324E+10 39 1.OIE-04 1.262E+10 13 1.74E+00 1.709E+10 40 6.14E-05 1.260E+10 14 1.35E+00 1.696E+10 41 3.73E-05 1.254E+10 15 1.11 E+00 2.901E+10 42 2.26E-05 1.235E+10 16 8.21E-01 2.910E+10 43 1.37E-05 1.203E+10 17 6.39E-01 3.109E+10 44 8.32E-06 1.160E+10 18 4.98E-01 1.969E+10 45 5.04E-06 1.119E+10 19 3.88E-01 2.708E+10 46 3.06E-06 1.103E+10 20 3.02E-01 3.312E+10 47. 1.86E-06 1.060E+10 21 1.83E-01 3.080E+10 48 1.13E-06 7.854E+09 22 1.11E-01 2.135E+10 49 6.83E-07 8.237E+09 23 6.74E-02 1.930E+10 50 4.14E-07 1.670E+10 24 4.09E-02 1.142E+10 51 2.5 1E-07 1.722E+10 25 2.55E-02 1.149E+10 52 1.52E-07 1.762E+10 26 1.99E-02 7.043E+09 53 9.24E-08 4.967E+10 27 1.50E-02 1.262E+10 Note: Tabulated energy levels represent the upper energy in each group.

Beaver Valley Unit 1 Capsule Y WCAP-15571-NP, Rev. 1 April 2008

6-34 Table 6-11 cont'd Best Estimate Neutron Energy Spectrum at the Center of Surveillance Capsules Capsule U Energy Flux Energy Flux Group # (nlcm 2-sec) Group # (MeV) (n/cm 2 -sec) 1 1.73E+01 6.092E+06 28 9.12E-03 8.088E+09 2 1.49E+01 1.304E+07 29 5.53E-03 8.339E+09 3 1.35E+01 4.731 E+07 30 3.36E-03 2.612E+09 4 1.16E+0 1 1.287E+08 31 2.84E-03 2.529E+09 5 1.OOE+01 2.961E+08 32 2.40E-03 2.519E+09 6 8.61E+00 5.123E+08 33 2.04E-03 7.651E+09 7 7.41E+00 1.247E+09 34 1.23E-03 7.789E+09 8 6.07E+00 1.874E+09 35 7.49E-04 7.629E+09 9 4.97E+00 3.686E+09 36 4.54E-04 6.579E+09 10 3.68E+00 4.082E+09 37 2.75E-04 7.259E+09 11 2.87E+00 7.541E+09 38 1.67E-04 7.562E+09 12 2.23E+00 9.245E+09 39 1.01E-04 7.612E+09 13 1.74E+00 1.169E+10 40 6. 14E-05 7.583E+09 14 1.35E+00 1.142E+10 41 3.73E-05 7.527E+09 15 1.11 E+00 1.916E+10 42 2.26E-05 7.393E+09 16 8.21E-01 1.887E+10 43 1.37E-05 7.1 88E+09 17 6.39E-01 1.984E+10 44 8.32E-06 6.923E+09 18 4.98E-01 1.260E+10 45 5.04E-06 6.661E+09 19 3.88E-01 1.707E+10 46 3.06E-06 6.552E+09 20 3.02E-01 2.086E+10 47 1.86E-06 6.290E+09 21 1.83E-01 1.922E+10 48 1.13E-06 4.654E+09 22 1.11E-01 1.326E+ 10 49 6.83E-07 4.875E+09 23 6.74E-02 1.192E+10 50 4.14E-07 9.837E+09 24 4.09E-02 7.034E+09 51 2.51 E-07 1.O1OE+10 25 2.55E-02 7.009E+09 52 1.52E-07 1.031E+10 26 1.99E-02 4.295E+09 53 9.24E-08 2.886E+10 27 1.50E-02 7.694E+09 Note: Tabulated energy levels represent the upper energy in each group.

Beaver.Valley Unit I Capsule Y WCAP-15571-NP, Rev. 1 April 2008

6-35 Table 6-11 cont'd Best Estimate Neutron Energy Spectrum at the Center of Surveillance Capsules Capsule W Energy Flux Energy Flux Group # (Mlcm 2

-sec) GrouR # (MeV) (W/CM2-sec) 1 1.73E+01 5.509E+06 28 9.12E-03 6.976E+09 2 1.49E+01 1.177E+07 29 5.53E-03 7.211E+09 3 1.35E+01 4.253E+07 30 3.36E-03 2.260E+09 4 1.16E+01 1.152E+08 31 2.84E-03 2.189E+09 5 1.OOE+01 2.635E+08 32 2.40E-03 2.179E+09 6 8.61EE+00 4.520E+08 33 2.04E-03 6.616E+09 7 7.41E+00 1.090E+09 34 1.23E-03 6.73 1E+09 8 6.07E+00 1.618E+09 35 7.49E-04 6.578E+09 9 4.97E+00 3.139E+09 36 4.54E-04 5.664E+09 10 3.68E+00 3.434E+09 37 2.75E-04 6.239E+09 11 2.87E+00 6.284E+09 38 1.67E-04 6.452E+09 12 2.23E+00 7.637E+09 39 L.0IE-04 6.537E+09 13 174E+00 9.589E+09 40 6.14E-05 6.515E+09 14 1.35E+00 9.325E+09 41 3.73E-05 6.479E+09 15 1.IIE+00 1.559E+10 42 2.26E-05 6.375E+09 16 8.21E-01 1.536E+10 43 1.37E-05 6.208E+09 17 6.39E-01 1.619E+10 44 8.32E-06 5.987E+09 18 4.98E-01 1.032E+10 45 5.04E-06 5.767E+09 19 3.88E-01 1.406E+10 46 3.06E-06 5.678E+09 20 3.02E-01 1.729E+10 47 1.86E-06 5.455E+09 21 1.83E-01 1.604E+10 48 1.13E-06 4.039E+09 22 1.I1E-01 1.114E+10 49 6.83E-07 4.231E+09 23 6.74E-02 1.007E+10 50 4.14E-07 8.547E+09 24 4.09E-02 5.981E+09 51 2.5 IE-07 8.785E+09 25 2.55E-02 5.989E+09 52 1.52E-07 8.968E+09 26 1.99E-02 3.686E+09 53 9.24E-08 2.512E+ 10 27 1.50E-02 6.615E+09 Note: Tabulated energy levels represent the upper energy in each group.

Beaver Valley Unit I Capsule Y WCAP-15571-NP, Rev. I April 2008

6-36 Table 6-11 cont'd Best Estimate Neutron Energy Spectrum at the Center of Surveillance Capsules Capsule Y Energy Flux Energy Flux Group # (MeV) (nrcm 2-sec) Group # (MeV) (rncm 2-sec) 1 1.73E+01 5.209E+06 28 9.12E-03 6.462E+09 2 1.49E+01 1.118E+07 29 5.53E-03 6.677E+09 3 1.35E+01 4.051E+07 30 3.36E-03 2.094E+09 4 1.16E+01 1.103E+08 31 2.84E-03 2.031E+09 5 L.OOE+01 2.538E+08 32 2.40E-03 2.025E+09 6 8.61E+00 4.382E+08 33 2.04E-03 6.159E+09 7 7.41E+00 1.066E+09 34 1.23E-03 6.277E+09 8 6.07E+00 1.593E+09 35- 7.49E-04 6.155E+09 9 4.97E+00 3.098E+09 36 4.54E-04 5.313E+09 10 3.68E+00 3.379E+09 37 2.75E-04 5.866E+09 11 2.87E+00 6.158E+09 38 1.67E-04 6.139E+09 12 2.23E+00 7.432E+09 39 1.OIE-04 6.149E+09 13 1.74E+00 9.280E+09 40 6.14E-05 6.115E+09 14 1.35E+00 8.993E+09 41 3.73E-05 6.062E+09 15 1.11E+00 1.495E+10 42 2.26E-05 5.943E+09 16 8.21E-0I 1.463E+10 43 1.37E-05 5.767E+09 17 6.39E-01 1.531E+10 44 8.32E-06 5.543E+09 18 4.98E-01 9.708E+09 45 5.04E-06 5.324E+09 19 3.88E-01 1.316E+10 46 3.06E-06 5.227E+09 20 3.02E-01 1.613E+ 10 47 1.86E-06 5.009E+09 21 1.83E-01 1.492E+10 48 1.13E-06 3.700E+09 22 1.11E-01 1.034E+10 49 6.83E-07 3.755E+09 23 6.74E-02 9.332E+09 50 4.14E-07 7.364E+09 24 4.09E-02 5.537E+09 51 2.51E-07 7.355E+09 25 2.55E-02 5.541E+09 52 1.52E-07 7.346E+09 26 1.99E-02 3.410E+09 53 9.24E-08' 1.940E+10 27 1.50E-02 6.121E+09 Note: Tabulated energy levels represent the upper energy in each group.

Beaver Valley Unit I Capsule Y WCAP-15571-NP, Rev. 1 April 2008

6-37 Table 6-12 Comparison Of Calculated And Best Estimate Integrated Neutron Exposure Of Beaver Valley Unit 1 Surveillance Capsules V, U, W, and Y CAPSULE V Calculated Best Estimate BE/C 2 3.23E+ 18 3.06E+18 0.95 CP(E > 1.0 MeV) [n/cm ]

d(E > 0. 1 MeV) [n/cm2 ] 1.05E+19 1.02E+ 19 0.97 Dpa 5.3 1E-03 5.11E-03 0.96 CAPSULE U Calculated Best Estimate BE/C 4D(E > 1.0 MeV) [n/cm 2] 6.46E+ 18 6.60E+ 18 1.02 O(E > 0.1 MeV) [n/cm2]* 1.96E+19 2.06E+19 1.06 Dpa 1.03E-02 1.07E-02 1.04 CAPSULE W Calculated Best Estimate BE/C O(E > 1.0 MeV) [n/cm 2] 9.86E+18 8.99E+18 0.91 lD(E > 0.1 MeV) [n/cm 2] 2.98E+19 2.79E+19 0.94 dpa 1.58E-02 1.46E-02 0.93 CAPSULE Y Calculated Best Estimate BE/C (D(E > 1.0 MeV) [n/cm2 ] 2.15E+19 2.12E+19 0.99 4)(E > 0.1 MeV) [n/cm 2] 6.48E+19 6.44E+20 0.99 dpa 3.44E-02 3.41E-02 0.99 AVERAGE BE/C RATIOS BE/C 41(E > 1.0 MeV) [n/cm 2] 0.97

()(E > 0.1 MeV) [n/cm 2] 0.99 Dpa 0.98 Beaver Valley Unit 1 Capsule Y WCAP-15571-NP, Rev. 1 April 2008

6-38 Table 6-13 Azimuthal Variations Of The Neutron Exposure Projections On The Reactor Vessel Clad/Base Metal Interface At the Elevation of Maximum Fluence Best Estimate 00 15. 300 450 14.3 EFPY E>1.0 MeV 1.70E+19 8.91E+18 5.26E+18 3.55E+18 E>0.1 MeV 4.65E+19 2.43E+19 1.37E+19 9.08E+18 Dpa 2.77E-02 1.46E-02 8.54E-03 5.77E-03 15.7 EFPY E>1.0 MeV 1.82E+19 9.53E+18 5.72E÷18 3.87E+18 E>0.1 MeV 4.95E+19 2.59E+19 1.49E+19 9.89E+18 Dpa 2.96E-02, 1.56E-02 9.28E-03 6.29E-03 17.0 EFPY E>1.O MeV 1.99E+19 1.05E+19 6.21E+18 4.18E+18 E>0.1 MeV 5.42E+19 2.85E+19 1.62E+ 19 1.07E+ 19 dpa 3.23E-02 1.71E-02 1.01E-02 6.80E-03 28EFPY E>1.0 MeV 3.42E+19 1.83E+19 1.04E+ 19 6.85E+18 E>0.1 MeV 9.34E+19 4.96E+19 2.71E+19 1.75E+19 dpa 5.58E-02 2.99E-02 1.68E-02 1.11E-02 45 EFPY E>1.0 MeV 5.65E+19 3.03E+19 1.68E+19 1.10E+19 E>0.1 MeV 1.54E+20 8.25E+19 4.39E+19 2.81E+19 dpa 9.20E-02 4.97E-02 2.73E-02 1.78E-02 Beaver Valley Unit I Capsule Y WCAP-15571-NP, Rev. 1 April 2008

6-39 Table 6-13 cont'd Azimuthal Variations Of The Neutron Exposure Projections On The Reactor Vessel Clad/Base Metal Interface At The Elevation of Maximum Fluence Calculated o0 150 300 450 14.3 EFPY E>1.0 MeV 1.76E+19 9.22E+ 18 5.44E+ 18 3.67E+18 E>0.1 MeV 4.69E+19 2.45E+19 1.39E+19 9.17E+18 Dpa 2.83E-02 1.49E-02 8.71E-03 5.89E-03 15.7 EFPY E>1.0 MeV 1.88E+19 9.86E+ 18 5.91E+18 4.OOE+1 8 E>O.1 MeV 5.OOE+19 2.62E+19 1.51E+19 9.99E+18 Dpa 3.02E-02 1.60E-02 9.47E-03 6.41E-03 17.0 EFPY E>1.0MeV 2.05E+19 1.08E+19 6.42E+18 4.33E+18 E>O.1 MeV 5.47E+19 2.87E+19 1.64E+19 1.08E+19 dpa 3.30E-02 1.75E-02 1.03E-02 6.94E-03 28 EFPY E> 1.0 MeV 3.54E+19 1.89E+19 1.07E+19 7.08E+18 E>0.1 MeV 9.44E+19 5.01E+19 2.73E+19 1.77E+19 dpa 5.69E-02 3.05E-02 1.72E-02 1.14E-02 45 EFPY E>1.0 MeV 5.85E+19 3.14E+19 1.73E+19 1.13E+19 E>O.1 MeV 1.56E+20 8.33E+19 4.43E+19 2.83E+19 dpa 9.39E-02 5.08E-02 2.78E-02 1.82E-02 Beaver Valley Unit I Capsule Y WCAP-15571-NP, Rev. I April 2008

6-40 Table 6-14 Neutron Exposure Values Within The Beaver Valley Unit 1 Reactor Vessel Best Estimate Fluence (n/cm2 ) Based on E > 1.0 MeV Slopel'I 0O 150 450 14.3 EFPY Surface 1.70E+19 8.91E+18 5.26E+ 18 3.55E+18 1/4T 9.83E+18 5.25E+ 18 3.06E+ 18 2.07E+18 3 2.40E+18

/T 1.35E+18 7.78E+17 5.36E+ 17 15.7 EFPY Surface 1.82E+19 9.53E+18 5.72E+ 18 3.87E+18 1/4AT 1.05E+19 5.61E+18 3.33E+1 8 2.26E+18 3/4T 2.56E+18 1.45E+18 8.46E+17 5.84E+17 17.0 EFPY Surface 1.99E+19 1.05E+19 6.21E+18 4.18E+18 1/4AT 1.15E+19 6.16E+18 3.62E+ 18 2.44E+ 18 3/T 2.80E+18 1.59E+18 9.18E+17 6.31E+17 28 EFPY Surface 3.42E+19 1.83E+19 1.04E+19 6.85E+18 1/T 1.98E+19 1.08E+19 6.03E+18 4.OOE+18

%3/4T 4.83E+18 2.78E+18 1.53E+18 1.03E+18 45 EFPY Surface 5.65E1+19 3.03E+19 1.68E+19 1.101E+19 1/4T 3.26E+19 1.79E+19 9.78E+18 6.41E+18

%3/4T 7.97E+18 4.61 E+ 18 2.48E+18 1.66E+18 Note:

a) The 1/4AT and 3 4T values were determined using the calculational methods described in Section 6.2 and not by the empirical relation described in Regulatory Guide 1.99, Rev. 2.

Beaver Valley Unit I Capsule.Y WCAP-15571-NP, Rev. 1 April 2008

6-41 Table 6-14 cont'd Neutron Exposure Values Within The Beaver Valley Unit I Reactor Vessel Best Estimate Fluence (n/cm2) Based on dpa Slope[a]

0O 150 300 450 14.3 EFPY Surface 1.70E+19 8.91E+18 5.26E+ 18 3.55E+18

'/4T 1.14E+19 6.12E+ 18 3.54E+ 18 2.3 9E+ 18

'AT 4.26E+ 18 2.48E+ 18 1.40E+ 18 9.69E+ 17 15.7 EFPY Surface 1.82E+19 9.53E+18 5.72E+ 18 3.87E+ 18

/4T 1.21E+19 6.55E+18 3.85E+18 2.61E+18 3/4T 4.54E+18 2.65E+18 1.52E+18 1.06E+ 18 17.0 EFPY Surface 1.99E+1 9 1.051E+19 6.21E+18 4.18E+18 1/4T 1.33E+19 7.18E+ 18 4.18E+18 2.82E+18 3/T 4.96E+1 8 2.91E+18 1.65E+ 1'8 1.14E+ 18 28 EFPY Surface 3.42E+ 19 1.83E+19 1.04E+ 19 6.85E+18 1/4T 2.29E+ 19 1.25E+19 6.98E+ 18 4.61E+18 3/4T 8.56E+18 5.08E+ 18 2.75E+18 1.87E+18 45 EFPY Surface 5.65E+19 3.03E+19 1.68E+ 19 1.1OE+19 1/4T 3.78E+19 2.08E+19 1.13E+19 7.39E+ 18 3

/T 1.41E+19 8.44E+ 18 4.46E+ 18 3.OOE+ 18 Note:

a) The 'AT and %T values were determined using the calculational methods described in Section 6.2 and not by the empirical relation described in Regulatory Guide 1.99, Rev. 2.

Beaver Valley Unit I Capsule Y WCAP-15571-NP, Rev. 1 April 2008

6-42 Table 6-14 cont'd Neutron Exposure Values Within The Beaver Valley Unit 1 Reactor Vessel Calculated Fluence (n/cm2) Based on E > 1.0 MeV Slopelal 0O 150 300 450 14.3 EFPY Surface 1.76E+19 9.22E+18 5.44E+ 18 3.67E+ 18 1/4AT 1.02E+19 5.43E+18 3.17E+18 2.14E+18 3/T 2.48E+ 18 1.40E+ 18 8.05E+17 5.54E+ 17 15.7 EFPY Surface 1.88E+19 9.86E+ 18 5.91E+18 4.OOE+ 18 Y4T 1.08E+19 5.81E+18 3.45E+ 18 2.34E+ 18

%3/4T 2.65E+18 1.50E+18 8.75E+17 6.04E+ 17 17.0 EFPY Surface 2.05E+19 1.08E+19 6.42E+1 8 4.33E+18 1/4T 1.19E+19 6.37E-1-18 3.74E+ 18 2.53E+18 3/T 2.90E+18 1.64E+18 9.50E+17 6.53E+17 28 EFPY Surface 3.54E+ 19 1.89E+19 1.07E+19 7.08E+18

'AT 2.04E+ 19 1.11E+19 6.24E+ 18 4.14E+18

%3/4T 4.99E+ 18 2.87E+ 18 1.58E+18 1.07E+ 18 45 EFPY Surface 5.85E+.19 3.14E+19 1.73E+19 1.13E+19 1/4AT 3.37E+19 1.85E+19 1.01E+19 6.63E+18

%/T 8.24E+ 18 4.77E+18 2.57E+18 1.71E+18 Note:

a) The 1/4AT and 3/44T values were determined using the calculational methods described in Section 6.2 and not by the empirical relation described in Regulatory Guide 1.99, Rev. 2.

Beaver Valley Unit I Capsule.Y WCAP-15571-NP, Rev. 1 April 2008

6-43 Table 6-14 cont'd Neutron Exposure Values Within The Beaver Valley Unit 1 Reactor Vessel Calculated Fluence (n/cm2) Based on dpa Slopelal 0O 150 300 450 14.3 EFPY Surface 1.76E+19 9.22E+ 18 5.44E+ 18 3.67E+ 18 1/4T. 1.18E+19 6.33E+18 3.66E+ 18 2.47E+ 18 3AT 4.41E+18 2.56E+18 1.45E+ 18 1.OOE+18 15.7 EFPY Surface 1.88E+19 9.86E+18 5.91E+18 4.OOE+1 8 1/4T 1.25E+19 6.77E+ 18 3.98E+18 2.70E+ 18

%3/4T 4.70E+ 18 2.74E+ 18 1.57E+18 1.09E+18 17.0 EFPY Surface 2.05E+19 1.08E+19 6.42E+ 18 4.33E+18 1/4AT 1.37E+19 7.43E+18 4.33E+18 2.92E+1 8 3/T 5.14E+1 8 3.01E+18 1.71E+18 1.18E+18 28 EFPY Surface 3.54E+19 1.89E+19 1.07E+19 7.08E+18 1/4AT 2.37E+19 1.30E+19 7.22E+18 4.77E+18

%3/4T 8.86E+18 5.25E+ 18 2.85E+18 1.93E+18 45 EFPY Surface 5.85E+19 3.14E+19 1.73E+19 1.13E+19 1/4AT 3.91E+19 2.16E+19 1.17E+19 7.65E+ 18 3/ T 1,46E+19 8,73E+18 4.61E+18 4 3.101E+18 Note:

a) The '1/4Tand 3/44T values were determined using the calculational methods described in Section 6.2 and not by the empirical relation described in Regulatory Guide 1.99, Rev. 2.

Beaver Valley Unit I Capsule Y WCAP-15571-NP, Rev. 1 April 2008

6-44 Table 6-15 Calculated Fast Neutron Fluence (E>1.0 MeV) for Materials Comprising the Beltline Region of the Reactor Vessel Lower Operating Time Lower Shell Shell Int. Shell Int. Shell (EFPY) Plates Long. Weld Circ. Weld Plates Long. Weld 14.3 1.76E+19 3.67E+18 1.75E+19 1.76E+19 3.67E+18 15.7 1.88E+19 4.00E+ 18 1.87E+19 1.88E+19 4.OOE+ 18 17.0 2.05E+19 4.33E+18 2.05E+19 2.05E+19 4.33E+18 28.00 3.54E+19 7.08E+18 3.53E+19 3.54E+19 7.08E+18 45.00 5.85E+19 1.13E+19 5.82E+19 5.85E+19 1.13E+19 Table 6-16 Calculated Fast Neutron Fluence (E>O.1 MeV) for Materials Comprising the Beltline Region of the Reactor Vessel Lower Operating Time Lower Shell Shell Int. Shell Int. Shell (EFPY) Plates Long. Weld Circ. Weld Plates Long. Weld 14.3 4.69E+ 19 9.17E+ 18 4.68E+19 4.69E+19 9.17E+ 18 15.7 5.OOE+19 9.99E+ 18 4.99E+ 19 5.00E+ 19 9.99E+18 17.0 5.47E+19 1.08E+ 19 5.45E+19 5.47E+ 19 1.08E+19 28.00 9.43E+ 19 1.77E+19 9.41 E+ 19 9.43E+ 19 1.77E+19 45.00 1.56E+20 2.83E+19 1.55E+20 1.56E+20 2.83E+19 Beaver Valley Unit I Capsule Y WCAP-15571-NP, Rev. 1 April 2008

6-45 Table 6-17 Calculated Iron Atom Displacements for Materials Comprising the Beltline Region of the Reactor Vessel Lower Operating Time Lower Shell Shell Int. Shell Int. Shell (EFP) Plates Long. Weld Circ. Weld Plates Long. Weld 14.3 2.83E-02 5.89E-03 2.82E-02 2.83E-02 5.89E-03 15.7 3.02E-02 6.41E-03 3.OIE-02 3.02E-02 6.41E-03 17.0 3.30E-02 6.94E-03 3.29E-02 3.30E-02 6.94E-03 28.00 5.69E-02 1.1 4E-02 5.67E-02 5.69E-02 1. 14E-02 45.00 9.39E-02 1.82E-02 9.36E-02 9.39E-02 1.82E-02 Table 6-18 Updated Lead Factors For Beaver Valley Unit 1 Surveillance Capsules Which Have Been Removed Capsule Lead Factor Via] 1.60 U[b] 1.05 W1c] 1.09 y[d] 1.22

[a] - Withdrawn at the end of Cycle 1.

[b] - Withdrawn at the end of Cycle 4.

[c] - Withdrawn at the end of Cycle 6.

[d] - Withdrawn at the end of Cycle 13.

The surveillance capsule lead factor is defined by:

ttbS -'vietlnr Capsule

'CalLeujrned (DCladI Base Metal Interface Axial PeaA Ce.0 ateed where (Dis the neutron fluence (E > 1.0 MeV) at the time of the capsule withdrawal.

Beaver Valley Unit I Capsule Y WCAP-15571-NP, Rev. 1 April 2008

6-46 Table 6-19 Projected Lead Factors for Beaver Valley Unit 1 Surveillance Capsules Which Have Not Been Removed Location/Capsule [a]

150 250 150 450 EFPY Cycle x T z S 10.8 10 1.72 0.77 0.77 0.60 11.8 11 1.73 0.81 0.83 0.62 12.9 12 1.75 0.86 0.90 0.63 14.3 13 1.76 0.91 0.97 0.65 15.7 14 1.77 0.95 1.03 0.66 17.0 15 1.78 0.97 1.10 0.66 28 1.79 1.05 1.39 0.62 45 1.79 1.10 1.55 0.60

[a] The projected factors assume Capsule T is relocated to a 25' position and Capsule Z is relocated to a 150 position after Cycle 10.

The surveillance capsule lead factor is defined by:

Calculated

()Clad / Base Metal Iter Aeiol Peak wten. atted where 0 is the neutron fluence,(E > 1.0 MeV) at the projected time.

Beaver Valley Unit I Capsule Y WCAP-15571-NP, Rev. 1 April 2008

7-1 7 SURVEILLANCE CAPSULE REMOVAL SCHEDULE The following surveillance capsule removal schedule meets the requirements of ASTM El 85-82 and is recommended for future capsules to be removed from the Beaver Valley Unit 1 reactor vessel. This recommended removal schedule is,applicable to 28 EFPY of operation.

Table 7-1 Beaver Valley Unit 1 Reactor Vessel Surveillance Capsule Withdrawal Schedule Removal Time Fluence Capsule Location Lead Factor(3) (EFPY)(bl (n/cm 2 ,E>l.0 MeV)(2, V 1650 1.60 1.16 3.23 x 10 (c)

U 650 1.05 3.59 6.46 x 10's (c)

W 2450 1.09 5.89 9.86 x 10'8 (c)

Y 2950 1.22 14.3 2.15 x 10'9 (c)

X 2850 1.76 25.7 5.82 x I0'9 (f)

T 550 Standby ---

Z 3050 (e) Standby ---

S 450 0.63 Standby Notes:

(a) Updated in Capsule Y dosimetry analysis, see Section 6 of this report.

(b) Effective Full Power Years (EFPY) from plant startup.

(c) Plant specific evaluation.

(d) Capsule T was moved to the capsule U location at the end of cycle 10 (10.8 EFPY). The lead factor was approximately 0.77 through the first 10 cycles. The average lead factor for cycle 11 and higher is 0.95 (Reference Table 6-19).

(e) Capsule Z was moved to the capsule V location at the end of cycle 10 (10.8 EFPY). The lead factor was approximately 0.77 through the first 10 cycles. The average lead factor for cycle 11 and higher is 1.11 (Reference Table 6-19).

(f) Vessel clad/base metal interface fluence at a license renewal of 45 EFPY (i.e. 20 year life extension).

Beaver Valley Unit I Capsule Y WCAP-15571-NP, Rev. 1 April 2008

8-1 8 REFERENCES

1. WCAP-8475, Duquesne Light Company Beaver Valley Unit No. 1 Reactor Vessel Radiation SurveillanceProgram,J. A. Davidson, October, 1974.
2. "Evaluation of Reactor Vessel Surveillance Data Pertinent to the Fort Calhoun Reactor Vessel Beltline Materials", CEN-636, Rev. 01, May 30, 2000.
3. Regulatory Guide 1.99, Revision 2, May 1988, RadiationEmbrittlement of Reactor Vessel Materials.
4. Code of Federal Regulations, I OCFR50, Appendix Q FractureToughness Requirements, U.S. Nuclear Regulatory Commission, Washington, D.C.
5. ASTM E185-82, Annual Book of ASTM Standards, Section 12, Volume 12.02, StandardPracticefor ConductingSurveillance Tests for Light-Water Cooled NuclearPower Reactor Vessels.
6.Section XI of the ASME Boiler and Pressure Vessel Code, Appendix GQ FractureToughness Criteria for ProtectionAgainst Failure.
7. ASTM E208, Standard Test Method for ConductingDrop-Weight Test to DetermineNil-Ductility Transition Temperature of FerriticSteels, in ASTM Standards, Section 3, American Society for Testing and Materials, Philadelphia, PA.
8. Code of Federal Regulations, 10CFR50, Appendix H, Reactor Vessel MaterialSurveillanceProgram Requirements, U.S. Nuclear Regulatory Commission, Washington, D.C.
9. ASTM E23-98, StandardTest Methodsfor Notched BarImpact Testing of MetallicMaterials,in ASTM Standards, Section 3, American Society for Testing and Materials, Philadelphia, PA, 1998.
10. ASTM A370-97, Standard Test Methods and Definitionsfor Mechanical Testing ofSteel Products,in ASTM Standards, Section 3, American Society for Testing and Materials, Philadelphia, PA, 1997.
11. ASTM E8-99, StandardTest Methodsfor Tension Testing ofMetallicMaterials, in ASTM Standards, Section 3, American Society for Testing and Materials, Philadelphia, PA, 1999.
12. ASTM E21-92 (1998), Standard Test Methodsfor Elevated Temperature Tension Tests ofMetallic Materials, in ASTM Standards, Section 3, American Society for Testing and Materials, Philadelphia, PA, 1998.
13. ASTM E83-96, StandardPracticefor Verificationand ClassificationofExtensometers, in ASTM Standards, Section 3, American Society for Testing and Materials, Philadelphia, PA, 1996.
14. ASTM E185-73, Annual Book of ASTM Standards, Section 12, Volume 12.02, StandardRecommended Practicefor Surveillance Tests for NuclearReactor Vessels.

Beaver Valley Unit I Capsule Y WCAP-15571-NP, Rev. 1 April 2008

8-2

15. RSICC Computer Code Collection CCC-650, "DOORS 3.1, One, Two- and Three-Dimensional Discrete Ordinates Neutron/Photon Transport Code System,", August 1996.
16. RSIC Data Library Collection DLC-1 85, "BUGLE-96, Coupled 47 Neutron, 20 Gamma-Ray Group Cross Section Library Derived from ENDF/B-VI for LWR Shielding and Pressure Vessel Dosimetry Applications,", March 1996.
17. "The Nuclear Design and Core Management of the Beaver Valley Unit I Nuclear Power Plant, Cycle 1," WCAP-8441, January 1975. [W Proprietary Class 21
18. "The Nuclear Design and Core Management of the Beaver Valley Unit I Nuclear Power Plant, Cycle 2," WCAP-9505, February 1979. [W Proprietary Class 2]
19. "The Nuclear Design and Core Management of the Beaver Valley Unit 1 Nuclear Power Plant, Cycle 3," WCAP-10037, February 1982. [B Proprietary Class 2]
20. "The Nuclear Design and Core Management of the Beaver Valley Unit 1 Nuclear Power Plant, Cycle 4," WCAP-10330, May 1983. [W Proprietary Class 2]
21. "The Nuclear Design and Core Management of the Beaver Valley Unit 1 Nuclear Power Plant, Cycle 5," WCAP-10660, September 1984., [aj Proprietary Class 2]
22. "The Nuclear Design and Core Management of the Beaver Valley Unit I Nuclear Power Plant, Cycle 6," WCAP-1 1122, 1986., DY Proprietary Class 2],
23. "The Nuclear Design and Core Management of the Beaver Valley Unit I Nuclear Power Plant, Cycle 7," WCAP- 11680, 1987., [W Proprietary Class 2]
24. "The Nuclear Design and Core Management of the Beaver Valley Unit I Nuclear Power Plant, Cycle 8," WCAP-12343, August 1989., [)y Proprietary Class 2]
25. "The Nuclear Design and Core Management of the Beaver Valley Unit I Nuclear Power Plant, Cycle 9," WCAP-12917, April 1991., MW Proprietary Class 2]
26. "The Nuclear Design and Core Management of the Beaver Valley Unit I Nuclear Power Plant, Cycle 10," WCAP-13643, March 1993., [W Proprietary Class 2]
27. "The Nuclear Design and Core Management of the Beaver Valley Unit I Nuclear Power Plant, Cycle 11," WCAP-14245, February 1995., [W Proprietary Class 2]
28. "The Nuclear Design and Core Management of the Beaver Valley Unit I Nuclear Power Plant, Cycle 12," WCAP-14599, May 1996., [N Proprietary Class 2]
29. "The Nuclear Design and Core Management of the Beaver Valley Unit I Nuclear Power Plant, Cycle 13," WCAP-14959, October 1997., [ Proprietary Class 2]
30. "Beaver Valley Unit I Radiation Analysis and Neutron Dosimetry Evaluation", WCAP-14554, June 1996., [ Proprietary Class 2C]
31. ASTM Designation E482-89 (Re-approved 1996), StandardGuidefor Application of Neutron TransportMethodsfor Reactor Vessel Surveillance, in ASTM Standards, Section 12, American Society for Testing and Materials, Philadelphia, PA, 1999.
32. ASTM Designation E5 60-84 (Re-approved 1996), StandardRecommended Practicefor ExtrapolatingReactor Vessel Surveillance Dosimetry Results, in ASTM Standards, Section 12, American Society for Testing and Materials, Philadelphia, PA, 1999.

Beaver Valley Unit I Capsule Y WCAP-15571-NP, Rev. 1 April 2008

8-3

33. ASTM Designation E693-94, StandardPracticefor CharacterizingNeutron Exposures in Iron and Low Alloy Steels in Terms of Displacementsper Atom (dpa), in ASTM Standards, Section 12, American Society for Testing and Materials, Philadelphia, PA, 1999.
34. ASTM Designation E706-87 (Re-approved 1994), StandardMasterMatrixfor Light-Water ReactorPressure Vessel SurveillanceStandard,in ASTM Standards, Section 12, American Society for Testing and Materials, Philadelphia, PA, 1999.
35. ASTM Designation E853-87 (Re-approved 1995), StandardPracticefor Analysis and InterpretationofLight-Water Reactor Surveillance Results, in ASTM Standards, Section 12, American Society for Testing and Materials, Philadelphia, PA, 1999.
36. ASTM Designation E261-98, StandardPracticefor DeterminingNeutron Fluence Rate, Fluence, andSpectra by Radioactivation Techniques, in ASTM Standards, Section 12, American Society for Testing and Materials, Philadelphia, PA, 1997.
37. ASTM Designation E262-97, StandardMethodfor Determining Thermal Neutron Reaction and Fluence Rates by RadioactivationTechniques, in ASTM Standards, Section 12, American Society for Testing and Materials, Philadelphia, PA, 1999.
38. ASTM Designation E263 -93, StandardMethod for MeasuringFast-NeutronReaction Rates by Radioactivationof Iron, in ASTM Standards, Section 12, American Society for Testing and Materials, Philadelphia, PA, 1999.
39. ASTM Designation E264-92 (Re-approved 1996), StandardMethodfor MeasuringFast-Neutron Reaction Rates by Radioactivationof Nickel, in ASTM Standards, Section 12, American Society for Testing and Materials, Philadelphia, PA, 1999.
40. ASTM Designation E481-97, StandardMethodfor MeasuringNeutron-FluenceRate by Radioactivationof Cobalt and Silver, in ASTM Standards, Section 12, American Society for Testing and Materials, Philadelphia, PA, 1999.
41. ASTM Designation E523-92 (Re-approved 1996), StandardTest Methodfor Measuring Fast-NeutronReaction Rates by Radioactivationof Copper, in ASTM Standards, Section 12, American Society for Testing and Materials, Philadelphia, PA, 1999.
42. ASTM Designation E704-96, StandardTest Methodfor Measuring Reaction Rates by Radioactivation of Uranium-238, in ASTM Standards, Section 12, American Society for Testing and Materials, Philadelphia, PA, 1999.
43. ASTM Designation E705-96, StandardTest Methodfor Measuring Reaction Rates by Radioactivation ofNeptunium-237, in ASTM Standards, Section 12, American Society for Testing and Materials, Philadelphia, PA, 1999.
44. ASTM Designation E 1005-97, StandardTest Methodfor Application andAnalysis of Radiometric Monitorsfor Reactor Vessel Surveillance,in ASTM Standards, Section 12, American Society for Testing and Materials, Philadelphia, PA, 1999.
45. Schmittroth, FERRETDataAnalysis Core, HEDL-TME 79-40, Hanford Engineering Development Laboratory, Richland, WA, September 1979.

Beaver Valley Unit I Capsule Y WCAP-15571-NP, Rev. I April 2008

8-4

46. N. McElroy, S. Berg and T. Crocket, A Computer-AutomatedIterative Method of Neutron Flux Spectra Determinedby FoilActivation,AFWL-TR-7-41, Vol. I-IV, Air Force Weapons Laboratory, Kirkland AFB, NM, July 1967.
47. RSIC Data Library Collection DLC-l 78, "SNLRMIL Recommended Dosimetry Cross-Section Compendium", July 1994.
48. EPRI-NP-2188, Development and Demonstration ofan Advanced Methodologyfor LWR Dosimetry Applications, R. E. Maerker, et al., 1981.
49. TR-0-MCD-00 1, "Evaluation of Baseline Specimens Reactor Vessel Materials Irradiation Surveillance Program", Fort Calhoun Station Unit No. 1, A. Ragl, March 1977.
50. BAW-2226-00 (BWNT Document No. 77-2226-00), "Analysis of Capsule W-275 Omaha Public Power District Fort Calhoun Station Unit No. 1", M. J. DeVan, July 1994.
51. "Analysis of Capsule 284' from the Florida Power and Light company St. Lucie Unit 1 Reactor Vessel Radiation Surveillance Program", WCAP-15446, September 2000., [W Proprietary Class 2]
52. Case 5, "Surveillance Data from Other Sources Only", Generic Letter 92-01 and RPV Integrity Issues, February 12, 1998.
53. Combustion Engineering, Metallurgy, Research & Development Department, Material Certification Report, CE NSPD 1039, Rev. 02, CEOG 1054, Dated June 1998.
54. WCAP-9860, Analysis of Capsule Vfrom the DuquesneLight Company Beaver Valley Unit )

Reactor Vessel Radiation SurveillanceProgram, S. E. Yanichko, January, 1981.

55. WCAP-10867, Analysis of Capsule Ufrom the Duquesne Light Company Beaver Valley Unit I Reactor Vessel Radiation SurveillanceProgram, R. S. Boggs, September, 1985.
56. WCAP-12005, Analysis of Capsule Wfrom the DuquesneLight Company Beaver Valley Unit I Reactor Vessel Radiation SurveillanceProgram, S. E. Yanichko, November, 1988.

Beaver Valley Unit I Capsule Y WCAP-15571-NP, Rev. 1 April 2008

A-0 APPENDIX A LOAD-TIME RECORDS FOR CHARPY SPECIMEN TESTS Beaver Valley Unit I Capsule Y WCAP-15571-NP, Rev. 1 April 2008

A-i r

i I I a a a i l I I I a - g a a r------r---------- -- r----- r --------

r------------r-------

0 3J I Ii I I Ia I $ I

-. - .--- l - -.

a a a a Ia a I i 0.

I - - - - I - - -"ar. a r -"-. . . . a -- a . . . a . a I . . . . .

Ip I I I a a a a a to. 0.60 1-20 1.80 2.40. Time3.00 (msec) 36 4A 4.80 5.40 DL62, 100-F

.cc C3 3$ ------- I - I I a a I I i a aI 0 a aI I a a a- Sa- a- - - - - - a - a - a

- aI a. . . . . . a.. . a. . . a-. . . a. . a. . a..

=-( a a - " a. a a

"- a..

r . . a a.. . a a.. a, a a a a a I

- a Si

0. a 4.80 a 5.40 8.00 2.40 3130 3.61) 3.60 4.20 4.20 4.80 5.40 6.00 o 120 1.80 0.60 1.20 1.80 2.40 Time3.00 (rnsec)

DL58, 110°F CD (0

. . . - r.-.-.r . -.- r . . .. -..

. . . r - - - - -r - - - - - r -.. . . . r - -.. . ..

a a a ------ I


a a -a I------------------

- a a a a a a a a a a e.0q C0 0:

0ý I L I I I a a a aI a a.a..a.a a a aa.a.

a a a I I I I- I - i-- i- - l~----

C) OLD0 0.60 1.20 1.80 2.40 3.00 3.60 420 4.80 5.40 6.00 Time (rnsec)

DL63, 125-F Beaver Valley Unit I Capsule Y WCAP-15571-NP, Rev. 1 April 2008

A-2 C)

.o 0I 8

6 2.40 3.00 -3.60 4.20 4.80 Time (msec)

DL59, 150WF 01 M

CD C) If 00.00 0.60 120 1.80 2.40 3.00 3.60 4.20 4.80 5.40 6.00 Time (msec)

DL61, 200 0 F C>

Iii I I o 0.00 0.60 1.20 1.80 2.40 3.00 3,60 420 4.80 5.40 Time (msec)

DL64, 250°F Beaver Valley Unit I Capsule Y WCAP-15571-NP, Rev. 1 April 2008

A-3 Co i

I

!I Is I

I i

I i A-3 i I i  ! i i i I i i I I i r ------

II

- -- - -r r -----

i r

I I r -r -... -.. --r - ---

s I

  • 3 II I I --:- -:-

I1 I :I- ---

III i i Ii I i.

S7 I - - -- -- - II L - - - L - - - -

II i i I I r - -

1

  • I s I II

'. I I I C.o 0 0.00 I I 1 ---- - I I I 02.40 3.00 - 3.60 4.20 4.80 5.40 6.00 Time (msec)

DL57, 300°F C2, C) o 0.00 0.60 1.20 1.80 2.40 3.00 3.60 420 4.80 5.40 6.00 Time (msec)

DL60, 375WF C) 0 0

o

  • I I I I I I I
  • I r " - - - - -Ir -- - I - - I - - rI - - r-I - -r-I - -

I I I I l I I I I (0

.0 UI I

~0i I I i i I I I i i

i I

I

~-----.-

I I

, I I

I I-------.----.----

I i i II I I I

C)j I I . I I I I I I I

  • I Ii I I I i I I

I I i I I I I II II I i I I I I I I I 0 iI I i I I i I c 0.00 0.60 1.20 1.80 2.40 3.00 Time (msec) 3.60 4.20 4.80 5.40 6.00 DT95, 100-F Beaver Valley Unit I Capsule Y WCAP-15571-NP, Rev. 1 April 2008

A-4 DT90, 150°F C0

.2 2.40 3.00 3.60 4.20 4.80 5.40 6.00 Trne (rnsec)

DT89, 180-F I; 8t tot

.0 0 000 0.60 1.20 1.80 2-40 3.00 3.60 4.20 4.80 5.40 6.00 Týne (rnsec)

DT87, 195TF Beaver Valley Unit I Capsule Y WCAP-15571-NP, Rev. 1 April 2008

A-5 0

CD cý E) 0 0.00 0.60 1.20 1.80 2.40 3.00 3.60 4.20 4.80 540 6.00 Time (msec)

DT88, 200 0 F C

C U_

0%

q Co DT91, 225-F DT96, 235-F Beaver Valley Unit I Capsule Y WCAP-15571-NP, Rev. I April 2008

A-6 Ii

4 aI U I C,

C Ono 0.60 1.20 1.80 2.40 3.00 3.60 4.20 4.80 5.40 6.00 Time (msec)

DT93, 250°F ii F

0, 0 0.00 0.60 1.20 1.80 2.40 3.00 3.60 4.20 4.80 5.40 6.00

° Time (rmsec)

P I DT92, 275°F DT94, 3000 F Beaver Valley Unit ICapsule Y WCAP-15571-NP, Rev. 1 April 2008

A-7 C( I i S I S s I I a-3 a I I i I I I

~ 1 ~. -....--

-- ~

l iI -.

--a -- -- --

I rI - --

- - I ....-- rS -.. .. . rI a

... - - rI -......-

a--


- .-- --- - - -I -

-a a I I a a a I a a- . a a I a S I I i a i a i a a a r ----- r . r= -.

... .. r -- .----

r

- ---- - - r-- -r -----r -7 ---

o II S I S I I

, - - -- - - I- I c 0.00 0.60 1.20 1.80 2.40 3.00 3.60 4.20 4.80 5.40 6.00 Time (msec)

DT85, 350°F CD CD CD to

.0 C, 0.00 0.60 120 1.80 2.40 3.00 3.60 4.20 4M 5.40 Time (msec)

DT86, 375-F C

C?

C3 CD 3 a aa a a a aaaa a a I I

. . . . -- - r - ---- r r - - r-- -r - - - - - - --. . r . . ---...

a I " I I i a a a l a a a a i a e l

-I a a a a a a a L SS.

a. -- I. -- -------------

0 . a a a a I a a a C)a a a aa a I I a aaa a I I a I a a a a a a i-' - I i t I I o 0.00 0.60 1.20 1.80 2.40 3.00 3.60 4.20 4.80 5.40 6.00 rime (msec)

DW93, O]F Beaver Valley Unit I Capsule Y WCAP-15571-NP, Rev. 1 April 2008

A-8 I I I I I S S CoS I I S I i S l I l l I l I I

.. .r ----- r, - - - -- i- - r -- - -r-., . r, -.- . ir----- r - -----

  • I $ I I S I i I
  • I . .. ......... -

S

- - - - - I h (

.. ... i

.. ...S .. ..- L S

--... p

- . . I . L S- I a S I I

- - a . . . S , . . I' . . I . . I . . . I II i I I S S I i CD 0.0 0.6 i .0 i F I 30 I .9 S 4 5m18 2i 5.0i .0

  • I I I I S I I I I I I i I a I S o I I I I I I S I o - i -- -  : t* - r-'-- --- -' -  ! . -

o0.00 0.60 1.20 1.80 2.40 3.00 3.6)0 4.20 4.80 5.40 6.00 r~e (vnsec)

DW86, 50-F DW95, 100OF F,

0 C)

C) S I I I I i i C.3

  • I I I I I I 3 1I j I I I I I I I I I I 1 l I ii
  • $ I I I I I I I I S I
  • I I S
  • S i i III C.) I i I I Ii I S i I i P0D 0.00 0.60 ' 1.20 1.80 2.40 3.00 3.60 4.20 4.80 5.40 6.0; Tune (msec)

DW88, 110°F Beaver Valley Unit I Capsule Y WCAP-15571-NP, Rev. 1 April 2008

A-9 C)

C)

C) 0 0

CD V

U 0

(~)

o0.00 0.60 1.20 1.80 2.40 3.00 3.60 4-20 4.80 5.40 6_00 Time (msec)

DW87, 115-F 0

0 0

0 0

CD V

0 U

C) 0.00 0.10 120 1.80 2.40 3.00 3.60 4.20 4.80 5.40 6.00 Time (msec)

DW94, 135 0 F c.

oi 0 i I I I . I I I o* I I I I I I CD I I I i I

- I - i - I S----------------------

IIII I I I I I IIi I I I a, 4 I I I I I

...............--- r....--- r ,- ,- - --

C Ono 0.60 1.20 1.80 2.40 3.00 3.60 420 4.80 5.40 6.s0 Time (msec)

DW89, 150 0 F Beaver Valley Unit I Capsule Y WCAP-15571-NP, Rev. 1 April 2008

A-10

...... ......... .... ..... ... . . . I .. . ... ... .. . ... ...... I,*... ... ... ...

C>

i~k ii ,4 or o 0-00 0.60 120 1.80 2.40 3.00 3.60 4.20 4.80 5140 Time (msec)

DW85, 175OF

-- I I-1.20 1.80 2.40 3.00 3.60 420 Time (msec)

I.

P .O 06 .

DW90, 200WF BevrVleCD i asl S0 00 .60 1.20 1.80

  • 2.40 3.00 3.60 4.20 4.80 5.40 6.

Thne (mset)

Bevrale Uni I Casl:

DW92, 225-F WCAP-15571-NP, Rev. 1 April 2008

A-Il C)

CD C) 0:

0O 0 0.00 0.60 1.20 1.80 2.40 3.00 3.60 4.20 4.80 5.40 6.00 Time (msec)

DW91, 250°F 0

0 0

0 CD

.0 as 0

U 03 q

DW96, 3000 F 0C2, C3 i o(

.0 V 4 0 0.00 0.60 1.20 1.80 2.40 3.00 3.60 4.20 4.80 5.40 6.00 Time (rsec)

DH86, -100-F Beaver Valley Unit I Capsule Y WCAP-15571-NP, Rev. 1 April 2008

A-12 0

o0.0 2.40 3.00 3.60 420 4.80 5.40 6.'

Time (msec)

DH89, -50 0 F C) I 1 i I I i a I II S 3 cý I 6

  • o 3  !- i.i --

I ----

I I 3

I 3 3 3 S 3 3 3Tm I 3 3 3I I  ! i

  • s t I I 3 n S i S i 3 a 5 3 3

-L.- . ...  ;


J L --

3 £ OLD 06 1.0 180 24 i 5 i 3.0 3.6 42 4. 5.0 60 I 3 I i S 5 i i 5

i I

I I I

I I I 4 0.2 4 .80 5 .40 6 .00 0 i 2.4 0 3 .00 3. 50 0 0.00 0. 50 1 0.2 1 .80 Time (reset)

DH88, -40°F I

i II i

I]

r


r 3.....------ I r ----- r - - -

-E -"- ------ r -- -i I 1 I 3 3 3 l I l S .

S I 5 I

  • I i 5 I I I I 3 i I I

~ I-.-.- b.I - S.

5 I

S--

I S---S.

l S.

r ----- ------

i rI -----

3 -- I I r----- rI -----

o r-. .

I r .. - -. --

I I 3 I I 1 I*

c3 0.00 0.60 1.20 1.80 2.40 3.130 3.60 420 4.80 5.40 6.00 Time (msec)

DH85, -25 0 F Beaver Valley Unit I Capsule Y WCAP-15571-NP, Rev. 1 April 2008

A-13 0

! ,  ! I I i I i 3,m I I! I m Ii I I3 I i I I i o ii I I r -----I rI ----- rI ----- r II


r ----- I r r------

I I i I Ii i i i i I--. - - - - -- -.- --

. . . . I 0 I i I I i S i I o S I I I I IIu o - -- -

-- r r1 ------

0.00 0.60 1.20 1.80 2.40 3.00 3.60 4.20 4.80 5.40 6.00 Tune (msec)

DH94, 0°F C5

.0I -.-.

-. - I ---. -- . . . I . . . I . I.- ". .- .

Ii- - I- - ----

. --I -- --

n II I I I I

_I I I u I I

\ 4 i i i I I 0 3,

  • I I I I I i
  • I I I I I I o.00 0.60 1.20 1.80 2.40 3.00 3.60 420 4.80 5.40 6.00 Time (msec)

DH87, 10-F M

M P

CD C 0.00 0.60 1.20 1.80 2.40 3.00 3.60 4.20 4.80 5.40 6.00 Time (msec)

DH93, 50°F Beaver Valley Unit 1 Capsule Y WCAP-15571-NP, Rev. 1 April 2008

A-14 I

C Q,

03 q

C3 DH96, 72 0 F DH92, 1250 F

'V S

I I S I I I I CD I l I

t iI

-- -- r r ------

- --- r--

I r'---- - .....-- ---

I S*

I I I I I I I i I

-- I I I I I I

  • I I .. .

I - I 3 I i 1 i--

4 -

I S . r ------

I I I


I ----- r .

l


..--... r ..

--... . I I I I

..... I I I i i

I l I e o I i i 0 0.00 0.60 1.20 1.80 2.40 3.00 3.60 420 4.80 5.40 6.00 Trme (msec)

DH95, 175-F Beaver Valley Unit I Capsule Y WCAP-15571-NP, Rev. 1 April 2008

A-iS CD S

o a I I I a a p l a , a a a a a

  • I I I I I I
  • l

... .r - - -r - -- r - -- r - -- r - - - r ----- r - - -

a I S I S ai aI ii I I I I S 0 I 3 4 5, IT I ( i S aaI I a a a aaI I I I III i I I nII l

  • i 4 I I I SII 0 U I i i i o 0.00 0.60 1.20 1.80 2.40 3.09 3.60 4.20 4.80 5.40 6.08 Time (msec)

DH91,2250 F 0

C3 oM I a I a i Iaa i i I i

-- -..- - --.- --. r .- . .-rr - - r -.. - - - - - - - - --. r --- r - - -

a I I --a i . .- . . . . . . . . . .

..... r . r -

(. I I . I I 6.0I CD 0.00 0.60 1.20 1.80 2.0 3.00 3.60 4.20 4.80 5.40 6.00 Trime (msec)

DH90, 300°F Beaver Valley Unit I Capsule Y WCAP-15571-NP, Rev.I April 2008

B-0 APPENDIX B CHARPY V-NOTCH SHIFT RESULTS FOR EACH CAPSULE HAND-DRAWN VS. HYPERBOLIC TANGENT CURVE-FITTING METHOD (CVGRAPH VERSION 4.1)

Beaver Valley Unit I Capsule Y WCAP-15571-NP, Rev.1 April 2008

B-I TABLE B-1 Changes inAverage 30 ft-lb Temperatures for Lower Shell Plates B6903-1 (Longitudinal Orientation) Hand Fit vs. CVGRAPH 4.1 Capsule Unirradiated Hand Fit ATo Unirradiated CVGRAPH Fit AT30 V -5 125 130 -3.45 125.0 128.5 U -5 115 120 -3.45 115.5 118.9 W -5 145 150 -3.45 145.1 148.5 y -5 ..- 3.45 1387 142.2 TABLE B-2 Changes inAverage 50 ft-lb Temperatures for Lower Shell Plates B6903-1 (Longitudinal Orientation) Hand Fit vs. CVGRAPH 4.1 Capsule Unirradiated Hand Fit AT50 Unirradiated CVGRAPH Fit ATso V 25 160 135 27.99 159.3 131.3 U 25 110 135 27.99 158.7 130.7 W 25 175 150 27.99 174.2 146.2 1 25 --- --. 27.99 179.3 151.3 Beaver Valley Unit I Capsule Y WCAP-15571-NP, Rev. I April 2008

B-2 TABLE B-3 Changes in Average 35 mil Lateral Expansion Temperatures for Shell Lower Shell Plates B6903-1 (Longitudinal Orientation) Hand Fit vs. CVGRAPH 4.1 Capsule Unirradiated Hand Fit AT35 Unirradiated CVGRAPH Fit AT3, V 25 150 125 25.52 147.9 122.4 U 25 150 125 25.52 152.3 126.7 W 25 165 140 25.52 163.9 138.4 y 25 - ---- 25.52 191.6 166.1 TABLE B-4 Changes inAverage Energy Absorption at Full Shear for Shell Lower Shell Plates B6903-1 (Longitudinal Orientation) Hand Fit vs. CVGRAPH 4.1 Capsule Unirradiated Hand Fit AE Unirradiated CVGRAPH Fit AE V 134 114 -20 135 114 -21 U 134 99 -35 135 105 -30 W 134 114 -20 135 114 -21 y 134 ...... 135 110 -25 Beaver Valley Unit I Capsule Y WCAP-15571-NP, Rev. 1 April 2008

B-3 TABLE B-5 Changes inAverage 30 ft-lb Temperatures for Shell Lower Shell Plates B6903-1 (Transverse Orientation) Hand Fit vs. CVGRAPH 4.1 Capsule Unirradiated Hand Fit AT3o Unirradiated CVGRAPH Fit AT~o V 20 160 140 17.95 155.8 137.8 U 20 155 135 17.95 149.7 131.8 W 20 205 185 17.95 197.9 180.0 Y 20 -.--... 17.95 184.9 166.9 TABLE B-6 Changes in Average 50 ft-lb Temperatures for Lower Shell Plates B6903-1 (Transverse Orientation) Hand Fit vs. CVGRAPH 4.1 Capsule Unirradiated Hand Fit ATso Unirradiated CVGRAPH Fit AT5o V 65 215 150 61.89 206.1 144.3 U 65 225 160 61.89 213.3 151.4 W 65 230 165 61.89 237.6 175.7 y 65 --- --- 61.89 240.5 178.6 Beaver Valley Unit I Capsule Y WCAP-15571-NP, Rev. 1 April 2008

B4 TABLE B-7 Changes inAverage 35 mil Lateral Expansion Temperatures for Lower Shell Plates B6903-1 (Transverse Orientation) Hand Fit vs. CVGRAPH 4.1 Capsule Unirradiated Hand Fit AT35 Unirradiated CVGRAPH Fit AT3 V 45 180 135 43.54 175.6 131.1 U 45 200 155 43.54 189.7 145.2 W 45 215 170 43.54 214.6 170.1 y 45 --- --- 43.54 230.4 186.0 TABLE B-8 Changes in Average Energy Absorption at Full Shear for Lower Shell Plates B6903-1 (Transverse Orientation) Hand Fit vs. CVGRAPH 4.1 Beaver Valley Unit I Capsule Y WCAP-15571-NP, Rev. 1 April 2008

B-5 TABLE B-9 Changes inAverage 30 ft-lb Temperatures for Surveillance Weld Material Hand Fit vs. CVGRAPH 4.1 Capsule Unirradiated Hand Fit AT30 Unirradiated CVGRAPH Fit AT30 V -60 90 150 -67.72 91.99 159.7 U -60 95 155 -67.72 98.59 166.3 W -60 125 185 -67.72 120.0 187.7 Y -60 --- --- -67.72 112.0 179.7 TABLE B-10 Changes inAverage 50 ft-lb Temperatures for Surveillance Weld Material Hand Fit vs. CVGRAPH 4.1 Capsule Unirradiated Hand Fit ATso Unirradiated CVGRAPH Fit ATso V -35 145 180 -44.05 143.5 187.6 U -35 165 200 -44.05 161.5 205.6 W -35 175 210 -44.05 173.6 217.6 Y -35 --- I --- -44.05 169.4 213.4 Beaver Valley Unit I Capsule Y WCAP-15571-NP, Rev. 1 April2008

B-6 TABLE B-11 Changes in Average 35 mil Lateral Expansion Temperatures for Surveillance Weld Material Hand Fit vs. CVGRAPH 4.1 Capsule Unirradiated Hand Fit AT5 Unirradiated CVGRAPH Fit AT5 V -45 125 170 -48.77 124.3 173.1 U -45 160 205 -48.77 143.7 192.5 W -45 145 190 48.77 149.2 198.0 Y -45 .-.-.- -48.77 169.8 218.6 TABLE B-12 Changes inAverage Energy Absorption at Full Shear for Surveillance Weld Material Hand Fit vs. CVGRAPH 4.1 Capsule Unirradiated Hand Fit AE Unirradiated CVGRAPH Fit AE V 112 88 -24 112 88 -24 U 112 83 -29 112 83 -29 W 112 78 -34 112 78 -34 y 112 --- ... 112 77 -35 Beaver Valley Unit I Capsule Y WCAP-15571-NP, Rev. 1 April2008

B-7 TABLE B-13 Changes inAverage 30 ft-lb Temperatures for the Weld Heat-Affected-Zone Material Hand Fit vs. CVGRAPH 4.1 Capsule Unirradiated Hand Fit AT3D Unirradiated CVGRAPH Fit ATD V -65 -65 0 -74,53 -83.16 -8.62 U -65 -30 35 -74.53 -24.86 49.67 W -65 -5 60 -74.53 -13.13 61.40 Y -65 ....... 74.53 -56.16 18.36 TABLE B-14 Changes in Average 50 ft-lb Temperatures for the Weld Heat-Affected-Zone Material Hand Fit vs. CVGRAPH 4.1 Capsule Unirradiated Hand Fit AT5o Unirradiated CVGRAPH Fit AT50 V -40 -10 30 -42.15 -13.39 28.75 U -40 5 45 -42.15 4.93 47.08 W -40 25 65 -42.15 28.5 70.66 Y -40 --- --- -42.15 20.36 62.51 Beaver Valley Unit I Capsule Y WCAP-15571-NP, Rev. I April 2008

B-8 TABLE B-15 Changes inAverage 35 mil Lateral Expansion Temperatures for the Weld Heat-Affected-Zone Material Hand Fit vs. CVGRAPH 4.1 Capsule Unirradiated Hand Fit ATs Unirradiated CVGRAPH Fit AT3 V -30 25 55 -32.05 17.89 49.94 U -30 10 40 -32,05 6.93 38.99 W -30 30 60 -32.05 25.13 57.18 Y -30 --- --- -32.05 63.24 95.29 TABLE B-16 Changes in Average Energy Absorption at Full Shear for the Weld Heat-Affected-Zone Material Hand Fit vs. CVGRAPH 4.1 Beaver Valley Unit I Capsule Y WCAP-15571-NP, Rev. 1 April 2008

C-0 APPENDIX C CHARPY V-NOTCH PLOTS FOR EACH CAPSULE USING HYPERBOLIC TANGENT CURVE-FITTING METHOD Beaver Valley Unit I Capsule Y WCAP-15571-NP, Rev. 1

ý April 2008

C-1 Contained in Table C- I are the upper shelf energy values used as input for the generation of the Charpy V-notch plots using CVGRAPH, Version 4.1. Lower shelf energy values were fixed at 2.2 ft-lb The unirradiated and irradiated upper shelf energy values were calculated per the ASTM El 85-82 definition of upper shelf energy.

TABLE C-I Upper Shelf Energy Values Fixed in CVGRAPH Material Unirradiated Capsule V Capsule U Capsule W Capsule Y Lower Shell Plate B6903-1 135 114 105 114 110 (Longitudinal Orientation)

Lower Shell Plate B6903-1 81 75 78 59 71 (Transverse Orientation)

Weld Metal 112 88 83 78 77 (Heat # 305424)

HAZ Material 128 109 105 107 114 Beaver Valley Unit . Capsule Y WCAP-15571-NP, Rev. 1 April 2008

UNIRRADIATED (LONGITUDINAL ORIENTATION)

CVGRAPH 41 Hyperbolic Tangent Curve Printed at 10W904 on 05-15-2000 Page I Coefficients of Curve I A= 68.59 S B=66.4 C= 83.49 TO = 6503 Equation is CVN = A + B I tanh((T - T0)/C) I Upper Shelf Energy. 135 Fixed Temp. at 30 ft-lbs -3.4 Temp. at 50 ft-lbs 27.9 Lower Shelf Energy. 219 Fixed Material: PLATE SA533BI Heat Number. C6317-1 )rientation: LT Capsule UNIRR Total Fluence!

300-C 250-

- 200-

  • - 150-Z teo . 0 C..) -

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Data Set(s) Plotted Plant- BVI Cap: UNIRR Material: PLATE SA533BI Oni: LT Heat ý. C6317-1 Charpy V-Notch Data Temperature Input CVN Energy Computed CVN Energy Differential

-50 21 819

-50 10 -a.

-50 8 -0.

10 20 37.73 -17.73 10 445 37.73 6.76 10 50 37.73 1226 60 54 7491 -20.91 60 77 74.91 50 .90 74.91 15.08 Data continued on next page WCAP-15571-NP, Rev. I April 2008 C-2

UNIRRADIATED (LONGITUDINAL ORIENTATION)

Page 2.

Material: PLATE SAS33BI Heat Number. C6317-1 Orientation: LT Capsule: UNIRR Total Fluence Charpy V-Notch Data (Continued)

Temperature Input CVN Energy Computed CVN Energy Differential 100 107 103.03 3-96 100 101.5 103.03 -1.53 100 103 1=03 -.03 210 134 132.04 1095 210 1335 1324 1.45 210 1315 132.04 -.54 300 137 134.65 2.34 300 136 134.65 134 300 131 134.65 -3.65 SUM of RESIDUALS 3.39 WCAP-15571-NP, Rev. I April 2008 C-3

CAPSULE V (LONGITUDINAL ORIENTATION)

CVGRAPH 4.1 Hyperbolic Tangent Curve Printed at 1009:04 on 05-15-2000 Page I Coefficients of Curve 2 A: 5&09 B= 55.9 C= 84.19 TO = 17159 Equation is CNIN = A + B* 1tanh((T - TO)/C) I Upper Shelf Energy- 114 Fixed Temp. at 30 ft-lbs 125 Temp. at 50 ft-lbs 1593 Lower Shelf Energy: 2.19 Fixed Material: PLATE SA533B1 Heat Number. C6317-1 Orientation: LT Capsule V Total Fluence U)

I 0D z*

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Data Set(s) Plotted Plant- BVl. Cap-- V Material: PLATE SA533BI Ori LT Heat #CM317-1 Charpy V-Notch Data Temperature Input CVN Energy Computed CVN Energy Differential 75 13 12.43 56 110 335 19.45 14.04 100 14.5 19.45 -415 150 44.5 44.06 .43 200 58 7627 -1827 250 M15 98.97 24.52 300 105.5 10&94 -3.44 350 113 112.4 59 stUMof RESIDUALS = 13.46 WCAP-15571-NP, Rev. 1 April 2008 C4

CAPSULE U (LONGITUDINAL ORIENTATION)

CVGRAPH 41 Hyperbolic Tangent Curve Printed at 10:9:0M4 on 05-15-20W:0 Page 1 Coefficients of Curve 3 A =53.59 B= 51.4 C = 101.44 TO 165.82 Equation is CVN = A + B* I tanh((T - 'T)/C) ]

Upper Shelf Energy: 105 Fixed Temp. at 30 ft-lbs 115.4 Temp. at 50 ft-lbs 158.7 Lower Shelf Energy. 219 Fixed Material" PLATE SA533BI Heat Number. C6317-1 Orientation: LT Capsule: U Total Fluence 300-250-I) 200-150F.

z 100-"

500 07

-300 -200 -100 0 100 200 300 400 5WO 600 Temperature in Degrees F Data Set(s) Plotted Plant BVl CapN U Material: PLATE SA533B1, Ori- iT Heat #: C6317-1 Charpy V-Notch Data Temperature Input CVN Energy Computed CVN Energy Differential 50 8 11.71 -3.71 78 25 17.66 7.33 100 20 2425 -425 150 53 45.64 7.35 200 58 7029 -1229 250 91 8857 242 300 111 9818 1281 400 99 103.99 -4.99 SUM of RESIDUALS = 4.67 WCAP-15571-NP, Rev. 1 April 2008 C-5

CAPSULE W (LONGITUDINAL ORIENTATION)

CVGRAPH 41 Hyperbolic Tangent Curve Printed at 10:09:04 on 05-15-2000 Page 1 Coefficients of Curve 4 A =58.09 B= 55.9 C= 7VA4 TO: 184.68 Equation is: CVN = A + B* [ tanh((T - T0)/C) I Upper Shelf Energy: 114 Fixed Temp. at 30 ft-lbs 145 Temp. at 50 ft-lbs 1742 Lower Shelf Energy. 2-19 Fixed Material: PLATE SA533B1 Heat Number. (C317-1 Orientation: LT Capsule: W Total Fluence I)

Q)

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Data Set(s) Plotted Plant- BVI Cap- W Material: PLATE SA533BI Oriz LT Heat jkC6317-1 Charpy V-Notch Data Temperature Input CVN Energy Computed CVN Energy Differential 100 15 11.81 3.18 150 33 3297 .02 175 50 5058 -58 200 69 69.86 300 115 109.69 5.3 400 112 113.72 -1.72 SUM of RESIDUALS 533 WCAP-15571-NP, Rev. I April 2008 C-6

CAPSULE Y (LONGITUDINAL ORIENTATION)

CYGRAPH 4.1 Hyperbolic Tangent Curve Printed at 100904 on 05-15-2000 Page 1 Coefficients of Curve 5 A 56.09 B= 53B C= 97.76 TO 190.4.

Equation is CVN = A+ B I I tanh((T - TO)/C) I Upper Shelf Energy- 110 Fixed Temp. at 30 ft-lbs 138.7 Temp. at 50 ft-Ibs: 1792 Lower Shelf Energy- 239 Fixed Material: PLATE SA533BI Heat Number: 06317-1 Orientation: LT Capsule: Y Total Fluence:

3007 U) 2W0 I

2090 4__ 150 100~ ____ -

V V

~1= _________ - - - - 1-4.-

0 1 II i i i i

-300 -200 -100 0 100 200 300 4W0 500 600 Temperature in Degrees F Data Set(s) Plotted Plant BVI Cap- Y Material: PLATE SA533B1 Ori- LT Healt #: C6317-1 Charpy V-Notch Data Temperature Input CVN Energy Computed CVN Energy Differential 100 10 16.85 -6.85 110 16 19.64 -3.64 125 38 24.6 13.39 150 43 35.01 798 200 44 6137 -17.37 250 91 85.41 W58 Data continued on next page WCAP-15571-NP, Rev. 1 April 2008 C-7

CAPSULE Y (LONGITUDINAL ORIENTATION)

Page 2 Material: PLATE SA533B1 Heat Number C6317-1 Orientation: LT Capsule: Y Total lluence Charpy V-Notch Data (Continued)

Temperature Input CYN Energy Computed CVN Energy Differential 300 106 99.64 6.35 375 113 10758 5.41 SUM of RESIDUALS = 10.87 WCAP-15571-NP, Rev. 1 April 2008 C-8

UNIRRADIATED (LONTIDINAL ORIENTATION)

CVGRAPH 41 Hyperbolic Tangent Curve Printed at l0i-193 on 05-15-2000 Page 1 Coefficients of Curve I A= 43.88 S B= 42B8 C= 7027 TO= 4031 Equation is L. = A + B [ tanh((T - TO)/C) ]

Upper Shelf LE- 86.77 Temperature at 1K 35: 255 Lower Shelf LE& I Fixed Material: PLATE SA533BI Heat Number: C6317-1 Orientation: LT Capsule: UNIRR Total Fluence

-I)

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Data Setqs) Plotted Plant BVI Cap: UNIRR Material: PLATE SA533BI OrL LT Heat t. C6317-1 Charpy V-Notch Data Temperaature Input Lateral Expansion. Computed L.. Differential

-50 3 7.09 -4.09

-50 7.09 -6.09

-50 7.09 3.9 10 33 26.45 6.54 10 37 2&45 1054 10 16 26.45 -10.45 60 55 5559 -.59 60 65 5559 9.4 60 41 55.59 -14.59 Data continued on next page '*

WCAP-15571-NP, Rev. 1 April 2008 C-9

UNIRRADIATED (LONTIDINAL ORIENTATION)

Page 2 Material: PLATE SA533BI Heat Number. C6317-1 Orientation: LT Capsule: UNIRR Total Fluence:

Charpy V-Notch Data (Continued)

Temperature Input Lateral Expansion Computed LR Differential 100 75 73.51 1.48 100 75 73.51 1.48 100 74 7351 .48 210 87 86.09 .9 210 87 86.09 .9 210 90 86.09 39 300 87 86.72 27 300 85 86.72 -1.72 300 81 K.72 -5.72 SUM of RESIDUALS = -3.44 WCAP-15571-NP, Rev. 1 April 2008 C-10

CAPSULE V (LONGITUDINAL ORIENTATION)

CVGRAPH 41 Hyperbolic Tangent Curve Printed at 1017:23 on 05-15-2000 Page 1 Coefficients of Curve 2 A= 43.84 S B= 42.B4 C= 95.33 TO = 167.87 Equation is LKE A + B

  • tanh((T - TO)/C) ]

Upper Shelf L&. 8669 Temperature at LE. 35: 1479 Lower Shelf LE- 1 Fixed Material- PLATI SA533BI Heat Number C6317-1 Orientation LT Capsule: V Total Fluence:

(12

.1 Ce G.)

Ce

-:1

-30O -200 -100 0 100 200 300 400 500 600 Temperature in D egrees F Data Set(s) Plotted Plank BVI Cap: V Materiah PLATE SA533B1 C3r" LT Heat f. C6317-1 Charpy V-Notch Data Temperature Input Lateral Expansion Coi uputed LK Differential 75 125 11.68 B1 100 205 17.62 287 100 15 17. -2.62 150 38 35.9 209 200 51 57.76 -6.76 250 825 73.71 8.78 300 80 81.65 -465 350 83 84.85 -LB5 SUM of RESIDUA LS = 1.65 WCAP-15571-NP, Rev. 1 April 2008 C-l1

CAPSULE U (LONGITUDINAL ORIENTATION)

CVGRAPH 41 Hyperbolic Tangent Curve Printed at 10:1723 on 05-15-20M0 Page 1 Coefficients of Curve 3 E A= 40.39 B= 39.39 C= 111.02 TO 167.57 Equation is LFK = A + B* [ tanh((T - TO)/C) ]

Upper Shelf LF, 79.79 Temperature at LE 35: 152,2 Lower Shelf LE-, I Fixed Material: PLATE SA533BI Heat Number. C317-1 Orientation: LT Capsule: U Total Fluence co.

F-)4

-300 -200 -100 1 0 100 ' 200 300 400 500 600 Temperature in Degrees F Data Set(s) Plotted Plant BVI Cap- U Material: PLATE SA533BI Ori4 LT Heat t C6317-1 Charpy V-Notch Data Temperature Input Lateral Expansion Computed L. Differential 50 8 9.45 -1.45 78 19 14DB 4.91 100 17.5 1&99 -1.49 150 37.5 3421 328 200 40.5 5158 -1108 250 725 6524 725 300 775 7315 4.34 400 73.59 78.61 -5.01 SUM of RESIDUALS = .74 WCAP-15571-NP, Rev. 1 April 2008 C-12

CAPSULE W (LONGITUDINAL ORIENTATION)

CVGRAPH 41 Hyperbolic Tangent Curve Printed at 10,17:23 on 05-15-2000 Page I Coefficients of Curve 4 A: 42.6 B 41.36 C =85.53 017929D Equation is LE = A + B [ tanh((T - TO)/C) ]

Upper Shelf LE- 83.72 Temperature at LE. 35: 163.9 Lower Shelf LEz 1 Fixed Material: PLATE SA533BI Heat Number. C6317-1 Orientation: LT Capsule: W Total Fluence:

U)

°--4

.,.4

-300 -200 ., -100 0 100 200 300 400 500 600 Temperature in Diegrees F Data Set(s) Plotted Plant BVI Cap- W Material: PLATE SA533B ( ri-: LT Heat (C6317-1 Charpy V-Notch Data Tempera ture Input lateral Expansion CoDrputed LF. Differential 100 14 1Z19 1.6 150 30 28.72 127 175 37 4028 -328 200 53 5K18 .81 300 82 79.08 40 81 8325 -225 SUM of RESIDUALS = 126 WCAP-15571-NP, Rev. 1 April 2008 C-13

CAPSULE Y (LONGITUDINAL ORIENTATION)

CVGRAPH 41 Hyperbolic Tangent Curve Printed at 10.17:23 on 05-15-2000 Page I Coefficients of Curve 5 A= 42.06 B= 4L06 C= 99.48 TB= 20W.8 Equation is LR = A + B* I tanh((T - TO)/C) I Upper Shelf LE- 8312 Temperature at LK 35: 191B Lower Shelf LF& 1 Fixed Material PLATE SA533BI Heat Number C6317-1 Orientation: LT Capsule: Y Total Fluence 200F-- -- a-150-100-50X, n- ---- - --

0

-300 -200 -100 0 100 200 300 400 500 60O Temperature in Degrees F Data Set(s) Plotted Plant BVI Cap- Y Material PLATE SA533BI Ori: LT Heat . C6317-1 Charpy V-Notch Data Temperature Input lateral Expansion Computed LK Differential 100 5 927 -427 110 10 10.89 -B9 20 13.83 616 150 26 2024 5.75 200 28 38.4 -10.4 250 63 512 407 Data continued on next page WCAP-15571-NP, Rev. 1 April 2008 C-14

CAPSULE Y (LONGITUDINAL ORIENTATION)

Page 2 Material: PLATE SA533BI Heat Number: C6317-1 Orientation: LT Capsule: Y Total Fluence:

Charpy V-Notch Data (Continued)

Temperature Input Lateral Expansion Computed LK Differential 300 74 7L79 22 375 78 80.1 -2.31 SUM of RESIDUALS = III WCAP-15571-NP, Rev. I April 2008 C-15

UNIRRADIATED (LONGITUDINAL ORIENTATION)

CYGRAPH 41 Hyperbolic Tangent Curve Printed at 10 32 on 05-15-2000 Page 1 Coefficients of Curve I A= 50 S B: 50 C = 92.73 T0 -757.18 Equation it Shear/. = A + B I tanh((T - TO)/C) I Temperature at 5Wz. Shear 571 Material: PLATE SA533BI Heat Number. (C6317-I Orientation: LT Capsule UNIRR Total Fluence:

Ce O0 C)

Q)

Q-

-300 -200 -100 0 100 200 300 400 500 6w0 Temperature in Degrees F Data Set(s) Plotted Plant- BVI Cap: UNIRR MateriaL PLATE SA533BI Ori: LT Hea t #: C6317-1

  • Charpy V-Notch Data Tempera ture Input Percent Shear Computed Percent Shear Differential

-50 10 9.01 98

-50 10 901

-50 10 9.01 .08 10 25 2654 -154 10 2654 8.45 10 30 2654 3W45 60 40 51.51 -1151 60 45 51.51 -6.51 60 50 5151 -151 I Data continued on next page -

WCAP-15571-NP, Rev. 1 April 2008 C-16

UNIRRADIATED (LONGITUDINAL ORIENTATION)

Page 2 Material: PLATE SA533BI Heat Number. C6317-1 Orientati on: LT Capsule UNIRR Total Fluence Charpy V-Notch Data (Continued)

Temperature Input Percent Shear Computed Percent Shear Differential 100 75 7157 3.42 100 75 7157 3.42 100 75 7157 3a42 210 100 96.42 3.57 210 100 96.42 357 210 100 96.42 357 300 100 99.47 52 300 100 99.47 52 300 100 99.47 52 SI' Mof RESIDUAL' 16.34 WCAP-15571-NP, Rev. 1 April 2008 C-17

CAPSULE V (LONGITUDINAL ORIENTATION)

CVGRAPH 41 Hyperbolic Tangent Curve Printed at 10.22-32 on 05-15-2000 Page I Coefficients of Curve 2 A= 50 S B =50 C= 80.97 TO = 173.43 Equation is Shear/= A + B

  • I tanh((T - TO)/C) I Temperature at 5/. Shear. 1734 Material: PLATE SA533BI Heat Number C6317-1 Orientation: LT Capsule V Total Fluence 4-)

0I

-300 -200 -100 0 100 200 300 400 500. 600 Temperature in Degrees F Data Set(s) Plotted Plant BVI Cap: V Material PLATE SA533BI Orin LT Heat (C617-1 Charpy V-Notch Data Tempera ture Input Percent Shear Computed Percent Shear Differential 75 11 8.08 a.91 100 14 14.01 -.01 100 22 14.01 78 150 33 35.91 -2.91 200 56 65.3 --9m 250 100 8 13.11 300 100 95.79 42 350 100 9&73 126 SUM of RESIDUAIS = 16.7 WCAP-15571-NP, Rev. 1 April 2008 C-18

CAPSULE U (LONGITUDINAL ORIENTATION)

CVGRAPH 41 Hyperbolic Tangent Curve Printed at 10-22M on 05-15-2000 Page 1 Coefficients of Curve 3 A = 50 B= 50 C : 106.01 t0 = 177.3 Equation is Shear/. = A + B

  • I tanh((T - TO)/C)

Temperature at 50,/. Shear: 177.3 Material: PLATE SA533BI Heat Number C6317-I Orjentation: LT Capsule: U Total Fluence:

0 4-)

09 0.

-I-)

09

-300 -200 -100 0 100 200 300 400 500 600 Temperature in. Degrees F Data Set(s) Plotted Plant- BVI Cap- U Material: PLATE SA533BI OrL LT Heat ý C6317-1 Charpy V-Notch Data Temperature Input Percent Shear Computed Percent Shear Differential 50 7 83 -13 78 15 1331 If.8 100 21 086 213 150 38 37.39 .

200 54 60.54 -6.54 250 87 79.76 723 ,

300 89 91 -2 400 99 9852 .47 SUM of RESIDUALS = 223 WCAP-15571-NP, Rev. 1 April 2008 C-19

CAPSULE W (LONGITUDINAL ORIENTATION)

CVGRAPH 4.1 Hyperbolic Tangent Curve Printed at 1O'f2a on 05-15-20 Page 1 Coefficients of Curve 4 A=50 B 50 C 6=56 TO = 176.36 Equation is Shear/= A+ B* [ tanh((T - T0)/C) I Temperature at 507 Shear 1763 Material: PLATE SA533B1 Heat Number. (C317-1 Orientation: LT Capsule W Total Fluence:

uU 6(F

-30 o -200 -100 0 100 200 300 400 5W0 600 Temperature in Degrees F Data Set(s) Plotted Plant BVl Cap- W Material: PLATE SA533BI Ori: LT Heat ý C6317-1 Charpy V-Notch Data Temperature Input Percent Shear Computed Percent Shear Differential 100 150 15 9.72 527 30 3166 -1.66 175 45 49 200 -4 300 70 6658 3.41 400 100 979.5 2.64 100 99.85 14 SUM of RESIDUALS= 5,8 WCAP-15571-NP, Rev. 1 April2008 C-20

CAPSULE Y (LONGITUDINAL ORIENTATION)

CVGRAPH 41 Hyperbolic Tangent Curve Printed at 1.22:32 on 05-15-2000 Page 1 Coefficients of Curve 5 A=50 B=50 C92.13 TO=2D6.31 Equation is Shear'. = A + B* I tanh((T - To)/C) ]

Temperature at 50/. Shear. 2063 Material: PLATE SA533B1 Heat Number. C6317-1 Orientation: LT Capsule Y Total Fluence C-)

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Data Set(s) Plotted Plant: BVI Cap- Y Material: PLATE SA533BI Ori: LT Het k 06317-1 Charpy V-Notch Data Temperature Input Percent Shear Computed F'ercent Shear Differential 100 10 9.04 .95 110 15 11 399 125 20 1,4.61 5.38 150 25 22,75 224 200 35 46.57 -11.57 250 75 7a07 2.92 Data continued on next page WCAP-15571-NP, Rev. 1 April 2008 C-21

CAPSULE Y (LONGITUDINAL -ORIENTATION)

Page 2 Material: PLATE SA533BI Heat Number. C6317-I Orientati on: LT Capsule Y Total Fluence.

Charpy V-Notch Data (Continued)

Temperature Input Percent Shear Computed Percent Shear Differential 300 95 .88.42 657 375 1t0 97.49 Sui of RESIDUALS = 13 WCAP-15571-NP, Rev. 1 April 2008 C-22

UNIRRADIATED (TRANSVERSE ORIENTATION)

CVGRAPH 4.1 Hyperbolic Tangent Curve Printed at 1029.45 on 05-15-2000 Page I Coefficients of Curve 1 A z=4159 B = 39.4 C=845 T = 4359 Equation is CYN = A + B * [ tanh((T - T0)/C) I Upper Shelf Energy- 81Fixed Temp. at 30 ft-lbs 17.9 Temp. at 50 ft-lbs 61.8 Lower Shelf Energy: 219 Fixed Material: PLATE SA533BI Heat Number. C6317-1 Orieintation: TL Capsule UNIRR Total Fluence 1J0 Lz

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Data Set(s) Plotted Plant BVI Cap: UNIRR Material PLATE SA533BI Ori: TL Heat #. C6317-1 Charpy V-Notch Data Temperaature. Input CVN Energy Computed CVN Energy Differential

-100 5 4.74 25

-100 45 4.74 -24

-100 4 4.74 -.74

-100 25 4.74 -224

-50 11 995 1.04

-50 I1 9.95 104

-50 135 9.95 354

-50 6 9.95 -3.95

-50 11 9.95 1.04

    • Data continued on next page

UNIRRADIATED (TRANSVERSE ORIENTATION)

Page 2 Material PLATE SA533BI Heat Number C6317-1 Orientation: 'TL Capsule: UNIRR Total Fluence Charpy V-Notch Data (Continued)

Temperature Input CYN Energy Computed CVN Energy Differential 10 20 26.71 -6.71 10 285 26.71 1.78 10 33 26.71 628 10 40 26.71 1328 10 285 26.71 1.78 40 34 39.92 -5.92 40 36 39.92 -3.92 40 31 39.92 -8.92 40 33 39.92 -6.92 40 465 3992 6.57 40 41 3992 1.07 110 64 67.44 -3.44 110 77 67.44 9.55 110 63.5 67.44 -3.94 110 65 67.44 -2.44 160 79.5 7628 321 160 765 7628 21 160 76 7628 -28 160 82,5 7628 621 160 82 7628 5.71 210 82 79.49 2.5 210 83 79.49 35 210 82.5 79.49 3 210 75 79.49 -4.49 SUM of RES IDUALS = 17.4 WCAP-15571-NP, Rev. 1 April 2008 C-24

CAPSULE V (TRANSVERSE ORIENTATION)

CVGRAPH 41 Hyperbolic Tangent Curve Printed at 10'29.45 on 05-15-2000 Page 1 Coefficients of Curve 2 A = 38.59 B = 36.4 C = 89.17 TO = 17724 Equation is: CVN = A + B

  • tanh((T - TO)/C) ]

Upper Shelf Energy. 75 Fixed Temp. at 30 ft-lbs 155.7 Temp. at 50 ft-lbs 206. Lower Shelf Energy: 2J9 Fixed Material: PLATE SA533B1 Heat Number. C6317-1 Orientation: TL Capsule: V Total Fluence:

3007 Oj 250-

[.* 200 ..

ý 150-z 1 00

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Data Set(s) Plotted Plant- BV1 Cap- V Material:. PLATE SA533B1 Ori: TL Heat 6:3*l7-1 Charpy V-Notch Data Temperature Input CYN Energy Computed CVN Energy Differential 0 2.5 354 -1.04 75 165 8.87 7.62 100 16'. 1313 150 28.5 27.81 J58 150 30 27.81 218 200 355 47.9 -169 200 42 47.69 -a69 210 43 51.39

-Data continued on next page WCAP-15571-NP, Rev. I April 2008 C-25

CAPSULE V (TRANSVERSE ORIENTATION)

Page 2 Material: PLATE SA533B1 Heat Number. C6317-1 Orientation: TL Capsule: V Total Fluence Charpy V-Notch Data (Continued)

Temperature Input CVN Energy Computed CVN Energy Differential 66 54.82. IL17 77 63.09 13.9 300 755 70.63 4.86 350 735 73.51 -.01 SUM of RESIDUALS = 15.96 WCAP-15571-NP, Rev. 1 April 2008 C-26

CAPSULE. U (TRANSVERSE ORIENTATION)

CVGRAPH 4.1 Hyperbolic Tangent Curve Printed at 1029-45 on 05-15-2000 Page I Coefficients of Curve 3 A = 40.09 B = 37.9 C = 117.44 TO = 181.87 I

Equation is CVN = A + B* I tanh((T - TO)/C) I Upper Shelf Energy. 78 Fixed Temp. at 30 ft-lbs. 149B Temp. at 50 ft-lbs 2132 Lower Shelf Energy- 2.19 Fixed Material: PLATE SA533B1 - Heat Number. C6317-1 ' Orientation: TL Capsule: U Total Fluence:

M)

-300 -200 -100 0 100 200 3MO 400 500 600 Temperature in Degrees F Data Set(s) Plotted Plant- BVI Cap: U Material: PLATE SA533BI On: TL Heat #-:C6317-1 Charpy V-Notch Data Temperature Input CVN' Energy Computed CVN Energy Differential 50 11 9.45 154 78 20 1324 6.75 100 16 1726 -126 150 28 30.05 150 32 30.05 194 175 34 37.88 -3.8 200 42 45.9 -3.9 250 65 59.91 5.08 Data continued on next page WCAP-15571-NP, Rev. 1 April 2008 C-27

CAPSULE U (TRANSVERSE ORIENTATION)

Page 2 Material: PLATE SA533B1I Heat Number C6317-1 Orientation: Tb Capsule U Total Fluence Charpy V-Notch Data (Continued)

Temperature Input CVN Energy Computed CVN Energy Differential 300 69 69J15 -.05 350 77 73.9 3.09 400 76 7619 -.19 450 80 7721 SUM of REMIDUALS = 9.84 April2008 C-28

CAPSULE W (TRANSVERSE ORIENTATION)

CVGRAPH 4.1 Hyperbolic Tangent Curve Printed at 1M29.45 on 05-15-2000 Page 1 Coefficients of Curve 4 A 30.6 B =28.39 C = 4628 TO= 198.92 Equation is CVN A + B* tanh((T - TO)/C) I Upper Shelf Energy: 59 Fixed Temp. at 30 ft-lbs 197.9 Temp. at 50 ft-lbs: 2375 Lower Shelf Energy: 22 Fixed Material: PLATE SA533BI Heat Number. C6317-1 Orientation: TL Capsule: W Total Fluence:

CI)

F-c a.)

CD

-300 -200 -100 0 100 200 3o 400 500 600 Temperature in Degrees F Data Set(s) Plotted Plant- BVI Cap: iW Material: PLATE SA33B 0riO: TL Heat -:C6317-1 Charpy V-Notch Data Temperature Input CVN Energy Computed CVN Energy Differential 76 19 a47 1652 125 15 4.43 10.56 175 18 17.1 180 18 1959 -1.59 200 29 3125 -225 200 25 3125 -625 210 40 3726 Z73

  • ***Data continued on next page WCAP-15571-NP, Rev. 1 April 2008 C-29

CAPSULE W (TRANSVERSE ORIENTATION)

Page 2 Material: PLATE SA533B1 Heat Number. C6317-1 Orientation: TL Capsule W Total Fluence:

Charpy V-Notch Data (Continued)

Temperature Input CVN Energy Computed CYN Energy Differential 50 45.09 4.9 250 55 53Z 1.63 300 59 5828 .71 400 62 58.99 3 450 55 58.99 -399 SUM of RESDUALS = 26.85 WCAP-15571-NP, Rev. 1 April 2008 C-30

CAPSULE Y (TRANSVERSE ORIENTATION)

CVGRAPH 4i Hyperbolic Tangent Curve Printed at 1029:45 on 05-15-2000 Page 1 Coefficients of Curve 5 A 36.59 B = 34.4 C= 91.85 TO = 202.73 Equation is: CVN = A + B [ tanh((T - TO)/C)]

Upper Shelf Energy: 71 Fixed Temp. at 30 ft-lb 184.8 Temp. at 50 ft-lbs 2405 Lower Shelf Energy: 219 Fixed Materiah PLATE SA533BI Heat Number: C6317-1 Orientation: TL Capsule: Y Total Fluence C,)

a) z C)

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Data Set(s) Plotted PlanL BVI Cap- Y* Material: PLATE SA533BI Ori. TL Heat #: C6317-1 Charpy V-Notch Data Temperature Input C1N Energy Computed CVN Energy Differential 100 12 8M8 316 150 25 18.76 623 180 28 28.25 -225 195 34 33.71 28 200 31 3557 -457 225 37 44.77 -7.77 Data continued on next page WCAP-15571-NP, Rev. 1 April 2008 C-31

CAPSULE Y (TRANSVERSE ORIENTATION)

Page 2 Material: PLATE SA533BI Heat Number. C6317-1 Orientation: TL Capsule: Y Total Fluence:

Charpy V-Notch Data (Continued)

Temperature Input CVN Energy Computed CYN Energy Differential 235 51 4821 2-78 250 58 5Z88 5.11 275 59 5918 -.16 300 67 636I 328 350 70 68a 1.67 375 72 69.42 2,57 SUM of RESIDUAI.S = 10.43 WCAP-15571-NP, Rev. I April 2008 C-32

UNIRRADIATED (TRANSVERSE ORIENTATION)

CVGRAPH 41 Hyperbolic Tangent Curve Printed at 13:3519 on 07-07-2000 Page 1 Coefficients of Curve 2 A= 35.09 B= 34.09 C= 82.52 TO= 44.06 Equation is LE = A + B II tanh((T - TO)/C) I Upper Shelf LE- 6919 Temperature at LE 35: 43.8 LOwer Shelf LE- I Fixed Material: PLATE SA533BI Heat Number. C6317-1 Orientation: TL Capsule: UNIRR Total Fluence:

U')

04)

-300 -200 -100 0 100 200 3 400 500 600 Temperature in Degrees F Data Set(s) Plotted Plant- BVI Cap: UNIRR Material PLATE SA533BI Ori TL Heat f C317-1 Charpy V-Notch Data Tempera ture Input lateral Expansion Computed L2 Differential

-100 2 3.01 -1.01

-100 4 3.01 98

-100 0 3.01 -3.01

-100 0 3.01

-50 5 723 -233

-50 2 723 -523

-1.33

-50 6 7.33

-50 7 733 -23

- Data continued on next page WCAP-15571-NP, Rev. 1 April 2008 C-33

UNIRRADIATED (TRANSVERSE ORIENTATION)

Page 2 Material PLATE SA533BI Heat Number. Cf6317-1 Orientation: TL Capsule: UNIRR Total Fluence Charpy V-Notch Data (Continued)

Temperature Input Lateral Expansion Computed LB. Differential

-50 7 7.33 -.33 10 28 21.77 622 10 31 2L77 922 10 26 21.77 422 10 19 2177 -?-77 10 23 21.77 122 40 30 33.42 -3.42 40 37 33.42 3.57 40 33 33.42 -.42 40 32 33.42 -1.42 40 29 33.42 -442 40 27 342 -6A2 110 63 57.72 527 110 54 57.72 -372 110 55 57.72 -2.72 110 60 57.72 227 160 67 65,2 1.67 160 67 65.32 1.67 160 69 65.32 3.67 160 60 6532 -5.32 160 67 65.32 1.67

.210 66 67.9 -1.99 210 65 67.99 99 210 69 679 210 70 67.99 2 SUM of RESIDUALS -7.62 WCAP-15571-NP, Rev. 1 April 2008 C-34

CAPSULE V (TRANSVERSE ORIENTATION)

CGRAPH 41 Hyperbolic Tangent Curve Printed at 1054:39 on 05-15-2000 Page 1 Coefficients of Curve 2 A 3113 B =3013 Cz 84.6 TO = 164.64 Equation is LE = A + B I tanh((T - 10)/C) I Upper Shelf LE- 6127 Temperature at LE 35: 175.5 Lo*wer Shelf LE. I Fixed Material: PLATE SA533B1 Heat Number C6317-1 Orientation: TL Capsule: V Total Fluence CI)

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Data Set(s) Plotted Plant BVI Cap- V Material: PLATE SA533B1 OrL TL Heat #-:C6317-1 Charpy V-Notch Data Tempe rature Input Lateral Expansion Computed LE Differential 0 1 22 -12

.75 8 7.46 53 100 7 11.74 -4.74 150 30.5 256 4.53 150 30 25.96 4.03 200 36 43.04 -7.04 200 42 43.04 210 40 45.9 -5.9 Data continued on next page WCAP-15571-NP, Rev. 1 April 2008 C-35

CAPSULE V (TRANSVERSE ORIENTATION)

Page 2 Material: PLATE SA53313I Heat Number. C6317-1 Orientation: TL Capsule: V Total Fluence:

Charpy V-Notch Data (Continued)

Temperature Input lateral Expansion Computed Lk Differential 22D 54 48&44 5.55 250 59.5 54.19 5.3 300 59.5 58.9 59 350 58 60 52 -Z52 SUM of RESIDUALS = -1.91 WCAP-15571-NP, Rev. 1 April 2008 C-36

CAPSULE U (TRANSVERSE ORIENTATION)

CVGRAPH 41 Hyperbolic Tangent Curve Printed at 1004:39 on 05-15-2000 Page I Coefficients of Curve 3 A= 35.78 S 1B=34.78 C =151.04 TD = 193.06 Equation is: LE = A + B

  • I tanh((T - TO)/C) I Upper Shelf LE: 70.57 Temperature at LE. 35: 189.6 Lower Shelf LK: I Fixed Material: PLATE SA533BI Heat Number. Ci317-1 Orientation: TL Capsule U Total Fluence:

200-U) 150-S 100-59-U

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Data Set(s) Plotted Plant BVI Cap: U Material: PLATE SA533BI Ori: TL Heat #:C6317-1 Charpy V-Notch Data Temperature Input Lateral Expansion Computed LK Differential 50 10.5 10.09 4 78 16.5 13.44 3.05 100 15 16.7 -1.7 150 25 2612 -1.12 150 V 2612 .7 175 30 31.64 -164 200 34 37.38 -338 250 57 4831 8.68

' Data continued on next page WCAP-15571-NP, Rev. 1 April 2008 C-37

CAPSULE U (TRANSVERSE ORIENTATION)

Page 2 Material PLATE SA533BI Heat Number C6317-1 Orientation: TL Capsule: U Total Fluence Charpy V-Notch Data (Continued)

Temperature Input Lateral Expansion Computed LK Differential 300 51 56.98 -5.98 350 645 62.83 166 400 66 66.35 -35 450 68.5 68.32 17 SUM of RESIDUALS = .65 WCAP-15571-NP, Rev. 1 April 2008 C-38

CAPSULE W (TRANSVERSE ORIENTATION)

CVGRAPH 4.1 Hyperbolic Tangent Curve Printed at 1054:39 on 05-15-2000 Page 1 Coefficients of Curve 4 A= 2864 B= 27.64 C= 10324 TO =19.42 Equation is: LEK = A + B

  • I tanh((T - TO)/C) I Upper Shelf LE 5629 Temperature at LE. 35: 214.5 Lower Shelf L& I Fixed Material: PLATE SA533BI Heat Number- C6317-1 Orientation: TL.

Capsule: y Total Fluence:

CI 4

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Data Set(s) Plotted Plant: BVI Cap-- W Material: PLATE SA533B Ori: T Heat #:C6317-1 Charpy V-Notch Data Temperature Input Lateral Expansion Computed LE. Differential 76 19 6.43 1256 125 15 1314 185 175 21 24.54 -354 180 21 2526 -4B6 200 24 312 -72 200 27 312 -42 210 36 33.82 2.17 Data continued on next page WCAP-15571-NP, Rev. 1 April 2008 C-39

CAPSULE W (TRANSVERSE ORIENTATION)

Page 2 Material: PLATE SA533BI Heat Number C6317-1 Orientation: TL Capsue W Total Fluence:

Charpy V-Notch Data (Continued)

Temperature Input Lateral Expansion Computed LK Differential 225 42 3757 4.42 250 54 43.03 10.96 300 50 5038 -38 400 53 5525 -2.35 450 54 55.93 -1.93 SUM of RESIDUALS = 7.5 WCAP-15571-NP, Rev. 1 April 2008 C-40

CAPSULE Y (TRANSVERSE ORIENTAITON)

CVGRAPH 41 Hyperbolic Tangent Curve Printed at 10:54:39 on 05-15-21)00 Page I.

Coefficients of Curve 5 A 3127 B 3027 C= 8J*8 TO = 22031 Equation is LE. = A + B tanh((T - TD)/C) I Upper Shelf LE- 6154 Temperature at LE. 35: 230.4 Lower Shelf LI, I Fixed Material: PLATE SA533B1 Heat Number C6317-1 Orientation: TL Capsule: Y Total Fluene:

20o- - -...

150-'

4-.)

1*-4 M

50-7 V_*

-- == ,1 = -,

U

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Data Set(s) Plotted Plant: BVI Cap: Y Material: PLATE SA533B1 OrL TL Heat #: C6317-1 Charpy V-Notch Data Temperature Input Lateral Expansion Computed LK Differential 100 5 4.04 150 15 1021 4.78 180 18 17.46 .53 195 20 222 -22 200 21 2a9l -291 225 29 33 -4

  • ' Data continued on next page -1 .

WCAP-15571-NP, Rev. 1 April 2008 C-41

CAPSULE Y (TRANSVERSE ORIENTAITON)

Page 2 Materi al: PLATE SA533BI Beat Number: C6317-I Ori entation: TL Capsule: Y Total Fluence:

Charpy V-Notch Data (Continued)

Temperature Input Lateral Expansion Computed LK Differential 235 37 36.64 .35 250 48 4L79 62 275 49 4894 .05 300 55 53.8 1.01 350 53 59.1 -61 375 64 6019 3.

SUM of RESIDUALS = 2.47 WCAP-15571-NP, Rev. I April 2008 C42

UNIRRADIATED (TRANSVERSE ORIENTATION)

CVGRAPH 4.1 Hyperbolic Tangent Curve Printed at 131.36 on D7-07-2000 Page 1 Coefficients of Curve 2 A=50 B=50 C = 8.02 TO =77,34 Equation is Shear'/. = A + B I tanh((T - TO)/C)

Temperature at 50z Shear 77.3 Material: PLATE SA533BI Heat Number C6317-1 Orientation: TL Capsule UNIRR Total Fluence 03

¢..)

0D

-300 -200 -100 0 100 200 30 4W0 500 600 Temperature in Degrees F Data Set(s) Plotted Plant BV1 Cap: UNIRR Material: PLATE SA533B1 Ori: TL Heat /C 6317-1 Charpy V-Notch Data Temperature Input Percent Shear Computed Percent Shear Differential

-I00 3 .174

-100 3 174 125

-100 3 1.74 125

-100 3 1.74 125

-50 5 524

-50 3 524 -24

-50 9 524 -224

-50 5 524 3.75

-24 Data continued on next page -

WCAP-15571-NP, Rev. I April 2008 C-43

UNIRRADIATED (TRANSVERSE ORIENTATION)

Page 2 Material: PLATE SA533BI Heat Number C6317-1 Orientation: TI Capsule: UNIRR Total Fluence:

Charpy V-Notch Data (Continued)

Temperature Input Percent Shear Computed Percent Shear Differential

--50 5 524 -24 10 27 17.79 92 10 29 17.79 112 10 21 17.79 32 10 18 17.79 2 10 23 17.79 52 40 28 29.97 -1.97 40 33 2997 3.02 40 33 2997 3.02 40 31 29.97 1.02 40 28 29.97 -1.97 40 27 29.97 -2.97 110 57 67.74 -10.74 110 51 67.74 -16.74 110 51 67.74 -16.74 110 53 67.74 -14.74 160 100 86.73 1326 160 100 8.73 1326 160 100 86.73 1326 160 100 86.73 1326 160 100 803 1326 210 100 4.67 210 100 95-32 4.67 210 100 9532 4.67 210 100 95% 4.67 Mof RESIDUALS = 60.98 WCAP-15571-NP, Rev. 1 April 2008 C-44

CAPSULE V (TRANSVERSE ORIENTATION)

CVGRAPH 41 Hyperbolic Tangent Curve Printed at 11-0315 on 05-15-2000 Page 1 Coefficients of Curve 2 A=50 B = 50 C = 56.81 TO = 202 Equation is: Shear/ = A + B* [ tanh((T - TO)/C)

Temperature at 50/. Shear: 202.8 Material: PLATE SA533BI Heat Number. C6317-1 Orientation: TL Capsule V Total Fluence:

.00-' - -*

80-0) 60-C.)

40-0 20-

.- t---_

U

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Data Set(s) Plotted Plant BVI Cap- V Material: PLATE SA533B1 Ori: TL Heat j C6317-1 Charpy V-Notch Data Temperature Input Percent Shear Computed Percent Shear Differential 0 I .07 .92 75 2 1.09 .9 100 14 26 1139 150 19 13.44 555 150 24 1344 10.55 200 40 47.45 -7.45 200 42 47.45 -5.45 210 45 5622 -1122 Data continued on next page -" -

WCAP-15571-NP, Rev. 1 April 2008 C-45

CAPSULE V (TRANSVERSE ORIENTATION)

Page 2 Material:*PLATE SA533B1 Heat Number. C6317-1 Orientati on: TL Capsule V Total Fluence Charpy V-Notch Data (Continued)

Temperature Input Percent Shear Computed Percent Shear Differential 220 72 6461 738 250 100 W99 16 300 100 96.82 31?

350 100 99.43 .56 SU] Mof RESIDUALS = 32.32 WCAP-15571-NP, Rev. 1 April 2008 C-46

CAPSULE U (TRANSVERSE ORIENTATION)

CVGRAPH 41 Hyperbolic Tangent Curve Printed at 11.03:15 on 05-15-2000 Page 1 Coefficients of Curve 3 S A= 50 B = 50 C:= 145U7 TO = 223.15 Equation is: Shear/ = A + B

  • I tanh((T - T0)/C) ]

Temperature at 50% Shear. 223.1 Material: PLATE SA533BI Heat Number. C6317-1 Orientation: TL Capsule: U Total Fluence:

100-80F 0

60-/

09 0.

40-20-tULIf .

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Data Set(s) Plotted Plant BVI Cap: U Material PLATE SA533BI OQri TL Heat #: C6317-I Charpy V-Notch Data Temperature Input Percent Shear Computed Percent Shear Differential 50 4 .853 -4.53 78 16 12Z03 3.96 100 21 15.61 538 150 25 26.84 -184 150 31 26.84 415 175 33 34.07 -1.07 200 45 4213 286 250 53 59.09 -6.09

    • Data continued on next page WCAP-15571-NP, Rev. 1 April 2008 C-47

CAPSULE U (T RANSVERSE ORIENTATION)

Page 2 Material: PLATE SA533B1 Heat Number: C6317-1 Orientati*on: TL Capsule: U Total Fluence:

Charpy V-Notch Data (Continued)

Temperature Input Percent Shear Computed Percent Shear Differential 300 59 7413 -15.13 350 100 85.04 14.5 400 100 91.85 a14 450 100 95.72 427 SlU Mof RESIDUALS = 15.06 WCAP-15571-NP, Rev. 1 April 2008 C-48

CAPSULE W (TRANSVERSE ORIENTATION)

CVGRAPH 4.1 Hyperbolic Tangent Curve Printed at 11.03:15 on 05-15-2000 Page 1 Coefficients of Curve 4 A 50 B =50 C= 7029 TO 217.5 Equation is: Shear/= A + B I tanh((T - TO)/C) I Temperature at W/. Shear 217.5 Material: PLATE SA533B1 " Heat Number. C6317-1 Orientation: TL Capsule W Total Fluence:

UV 16:

0.)

40-0 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F 2OO Data Set(s) Plotted Plant: BVI Cap- W Material: PLATE SA533BI )ri: TL Heat #: C6317-1 Charpy V-Notch Data Temperature Input Percent Shear Comput ed Percent Shear Differential 76 15 1.75 1324 15 6.71 2.01 175 25 22.9%

200 25 2559 -59 200 35 37.8 8 210 35 37.8 -. 8 45 44.68 .31 Data continued on next page

CAPSULE W (TRANSVERSE ORIENTATION)

Page 2 Material: PLATE SA533BI Heat Number. C6317-1 Orientation: TL Capsule: W Total Fluence Charpy V-Notch Data (Continued)

Temperature Input Percent Shear Computed Percent Shear Differential 50 5521 -531 250 75 71.6 3.39 300 100 9127 8.72 400 100 99.44 .55 450 100 99.86 .13 SUM of RESIDUALS = 25.16 WCAP-15571-NP, Rev. 1 April 2008 C-50

CAPSULE Y (TRANSVERSE ORIENTATION)

C1GRAPH 4.1 Hyperbolic Tangent Curve Printed at 11.03.15 on 05-15-2000 Page 1 Coefficients of Curve 5 A 50S B =50 C = 4655 TO = M265 Equation is Shear/. = A+ B

  • tanh((T - TO)/C)

Temperature at 50z Shear. 222.6 Material: PLATE SA533BI Heat Number. C6317-1 Orientation: TL Capsule Y Total Fluence:

4)

Q) a)4

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Data Set(s) Plotted Plant BV1 Cap- Y Material: PLATE SA533BI Ori- TL Heat fI C6317-1 Charpy V-Notch Data Temperature Input Percent Shear Computed Percent Shear Differential t00 10 51 9.48 150 15 422 10.77 180 20 13.79 '62 195 25 2325 1.64 200 25 27.42 -2,42 225 40 5251 -1251

'* Data continued on next page WCAP-15571-NP, Rev. 1 April 2008 C-S1

CAPSULE Y (TRANSVERSE ORIENTATION)

Page 2 Material: PLATE SA533B1 Heat Number. C317-1 Orientation: TL Capsule: Y Total Fluence:

Charpy V-Notch Data (Continued)

Temperature Input Percent Shear Computed Percent Shear Differenilial 235 60 62-95 -2.95 250 90 7639 13.6 275 95 90.45 454 300 95 9652 -1.52 350 100 99.8 .41 375 100 995 .14 SUM of RESIDUALS = 27.4 WCAP-15571-NP, Rev. 1 April 2008 C-52

UNIRRADIATED (WELD)

CVGRAPH 41 Hyperbolic Tangent Curve Printed at OM&28 on 05-16-2000 Page I Coefficients of Curve 1 A =57.09 B: 54.9 C= 5762 TO : -3X56 Equation is CVN = A + B I tanh((T - TO)/C) I Upper Shelf Energy: 112 Fixed Temp. at 30 ft-lbs -67.7 Temp. at 50 ft-lbs -44 Lower Shelf Energy: 2.19 Fixed Material: WELD Heat Number 305424 Crientation:

Capsule: UNIRR Total Fluence:.

300-

~ 2507

~20V

,.4 150-a)

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Data Set(s) Plotted Plant- BVI Cap-- UNIRR Material: WELD Ori: Heat 305424 Charpy V-Notch Data Tempera ture Input CVN Energy Computed CVN Energy Differential

-150 2 43 -2.3

-1.3

-150 2.5 43

-60 27 35.92 --M92

-60 26 35.92 -992

-60 37 3592 1.07

-25 77 67.97 9.02

-25 75 67.97 7.02 88 67.97 20.02 0 80 87.9 -7.9 Data continued on next page WCAP-15571-NP, Rev. 1 April 2008 C-53.

UNIRRADIATED (WELD)

Page 2 Mater ial: WELD Heat Number. 305424 Orientat ion:

Capsule: UNIRR Total Fluenc Charpy V-Notch Data (Continued)

Temperature Input CVN Energy Computed CYN Energy Differential 0 .88 87.9 .09 0 66.5 87.9 -21A 100 117.5 11104 R45 100 108.5 111.04 -254 100 100 111.04 -11.04 210 103.5 111.97 -8.47 210 Sn111.97 10.02 210 110 111.97 -1197 S1UMof RESDUALS -22,59 WCAP-15511-NP, Iev. 1 April 2008 C-54

CAPSULE V (WELD)

CVGRAPH 4.1 Hyperbolic Tangent Curve Printed at "{&58 on 05-16-2000 Page 1 Coefficients of Curve 2 A= 45.09 B= 42.9 C= 106.75 TID 13125 Equation is CVN = A + B

  • tanh((T - TO)/C) I Upper Shelf Energy 88 Fixed Temp. at 30 ft-lbs 91.9 Temp. at 50 ft-lbs: 143.4 Lower Shelf Energy: 2.19 Fixed Mater ial: WELD Heat Number. 305424 Orientation:

Capsule V Total Fluence:

3007 (F' 250 PC 7

4-)

~L4 200F 150 I00 ')

z F

U

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Data Set(s) Plotted Plant- BVI Cap: V Material: WELD OrL Heat #: 305424 Charpy V-Notch Data Temperature Input CVN Energy .Computed CVN Energy Differential 0 5 8.95 -395 75 29 2437 4.62 100 37 32.88 411 100 305 32238 -238 125 37 4259 150 525 5255 -05 150 53.5 5255 .94 200 71.5 69.45 204 Data continued on next page ,'

WCAP-15571-NP, Rev. 1 April 2008 C-55

CAPSULE V (WELD)

Page 2 Mater ial: WELD Heat Number. 305424 Orientat ion:

Capsule- V Total Fluence.

Charpy V-Notch Data (Continued)

Temperature Input CVN Energy Computed CVN Energy Differential 250 75 79.63 -4.63 300 90 8451 5.48 350 87 8659 .4 400 87.5 87.44 .05 SIJIM of RESIDUALS = 1.03 WCAP-15571-NP, Rev. 1 April 2008 C-56

CAPSULE U (WELD)

CVGRAPH 4.1 Hyperbolic Tangent Curve Printed at "0&288 on 05-16-200 Page 1 Coefficients of Curve 3 A = 42.59 B= 40.4 C= 123.9 TO = 13857 Equation is CVN = A + B I tanh((T - TO)/C) ]

Upper Shelf Energy: 83 Fixed Temp. at 30 ft-lbs 985 Temp. at 50 ft-lbs 1615 Lower Shelf Energy: 219 Fixed Material: WELD Heat Number. 305424 Orientation:

Capsule: U Total Fluence:

CI

.T.

0 z

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Data Set(s) Plotted Planlt BVI Cap: U Materialt WELD Ori: Heat t.305424 Charpy V-Notch Data Temperature Input CVN Energy Computed CVN Energy Differential 0 10 9.99 0 50 19 17.8 119 78 32 2428 7.71 78 28 2428 a71 100 30 30.41 -.41 150 34 4631 -1231 150 42 4631 -4.31 200 58 6113 -3.13 Data, continued on next page WCAP-1 5571-NP, Rev. 1 April 2008 C-57

CAPSULE U (WELD)

Page 2 Mater ail: WELD Heat Number 305424 Orientat ion:

Capsule: U Total Fluencm Charpy V-Notch Data (Continued)

Temperature Input CYN Energy Computed CVN Energy Differential 200 67 61.13 5.86 250 80 71.52 .47 300 80 77.44 2,55 400 06 81.82 417 SIJM of REIDUALS = 13.51 WCAP-15571-NP, Rev. 1 April 2008 C-58

CAPSULE .W (WELD)

CVGRAPH 4.1 Hyperbolic TangentCurve Printed at 032858 on 05-16-2000 Page 1 Coefficients of Curve 4 A 40.09 B= 37.9 C =99.08 TO= 147.07 Equation is CVN = A+ B* [ tanh((T - TO)/C),

Upper Shelf Energy: 78 Fixed Temp. at 30 ft-lbs: 120 Temp. at 50 ft-lbs 1735 Lower Shelf Energy: 219 Fixed Material: IYELD Heat Number 305424 Orientatioln Capsule: W Total Fluence:

I) 70 U

-300 -200 -100 0 100 200 300 4W0 50O 60O Temperature in Degrees F Data Set(s) Plotted Plant: BVI Cap- W Material: WELD Ori Heat /. 3054,24 Charpy V-Notch Data Temperature Input CVN Energy Computed CVN Energy Differential 25 15 8.14 6.85 76 Z, 1V78 1021 125 30 31.79 -1.79 125 24 31.79 -7.79 150 35 412 -622 150 47 4122 5.77 200 43 5&61 -15.61

        • Data continued on next page -*

WCAP-15571-NP, Rev. 1 April 2008 C-59 '

CAPSULE W (WELD)

Page 2 Mater ja]: WELD Heat Number. 305424 Orientat ion:

Capsule: WY Total Fluenee Charpy V-Notch Data (Continued)

Temperature Input CVN Energy Computed CVN Energy Differential 210 73 6138 11.61 250 80 69.56 10.43 300 83 74.69 8.3 400 (2 77.54 --5.54 StJMof ROSDUAIS =1624 WCAP-15571-NP, Rev. 1

'April 2008 C-60

CAPSULE Y (WELD)

CVGRAPH 4.1 Hyperbolic Tangent Curve Printed at 08M on 05-16-2000 Page 1 Coefficients of Curve 5 A 39.59 37.4 C = 104.9 T10 139.45 Equation ig CVN = A + B I tanh((T - TO)/C)

Upper Shelf Energy: 77 Fixed Temp. at 30 ft-lbs 111.9 Temp. at 50 ft-lbs 169.3 Lower Shelf Energy- 2.19 Fixed Material: WELD Heat Number. 305424 Orientation:

Capsule: Y. Total Fluence:

3007 U)3 250--

In P-4 209-19 4- 150-100-59-

-300 -200* -100 0 100 200 300 40W 50O 600 Temperature in Degrees F Data Set(s) Plotted Plant- BVI Cap: Y Material: WELD Ori: Heat . 305424 Charpy V-Notch Data Temperature. Input C-N Energy Computed CVN Energy Differential 0 16 7.07 89-13 136 -.66 50 100 24 2613 -2.13 I10 32 2934 2.65 115 32 31.02 37 38.01 -1.01 135 I. Data continued on next page --

WCAP-15571-NP, Rev. 1 April 2008 C-61

CAPSULE Y (WELD)

Page 2 Mater ial: 1YELD Heat Number 305424 Orientation:

Capsule: Y Total Fluence:

Charpy V-Notch Data (Continued)

Temperature Input CVN Energy Computed CVN Energy Differential 150 43 43.35 -.35 175 48 51M3 -383 200 50 591 -91 225 74 64.78 921 250 74 68.92 5N7 300 80 73.67 632 SUM of REIDUALS = 1&07 WCAP-15571-NP, Rev. 1 April 2008 C-62

UNIRRADIATED (WELD)

CVGRAPH 41 Hyperbolic Tangent Curve Printed at 082321 on 05-16-2000 Page 1 Coefficients of Curve I A 42.44 B= 4L44 C= 64.67 T0 = -37.03 Equation is LE = A + B

  • J tanh((T - TO)/C) ]

Upper Shelf LE- 83.89 Temperature at LR 35- -48.7' wer Shelf LE& I Fixed Material WtELD Heat Number. 305424 Orientation:

Capsule: UNIRR Total Fluence U-)

4-)

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Data Set(s) Plotted Plant BVI Cap. UNIRR MateriaL WELD OrL Heat 305424 Charpy V-Notch Data Tempera ture Input Lateral Expansion Computed LE Differential

-150 0 3.44 -3.44

-150 0 3A4 -3.44

-60 22 28.31 -631

-60 22 2831 -631

-60 28 2.&31 -.31

-25 58 50.06 7.93

-25 59 50.06 8.93

-25 68 50M 17.93 0 57 63B8 -6.8 Data continued on next page WCAP-1 5571-NP, Rev. 1 April 2008 C-63

UNIRRADIATED (WELD)

Page 2 Ma aterial: W1ELD Heat Number 305424 Orientation:

Capsule: UNIRR Total Fluence:

Charpy V-Notch Data (Continued)

Temperature Input Lateral Expansion Computed LK Differential 0 60 63B8 -3.88 0 47 63B8 -16M 100 88.5 8Z71 5.78 100 81 8S71 -1.71 100 78 8Z71 -4.71 210 82 83.85 -185 210 93 83B5 9.14 210 84 83.85 .14 SUM of RESIDUALS = -5.89 WCAP-15571-NP, Rev. I April 2008 C-64

CAPSULE V (WELD)

CVGRAPH 4.1 Hyperbolic. Tangent Curve Printed at 08:3821 on 05-16-2000 Page 1 Coefficients of Curve 2 A= 40B5 B 39.85 C= 985S TO 138.86 Equation is: 'LE.- A + B* [ tanh((T - T0)/C) I Upper Shelf LFE 80.7 Temperature at L. 35: 1242 Lower Shelf LL 1 Fixed Material: WELD Heat Number- 305424 Orientation:

Capsule: V Total Fluence 1

ct .500 50

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Data Set(s) Plotted Plant BVI Cap- V Material: WELD Oni: Heat 1.305424 Charpy V-Notch Data Temperature Input Lateral Expansion Computed LE. Differential 0 3 5.49 -Z49 75 20.5 1&12 2.37 100 28' 25.9 2,09 100 26 25.9 .09 125 32.5 3528 -Z.78 150 46.5 453 1.16 150 435 4533 -1.83 65 6282 2.17 200 Data continued on next page '***

WCAP-15571-NP, Rev. 1 April 2008 C-65

CAPSULE V (WELD)

Page 2 Ma aterial: WELD Heat Number. 305424 Orie rtation:

Capsule V Total Fluencx Charpy V-Notch Data (Continued)

Temperature Input Lateral Expansion - Computed L.K Differential 250 69.5 73.14 -a64 300 84 77.78 621 350 77 79.62 400 795 8031 -.81 SUM of RESIDUALS =-.08 WCAP-15571-NP, Rev. 1 April 2008 C-66

CAPSULE U (WELD)

CVGRAPH 41 Hyperbolic Tangent Curve Printed at 08:3821 on 05-16-2000 Page 1 Coefficients of Curve 3 A = 35.72 B = 34.72 C = 12116 TO =14625 Equation is LE. = A + B

  • I tanh((T - TO)/C) I Upper Shelf LE- 70,44 Temperature at LK 35: 143.7 Lower Shelf LE: I Fixed Material: WYELD Heat Number. 305424 Orientation:

Capsule: U Total Fluence CI)

',,=

Sm,

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Data Set(s) Plotted Plant BV1 Cap- U Material- WELD Ori: Heat . 305424 Charpy V-Notch Data Temperature Input Lateral Expansion Computed LE Differential 0 65 6.7 -2 50 115 12_77 -127 78 2Z5 17.99 45 78 21.5 17.99 35 100 24 23.07 .92 150 315 36.79 -529 150 34 36.79 -279 200 49 50.18 -1.18 Data continued on next page WCAP-15571-NP, Rev. 1 April 2008 C-67

CAPSULE U (WELD)

Page 2 Material: WELD Heat Number 305424 Ori entation:

Capsule: U Total Fluence Charpy V-Notch Data (Continued)

Temperature Input Lateral Expansion Computed LE Differential 200 47.5 50.18 68 250 7065 59.3 10.66 300 67 65.35 1.64 400 64 69.4 -5.4 SUM of RESIDUALS = 2.38 WCAP-15571-NP, Rev. 1 April 2008 C-68

CAPSULE W (WELD)

CVGRAPH 4.1 Hyperbolic Tangent Curve Printed at 08"3821 on 05-16-2000 Page 1 Coefficients of Curve 4 A= 3719 B= 36.19 C = 153.04 TO = 158.49 Equation is: LE = A + B * [ tanh((T - TO)/C) I Upper Shelf LE. 7328 Temperature at LK 35: 1492 Lower Shelf LE- 1 Fixed Material WELI) Heat Number. 305424 0Orientation:

Capsule: W Total Fluence:

C)

-300 -200 -100 0 100 200 300 400 5O 600 Temperature in Degrees F Data Set(s) Plotted Plant: BVl Capc W Material: WELD Ori- Heat I. 305424 Charpy V-Notch Data Temperature Input Lateral Expansion Computed IS Differential 25 14 11.76 223 76 27 19.37 7.62 125 27 29.39 -2.39 125 24 29.39 -5.39 150 30 35.18 -5.18 150 40 35.18 4.1 200 37 46.77 -9.77 Data continued on next page

  • WCAP-1 5571-NP, Rev. 1 April 2008 C-69

CAPSULE W (WELD)

Page 2 Ma aterial: Ea Heat Numbers 305424 Orientation:

Capsule: W Total Fluence Charpy V-Notch Data (Continued)

Temperature Input Lateral Expansion Computed LE. Differential 210 52 48.93 3.06 250 67 56.57 10.42 300 65 63.54 1.45 400 66 70.43 -4.43 SUM of RESIDUALS = 2.41 WCAP-15571-NP, Rev. 1 April 2008 C-70

CAPSULE Y (WELD)

CVGRAPH 4.1 Hyperbolic Tangent Curve Printed at 08:3821 on 05-16-2000 Page 1 Coefficients of Curve 5 A 3336 B= 3236 C= 104.04 TO = 16453 Equation is: LE. = A + B * [ tanh((T 7T0)/C)I Upper Shelf LE.: 65.72 Temperature at LE. 35: 169.8 lo wer Shelf LE. 1 Fixed Material: WI ELD Heat Number. 305424 Orientation:

Capsule: Y Total Fluence:

Y)

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Data Set(s) Plotted Plant: BVI Cap- Y Material: WELD Ori: Heat

  • 305424 Charpy V-Notch Data Temperature Input Lateral Expansion Computed LK. Differential 0 4 a.62 .37 50 4 7.44 -3.44 100 16 1552 .47 110 20 17.8 a19 115 20 19.02 .97 135 25 24.41 58 Data continued on next page ,

WCAP-15571-NP, Rev. 1 April 2008 C-71

CAPSULE Y (WELD)

.Page 2 Ma aterial: WELD Heat Number: 305424 Orie ntation:

Capsule: Y Total Fluenme Charpy V-Notch Data (Continued)

Temperature Input Lateral Expansion Computed Lt Differential 150 28 28B7 -.87 175 37 36 39 200 37 43.98 -6.98 225 57 50.3 6.69 55 5523 -23 300 60 6126 -126 SUM of RESIDUALS = -1.1 WCAP-15571-NP, Rev. 1 April 2008 C-72

UNIRRADIATED (WELD)

CVGRAPH 41 Hyperbolic Tangent Curve Printed at 08:415 on 05-16-2000 Page 1 Coefficients of Curve '1 I A=50 B =50 C = IV7.74 TO = -572 I Equation is: Shear. = A+ B

  • tanh((T - TO)/C) I Temperature at 50z Shear. -572 Material: WELD Heat Number. 305424 Or:ientation:

Capsule: UNIRR Total Fluence 015F F-06 60 3-.

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Data Set(s) Plotted Plant BVI Cap: UNIRR Material: WELD Ori: Heat 305424 Charpy V-Notch Data Temperature Input Percent Shear Computed Percent Shear Differential

-150 25 18.95 6.04

-150 40 18.95 21.04

-60 35 48.9 -139

--60 30 48.9 -18.9

--6O 35 48.9 -13.9

-25 70 6234 7.65 70 6234 7.65 85 62.34 2265 0 75 71 3.99

-"Data continued on next. page WCAP-15571-NP, Rev. 1 April 2008 C.73

UNIRRADIATED (WELD)

Page 2 Mate rial: YELD Heat Number. 305424 Orientation:

Capsule: UNIRR Total Fluence:

Charpy V-Notch Data (Continued)

Temperature Input Percent Shear Computed Percent Shear Differential 0 75 71 3.99 0 50 71 -21 100 100 9213 7.6 100 99 9213 6.86 100 95 9223 2.86 210 100 98.49 1.5 210 100 98.49 1.5 210 100 98.49 1.5 SUM of RESIDUAL1 Z27.4 WCAP-15571-NP, Rev. 1 April 2008 C-74

CAPSULE V (WELD)

CVGRAPH 41 Hyperbolic Tangent Curve Printed at 08:41:45 on 05-16--200 Page I Coefficients of Curve 2 A 50 B 50 C.= 6421 TO 126T56 Equation is: Shear/. A + B* j tanh((T - TO)/C)

Temperature at 50/. Shear: iM.5 Material: WELD Heat Number 305424 Orientation:

Capsule: V Total Fluence:

co A3 0C 0D

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Data Set(s) PPlotted Plant BVI Cap- V Material: YEI ,D Ori. Heat 305424 Charpy V-Notch Data Temperature Input Percent Shear Computed Percent Shear Differential 0 1 1.9 75 15 16.71 -1.71 100 22 30.42 -8.42 100 26 30.42 -4.42 125 79. 40.78 3021 150 53 67.48 -14.48 150 58 67.48 -9.48 200 98 90.78 721 Data continued on next page WCAP-15571-NP, Rev. 1 April 2008 C-75

CAPSULE V (WELD)

Page 2 Material: 1fELD Heat Number. 305424 Orientation:

Capsule: V Total Fluence:

Charpy V-Notch Data (Continued)

Temperature Input Percent Shear Computed Percent Shear Differential 250 99 97.9 1.09 300 100 99.55 .44 350 100 99.9 .09 400 100 99.97 .02 SUM of RMSDUAIS = -.32 WCAP-15571-NP, Rev. 1 Apdl 2008 C-76

CAPSULE U (WELD)

CVGRAPH 4.1 Hyperbolic Tangent Curve Printed at 08:4145 on 05-16-200)

Page 1 Coefficients of Curve 3 I A=50 B= 50 " C = 145.42 TO = 138.81 I.

Equation is: Shear/. A+ B * [ tanh((T - TO)/C) I Temperature at 5%/. Shear. 136.8 Material: IfELD Heat Number. 305424 Orientation:

Capsule: U Total Fluence:

0)

(D 4-)

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Data Set(s) Plotted Plant BVI Cap- U MateriaL WELD OrL - Heat F 305424 Charpy V-Notch Data Temperature Input Percent Shear Computed Percent Shear Differential

-9.22 0 4 1322 50 22 2325 -125 78 35 30.61 4.18 78 35 30.81 4.18 100 38 37.6 39 150 47 5452 -752 150 66 5452 11.47 200 64 70.45 -6.45 Data continued on next page WCAP-15571-NP, Rev. 1 April 2008 C-77

CAPSULE U (WELD)

Page 2 Mate rial: WELD Heat Number. 305424 Orientation:

Capsule: U Total Fluence:

Charpy V-Notch Data (Continued)

Temperature Input Percent Shear Computed Percent Shear Differential 200 72 70.45 1.54 250 73 82,58 -958 300 100 90.41 9.58 400 100 97.39 2.6 SUM of RESIDUALS = -.04 WCAP-15571-NP, Rev. 1 April 2008 C-78

CAPSULE W (WELD)

CVGRAPH 4.1 Hyperbolic Tangent Curve Printed at 0M41:45 on 05-16-2000 Page 1 Coefficients of Curve 4 A =50 B=50 C=91.53 TD 166.4 Equation is Shear/ A + B * [ tanh((T - TO)/C) I Temperature at 5K'/. Shear. 166.4 Material: WELD Heat Number. 305424 Orientation:

Capsule: W Total Fluence:

Cn C)

-300 -200 -100 -0 100 200 300 400 00 600 Temperature in Degrees F Data Set(s) Plotted Plant BVI Cap. W Material: WELD Ori- Heat II:306424 Charpy V-Notch Data Tempen ature Input Percent Shear Computed Percent Shear Differential 25 10 425 5.64 76 25 12.18 12.81 35 28.8 6.19 20 28.8 --8.8 5

151 35 41.13 -6.13 151 45 4L13 3.86 20( 6756 -27*f 40

  • Data continued on next page WCAP-15571-NP, Rev. 1 April 2008 C-79

CAPSULE W (WELD)

Page 2 Mate rial: WELD Heat Number 305424 Orientation:

Capsule: 1 Total Fluence Charpy V-Notch Data (Continued)

Temperature Input Percent Shear Computed Percent Shear Differential 210 90 7216 17.83 250 100 8613 13B6 300 100 94B7 5.12 400 100 9939 .6 SUM of RESIDUAIS = 23.44 WCAP-15571-NP, Rev. 1 April 2008 C-80

CAPSULE Y (WELD)

CVGRAPH 4.1 Hyperbolic Tangent Curve Printed at 08:41:45 on 05-18-2000 Page 1 Coefficients of Curve 5 A 50 B'-50 C= 89.54 T= 130.37 Equation is Shear/ = A + B* [ tanh((T - 0)/C)

Temperature at 50z. Shear. 130.3 Material: WELD Heat Number 305424 Orientation:

Capsule: Y Total Fluence:

cIq 40

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Data Set(s) Plotted Plant- BVI Cap. Y Material: W'ELD Ori: Heat ' 305424 Charpy V-Notch Data Temperature Input Percent Shear Computed Percent Shear Differential 0 5 5.15 -.15 50 5 1424 -924 t0o 55 33.66 2133 110 35 38.81 81 115 40 41.5 -15 135 50 5258 -2.58 Data continued on next page WCAP-15571-NP, Rev. 1 April 2008 C-81

CAPSULE Y (WELD)

Page 2 Mateerial: WTELD Heat Number 305424 Orientation:

Capsule: Y Total Fluence:

Charpy V-Notch Data (Continued)

Temperature Input Percent Shear Computed Percent Shear Differential 150 50 60.78 -1078 175 75 73.04 1.95 200 80 BZ56 -2.56 225 95 8922 5.77 250 98 93.53 4.46 300 100 97.78 221 SUM cf RESIDUALS = 5.09 WCAP-15571-NP, Rev. 1 April 2008 C-82

UNIRRADIATED (HAZ)

CVGRAPH 4.1 Hyperbolic Tangent Curve Printed at 0&05:43 on 05-16-2000 Page 1 Coefficients of Curve I A=6509 B =62.9 C: 84.099 TO = -21.56 Equation is: CVN = A + B I tanh((T - TO)/C) I Upper Shelf Energy: 128 Fixed Temp. at 30 ft-lbs -74.5 Temp. at 50 ft-lbs: -42.1 LOwer Shelf Energy: 2.19 Fixed Material: HEAT AFFD ZONE Heat Numbers Orientation:

Capsule: UNIRR Total Fluence:

07-

0- -

z 07-

-300 -200 -100 0 100 200 300 400 500 60O

-5 Temperature in Degrees F Data Set(s) Plotted Plant- BV1 Cap: UNIRR Material: HEAT AFFD ZONE Ori: Heat k Charpy V-Notch Data ature Input CVN Energy Computed CVN Energy Differential 7 7.86 -.86

-154 22 45 7.86 -3.36

-154

-142 5 7.86 -2.86

-40 445 51.52 -7.02

-40 50 5152 -452 505 51.52 -1.02 0 85 80M8 411 0 75 8088 -5.88 0 102 80138 2L11 Data continued on next page WCAP-15571-NP, Rev. 1 April 2008 C-83

UNIRRADIATED (HAZ)

Page 2 Material: HEAT AFFD ZONE Heat Number. Orient ation:

Capsule- UNIRR Total Fluence:

Charpy V-Notch Data (Continued)

Temperature Input MCN Energy Computed CVN Knerj Differential 20 91 93.8 -2A8 20 90 93M8 -3S8 20 96 938 Z11 100 129 121.38 7.61 100 100 12L38 -21.38 100 III 121.38 -10.8 210 131.5 127.49 4 210 1385 127.49 11 210 114 127.49 -13.49 SUM of RESIDUALS =-24.59 WCAP-15571-NP, Rev. 1 April 2008 C-84

CAPSULE V (HAZ)

CVGRAPH 4.1 Hyperbolic Tangent Curve Printed at 08.05:43 on 05-16-2000 Page 1 Coefficients of Curve 2 A=55.59 B= 53.4 C= 16733 T:4217 Equation is: CVN = A + B

  • I tanh((T - TO)/C) I Upper Shelf Energy: 109 Fixed Temp. at 30 ft-lbs: -63.1 Temp. at 50 ft-lbfs -13.3 Lower Shelf Energy 2.19 Fixed Material: HEAT AFFD ZONE Heat Number. Orientation:

Capsule: V Total Fluence CI 250

~2OO

ý-4 150 Zo- 10 L)

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Data Set(s) Plotted Plant- BVI Cap: V Material: HEAT AFFD ZONE Ori: Heat Charpy V-Notch Data Temperature Input CVN Energy Computed CYN Energy Differential

-98 225 2651 -4.01

-75 25 32u -7.05

-50 52.5 38M7 13.62 0 68.5 5425 1424 0 48 5425 -625 50 64.5 69.85 -535 75 67 76.93 -9,93 100 805 8321 -2.71 Data continued on next page -

WCAP-15571-NP, Rev. I April 2008 C-85

CAPSULE V (HAZ)

Page 2 Material: HEAT AFFD ZONE Heat Number. Orient ation Capsule: V Total Fluence:

Charpy V-Notch Data (Continued)

Temperature Input CVN Energy Computed CVN Ener, *gy Differential 150 91 93.08 200 108.5 9961 8.88 300 117 105.97 11.02 350 119 10731 11.68 SUM of RESIDUALS = 22.05 WCAP-15571-NP, Rev. 1 April 2008

'C-86

CAPSULE U (HAZ)

CVGRAPH 41. Hyperbolic Tangent Curve Printed at 08-05:43 on 05-16-2000 Page 1 Coefficients of Curve 3 A= 5359 S B= 51.4 C= 69.94 TO = 9.84 Equation is CVN = A + B * [ tanh((T - TO)/C) I Upper Shelf Energy: 105 Fixed Temp. at 30 ft-lbs: -24. Temp. at 50 ft-lbs 4.9 Lower Shelf Energy- 219 Fixed Material: HEAT AFFD ZONE Heat Number. Orientation:

Capsule U Total Fluence:

300--

U) 250-10 200-150-(U

r. 100- -'-"

L)

I~~~ -

0I

-300 -200 -100 0 100 200 300 400 50O 6 Temperature in Degrees F Data Set(s) Plotted Plant BV1 Cap: U Material: HEAT AFFD ZONE Ori- Heat 1 Charpy V-Notch Data Temperature Input CVN Energy Computed CVN Energy Differential

-75 23 10.54 12.45

-25 28 29.92 -492

-25 31 29.92 L07

-25 28 29.92 -492 0 33 46.41 -13.41 0 60 46.41 1358 25 56 6456 -6.56 50 82 8024 1.75 Data continued on next page WCAP-15571-NP, Rev. 1 April 2008 C-87

CAPSULE U (HAZ)

Page 2 Material: HEAT AFFD ZONE Heat Number: Orientation:

Capsule: U Total Fluence:

Charpy V-Notch Data (Continued)

Temperature Input CVN Energy Computed CYN Energy Differential 78 105 92.18 12.81 150 100 10316 -3.16 200 99 104.55 -5.55 300 114 10497 9.02 SUM of RESIDUAIS = 16.17 WCAP-15571-NP, Rev. 1 April 2008 C-88

CAPSULE W (HAZ)

CVGRAPH 4.1 Hyperbolic Tangent Curve Printed at 0805:4.3 on 05-16-2000 Page 1 Coefficients of Curve 4 A= 54.59 S B= 52.4 .C= 98.82 TO- 372 Equation is: CVN = A + B [tanh((T - TO)/C) I Upper Shelf Energy- 107 Fixed Temp. at 30 ft-lbs: -131 Temp. at 50 ft-lbs: 28.5 Lower Shelf Energy: 219 Fixed Material: HEAT AFFD ZONE Heat Number. Orientation.

Capsule: W Total Fluence Cn T

z.

-300 -20O -100 0 100 200 300 400 500 606 Temperature in Degrees F Data Set(s) Plotted Plant BVI Cap: W Material: HEAT AFYD ZONE Ori: Heat #:

Charpy V-Notch Data Temperature Input CVN Energy Computed. CVN Energy Differential

-75 8 12 -4

-10 35 3131 168 0 30 35.75 -5.75 0 34 35.75 -475 25 67 48.16 .a83 25 49 48.16 50 54 61-34 -7.34 Data continued on next page WCAP-15571-NP, Rev. 1 April 2008 C-89

CAPSULE W (HAZ)

Page 2 Material: HEAT AFFD ZONE Heat Number Orientation:

Capsule IY Total Fluence Charpy V-Notch Data (Continued)

Temperature Input CVN Energy Computed CVN Energy Differential 76 55 7417 -1917 100 95 84.03 10.96 200 113 10325 9.74 300 118 106.48 1151 400 110 10693 3.06 SUM of REIDUALS = 20.62 WCAP-15571-NP, Rev. 1 April 2008 C-90

CAPSULE Y (HAZ)

CVGRAPH 4.1 Hyperbolic Tangent Curve Printed at 085-:43 on 05-16-2000 Page 1 Coefficients of Curve 5 A= 58.09 B= 55.9 C= 188.07 TO =47.l1 Equation is: CVN = A + B [ tanh((T - TO)/C) I Upper Shelf. Energy- 114 Fixed Temp. at 30 ft-lbs -561 Temp. at 50 ft-lbs 20.3 Lower Shelf Energy: 219 Fixed Material HEAT AFFD ZONE Heat Number. Orientation:

Capsule: Y , Total Fluence:

CITI T

~L4 z

Q

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Data Set(s) Plotted Plant- BVI Cap: Y Material: HEAT AFFD ZONE Old= Heat #:

Charpy V-Notch Data Temperature Input CVN Energy Computed CVN Energy Differential

-100 19 2L42 -2.42

-50 24 3139 -7.39

-40 28 33.74 -5.74

-25 53 37.47 15.52 0 43 4418 -118 10 46 47.01 -1.01 Data continued on next page WCAP-15571-NP, Rev. 1 April 2008 C-91

CAPSULE Y (HAZ)

Page 2 Material: HEAT AFFD ZONE Heat Number. Orientation:

Capsule Y Total Fluence:

Charpy V-Notch Data (Continued)

Temperature Input CVN Energy Computed CVN Energy Differential 50 54 58.75 -4.75 72 81 6524 15.75 125 68 79J3 -11.83 175 86 91.03 -5.03 225 106 9925 6.74 300 107 106S3 .16 SUMi of RESIDUALS = -1.19 WCAP-15571-NP, Rev. 1 April 2008 C-92

UNIRRADIATED (HAZ)

CVGRAPH 4.1 Hyperbolic Tangent Curve Printed at 13:4418 on 07-07-20 Page 1 Coefficients of Curve 2 A = 37.94 B 3694 C = 49.19 TO = -2812 Equation is LE = A + B

  • I tanh((T - TO)/C) I Upper Shelf LE- 74.8 Temperature at LK 35.: -32 bzwer Shelf LE. 1 Fixed Material: HEAT AFFD ZONE Heat Number. 0Irientation:

Capsule: UNIRR Total Fluence.

Co C~)

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Data Set(s) Plotted Plant BVl Cap: UNIRR Material: HEAT AFFD ZONE OrL Heat t Charpy V-Notch Data Temperaature Input lateral Expansion Computed LE Differential

-15[1 0 1.51 -1.1

-15( 2O 0 1.51 -151

-15C2 (0 1.51 -L51

-40 25 2919 -4.19

-4f 29 2919 -19

-40 31 2919 18 0 69 57.02 1197 0 49 57.02 -8.02 Data continued on next page -

WCAP-15571-NP, Rev. 1 April 2008 C-93

UNIRRADIATED (HAZ)

Page 2 Material: HEAT AFFD ZONE Heat Number. Orientation:

Capsule: UNIRR Total Fluence Charpy V-Notch Data (Continued)

Temperature Input Lateral Expansion Computed L, Differential 0 65 57.02 7.97 20 61 65.73 -4.73 20 58 65.73 -7.73 20 66 65.73 26 100 64 74.48 -10.48 100 76 74.48 151 100 725 74.48 -1.98 210 76 7408 210 76 7488 -LII 210 866 74.88 SUM of REIDUAL' ;-=-5.06 WCAP-15571-NP, Rev. 1 April 2008 C-94

CAPSULE V (HAZ)

C1GRAPH 4.1 Hyperbolic Tangent Curve Printed at 08:10,09 on 05-16-2000 Page I Coefficients of Curve 2 A 452 B 442 C=195.07 TO~~7 Equation is: LE = A + B

  • tanh((T - TO)/C) I Upper Shelf LEL 89.4 Temperature at LK 35: 17.8 Lower Shelf L.& I Fixed Material: HEAT AFFD ZONE Heat Number Orientation:

Capsule: V Total Fluence at" 4WU S? 150 4-d

-Q, Ct 5(F 00 0 0 U

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Data Set(s) Plotted Plant BVI Cap: V Material: HEAT AFFD ZONE OrL Heat #.

Charpy V-Notch Data Temperature Input Lateral Expansion Computed LB. Differential

-98 10 1514 -5.14

-75 95 1817 -8.67

-50 34 11.99 0 405 3125 924 0 35 3125 3.74 50 35 42.09 -7.09 75 40 47.75 -7.75 100 52 53.2 -132 Data' continued on next page WCAP-15571-NP, Rev. 1 April 2008 C-95

CAPSULE V (HAZ)

Page 2 Material HEAT AFFD ZONE Heat Number: Oriel itation:

Capsule: V Total Fluence Charpy V-Notch Data (Continued)

Temperature Input Lateral Expansion Computed L. Differential 150 62 63.56 -1.56 200 81.5 71.87 9.2 300 82.5 822 29 350 82 84.94 -?-94 SUM of RESIDUALS = .41 WCAP-15571-NP, Rev. 1 April 2008 C-96

CAPSULE U (HAZ)

CVGRAPH 41 Hyperbolic Tangent Curve Printed at 08100N on 05-16-2000 Page I Coefficients of Curve 3 A 3531 B = 34.31 C = 60.93 TO 7.5 Equation is- LEL= A+ B* [ tanh((T - TO)/C) I Upper Shelf LE- 69.63 Temperature at LE, 35: 6.9 Lower Shelf LE I Fixed Material: HEAT AFFD ZONE Heat Number. Orientation:

Capsule: U Total Fluence 4f) 0-4

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Data Set(s) Plotted Plant- BV1 Cap- U Material: HEAT AFFD ZONE Ori: Heat k.

Charpy V-Notch Data Temperature Input Lateral Expansion Computed LE. Differential

-75 14.5 529 92

-25 175 1&.57 -1.07

-25 195 1857 .92

-25 175 1857 07 0 275 31.11 -a61 0 35.5 3111 4,8 25 37.7 44.91 -721 50 60 56 3.99 Data continued on next page WCAP-15571-NP, Rev. 1 April 2008 C-97

CAPSULE U (HAZ)

Page 2 Material: HEAT AFFD ZONE Heat Number Orientation:

Capsule, U Total Fluence Charpy V-Notch Data (Continued)

Temperature Input Lateral Expansion Computed LK Differential 78 71.5 63.45 &04 150 65.5 69 -3.5 200 66.5 69.51 -3.01 300 70 69.62 X SUM of RESIDUALS = 7.44 WCAP-15571-NP, Rev. 1 April 2008 C-98

CAPSULE W (HAZ)

CVGRAPH 41 Hyperbolic Tangent Curve Printed at 081000 on 05-16-2000 Page 1 Coefficients of Curve 4 A 3927 B= 3827 Cz 121.3 TO 38.73 Equation is LE. = A + B * [ tanh((T - TO)/C) ]

Upper Shelf LE- 7755 Temperature at LZ 3B. 251 Lower Shelf L.: 1 Fixed Material: HEAT AFFD ZONE Heat Number. Orientation:

Capsule W Total Fluence:

CO

-C,=

4-)

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Data Set(s) Plotted Plant- BVI Cap: W Material: HEAT AFVD ZONE Ori: Heat f Charpy V-Notch Data Temperature Input Lateral Expansion Computed LX Differential

-75 8 I117 -317

-10 26 2467 1.32 0 25 Z7.45 -2.45

_1.45' 0 26 27.45 25 48 34.9 1304 25 35 34.95 .04 50 38 4261 -4.81 Data continued on next page WCAP-15571-NP, Rev. 1 April 2008 C-99

CAPSULE W (HAZ)

Page 2 Material: HEAT AFFD ZONE Heat Number:. Orientation:

Capsule: WI Total Fluencm Charpy V-Notch Data (Continued)

Temperature Input Lateral Expansion Computed LK Differential 76 39 5067? -IL67 100 66 57.11 8.88 200 70 7254 -2.54 300 80 7653 .46 400 76 77.35 -1.35 SUM of RESIDUALS = -.71 WCAP-15571-NP, Rev. 1 April 2008 C-100

CAPSULE Y (HAZ)

CVGRAPH 4.1 Hyperbolic Tangent Curve Printed at R810%0 on 05-16-2000 Page 1 Coefficients of Curve 5 A= 3426 I B 3326 C= 145.99 TO=60 !0 Equation is LE = A + B* [ tanh((T - TO)/C)]

Upper Shelf LE-: 67.52 Temperature at LE. 35: 632 Lower Shelf L1. I Fixed Material HEAT AFFD ZONE Heat Number. Orientation:

Capsule: Y Total Fluence n~f - Y~ ¶ ~f - - - -

201)

CI)

Sp-- l150 -- N- I- ~- ~ -1' 1- I +

100-0-4 507 ii o N7 0

-300) -200 -100 0 100 200 300 400 5W0 600 Temperature in D'egrees F Data Set(s) Plotted Plant: BVI Cap.- Y Material: HEAT AFFD ZONE Ori: Heat f Charpy V-Notch Data Temperature Input Lateral Expansion Computed L.E. Differential

-100 9 7.68 1.31

-50 12 13.06 -I06

-40" 13 14.48 -1.48

-25 26 16.2 9.17 0 20 21.31 -1,31 10 12 2329 -1129 Data continued on next page WCAP-15571-NP, Rev. I Aprit 2008 C-101

CAPSULE Y (HAZ)

Page 2 Material: HEAT AFFD ZONE Heat Number. Orie ntation:

Capsule: Y Total Fluence Charpy V-Notch Data (Continued)

Temperature Input Lateral Expansion Computed LE Differential 50 30 31.98 -198 72 49 36.98 12O1 125 41 48.16 -716 54 5611 -211 225 68 6123 6.76 300 62 65.12 -3.12 SUM of RMSIDUALS = -29 WCAP-15571-NP, Rev. 1 April 2008 C-102

UNIRRADIATED (HAZ)

CVGRAPH 4.1 Hyperbolic Tangent Curve Printed at 13:49,32 on 07-07-2000 Page 1 Coefficients of Curve 2 A= 50 B= 50 C= 13016 T0--46.4 Equation is: Shear/ = A + B* I tanh((T - T0)/C) I Temperature at 50Y. Shears -46.4 Material: HEAT AIFD ZONE Heat Number. Orientation Capsule UNIRR Total Fluence a-C-)

0)

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Data Set(s) Plotted Plant BVI Cap: UNIRR Material: HEAT AFFD ZONE Ori: Heat k1 Charpy V-Notch Data Tempera ture Input Percent Shear Computed Percent Shear Differential

-150 35 1691 18.08

-150 20 16.91 3.08

-150 20 16.91 3.08

-40 50 52.45 -245

-40 35 52.45 -17.45

-40 50 5245 -Z.45 0 70 671 2B 0 60 671 -7.1 Data continued on next page WCAP-15571-NP, Rev. 1 April 2008 C-103

UNIRRADIATED (HAZ)

Page 2 Material- HEAT AFFD ZONE Heat Number: Orientation:

Capsule UNIRR Total Fluence Charpy V-Notch Data (Continued)

Temperature Input Percent Shear Computed Percent Shear Differential 0 65 671 -21 20 70 735 -35 20 75 735 L49 20 80 73.5 6.49 100 100 90.46 953 100 100 90.46 953 100 100 90.46 953 210 100 98.09 1.9 210 100 9809 1.9 210 100 98B9 1.9 SUM of RESIDUALS = 34.39 WCAP-15571-NP, Rev. 1 April 2008 C-104

CAPSULE V (HAZ)

CVGRAPH 4.1 Hyperbolic Tangent Curve Printed at 081331 on 05-16-2000 Page 1 Coefficients of Curve 2 A= 50 B= 50 C= 114B8 T0 8.7 Equation is Shear/. = A + B [ tanh((T - TO)/C) I Temperature at 5%/. Shear. 8.7 Material: HEAT AFFD ZONE Heat Number. Orientation:

Capsule V Total Fluence:

C_)

4)

Q)

C) a0

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Data Set(s) Plotted Plant BVI Cap.: V Material HEAT AFFD ZONE OrL Heat t Charpy V-Notch Data Temperature Input Percent Shear Computed Percent Shear Differential

-98 3 1346 -5.46 18B]5 -3S5

-75 15

-50 41 28.43 1456 0 46 4621 -21 0 45 4621 -121 50 54 6726 -1326 75 81 76.06 4.93 100 84 83.09 .9 Data continued on next page WCAP-15571-NP, Rev. 1 April 2008 C-105

CAPSULE V (HAZ)

Page 2 Material: HEAT AFFD ZONE Heat Number. Orientation:

Capsule V Total Fluence:

Charpy V-Notch Data (Continued)

Temperature Input Percent Shear Computed Percent Shear Differential 150 100 92.15 7.84 200 100 96.56 W43 300 100 9938 .61 350 100 99.74 25 SUM of RESIDUAIS = 8.56 WCAP-15571-NP, Rev. 1 April 2008 C4l06

CAPSULE U (HAZ)

CVGRAPH 4.1 Hyperbolic Tangent Curve Printed at 0al331 on 05-1--2000 Page 1 Coefficients of Curve 3 A 50 B = 50 C=74.88 TO103 Equation is: Shear/ = A + B * [ tanh((T - TO)/C) ]

Temperature at 50z Shear. 10.3 Material: HEAT AFFD ZONE Heat Number. Orientation:

Capsule: U Total Fluence

.q co

-300 -200 -100 0 100 200 300 4 00 500 600 Temperature in Degrees F Data Set(s) Plotted Plant BVI Cap. U Material: HEAT AFFD ZONE Orit- Hea*t*

Charpy V-Notch Data Temperature Input Percent Shear Computed Percent Shear Differential

-75 17 929 7.7

-25 34 2&02 5.97

-25 21 2&02 -7.02

-25 34 2&02 5.97 0 26 4015 -17.15 0 55 43.15 11B4 25 48 59.8 -11.68 50 81 7426 6.73 Data continued on next page WCAP-15571-NP, Rev. 1 April 2008 C-107

CAPSULE U (HAZ)

Page 2 Material HEAT AFFD ZONE Heat Number. Orientation:

Capsule: U Total Fluence Charpy V-Notch Data (Continued)

Temperature Input Percent Shear Computed Percent Shear Differential 78 95 85.91 9.08 150 97 97.65 -.65 200 98 99.37 -137 300 100 99.95 .04 SUM of RESIDUALS = 9.46 WCAP-15571-NP, Rev. 1 April 2008 C-108

CAPSULE W (HAZ)

CVGRAPH 4.1 Hyperbolic Tangent Curve Printed at R-13"31 on 05-16-2000 Page 1 Coefficients of Curve 4 A 50 B 50 C= 101.61 TO02583 Equation is Shear/ A + B [ tanh((T - TO)/C) I Temperature at 50/ Shear 25.8 Material: HEAT AFFD ZONE Heat Number. Orientation:

Capsule: W Total Fluence C4)

C~)

P.4

-300 -200 -100 0 100 200 300 400 500 600 Temperature in Degrees F Data Set(s) Plotted Plant: BVI Cap: W Material: HEAT AFFD ZONE Ori- Heat Charpy V-Notch Data Temperature Input Percent. Shear Computed Percent Shear Differential

-75 10 108

-10 35 3affi 193 0 35 37.55 0 34 37.55 -355 25 65 4958 15.41 25 50 49.58 .41 50 55 61.67 -6.67 Data continued on next page WCAP-15571-NP, Rev. 1 April 2008 C-109

CAPSULE W (FIAZ)

Page 2 Material: HEAT AFFD ZONE Heat Number Orientation:

Capsule: W Total Fluence Charpy V-Notch Data (Continued)

Temperature Input Percent Shear Computed Percent Shear Differential 76 55 72.85 -17.85 100 95 8114 13.85 200 100 96.85 314 300 100 9954 .45 400 100 99.93 .06 SUM of RESIDUALS 2.54 WCAP-15571-NP, Rev. 1 April 2008 C-110

CAPSULE Y (HAZ)

CYGRAPH 4.1 Hyperbolic Tangent Curve Printed at 08:13.31 on 05-16-2000 Page I Coefficients of Curve 5 A 50 B= 50 C= 14629 TO R34.01 Equation is: Shearz = A + B

  • tanh((T - TO)/C) I Temperature at 50/ Shear. 34 Material: HEAT AFFD ZONE Heat Number Orientation:

Capsule: Y Total Fluence:

4-)

C.)

C)

-300 -200 -100 0 100 200 30o 400 500 600 Temperature in Degrees F Data Set(s) Plotted Plant: BVI Cap- Y Material: HEAT AFFD ZONE OrL Heat t.

Charpy V-Notch Data Temperature Input Percent Shear Computed Percent Shear Differential

-100 5 13.79 -8.79

-50 20 24.07 -4.07

-40 20 26.66

-25 35 30.85 4.14 0 50 38.58 11.41 10 60 4186 18.13 Data continued on next page WCAP-15571-NP, Rev. 1 Apil 2008 C-111

CAPSULE Y (HAZ)

Page 2 Material: HEAT AFFD ZONE Heat Number. Orientation:

Capsule: Y Total Fluence Charpy V-Notch Data (Continued)

Temperature Input Percent Shear Computed Percent Shear Differential 50 45 5544 -10.44 72 50 6269 -12.A69 125 80 77.62 2.7 175 85 8729 -229 225 100 93.15 684 300 100 97.43 2.56 Mof RESIDUALS = .5 WCAP-15571-NP, Rev. 1 April 2008 C-112

D-0 APPENDIX D BEAVER VALLEY UNIT 1 SURVEILLANCE PROGRAM CREDIBILITY ANALYSIS Beaver Valley Unit I Capsule Y WCAP-15571-NP, Rev. 1 April 2008

WCAP-15571-NP, Rev. 1 April 2008

D-1 INTRODUCTION:

Regulatory Guide 1.99, Revision 2 and 10 CFR Part 50.61, describe general procedures acceptable to the NRC staff for calculating the effects of neutron radiation embrittlement of the low-alloy steels currently used for light-water-cooled reactor vessels. Position 0.2 of Regulatory Guide 1.99, Revision 2 and 10 CFR Part 50.61, describe the method for calculating the adjusted reference temperature and Charpy upper-shelf energy of reactor vessel beltline materials using surveillance capsule data. These methods can only be applied when two or more credible surveillance data sets become available from the reactor in question.

To date there has been four surveillance capsules removed from the Beaver Valley Unit 1 reactor vessel. To use these surveillance data sets, they must be shown to be credible. In accordance with the discussion of Regulatory Guide 1.99, Revision 2 and/or 10 CFR Part 50.61, there are five requirements that must be met for the surveillance data to be judged credible.

The purpose of this evaluation is to apply the credibility requirements to the Beaver Valley Unit 1 reactor vessel surveillance data and determine ifthe Beaver Valley Unit 1 surveillance data is credible.

EVALUATION:

Criterion 1: The materials in the surveillance capsules must be those which are the controlling materials with regard to radiation embrittlement.

The beltline region of the reactor vessel is defined in Appendix G to 10 CFR Part 50, "Fracture Toughness Requirements", as follows:

"the reactor vessel (shell material including welds, heat affected zones, and plates or forgings) that directly surrounds the effective height of the active core and adjacent regions of the reactor vessel that are predicted to experience sufficient neutron radiation damage to be considered in the selection of the most limiting material with regard to radiation damage."

The Beaver Valley Unit 1 reactor vessel consists of the following beltline region materials:

" Intermediate Shell Plate B6607-1 (Heat # C4381-1)

" Intermediate Shell Plate B6607-2 (Heat # C4381-2)

" Lower Shell Plate B6903-1 (Heat # C6317-1)

" Lower Shell Plate B7203-2 (Heat # 06293-2)

" Intermediate Shell Longitudinal Weld Seams19-714 A & B (Wire Heat 305424, Linde 1092, Flux Lot NO. 3889)

" Intermediate to Lower Shell Circumferential Weld Seam 11-714 (Wire Heat 90136, Linde 0091, Flux Lot NO. 3977 & 3998)

" Lower Shell Longitudinal Weld Seams 20-714A & B (Wire Heat 305414, Linde 1092, Flux Lot NO. 3947)

Beaver Valley Unit I Capsule Y WCAP-15571-NP, Rev. I April 2008

D-2 The Beaver Valley Unit 1 surveillance program was based on ASTM El 85-73 and utilizes test specimens from lower shell plate B6903-1 and weld metal fabricated with wire heat # 305424, linde 1092, flux lot no. 3889.

In ASTM E185-73, Annex Al, "surveillance material selection procedures," the number one criteria for selecting the surveillance program material is the initial RTNDTvalue of the material. However, in ASTM E185-73, Section 4.1 - Test Materials, "the base metal and weld metal to be included in the program should represent the material that may limit the operation of the reactor during its lifetime."

An evaluation of the limiting intermediate shell plate B6607-2 and limiting lower shell plate B6903-1 was performed to determine which plate would be limiting during the reactor vessel's lifetime. This evaluation shows that at fluences greater than 1.727 x 1019 n/cm 2 (E > 1.0 MeV), the lower shell plate B6903-1 is limiting. The EOL fluence was projected to be greater than 1.727 x 1019 n/cm 2 (E > 1.0 MeV). Hence, lower shell plate B6903-1 was utilized in the surveillance program.

At the time the surveillance capsule program was developed, the initial RTNDTOf the weld metal was not known and is based on a generic value. Hence, all weld metal IRTNDT values were -56 0 F and considered equivalent. The weld wire used in the intermediate shell longitudinal weld seams19-714 A & B had one of the highest weight %'s of Cu and the highest weight % of P. In addition, USE values for the weld metals were not available. Hence, weld wire heat # 305424, linde 1092, flux lot no. 3889 was utilized in the surveillance program and is identical to the intermediate shell longitudinal weld seams.

Based on the above discussion and the methodology in use at the time the program was developed, the Beaver Valley Unit 1 surveillance program meets this criterion.

Beaver Valley Unit 1 Capsule Y WCAP-15571-NP, Rev. 1 April 2008

D-3 Criterion 2: Scatter in the plots of Charpy energy versus temperature for the irradiated and unirradiated conditions should be small enough to permit the determination of the 30 ft-lb temperature and upper shelf energy unambiguously.

Plots of Charpy energy versus temperature for the unirradiated and irradiated condition are presented Appendix C of this report.

Based on engineering judgment, the scatter in the data presented in these plots is small enough to permit the determination of the 30 ft-lb temperature and the upper shelf energy of the Beaver Valley Unit 1 surveillance materials unambiguously. Hence, the Beaver Valley Unit 1 surveillance program meets this criterion.

Criterion 3: When there are two or more sets of surveillance data from one reactor, the scatter of ARTNDT values about a best-fit line drawn as described in Regulatory Position 2.1 normally should be less than 28°F for welds and 170 F for base metal. Even ifthe fluence range is large (two or more orders of magnitude), the scatter should not exceed twice those values.

The functional form ofthe least squares method as described in Regulatory Position 2.1 will be utilized to determine a best-fit line for the plate data and to determine if the scatter of the measured plate ARTNDT values about this best fit line is less than 28 0 F for welds and less than 170 F for plates.

The Beaver Valley Unit 1 surveillance weld metal was also used in the St. Lucie Unit 1 lower shell longitudinal weld seam and in the circ. weld of the LaSalle Unit 1 vessel.

However, the only source of surveillance data for the weld wire is the Beaver Valley Unit 1 surveillance program. Hence, no adjustment will be made to the data for this credibility evaluation.

In addition, the Beaver Valley Unit 1 circ. weld seam wire is in the St. Lucie Unit 1 surveillance program and per reference 30, the St. Lucie Unit 1 surveillance weld data is credible. Therefore, it will be applied to the Beaver Valley Unit 1 vessel when determining CF's following the guideline provided by the NRC in the February 12, 1998 workshop.

The Beaver Valley Unit 1 lower shell longitudinal weld seam wire is in the Fort Calhoun Unit 1 surveillance program. Therefore, it will be checked for credibility and applied to the Beaver Valley unit 1 vessel.

Following is the calculation of the best fit line as described in Regulatory Position 2.1 of Regulatory Guide 1.99, Revision 2.

Beaver Valley Unit 1 Capsule Y WCAP-15571-NP, Rev. 1 April 2008

D-4 TABLE D-1 Calculation of Chemistry Factors using Beaver Valley Unit 1 Surveillance Capsule Data Material Capsule Capsule fa) FF(b) ARTNDT-(C) FF*ARTNDT FF 2 V .323 .689 128.49 88.53 .475 Lower Shell Plate B6903-1 U .646 .878 118.93 104.42 .771 W .986 .996 148.52 147.93 .992 (Longitudinal) Y 2.15 1.21 142.18 172.04 1.464 V .323 .689 137.81 94.95 .475 Lower Shell Plate B6903-1 U .646 .878 131.84 115.76 .771 W .986 .996 179.99 179.27 .992 (Transverse)

Y 2.15 1.21 166.93 201.99 1.464 SUM: 1104.89 7.404 CF = Z(FF

  • RTNDT) - J( FF 2 ) = (1104.89) + (7.404) = 149.2 OF V .323 .689 159.72 110.05 .475 Surveillance U .646 .878 166.32 146.03 .771 Weld Metal 19-714A/B (Heat 305424) W .986 .996 -

187.73 186.98 .992 Y 2.15 1.21 179.69 217.42 1.464 SUM: 660.48 3.702 2

CF = X(FF RTNDT) Y-( FF ) = (660.48) - (3.702) = 178.41F Notes:

(a) f = Measured fluence from capsule Y dosimetry analysis results (x 10'9 n/cm2 , E > 1.0 MeV). (See Section 6 of this report.)

(b) FF =fluence factor = f(0.28-0.1logf)

(c) ARTNDT values are the measured 30 ft-lb shift values (Appendix B & C) and do not include the adjustment ratio procedure of Reg. Guide 1.99 Revision 2, Position 2.1, since this calculation is based on the actual surveillance weld metal measured shift values.

Beaver Valley Unit 1 Capsule Y WCAP-15571-NP, Rev. I April 2008

D-5 TABLE D-2 Best Fit Evaluation for Beaver Valley Unit 1 Surveillance Materials OF(a)Scte <1°(BsMea)

FF(b) ARTNDT(C) Best Fit Scatter <17*F (Base Metals)

Material Capsule (Slopebest fit) ARTNDT (OF) ARTNDT (OF) <28°F (Weld)

V 149.2 .689 128.49 *102.8 -25.7 NO Lower Shell Plate B6903-1 U 149.2 .878 118.93 131.0 12.1 YES (Longitudinal) W 149.2 .996 148.52 148.6 0.1 YES Y 149.2 1.21 142.18 180.5 38.3 NO V 149.2 .689 137.81 102.8- -35.0 NO Lower Shell Plate U 149.2 .878 131.84 131.0 -0.8 YES B6903-1 (Transverse) W 149.2 .996 179.99 148.6 -31.4 NO Y 149.2 1.21 166.93 180.5 13.6 YES V 178.4 .689 159.72 122.9 -36.8 NO Surveillance Weld Metal 19-4A/B U 178.4 .878 166.32 156.6 -9.7 YES (Heat 305424) W 178.4 .996 187.73 177.7 -10.0 YES Y 178.4 1.21 179.69 215.9 36.2 NO Notes:

(a) f = Measured fluence from capsule Y dosimetry analysis results (x 1019 n/cm2, E > 1.0 MeV). Ref. 16 (b) FF = fluence factor = f0.28-0.1og90.

(c) ARTNOT values are the measured 30 ft-lb shift values (Appendix B & C) and do not include the adjustment ratio procedure of Reg. Guide 1.99 Revision 2, Position 2.1, since this calculation is based on the actual surveillance weld metal measured shift values.

Best Fit ARTNDT = (Slopebest fit) * (Fluence Factor)

From Table D-2 above, the Beaver Valley Unit 1 Plate Data has four out of eight data points outside the 17 0 F scatter band. The surveillance weld has two out of four data points outside the 28°F scatter band.

Hence, the surveillance data is not credible.

Beaver Valley Unit I Capsule Y WCAP-15571-NP, Rev. I April 2008

D-6 Determination of CF:

Since the data are not credible, evaluate whether CF should be determined from the tables.

The table of CF for plate B6903-1 (0.21% Cu & 0.54% Ni) is:

(CF-155). (54-.6) = CF 147.2 (129 -155) (4- .6)

The CF based on the surveillance data is 149.2°F and is greater than the CF from the tables.

Per the February 12, 1998 NRC Industry Meeting, the NRC recommended that surveillance data be used along with a full cyAof 17'F for further calculations, such as PTS or determination of adjusted reference temperature, if it is greater than the table value.

Contained in Table D-3 is the determination of the weld CF using the ratio procedure adjustment.

D-3 CF Based on Measure Data Material Capsule Capsule f FF ARTNDT* FFxARTNDT FF 2 V .323 .689 169.3 116.7 .475 Surveillance U .646 .878 176.3 154.8 .771 Weld Metal 19-714A/B (Heat 305424) W .986 .996 199.0 198.2 .992 Y 2.15 1.21 189.4 229.2 1.464 SUM: 698.8 3.702 2

CF = Z(FF x RTNDT) + Y( FF ) = (698.8) - (3.702) = 188.8°F

  • Ratio adjusted by 1.06 (191.7/181.6).

The table CF 191.7 0 F is conservative and will be used along with a full CYAfor calculations in the calc note.

The next step will be to determine if the St. Lucie Unit 1 and Fort Calhoun Unit 1 surveillance weld data are credible when applied to the Beaver Valley Unit 1 intermediate to lower shell circ weld and the lower shell longitudinal weld, respectively.

Beaver Valley Unit I Capsule Y WCAP-15571-NP, Rev. 1 April 2008

D-7 Table D-4 St. Lucie Unit 1 Surveillance Weld Data*

Irradiated Fluence Measured Temperature °F 1019 n/cm 2 ARTNDT Surveillance 970 0.2291 0.0699 546.7 0.627 72.3 Weld Metal 104- 0.2291 0.0699 546.7 0.909 67.4 Heat 90136 2840 0.2291 0.0699 546.7 1.41 68.0

  • The data contained in this table was obtained from reference 51 and 52.

Based on the average of cycle 4-7, the inlet temperatures of cycles 8 and 9, the Beaver Valley Unit 1 operation temperature is 544.1OF The best estimate Cu & Ni weight % for weld heat 90136 is:

0.27 Cu and 0.07 Ni => table CFv, = 124.3°F A credibility evaluation of the St. Lucie Unit 1 surveillance weld data was performed in reference 51 and weld data has been shown to be credible. Hence, this data will be adjusted for temperature and chemistry and will be used in this calc note.

Based on the data provided in TR-0-MCM-00114 9] and the CEOG Report CE-NPSD-1039, Rev.

02[53, the best estimate Cu and Ni weight percent values for the Fort Calhoun Unit 1 surveillance weld (Heat 305414) are:

% Cu = 0.3092 z 0.31%

% Ni = 0.6042 z 0.60%

Per B&W Report BAW-2226-00 (BWNT Document No. 77-2226-00) [0J, the measured AT30 and fluence values for the first 3 capsules removed from the Fort Calhoun Unit 1 vessel (weld metal) are:

Table D-5 Ft. Calhoun Unit I Surveillance Weld Data Irradiated Fluence Measured Material Capsule Cu[49' Nil 491 Temperature OF[ 2 ] 1019 n/cm 2* ARTNDT*

Surveillance W-225 0.35 0.60 527 5.53 238 Weld Metal W-265 0.35 0.60 534 7.71 221 Heat 90136 W-275 0.35 0.60 538 1.28 219

  • The data obtained from references 50.

Beaver Valley Unit 1 Capsule Y WCAP-15571-NP, Rev. 1 April 2008

D-8 TABLE D-6 CF Based on Measure Data Capsule Capsule f FF ARTNDT* FF*ARTNDT FF 2 Material W-225 .553 .834 238 198.49 .696 Fort Calhoun Surveillance Weld Metal Ht. 305414 W-265 .771 .927 221 204.87 .859 W-275 1.28 1.07 219 234.33 1.14 SUM: 637.69 2.695 2

CF = (FF

  • RTNDT) + Z( FF ) = (637.69) + (2.695) = 236.6°F TABLE D-7 Best Fit Evaluation for Ft. Calhoun Unit 1 Surveillance Materials CF Best Fit Scatter <17 0 F (Base Material Capsule FF ARTNDT ARTNDT ARTNDT Metals) e(SIOpebest f) (F) (OF) <28 0 F (Weld)

Surveillance W-225 236.6 .834 238 197.3 -39.3 No Weld Metal W-265 236.6 .927 221 219.3 -17.3 Yes11-714 (Heat 305414) W-275 236.6 1.07 219 253.2 16.6 Yes Hence, the Fort Calhoun Unit 1 weld surveillance data is not credible. However, the surveillance data CF is more limiting than the Table CF. Therefore, the surveillance data CF will be applied to the Beaver Valley Unit 1 vessel along with a full GA margin.

Criterion 4: The irradiation temperature of the Charpy specimens in the capsule should match the vessel wall temperature at the cladding/base metal interface within +/- 25 0 F.

The capsule specimens are located in the reactor between the core barrel and the vessel wall and are positioned opposite the center of the core. The test capsules are in baskets attached to the neutron pads. The location of the specimens with respect to the reactor vessel beltline provides assurance that the reactor vessel wall and the specimens experience equivalent operating conditions such that the temperatures will not differ by more than 25°F. Hence, this criteria is met.

Criterion 5: The surveillance data for the correlation monitor material in the capsule should fall within the scatter band of the database for that material.

The Beaver Valley Unit 1 surveillance program does not contain correlation monitor material. Therefore, this criterion is not applicable to the Beaver Valley Unit 1 surveillance program.

Beaver Valley Unit 1 Capsule Y WCAP-15571-NP, Rev. 1 April 2008

D-9 CONCLUSION:

Based on the preceding responses to all five criteria of Regulatory Guide 1.99, Revision 2, and Section B 10 CFR 50.61, neither the Beaver Valley Unit 1 or the Fort Calhoun Unit I surveillance data are credible. In addition, the Beaver Valley Unit I surveillance data CF is limiting for the plate and will be used with a full CA, while the table CF is limiting for the Beaver Valley Unit 1 weld and will be used with a full CA. The Fort Calhoun Unit 1 weld surveillance data CF is limiting and will be used with a full cy. St. Lucie Unit 1 data was shown to be credible in reference 51.

Beaver Valley Unit 1 Capsule Y WCAP-15571-NP, Rev. 1 April 2008