L-2009-208, Extended Power Uprate, Data for NRC Confirmatory EPU Analyses

From kanterella
(Redirected from L-2009-208)
Jump to navigation Jump to search

Extended Power Uprate, Data for NRC Confirmatory EPU Analyses
ML093220215
Person / Time
Site: Saint Lucie  NextEra Energy icon.png
Issue date: 11/13/2009
From: Katzman E
Florida Power & Light Co
To:
Document Control Desk, Office of Nuclear Reactor Regulation
References
L-2009-208
Download: ML093220215 (87)


Text

0 FPL Florida Power & Light Company, 6501 S. Ocean Drive, Jensen Beach, FL 34957 November 13, 2009 L-2009-208 10 CFR 50.4 U. S. Nuclear Regulatory Commission Attn: Document Control Desk Washington, DC 20555 RE:

St. Lucie Units 1 and 2 Docket Nos. 50-335 and 50-389 Extended Power Uprate Data for NRC Confirmatory EPU analyses This letter provides additional data requested by the NRC via emails dated May 28, 2008, and December 7, 2008, that is needed to build PSL-specific LOCA models for the NRC's confirmatory EPU analyses. This data is provided in Attachments 1 and 2. Attachment 2 contains proprietary information to be withheld from public disclosure per 10 CFR 2.390. contains a signed affidavit for the basis for the proprietary nature of. Attachment 4 contains a non-proprietary version of Attachment 2.

Please contact Ken Frehafer at 772-467-7748 or Kathy Rydman at 772-467-7680 if there are any questions regarding this information.

Sincerely, Eric S. Katzman Licensing Manager St. Lucie Plant ESK/KWF Attachments SAC(

an FPL Group company Florida Power & Light Company, 6501 S. Ocean Drive, Jensen Beach, FL 34957 November 13, 2009 I=PL U. S. Nuclear Regulatory Commission Attn: Document Control Desk Washington, DC 20555 RE:

St. Lucie Units 1 and 2 Docket Nos. 50-335 and 50-389 Extended Power Uprate Data for NRC Confirmatory EPU analyses L-2009-208 10 CFR 50.4 This letter provides additional data requested by the NRC via emails dated May 28, 2008, and December 7, 2008, that is needed to build PSL-specific LOCA models for the NRC's confirmatory EPU analyses. This data is provided in Attachments 1 and 2. Attachment 2 contains proprietary information to be withheld from public disclosure per 10 CFR 2.390. contains a signed affidavit for the basis for the proprietary nature of. Attachment 4 contains a non-proprietary version of Attachment 2.

Please contact Ken Frehafer at 772-467-7748 or Kathy Rydman at 772-467-7680 ifthere are any questions regarding this information.

Sincerely, Eric S. Katzman Licensing Manager St. Lucie Plant ESK/KWF Attachments an FPL Group company

91 :ouqIJH lm'SLZZ o$ gEZZ s! aOuP OassJflOld 0msd omsd

  • tiZsd O s! OinssOld uuiluaodo IUlwON jaozUnssoJd I'7 9t7E 001 96'E 06

-6 *L 0 L It8 I OZ

-JzOMOd oE$2)J MaoD UOT$oos Oil.!%

JomOd Joj!Oq/ois u01owtno3o10 oS "'I

[I'L B I U1311 3;S lq/muql

,*oultaol*3tpooA '1v I i-- -I

'LE I U l S

Iq/Luql m'OlJ mBOIS

  • E" I (zsz) 000't16 viI Isa dD>J (I @z) 000'96 wd2 sdnd d (zVz) 000'96 (IVz) 009'L6 sdtund $u¶looo uiBj. "Z'I 000'gEE Si MOg Ulm 00'E0t wd5 puu wd* oo0017'l'-[

u Moul oD 010o

-1'1 0a", a MOiJ Apopuuoo Pun Amntuud

-I

~qqSUOi!pUOD JmoAd powvi 301

  • >+,1(

'*,+*suoljpuoa 2tu!!uaado lUuld

'1

  • UwN sjuatmmo3 anluA sp!UFl Uolldpaasa(I- "Ptam-aud muall IopowN VDoi -oj jXN oj isonboamav mnduj f-ld Z LINT-I I1{Y-I ',LS Z9 JO I 3ugd I luofqoeluV 80-600Z'O Item No.
1.

lao ST. LUCIE UNIT 2 EPU Input Data Request to NRC for LOCA Model Parameter -Description Units Value Comments Plant Operating Conditions For rated power conditions

1.

Primary and Secondary Flow rates:

1.1. Core flow Unc: +/- 14,500 gpm and gpm 403,500 min flow is 335,000.

1.2. Main coolant pumps 97,500 (2A1) gpm 96,000 (2A2)

RCP Pump Test Data 95,000 (2B 1) 000 1.3. Steam flow Ibmlhr See Item 1a 7.1 1.4. Feedwater flow Ibmlhr See Item 1a 7.1 1.5. SO recirculation ratio/boiler Power

%Circ section flow Ratio Power-20 18.41 50 7.91

%CircRatio 70 5.42 90 3.96 100 3.46

2.

Primary and Secondary Pressures:

2.1. Pressurizer Nominal Operating psia 2250 Pressure is 2250 psia.

Pressure range is 2225 to 2275 with Unc: +/- 45 L-2009-208 Page 1 of62

L-2009-208 Page 2 of 62 Item Parameter -Description Units Value Comments No.

Normal, + 90 Accident.

2.2. Core inlet Based on 2250 psia core psia 2286 outlet and 35.5 psi core pressure drop (UFSAR Table 4.4-4).

2.3. Core outlet Assumed to be the same as the pressurizer.

2.4. Reactor coolant pump Assume a 1 psi pressure discharge psia 2287 drop from RCP discharge to core inlet.

2.5. Steam generator dome SG outlet pressure from benchmark heat balance plus dP to upstream of flow restrictor 2.6. Turbine control valve inlet psia See Item la 7.3 2.7 Detailed primary loop pressure Assumes 10% SG tube drop distribution si Table 13 below lugging.

3. Primary and Secondary Temperatures:

3.1. Hot leg Assumed to be the same as the core outlet OF 595 temperature since the Rx vessel does not have upper head injection.

3.2. Cold leg OF 549 Tcold temperature at full Unc: +/-3°F power.

3.3. Core outlet

°F 595 3.4. Upper Head Assumed to be the same OF 595 as the core outlet temperature since the Rx Item No.

Parameter -Description 2.2. Core inlet 2.3. Core outlet 2.4. Reactor coolant pump discharge 2.5. Steam generator dome 2.6. Turbine control valve inlet 2.7 Detailed primary loop pressure drop distribution

3. Primary and Secondary Temperatures:

3.1. Hot leg 3.2. Cold leg 3.3. Core outlet 3.4. Upper Head Units Value psia 2286 psia 2250 psia 2287 psia 886.81 psia See Item la 7.3 psi Table 13 below 549 OF Vnc: +/- 3°F OF 595 OF 595 Comments Normal, +/- 90 Accident.

Based on 2250 psia core outlet and 35.5 psi core pressure drop (VFSAR Table Assumed to be the same as the pressurizer.

Assume a 1 psi pressure drop from Rep to core inlet.

SG outlet pressure from benchmark heat balance plus dP to upstream of flow restrictor Tcold temperature at full power.

Assumed to be the same as the core outlet since the Rx L-2009-208 Page 2 of62

L-2009-208 Attachment I Page 3 of 62 Item Parameter -Description Units Value Comments No.

vessel does not have upper head injection.

4.

Water levels in the pressurizer and steam generators,

,.i,-

4.1. Pressurizer

% Tap Span See Figure 1 4.2. Steam Generators in 411.3 Level above tubesheet

5. Leakage flows (Bypass):

This is the total core

% of vessel 3.7 bypass maximum value flow for minimum core flow rate.

5.1. Outlet nozzle clearances Assume bypass breakdown documented in Unit 1 UFSAR due to unit similarities.

5.2. Downcomer to upper head Assume bypass breakdown. documented in Unit 1 UFSAR due to unit similarities.

5.3. CEA shrouds Equivalent to a fraction of the leakage through percent N/A guide tubes (item Ia.5.5.1). This has not been quantified.

5.4. Upper head to upper plenum This has not been (guide structure holes) percent N/A quantified.

5.5. Core bypass (guide tubes, barrel-baffle) 5.5.1. Guide tubes Assume bypass percent 1.76 breakdown documented in Unit I UFSAR due to unit similarities.

L-2009-208 Page 3 of62 Item Parameter -Description Units Value Comments No.

vessel does not have upper head injection.

4.

Water levels in the pressurizer and steam generators, 4.1. Pressurizer

% Tap Span See Figure 1 4.2. Steam Generators in 411.3 Level above tubesheet

5.

Leakage flows (Bypass):

This is the total core

% of vessel 3.7 bypass maximum value flow for minimum core flow rate.

5.1. Outlet nozzle clearances Assume bypass percent 1.12 breakdown documented in Unit 1 UFSAR due to unit similarities.

5.2. Downcomer to upper head Assume bypass percent 0.16 breakdown. documented in Unit 1 UFSAR due to unit similarities.

5.3. CEA shrouds Equivalent to a fraction of the leakage through percent N/A guide tubes (item la.S.S.l). This has not been uantified.

5.4. Upper head to upper plenum percent N/A This has not been (guide structure holes) quantified.

5.5. Core bypass (guide tubes, barrel-baffle) 5.5.1. Guide tubes Assume bypass percent 1.76 breakdown documented in Unit 1 UFSAR due to unit similarities.

L-2009-208 Page 4 of 62 Item Parameter -Description Units Value Comments No.

5.5.2. Barrel-baffle Assume bypass percent 0.47 breakdown documented in Unit 1 UFSAR due to unit similarities.

6.

Steam generator recirculation Power-ratio

%CircRatio

7. Heat balance information such as:

7 7.1. Feed and steam flows lbm/hr 1,905,010 Benchmark Heat 11,806,740 Balance 7.2. Feedwater temperature Benchmark Heat 0F 435 Balance 7.3. Turbine inlet pressure.

Benchmark Heat psia 852.7 Balance, Turbine Inlet Valve

1.

Plant Operating Conditions lb.

For EPU conditions.

1. Primary and Secondary Flow rates:

1.1. Core flow Minimum flow is gpm 403,500 375,000 gpm.

1.2. Reactor coolant pumps 97,500 (2A1) 96,000 (2A2)

RCP Pump Test Data gpm 95,000 (213 1 )

94,000 (2B2) 1.3. Steam flow lbm/s See Item lb 7.1 1.4. Feedwater flow Ibm/hr See Item lb 7.1 1.5. SG recirculation ratio/boiler Power %Circ section flow Power-Ratio 25 13.86

%CircRatio 50 7.06 1

75 4.40 1

1 Item Parameter -Description Units No.

5.5.2. Barrel-baffle percent

6.

Steam generator recirculation Power-ratio

%CircRatio

7.

Heat balance information such as:

7.1. Feed and steam flows Ibm/hr 7.2. Feedwater temperature OF 7.3. Turbine inlet pressure.

psia

1.

Plant Operating Conditions Primary and Secondary Flow rates:

1.1. Core flow gpm 1.2. Reactor coolant pumps gpm section flow Power-

%CircRatio Value 0.47 See Item 1 a 1.5 11,905,010 11,806,740 435 852.7 403,500 97,500 (2A1) 96,000 (2A2) 95,000 (2Bl)

%Circ Ratio 25 13.86 50 7.06 75 4.40 L-2009-208 Page 4 of62 Comments Assume bypass breakdown documented in Unit 1 UFSAR due to unit similarities.

Benchmark Heat Balance Benchmark Heat Balance Benchmark Heat Balance, Turbine Inlet Valve RCP Pump Test Data

L-2009-208 Page 5 of 62 Item Parameter -Description Units Value Comments No.

100 3.02

2.

Primary and Secondary Pressures (absolute pressures):

2.1. Pressurizer Range: 2225 to 2275 psia 2250 psia.

Unc.: + 45 psi normal,

+ 90 psi harsh.

2.2. Core inlet psia Assumed to remain 2286 similar to current conditions.

2.3. Core outlet psia Assumed to remain 2250 similar to current conditions.

2.4. Reactor coolant pump psia Assumed to remain discharge 2287 similar to current conditions.

2.5. Steam generator dome psia PRELIMINARY SG outlet pressure from 895.8 heat balance plus dP to upstream of flow restrictor extrapolated using EPU flow 2.6. Turbine control valve inlet psia See Item lb.7.3 2.7 Detailed primary loop Assumes 10% SG tube pressure drop distribution psi Table 13 below plugging.

3. Primary and Secondary 4:

Temperatures:

3.1 Hot leg OF 606.0 Assumes 10% SG tube plugging.

3.2 Cold leg 551 Corresponds to 100%

OF Unc +/- 3F Power. Tcold at zero power is 532F.

3.3 Core outlet Assumes 10% SG tube plugging.

3.4 Upper I-lead OF 606.0 Assumed to be the same L-2009-208 Page 5 of62 Item Parameter -Description Units Value Comments No.

2.

Primary and Secondary Pressures Range: 2225 to 2275 psia 2250 psia.

Unc.: +/- 45 psi normal,

+ 90

. harsh.

2.2. Core inlet psia Assumed to remain 2286 similar to current conditions.

2.3. Core outlet psia Assumed to remain 2250 similar to current conditions.

2.4. Reactor coolant pump psia Assumed to remain discharge 2287 similar to current conditions.

2.5. Steam generator dome psia PRELIMINARY SG outlet pressure from 895.8 heat balance plus dP to upstream of flow restrictor extrapolated EPU flow 2.7 Detailed primary loop distribution

3.

Primary and Secondary 3.1 Hot leg OF 3.2 Cold leg 551 OF Unc: +/- 3F 3.3 Core outlet OF

L-2009-208 Page 6 of 62 Item Parameter -Description Units Value Comments No.

as vessel outlet.

4 Water levels in the pressurizer-.

and steam generators

.r l

H 4.1 Pressurizer

% Tap Span See Figure 1 below 4.2 Steam Generators in 411.3 Level above tubesheet 5

Leakage flows:

% of vessel flow 5.1 Outlet nozzle clearances Assumed to be similar to current operating value.

5.2 DC to upper head percent 0.16 Assumed to be similar to current operating value.

5.3 CEA shrouds This has not been percent N/Aqunied quantified.

5.4 Upper head to upper plenum This has not been (guide structure holes) percent N/A quantified.

5.5 Core bypass (guide tubes, barrel-baffle)-

5.5.1 Guide tubes Assumed to be similar to current operating value.

5.5.2 Barrel-baffle Assumed to be similar to current operating value.

6 Steam generator recirculation Power-See Item lb.l.5 ratio

%CircRatio 7

Heat balance infornation such as:

7.1 Feedwater and steam flows lbm/hr See Table 14 7.2 Feedwater temperature OF See Table 14 7.3 Turbine inlet pressure.

psia See Table 14

2.

Analysis Topical Reports

1. Topical Report on the See References provided licensing analysis of record for Comment See Comment below applicable to rated LOCA at rated power and EPU power:

Item No.

Parameter -Description 4

Water levels in the pressurizer and steam 5

Leakage flows:

5.1 Outlet nozzle clearances 5.2 DC to upper head 5.3 CEA shrouds 5.5.2 Barrel-baffle 6

Steam generator recirculation ratio

2.

Analysis Topical Reports

1. Topical Report on the licensing analysis of record for LOCA at rated and EPU Units percent percent percent percent percent Power-

%CircRatio See Comment Value 3.7 1.12 0.16 N/A N/A 0.47 See Item Ib.1.5 See Comment Comments See References provided below applicable to rated power:

L-2009-208 Page 6 of62

L-2009-208 Page 7 of 62 Item Parameter -Description Units Value Comments No.

conditions.

CENPD-132, through Suppl. 4-P-A, "Calculative Method for the CE Nuclear Power Large Break LOCA Evaluation Model",

March 2001.

0 CENPD-137, through Suppl. 2-P-A, "Calculative Method for the ABB CE Small Break LOCA Evaluation Model",

"April 1998.

No new Topical Reports for EPU analyses.

Analysis results are in the UFSAR.

Safety System Logic, Setpoints and Delay Times h

Critical Safety Parameters List (also called "Groundrules document") for the last reload for:

7

1. ESFAS See Table 5 See Table 5 See Table 5
2.

RPS See Table 5 See Table 5 See Table 5

3.

SGIS/MSIS See Table 5 See Table 5 See Table 5

4.

PORV See Table 5 See Table 5 See Table 5

5. SRV.

,PTnh1P 5 0,P TAIP

~

VZI P Thlp r%

4.

Primary and Secondary

' Pressure Drops Item No.

3.
4.

Parameter -Description conditions.

Safety System Logic, Setpoints and Delay Times Critical Safety Parameters List (also called "Groundrules for the last reload for:

Primary and Secondary Pressure D Units Value Comments CENPD-132, through Suppl. 4-P-A, "Calculative Method for the CE Nuclear Power Large Break LOCA Evaluation Model",

March 2001.

CENPD-137, through Suppl. 2-P-A, "Calculative Method for the ABB CE Small Break LOCA Evaluation Model",

"April 1998.

No new Topical Reports for EPU analyses.

Analysis results are in the UFSAR.

L-2009-208 Page 7 of62

L-2009-208 Page 8 of 62 Item Parameter -Description Units Value Comments No.

1. Primary side pressure drop distribution with corresponding See Table flow rate, including leakage flows 13 See Table 13 (from design data or vendor analyses).
2.

Secondary side pressure drop distribution with corresponding flow rate, including leakage flows Later Later Later (from design data or vendor analyses).

5.

Core and Fuel Design 4

1. Number of assemblies N/A 217
2. Dimensions Array: 16 x 16, The pitch is the sum of N/A Pitch: 8.180 in, 7.972 and 0.208 = 8.180 Length: 158.5 in in.
3. Spacer grid locations and K-See Table 4 for factors N/A grid locations and K-factors.
4.

Vessel pressure drops Current values:

a) Inlet nozzle & 90 a) 5.0 degree turn, b) 10.4 b) Downcomer, lower c) 13.4 plenum, support d) 6.7 structure, c) Fuel assembly, d) Fuel assembly outlet to outlet nozzle.

5. Bypass and leakage flows

% of total See item la.5.5 Similar to Item la.5.5 flow above above.

6.

Number and location of fuel rods.

236 per assy Some fuel rods contain N/A 51,212 total.

burnable absorber See Figs. 3 and 4 below for location.

L-2009-208 Page 8 of62 Item Parameter -Description Units Value Comments No.

1. Primary side pressure drop distribution with corresponding See Table flow rate, including leakage flows 13 See Table 13 (from design data or vendor
2.

Secondary side pressure drop distribution with corresponding flow rate, including leakage flows Later Later Later (from design data or vendor

5.
2.

Dimensions Array: 16 x 16, The pitch is the sum of N/A Pitch: 8.180 in, 7.972 and 0.208 = 8.180

. 158.5 in in.

Spacer grid locations and K-See Table 4 for oJ.

factors N/A grid locations and K-factors.

4.

Vessel pressure drops Current values:

a) Inlet nozzle & 90 a) 5.0 degree turn, b) 10.4 b) Downcomer, lower psi c) 13.4 plenum, support d) 6.7 structure, c) Fuel assembly, d) Fuel assembly outlet to outlet nozzle.

5.

Bypass and leakage flows

% of total See item 1a.5.5 Similar to Item 1a.5.5 flow above above.

6.

Number and location of fuel rods.

236 per assy Some fuel rods contain N/A 51,212 total.

burnable absorber See Figs. 3 and 4 material.

below for location.

L-2009-208 Attachment I Page 9 of 62 Parameter -Description Units Value Comments

7. Number and location of guide 5 guide tubes per tubes.

N/A assy.

See Fig. 3 below for location.

Equipment Drawings and 4,

Design Reports To confirm the calculation of flow path lengths and elevations, flow

  • ?)Th*j J

areas, volumes, metal mass and surface areas (including pipe schedules), and form loss (due to bends, contractions, expansions,

~*"-

~$.!

orifices, etc.) for the following equipment:

1. Reactor vessel and internals (identification of all core bypass flow paths and flow rates, See Table 3 including upper plenum or head to downcomer, if available).
2.

Primary loop piping (hot leg, cold See Table 3 leg, pump suction)

3.

Reactor coolant pumps See Table 3

4.

Steam generators and internals (U-tube lengths, separators, inlet See Table 3 and outlet plenum, etc.), (TH Design Report)

5. Pressurizer, surge line, spray lines, safety and relief valves and See Table 3 connecting lines, etc.
6. Main steam lines out to the turbine stop valves, including See Table 3 safety and relief valves and Item No.
6.

Parameter -Description

7. Number and location of guide tubes.

Equipment Drawings and Design Reports To confirm the calculation of flow path lengths and elevations, flow areas, volumes, metal mass and surface areas (including pipe schedules), and form loss (due to bends, contractions, expansions, orifices, etc.) for the following

1. Reactor vessel and internals (identification of all core bypass flow paths and flow rates, including upper plenum or head to down comer if
2.

Primary loop piping (hot leg, cold

4.

Steam generators and internals (V-tube lengths, separators, inlet and outlet plenum, etc.), (TH

5.

Pressurizer, surge line, spray lines, safety and relief valves and co etc.

6.

Main steam lines out to the turbine stop valves, including and relief valves and Units Value 5 guide tubes per See Table 3 See Table 3 See Table 3 See Table 3 See Table 3 Comments L-2009-208 Page 9 of62

L-2009-208 Page 10 of 62 Item Parameter -Description Units Value Comments No.

connecting lines, main steam isolation valves, flow restrictors, etc.

7.

Main feedwater lines from the isolation valves to the steam See Table 3 generator inlet.

8. Auxiliary feedwater lines and feedwater pump type, See Table 3 configuration and capacity.
9.

Safety injection equipment including SITs, high and low pressure injection systems and connecting piping.

10. Charging and letdown system See Table 3 (CVCS).
11. Residual heat removal system.

See Item 6.9 for LPSI See Comments System. LPSI and RHR are the same system.

7.

Reactor Vessel Internals Weight and surface area of reactor vessel internal structures:

A i__

8. Core support barrel Includes upper, center, 136,600/ I and lower portions of the Lbs / sq. ft.

1126 Inside core support barrel; 1110 outside upper and lower flange; inner and outer nozzle areas.

9.

Core shroud 34,000 /

Includes vertical and Lbs / sq. ft.

594 Inside horizontal surfaces of the 867 outside core shroud.

10. Lower core support plate Lsq.80/20 Inldstpadbto L sft 8

6 I ncludes top and bottom 10_Lwecrspprtplt

__bs__/_sq.___ft.__8,000___/_260__surfaces; surface areas L-2009-208 Page 10 of62 Item Parameter -Description Units Value Comments No.

connecting lines, main steam isolation valves, flow restrictors, etc.

7.

Main feedwater lines from the isolation valves to the steam See Table 3 inlet.

8.

Auxiliary feedwater lines and feedwater pump type, See Table 3 on and

9.

Safety injection equipment including SITs, high and low See Table 3 pressure injection systems and

10. Charging and letdown system See Table 3 II. Residual heat removal system.

See Item 6.9 for LPSI See Comments System. LPSI and RHR are the same

7.

Reactor Vessel Internals Weight and surface area of reactor vessel internal structures:

8.

Core support barrel Includes upper, center, 136,600/

and lower portions ofthe Lbs / sq. ft.

1126 Inside core support barrel; 1110 outside upper and lower flange; inner and outer nozzle areas.

9.

Core shroud 34,000/

Includes vertical and Lbs / sq. ft.

594 Inside horizontal surfaces ofthe 867 outside

10. Lower core support plate Lbs / sq. ft.

8,000/260

L-2009-208 Attachment I Page 11 of 62 Comments inside the holes of the plate.

Includes top and bottom surfaces; surface areas inside the holes of the plate.

Includes CEA shrouds with extensions; total UGS plate, flange, beam,

& cylinder areas; total fuel alignment plate area (Neglects guide tubes).

Includes vertical webs; flanges; cylinder; columns; core support plate; bottom plate.

Includes top and bottom surfaces; surface areas inside the holes of the Does not include shroud extensions.

Steam Generator Internals

1. Weight of steam generator tube sheet and surface area of tube sheet exposed to primary side fluid.

1.1. Weiaht of Tube Sheet L-2009-208 Page 11 of62 Item Parameter -Description Units Value Comments No.

the holes of the

11. Fuel alignment plate (Upper Core Plate)

Lbs / sq. ft.

9,900/331

12. Upper guide structure Lbs / sq. ft.

120,000/7,120

13. Core support assembly Lbs / sq. ft.

45,500/ 1193

14. Flow skirt Lbs / sq. ft.

3,600/223

15. Control element assembly (CEA) 48,000/

Does not include shrouds Lbs / sq. ft.

1826 Inside shroud extensions.

2100 outside

16. Shroud extensions 10,400/

Lbs / sq. ft.

866 Inside 1035 outside

17. Grid assemblies
8.

Steam Generator Internals

1.

Weight of steam generator tube sheet and surface area of tube sheet exposed to primary side fluid.

L-2009-208 Attachment I Page 12 of 62 Item Parameter -Description Units Value Comments No.

forged lower cylindrical ring and cladding 1.2. Surface area of Tube Sheet PRELIMINARY (Primary Side) f 72.29 Estimated from tubesheet OD minus 2X tube OD

2.

Weight and surface area of steam generator wrapper.

2.1. Weight of SG wrapper Ibm 34,730 Includes wrapper roof 2.2. Surface area of SG wrapper f

-1360 Wetted surface area on downcomer side

9.

Steam Generator Fluid Volumes

1. Inlet plenum fW 3

338.4 Includes Manway

2.

Outlet plenum ft3 332.0 Includes Manway

3. Active and ft3 1230.0 inactive (within tube sheet) tubes 41.3
4. Number of steam generator tubes 8999
5. Length of shortest and longest in Single straight leg (not including tubesheet) 262.598 min 273.425 max Tube bend radius (to tube centerline) 4.134 min 73.134 max
10.

Steam Generator Parameters I

1. Inventory and recirculation ratio lbm Power Secondary Inventory at EPU Mass conditions. Recirculation Item No.
9.
2.

Parameter -Description 1.2. Surface area of Tube Sheet (Primary Side)

5. Length of shortest and longest
10.

Steam Generator Parameters

1. Inventory and recirculation ratio Units in Value 72.29 Single straight leg (not including tubesheet) 262.598 min 273.425 max Tube bend radius (to tube centerline)

Comments L-2009-208 Page 12 of62

L-2009-208 Attachment I Page 13 of 62 Item Parameter -Description Units Value Comments No.

versus load (essential at rated 0

215680 ratios provided in Item power conditions) 25 184560 lb. 1.5 50 164650 75 150600 100 139430

2.

SG flow areas, K-factors and flows Later Later Later

11.

MS Line Flow Restrictor 1.91 ft' is the SG outlet

1. Restrictor flow area f,

1.91 per SG nozzle area. The main line flow venturi area is 2.27 ft2 per SG.

Steam Generator and Reactor Vessel Heights

1. Volume versus height relatio n sh ip fo r th e steam S e T b e 6S e T b e 6-generators with downcomer and boiler regions provided separately
2.

Volume versus height for the reactor vessel with internals See Table 6 See Table 6 installed Reactor Coolant Pump Rated

,L Conditions 72*:

1. Head The value is the average ft 2of the four pump-specific values (303, 296, 293 &

295 ft)

Item Parameter -Description No.

versus load (essential at rated power conditions)

2.

SG flow areas, K-factors and flows

11.

MS Line Flow Restrictor

12.
13.
1. Restrictor flow area Steam Generator and Reactor Vessel ts I. Volume versus height relationship for the steam generators with downcomer and boiler r"'n'HH'~
2.

Volume versus height for the reactor vessel with internals installed Reactor Coolant Pump Rated Conditions I. Head Units Later ft Value 0

215680 25 184560 50 164650 75 150600 100 139430 Later See Table 6 See Table 6 296.75 Comments ratios provided in Item 1 b. 1.5 Later The value is the average of the four pump-specific values (303,296,293 &

295 ft)

L-2009-208 Page 13 of62

L-2009-208 Page 14 of 62 Item Parameter -Description Units Value Comments No.

2.

Flow The value is the average of the four pump-specific gpm 87,750 values (85,000 - 87,500 -

91,000 & 87,500 gpm)

3. Torque The value is the average lbf-ft 33,950 of the four pump-specific values (33,860 - 34,000

-34,720 & 33,230 ft-lbf)

4.

Speed rpm 900 Synchronous speed

5. Density The value is the average ibm ft 4of the four pump-specific values (47.3, 47.4, 46.9 and 48.4 lbm/ ft3)
6.

Homologous pump curves (four N/A See Table 7 quadrant)

7.

Pump inertia and friction Uncertainty value of_+

(coefficients of polynomial in 1% may be applied to pump speed)

Ibm-ft2 102,000 pump inertia in the analysis to gain ft-lbf 2735 operating margin.

- Constant for friction and windage torque.

8. Coolant primary system fluid W

112 volume within pump

9.

RCP metal mass, excluding motor lbs 75,000 Dry weight.

10. Reverse rotation device RCP design torque for operational for RCPs N/A Yes anti-reverse rotation device equal to 62,000 ft-lbf.
11. Pump power to primary fluid MWt 14.2 (nominal),

20 (max)

12. Coastdown characteristics N/A Figure 2 Item Parameter -Description Units No.
2.

Flow gpm

3.

Torque Ibf-ft

4.

Speed rpm

5.

Density Ibm! ff

6.

Homologous pump curves (four N/A quadrant)

7.

Pump inertia and friction (coefficients of polynomial in Ibm-ft2 pump speed) ft-Ibf

8.

Coolant primary system fluid ft3 volume within pump

9.

RCP metal mass, excluding motor Ibs

10. Reverse rotation device operational for RCPs N/A
11. Pump power to primary fluid MWt
12. Coastdown characteristics N/A Value 87,750 33,950 900 47.5 See Table 7 102,000 2735 112 75,000 Yes 14.2 (nominal),

20 (max)

Figure 2 Comments The value is the average of the four pump-specific values (85,000 - 87,500 -

91,000 & 87,500 gpm)

The value is the average of the four pump-specific values (33,860 - 34,000

- 34,720 & 33,230 ft-Ibf)

Synchronous speed The value is the average of the four pump-specific values (47.3,47.4,46.9 and 48.4 Ibm! ft3 )

Uncertainty value of +/-

1 % may be applied to pump inertia in the analysis to gain operating margin.

- Constant for friction and windage torque.

Dry weight.

RCP design torque for anti-reverse rotation device equal to 62,000 ft-Ibf.

L-2009-208 Page 14 of62

L-2009-208 Page 15 of 62 Item Parameter -Description Units Value Comments No.

13. Pump trip setpoints N/A Overcurrent Overload Trip
14. Pump time delays and logic N/A N/A No safety related RCP trips.
14.

Core Cooling System

1. HPSI and LPSI delivery curves The flows in the listed tables are for either loop, such that the listed flow See Tables 8, 9, 10, is going through each loop listed. The broken loop in Tables 8 and II occurs in Loop Al.
2.

SIT total volume W

1855 Four tanks, each with this capacity.

3.

SIT initial pressure and liquid

  • psia
  • (500 to 650 + 15)

TS ranges for SIT volume W

f

° (1420 to 1556 +

pressure and liquid

32) volume.
4.

CST minimum capacity gal 276,200

5.

Charging pump flow versus Reciprocal pump. Flow pressure 40 (nominal) to 49 is per charging pump.

gpm (maximum)

Nominal value does not 35 minimum, after include 4 gpm for RCP uncertainties bleed-off.

15.a Control Systems Rated power operation of the primary and secondary control systems for:

1. SG water level instrumentation Pre-EPU description of and control (three-element) the SG water level control system is provided in UFSAR Figure 7.7-5. Additional information is contained

L-2009-208 Page 16 of 62 Item Parameter -Description Units Value Comments No.

in System Description 0711408 "Steam Generators and Feedwater Control System"

2.

SG pressure (including bypass Pre-EPU description of and ADV) the Steam Bypass Control System is contained in UFSAR Sections 7.2.2.5.3, 7.4.1.4, 7.7.1.1.5, and 10.4.4. Reference Figure 19 (SBCS Simplified Block Diagram). See Essential Valve Characteristics Table 20 for operation of Atmospheric Dump Valves

3.

Pressurizer heaters and sprays Pre-EPU description of the Pressurizer Pressure Control System is provided in Figure 16

4.

Pressurizer level Pre-EPU description of the Pressurizer Level N/A See Comment Control System is contained in Figures 1 and 17

5.

Auxiliary feedwater See Table 5 for Auxiliary Feedwater Actuation System N/A See Comment setpoints.

The Auxiliary Feedwater Actuation System logic is described in UFSAR Section 7.3.1.1.8 and Item Parameter -Description Units Value No.

2.

SO pressure (including bypass and ADV)

N/A See Comment

3.

Pressurizer heaters and sprays N/A See Comment

4.

Pressurizer level N/A See Comment

5.

Auxiliary feedwater N/A See Comment Comments in System Description 0711408 "Steam Generators and Feedwater Control System" Pre-EPU description of the Steam Bypass Control System is contained in UFSAR Sections 7.2.2.5.3, 7.4.1.4,7.7.1.1.5, and 10.4.4. Reference Figure 19 (SBCS Simplified Block Diagram). See Essential Valve Characteristics Table 20 for operation of Atmospheric Dump Valves Pre-EPU description of the Pressurizer Pressure Control System is provided in Figure 16 Pre-EPU description of the Pressurizer Level Control System is contained in Figures 1 and 17 See Table 5 for Auxiliary Feedwater Actuation System setpoints.

The Auxiliary Feedwater Actuation System logic is described in UFSAR Section 7.3.1.1.8 and L-2009-208 Page 16 of62

L-2009-208 Attachment I Page 17 of 62 Item Parameter -Description Units Value Comments No.

UFSAR Figures 7.3-12 (drawing 2998-12613) &

7.3.14 (drawing 2998-15003)

6.

CVCS (charging and letdown)

Pre-EPU description of the CVCS System is contained in UFSAR Section 9.3.4 15.b Control Systems EPU condition operation of the Kt*t* K>K 2i¶$i primary and secondary control systems for:

>4-

1. SG water level instrumentation Feedwater Control and control (three-element)

System will be rescaled to reflect new FW pumps, new FW control valves and an expanded nominal flow rate. The post-trip transition logic for main to low power FW control valves will also be revised to improve SG level response.

2.

SG pressure (including bypass EPU does not change and ADV)

ADV control logic or setpoints. Steam Bypass valve capacity will be increased by EPU to N/A See Comment restore design capacity in

%RTP. The SBCS is functionally implemented in the plant Distributed Control System (DCS). SBCS Item No.

Parameter -Description

6. eves (charging and letdown)
1.

SO water level instrumentation and control (three-element)

2. SO pressure (including bypass andADV)

Units N/A N/A N/A Value See Comment See Comment See Comment Comments UFSAR Figures 7.3-12 (drawing 2998-12613) &

7.3.14 (drawing 2998-15003 Pre-EPU description of the CVCS System is contained in UFSAR Section 9.3.4 Feedwater Control System will be rescaled to reflect new FW pumps, new FW control valves and an expanded nominal flow rate. The post-trip transition logic for main to low power FW control valves will also be revised to improve SO level EPU does not change ADV control logic or setpoints. Steam Bypass valve capacity will be increased by EPU to restore design capacity in

%RTP. The SBCS is functionally implemented in the plant Distributed Control

. SBCS L-2009-208 Page 17 of62

L-2009-208 Page 18 of 62 Item Parameter -Description Units Value Comments No.

will be rescaled to match new valve Cv curves.

Quick Open setpoint for sudden loss of load will be decreased from 30%

to z15%. Transition from Quick Open logic to Modulation control will be modified (through the use of controller output signal tracking) to smooth the steam header pressure response.

3.

Pressurizer heaters and sprays EPU does not change the Pressurizer Pressure control logic or setpoints.

4.

Pressurizer level The Pressurizer Level Control Program will be rescaled to reflect the increased Tavg range from 0 to 100% RTP.

Program endpoints in terms of volume will remain as is.

5.

Auxiliary feedwater EPU does not change the N/A See Comment AFAS actuation logic or setpoints.

6.

CVCS (charging and letdown)

EPU does not change N/A See Comment CVCS control logic or setpoints

16.

Reactor Vessel Upper Head U

See item 1.b.3.4 Assume to be the same

1. Upper head fluid temperature Futlet L-2009-208 Page 18 of62 Item Parameter -Description Units Value Comments No.

will be rescaled to match new valve Cv curves.

Quick Open setpoint for sudden loss of load wi\\l be decreased from 30%

to ;:::15%. Transition from Quick Open logic to Modulation control wi\\l be modified (through the use of controller output signal tracking) to smooth the steam header pressure response.

3.

Pressurizer heaters and sprays EPU does not change the N/A See Comment Pressurizer Pressure control logic or

4.

Pressurizer level The Pressurizer Level Control Program will be rescaled to reflect the N/A See Comment increased Tavg range from 0 to 100% RTP.

Program endpoints in terms of volume will remain as is.

5.

Auxiliary feedwater EPU does not change the N/A See Comment AF AS actuation logic or

6. eves (charging and letdown)

N/A See Comment

16.

Reactor Vessel Upper Head

1. Upper head fluid temperature above.

as the core outlet

L-2009-208 Attachment I Page 19 of 62 Item Parameter -Description Units Value Comments No.

at normal operating conditions.

temperature since the Rx vessel does not have upper head injection.

17.

Essential Valve Characteristics Number of valves, full open flow area, forward/ reverse flow coefficients (CV's), open/close rate, minimum flow at rated conditions, logic for opening and closing the valves for:

I. Pressurizer PORVs See Tables 12 & 20

2.

Pressurizer safety valves See Tables 12 & 20

3.

Main steam safety valves See Tables 12 & 20

4.

Atmospheric dump valves See Tables 12 & 20

5.

TCVs (turbine control valves)

See Tables 12 & 20

6.

Turbine bypass valves See Tables 12 & 20

7.

TSVs, (turbine stop valves)

See Tables 12 & 20

8. MFIVs See Tables 12 & 20
9.

MSIVs See Tables 12 & 20 18.

to Reactor Core Parameters 20.

1. Control rod insertion versus time See after scram Attachment See Attachment 2 2
2.

CEA worth versus insertion (with See and without highest worth rod Attachment See Attachment 2 stuck out of core) 2

3. Reactivity versus fuel See temperature and reactivity versus Attachment Item No.

Parameter -Description at normal operating conditions.

Units

17.

Essential Valve Characteristics

18.

Number of valves, full open flow area, forward/ reverse flow coefficients (CY's), open/close rate, minimum flow at rated conditions, logic for opening and cl the valves for:

to Reactor Core Parameters

20.
1.

Control rod insertion versus time after scram Attachment 2

2. CEA worth versus insertion (with See and without highest worth rod Attachment stuck out of 2
3.

Reactivity versus fuel and rpo:>"THI1'" versus See Attachment Value See Attachment 2 See Attachment 2 See Attachment 2 Comments temperature since the Rx vessel does not have head*.

L-2009-208 Page 19 of62

L-2009-208 Attachment I Page 20 of 62 Item Parameter -Description Units Value Comments No.

moderator density 2

4.

Moderator temperature See coefficient Attachment See Attachment 2 2

5. Typical top peaked axial power See profile Attachment See Attachment 2 2
6. Minimum and maximum average See fuel clad gap conductivity at rated Attachment See Attachment 2 power conditions 2
7. Minimum local gap conductance See as a function of LHGR Attachment See Attachment 2 2
8. Gap conductance See Attachment See Attachment 2 2
9.

Linear heat rate See Attachment See Attachment 2 2

10. Fuel average and centerline temperature as a function of See Attachment See Attachment 2 burnup for the hot rod in the hot 2

bundle.

11. Specifications for modeling a small break LOCA, in particular what models/assumptions are used regarding loop seal clearing and hot channel conservatisms.

See The AREVA SBLOCA Attachment See Attachment 2 methodology topical report was 2

provided and this is very useful.

The FSAR or a report on the analysis of record is needed to move from the generic Item Parameter -Description No.

moderator density

4. Moderator temperature coefficient
5.

Typical top peaked axial power profile

6.

Minimum and maximum average fuel clad gap conductivity at rated power conditions

7. Minimum local gap conductance as a function of LHGR
8.

Gap conductance

9.

Linear heat rate

10. Fuel average and centerline temperature as a function of burnup for the hot rod in the hot bundle.
11. Specifications for modeling a small break LOCA, in particular what models/assumptions are used regarding loop seal clearing and hot channel conservatisms.

The AREV A SBLOCA methodology topical report was provided and this is very useful.

The FSAR or a report on the analysis of record is needed to move from the generic Units 2

See Attachment 2

See Attachment 2

See Attachment 2

See Attachment 2

See Attachment 2

See Attachment 2

See Attachment 2

See Attachment 2

Value See Attachment 2 See Attachment 2 See Attachment 2 See Attachment 2 See Attachment 2 See Attachment 2 See Attachment 2 See Attachment 2 Comments L-2009-208 Page 20 of62

L-2009-208 Attachment I Page 21 of 62 Item Parameter -Description Units Value Comments No.

methodology to the plant specific application. Plots of key variables for the EPU LBLOCA and SBLOCA analyses, including containment pressure response.

21.

Operator Actions During LOCA

1. Reactor coolant pump trips Accident analysis (conditions to trip pumps -

assumes LOOP automatic or manual)

Pumps concurrent with LOCA, None automatically trip and pumps are not uomill r loaded into EDGs or manually operated. Same assumption for EPU analysis.

2. HPSI throttling criteria If HPSI pumps are operating, and ALL of the following conditions are satisfied:

- RCS subcooling is greater than or equal to minimum None See Comments subcooling Section.

  • Pressurizer level is at least 30%

and NOT lowering,

- At least ONE S/G is available for RCS heat removal with level being restored to or maintained between 60 and 70% NR, Item No.

Parameter -Description methodology to the plant specific application. Plots of key variables for the EPU LBLOCA and SBLOCA analyses, including containment

21.

Operator Actions During LOCA

1. Reactor coolant pump trips (conditions to trip pumps -

automatic or manual)

2. HPSI throttling criteria Units None None Value Pumps automatically trip on LOOP See Comments Section.

Comments Accident analysis assumes LOOP concurrent with LOCA, and pumps are not loaded into EDGs or manually operated. Same assumption for EPU following conditions are satisfied:

  • RCS subcooling is greater than or equal to minimum subcooling
  • Pressurizer level is at least 30%

and NOT lowering,

  • At least ONE S/G is available for RCS heat removal with level being restored to or maintained between 60 and 70%

L-2009-208 Page 21 of62

L-2009-208 Page 22 of 62 Item Parameter -Description Units Value Comments No.

- Rx Vessel level indicates sensors 4 through 8 are covered, or NO abnormal differences (greater than 201F) between THOT and Rep CET temperature, Then, THROTTLE SI flow. Same assumption for EPU analysis.

3. MS line break auxiliary feedwater Due to the design of the control AFW system that automatically isolates the AFW from the broken N/A See comment loop, no auxiliary feedwater was assumed to be delivered during the post-trip MSLB event. No flow delivered for pre-trip MSLB either.

Most recent COLR provided to NRC via ee See Comment FPL letter L-2007-183,

22.

Core Operating Limits Report Comment dated 11-19-2007. EPU COLR to be provided later after it is issued.

23.

RCS Material Property Data For the various materials in the reactor coolant system (stainless steel, inconel, etc.):b/tS

1. Density lb/ft' See Table 15
2.

Specific heat BTU/ lbm-See Table 15 OF L-2009-208 Page 22 of62 Item Parameter -Description Units Value Comments No.

  • Rx Vessel level indicates sensors 4 through 8 are covered, or NO abnormal differences (greater than 20°F) between THOT and Rep CET temperature, Then, THROTTLE SI flow. Same assumption for EPU MS line break auxiliary feedwater Due to the design of the

.).

control AFW system that automatically isolates the AFW from the broken N/A See comment loop, no auxiliary feed water was assumed to be delivered during the post-trip MSLB event. No flow delivered for MSLB either.

Most recent COLR provided to NRC via

22.

Core Operating Limits Report See See Comment FPL letter L-2007-183, Comment dated 11-19-2007. EPU COLR to be provided later after it is issued.

23.

RCS Material Property Data For the various materials in the reactor coolant system (stainless etc

2.

Specific heat See Table 15 OF

L-2009-208 Attachment I Page 23 of 62 Item Parameter -Description Units Value Comments No.

3.

Thermal conductivity BTU/hr-ft-See Table 15 OF

2.

Emissivity versus temperature See Table 15 Power Level / Uncertainty (New Requests)

V.,

1. Current Power Level MWth 2700
2. Current Power Uncertainty 2

Applicable for both (LBLOCA/SBLOCA)

LBLOCA and SBLOCA

3. EPU Power Level Mwth 3020
4. EPU Power Uncertainty 0.3 @ full power.

Applicable for both (LBLOCA/SBLOCA)

LBLOCA and SBLOCA L-2009-208 Page 23 of62 Item Parameter -Description Units Value Comments No.

Thermal conductivity BTU/hr-ft-

.).

See Table 15 of

2.
24.
2. Current Power Uncertainty 2

Applicable for both LBLOCAISBLOCA LBLOCA and SBLOCA

3. EPU Power Level Mwth 3020
4. EPU Power Uncertainty 0.3 @ full power.

Applicable for both LBLOCAISBLOCA LBLOCA and SBLOCA

L-2009-208 Page 24 of 62 Figure 1 ST. LUCIE UNIT 2 PRESSURIZER LEVEL PROGRAM Note: The Values Refer to the Actual Plant Settings Pressurizer Volume at 63.0% Span is 914 Cu. Ft.

Pressurizer Volume at 33.1% Span is 463 Cu. Ft.

Figure 1 ST. LUCIE UNIT 2 PRESSURIZER LEVEL PROGRAM Note: The Values Refer to the Actual Plant Settings PRESSURIZER LEVEL PROGRAM L-2009-208 Page 24 of62 65.-------------------------------------------------------.

"2 01 Co 60 55 Ul 50 Co

~

-I W > 45 w

-I 0:::

W N

ii2

~ 40 Ul w

0:::

D..

35 30 25+-------+-------+-------+-------+-------+-----~~------4 520.0 530.0 540.0 550.0 560.0 570.0 TAVE (F)

Pressurizer Volume at 63.0% Span is 914 Cu. Ft.

Pressurizer Volume at 33.1 % Span is 463 Cu. Ft.

580.0 590.0

L-2009-208 Page 25 of 62 Figure 2 - RCP Coastdown 800 700

~2600 W

0_

FLORIDA POWER & LIGHT COMPANY ST. LUCIE PLANT UNIT 2 FIGURE 15.3.2-1 Complete Loss of Flow -

Four Pumps Coasting Down Total Core Inlet Flow versus Time 15.3-10 Amendment No. 17 (12/06)

Note: Curve represents current analyses.

Figure 2 - RCP Coastdown 800~--------------------------------------.

Cil

s Q) 700 8500
s

~

12 14 15.3-10 15 Time (s) 18 20 22 FLORIDA POWER & LIGHT COMPANY ST. LUCIE PLANT UNIT 2 FIGURE 15.3.2-1 Complete Loss of Flow -

Four Pumps Coasting Down Total Core Inlet Flow versus Time Amendment No. 17 (12106)

Note: Curve represents current analyses.

L-2009-208 Page 25 of62

L-2009-208 Page 26 of 62 Figure 3 CORE SUM BARREL FUR ROO 0.382" O.

4 D........

t

.050" 1

Figure 3 1

I I

r tI REACTOR VESSU

'1"1 f

15 SPACES AT 0.506 11 "EQUALS 7.590"

~

BE'

~

-l- 0.124" l:-

7.972"

.506" -

I-OUTSIDE GUIDE TU o

inO'ER.-------==----".,,----= __ =----1 UR ROD 0.208" FUR RODS F

PITCH GAP flORIDA POWER & UGHT Amendment No. 13. 05100 ST. LUCIE PLANT UNIT 2 REACTOR CORE CROSS SECTION AGURE4..1*2 L-2009-208 Page 26 of62

L-2009-208 Page 27 of 62 Figure 4 w v T

S R P NM LK KJH G

F E

I I I I I I F-13 ITV17 I E-Vr S-13I I

I I

1 IJ25I T65 T40 I

} 1X02 IX54 E-15 L-15 V-4 FEED FEED IFEED T39 D-6 T23 T37 X56 I X66 111101 U66 U1120 IX68 G-16 E-6 FEED FEED D-17 I1-2 V-17 FEED F.12115(4 XII I l108 U143 I X34 1?.2 3

U37 F-i IFEEDI FEED N-2 V-9 FEED L-13 FEED D-9 I

U23 7421 X18 U48 ITOS I X2 17T1 U54 I55 X?.2 R-6 I F-5 FEED D-4 X-17 FEED R-9 R-3 R-13 I FEED 27T7 N4-6 T4-17 T58 X63 U04 T07 X137 T09 IU56

,10!

U65 T16 X42 T19 1.105 X50 T63 1-18 FEED B-13 T-20 FEED H-i S-19 L-17 F-19 P-1 FEED E-20 X13 FEED G-11 T41 X169 1U40 X31 T11 1U53 X12 417 X22 U60 T10 123 1

U38 X70 T29 F-18 FEED J-18 FEED A-8 1G-3 FEED V-7 FEED W-7 Y-8 FEED N-18 FEED S-18 X64 V34 X43 T59 1580 X19 T52 X04 T45 X20 U68 172 X33 U12 X,52 FEED T-4 FEED N-7 W-16 FEED W-11 FEED L-19 FEED C-16 1,-15 FEED E-4 FEED X05 U59 UI9 U55 102 151 1(06 S7.8 X07 TO0 T03 U52 U09 U62

)(01 FEED B-1I N411 C-7 1-11 C-,15 FEED E-13 FEED R-7I E-11 W-15 J.11 X-11 FEED X59 U11 X44 T61 U57 X15 T49 XD8 T48 IX17 1149 T55 X-35 U18 X60 FEED 1-18 FEED J-7 W-6 FEED L-3 FEED C-11 FEED C-6 J-15 FEED E-18 FEED 134 171 U139 T13 U61 X1 6 T46 X14 U581 T12 X13 U44 X65 T31 F-4 FEED J.-4 FEED A-14 C-15 FEED R-15 FEED R-19 Y-14 FEED N,-4 FEED 8-4 T66

)(57 U101 114 X40 T20 1U53 T04 U67 T18 X41 T17 U07 X58 T68 R-11 FEED B-9 T-2 FEED H-21 8-3 L-5 F-3 P-21 FEED E-2 X-9 FEED LA4 129 T35 X30 U48 T15 129 "170 1184 60 X25 T10 U45 X32 T33 U30 R-17 F-17 FEED D-18 X-5' FEED G..9 (3-19 13,13 FEED

&.5 V-18 FEED S-17 G-17 113 - 14

~

13

-12 T62 E-5 J-16

-7 5

______4 T26 "X47 M1 U02 I U41 IX38 IU161;(39 1142I U04I X211 X48 T25 S-15 FEED" FEED N-20 V-13 FEED L-9 FEED D-13 JI-20 FEED FEED S-7 124 I T43I X13I X72 I Ul1 u5 16 17 1 X711,55 113011 T22 R-16 E-16 FEED FEED DM5 L-20 V-5 FEED FEED

"-16 R-6 1132 I167 E-7 V-11 T32 X49 103 I X61 I T44 I T64 U33 FEED FEED D-16 L-7 T1-7 3

2 From Cycle 15 From Cycle 14 fY

'y Assembly Identier I

P-zIrevmos Cycle Locarme V-16 FEED Ul11I51184 S1s121

__________M____

F-9 T-5 If&S -9 FLORIDA POWER & LIGHT COMPANY ST. LUCIE PLANT UNIT 2 CYCLE 17 REFERENCE CORE LOADING PATTERN FIGURE 4.3-65 Amendment No. 18 (01/08) x W

V T

S I I U25 T65 E:15 L*15 123 137 X56 G-16 E-6 FEED 121 X45 XII uoa F-15 FEED FEED N*2 U23 T42 XIS U48 TOS R-6 F-5 FEED 0-4 X*17 158 X63 UOO T07

'137 l*IS FEED 8-13 T*2O FEED T41 X69 U40 X31 T11 U27 F*18 FEED J*18 FEED A-8 N-6 X64 U34 X43 T59 U50 T57 FEED T-4 FEED N*7 W*16 T-17 X05 U59 U19 U55 T02 27rt ~

FEED 8-11 N*l1 C-7 T*ll T-5 X59 Ul1 X44 T61 US7 U35 FEED T*18 FEED J.7 W-6 1'1-16 134 Xli U39

'IJJ9 Tl3 F-4 FEED J-4 FEED A*14 T65 X5l UOI T14 X40 R*ll FEED B*9 T*2 FEED U29 T35 X30 U48 TI5 R*17 F*17 FEED 0*18 X{j' T28

'X47 Xl4 U02 8-15 FEED FEED N*lO T24 T43 X53 R*16 E*16 FEED U32 T67

  • Frcm Cyd.15 E*7 V*ll "FromC~14 I

Y yy I Assembly lden1ifier z:zz Previous Cycle l.ocaOOn Figure 4 RPNMlKJHG F

E 0

C B

A I I I ! ! I I ! !

JU17 I s?o F-13 T-17 T531 U21 1 E-17 8-13 21 T40 X51 X02 X54 T39 T69 U24 20 V-6 FEED FEED FEED D*S

[}'11 T*15

)(66 Ul0 U66 U20 X56 X62 Ta8 T28 19 FEED [}'17 l-2 V*17 FEED FEED T-6 G-6 U43 X34 U22 X36 U37 U03 Xl6 X46 127 18 V-9 FEED l*13 FEED D*9

.1-2 FEED FEED F*7 X27 171 U54 T55 X28 T08 047 X*l0 T30 U31 -f--17 FEED R*9 R-3 R*13 FEED 8-17 V-4 FEED S-5 G-5 T09 US6 TOI U55 T1S X42 T19 U05

)(SO T63.-f--16 H*l 8019 l*17 F*19 P*l FEED E*20 X13 FEED G*ll U53 X12 T47 X22 U60 T08 X23 U38 X70 129 G-3 FEED G-7 FEED W*7 V-8 FEED N*18 FEED 8-18 ---u:iii -15 X19 T52 X04 T45 X20 U68 T72 lO3 UIZ X52 J-6

-14 FEED W*II FEED l*19 FEED C*16 tj*15 FEED E-4 FEED -W-13 151 X06 f>/.8

'lJJ7 TOO T03 U52 U09 U62

'lJJ1 H.7 -12 G-15 fEED E*13 FEED R*7 E*l1 W*15 J.l1 X*l1 FEED '-::=- -11 X15 T49 X08 T48 X17 U49 T55 X*35 U18 X60 T62 -10 FEED l-3 FEED C-II FEED C-6 J*15 FEED E*18 FEED..g. -9 UI3

_ 8 U61 X26 T46 XI4 U58 TI2 XI3 U44 X65 T31 J*16 C-15 FEED R*15 FEED R'19 Y*14 FEED N-4 FEED S-4 --7 T20 U53 T04 U67 TIS X41 T17 U07 X58 T68 --6 H-21 S-3 L-5 F-3 P*21 FEED E*2 X-9 FEED l-4 X29 T70 US4 TOO X25 TID lJ.45 X32 133 U30 FEED G-9 G-19 G-13 FEED B-5 V*IS FEEO $-17 G-17 ---5 U41 X38 U16 X39 U42 U04 Xli X48 T25 4

V*13 FEED L.g FEED [}'13

.1-20 FEED FEED S*7 X72 U14 U51 tJ2G X67 X55 T30 T22 FEED

[}.5 L*20 V-5 FEED FEED T*16 R-$

3 T32 X49 X03 X61 T44 T64 U33 V*16 FEED FEED FEED [}'16 l*7 T*7 2

! UIS! T54 F*9 T-5 ~!~I 1

180' FLORIDA POWER & LIGHT COMPANY ST. LUCIE PLANT UNIT 2 CYCLE 17 REFERENCE CORE LOADING PATTERN AGURE 4.3-65 Amendment No. 18 (O1l08)

L-2009-208 Page 27 of62

L-2009-208 Page 28 of 62 Table 1 (Not Used)

Table 1 (Not Used)

L-2009-208 Page 28 of62

L-2009-208 Page 29 of 62 Table 2 (Not Used)

Table 2 (Not Used)

L-2009-208 Page 29 0[62

L-2009-208 Page 30 of 62 Table 3 Unit 2 Piping Isometric Drawings by P&ID Flow Diagram Component/Isometric Drawing Reactor Vessel 2998-G-078, Sheet 110, Rev. 08

[2998-769, Rev. 2 Primary Loop Piping (RCS) 2998-G-078, Sheet 110, Rev. 08 2998-2662, Rev. 4 2998-2132, Rev. 6 2998-3793, Rev. 1 2998-1887, Rev. 3 2998-1886, Rev. 6 Reactor Coolant Pumps 2998-G-078, Sheet II1A, Rev. 11 2998-455, Rev. 6 2998-G-078, Sheet 11 lB, Rev. 10 2998-457, Rev. 8 2998-G-078, Sheet I111IC, Rev. 13 2998-G-078, Sheet 11ID, Rev. 10 Steam Generators 2998-G-078, Sheet 110, Rev. 8 2998-21342 Rev 0 (Later) 2998-G-079, Sheet 1, Rev. 41 2998-G-080, Sheet 2A, Rev. 43 Pressurizer/Surge Line/Spray Lines/Relief Lines 2998-G-078, Sheet 109, Rev. 18 2998-506, Rev 4 2998-G-078, Sheet 108, Rev. 5 2998-G-125, Sheet RC-AB-1, Rev 13 2998-G-125, Sheet RC-AB-2, Rev 11 2998-2048, Rev 5 Main Steam Lines Out to the Turbine Stop Valves 2998-G-079, Sheet 1, Rev. 41 2998-G-125, Sheet MS-L-1, Rev. 22 2998-G-079, Sheet 2, Rev. 35 2998-G-125, Sheet MS-L-2, Rev. 22 2998-G-125, Sheet MS-L-3, Rev. 10 2998-G-125, Sheet MS-L-4, Rev. 16 2998-G-125, Sheet MS-L-13, Rev. 11 2998-G-125, Sheet MS-L-14, Rev. 16 Main Feedwater Lines from the Isolation Valves to the Steam Generator Inlet 2998-G-080, Sheet 2A, Rev. 43 1 2998-G-125, Sheet BF-M-6, Rev. 17 Auxiliary Feedwater Lines 2998-G-080, Sheet 2B, Rev. 36 2998-G-125, Sheet BF-M-7, Rev. 18 2998-6-125, Sheet BF-M-8, Rev. 20 2998-G-125, Sheet BF-M-9, Rev. 16 Safety Injection 2998-G-078, Sheet 130A, Rev. 19 2998-G-078, Sheet 130B, Rev. 28 2998-G-078, Sheet 131, Rev. 20 2998-G-078, Sheet 132, Rev. 09 2998-G-078, Sheet 110, Rev. 08 2998-G-125, Sheet SI-N-4, Rev. 20 2998-G-125, Sheet SI-N-5, Rev. 19 2998-G-125, Sheet SI-N-6, Rev. 18 2998-G-125, Sheet SI-N-7, Rev. 15 2998-G-125, Sheet S1-N-8, Rev. 18 2998-G-125, Sheet SI-N-9, Rev. 20 Table 3 Unit 2 Piping Isometric Drawings by P&ID Flow Diagram Component/Isometric Drawing Reactor Vessel 2998-0-078, Sheet 110, Rev. 08 2998-769, Rev. 2 Primary Loop Piping (RCS) 2998-0-078, Sheet 110, Rev. 08 2998-2662, Rev. 4 2998-2132, Rev. 6 2998-3793, Rev. 1 2998-1887, Rev. 3 2998-1886, Rev. 6 Reactor Coolant Pumps 2998-0-078, Sheet lIlA, Rev. 11 2998-455, Rev. 6 2998-0-078, Sheet I11B, Rev. 10 2998-457, Rev. 8 2998-0-078, Sheet l11C, Rev. 13 2998-0-078, Sheet 11lD, Rev. 10 Steam Generators 2998-0-078, Sheet 110, Rev. 8 2998-21342 Rev 0 (Later) 2998-0-079, Sheet 1, Rev. 41 2998-0-080, Sheet 2A, Rev. 43 Pressurizer/Surge Line/Spray LineslRelief Lines 2998-0-078, Sheet 109, Rev. 18 2998-506, Rev 4 2998-0-078, Sheet 108, Rev. 5 2998-0-125, Sheet RC-AB-l, Rev 13 2998-0-125, Sheet RC-AB-2, Rev 11 2998-2048, Rev 5 Main Steam Lines Out to the Turbine Stop Valves 2998-0-079, Sheet 1, Rev. 41 2998-0-125, Sheet MS-L-l, Rev. 22 2998-0-079, Sheet 2, Rev. 35 2998-0-125, Sheet MS-L-2, Rev. 22 2998-0-125, Sheet MS-L-3, Rev. 10 2998-0-125, Sheet MS-L-4, Rev. 16 2998-0-125, Sheet MS-L-13, Rev. 11 2998-0-125, Sheet MS-L-14, Rev. 16 Main Feedwater Lines from the Isolation Valves to the Steam Generator Inlet 2998-0-080, Sheet 2A, Rev. 43 2998-0-125, Sheet BF-M-6, Rev. 17 Auxiliary Feedwater Lines 2998-0-080, Sheet 2B, Rev. 36 2998-0-125, Sheet BF-M-7, Rev. 18 2998-0-125, Sheet BF-M-8, Rev. 20 2998-0-125, Sheet BF-M-9, Rev. 16 Safety Injection 2998-0-078, Sheet BOA, Rev. 19 2998-0-125, Sheet SI-N-4, Rev. 20 2998-0-078, Sheet BOB, Rev. 28 2998-0-125, Sheet SI-N-5, Rev. 19 2998-0-078, Sheet 131, Rev. 20 2998-0-125, Sheet SI-N-6, Rev. 18 2998-0-078, Sheet 132, Rev. 09 2998-0-125, Sheet SI-N-7, Rev. 15 2998-0-078, Sheet 110, Rev. 08 2998-0-125, Sheet SI-N-8, Rev. 18 2998-0-125, Sheet SI-N-9, Rev. 20 L-2009-208 Page 30 of62

L-2009-208 Page 31 of 62 2998-G-125, Sheet SI-N-14, Rev. 25 2998-G-125, Sheet SI-N-16, Rev. 17 2998-G-125, Sheet SI-N-17, Rev. 14 2998-G-125, Sheet SI-N-18, Rev. 12 2998-G-125, Sheet SI-N-19, Rev. 15 2998-G-125, Sheet SI-N-20, Rev. 14 2998-G-125, Sheet SI-N-21, Rev. 13 2998-G-125, Sheet CS-K-1, Rev. 19 2998-G-125, Sheet CS-K-2, Rev. 20 2998-C-124, Sheet S1-1, Rev. 12 2998-C-124, Sheet SI-2, Rev. 10 2998-C-124, Sheet SI-3, Rev. 12 2998-C-124, Sheet SI-4, Rev. 13 2998-C-124, Sheet RC-1, Rev. 9 2998-C-124, Sheet RC-2, Rev. 13 Charging and Letdown System (CVCS) 2998-G-078, Sheet 110, Rev. 08 2998-G-078, Sheet 120, Rev. 17 2998-G-078, Sheet 121A, Rev. 31 2998-G-078, Sheet 122, Rev. 25 2998-G-125, Sheet CH-G-1, Rev. 21 2998-G-125, Sheet CH-G-2, Rev. 19 2998-G-125, Sheet CH-G-3, Rev. 16 2998-G-125, Sheet CH-G-4, Rev. 21 2998-G-125, Sheet CH-G-10, Rev. 12 2998-G-125, Sheet CH-G-14, Rev. 11 2998-G-125, Sheet CH-G-15, Rev. 15 2998-G-125, Sheet CH-G-16, Rev. 06 2998-G-125, Sheet CH-G-17, Rev. 13 2998-C-124, Sheet CH-1, Rev. 11 2998-C-124, Sheet CH-3, Rev. 12 2998-C-124, Sheet CH-4, Rev. 09 2998-C-124, Sheet CH-6, Rev. 8 2998-C-124, Sheet CH-33, Rev. 7 2998-C-124, Sheet CH-72, Rev. 15 2998-C-124, Sheet CH-75, Rev. 14 2998-C-124, Sheet CH-78, Rev. 12 2998-C-124, Sheet CH-103, Rev. 9 2998-C-124, Sheet CH-104, Rev. 8 2998-C-124, Sheet CH-105, Rev. 6 2998-C-124, Sheet CH-106, Rev. 13 2998-C-124, Sheet CH-108, Rev. 7 2998-C-124, Sheet CH-109, Rev. 17 2998-C-124, Sheet CH-110, Rev. 14 2998-C-124, Sheet CH-111, Rev. 11 2998-C-124, Sheet CH-112, Rev. 13 2998-C-124, Sheet CH-129, Rev. 0 2998-C-124, Sheet RC-2, Rev. 13 Charging and Letdown System (CVCS) 2998-G-125, Sheet SI-N-14, Rev. 25 2998-G-125, Sheet SI-N-16, Rev. 17 2998-G-125, Sheet SI-N-17, Rev. 14 2998-G-125, Sheet SI-N-18, Rev. 12 2998-G-125, Sheet SI-N-19, Rev. 15 2998-G-125, Sheet SJ-N-20, Rev. 14 2998-G-125, Sheet SI-N-21, Rev. 13 2998-G-125, Sheet CS-K-l, Rev. 19 2998-G-125, Sheet CS-K-2, Rev. 20 2998-C-124, Sheet SI-l, Rev. 12 2998-C-124, Sheet SI-2, Rev. 10 2998-C-124, Sheet SI-3, Rev. 12 2998-C-124, Sheet SI-4, Rev. 13 2998-C-124, Sheet RC-l, Rev. 9 2998-C-124, Sheet RC-2, Rev. 13 2998-G-078, Sheet 110, Rev. 08 2998-G-125, Sheet CH-G-l, Rev. 21 2998-G-078, Sheet 120, Rev. 17 2998-G-125, Sheet CH-G-2, Rev. 19 2998-G-078, Sheet 121A, Rev. 31 2998-G-078, Sheet 122, Rev. 25 2998-G-125, Sheet CH-G-3, Rev. 16 2998-G-125, Sheet CH-G-4, Rev. 21 2998-G-125, Sheet CH-G-IO, Rev. 12 2998-G-125, Sheet CH-G-14, Rev. 11 2998-G-125, Sheet CH-G-15, Rev. 15 2998-G-125, Sheet CH-G-16, Rev. 06 2998-G-125, Sheet CH-G-17, Rev. 13 2998-C-124, Sheet CH-l, Rev. 11 2998-C-124, Sheet CH-3, Rev. 12 2998-C-124, Sheet CH-4, Rev. 09 2998-C-124, Sheet CH-6, Rev. 8 2998-C-124, Sheet CH-33, Rev. 7 2998-C-124, Sheet CH-72, Rev. 15 2998-C-124, Sheet CH-75, Rev. 14 2998-C-124, Sheet CH-78, Rev. 12 2998-C-124, Sheet CH-l 03, Rev. 9 2998-C-124, Sheet CH-I04, Rev. 8 2998-C-124, Sheet CH-I05, Rev. 6 2998-C-124, Sheet CH-106, Rev. 13 2998-C-124, Sheet CH-l 08, Rev. 7 2998-C-124, Sheet CH-I09, Rev. 17 2998-C-124, Sheet CH-110, Rev. 14 2998-C-124, Sheet CH-111, Rev. 11 2998-C-124, Sheet CH-112, Rev. 13 2998-C-124, Sheet CH-129, Rev. 0 2998-C-124, Sheet RC-2, Rev. 13 L-2009-208 Page 31 of62

L-2009-208 Page 32 of 62 Table 4 Spacer Grid Locations Grid #

Distance (in) 1 5.175 2

22.375 3

38.188 4

54.000 5

69.812 6

85.625 7

101.438 8

117.250 9

133.062 10 148.875 Note: Measured from bottom of fuel assembly to top of grid.

K-Factors Location K-Factor Core inlet region/ bottom grid 1.18 Mid-grid 8 spacers (total) 5.68 Top grid (Top grid representative of inconel top grid) 0.69 Upper End Fitting 0.53 Note: Conditions: 50OF isothermal and 388,600 gpm vessel flow rate.

Table 4 Spacer Grid Locations Grid #

Distance (in) 1 5.175 2

22.375 3

38.188 4

54.000 5

69.812 6

85.625 7

101.438 8

117.250 9

133.062 10 148.875 Note: Measured from bottom of fuel assembly to top of grid.

K-Factors Location K-Factor Core inlet region! bottom grid 1.18 Mid-grid 8 spacers (total) 5.68 Top grid (Top grid representative of inconel top grid) 0.69 Upper End Fitting 0.53 Note: Conditions: 500F isothermal and 388,600 gpm vessel flow rate.

L-2009-208 Page 32 of62

L-2009-208 Page 33 of 62 Table 5 RPS, ESFAS and AFAS Setpoints and Safety Analysis Limits Functional Description Monthly Tech Spec Setpoint Current Setpoint or EPU Setpoint or Comments Surveillance Uncertainty Requirement Uncertainty Setpoint (current cycle)

Requirement RPS PZR Press Hi 2360 psia

  • 2370 psia

+/- 45 psi (Normal)

+ 45 psi (Normal)

+/- 90 psi (Accident)

+/- 90 psi (Accident)

RPS Cont. Press Hi 2.5 psig

  • 3.0 psig

+/- 1.65 psi

+/- 1.65 psi RPS S/G Press Lo 626 psia

> 626 psia

+/- 40 psi (Normal)

+/- 40 psi (Normal)

+/- 80 psi (Accident)

- 80 psi (Accident)

RPS S/G Level Lo 20.5%

> 20.5%

+/- 5% (Normal)

+/- 5% (Normal)

Monthly Surveillance Setpoint

+/- 14% (Accident)

+/- 14% (Accident) and Tech Spec Setpoint changed to 35% and > 35% for EPU RPS RCS Low Flow

> 95.4% Design 3.5%

3.5% (Normal)

Flow 7.5% (Accident)

SIAS/CIS Cont. Press Hi 3.41 psig

< 3.5 psig

- 1.65 psi

- 1.65 psi CSAS Cont. Press Hi-Hi 5.31 psig

< 5.4 psig

+/- 1.65 psi

+/- 1.65 psi SIAS PZR Press Lo 1740 psia

> 1736 psia

- 45 psi (Normal)

+/- 45 psi (Normal)

- 90 psi (Accident)

- 90 psi (Accident)

MSIS S/G Press Lo 600 psia

> 600 psia

- 40 psi (Normal)

+/- 40 psi (Normal)

- 80 psi (Accident)

+/- 80 psi (Accident)

RAS RWT Level Lo 5.67 feet 5.67 feet

+/- 6 inches

- 6 inches AFAS S/G Level Lo 19.5%

> 19.0%

- 5% (Normal)

- 5% (Normal)

_- 14% (Accident).

14% (Accident)

AFAS S/G Press DP Hi 270 psid

< 275 psid Not specified

+/- 60 psi (Normal)

__ 115 psi (Accident)

AFAS FW Press DP Hi 142.5 psid

<_ 150.0 psid Not specified

< 245 psid (setpoint)

EPU setpoint requirement based on

- 85 psi (Normal) uncertainty AFAS logic time delay 210 sec 120 sec 120 sec (minimum actuation time)

PORV Open Pressure N/A 2370 psia (nominal) 2370 psia (nominal)

For non-LTOP conditions, (setpoint)

PORVs operate on RPS PZR Press Hi Main Steam Safety RV N/A 1000 psia (nominal)

+1 -3% (Bank 1&2

L 3% (Bank 1 tolerance) 1040 psia (nominal) tolerance)

+2%, -3% (Bank 2 tol.)

3% (accumulation) 3% (accumulation)

Functional Description Monthly Surveillance Setpoint RPS PZR Press Hi 2360 psia RPS Cont. Press Hi 2.5 psig RPS S/G Press Lo 626 psia RPS S/G Level Lo 20.5%

RPS RCS Low Flow SIAS/CIS Cont. Press Hi 3.41 psig CSAS Cont. Press Hi-Hi 5.31 psig SIAS PZR Press Lo 1740 psia MSIS S/G Press Lo 600 psia RAS R WT Level Lo 5.67 feet AF AS S/G Level Lo 19.5%

AF AS S/G Press DP Hi 270 psid AF AS FW Press DP Hi 142.5 psid AF AS logic time delay 210 sec (minimum actuation time)

PORV Open Pressure N/A Main Steam Safety R V N/A Table 5 RPS, ESF AS and AF AS Setpoints and Safety Analvsis Limits Tech Spec Setpoint Current Setpoint or EPU Setpoint or Uncertainty Requirement Uncertainty (current cycle)

Requirement

2370 psia

+/- 45 psi (Normal)

+/- 45 psi (Normal)

. +/- 90 psi (Accident)

+/- 90 psi (Accident)

< 3.0 psig

+/- 1.65 psi

+/- 1.65 psi

626 psia

+/- 40 psi (Normal)

+/- 40 psi (Normal)

+/- 80 psi (Accidentl

+/- 80 psi (Accident)

20.5%

+/- 5% (Normal)

+/- 5% (Normal)

+/- 14% (Accident)

+/- 14% (Accident)

95.4% Design 3.5%

3.5% (Normal)

Flow 7.5% (Accident)

< 3.5 psig

+/- 1.65 psi

+/- 1.65 psi

< 5.4 psig

+/- 1.65 psi

+/- 1.65 psi

1736 psia

+/- 45 psi (Normal)

+/- 45 psi (Normal)

+/- 90 psi (Accident)

+/- 90 psi (Accident)

600 psia

+/- 40 psi (Normal)

+/- 40 psi (Normal)

+/- 80 psi (Accident)

+/- 80 psi (Accident) 5.67 feet

+/- 6 inches

+/- 6 inches

19.0%

+/- 5% (Normal)

+/- 5% (Normal)

+/- 14% (Accident)

+/- 14% (Accident)

275 psid Not specified

+/- 60 psi (Normal)

+/- 115 psi (Accident)

150.0 psid Not specified
245 psid (setpoint) 120 sec 120 sec 2370 psia (nominal) 2370 psia (nominal)

(setpoint) 1000 psia (nominal)

+1 -3% (Bank 1&2

+/- 3% (Bank 1 tolerance) 1040 psia (nominal) tolerance)

+2%, -3% (Bank 2 to1.)

3% (accumulation) 3% (accumulation)

Comments L-2009-208 Page 33 of62 Monthly Surveillance Setpoint and Tech Spec Setpoint changed to 35% and> 35% for EPU EPU setpoint requirement based on

+/- 85 psi (Normal) uncertainty For non-L TOP conditions, PORVs operate on RPS PZR Press Hi I

I

L-2009-208 Attachment I Page 34 of 62 PZR Safety RV N/A 2500 psia (nominal)

+ 2% (tolerance)

+/- 3% (tolerance) 3% (accumulation) 3% (accumulation Note: When revised, Safety Analysis limits are set equal to the Tech Spec setpoint plus or minus the defined uncertainty.

PZR Safety RV N/A 2500 psia (nominal)

L-2009-208 Page 34 of62

L-2009-208 Page 35 of 62 Table 6 REACTOR CO01 ANT qYqTFM GFOMFTRY I

Component Hot Leg Suction Leg Discharge Leg Parallel Non-parallel Reactor Coolant Pump Pressurizer Liquid level Surge Line Steam Generator Inlet nozzle (ea)

Inlet plenum Tubes (active and passive)

Outlet plenum Outlet nozzle (ea)

Reactor Vessel Inlet nozzles Downcomer Lower plenum Lower support structure and inactive core Active core Upper inactive core Outlet plenum CEA shroud UGS annulus, outside CEA shroud Top Head Outlet nozzles Top Flow Path Elevation Length (ft)

(ft)Jd) 14.53 2.38 22.83 1.04 16.39 1.25 16.42 1.25 22.81 1.25 47.20 30.66 54.51 10.83 Bottom Elevation

(_t) (d)

-1.75

-7.25

-1.25

-1.25

-1.79 10.83 10.83 1.75 Minimum Flow Volume Area (M)

(W)ft 9.62 139.81 4.91 112.07 4.91 4.91 4.91()

50.07(')

0.56 9.62 61.04 0.0024) 61.04 4.91 80.46 80.52 112 1500 800 29.30 21.77 342.94 1247.71 337.95 8.58 2.23 4.64 56.81 5.50 1.72 3.6 20.9 6.4 (b) 3.5 11.4 1.5 11.0 (g) 12.2 (g) 4.5 2.24 6.91 37.65 6.91 1.39 0,95(0) 0.36 6.91 0.36 0.16(0) 1.5

-1.5 1.5

-20.9

-20.9

-27.0

-17.4

-20.9

-6.0

-4.5 2.0 9.8 6.5

-17.4

-6.0

,-4.5 2.0 2.0 4.9 78 30.3 674 43.7 702 28.0 473 54.8 669 47.1 85 23.45 524 430 122 13.0 4.1 2.0 6.5

-2.0 9.62 753 105 4.4-47 Amendment No. 18 (01/08)

Table 6 - Continuation Component Hot Leg Suction Leg Discharge Leg Parallel Non-parallel Reactor Coolant Pump Pressurizer Liquid level Surge Line Steam Generator Inlet nozzle (ea)

Inlet plenum Tubes (active and passive)

Ou1let plenum Ou1let nozzle (ea)

Reactor Vessel Inlet nozzles Downcomer Lower plenum Lower support structure and inactive core Actlvecore Upper inactive core Outlet plenum CEA shroud UGS annulus, ou1side CEAshroud Top Head Outlet nozzles Table 6 REACTOR COOLANT SYSTEM GEOMETRY Top Bottom Flow Path Elevation Elevation Minimum Flow Volume Length !!Il 1ft} Isll 1ft) (d)

Area (ff)

--1!tL 14.53 2.38

-1.75 9.62 139.81 22.83 1.04

-7.25 4.91 112.07 16.39 1.25

-1.25 4.91 80.46 16.42 1.25

-1.25 4.91 80.52 22.81 1.25

-1.79 4.91(1) 112 47.20 10.83 1500 30.66 10.83 50.07(&)

800 54.51 10.83 1.75 0.56 29.30 2.23 2.24 0.95(0) 9.62 21.77 4.64 6.91 0.36 61.04 342.94 56.81 37.65 6.91 0.0024(<)

1247.71 5.50 6.91 0.36 61.04 337.95 1.72 1.39 0.16(0) 4.91 8.58 3.6 1.5

-1.5 4.9 78 20.9 1.5

-20.9 30.3 674 6.4(0,

-20.9

-27.0 43.7 702 3.5

-17.4

-20.9 28.0 473 11.4

-6.0

-17.4 54.8 669 1.5

-4.5

-6.0 47.1 85 11.0(g) 2.0

.-4.5 23.45 524 12.2(g) 9.8 2.0 430 4.5 6.5 2.0 122 13.0 6.5 753 4.1 2.0

-2.0 9.62 105 4.4-47 Amendment No. 18 (01/08)

Table 6 - Continuation L-2009-208 Page 3S of62

L-2009-208 Page 36 of 62 TABLE 4.4-8 (Contd)

Notes:

(a)

For the cylinder (b)

Represents a geometrical rather than an actual flow path length (c)

Flow path area per tube (d)

Reactor vessel nozzle centerline is the reference elevation; it has an elevation of 0.0 ft.

(e)

Nozzle centerline (M)

RCP outlet (g)

Approximate flow path length 4.4-48 Table 6 - Continuation L-2009-208

__________________________________ ~-----------------------------P~ag~e36of62 TABLE*4.4-8 (Conrd)

Notes:

(a)

For the cylinder (b)

Represents a geometrical rather than an actual flow path length (c)

Flow path area per tube (d)

Reactor vessel nozzle cenlerfine is the reference elevation; it has an elevation of 0.0 ft.

(e)

Nozzte centerline (I)

Rep outlet (g)

Approximate flow path length 4.4-48 Table 6 - Continuation

L-2009-208 Page 37 of 62 Elevation Above SG Secondary Side SG Riser/Wrapper SG Total (ft3)

Tubesheet Downcomer (ft3)

(ft3) 0 in (secondary face of tubesheet) 0 0

265.5 in (start of lower edge 251.5 1465.5 1717.0 of shell cone) 270.5 in (start of lower edge 258.3 1493.3 1751.6 of wrapper cone) 294.2 inc (end of wrapper 303.3 1669.6 1972.9 cone) 329.5 in (end of shell cone) 497.1 2053.6 2550.7 361.6 inc (inside edge of 789.9 2501.0 3290.9 wrapper roof) 449.7 inc (top of cyclones) 2413.8 2889.2 5303.0 585.0 in (interior face of N/A N/A 7984.8 venture in steam nozzle)

Note: Obtained from Reference 28, Exhibit A, page 28 of 30.

Elevation Above SG Secondary Side SG Riser/Wrapper Tubesheet Downcomer (ft3)

(ft3)

Oin 0

0 (secondary face of tube sheet) 265.5 in (start oflower edge 251.5 1465.5 of shell cone) 270.5 in (start oflower edge 258.3 1493.3 of wrapper cone) 294.2 inc (end of wrapper 303.3 1669.6 cone) 329.5 in (end of shell cone) 497.1 2053.6 361.6 inc (inside edge of 789.9 2501.0 wrapper roof) 449.7 inc (top of cyclones) 2413.8 2889.2 585.0 in (interior face of N/A N/A venture in steam nozzle)

Note: Obtained from Reference 28, Exhibit A, page 28 of 30.

SG Total (fe) 0 1717.0 1751.6 1972.9 2550.7 3290.9 5303.0 7984.8 L-2009-208 Page 37 of62

L-2009-208 Page 38 of 62 Table 7 Reactor Coolant Pump Homologous Curves VALPHA HAN HVN BAN BVN VALPHA HAD HVD BAD BVD 0.0 1.5800

-1.4200 0.7700

-1.4500 0.0 1.5800 1.2200 0.7700 1.3150 0.1 1.5000

-1.2150 0.8020

-1.1120

-0.1 1.6600 1.2850 0.8100 1.3800 0.2 1.4200

-1.0820 0.8450

-0.8720

-0.2 1.7600 1.3450 0.8800 1.4500 0.3 1.3700

-0.9120 0.8660

-0.6480

-0.3 1.8700 1.4400 0.9800 1.5100 0.4 1.3300

-0.7280 0.8850

-0.4420

-0.4 2.0000 1.5500 1.0900 1.5800 0.5 1.2950

-0.4940 0.9100

-0.2700

-0.5 2.1300 1.7200 1.2350 1.6400 0.6 1.2700 0.0000 0.9300 0.2600

-0.6 2.3000 1.9300 1.3900 1.7200 0.7 1.2400 0.2080 0.9530 0.4300

-0.7 2.4700 2.1800 1.5800 1.8300 0.8 1.1820 0.4350 0.9730 0.6130

-0.8 2.7000 2.4900 1.7850 1.9600 0.9 1.1050 0.7080 0.9890 0.8000

-0.9 2.9300 2.8100 2.0400 2.1200 1.0 1.0000 1.0000 1.0000 1.0000

-1.00 3.1500 3.1500 2.2900 2.2900 VALPHA HAT HVT BAT BVT VALPHA HAR HVR BAR BVR 0.0 0.4330 1.2200

-1.4400 1.3150 0.0 0.4330

-1.4200

-1.4400

-1.4500 0.1 0.4740 1.1820

-0.9200 1.2450

-0.1 0.3430

-1.7150

-1.6600

-1.8500 0.2 0.5020 1.1400

-0.6300 1.1800

-0.2 0.0112

-1.9600

-1.9100

-2.2000 0.3 0.5120 1.0850

-0.4200 1.1100

-0.3

-0.2460

-2.1500

-2.1900

-2.5200 0.4 0.5240 1.0450

-0.2500 1.0420

-0.4

-0.5130

-2.3400

-2.4900

-2.8500 0.5 0.5460 1.0000

-0.1000 0.9750

-0.5

-0.8300

-2.5200

-2.8300

-3.1500 0.6 0.5830 0.9500 0.0200 0.9050

-0.6

-1.0350

-2.6900

-3.2400

-3.4900 0.7 0.6410 0.9000 0.1300 0.8170

-0.7

-1.6000

-2.8100

-3.6000

-3.8400 0.8 0.7120 0.8700 0.2510 0.7280

-0.8

-2.0500

-2.9300

-4.0500

-4.2300 0.9 0.8000 0.8650 0.3900 0.6280

-0.9

-2.5500

-3.0100

-4.5400

-4.6100 1.0 0.9080 0.9080 0.5620 0.5620

-1.0

-3.1000

-3.1000

-5.0300

-5.0300 Note: According to WEC, the definition of the column headings can be found in the reactor coolant pump model input description in the CEFLASH-4A topical report.*

Table 7 Reactor Coolant Pump Homologous Curves VALPHA HAN HVN BAN BVN VALPHA HAD 0.0 1.5800

-1.4200 0.7700

-1.4500 0.0 1.5800 0.1 1.5000

-1.2150 0.8020

-1.1120

-0.1 1.6600 0.2 1.4200

-1.0820 0.8450

-0.8720

-0.2 1.7600 0.3 1.3700

-0.9120 0.8660

-0.6480

-0.3 1.8700 0.4 1.3300

-0.7280 0.8850

-0.4420

-0.4 2.0000 0.5 1.2950

-0.4940 0.9100

-0.2700

-0.5 2.1300 0.6 1.2700 0.0000 0.9300 0.2600

-0.6 2.3000 0.7 1.2400 0.2080 0.9530 0.4300

-0.7 2.4700 0.8 1.1820 0.4350 0.9730 0.6130

-0.8 2.7000 0.9 1.1050 0.7080 0.9890 0.8000

-0.9 2.9300 1.0 1.0000 1.0000 1.0000 1.0000

-1.00 3.1500 VALPHA HAT HVT BAT BVT VALPHA HAR 0.0 0.4330 1.2200

-1.4400 1.3150 0.0 0.4330 0.1 0.4740 1.1820

-0.9200 1.2450

-0.1 0.3430 0.2 0.5020 1.1400

-0.6300 1.1800

-0.2 0.0112 0.3 0.5120 1.0850

-0.4200 1.1100

-0.3

-0.2460 0.4 0.5240 1.0450

-0.2500 1.0420

-0.4

-0.5130 0.5 0.5460 1.0000

-0.1000 0.9750

-0.5

-0.8300 0.6 0.5830 0.9500 0.0200 0.9050

-0.6

-1.0350 0.7 0.6410 0.9000 0.1300 0.8170

-0.7

-1.6000 0.8 0.7120 0.8700 0.2510 0.7280

-0.8

-2.0500 0.9 0.8000 0.8650 0.3900 0.6280

-0.9

-2.5500 1.0 0.9080 0.9080 0.5620 0.5620

-1.0

-3.1000 HVD 1.2200 1.2850 1.3450 1.4400 1.5500 1.7200 1.9300 2.1800 2.4900 2.8100 3.1500 HVR

-1.4200

-1.7150

-1.9600

-2.1500

-2.3400

-2.5200

-2.6900

-2.8100

-2.9300

-3.0100

-3.1000 BAD 0.7700 0.8100 0.8800 0.9800 1.0900 1.2350 1.3900 1.5800 1.7850 2.0400 2.2900 BAR

-1.4400

-1.6600

-1.9100

-2.1900

-2.4900

-2.8300

-3.2400

-3.6000

-4.0500

-4.5400

-5.0300 L-2009-208 Page 38 of62 BVD 1.3150 1.3800 1.4500 1.5100 1.5800 1.6400 1.7200 1.8300 1.9600 2.1200 2.2900 BVR

-1.4500

-1.8500

-2.2000

-2.5200

-2.8500

-3.1500

-3.4900

-3.8400

-4.2300

-4.6100

-5.0300 Note: According to WEC, the definition of the column headings can be found in the reactor coolant pump model input description in the CEFLASH-4A topical report..

L-2009-208 Page 39 of 62 Table 8 (Sheet 1 of 2)

SL-2 UFSAR ECCS PERFORMANCE DATA ONE LPSI PUMP FAILED TO START EFFECTIVE FOR LARGE BREAK ANALYSIS (LPSIP B Off, Other Pumps On)

MAXIMUM MINIMUM RCS Flow to RCS Flow to Pressure Loop Al or Pressure Loop Al or (psia)

A2 (gpm)

(psia)

A2 (gpm) 1408 0

1165 0

1399 28 1158 23 1382 55 1142 45 1337 83 1105 68 1230 110 1068 90 1160 138 1008 113 1070 165 929 135 948 193 824 158 819 220 711 180 680 248 591 203 511 275 445 225 334 303 290 248 184 700 166 261 178 800 162 262 173 850 157 262 166 950 150 263 158 1050 143 264 149 1150 135 370 139 1250 125 660 128 1350 116 825 116 1450 105 990 103 1550 93 1080 89 1650 81 1170 74 1750 67 1260 58 1850 52 1350 39 1900 35 1440 20 2000 18 1530 0

2050 0

1620 RCS Table 8 (Sheet 1 of 2)

SL-2 UFSAR ECCS PERFORMANCE DATA ONE LPSI PUMP FAILED TO START EFFECTIVE FOR LARGE BREAK ANALYSIS (lPSIP B Off, Other Pumps On)

MAXIMUM MINIMUM Flow to RCS Flow to Pressure Loop A1 or Pressure Loop A1 or (psia)

A2 (gpm)

(psia)

A2 (gpm) 1408 0

1165 0

1399 28 1158 23 1382 55 1142 45 1337 83 1105 68 1230 110 1068 90 1160 138 1008 113 1070 165 929 135 948 193 824 158 819 220 711 180 680 248 591 203 511 275 445 225 334 303 290 248 184 700 166 261 178 800 162 262 173 850 157 262 166 950 150 263 158 1050 143 264 149 1150 135 370 139 1250 125 660 128 1350 116 825 116 1450 105 990 103 1550 93 1080 89 1650 81 1170 74 1750 67 1260 58 1850 52 1350 39 1900 35 1440 20 2000 18 1530 0

2050 0

1620 L-2009-208 Page 39 of62

L-2009-208 Page 40 of 62 Table 8 (Sheet 2 of 2)

SL-2 UFSAR ECCS PERFORMANCE DATA ONE LPSI PUMP FAILED TO START EFFECTIVE FOR LARGE BREAK ANALYSIS (LPSIP B Off, Other Pumps On)

MAXIMUM MINIMUM RCS Flow to RCS Flow to Pressure Loop BI or Pressure Loop B1 or (psia)

B2 (gpm)

(psia)

B2 (gpm) 1408 0

1165 0

1399 28 1158 23 1382 55 1142 45 1337 83 1105 68 1230 110 1068 90 1160 138 1008 113 1070 165 929 135 948 193 824 158 819 220 711 180 680 248 591 203 511 275 445 225 334 303 290 248 121 330 105 270 0

341 0

279 RCS Table 8 (Sheet 2 of 2)

SL-2 UFSAR ECCS PERFORMANCE DATA ONE LPSI PUMP FAILED TO START EFFECTIVE FOR LARGE BREAK ANALYSIS (LPSIP B Off, Other Pumps On)

MAXIMUM MINIMUM Flow to RCS Flow to Pressure Loop 81 or Pressure Loop 81 or (psia) 82 (gpm)

(psia) 82 (gpm) 1408 0

1165 0

1399 28 1158 23 1382 55 1142 45 1337 83 1105 68 1230 110 1068 90 1160 138 1008 113 1070 165 929 135 948 193 824 158 819 220 711 180 680 248 591 203 511 275 445 225 334 303 290 248 121 330 105 270 0

341 0

279 L-2009-208 Page 40 of62

L-2009-208 Page 41 of 62 Table 9 (Sheet 1 of 2)

SL-2 SAFETY INJECTION DATA ONE EMERGENCY GENERATOR FAILED TO START EFFECTIVE FOR NON-LOCA ANALYSES (HPSIP B & LPSIP B Off, Other Pumps On)

MAXIMUM MINIMUM RCS Flow to RCS Flow to Pressure Loop Al or Pressure Loop Al or (psia)

A2 (gpm)

(psia)

A2 (gpm) 1408 0

1165 0

1399 14 1158 12 1382 28 1142 23 1337 42 1105 34 1230 55 1068 45 1160 69 1008 57 1070 83 929 68 948 97 824 79 819 110 711 90 680 124 591 102 511 138 445 113 334 152 290 124 184 650 167 130 183 700 165 130 177 750 161 130 170 850 154 131 162 950 146 131 151 1100 137 280 141 1250 127 570 128 1400 116 760 116 1500 105 900 101 1600 91 990 85 1700 77 1080 68 1750 62 1170 49 1850 45 1260 30 1950 28 1350 8

2000 7

1440 0

2050 0

1535 Table 9 (Sheet 1 of 2)

SL-2 SAFETY INJECTION DATA ONE EMERGENCY GENERATOR FAILED TO START EFFECTIVE FOR NON-LOCA ANALYSES (HPSIP B & LPSIP B Off, Other Pumps On)

MAXIMUM MINIMUM RCS Flow to RCS Flow to Pressure Loop A1 or Pressure Loop A1 or (psia)

A2 (gpm)

(psia)

A2 (gpm) 1408 0

1165 0

1399 14 1158 12 1382 28 1142 23 1337 42 1105 34 1230 55 1068 45 1160 69 1008 57 1070 83 929 68 948 97 824 79 819 110 711 90 680 124 591 102 511 138 445 113 334 152 290 124 184 650 167 130 183 700 165 130 177 750 161 130 170 850 154 131 162 950 146 131 151 1100 137 280 141 1250 127 570 128 1400 116 760 116 1500 105 900 101 1600 91 990 85 1700 77 1080 68 1750 62 1170 49 1850 45 1260 30 1950 28 1350 8

2000 7

1440 0

2050 0

1535 L-2009-208 Page 41 of62

L-2009-208 Page 42 of 62 Table 9 (Sheet 2 of 2)

SL-2 SAFETY INJECTION DATA ONE EMERGENCY GENERATOR FAILED TO START EFFECTIVE FOR NON-LOCA ANALYSES (HPSIP B & LPSIP B Off, Other Pumps On)

MAXIMUM MINIMUM RCS Flow to RCS Flow to Pressure Loop B1 or Pressure Loop BI or (psia)

B2 (gpm)

(psia)

B2 (gpm) 1408 0

1165 0

1399 14 1158 12 1382 28 1142 23 1337 42 1105 34 1230 55 1068 45 1160 69 1008 57 1070 83 929 68 948 97 824 79 819 110 711 90 680 124 591 102 511 138 445 113 334 152 290 124 122 165 105 135 0

168 0

138 Table 9 (Sheet 2 of 2)

SL-2 SAFETY INJECTION DATA ONE EMERGENCY GENERATOR FAILED TO START EFFECTIVE FOR NON-LOCA ANALYSES (HPSIP B & LPSIP B Off, Other Pumps On)

MAXIMUM MINIMUM RCS Flow to RCS Flow to Pressure Loop B1 or Pressure Loop B1 or (psia)

B2 (gpm)

(psia)

B2 (gpm) 1408 0

1165 0

1399 14 1158 12 1382 28 1142 23 1337 42 1105 34 1230 55 1068 45 1160 69 1008 57 1070 83 929 68 948 97 824 79 819 110 711 90 680 124 591 102 511 138 445 113 334 152 290 124 122 165 105 135 0

168 0

138 L-2009-208 Page 42 of62

L-2009-208 Page 43 of 62 Table 10 SL-2 SAFETY INJECTION DATA NO FAILURE IN ECCS EFFECTIVE FOR NON-LOCA ANALYSIS (All Pumps On)

MAXIMUM MINIMUM RCS Flow to RCS Flow to Pressure Loop Al, A2 Pressure Loop Al, A2 (psia)

B1 or B2 (psia)

BI or B2 1408 0

1165 0

1399 28 1158 23 1382 55 1142 45 1337 83 1105 68 1230 110 1068 90 1160 138 1008 113 1070 165 929 135 948 193 824 158 819 220 711 180 680 248 591 203 511 275 445 225 334 303 290 248 184 700 166 261 178 800 162 262 173 850 157 262 166 950 150 263 158 1050 143 264 149 1150 135 370 139 1250 125 660 128 1350 116 825 116 1450 105 990 103 1550 93 1080 89 1650 81 1170 74 1750 67 1260 58 1850 52 1350 39 1900 35 1440 20 2000 18 1530 0

2050 0

1620 Table 10 SL-2 SAFETY INJECTION DATA NO FAILURE IN ECCS EFFECTIVE FOR NON-LOCA ANALYSIS (All Pumps On)

MAXIMUM MINIMUM RCS Flow to RCS Flow to Pressure LoopA1, A2 Pressure LoopA1, A2 (psia)

B1 or B2 (psia)

B1 or B2 1408 0

1165 0

1399 28 1158 23 1382 55 1142 45 1337 83 1105 68 1230 110 1068 90 1160 138 1008 113 1070 165 929 135 948 193 824 158 819 220 711 180 680 248 591 203 511 275 445 225 334 303 290 248 184 700 166 261 178 800 162 262 173 850 157 262 166 950 150 263 158 1050 143 264 149 1150 135 370 139 1250 125 660 128 1350 116 825 116 1450 105 990 103 1550 93 1080 89 1650 81 1170 74 1750 67 1260 58 1850 52 1350 39 1900 35 1440 20 2000 18 1530 0

2050 0

1620 L-2009-208 Page 43 of62

L-2009-208 Attachment I Page 44 of 62 Table 11 (Sheet 1 of 2)

SL-2 UFSAR ECCS PERFORMANCE DATA ONE EMERGENCY GENERATOR FAILED TO START EFFECTIVE FOR SMALL BREAK ANALYSIS (HPSIP B & LPSIP B Off, Other Pumps On)

MAXIMUM MINIMUM RCS Flow to RCS I

Flow to Pressure Loop Al or Pressure Loop Al or (psia)

A2 (gpm)

(psia)

A2 (gpm) 1408 0

1198 0

1399 14 1382 28 1337 42 1230 55 1160 69 1070 83 948 97 819 110 680 124 511 138 334 152 184 650 183 700 177 750 170 850 162 950 151 1100 141 1250 128 1400 116 1500 101 1600 85 1700 68 1750 49 1850 30 1950 8

2000 0

2050 1177 25 1104 50 1035 62.5 943 75 829 87.5 699 100 551 112.5 393 125 217 137.5 167 140.6 165 140.7 161 141.0 154 141.4 146 141.9 137 291 127 580 116 770 105 910 91 1000 77 1090 62 1181 45 1271 28 1362 7

1453 0

1548 Table 11 (Sheet 2 of 2)

Table 11 (Sheet 1 of 2)

SL-2 UFSAR ECCS PERFORMANCE DATA ONE EMERGENCY GENERATOR FAILED TO START EFFECTIVE FOR SMALL BREAK ANALYSIS (HPSIP B & LPSIP B Off, Other Pumps On)

MAXIMUM MINIMUM RCS Flow to RCS Flow to Pressure Loop A1 or Pressure Loop A1 or (psia)

A2 (gpm)

(psia)

A2 (gpm) 1408 0

1198 0

1399 14 1177 25 1382 28 1104 50 1337 42 1035 62.5 1230 55 943 75 1160 69 829 87.5 1070 83 699 100 948 97 551 112.5 819 110 393 125 680 124 217 137.5 511 138 167 140.6 334 152 165 140.7 184 650 161 141.0 183 700 154 141.4 177 750 146 141.9 170 850 137 291 162 950 127 580 151 1100 116 770 141 1250 105 910 128 1400 91 1000 116 1500 77 1090 101 1600 62 1181 85 1700 45 1271 68 1750 28 1362 49 1850 7

1453 30 1950 0

1548 8

2000 0

2050 Table 11 (Sheet 2 of 2)

L-2009-208 Page 44 of62

L-2009-208 Attachment I Page 45 of 62 SL-2 UFSAR ECCS PERFORMANCE DATA ONE EMERGENCY GENERATOR FAILED TO START EFFECTIVE FOR SMALL BREAK ANALYSIS (HPSIP B & LPSIP B Off, Other Pumps On)

MAXIMUM MINIMUM RCS Flow to RCS Flow to Pressure Loop B1 or Pressure Loop B1 or (psia)

B2 (gpm)

(psia) 1B2 (gpm) 1408 0

1198 0

1399 14 1382 28 1337 42 1230 55 1160 69 1070 83 948 97 819 110 680 124 511 138 334 152 122 165 0

168 1177 25 1104 50 1035 62.5 943 75 829 87.5 699 100 551 112.5 393 125 217 137.5 0

151 SL-2 UFSAR ECCS PERFORMANCE DATA ONE EMERGENCY GENERATOR FAILED TO START EFFECTIVE FOR SMALL BREAK ANALYSIS (HPSIP B & LPSIP B Off, Other Pumps On)

MAXIMUM MINIMUM RCS Flow to RCS Flow to Pressure Loop 81 or Pressure Loop 81 or (psia) 82 (gpm)

(psia) 82 (gpm) 1408 0

1198 0

1399 14 1177 25 1382 28 1104 50 1337 42 1035 62.5 1230 55 943 75 1160 69 829 87.5 1070 83 699 100 948 97 551 112.5 819 110 393 125 680 124 217 137.5 511 138 0

151 334 152 122 165 0

168 L-2009-208 Attachment I Page 45 of62

L-2009-208 Page 46 of 62 Table 12 Corn mponent Data Required Component Flow Diagram Component Information Pressurizer PORVs V1474 2998-G-078 Sheet 108 Rev. 5 2998-18810 Rev. 3 V1475 I

Pressurizer Safety Valves V 1200 2998-G-078 Sheet 109 R18 2998-19690 Rev. 1 V1201 2998-19691 Rev. 1 V1202 1

Main Steam Safety Valves V8201 2998-G-079, Sheet 1, Rev. 41 2998-2381, Rev 11 V8202 V8203 V8204 V8205 V8206 V8207 V8208 V8209 V8210 V8211 V8212 V8213 V8214 V8215 V8216 Atmospheric Dump Valves MV-08-18A 2998-G-079, Sheet 1, Rev. 41 2998-11458 Rev. 10 MV-08-19A MV-08-18B MV-08-19B Turbine Control Valves (Governor)

FCV-08-644 2998-G-079 Sheet 2, Rev.35 2998-2184 Rev. 10 FCV-08-645 2998-31, Rev 17 FCV-08-646 FCV-08-647 Turbine By-Pass Valves PCV-8801 2998-G-079 Sheet 2 Rev. 35 2998-625 Rev. 11 2998-4091 Rev. 2 2998-4092 Rev. 1 Turbine Stop Valves (Throttle)

FCV-08-640 2998-G-079 Sheet 2, Rev.35 2998-2184 Rev. 10 FCV-08-641 2998-31, Rev 17 FCV-08-642 FCV-08-643 Main Feed Isolation Valves c omponen aa Table 12 tD t R Component Flow Diagram Pressurizer PORVs V1474 299S-G-07S Sheet lOS Rev. 5 V1475 Pressurizer Safety Valves V1200 299S-G-07S Sheet 109 RlS V1201 V1202 Main Steam Safety Valves VS201 299S-G-079, Sheet 1, Rev. 41 VS202 VS203 VS204 VS205 VS206 VS207 VS20S VS209 V8210 VS211 VS212 VS213 VS214 VS215 VS216 Atmospheric Dump Valves MV-OS-ISA 299S-G-079, Sheet 1, Rev. 41 MV-OS-19A MV-OS-lSB MV-OS-19B Turbine Control Valves (Governor)

FCV-OS-644 299S-G-079 Sheet 2, Rev.35 FCV-OS-645 FCV-OS-646 FCV-OS-647 Turbine By-Pass Valves PCV-SSOI 299S-G-079 Sheet 2 Rev. 35 Turbine Stop Valves (Throttle)

FCV-OS-640 299S-G-079 Sheet 2, Rev.35 FCV-OS-641 FCV-OS-642 FCV-OS-643 Main Feed Isolation Valves

. d eqUlre Component Information 299S-1SS10Rev.3 299S-19690Rev.l 299S-19691 Rev. 1 299S-23S1, Rev 11 299S-1145S Rev. 10 299S-21S4 Rev. 10 299S-31, Rev 17 299S-625 Rev.ll 299S-4091 Rev. 2 299S-4092 Rev. 1 299S-21S4 Rev. 10 299S-31, Rev 17 L-2009-20S Page 46 of62

L-2009-208 Page 47 of 62 HCV-09-1A 2998-G-080 Sheet 2A Rev. 43 2998-9486 Rev. 4 HCV-09-IB 2998-9487 Rev. 4 HCV-09-2A HCV-09-2B Main Steam Isolation Valves HCV-08-IA 2998-G-079 Sheet 1, Rev. 41 2998-1011 Rev. 3 Sheet 1/9 HCV-08-1B 2998-1012 Rev. 0 Sheet 2/9 Miscellaneous Components V09107 V09108 SE-09-2 MV-09-9 V09119 V09120 V09123 V09124 SE-09-3 MV-09-10 V09135 V09136 V09139 V09140 SE-09-4 MV-09-11 V09151 V09152 SE-09-5 MV-09-12 V09157 V09158 V3225 V3624 V3258 2998-G-080 Sheet 2B Rev.36 2998-20110 Rev. 1 2998-741 Rev. 3 2998-13008 Rev. 3 2998-13006 Rev. 1 2998-13009 Rev. 2 2998-19745 Rev. 2 2998-1872 Rev. 6 2998-5616 Rev. 0 2998-3033 Rev. 4 2998-742 Rev. 2 2998-20110 Rev. 1 2998-741 Rev. 3 2998-13008 Rev. 3 2998-13006 Rev. 1 2998-13009 Rev. 2 2998-19745 Rev. 2 2998-1872 Rev. 6 2998-5617 Rev. 0 2998-3033 Rev. 4 2998-742 Rev. 2 2998-752 Rev. 5 2998-751 Rev. 2 2998-13007 Rev. 1 2998-13008 Rev.3 2998-13009 Rev. 2 2998-19745 Rev. 2 2998-1871 Rev. 7 2998-5617 Rev. 0 2998-3033 Rev. 4 2998-742 Rev. 2 2998-13007 Rev. 1 2998-13008 Rev.3 2998-13009 Rev. 2 2998-19745 Rev. 2 2998-1871 Rev. 7 2998-5616 Rev. 0 2998-3033 Rev. 4 2998-742 Rev. 2 2998-19174 Rev. 2 2998-4353 Rev. 5 2998-784 Rev. 6 2998-655 Rev. 1 2998-G-078 Sheet 132 Rev. 9 HCV-09-1A 2998-G-080 Sheet 2A Rev. 43 HCV-09-1B HCV-09-2A HCV-09-2B Main Steam Isolation Valves HCV-08-1A 2998-G-079 Sheet 1, Rev. 41 HCV-08-1B Miscellaneous Components V09107 2998-G-080 Sheet 2B Rev.36 V09108 SE-09-2 MV-09-9 V09119 V09120 V09123 V09124 SE-09-3 MV-09-1O V09135 V09136 V09139 V09140 SE-09-4 MV-09-11 V09151 V09152 SE-09-5 MV-09-12 V09157 V09158 V3225 2998-G-078 Sheet 132 Rev. 9 V3624 V3258 2998-9486 Rev. 4 2998-9487 Rev. 4 2998-lOll Rev. 3 Sheet 1/9 2998-1012 Rev. 0 Sheet 2/9 2998-20ll0 Rev. 1 2998-741 Rev. 3 2998-13008 Rev. 3 2998-13006 Rev. 1 2998-13009 Rev. 2 2998-19745 Rev. 2 2998-1872 Rev. 6 2998-5616 Rev. 0 2998-3033 Rev. 4 2998-742 Rev. 2 2998-20110 Rev. 1 2998-741 Rev. 3 2998-13008 Rev. 3 2998-13006 Rev. 1 2998-13009 Rev. 2 2998-19745 Rev. 2 2998-1872 Rev. 6 2998-5617 Rev. 0 2998-3033 Rev. 4 2998-742 Rev. 2 2998-752 Rev. 5 2998-751 Rev. 2 2998-13007 Rev. 1 2998-13008 Rev.3 2998-13009 Rev. 2 2998-19745 Rev. 2 2998-1871 Rev. 7 2998-5617 Rev. 0 2998-3033 Rev. 4 2998-742 Rev. 2 2998-13007 Rev. 1 2998-13008 Rev.3 2998-13009 Rev. 2 2998-19745 Rev. 2 2998-1871 Rev. 7 2998-5616 Rev. 0 2998-3033 Rev. 4 2998-742 Rev. 2 2998-19174 Rev. 2 2998-4353 Rev. 5 2998-784 Rev. 6 2998-655 Rev. 1 L-2009-208 Page 47 of62

L-2009-208 Page 48 of 62 V3227 2998-658 Rev. 1 V3215 2998-19174 Rev. 2 2998-4353 Rev. 5 V3614 2998-784 Rev. 6 V3259 2998-655 Rev. 6 V3217 2998-658 Rev. 1 V3245 2998-4353 Rev. 5 2998-19174 Rev. 2 V3644 2998-784 Rev. 6 V3261 2998-655 Rev. 1 V3247 2998-658 Rev. 1 V3235 2998-19174 Rev. 2 2998-4353 Rev 5 V3634 2998-784 Rev. 6 V3260 2998-655 Rev. 1 V3237 2998-658 Rev. 1 FE-3312 2998-G-078 Sheet 131 Rev. 20 HCV-3615 2998-1219 Rev. 9 V3114 2998-655 Rev. 1 V3805 2998-2076 Rev. 19 FE-3311 V3113 2998-19800 Rev. 0 HCV-3616 2998-20356 Rev. 0 2998-20355 Rev. 0 HCV-3617 2998-20356 Rev. 0 2998-20355 Rev. 0 FE-3322 HCV-3625 2998-1219 Rev. 9 V3124 2998-655 Rev. 1 HCV-3626 2998-1218 Rev. 9 FE-3321 V3766 8770-14084 Rev. 1 8770-14099 Rev. 1 HCV-3627 2998-1218 Rev. 9 FE-3332 HCV-3635 2998-1219 Rev. 9 V3134 2998-655 Rev. 1 FE-3331 V3133 2998-1530 Rev. 5 HCV-3636 2998-1218 Rev. 9 HCV-3637 2998-1218 Rev. 9 FE-3342 V3144 2998-655 Rev. 1 FE-3341 V3143 2998-20097 Rev. 0 HCV-3646 2998-1218 Rev. 9 HCV-3647 2998-1218 Rev. 9 V3106 2998-G-078 Sheet 130B Rev. 28 2998-657 Rev. 2 V3206 2998-1024 Rev. 3 V3227 V3215 V3614 V3259 V3217 V3245 V3644 V3261 V3247 V3235 V3634 V3260 V3237 FE-3312 HCV-3615 V3114 V3805 FE-3311 V3113 HCV-3616 HCV-3617 FE-3322 HCV-3625 V3124 HCV-3626 FE-3321 V3766 HCV-3627 FE-3332 HCV-3635 V3134 FE-3331 V3133 HCV-3636 HCV-3637 FE-3342 V3144 FE-3341 V3143 HCV-3646 HCV-3647 V3106 V3206 2998-G-078 Sheet 131 Rev. 20 2998-G-078 Sheet 130B Rev. 28 2998-658 Rev. 1 2998-19174 Rev. 2 2998-4353 Rev. 5 2998-784 Rev. 6 2998-655 Rev. 6 2998-658 Rev. 1 2998-4353 Rev. 5 2998-19174 Rev. 2 2998-784 Rev. 6 2998-655 Rev. 1 2998-658 Rev. 1 2998-19174 Rev. 2 2998-4353 Rev 5 2998-784 Rev, 6 2998-655 Rev. 1 2998-658 Rev. 1 2998-1219 Rev. 9 2998-655 Rev. 1 2998-2076 Rev. 19 2998-19800 Rev. 0 2998-20356 Rev. 0 2998-20355 Rev. 0 2998-20356 Rev. 0 2998-20355 Rev. 0 2998-1219 Rev. 9 2998-655 Rev. 1 2998-1218 Rev. 9 8770-14084 Rev. 1 8770-14099 Rev. 1 2998-1218 Rev. 9 2998-1219 Rev. 9 2998-655 Rev. 1 2998-1530 Rev. 5 2998-1218 Rev. 9 2998-1218 Rev. 9 2998-655 Rev. 1 2998-20097 Rev. 0 2998-1218 Rev. 9 2998-1218 Rev. 9 2998-657 Rev. 2 2998-1024 Rev. 3 L-2009-208 Page 48 of62

L-2009-208 Page 49 of 62 FCV-3306 FE-3306 V3107 V3207 FCV-3301 FE-3301 SO-03-19 V3427 V3656 SO-03-20 V3414 V3654 V2674 V2501 V2118 V2322 SS-02-IA Suction Stabilizer for CHG PP 2A Pulsation Damper for CHG PP 2A V2169 V2336 V2319 SS-02-IB Suction Stabilizer for CHG PP 2B Pulsation Damper CHG PP 2B V2168 V2464 V2316 SS-02-IC Suction Stabilizer for CHG PP 2C Pulsation Damper for CHG PP 2C V2167 2998-G-078 Sheet 130A Rev. 19 2998-G-078 Sheet 121A Rev. 31 2998-G-078 Sheet 122 Rev. 25 2998-4815 Rev. 7 2998-4816 Rev. 6 2998-657 Rev. 2 2998-1024 Rev. 3 2998-4815 Rev. 7 2998-4816 rev. 6 2998-679 Rev. 7 2998-781 Rev.3 2998-679 Rev. 7 2998-780 Rev.3 2998-16238 Rev. 0 2998-3386 Rev. 4 2998-1036 Rev. 1 2998-1033 Rev. 0 2998-7437 Rev. 3 2998-9068 Rev. 5 2998-9067 Rev. 4 2998-9070 Rev. 2 2998-9069 Rev. 2 8770-14084 Rev. 1 8770-14099 Rev. 1 8770-14345 Rev. 1 2998-1033 Rev. 0 2998-7437 Rev. 3 2998-9068 Rev. 5 2998-9067 Rev. 4 2998-9070 Rev. 2 2998-9069 Rev. 2 8770-14084 Rev. 1 8770-14099 Rev. 1 8770-12770 Rev. 1 2998-17048 Rev. 0 2998-1033 Rev. 0 2998-7437 Rev. 3 2998-9068 Rev. 5 2998-9067 Rev. 4 2998-9070 Rev. 2 2998-9069 Rev. 2 8770-14084 Rev. 1 8770-14099 Rev. 1 2998-1031 Rev. 5 V2339 FCV-3306 FE-3306 V3107 V3207 FCV-3301 FE-3301 SO-03-19 V3427 V3656 SO-03-20 V3414 V3654 V2674 V2501 V2118 V2322 SS-02-1A Suction Stabilizer for CHGPP2A Pulsation Damper for CHGPP2A V2169 V2336 V2319 SS-02-lB Suction Stabilizer for CHGPP2B Pulsation Damper CHGPP 2B V2168 V2464 V2316 SS-02-1C Suction Stabilizer for CHGPP2C Pulsation Damper for CHGPP2C V2167 V2339 2998-G-078 Sheet l30A Rev. 19 2998-G-078 Sheet 121A Rev. 31 2998-G-078 Sheet 122 Rev. 25 2998-4815 Rev. 7 2998-4816 Rev. 6 2998-657 Rev. 2 2998-1024 Rev. 3 2998-4815 Rev. 7 2998-4816 rev. 6 2998-679 Rev. 7 2998-781 Rev.3 2998-679 Rev. 7 2998-780 Rev.3 2998-16238 Rev. 0 2998-3386 Rev. 4 2998-1036 Rev. 1 2998-1033 Rev. 0 2998-7437 Rev. 3 2998-9068 Rev. 5 2998-9067 Rev. 4 2998-9070 Rev. 2 2998-9069 Rev. 2 8770-14084 Rev. 1 8770-14099 Rev. 1 8770-14345 Rev. 1 2998-1033 Rev. 0 2998-7437 Rev. 3 2998-9068 Rev. 5 2998-9067 Rev. 4 2998-9070 Rev. 2 2998-9069 Rev. 2 8770-14084 Rev. 1 8770-14099 Rev. 1 8770-12770 Rev. 1 2998-17048 Rev. 0 2998-1033 Rev. 0 2998-7437 Rev. 3 2998-9068 Rev. 5 2998-9067 Rev. 4 2998-9070 Rev. 2 2998-9069 Rev. 2 8770-14084 Rev. 1 8770-14099 Rev. 1 2998-1031 Rev. 5 L-2009-208 Page 49 of62

L-2009-208 Attachment I Page 50 of 62 FE-2212 V2429 V2523 V2462 V2535 V2598 V2485 V2433 SE-02-2 V2484 V2432 SE-02-1 V2593 V2515 V2516 V2522 V2341 V2342 (Letdown Heat Exchanger)

LTDN HT EXCH V2347 PCV-2201Q V2349 FE-2202 V2358 (Purification Filter)

Purif Filter 2A V2360 V2520 V2359 2998-G-078 Sheet 120 Rev. 17 2998-560 Rev. 2 2998-2786 Rev. 5 8770-14084 Rev. 1 8770-14099 Rev. 1 2998-560 Rev. 2 2998-15232 Rev. 3 2998-3487 Rev. 2 2998-1749 Rev. 3 2998-18973 Rev. 0 2998-18974 Rev. 0 2998-19677 Rev. 0 2998-19678 Rev. 0 2998-3487 Rev. 2 2998-1749 Rev. 3 2998-18973 Rev. 0 2998-18974 Rev. 0 2998-19677 Rev. 0 2998-19678 Rev. 0 2998-1009 Rev. 2 2998-548 Rev. 14 2998-548 Rev. 14 2998-2785 Rev. 5 2998-560 Rev. 2 2998-17024 Rev. 0 2998-560 Rev. 2 2998-17023 Rev. 0 2998-1611 Rev. 1 2998-557 Rev. 3 2998-17023 Rev. 0 2998-2586 Rev. 6 2998-4013 Rev. 0 2998-17023 Rev. 0 2998-1037 Rev. 1 2998-17025 Rev. 0 2998-19775 Rev. 0 2998-6065 Rev. 3 2998-16332 Rev. 1 2998-5498 Rev. 4 2998-1037 Rev. 1 2998-17025 Rev. 0 2998-2584 Rev. 6 2998-590 Rev. 5 2998-17042 Rev. 1 FE-2212 V2429 V2523 V2462 V2535 V2598 V2485 V2433 SE-02-2 V2484 V2432 SE-02-1 V2593 V2515 V2516 V2522 V2341 V2342 (Letdown Heat Exchanger)

LTDNHT EXCH V2347 PCV-2201Q V2349 FE-2202 V2358 (Purification Filter)

PurifFilter 2A V2360 V2520 V2359 2998-G-078 Sheet 120 Rev. 17 2998-560 Rev. 2 2998-2786 Rev. 5 8770-14084 Rev. 1 8770-14099 Rev. 1 2998-560 Rev. 2 2998-15232 Rev. 3 2998-3487 Rev. 2 2998-1749 Rev. 3 2998-18973 Rev. 0 2998-18974 Rev. 0 2998-19677 Rev. 0 2998-19678 Rev. 0 2998-3487 Rev. 2 2998-1749 Rev. 3 2998-18973 Rev. 0 2998-18974 Rev. 0 2998-19677 Rev. 0 2998-19678 Rev. 0 2998-1009 Rev. 2 2998-548 Rev. 14 2998-548 Rev. 14 2998-2785 Rev. 5 2998-560 Rev. 2 2998-17024 Rev. 0 2998-560 Rev. 2 2998-17023 Rev. 0 2998-1611 Rev. 1 2998-557 Rev. 3 2998-17023 Rev. 0 2998-2586 Rev. 6 2998-4013 Rev. 0 2998-17023 Rev. 0 2998-1037 Rev. 1 2998-17025 Rev. 0 2998-19775 Rev. 0 2998-6065 Rev. 3 2998-16332 Rev. 1 2998-5498 Rev. 4 2998-1037 Rev. 1 2998-17025 Rev. 0 2998-2584 Rev. 6 2998-590 Rev. 5 2998-17042 Rev. 1 L-2009-208 Page 50 of62

L-2009-208 Page 51 of 62 V2370 (Purification Ion Exchanger)

Purif IX 2A V2378 V2382 V2395 (Letdown Strainer)

S2900 V2415 V2418 V2452 (Purification Filter)

Purif Filter 2B FE-8011 FE-8021 V1442 V 1249 PCV-11OOF V1444 V 1477 V 1479 V1476 V1478 V1443 PCV-1100E V 1248 V1441 FE-01-2 FE-01-1 FE-09-2A FE-09-2B FE-09-2C MV-08-14 MV-08-15 2998-G-079 Sheet 1, Rev. 41 2998-G-078 Sheet 109 Rev. 18 2998-G-078 Sheet 108 Rev. 5 2998-G-078 Sheet 109 Rev. 18 2998-G-078 Sheet 108 Rev. 5 2998-G-080 Sheet 2B Rev.36 2998-G-079 Sheet 1 Rev. 41 2998-1029 Rev. 2 2998-3642 Rev. 2 2998-1037 Rev. 1 2998-17025 Rev. 0 2998-1037 Rev. 1 2998-17025 Rev. 0 2998-17025 Rev. 0 2998-1037 Rev. I 2998-5064 Rev. 1 2998-17025 Rev. 0 2998-1037 Rev. 1 2998-17025 Rev. 0 2998-1037 Rev. 1 2998-17025 Rev. 0 2998-1037 Rev. 1 2998-19775 Rev. 0 2998-5498 Rev. 4 2998-6065 Rev. 3 2998-16332 Rev. 1 2998-1420 Rev.6 2998-1421 Rev. 4 2998-2646 Rev. 1 2998-3066 Rev. 5 2998-17056 Rev. 0 2998-187 Rev. 3 2998-546 Rev. 13 2998-3066 Rev. 5 2998-17057 Rev. 0 2998-13278 Rev. 3 2998-13277 Rev. 0 2998-13278 Rev. 3 2998-13277 Rev. 0 2998-3066 Rev. 5 2998-17057 Rev. 0 2998-546 Rev. 13 2998-187 Rev. 3 2998-3066 Rev. 5 2998-17055 Rev. 0 2998-13912 Rev. 1 2998-13912 Rev. 1 2998-2595 Rev. 2 2998-2595 Rev. 2 2998-2595 Rev. 2 2998-10622 Rev. 5 2998-10622 Rev. 5 V2370 (Purification Ion Exchanger)

PurifIX 2A V2378 V2382 V2395 (Letdown Strainer)

S2900 V2415 V2418 V2452 (Purification Filter)

PurifFilter 2B FE-8011 FE-802l V1442 V1249 PCV-llOOF V1444 V1477 V1479 V1476 V1478 V1443 PCV-llOOE VI248 V1441 FE-01-2 FE-01-1 FE-09-2A FE-09-2B FE-09-2C MY-08-14 MY-08-15 2998-G-079 Sheet I, Rev. 41 2998-G-078 Sheet 109 Rev. 18 2998-G-078 Sheet 108 Rev. 5 2998-G-078 Sheet 109 Rev. 18 2998-G-078 Sheet 108 Rev. 5 2998-G-080 Sheet 2B Rev.36 2998-G-079 Sheet 1 Rev. 41 2998-1029 Rev. 2 2998-3642 Rev. 2 2998-1037 Rev. 1 2998-17025 Rev. 0 2998-1037 Rev. 1 2998-17025 Rev. 0 2998-17025 Rev. 0 2998-1037 Rev. 1 2998-5064 Rev. 1 2998-17025 Rev. 0 2998-1037 Rev. 1 2998-17025 Rev. 0 2998-1037 Rev. I 2998-17025 Rev. 0 2998-1037 Rev. 1 2998-19775 Rev. 0 2998-5498 Rev. 4 2998-6065 Rev. 3 2998-16332 Rev. 1 2998-1420 Rev.6 2998-1421 Rev. 4 2998-2646 Rev. 1 2998-3066 Rev. 5 2998-17056 Rev. 0 2998-187 Rev. 3 2998-546 Rev. 13 2998-3066 Rev. 5 2998-17057 Rev. 0 2998-13278 Rev. 3 2998-13277 Rev. 0 2998-13278 Rev. 3 2998-13277 Rev. 0 2998-3066 Rev. 5 2998-17057 Rev. 0 2998-546 Rev. 13 2998-187 Rev. 3 2998-3066 Rev. 5 2998-17055 Rev. 0 2998-13912 Rev. 1 2998-13912 Rev. 1 2998-2595 Rev. 2 2998-2595 Rev. 2 2998-2595 Rev. 2 2998-10622 Rev. 5 2998-10622 Rev. 5 L-2009-208 Attachment I Page 51 of62

L-2009-208 Page 52 of 62 MV-08-16 MV-08-17 V08359 V08360 V09294 V09252 2998-G-079 Sheet 2 Rev. 35 2998-G-080 Sheet 2A Rev 43 2998-10621 Rev. 6 2998-10621 Rev. 6 2998-3012 Rev. 8 2998-3012 Rev. 8 2998-2143 Rev. 5 2998-2143 Rev. 5 MV-08-16 MY-08-17 V08359 V08360 V09294 V09252 2998-G-079 Sheet 2 Rev. 35 2998-G-080 Sheet 2A Rev 43 2998-10621 Rev. 6 2998-10621 Rev. 6 2998-3012 Rev. 8 2998-3012 Rev. 8 2998-2143 Rev. 5 2998-2143 Rev. 5 L-2009-208 Page 52 of62

L-2009-208 Page 53 of 62 Table 13 Primary Loop Pressure Drop Distribution LBLOCA SBLOCA Geometry AP Geometry AP Geometry AP Geometry AP Station Friction AP Forward Flow Reverse Flow Friction AP Forward Flow Reverse Flow Pre-EPU Valuesý,;

j'j,

,< (1si (psi)

(psi) )--

j (psi)-.C;'

si, Reactor Vessel 4.90 27.84 38.42 5.14 28.93 39.90 Outlet RV to Inlet SG 0.30 0.66 0.66 0.28 0.64 0.64 Inlet SG to SG outlet 26.62 10.22 8.90 26.06 10.00 8.71 Outlet SG to Inlet RCP 0.58 2.73 2.73 0.56 2.65 2.65 RCPs 75.16 84.42 75.55 85.23 RCP outlet to RV inlet 0.42 0.89 0.89 0.42 0.87 0.87 EPU Values (psi)

-hjp~i):i j

si j

ii

.p..

Reactor Vessel 6.13 34.82 48.09 6.41 36.13 49.84 Outlet RV to Inlet SG 0.38 0.83 0.83 0.36 0.80 0.80 Inlet SG to SG outlet 33.34 12.81 11.17 39.24 11.65 15.17 Outlet SG to Inlet RCP 0.72 3.42 3.42 0.70 3.31 3.31 RCP 94.09 105.72 100.21 117.44 RCP outlet to RV inlet 0.52 1.12 1.12 0.52 1.09 1.09 Note: Pressure drops include uncertainties of +10% friction and +20% geometry.

Table 13 - CONT. - Associated Conditions LBLOCA SBLOCA Pre-EIPU Vle Power Level - MWTh 2754 2754 Vessel Flow Rate - Ibm/sec 35,796 34,868 Core Flow Rate - Ibm/sec 34,471 34,868 Bypass Flow - %

3.7 3.7 EPU Values Power Level - MW--h 3030 3030 Vessel Flow Rate - Ibm/sec 40,072 38,884 Core Flow Rate - Ibm/sec 38,589 38,884 Bypass Flow - %

4.2 4.2 Table 13 Primary Loop Pressure Drop Distribution LBLOCA SBLOCA Geometry 8P Geometry 8P Geometry 8P Station Friction 8P Forward Flow Reverse Flow Friction 8P Forward Flow

"'Pre-EPD VaI0es,:':

I' :~;,,,!,,~~ ::::~ii 'l~::: :: 1::

1 (psi)

/.. (psi) ". I.;:, " ":,,.'{psi)! *::t-I?'::: (psi }y~~'"' i;.,(c.. (psi)~"':,:i:'

Reactor Vessel 4.90 27.84 38.42 5.14 28.93 Outlet RV to Inlet SG 0.30 0.66 0.66 0.28 0.64 Inlet SG to SG outlet 26.62 10.22 8.90 26.06 10.00 Outlet SG to Inlet RCP 0.58 2.73 2.73 0.56 2.65 RCPs 75.16 84.42 75.55 RCP outlet to RV inlet 0.42 0.89 0.89 0.42 0.87 I *** '

"""i';\\~~

EpU":"\\jalues'; *..*..

I~~;;*(~~i ** )*r!;. 1;~,r~~*~I~Si)"';.!*':,,Jt. :'":!h I ~ (pSb:::i:;"f~'! I\\':i!!rl****(ps~}>"*.***:

",..,:{~~;)',

  • I~'.

Reactor Vessel 6.13 34.82 48.09 6.41 36.13 Outlet RV to Inlet SG 0.38 0.83 0.83 0.36 0.80 Inlet SG to SG outlet 33.34 12.81 11.17 39.24 11.65 Outlet SG to Inlet RCP 0.72 3.42 3.42 0.70 3.31 RCP 94.09 105.72 100.21 RCP outlet to RV inlet 0.52 1.12 1.12 0.52 1.09 Note: Pressure drops mclude uncertamtIes of + 1 0% fbctlon and +20% geometry.

Table 13 - CONT. - Associated Conditions LBLOCA SBLOCA

. *Pre,.EPU Values*.';ii,,':::i.'i,'..* *.i.

.' {'*JI.. ":.".',,".' f,;';"".. '~~f;'i;*'

Power Level - MWTh 2754 2754 Vessel Flow Rate - Ibm/sec 35,796 34,868 Core Flow Rate - Ibm/sec 34,471 34,868 Bypass Flow - %

3.7 3.7

.' ":,..*.*...*.. ':,:: **.* '.;;;',:'"'.<,,,,,, i'..,.*.*.* *.** *.',;.~:i:,;./e;i::,.:,l:!'.,

I EPU Values I

'i.

liii,,!!,.r '.:)?',e.'; *. ;;~~f;

  • .,*,?j!1;:*;*f9, ~~ *. ;*:':!:i:;i:';":'::

.. '.',. i:i!~ ".:'

/~:f, ')i';.' ~:/;'

Power Level - MWTh 3030 3030 Vessel Flow Rate - Ibm/sec 40,072 38,884 Core Flow Rate - Ibm/sec 38,589 38,884 Bypass Flow - %

4.2 4.2 L-2009-208 Page 53 of62 Geometry 8P Reverse Flow

  • ,;~:it*(ps'i);~;~';:."***

39.90 0.64 8.71 2.65 85.23 0.87

~,,:;!'.!!i(6~i)<*.:;.

49.84 0.80 15.17 3.31 117.44 1.09

L-2009-208 Attachment I Page 54 of 62 Table 14 Heat Balance Information

% EPU Power Feedwater Flow Ibm/hr (2 SG)

Steam Flow Ibm/hr (2 SG)

Feedwater Temperature, F Turbine Inlet Pressure, psia 100 13,345,890 13,247,580 436.2 803.3 90 11,872,120 11,773,810 426.9 711.0 75 9,696,551 9,598,249 410.1 576.4 50 6,223,793 6,125,495 374.6 361.7 25 2,994,037 2,895,675 322.7 190.0 Table 15 RCS Pressure Boundary Material Property Data Material Density Specific Thermal Emissivity Comment (lbm/ft3)

Heat Conductivity vs Temp (Btu/lbm-F)

(Btu/hr-ft-F)

Carbon 483.8*

0.129*

22.92*

0.78-0.82

  • SA-516 Gr 70 Steel

@130-530

    • smooth oxidized C**

iron Stainless 499.4*

0.13*

10.44*

0.57-0.66

  • 304/304L SS Steel

@230-870

    • 316 SS repeated C**

heating Inconel 528.8 0.106 8.58 0.85-0.98 600

@480-1090 C Inconel 511.5 0.107 7.75 0.85-0.98 Emissivity assumed 690

@480-1090 C same as Inconel 600

%EPU Power 100 90 75 50 25 Material Carbon Steel Stainless Steel Inconel 600 Inconel 690 Table 14 Heat Balance Information Feedwater Flow Steam Flow Feedwater Ibmlhr (2 SG)

Ibmlhr (2 SG)

Temperature, F 13,345,890 13,247,580 436.2 11,872,120 11,773,810 426.9 9,696,551 9,598,249 410.1 6,223,793 6,125,495 374.6 2,994,037 2,895,675 322.7 Table 15 Turbine Inlet Pressure, psia 803.3 711.0 576.4 361.7 190.0 L-2009-208 Page 54 of62 Res Pressure Boundary Material Property Data Density Specific Thermal Emissivity Comment (lbm/ft3)

Heat Conductivity vs Temp (Btu/Ibm-F)

(Btu/hr-ft-F) 483.8*

0.129*

22.92*

0.78-0.82

  • SA-516 Or 70

@130-530

    • smooth oxidized C**

iron 499.4*

0.13*

10.44*

0.57-0.66

  • 304/304L SS

@230-870

    • 316 SS repeated C**

heating 528.8 0.106 8.58 0.85-0.98

@480-1090C 511.5 0.107 7.75 0.85-0.98 Emissivity assumed

@480-1090 C same as Inconel 600

L-2009-208 Attachment I Page 55 of 62 FIGURE 16 PRESSURIZER PRESSURE CONTROL PROGRAM Pressure (psia) 2500 2400 2370 2340 2325_

2300 2275_

2250 2225 2220 2200 2100 I

I i

Safety Valves Open (2500 psia)

PORVs Open (2370 psia)

High Pressure Trip (2370 psia)

High Pressure Alarm (2340 psia)

Spray Valves Fully Open (Above 2325 psia)

Spray Valves Fully Closed (Below 2275 psia)

Proportional Heaters "OFF" (2275 psia)

Control Setpoint (2250 psia)

Proportional Heaters "ON" (2225 psia)

Backup Heaters "OFF" Above 2220 psia Backup Heaters "ON" Below 2200 psia Low Pressure Alarm (2100 psia)

/

/

Net Heat In Net Heat Out (Not To Scale)

Pressure (psia) 2500 2400 2370 2340 2325 2300 2275 2250 2225 2220 2200 2100 FIGURE 16 PRESSURIZER PRESSURE CONTROL PROGRAM

/

V

/

'l Net Heat In Net Heat Out Safety Valves Open (2500 psia)

PORVs Open (2370 psia)

High Pressure Trip (2370 psi a)

High Pressure Alarm (2340 psia)

Spray Valves Fully Open (Above 2325 psia)

Spray Valves Fully Closed (Below 2275 psia)

Proportional Heaters "OFF" (2275 psia)

Control Setpoint (2250 psia)

Proportional Heaters "ON" (2225 psia)

Backup Heaters "OFP' Above 2220 psia Backup Heaters "ON" Below 2200 pSia Low Pressure Alarm (2100 psia)

(Not To Scale)

L-2009-208 Page 55 of62

L-2009-208 Page 56 of 62 FIGURE 17 PRESSURIZER LEVEL ERROR CONTROL Level Error From Item Description Nominal

(% Span) 1 First Backup Charging Pump Start Signal

- 2.5 2

First Backup Charging Pump Stop Signal

- 1.1 3

Backup Signal to Start All Charging Pumps

- 5 4

Backup Signal to Stop Backup Charging

+4 Pumps 5

High Level Error Alarm

+5 6

Low Level Error Alarm

-5 7

All Pressurizer Heaters Energized

+ 4 8

Minimum Letdown

- 1.1 9

Maximum Letdown

+ 12.5 Item 1

2 3

4 5

6 7

8 9

FIGURE 17 PRESSURIZER LEVEL ERROR CONTROL Level Error From Description Nominal

(% Span)

First Backup Charging Pump Start Signal

- 2.5 First Backup Charging Pump Stop Signal

- 1.1 Backup Signal to Start All Charging Pumps

-5 Backup Signal to Stop Backup Charging

+4 Pumps High Level Error Alarm

+5 Low Level Error Alarm

- 5 All Pressurizer Heaters Energized

+4 Minimum Letdown

- 1.1 Maximum Letdown

+ 12.5 L-2009-208 Page 56 of62

L-2009-208 Attachment I Page 57 of 62 Figure 18 - LTOP PORV ACTUATION SCHEMATIC

`

"PORV Opens V-1474 (P-1103 and P-1104)

V-1475 (P-1105 and P-1106)

"PORV Closes V-1474 V-I1475 (PfMaintW2-SA~i-O1.O3A/Fig,3./Rev, 1/Vot Mode Sel.

Sw.

"LTOP" Temp s; 255°F Press.

~490 PSIA PORV Sw.

"Off" Mode Sel.

Sw.

"Normal" Press.

= 2370 psia PORV Sw.

"Off" PORV Sw.

"Override" PORV Sw.

Test

L-2009-208 Attachment I Page 57 of62 Figure 18 - LTOP PORV ACTUATION SCHEMATIC n

I' U

~, '

I-

f.

I-

"PORV Closes V-1474

'y'(:~(>.."

it~,~tJyj;)"PORV Opens V-1474 (P-1103 and P-1 V-1475 (P-1105 and P-1 104) 106)

V-1475 (PlMaintl2-SMI-01.03NFig.3!Rev, Mif)

L-2009-208 Page 58 of 62 Figure 19 - Unit 2 SBCS Simplified Block Diagram See Next Page Figure 19 - Unit 2 SBCS Simplified Block Diagram See Next Page L-2009-208 Page 58 of62

L-2009-208 Page 59 of 62 Avg t

LIT,~"

('011(1 1rie SkiM Pisoa I~i I{)

l

~

ai I

lW' jt

-T (A

6 T I

A]

Ti

'I!

, '!I':

...,zrfi*

t:.:~

I

[:,..

modlidont M1 fl

-+
  • 0 ii 4

i: r ji

+++

+ +o -....

Via I h', al l *.......+-

[ 3 1 -

A A

1 7 1:

11

, r: :7 Air

'VPf UV

.. - -:-,,+,

-+:* -i

+......... ------

__"!"k iwon)LpME l

I 11 PI i 11taonlia li lril113iiOSreiEiii.

iasau,1~iiliin i

ili 1Ati lctaui AW]

I:

M b i~

0i~'~1'~

M'I-

lIt, 1),
1i a

1o C C'i1 lIt:ocu it ltatloat 1 Ii1 tatl l,.t "1

'1i'4-0%1r l

ItC t'r

I
l:: :

2 &

t S-ni t

lo

ooril 4 late 'I'm ) noni ii.... I o lf fO )1(

"l ':

l::F I y t lai "moa nti I
l::

j:

ita:t t I i::::

p-t

(

0 05 A (fl

!t ra i~ilho ~ bielst )I I~~tS oa St IIm,

l-jiostIi'cniiiio

  • .a :i.ii,,to til 4...

Sncl:: e ia:i: lititatitr.il*

jtil i Ol* o11,i l no it Pa,7 t

"bdUinittl"~ i'0'-"~~" ~1Jf.j~~

III1_J.'II'lnhhl'l!i IIC~Ii\\ri';CI'

,£;

":L""

'n 1 __.. _.,.... _',,;;,::;.,;. ~:;,_.,;,.;;".~

'~j31i1:R~ll.iln' -,

L-2009-208 Page 59 0[62

L-2009-208 Page 60 of 62 Table 20 - Unit 2 Essential Valve Characteristics Component Full Open Flow Forward/

Open/Close Rate Min Flow at Rated Open/Close Logic Area Backward CV Conditions Pressurizer 0.0202 Ft2 N/A 1 sec open (this 398,000 lbm/hr steam PORVs are actuated on high PZR pressure using PORVs This is an effective value is for non-per valve 2/4 logic. The nominal (TS) setpoint is <2370 area, back LTOP evaluations) psia. This setpoint will not change for EPU.

calculated from the See Table 5 for additional information.

identified flow rate.

PORVs are also actuated by the LTOP logic.

The PORV logic and existing setpoints is shown in Figure 18.

Pressurizer Safety 0.01 Ft 2 N/A 0.05 sec open 212,182 Ibm/hr steam Spring loaded valve that opens at nominal set Valves This is an effective per valve @ setpressure pressure, achieves full open position at 103% of area, back

+ 3% accumulation setpressure; recloses at a pressure of 99% to calculated from the 85% of setpressure; see Table 5 for additional identified flow rate.

information Main Steam 0.1054 Ft 2 for the N/A 1.0 sec open 744,210 ibm/hr per Spring loaded valve that opens at nominal set Safety Valves 1000 psia valves.

valve @ 1000 psia pressure, full open at 103% of setpressure; see This is an effective 774,000 ibm/hr per Table 5 for additional information area, back valve @1040 psia calculated from the identified flow rate; 0.1052 Ft 2 for the 1040 psia valves.

This is an effective area, back calculated from the identified flow rate.

Atmospheric Dump Valves Open / Close (sec)

Component Full Open Flow Area Pressurizer 0.0202 Fe PORVs This is an effective area, back calculated from the identified flow rate.

Pressurizer Safety 0.01 Fe Valves This is an effective area, back calculated from the identified flow rate.

Main Steam 0.1054 Fe for the Safety Valves 1000 psia valves.

This is an effective area, back calculated from the identified flow rate; 0.1052 Ft2 for the 1040 psia valves.

This is an effective area, back calculated from the identified flow rate.

Atmospheric Dump Valves Table 20 - Unit 2 Essential Valve Characteristics Forward/

Open/Close Rate Min Flow at Rated Backward CV Conditions N/A 1 sec open (this 398,000 Ibmlhr steam value is for non-per valve LTOP evaluations)

N/A 0.05 sec open 212,1821bmlhr steam per valve @ setpressure

+ 3% accumulation N/A 1.0 sec open 744,210 Ibmlhr per valve @ 1000 psia 774,000 lbmlhr per valve @1040 psia Open / Close (sec)

Open/Close Logic L-2009-208 Page 60 of62 PORVs are actuated on high PZR pressure using 2/4 logic. The nominal CTS) setpoint is ::;2370 psia. This setpoint will not change for EPU.

See Table 5 for additional information.

PORVs are also actuated by the L TOP logic.

The PORV logic and existing setpoints is shown in Figure 18.

Spring loaded valve that opens at nominal set pressure, achieves full open position at 103% of setpressure; recloses at a pressure of 99% to 85% of setpressure; see Table 5 for additional information Spring loaded valve that opens at nominal set pressure, full open at 103% of setpressure; see Table 5 for additional information I

I

L-2009-208 Attachment I Page 61 of 62 Component Full Open Flow Forward/

Open/Close Rate Min Flow at Rated Open/Close Logic Area Backward CV Conditions MV-08-18A 0.0396 sq ft per 553 37.2-50.3/35.5-275,000 lbm/hr @985 ADV control is via pressure indicating valve, effective 47.9 psia; 54,000 ibm/hr @

controllers PIC-08-1A, PIC-08-1B, PIC-08-3A, area back 55 psia (design PIC-08-3B. In the Manual mode of operation, MV-08-19A calculated from 35.5-47.9/35.8-capacity) the controller is used to directly set valve identified flow rate.

48.3 position. In the Automatic mode of operation, valve position is varied to maintain the desired MV-08-18B 36.9-49.9/35.6-pressure. PSL2 ADV controllers are maintained 48.1 in Manual during full power plant operation.

This normal control mode is based on PSL-2 TS MV-08-19B 37.2-50.2/36.6-LCO 3.7.1.7. ADV control will not change for 49.6 EPU.

Turbine Control Data N/A 12,222,940 lbm/hr at Valves close on Turbine Trip. Trip logic Valves (Governor) 1256.6 in2 for 4 unavailable; EPU for total of four includes: Reactor Trip, High-High SG Level, valves was not used in valves Overspeed, Generator Lockout and various design equipment protection functions.

PRELIMINARY:

Turbine governor valves are currently operated Assumed the same in Sequential Valve mode with valve position as Unit 1.

controlled by the DEH computer. Various control strategies (feedback loops) are available including: Impulse Pressure, Megawatt Control and Speed Control.

As part of EPU main turbine upgrades, the governor valves will be operated in Single Valve mode.

Turbine By-Pass Valves Not available due to planned valve capacity upgrade An upgraded valve open time in the quick open mode of approximately 2 sec is planned as part of EPU An upgraded system capacity of approximately 6.9E6 Ibm/hr. is planned as part of EPU Steam Bypass Control System (SBCS) has both modulation and quick open control modes. A control block diagram, including setpoints where applicable, is shown in Figure 19.

Minor changes to the SBCS logic are planned as part of EPU. QO load rejection setpoint will be reduced to -15%. Valve demand curves will be revised to reflect new valve capacities and valve trim. Transition from QO to modulation mode will be enhanced.

Component Full Open Flow Forward!

Open/Close Rate Area Backward CV MV-08-18A 0.0396 sq ft per 553 37.2-50.3/35.5-valve, effective 47.9 area back MV-08-19A calculated from 35.5-47.9/35.8-identified flow rate.

48.3 MV-08-188 36.9-49.9/35.6-48.1 MV-08-198 37.2-50.2/36.6-49.6 Turbine Control Data NIA Valves (Governor) 1256.6 in2 for 4 unavailable; valves was not used in design PRELIMINARY:

Assumed the same as Unit 1.

Turbine By-Pass Not available due An upgraded valve Valves to planned valve open time in the capacity upgrade quick open mode of approximately 2 sec is planned as part ofEPU Min Flow at Rated Conditions 275,000 Ibrnlhr @985 psia; 54,000 Ibrnlhr @

55 psia (design capacity) 12,222,940 Ibrnlhr at EPU for total of four valves An upgraded system capacity of approximately 6.9E6 Ibrnlhr. is planned as part ofEPU Open/Close Logic L-2009-208 Page 61 of62 ADV control is via pressure indicating controllers PIC-08-1A, PIC-08-1 B, PIC-08-3A, PIC-08-38. In the Manual mode of operation, the controller is used to directly set valve position. In the Automatic mode of operation, valve position is varied to maintain the desired pressure. PSL2 ADV controllers are maintained in Manual during full power plant operation.

This normal control mode is based on PSL-2 TS LCO 3.7.1.7. ADV control will not change for EPU.

Valves close on Turbine Trip. Trip logic includes: Reactor Trip, High-High SG Level, Overspeed, Generator Lockout and various equipment protection functions.

Turbine governor valves are currently operated in Sequential Valve mode with valve position controlled by the DEH computer. Various control strategies (feedback loops) are available including: Impulse Pressure, Megawatt Control and Speed Control.

As part of EPU main turbine upgrades, the governor valves will be operated in Single Valve mode.

Steam Bypass Control System (SBCS) has both modulation and quick open control modes. A control block diagram, including setpoints where applicable, is shown in Figure 19.

Minor changes to the SBCS logic are planned as part ofEPU. QO load rejection setpoint will be reduced to ~15%. Valve demand curves will be revised to reflect new valve capacities and valve trim. Transition from QO to modulation mode will be enhanced.

I

L-2009-208 Page 62 of 62 Component Full Open Flow Forward/

Open/Close Rate Min Flow at Rated Open/Close Logic Area Backward CV Conditions Turbine Stop Data 0.26 sec (close) 12,222,940 Ibm/hr at Valves close on Turbine Trip. Trip logic Valves (Throttle) 2375.8 in2 for 4 unavailable; EPU for total of four includes: Reactor Trip, High-High SG Level, valves was not used in valves Overspeed, Generator Lockout and various design equipment protection functions.

PRELIMINARY:

Turbine stop valves are normally full open Assumed the same during power operation. The stop valves are as Unit 1.

opened in a DEH speed control mode during initial turbine startup (to 1700 RPM).

Main Feed 1.268 Ft2 13,750 Close stroke time 13,345,890 lbm/hr MFIVs close on either AFAS or MSIS. See Isolation Valves (Estimate based on 1.0 to 2.4 sec.

100% Flow Table 5 for AFAS/MSIS actuation signals and full flow of 18" associated setpoints.

Sch 120 pipe)

Main Steam 4.665 sq ft N/A After MSIS signal 13,247,580 Ibm/hr MSIVs close on MSIS. See Table 5 for MSIS Isolation Valves (estimate based on is generated. 6.75 100% Flow actuation signals and associated setpoints.

29.245" diameter sec-value includes port size) sensor response time of 1.15 secs and valve closure time of 5.6 secs.

Component Full Open Flow Forward!

Area Backward CV Turbine Stop Data Valves (Throttle) 2375.8 in2 for 4 unavailable; valves was not used in design PRELIMINARY:

Assumed the same as Unit 1.

Main Feed 1.268 Fr 13,750 Isolation Valves (Estimate based on full flow of 18" Sch 120 pipe)

Main Steam 4.665 sq ft N/A Isolation Valves (estimate based on 29.245" diameter port size)

Open/Close Rate Min Flow at Rated Conditions 0.26 sec (close) 12,222,940 lbmlhr at EPU for total of four valves Close stroke time 13,345,890 lbmlhr 1.0 to 2.4 sec.

100% Flow After MSIS signal 13,247,580Ibm/hr is generated. 6.75 100% Flow sec-value includes sensor response time of 1.15 sees and valve closure time of 5.6 sees.

Open/Close Logic L-2009-208 Page 62 of62 Valves close on Turbine Trip. Trip logic includes: Reactor Trip, High-High SG Level, Overs peed, Generator Lockout and various equipment protection functions.

Turbine stop valves are normally full open during power operation. The stop valves are opened in a DEH speed control mode during initial turbine startup (to 1700 RPM).

MFIVs close on either AFAS or MSIS. See Table 5 for AF AS/MSIS actuation signals and associated setpoints.

MSIVs close on MSIS. See Table 5 for MSIS actuation signals and associated setpoints.

I

L-2009-208, Page 1 of 8 ATTACHMENT 3 ATTACHMENT 3 L-2009-208, Page 1 of 8

Westinghouse U.S. Nuclear Regulatory Commission Document Control Desk Washington, DC 20555-0001 L-2009-208, Page 2 of 8 Westinghouse Electric Company Nuclear Services P.O. Box 355 Pittsburgh. Pennsylvania 15230-0355 USA Direct tel: (412) 374-4643 Direct fax: (412) 374-4011 e-mail: greshaja@westinghouse.com Our ref: CAW-09-2675 September 18, 2009 APPLICATION FOR WITHHOLDING PROPRIETARY INFORMATION FROM PUBLIC DISCLOSURE

Subject:

Florida Power and Light Company Letter L-2009-208, "Extended Power Uprate Data for NRC Confirmatory EPU Analyses" The proprietary information for which withholding is being requested in the subject letter is further identified in Affidavit CAW-09-2675 signed by the owner of the proprietary information, Westinghouse Electric Company LLC. The affidavit, which accompanies this letter, sets forth the basis on which the information may be withheld from public disclosure by the Commission and addresses with specificity the considerations listed in paragraph (b)(4) of 10 CFR Section 2.390 of the Commission's regulations.

Accordingly, this letter authorizes use of the accompanying affidavit by Florida Power and Light Company.

Correspondence with respect to this application for withholding or the accompanying Westinghouse affidavit should reference this letter, CAW-09-2675, and should be addressed to J. A. Gresham, Manager, Regulatory Compliance and Plant Licensing, Westinghouse Electric Company LLC, P.O. Box 355, Pittsburgh, Pennsylvania 15230-0355.

Very truly yours, J. A. Gresham, Manager Regulatory Compliance and Plant Licensing Enclosures G) Westinghouse U.S. Nuclear Regulatory Commission Document Control Desk Washington, DC 20555-0001 L-2009-208, Page 2 of 8 Westinghouse Electric Company Nuclear Services P.O. Box355 Pittsburgh. Pennsylvania 15230-0355 USA Direct tel: (412) 374-4643 Direct fax: (412) 374-4011 e-mail: greshaja@wesringhouse.com Our ref: CA W-09-2675 September 18, 2009 APPLICA nON FOR WITHHOLDING PROPRIETARY INFORMA TION FROM PUBLIC DISCLOSURE

Subject:

Florida Power and Light Company Letter L-2009-208, "Extended Power Uprate Data for NRC Confirmatory EPU Analyses" The proprietary information for which withholding is being requested in the subject letter is further identified in Affidavit CA W-09-2675 signed by the owner of the proprietary information, Westinghouse Electric Company LLC. The affidavit, which accompanies this letter, sets forth the basis on which the information may be withheld from public disclosure by the Commission and addresses with specificity the considerations listed in paragraph (b)( 4) of 10 CFR Section 2.390 cif the Commission's regulations.

Accordingly, this letter authorizes use of the accompanying affidavit by Florida Power and Light Company.

Correspondence with respect to this application for withholding or the accompanying Westinghouse affidavit should reference this letter, CA W-09-2675, and should be addressed to J. A. Gresham, Manager, Regulatory Compliance and Plant Licensing, Westinghouse Electric Company LLC, P.O. Box 355, Pittsburgh, Pennsylvania 15230-0355.

VelY truly yours,

_$- j -t( ~.~

J. A. Gresham, Manager Regulatory Compliance and Plant Licensing Enclosures

L-2009-208, Page 3 of 8 CAW-09-2675 AFFIDAVIT STATE OF CONNECTICUT:

ss COUNTY OF HARTFORD:

Before mne, the undersigned authority, personally appeared Michael J. Gancarz, who, being by me duly sworn according to law, deposes and says that he is authorized to execute this Affidavit on behalf of Westinghouse Electric Company LLC (Westinghouse), and that the averments of fact set forth in this Affidavit are true and correct to the best of his knowledge, information, and belief:

Product Manager, Systems and Equipment Engineering II Sworn to and subscribed before me this /a day of September, 2009 My Commission Expires:

3' L-2009-208, Page 3 of 8 CA W-09-267S AFFIDAVIT STATE OF CONNECTICUT:

ss COUNTY OF HARTFORD:

Before me, the undersigned authority, personally appeared Michael J. Gancarz, who, being by me duly sworn according to law, deposes and says that he is authorized to execute this Affidavit on behalf of Westinghouse Electric Company LLC (Westinghouse), and that the averments of fact set forth in this Affidavit are true and correct to the best of his knowledge, information, and belief:

Sworn to and subscribed before me thisl1~day of September, 2009 My Commissi on Expires: -}-./f-h_* -,i /f-!...!./_'-IL.'---

Product Manager, Systems and Equipment Engineering 11

L-2009-208, Page 4 of 8 2

CAW-09-2675 (1)

I am Michael J. Gancarz, Product Manager, Systems and Equipment Engineering II in Nuclear Services, Westinghouse Electric Company LLC (Westinghouse), and as such, I have been specifically delegated the function of reviewing proprietary information sought to be withheld from public disclosure in connection with nuclear power plant licensing and rule making proceedings, and am authorized to apply for its withholding on behalf of Westinghouse.

(2)

I am making this Affidavit in conformance with the provisions of 10 CFR Section 2.390 of the Commission's regulations and in conjunction with the Westinghouse "Application for Withholding" accompanying this Affidavit.

(3) 1 have personal knowledge of the criteria and procedures utilized by Westinghouse in designating information as a trade secret, privileged or as confidential commercial or financial information.

(4)

Pursuant to the provisions of paragraph (b)(4) of Section 2.390 of the Commission's regulations, the following is furnished for consideration by the Commission in determining whether the information sought to be withheld from public disclosure should be withheld.

(i)

The information sought to be withheld from public disclosure is owned and has been held in confidence by Westinghouse.

(ii)

The information is of a type customarily held in confidence by Westinghouse and not customarily disclosed to the public. Westinghouse has a rational basis for determining the types of information customarily held in confidence by it and, in that connection, utilizes a system to determine when and whether to hold certain types of information in confidence. The application of that system and the substance of that system constitutes Westinghouse policy and provides the rational basis required.

Under that system, information is held in confidence if it falls in one or more of several types, the release of which might result in the loss of an existing or potential competitive advantage, as follows:

(a)

The information reveals the distinguishing aspects of a process (or component, structure, tool, method, etc.) where prevention of its use by any of Westinghouse's competitors without license from Westinghouse constitutes a competitive economic advantage over other companies.

2 L-2009-208, Page 4 of 8 CA W-09-2675 (1)

I am Michael J. Gancarz, Product Manager, Systems and Equipment Engineering II in Nuclear Services, Westinghouse Electric Company LLC (Westinghouse), and as such, I have been specifically delegated the function of reviewing proprietary information sought to be withheld from public disclosure in connection with nuclear power plant licensing and rule making proceedings, and am authorized to apply for its withholding on behalf of Westinghouse.

(2)

I am making this Affidavit in conformance with the provisions of 10 CFR Section 2.390 of the Commission's regulations and in conjunction with the Westinghouse "Application for Withholding" accompanying this Affidavit.

(3)

I have personal knowledge of the criteria and procedures utilized by Westinghouse in designating information as a trade secret, privileged or as confidential commercial or financial information.

(4)

Pursuant to the provisions of paragraph (b)(4) of Section 2.390 of the Commission's regulations, the following is fumished for consideration by the Commission in determining whether the information sought to be withheld from public disclosure should be withheld.

(i)

The information sought to be withheld from public disclosure is owned and has been held in confidence by Westinghouse.

(ii)

The information is of a type customarily held in confidence by Westinghouse and not customarily disclosed to the public. Westinghouse has a rational basis for detennining the types of information customarily held in confidence by it and, in that connection, utilizes a system to determine when and whether to hold certain types of information in confidence. The application of that system and the substance of that system constitutes Westinghouse policy and provides the rational basis required.

Under that system, information is held in confidence if it falls in one or more of several types, the release of which might result in the loss of an existing or potential competitive advantage, as follows:

(a)

The information reveals the distinguishing aspects ofa process (or component, structure, tool, method, etc.) where prevention of its use by any of Westinghouse's competitors without license from Westinghouse constitutes a competitive economic advantage over other companies.

L-2009-208 Aftachment 3, Page 5 of 8 3

CAW-09-2675 (b)

It consists of supporting data, including test data, relative to a process (or component, structure, tool, method, etc.), the application of which data secures a competitive economic advantage, e.g., by optimization or improved marketability.

(c)

Its use by a competitor would reduce his expenditure of resources or improve his competitive position in the design, manufacture, shipment, installation, assurance of quality, or licensing a similar product.

(d)

It reveals cost or price information, production capacities, budget levels, or commercial strategies of Westinghouse, its customers or suppliers.

(e)

It reveals aspects of past, present, or future Westinghouse or customer funded development plans and programs of potential commercial value to Westinghouse.

(f)

It contains patentable ideas, for which patent protection may be desirable.

There are sound policy reasons behind the Westinghouse system which include the following:

(a)

The use of such information by Westinghouse gives Westinghouse a competitive advantage over its competitors. It is, therefore, withheld from disclosure to protect the Westinghouse competitive position.

(b)

It is information that is marketable in many ways. The extent to which such information is available to competitors diminishes the Westinghouse ability to sell products and services involving the use of the information.

(c)

Use by our competitor would put Westinghouse at a competitive disadvantage by reducing his expenditure of resources at our expense.

(d)

Each component of proprietary information pertinent to a particular competitive advantage is potentially as valuable as the total competitive advantage. If competitors acquire components of proprietary information, any one component may be the key to the entire puzzle, thereby depriving Westinghouse of a competitive advantage.

(e)

Unrestricted disclosure would jeopardize the position of prominence of Westinghouse in the world market, and thereby give a market advantage to the competition of those countries.

3 L-2009-208, Page 5 of 8 CA W-09-2675 (b)

It consists of supporting data, including test data, relative to a process (or component, structure, tool, method, etc.), the application of which data secures a competitive economic advantage, e.g., by optimization or improved marketability.

(c)

Its use by a competitor would reduce his expenditure of resources or improve his competitive position in the design, manufacture, shipment, installation, assurance of quality, or licensing a similar product.

(d)

It reveals cost or price information, production capacities, budget levels, or commercial strategies of Westinghouse, its customers or suppliers.

(e)

It reveals aspects of past, present, or future Westinghouse or customer funded development plans and programs of potential commercial value to Westinghouse.

(f)

It contains patentable ideas, for which patent protection may be desirable.

There are sound policy reasons behind the Westinghouse system which include the following:

(a)

The use of such information by Westinghouse gives Westinghouse a competitive advantage over its competitors. It is, therefore, withheld from disclosure to protect the Westinghouse competitive position.

(b)

It is information that is marketable in many ways. The extent to which such information is available to competitors diminishes the Westinghouse ability to sell products and services involving the use of the information.

(c)

Use by our competitor would put Westinghouse at a competitive disadvantage by reducing his expenditure of resources at our expense.

(d)

Each component of proprietary information pertinent to a particular competitive advantage is potentially as valuable as the total competitive advantage. If competitors acquire components of proprietary information, anyone component may be the key to the entire puzzle, thereby depriving Westinghouse of a competitive advantage.

(e)

Unrestricted disclosure would jeopardize the position of prominence of Westinghouse in the world market, and thereby give a market advantage to the competition of those countries.

L-2009-208, Page 6 of 8 4

CAW-09-2675 (f)

The Westinghouse capacity to invest corporate assets in research and development depends upon the success in obtaining and maintaining a competitive advantage.

(iii)

The information is being transmitted to the Commission in confidence and, under the provisions of 10 CFR Section 2.390, it is to be received in confidence by the Commission.

(iv)

The information sought to be protected is not available in public sources or available information has not been previously employed in the same original manner or method to the best of our knowledge and belief.

(v)

The proprietary information sought to be withheld in this submittal is that which is appropriately marked in Florida Power and Light Company letter L-2009-208, "Extended Power Uprate Data for NRC Confirmatory EPU Analyses," accompanied by Application for Withholding Proprietary Information from Public Disclosure, to the Document Control Desk. The proprietary information pertains to the hot rod heatup calculations performed in the Supplement 2 version of Westinghouse's small break LOCA evaluation model for Combustion Engineering designed plants.

Further this information has substantial commercial value as follows:

(a)

Westinghouse can sell the use of similar information to its customers for the purpose of meeting NRC requirements for licensing documentation.

(b)

Westinghouse can sell support and defense of the analysis methodology to its customers in the licensing process.

Public disclosure of this proprietary information is likely to cause substantial harnm to the competitive position of Westinghouse because it would enhance the ability of competitors to provide similar analytical services and licensing defense services for commercial power reactors without incurring commensurate expenses. Also, public disclosure of the information would enable others to use the information to meet NRC requirements for licensing documentation without purchasing the right to use the information.

The development of the technology described in part by the information sought to be withheld is the result of applying the results of many years of experience in an intensive Westinghouse effort and the expenditure of a considerable sum of money.

4 L-2009-208, Page 6 of 8 CA W-09-2675 (f)

The Westinghouse capacity to invest corporate assets in research and development depends upon the success in obtaining and maintaining a competitive advantage.

(iii)

The information is being transmitted to the Commission in confidence and, under the provisions of 10 CFR Section 2.390, it is to be received in confidence by the Commission.

(iv)

The information sought to be protected is not available in public sources or available information has not been previously employed in the same original manner or method to the best of our knowledge and belief.

(v)

The proprietary information sought to be withheld in this submittal is that which is appropriately marked in Florida Power and Light Company letter L-2009-208, "Extended Power Uprate Data for NRC Confirmatory EPU Analyses," accompanied by Application for Withholding Proprietary Information from Public Disclosure, to the Document Control Desk. The proprietary information pel1ains to the hot rod heatup calculations performed in the Supplement 2 version of Westinghouse'S small break LOCA evaluation model for Combustion Engineering designed plants.

Further this information has substantial commercial value as follows:

(a)

Westinghouse can sell the use of similar information to its customers for the purpose of meeting NRC requirements for licensing documentation.

(b)

Westinghouse can sell supp0l1 and defense of the analysis methodology to its customers in the licensing process.

Public disclosure of this proprietary information is likely to cause substantial hann to the competitive position of Westinghouse because it would enhance the ability of competitors to provide similar analytical services and licensing defense services for commercial power reactors without incurring commensurate expenses. Also, public disclosure of the information would enable others to use the infonnation to meet NRC requirements for licensing documentation without purchasing the right to use the information.

The development of the technology described in part by the information sought to be withheld is the result of applying the results of many years of experience in an intensive Westinghouse effort and the expenditure ofa considerable sum of money.

L-2009-208, Page 7 of 8 5

CAW-09-2675 In order for competitors of Westinghouse to duplicate this information, similar technical programs would have to be performed and a significant manpower effort, having the requisite talent and experience, would have to be expended.

Further the deponent sayeth not.

5 L-2009-208, Page 7 of 8 CA W-09-2675 In order for competitors of Westinghouse to duplicate this information, similar technical programs would have to be performed and a significant manpower effort, having the requisite talent and experience, would have to be expended.

Further the deponent sayeth not.

L-2009-208, Page 8 of 8 6

CAW-09-2675 PROPRIETARY INFORMATION NOTICE Transmitted herewith are proprietary and/or non-proprietary versions of documents furnished to the NRC in connection with requests for generic and/or plant-specific review and approval.

In order to conform to the requirements of 10 CFR 2.390 of the Commission's regulations concerning the protection of proprietary information so submitted to the NRC, the information which is proprietary in the proprietary versions is contained within brackets, and where the proprietary information has been deleted in the non-proprietary versions, only the brackets remain (the information that was contained within the brackets in the proprietary versions having been deleted). The justification for claiming the information so designated as proprietary is indicated in both versions by means of lower case letters (a) through (f) located as a superscript immediately following the brackets enclosing each item of information being identified as proprietary or in the margin opposite such information.

These lower case letters refer to the types of information Westinghouse customarily holds in confidence identified in Sections (4)(ii)(a) through (4)(ii)(f) of the affidavit accompanying this transmittal pursuant to 10 CFR 2.390(b)(1I).

COPYRIGHT NOTICE The documents transmitted herewith each bear a Westinghouse copyright notice. The NRC is permitted to make the number of copies of the information contained in these documents which are necessary for its internal use in connection with generic and plant-specific reviews and approvals as well as the issuance, denial, amendment, transfer, renewal, modification, suspension, revocation, or violation of a license, permit, order, or regulation subject to the requirements of 10 CFR 2.390 regarding restrictions on public disclosure to the extent such information has been identified as proprietary by Westinghouse, copyright protection notwithstanding. With respect to the non-proprietary versions of these documents, the NRC is permitted to make the number of copies beyond those necessary for its internal use which are necessary in order to have one copy available for public viewing in the appropriate docket files in the public document room in Washington, DC and in local public document rooms as may be required by NRC regulations if the number of copies submitted is insufficient for this purpose. Copies made by the NRC must include the copyright notice in all instances and the proprietary notice if the original was identified as proprietary.

6 PROPRIETARY INFORMATION NOTICE L-2009-208, Page 8 of 8 CA W-09-2675 Transmitted herewith are proprietary and/or non-proprietary versions of documents furnished to the NRC in connection with requests for generic and/or plant-specific review and approval.

In order to conform to the requirements of!O CFR 2.390 of the Commission's regulations concerning the protection of proprietary information so submitted to the NRC, the information which is proprietary in the proprietary versions is contained within brackets, and where the proprietary infom1ation has been deleted in the non-proprietary versions, only the brackets remain (the information that was contained within the brackets in the proprietary versions having been deleted). The justification for claiming the information so designated as proprietary is indicated in both versions by means of lower case letters (a) through (t) located as a superscript immediately following the brackets enclosing each item of information being identified as proprietary or in the margin opposite such information.

These lower case letters refer to the types of information Westinghouse customarily holds in confidence identified in Sections (4)(ii)(a) through (4)(ii)(t) of the affidavit accompanying this transmittal pursuant to 10 CFR 2.390(b)( I).

COPYRIGHT NOTICE The documents transmitted herewith each bear a Westinghouse copyright notice. The NRC is permitted to make the number of copies of the information contained in these documents which are necessary for its internal use in connection with generic and plant-specific reviews and approvals as well as the issuance, denial, amendment, transfer, renewal, modification, suspension, revocation, or violation of a license, permit, order, or regulation subject to the requirements of 10 CFR 2.390 regarding restrictions on public disclosure to the extent such information has been identified as proprietary by Westinghouse, copyright protection notwithstanding. With respect to the non-proprietary versions of these documents, the NRC is permitted to make the number of copies beyond those necessary for its internal use which are necessary in order to have one copy available for public viewing in the appropriate docket files in the public document room in Washington, DC and in local public document rooms as may be required by NRC regulations if the number of copies submitted is insufficient for this purpose. Copies made by the NRC must include the copyright notice in all instances and the proprietary notice if the original was identified as proprietary.

L-2009-208 Page 1 of 16 ATTACHMENT 4 NONPROPRIETARY VERSION OF ATTACHMENT 2 ATTACHMENT 4 NONPROPRIETARY VERSION OF ATTACHMENT 2 L-2009-208 Page 1 of 16

L-2009-208 Page 2 of 16 18.1 Control Rod Insertion versus Time after Scram SBLOCA Figure 1 and Table 1 (below) provide the St. Lucie Unit 2 Control Element Assembly (CEA) insertion versus time after scram. Bounding margin that is added for conservatism in the Westinghouse SBLOCA analysis is not included in the data provided.

Figure 1 and Table I ST. LUCIE UNIT 2 - CONTROL ELEMENT ASSEMBLY (CEA) INSERTION POSITION VS TIME 120.00 I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I I

I 110.00....

r I

i

..... I............

I II I

I I

I I

I I

I I

I 10o.00.

I I

1.....

r -.........

. I I

I I

" I I

I I

I I

I I

I I

II I

I I

I I

I I

I I

9 0.00 1-...

1

.1.

.r.

.I.

70 0

....x, I

6 0.0 0 1.

. t i.

i

. 1.

.t.

50.00-40.00 0..

- - -07 1

1.2.

1-.0 1

2 2.25 2

70 3

3.25 3.5I 3.70 TIm (S

IeInI I ~I

".....X 10.00

.... 1.

1

.t

.I.

.I

.I.....

5 0.00 015 0,75. 1.

00.

1.... 1

.5....

5 I2..

0 2.. 25 2't

2. 75.

3

3. 25.

3

50.
3. 75.

I~ ~

~ ~

Tm (Seconds)

  • I I

I Time (Sec)

Withdrawn

% inserted 0.10 100.00 0.00 0.20 100.00 0.00 0.30 100.00 0.00 0.40 100.00 0.00 0.50 100.00 0.00 0.60 100.00 0.00 0.70 100.00 0.00 0.80 98.75 1.25 0.90 96.80 3.20 1.00 93.98 6.02 1.10 90.68 9.32 1.30 83.31 16.69 1.60 71.44 28.56 1.90 58.95 41.05 2.28 45.63 54.37 2,65 31.43 68.57 2.95 20.00 80.00 3.05 16.67 83.33 315 13.33 86.67 3.25 10.00 90.00 3.55 0.00 100.00 18.1 Control Rod Insertion versus Time after Scram SBLOCA L-2009-208 Page 2 of 16 Figure 1 and Table 1 (below) provide the St. Lucie Unit 2 Control Element Assembly (CEA) insertion versus time after scram. Bounding margin that is added for conservatism in the Westinghouse SBLOCA analysis is not included in the data provided.

Figure 1 and Table 1 ST. LUCIE UNIT 2 - CONTROL ELEMENT ASSEMBLY (CEA) INSERTION POSITION VS TIME 120.00 110.00 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1

....,..... r'" *'*****r*** *1**** T****'**** T**** r****,.****r*** *1**** T*** *1*****

Time (Sec)

% Inserted Withdrawn 1

1 1

1 1

1 1

1 1

1 1

1 1

1 0.10 100.00 0.00 100.00.

1 1

1 1

1 1

1 1

1 1

1 1

1 1

        • or ****1**** T****,....,.....,....,... "r'" *1****T.... J ****

0.20 100.00 0.00 1

1 1

1 1

1 1

1 1

1 1

1 0.30 100.00 0.00 90.00 1

1 1

1 1

1 1

1 1

1 1

1 1

....,.. "'r"..,... **r*. *1**** T*... J ****,.. "'r"..,. ****r* ***1****"/"** **1****

1 1

1 1

1 1

1 1

1 1

1 1

1 DAD 100.00 0.00 0.50 100.00 0.00 1

1 1

1 1

1 1

1 1

1 1

1 0.60 100.00 0.00 80.00

~

~ 70.00.

....,.. ***r****,.....,... '1"

    • 1***** 1 **. **I*****r*** '1'"..,.. **1****"1" ****r....

1 1

1 1

1

'I" 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

....,... **t**..,.....,... '1'....,.... r**** T" "r....,.....,.. "1'" **1*****1****

0.70 100.00 0.00 0.80 98.75 1.25 0.90 96.80 3.20

~

~ 60.00

.~

SO,DD c

0..

40.00 t:l U

1 1

'I

'I 1

1 1

1 1

1 1

1 1

1

. ***,*****t***.,.. ***t... *1**** *1***** I" **I*****r....,.. ***t** **1****.,.....,....

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

....,.. ***r***.,.. "'r ****1*....,.....,.....,....,. ***'*****r** **1*****'****.,.....

1 1

I' 1

1 1

1

        • -j *****, **** j*****t*** *1****.,.....,.....,.....,... j.....,....,.....,.....,.....

1 I'

1 1

1 1

1 1

1 1

1 1

1.00 93.98 6.02 1.10 90.68 9.32 1.30 83.31 16.69 1.60 71.44 28.56 1.90 58.95 41.05 2.28 45.63 54.37 2.65 31.43 68.57 2.95 20.00 80.00 3.05 16.67 83.33 30.00

        • -j *****, **** -j'" **t****l*... '1"...,.....,.....,.... j... *t*** '1"...,.....,.....

315 13.33 86.67 1

1 1

'I 1

3.25 10.00 90.00 20.00 1

1 1

1 1

1 1

1 1

        • -j *****, **** j*****t*** *1****.,.....,.....,.....,.... j.....,...

.... *1*****'*****

3.55 0.00 100.00 1

  • 1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 10.00* **** -j *****, **** 1'" **t***.j.... +....,.. ***1*****'.... 1*****t**.. j.**......,.*...

1 1

1 1

1 1

1 1

1 1

1 1

1 1

'1 1

1 1

1 1

1 0.00 0.25 0.50 D.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75 3.00 3.25 3.50 3.75 Time (Seconds)

L-2009-208 Page 3 of 16 18.2 CEA Worth versus Insertion (with and without highest worth rod stuck out of core)

SBLOCA Table 2 provides the St. Lucie Unit 2 Scram Curve used in the Westinghouse LOCA Evaluation Model for SBLOCA analyses.

Table 2 Scram Curve Rod Insertion Normalized Fraction Trip Shape Limit 0.00 0.0000 0.05 0.0011 0.10 0.0054 0.15 0.0113 0.20 0.0170 0.25 0.0234 0.30 0.0294 0.35 0.0358 0.40 0.0436 0.45 0.0532 0.50 0.0651 0.55 0.0805 0.60 0.1006 0.65 0.1279 0.70 0.1660 0.75 0.2196 0.80 0.2987 0.85 0.4226 0.90 0.6226 0.95 0.8856 1.00 1.0000 Note:

For use with a trip reactivity up to an absolute value of 5.2%Ap 18.2 CEA Worth versus Insertion (with and without highest worth rod stuck out of core)

SBLOCA L-2009-208 Page30f16 Table 2 provides the St. Lucie Unit 2 Scram Curve used in the Westinghouse LOCA Evaluation Model for SBLOCA analyses.

Table 2 Scram Curve Rod Insertion Normalized Fraction Trip Shape Limit 0.00 0.0000 0.05 0.0011 0.10 0.0054 0.15 0.0113 0.20 0.0170 0.25 0.0234 0.30 0.0294 0.35 0.0358 0.40 0.0436 0.45 0.0532 0.50 0.0651 0.55 0.0805 0.60 0.1006 0.65 0.1279 0.70 0.1660 0.75 0.2196 0.80 0.2987 0.85 0.4226 0.90 0.6226 0.95 0.8856 1.00 1.0000 Note:

For use with a trip reactivity up to an absolute value of 5.2%L\\p

L-2009-208 Page 4 of 16 18.3 Reactivity versus fuel temperature and reactivity versus moderator density LBLOCA and SBLOCA Table 3-1 provides bounding Doppler Reactivity. The most negative data extreme is used in Westinghouse LOCA analyses with a 1.15 multiplier for conservatism. Table 3-2 provides Moderator Reactivity for the most positive MTC at full power.

Table 3-1 Bounding Doppler Reactivity (Uncertainties Included)

Bounding Input for LOCA Fuel Temperature Reactivity (Ap)

FTC (ApfF)

Maximum Reactivity for the Most Negative Full Power FrC with 1.15 Multiplier (TF)

(SQRT k)

Least Neg Most Neg Least Neg Most Neg (Ap) 100 17.63 0.0137 0.0322

-1.70E-05

-3.99E-05 0.0370 200 19.14 0.0121 0.0284

-1.57E-05

-3.67E-05 0.0327 300 20.54 0.0106 0.0249

-1.46E-05

-3.42E-05 0.0286 400 21.85 0.0092 0.0215

-1.37E-05

-3.22E-05 0.0247 500 23.09 0.0079 0.0184

-1.30E-05

-3.04E-05 0.0212 600 24.26 0.0066 0.0154

-1.24E-05

-2.90E-05 0.0177 700 25.38 0.0054 0.0126

-1.18E-05

-2.77E-05 0.0145 800 26.45 0.0042 0.0099

-1.13 E-05

-2.66E-05 0.0114 900 27.48 0.0031 0.0073

-1.09E-05

-2.56E-05 0.0084 1000 28.48 0.0020 0.0048

-1.05E-05

-2.47E-05 0.0055 1100 29.44 0.0010 0.0024

-1.02E-05

-2.39E-05 0.0028 1200 30.37 0.0000 0.0000

-9.87E-06

-2.32E-05 0.0000 1300 31.27

-0.0010

-0.0023

-9.59E-06

-2.25E-05

-0.0026 1400 32.14

-0.0019

-0.0045

-9.33E-06

-2.19E-05

-0.0052 1500 33.00

-0.0028

-0.0067

-9.09E-06

-2.13E-05

-0.0077 1600 33.84

-0.0037

-0.0088

-8.86E-06

-2.08E-05

-0.0101 1700 34.64

-0,0046

-0.0108

-8.66E-06

-2.03E-05

-0.0124 1800 35.43

-0.0055

-0.0128

-8.46E-06

-1.98E-05

-0.0147 1900 36.21

-0.0063

-0.0148

-8.28E-06

-1.94E-05

-0.0170 2000 36.97

-0.0071

-0.0167

-8.11E-06

-1.90E-05

-0.0192 2100 37.71

-0.0079

-0.0186

-7.95E-06

-1.86E-05

-0.0214 2200 38.44

-0.0087

-0.0204

-7.80E-06

-1.83E-05

-0.0235 2300 39.16

-0.0095

-0.0222

-7.66E-06

-1.80E-05

-0.0255 2400 39.86

-0.0102

-0.0240

-7.52E-06

-1.76E-05

-0.0276 2500 40.55

-0.0110

-0.0258

-7.39E-06

-1.73E-05

-0.0297 3000 43.84

-0.0145

-0.0341

-6.84E-06

-1.60E-05

-0.0392 3500 46.90

-0.0179

-0.0419

-6.39E-06

-1.50E-05

-0.0482 4000 49.78

-0.0210

-0.0491

-6.02E-06

-1.41E-05

-0.0565 5000 55.07

-0.0267

-0.0625

-5.44E-06

-1.28E-05

-0.0719 Least Neg Most Neg FTC (Ap/VOK)

-0.00108

-0.00253 L-2009-208 Page 4 of 16 18.3 Reactivity versus fuel temperature and reactivity versus moderator density LBLOCA and SBLOCA Table 3-1 provides bounding Doppler Reactivity. The most negative data extreme is used in Westinghouse LOCA analyses with a 1.15 multiplier for conservatism. Table 3-2 provides Moderator Reactivity for the most positive MTC at full power.

Table 3-1 Bounding Doppler Reactivity (Uncertainties Included)

Bounding Input for LOCA Fuel Temperature Reactivity (L~p)

FTC (Apt' F)

Maximum Reactivity for the Most Negative Full Power FTC with 1.15 Multiplier (OF)

(SQRT k)

Least Neg Most Neg Least Neg Most Neg (Ap) 100 17.63 0.0137 0.0322

-1.70E-OS

-3.99E-OS 0.0370 200 19.14 0.0121 0.0284

-I.S7E-OS

-3.67E-OS 0.0327 300 20.S4 0.0106 0.0249

-1.46E-OS

-3.42E-OS 0.0286 400 21.8S 0.0092 0.021S

-1.37E-OS

-3.22E-05 0.0247 SOO 23.09 0.0079 0.0184

-1.30E-OS

-3.04E-OS 0.0212 600 24.26 0.0066 0.01S4

-1.24E-OS

~2.90E-05 0.0177 700 2S.38 0.00S4 0.0126

-1.18E-OS

-2.77E-OS 0.014S 800 26.4S 0.0042 0.0099

-1.I3E-OS

-2.66E-OS 0.0114 900 27.48 0.0031 0.0073

-1.09E-OS

-2.S6E-OS 0.0084 1000 28.48 0.0020 0.0048

-LOSE-OS

-2.47E-OS 0.0055 1100 29.44 0.0010 0.0024

-1.02E-05

-2.39E-05 0.0028 1200 30.37 0.0000 0.0000

-9.87E-06

-2.32E-05 0.0000 1300 31.27

-00010

-0.0023

-9.S9E-06

-2.25E-05

-0.0026 1400 32.14

-0.0019

-0.0045

-9.33E-06

-2.19E-05

-0.0052 1500 33.00

-0.0028

-0.0067

-9.09E-06

-2.13E-05

-0.0077 1600 33.84

-0.0037

-0.0088

-8.86E-06

-2.08E-05

-0.0101 1700 34.64

-0.0046

-0.0108

-8.66E-06

-2.03E-05

-0.0124 ISOO 35.43

-0.0055

-0.0128

-S.46E-06

-1.98E-05

-0.0147 1900 36.21

-0.0063

-0.0148

-S.28E-06

-1.94E-05

-0.0170 2000 36.97

-0.0071

-0.0167

-S.IIE-06

-1.90E-05

-0.0192 2100 37.71

-0.0079

-0.0186

-7.95E-06

-1.86E-05

-0.0214 2200 38.44

-0.0087

-0.0204

-7.80E-06

-1.83E-OS

-0.023S 2300 39.16

-0.009S

-0.0222

-7.66E-06

-1.80E-OS

-0.0255 2400 39.86

-0.0102

-0.0240

-7.S2E-06

-1.76E-OS

-0.0276 2500 40.S5

-0.0110

-0.02S8

-7.39E-06

-1.73E-05

-0.0297 3000 43.84

-0.0145

-0.0341

-6.84E-06

-1.60E-05

-0.0392 3500 46.90

-0.0179

-0.0419

-6.39E-06

-1.50E-05

-0.0482 4000 49.78

-0.0210

-0.0491

-6.02E-06

-1.41 E-05

-0.0565 5000 55.07

-0.0267

-0.0625

-5.44E-06

-1.28E-OS

-0.0719 Least Neg Most Neg FTC (,;p/v'°K)

-0.00108

-0.00253

L-2009-208 Page 5 of 16 Table 3-2 Maximum Reactivity Versus Moderator Density for the Most Positive MTC at Full Power Ap = aO + al*d + a2*d2 + a3*d3 + a4*d4 where:

Ap = inserted reactivity in absolute units relative to 572.3787F, 2250 psia d = density, gm/cc,

d 0.72627 gm/cc at 572.378'F and 2250 psia and:

a0 = -038999 al = 1.74698 a2 = -2.85463 a3 = 2.06340 a4 = -0.587815 where:

Table 3-2 Maximum Reactivity Versus Moderator Density for the Most Positive MTC at Full Power

~p = aO + a1 *d + a2*d2 + a3*d3 + a4*d4

~p '" inserted reactivity in absolute units relative to 572.378"F, 2250 psia d = density, gm/cc.

d = 0.72627 gm/cc at 572.378°F and 2250 psia and:

aO = -0.38999 a1 = 1.74698 a2 = -2.85463 a3 = 2.06340 a4 = -0.587815 L-2009-208 Page 5 of 16

L-2009-208 Page 6 of 16 18.4 Moderator temperature coefficient LBLOCA and SBLOCA MTC associated with moderator density curve, when applied to St. Lucie Unit 2 EPU is +1.75 pcm/IF.

Note that the Technical Specifications only permit an MTC of zero at full power, so the moderator density curve is slightly more adverse than is required.

18.4 Moderator temperature coefficient lBlOCA and SBlOCA L-2009-208 Page 6 of 16 MTC associated with moderator density curve, when applied to St. Lucie Unit 2 EPU is +1.75 pcm/oF.

Note that the Technical Specifications only permit an MTC of zero at full power, so the moderator density curve is slightly more adverse than is required.

L-2009-208 Page 7 of 16 18.5 Typical top peaked axial power profile LBLOCA For LBLOCA, Table 5-1 and Figure 5-1 provide typical top peaked axial power profiles utilized in the ECCS Performance analysis Evaluation Model for St. Lucie Unit 2 with EPU. The LBLOCA generic axial power shape is referred to as "Shape B." This shape, which is part of the LBLOCA Evaluation Model for CE plants, was selected from actual physics shape sets for its conservative impact on ECCS Performance analysis calculations using the Westinghouse Evaluation Model for CE plants.

For application to a particular CE plant and particular plant core design, such as St. Lucie Unit 2 EPU, the axial peak for Shape B (Fzmin) is adjusted based on the PLHGR of the hot rod, the CALHR of the core, and the Technical Specification COLR maximum integrated radial peaking factor at full power (F,,mrx).

A representative calculation for St. Lucie Unit 2 EPU is as follows:

F

=PLHGR/CALHR/F z,min r,max PLHGR=1 2.5 kWlft CALHR=5.2 kW/ft F

=1.6 rmax F

=12.5/5.2/1.6=1.5 z,min Table 5-1 Figure 5-1 Elevation from Bottom

% Height LBLOCA Generic Shape B St. Lucie Unit 2 EPU Node 0

1.25 0.1896 0.1120 1

5 0.2865 0.2217 2

10 0.3769 0.3338 3

15 0.4758 0.4596 4

20 0.5817 0.5931 5

25 0.6980 0.7336 6

30 0.8253 0.8662 7

35 0.9614 0.9993 8

40 1.1012 1.1277 9

45 1.2365 1.2445 10 50 1.3594 1.3448 11 55 1.4577 1.4264 12 60 1.5242 1.4801 13 65 1.5491 1.5000 14 70 1.5287 1.4855 15 75 1.4592 1.4343 16 80 1.3424 1.3355 17 85 1.1811 1.2021 18 90 0.9770 1.0316 19 95 0.7506 0.8391 20 98.75 0.4650 0.5699 TOTAL 20.0000 20.0000 LOWER 7.3178 7.3080 UPPER 12.6822 12.6920 ASI

-0.2682

-0.2692 Typical Axial Power Shape for LBLOCA


x-St. Lucie Unit 2 EPU -- -D- - - LBLOCA Generic Shape B 0

10 20 30 40 50 60 70 80 90 100 eevation from Bottom (% Height)

L-2009-208 Page 7 of 16 18.5 Typical top peaked axial power profile LBLOCA For LBLOCA, Table 5-1 and Figure 5-1 provide typical top peaked axial power profiles utilized in the ECCS Performance analysis Evaluation Model for St. Lucie Unit*2 with EPU. The LBLOCA generic axial power shape is referred to as "Shape B." This shape, which is part of the LBLOCA Evaluation Model for CE plants, was selected from actual physics shape sets for its conservative impact on ECCS Performance analysis calculations using the Westinghouse Evaluation Model for CE plants.

For application to a particular CE plant and particular plant core design, such as St. Lucie Unit 2 EPU, the axial peak for Shape B (Fz,min) is adjusted based on the PLHGR of the hot rod, the CALHR of the core, and the Technical Specification COLR maximum integrated radial peaking factor at full power (Fr,mroc).

A representative calculation for St. Lucie Unit 2 EPU is as follows:

Table 5-1 Elevation from LBLOCA Bottom Generic Node

% Height Shape B 0

1.25 0.1896 1

5 0.2865 2

10 0.3769 St. Lucie Unit 2 EPU 0.1120 0.2217 0.3338 F

= PLHGR 1 CALHR 1 F z,min r,max PLHGR=12.5 kWIft CALHR=5.2 kW/ft F

=1.6 r,max F

= 12.5/5.2/1.6 = 1.5 z,min Figure 5-1 Typical Axial Power Shape for LBl..OCA

~St.

Lucie Unit 2 EFU" *B*** LBLOCA. Generic Shape B I 1.8000.,----------------------,

I 3

15 0.4758 0.4596 4

20 0.5817 0.5931 1.6000 5

25 0.6980 0.7336 6

30 0.8253 0.8662

1_2000 7

35 0.9614 0.9993 8

40 1.1012 1.1277 9

45 1.2365 1.2445 g

~ 1.0000 c

~

~ 0.6000 10 50 1.3594 1.3448

~ 0.6000 ---..... -.. ------ -~

11 55 1.4577 1.4264 0.4000 12 60 1.5242 1.4801 11 0.2000

.~.

13 65 1.5491 1,5000 14 70 1.5287 1.4855 0,0000 -I---~--~-_-_-~-~-_-_-_!

15 75 1.4592 1.4343 Bevation from Bottom {'Io Height}

16 80 1.3424 1.3355 17 85 1.1811 1.2021 18 90 0.9770 1.0316 19 95 0.7506 0.8391 20 98.75 0.4650 0.5699 TOTAL 20.0000 20.0000 LOWER 7.3178 7.3080 UPPER 12.6822 12.6920 ASI

-0.2682

-0.2692

L-2009-208 Page 8 of 16 SBLOCA For SBLOCA, Table 5-2 and Figure 5-2 provide typical top peaked axial power profiles utilized in the ECCS Performance analysis Evaluation Model for St. Lucie Unit 2 with EPU. The SBLOCA generic short term and long term axial power shapes were selected from actual physics shape sets for their conservative impact on ECCS Performance analysis calculations using the Westinghouse Evaluation Model for CE plants.

For application to a particular CE plant and particular plant core design, such as St. Lucie Unit 2 EPU, the axial shape is conservatively adjusted based on the SBLOCA limiting break sizes to be analyzed in the spectrum and the time of core uncovery and the time of peak cladding temperature.

Table 5-2 Figure 5-2 Elevation from St. Lucie Bottom Generic Generic Unit 2 Node

% Height Short Term Long Term EPU 1

0 0.2353 0.2488 0.239 2

5 0.6322 0.8242 0.690 3

10 0.7712 1.0740 0.863 4

15 0.8052 1.1382 0.907 5

20 0.8152 1.1235 0.909 6

25 0.8392 1.0899 0.915 7

30 0.8792 1.0573 0.932 8

35 0.9312 1.0356 0.962 9

40 0.9951 1.0228 1.002 10 45 1.0531 1.0188 1.040 11 50 1.1207 1.0218 1.088 12 55 1.1813 1.0336 1.133 13 60 1.2253 1.0524 1.169 14 65 1.2683 1.0790 1.207 15 70 1.3113 1.1116 1.247 16 75 1.3593 1.1452 1.290 17 80 1.4103 1.1847 1.338 18 85 1.4522 1.2005 1.412 19 90 1.2903 1.0070 1.200 20 95 0.3615 0.5400 0.416 21 100 0.3605 0.2310 0.321 TOTAL 20.0000 20.0000 20.0000 LOWER 8.3996 10.0196 8.8835 UPPER 11.6004 9.9804 11.1165 ASI

-0.1600 0.0020

-0.1117 Typical Axial Power Shape for SSLOCA with Axial Danket St. Lucie Unit 2 EJ - - X-"-" Generic Short Term

-. - - Generic Long Ter,]

1.000 0.800 o.600 0

10 20 30 40 50 60 70 80 90 100 oevation from Bottom (%Height)

L-2009-208 Page 8 of 16 SBLOCA For SBLOGA, Table 5-2 and Figure 5-2 provide typical top peaked axial power profiles utilized in the EGGS Performance analysis Evaluation Model for St. Lucie Unit 2 with EPU. The SBLOGA generic short term and long term axial power shapes were selected from actual physics shape sets for their conservative impact on EGGS Performance analysis calculations using the Westinghouse Evaluation Model for GE plants.

For application to a particular GE plant and particular plant core design, such as St. Lucie Unit 2 EPU, the axial shape is conservatively adjusted based on the SBLOGA limiting break sizes to be analyzed in the spectrum and the time of core uncovery and the time of peak cladding temperature.

Table 5-2 Figure 5-2 Elevation from St. Lucie Bottom Generic Generic Unit 2 Node

% Height Short Term Long Term EPU 1

0 0.2353 0.2488 0.239 2

5 0.6322 0.8242 0.690 Typical Axial Power Shape for SBLOCA with Axial Banket 3

10 0.7712 1.0740 0.863

-+-- SI. Lucie l.h1it 2 EAJ** *x-* - Generic Short Term**.*, *. Generic Long Term 4

15 0.8052 1.1382 5

20 0.8152 1.1235 6

25 0.8392 1.0899 7

30 0.8792 1.0573 8

35 0.9312 1.0356 9

40 0.9951 1.0228 10 45 1.0531 1.0188 11 50 1.1207 1.0218 12 55 1.1813 1.0336 13 60 1.2253 1.0524 14 65 1.2683 1.0790 15 70 1.3113 1.1116 16 75 1.3593 1.1452 17 80 1.4103 1.1847 18 85 1.4522 1.2005 19 90 1.2903 1.0070 20 95 0.3615 0.5400 21 100 0.3605 0.2310 TOTAL 20.0000 20.0000 LOWER 8.3996 10.0196 UPPER 11.6004 9.9804 ASl

-0.1600 0.0020 0.907 0.909 0.915 0.932 0.962 1.002 1.040 1.088 1.133 1.169 1.207 1.247 1.290 1.338 1.412 1.200 0.416 0.321 20.0000 8.8835 11.1165

-0.1117 1.600,--------------------.......,

1.400.. _.. _._-._--

1.200 ------...... ---------.. --."

o g 1.000 ----_. /_...

..--+-+----:0::

f 0.800

_.- ~~.x***x~.,xo::)(:.*-~*

~ 0.600 --,:

<l 0_200.

0.000 -!---_-_-_-_-_-_-_-_-~-__I o

10 20 30

<0 50 60 70 80 90 100 Bevation from Bottom {%Height}

L-2009-208 Page 9 of 16 18.6 Minimum and Maximum [Corel Averagqe Fuel Clad Gap Conductivity at Rated Power Conditions The values requested in this item are not used in Westinghouse LOCA methods.

However, the Westinghouse FATES3B fuel rod design methodology utilizes the results of a generic study from 1985 to characterize the core average maximum and minimum gap conductivity for all CE fuel rod designs where a conservative estimate of core average behavior is required.

For St. Lucie Unit 2 at EPU rated power, the values for the minimum and maximum core average gap conductivity are based on the core average linear heat rate (CALHR) of 5.2039 kW/ft as follows:

(For conservatism in this calculation, the number of fuel rods in the core is reduced by 100 to allow for future reconstitution with non-fuel rods.)

CALHR - (3030 MWt)* (1000 kW/MW)* (12 in/ft) 5.2039kW/ft (51212-100 rod,) (136.7 in/rod)

The minimum and maximum core average gap conductivity values for St. Lucie Unit 2 with EPU are as follows:

Minimum core average gap conductivity

= 635 Btu/hr-ft2-OF Maximum core average gap conductivity

= 6009 Btu/hr-ft2-OF at rated power

= 5056 Btu/hr-ft2-OF at hot zero power L-2009-208 Page 9 of 16 18.6 Minimum and Maximum [Core] Average Fuel Clad Gap Conductivity at Rated Power Conditions The values requested in this item are not used in Westinghouse LOCA methods.

However, the Westinghouse FATES3B fuel rod design methodology utilizes the results of a generic study from 1985 to characterize the core average maximum and minimum gap conductivity for all CE fuel rod designs where a conservative estimate of core average behavior is required.

For St. Lucie Unit 2 at EPU rated power, the values for the minimum and maximum core average gap conductivity are based on the core average linear heat rate (CALHR) of 5.2039 kW/ft as follows:

(For conservatism in this calculation, the number of fuel rods in the core is reduced by 100 to allow for future reconstitution with non-fuel rods.)

(3030 MWt)' (1000 kW/MW)' (12 inlft)

CALHR ;

5.2039 kW/ft (51212 - 1 00 rOdS)' (136.7 in/rod)

The minimum and maximum core average gap conductivity values for St. Lucie Unit 2 with EPU are as follows:

. Minimum core average gap conductivity Maximum core average gap conductivity

= 6009 Btu/hr-ft2 _OF at rated power

= 5056 Btu/hr-ft2-oF at hot zero power

L-2009-208 Page 10 of 16 18.7 Minimum Local Gap Conductance as a Function of LHGR LBLOCA and SBLOCA The extreme value data given in Tables 7-1.a through 7-1.d are for the average rod in the hot assembly and are listed for each of the fuel rod designs in the St. Lucie Unit 2 EPU core design, namely, a U0 2 fuel rod, and three types of Gadolinia fuel rods with integral fuel burnable absorber of 4, 6, and 8 wt%. The data given in Table 7-1 is for Optimized ZIRLOTM cladding but for purposes of this response to the data request, it is applicable for both Standard ZIRLO and Optimized ZIRLO cladding fuel rod designs.

The tabulated results are based on the Westinghouse FATES3B fuel rod design methodology for CE plants.

This methodology is applied to the St. Lucie Unit 2 EPU core design at the fuel rod power associated with the actual core design and not at the hot rod LOCA limiting PLHGR. Westinghouse LOCA methodology includes further adjustments to the stored energy initial conditions appropriate for the hot rod and for the hot assembly being analyzed.

This data is adjusted with additional conservatism and then used by the Westinghouse LOCA methodology to initialize the core average stored energy.

In the tables below, to cover the possible need for slightly higher local linear heat rates, a FATES3B calculation for the short term power using the peak power at the highest axial node is included.

Table 7-1.a Extreme Values as a Function of Power For Columbia Optimized ZIRLOTM Clad 3 wt% Enriched UO2 Fuel LONG TERM POWER EXTREME VALUE TABLE (AVG ROD)

(DATA SUPPLIED TO FATES CYCLE NUMBER 23)

POWER (KW / FT) 4.00 6.40 8.02 8.81 MAXIMUM FUEL AVERAGE TEMPERATURE (DEG F) 1171.

1405.

1553.

1622.

MAXIMUM FUEL CENTERLINE TEMPERATURE (DEG F) 1413.

1843.

2141.

2286.

MINIMUM GAP CONDUCTANCE (BTU/HR-FT2-F) 450.

735.

879.

978.

SHORT TERM POWER EXTREME VALUES USING THE PEAK POWER AT THE HIGHEST AXIAL NODE 10.99 1834.

2727.

1260.

Table 7-1.b Extreme Values as a Function of Power For SFE Optimized ZIRLOTM Clad 4 wt% Gadolinia Fuel LONG TERM POWER EXTREME VALUE TABLE (AVG ROD)

(DATA SUPPLIED TO FATES CYCLE NUMBER 05)

POWER MAXIMUM FUEL AVERAGE TEMPERATURE (KW/FT)

(DEG F)

MAXIMUM FUEL CENTERLINE TEMPERATURE (DEG F) 1448.

1936.

2250.

2404.

MINIMUM GAP CONDUCTANCE (BTU/HR-FT2-F) 590.

738.

890.

994.

3.85 6.17 7.71 8.48 1174.

1443.

1597.

1669, SHORT TERM POWER EXTREME VALUES USING THE PEAK POWER AT THE HIGHEST AXIAL NODE 10.58 1889.

2861.

1302.

18.7 Minimum Local Gap Conductance as a Function of LHGR LBLOCA and SBLOCA L-2009-208 Page 10 of 16 The extreme value data given in Tables 7-1.a through 7-1.d are for the average rod in the hot assembly and are listed for each of the fuel rod designs in the St. Lucie Unit 2 EPU core design, namely, a U02 fuel rod, and three types of Gadolinia fuel rods with integral fuel burnable absorber of 4, 6, and 8 wt%. The data given in Table 7-1 is for Optimized ZIRLO' cladding but for pU'R0ses of this response to the data request, it is applicable for both Standard ZIRLO' and Optimized ZIRLO M cladding fuel rod designs.

The tabulated results are based on the Westinghouse FATES3B fuel rod design methodology for CE plants.

This methodology is applied to the St. Lucie Unit 2 EPU core design at the fuel rod power associated with the actual core design and not at the hot rod LOCA limiting PLHGR. Westinghouse LOCA methodology includes further adjustments to the stored energy initial conditions appropriate for the hot rod and for the hot assembly being analyzed.

This data is adjusted with additional conservatism and then used by the Westinghouse LOCA methodology to initialize the core average stored energy. In the tables below, to cover the possible need for slightly higher local linear heat rates, a FATES3B calculation for the short term power using the peak power at the highest axial node is included.

POWER (K,v/FT) 4.00 6.40 8.02 8.81 Table 7-1.a Extreme Values as a Function of Power For Columbia Optimized ZIRLO ' Clad 3 wt% Enriched U02 Fuel LONG TERM POWER EXTREME VALUE TABLE (AVG ROD)

(DATA SUPPLIED TO FATES CYCLE NUMBER 23)

MAXHlUM FUEL MAxmUM FUEL AVERAGE TEMPERATURE CENTERLINE TEMPERATURE (DEG F)

(DEG F) 1171.

1413.

1405.

1843.

1553.

214l.

1622.

2286.

MINIMUM GAP CONDUCTANCE (BTU/HR-FT2-F) 450.

735.

879.

978.

SHORT TERM POWER EXTREME VALUES USING THE PEAK PO.. lER AT THE HIGHEST AXIAL NODE 10.99 POWER (KI'i/FT) 3.85 6.17 7.71 8.48 1834.

2727.

1260.

Table 7-1.b Extreme Values as a Function of Power For SFE Optimized ZIRLO' Clad 4 wt% Gadolinia Fuel LONG TERM POWER EXTREME VALUE TABLE (AVG ROD)

(DATA SUPPLIED TO FATES CYCLE NUMBER 05)

MAXIMUM FUEL MAXIMUM FUEL AVERAGE TEMPERATURE CENTERLINE TEMPERATURE (DEG F)

(DEG F) 1174.

1448.

1443.

1936.

1597.

2250.

1669.

2404.

MINIMUM GAP CONDUCTANCE (BTU/HR-FT2-F) 590.

738.

890.

994.

SHORT TERN POWER EXTREME VALUES USING THE PEAK POWER AT THE HIGHEST AXIAL NODE 10.58 1889.

2861.

1302.

L-2009-208 Page 11 of 16 Table 7-1.c Extreme Values as a Function of Power For SFE Optimized ZIRLOTM Clad 6 wt% Gadolinia Fuel LONG TERM POWER EXTREME VALUE TABLE (AVG ROD)

(DATA SUPPLIED TO FATES CYCLE NUMBER 05)

POWER MAXIMUM FUEL MAXIMUM FUEL MINIMUM GAP AVERAGE TEMPERATURE CENTERLINE TEMPERATURE CONDUCTANCE (KW/FT)

(DEG F)

(DEG F)

(BTU/HR-FT2-F) 3.67 1169.

1448.

584.

5.88 1432.

1929.

755.

7.35 1593.

2248.

893.

8.08 1636.

2373.

1111.

SHORT TERM POWER EXTREME VALUES USING THE PEAK POWER AT THE HIGHEST AXIAL NODE 10.09 1885.

2852.

1272.

Table 7-1.d Extreme Values as a Function of Power For SFE Optimized ZIRLOTM Clad 8 wt% Gadolinia Fuel LONG TERM POWER EXTREME VALUE TABLE (AVG ROD)

(DATA SUPPLIED TO FATES CYCLE NUMBER 05)

POWER MAXIMUM FUEL MAXIMUM FUEL MINIMUM GAP AVERAGE TEMPERATURE CENTERLINE TEMPERATURE CONDUCTANCE (KW/FT)

(DEG F)

(DEG F)

(BTU/HR-FT2-F) 3.51 1163.

1446.

580.

5.62 1402.

1902.

826.

7.03 1560.

2217.

983.

7.73 1633.

2370.

1086.

SHORT TERM POWER EXTREME VALUES USING THE PEAK POWER AT THE HIGHEST AXIAL NODE 9-.65 1882.

2844.

1243.

POWER (KW/FT) 3.67 5.88 7.35 8.08 Table 7-1.c Extreme Values as a Function of Power For SFE Optimized ZIRLO ' Clad 6 wt% Gadolinia Fuel LONG TERM POI'lER EXTRE~lE Vl\\LUE TABLE (AVG ROD)

(DATA SUPPLI ED TO F.ZlTES CYCLE NUI~BER 05)

MAXIMUM FUEL MAXIMUM FUEL AVERAGE TEMPERATURE CENTERLINE TEMPERATURE (DEG F)

(DEG F) 1169.

1448.

1432.

1929.

1593.

2248.

1636.

2373.

r'lINIMU~l GAP CONDUCTANCE (BTU/HR-FT2-F) 584.

755.

893.

1111.

L-2009-208 Page 11 of 16 SHORT TERM PO\\'IER EXTREME VALUES USING THE PEAK POWER AT THE HIGHEST AXIAL NODE 10.09 POI,/ER (KW/FT) 3.51 5.62 7.03 7.73 1885.

2852.

1272.

Table 7-1.d Extreme Values as a Function of Power For SFE Optimized ZIRLO ' Clad 8 wt% Gadolinia Fuel LONG TE~l PO\\'IER EXTREME VALUE TABLE (AVG ROD)

(DATA SUPPLIED TO FATES CYCLE NUMBER 05)

MAXIMUI1 FUEL MAXHlUM FUEL AVERAGE TEMPERATURE CENTERLINE TE~lPERATURE (DEG F)

(DEG F) 1163.

1446.

1402.

1902.

1560.

2217.

1633.

2370.

MINIMUI" GAP CONDUCTANCE (BTU/HR-FT2-F) 580.

826.

983.

1086.

SHORT TERM POWER EXTREME VALUES USING THE PEAK POWER AT THE HIGHEST AXIAL NODE 9'.65 1882.

2844.

1243.

L-2009-208 Page 12 of 16 18.8 Gap Conductance LBLOCA and SBLOCA See responses to Items 18.7 and 18.10.

18.8 Gap Conductance LBLOCA and SBLOCA See responses to Items 18.7 and 18.10.

L-2009-208 Page 12 of 16

L-2009-208 Page 13 of 16 18.9 Linear Heat Rate LBLOCA and SBLOCA For St. Lucie Unit 2 at EPU rated power the core average linear heat rate (CALHR) used in LOCA analyses is 5.2039 kW/ft. (See Item 18.6 for calculation.)

For conservatism in this calculation, the number of fuel rods in the core is reduced by 100 to allow for future reconstitution with non-fuel rods.

For LBLOCA, for St. Lucie Unit 2 at EPU rated power, the hot rod peak linear heat generation rate is 12.5 kW/ft.

For SBLOCA, for St. Lucie Unit 2 at EPU rated power, the hot rod peak linear heat generation rate is 13 kW/ft.

ECCS Performance for LBLOCA is typically more limiting than SBLOCA and is analyzed at a lower PLHGR.

18.9 Linear Heat Rate LBLOCA and SBLOCA L-2009-208 Page 13 of 16 For St. Lucie Unit 2 at EPU rated power the core average linear heat rate (CALHR) used in LOCA analyses is 5.2039 kW/ft. (See Item 18.6 for calculation.) For conservatism in this calculation, the number of fuel rods in the core is reduced by 100 to allow for future reconstitution with non-fuel rods.

For LBLOCA, for st. Lucie Unit 2 at EPU rated power, the hot rod peak linear heat generation rate is 12.5 kW/ft.

For SBLOCA, for St. Lucie Unit 2 at EPU rated power, the hot rod peak linear heat generation rate is 13 kW/ft.

ECCS Performance for LBLOCA is typically more limiting than SBLOCA and is analyzed at a lower PLHGR.

L-2009-208 Page 14 of 16 18.10 Fuel Average and Centerline Temperature as a Function of Burnup for the Hot Rod in the Hot Bundle LBLOCA and SBLOCA The hot rod in the hot assembly is a U0 2 fuel rod without Gadolinia integral fuel burnable absorber. As specified by the physics core design, the maximum power of any Gadolinia fuel rod with 4, 6, or 8 wt%

Gadolinia is 90% relative to the power of the peak U0 2 fuel rod in its assembly, for average burnups less than 10 GWD/MTU. The data given in Table 10-1 is for Optimized ZIRLOTM cladding but for purposes of this response to the data request, it is applicable for both Standard ZIRLOTm and Optimized ZIRLOTI cladding fuel rod designs.

The tabulated results are based on the Westinghouse FATES3B fuel rod design methodology for CE plants.

This methodology is applied to the St. Lucie Unit 2 EPU core design at the hot rod power associated with the actual core design (11.43 kw/ft) and not at the LOCA limiting PLHGR (12.5 kw/ft). Westinghouse LOCA methodology includes further adjustments to the stored energy initial conditions appropriate for the hot rod PLHGR being analyzed.

Also, the burnup power variation (referred to as the "radial falloff curve") is represented with time-in-life "burn-down" consistent with the "no-clad-liftoff" methodology. In other words, the local power defined at a given burnup point for the calculation of the fuel stored energy is selected to bound physics depletion calculations, without resulting in the cladding separating from the pellet during the later stages of the life of the fuel. This Westinghouse method for representing fuel rod power degradation with burnup conservatively bounds actual physics calculated hot rod power for purposes of defining the fuel initial stored energy and rod internal pressure for LOCA analyses.

Table 10-1 Hot Rod Results for Columbia Optimized ZIRLOTM U0 2 Clad Fuel - Hot Rod CYCLE ROD AVG LOCAL AXIAL POWER GAP FUEL AVG FUEL CENTERLINE BURNUP BURNUP NODE CONDUCTANCE TEMPERATURE TEMPERATURE (GWD/MTU)

(GWD/MTU)

(KW/FT)

(BTU/HR-FT2-F)

(DEG F)

(DEG F) 1 0.0000 0.0000 18 11.43 1603.

1803.

2740.

2 0.0500 0.0500 18 11.43 1545.

1812.

2748.

3 0.1000 0.1000 18 11.43 1490.

1826.

2763.

4 0.5000 0.5000 18 11.43 1322.

1866.

2802.

5 1.0000 1.0000 18 11.43 1338.

1859.

2790.

6 2.0000 2.0000 3

11.43 1237.

1831.

2753.

7 4.0000 4.0000 3

11.43 1281.

1811.

2726.

8 6.0000 6.0000 3

11.43 1452.

1756.

2659.

9 8.0000 8.0000 3

11.43 1674.

1703.

2593.

10 10.0000 10.0000 3

11.43 1959.

1650.

2527.

11 12.0000 12.0000 3

11.43 2350.

1600.

2464.

12 14.0000 14.0000 3

11.43 2925.

1551.

2401.

13 16.0000 17.6000 17 11.43 5111.

1529.

2375.

14 18.0000 19.8000 17 11.43 4809.

1537.

2387.

15 20.0000 22.0000 17 11.43 4495.

1547.

2402.

16 22.0000 24.2000 17 11.43 4182.

1559.

2418.

17 24.0000 26.4000 17 11.43 3876.

1572.

2435.

18 26.0000 28.6000 17 11.43 3582.

1586.

2455.

19 28.0000 30.8000 17 11.43 3299.

1601.

2476.

20 30.0000 33.0000 17 11.43 3042.

1618.

2499.

21 31.0000 34.1000 17 11.43 2919.

1627.

2511.

22 32.0000 35.2000 17 11.43 2805.

1636.

2524.

23 33.0000 36.3000 17 11.43 2697.

1646.

2536.

24 34.0000 37.4000 17 11.37 2619.

1647.

2534.

25 35.0000 38.5000 17 11.37 2521.

1656.

2546.

26 36.0000 39.6000 17 11.37 2429.

1666.

2559.

27 37.0000 40.7000 17 11.37 2341.

1676.

2573.

28 38.0000 41.8000 17 11.37 2259.

1686.

2586.

29 39.0000 42.9000 17 11.32 2203.

1687.

2583.

30 40.0000 44.0000 17 11.27 2145.

1689.

2583.

31 41.0000 45.1000 17 11.22 2091.

1692.

2583.

L-2009-208 Page 14 of 16 18.10 Fuel Average and Centerline Temperature as a Function of Burnup for the Hot Rod in the Hot Bundle LBLOCA and SBLOCA The hot rod in the hot assembly is a U02 fuel rod without Gadolinia integral fuel burnable absorber. As specified by the physics core design, the maximum power of any Gadolinia fuel rod with 4, 6, or 8 wt%

Gadolinia is 90% relative to the power of the peak U02 fuel rod in its assembly, for average burnups less than 10 GWD/MTU. The data given in Table 10-1 is for Optimized ZIRLO' cladding but for purposes of this response to the data request, it is applicable for both Standard ZIRLO ' and Optimized ZIRLO '

cladding fuel rod designs.

The tabulated results are based on the Westinghouse FATES3B fuel rod design methodology for CE plants.

This methodology is applied to the St. Lucie Unit 2 EPU core design at the hot rod power associated with the actual core design (11.43 kw/ft) and not at the LOCA limiting PLHGR (12.5 kw/ft). Westinghouse LOCA methodology includes further adjustments to the stored energy initial conditions appropriate for the hot rod PLHGR being analyzed.

Also, the burnup power variation (referred to as the "radial falloff curve") is represented with time-in-life "burn-down" consistent with the "no-clad-liftoff' methodology. In other words, the local power defined at a given burnup point for the calculation of the fuel stored energy is selected to bound physics depletion calculations, without resulting in the cladding separating from the pellet during the later stages of the life of the fuel. This Westinghouse method for representing fuel rod power degradation with burnup conservatively bounds actual physics calculated hot rod power for purposes of defining the fuel initial stored energy and rod internal pressure for LOCA analyses.

Table 10-1 Hot Rod Results for Columbia Optimized ZIRLO' U02 Clad Fuel-Hot Rod CYCLE ROD AVG LOCAL AXIAL POI'IER GAP FUEL AVG FUEL CENTERLINE BURNUP BURNUP NODE CONDUCTANCE TEMPERATURE TEN PERATURE (GWD!NTU)

(GWD!MTUi (Klv/FT)

(BTU/HR-FT2-F)

(DEG F)

(DEG F) 1 0.0000 0.0000 IB 11.43 1603.

1803.

2740.

2 0.0500 0.0500 IB

11. 43 1545.

1812.

274B.

3 0.1000 0.1000 18

11. 43 1490.

1826.

2763.

4 0.5000 0.5000 18

11. 43 l322.

1866.

2802.

5 1.0000

1. 0000 1B
11. 43 1338.

IB59.

2790.

6 2.0000 2.0000 3

11. 43 1237.

IB31.

2753.

7 4.0000 4.0000 3

11. 43 1281.

1B11.

2726.

B 6.0000 6.0000 3

11. 43 1452.

1756.

2659.

9 8.0000 B.OOOO 3

11. 43 1674.

1703.

2593.

10 10.0000 10.0000 3

11. 43 1959.

1650.

2527.

11 12.0000 12.0000 3

11. 43 2350.

1600.

2464.

12 14.0000 14.0000 3

11. 43 2925.

1551.

2401.

13 16.0000 17.6000 17

11. 43 5ll1.

1529.

2375.

14 18.0000 19.BOOO 17

11. 43 4809.

1537.

2387.

15 20.0000 22.0000 17 11.43 4495.

1547.

2402.

16 22.0000 24.2000 17 11.43 4182.

1559.

2418.

17 24.0000 26.4000 17

11. 43 3876.

1572.

2435.

18 26.0000 28.6000 17

11. 43 3582.

1586.

2455.

19 28.0000 30.8000 17

11. 43 3299.

1601.

2476.

20 30.0000 33.0000 17

11. 43 3042.

1618.

2499.

21 31.0000 34.1000 17 11.43 2919.

1627.

2511.

22 32.0000 35.2000 17

11. 43 2805.

1636.

2524.

23 33.0000 36.3000 17

11. 43 2697.

1646.

2536.

24 34.0000 37.4000 17 ll.37 2619.

1647.

2534.

25 35.0000 38.5000 17

11. 37 2521.

1656.

2546.

26 36.0000 39.6000 17 11.37 2429.

1666.

2559.

27 37.0000 40.7000 17

11. 37 2341.

1676.

2573.

28 38.0000

41. 8000 17
11. 37 2259.

1686.

2586.

29 39.0000 42.9000 17

11. 32 2203.

1687.

2583.

30 40.0000 44.0000 17 11.27 2145.

1689.

2583.

31

41. 0000 45.1000 17 11.22 2091.

1692.

2583.

L-2009-208 Aftachment 4 Page 15 of 16 32 42.0000 46.2000 17 11.17 2041.

1692.

2580.

33 43.0000 47.3000 17 11.11 1997.

1693.

2576.

34 44.0000 48.4000 17 11.05 1955.

1693.

2572.

35 45.0000 49.5000 17 11.00 1915.

1693.

2568.

36 46.0000 50.6000 17 10.95 1874.

1694.

2567.

37 47.0000 51.7000 17 10.93 1829.

1700.

2572.

38 48.0000 52.8000 17 10.90 1787.

1705.

2577.

39 49.0000 53.9000 17 10.85 1756.

1704.

2572.

40 50.0000 55.0000 17 10.73 1740.

1694.

2550.

41 51.0000 56.1000 17 10.57 1738.

1675.

2514.

42 52.0000 57.2000 17 10.42 1734.

1659.

2482.

43 53.0000 58.3000 17 10.29 1731.

1643.

2452.

44 54.0000 59.4000 17 10.14 1730.

1626.

2418.

45 55.0000 60.5000 17 10.00 1727.

1611.

2388.

46 56.0000 61.6000 17 9.87 1718.

1597.

2362 47 57.0000 62.7000 17 9.73 1705.

1584.

2333.

48 58.0000 63.8000 17 9.60 1688.

1573.

2309.

49 59.0000 64.9000 17 9.46 1672.

1559.

2282.

50 60.0000 66.0000 17 9.34 1658.

1547.

2257.

51 61.0000 67.1000 17 9.21 1645.

1535.

2232.

52 62.0000 68.2000 17 9.10 1632.

1524.

2210.

53 63.0000 69.3000 17 8.98 1621.

1513.

2188.

54 64.0000 70.4000 17 8.87 1610.

1501.

2164.

55 65.0000 71.5000 17 8.77 1599.

1491.

2145.

32 42.0000 46.2000 17 33 43.0000 47.3000 17 34 44.0000 48.4000 17 35 45.0000 49.5000 17 36 46.0000 50.6000 17 37 47.0000

51. 7000 17 38 48.0000 52.S000 17 39 49.0000 53.9000 17 40 50.0000 55.0000 17 41 51.0000 56.1000 17 42 52.0000 57.2000 17 43 53.0000 58.3000 17 44 54.0000 59.4000 17 45 55.0000 60.5000 17 46 56.0000 61.6000 17 47 57.0000 62.7000 17 48 58.0000 63.8000 17 49 59.0000 64.9000 17 50 60.0000 66.0000 17 51 61.0000 67.1000 17 52 62.0000 68.2000 17 53 63.0000 69.3000 17 54 64.0000 70.4000 17 55 65.0000 71.5000 17 11.17 2041.

11.11 1997.

11. 05 1955.
11. 00 1915.

10.95 1874.

10.93 1829.

10.90 1787.

10.85 1756.

10.73 1740.

10.57 1738.

10.42 1734.

10.29 173l.

10.14 1730.

10.00 1727.

9.S7 1718.

9.73 1705.

9.60 1688.

9.46 1672.

9.34 1658.

9.21 1645.

9.10 1632.

8.98 1621.

8.87 1610.

S.77 1599.

1692.

1693.

1693.

1693.

1694.

1700.

1705.

1704.

1694.

1675.

1659.

1643.

1626.

1611.

1597.

1584.

1573.

1559.

1547.

1535.

1524.

1513.

1501.

1491.

25S0.

2576.

2572.

2568.

2567.

2572.

2577.

2572.

2550.

2514.

2482.

2452.

2418.

2388.

2362.

2333.

2309.

2282.

2257.

2232.

2210.

2188.

2164.

2145.

L-2009-208 Page 15 of 16

L-2009-208 Page 16 of 16 18.11 Additional Supporting Data (Loop Seal Clearing related and Hot Channel Conservatisms)

The Westinghouse response is as follows 2:

Specifications for Modeling SBLOCA Loop Seal Clearing with the S2M for Discharge Leg Break Locations

1. The S2M model for loop seal clearing is specified in the following SBLOCA Topical Report and Section:

CENPD-137P, Section B.1.1.5.

2. For St. Lucie Unit 2 EPU, the limiting loop seal clearing configuration used in the SBLOCA analysis was full clearing of the broken side intact loop.

Specifications for Modeling SBLOCA Hot Channel Conservatisms with the S2M for Hot Rod Heatup Calculations

1. The S2M model for the hot channel thermal-hydraulics during the period of time of core uncovery with cooling by heat transfer to steam boiloff is specified in the following SBLOCA Topical Report and Section:

CENPD-138P, Section 2

2. A specific submittal to NRC regarding the S2M hot rod steaming rate conservatisms is documented in the following Topical Report and Section:

CENPD-137 Supplement 2-P-A, Appendix J

3. For St. Lucie Unit 2 EPU, the hot rod PLHGR used in the SBLOCA analysis was conservatively specified above the COLR limit as 13.0 kW/ft (COLR limit is 12.5 kW/ft),

which was used with a conservatively defined top peaked axial power profile.

4. For St. Lucie Unit 2 EPU, the hot channel steam flow rate from boiloff was conservatively defined [

(a, c)

5. For St. Lucie Unit 2 EPU, the hot channel coolant energy balance for calculating steam superheat above the mixture level was conservatively defined [

(a. c)

6.

[

(a, c)

7. No return to nucleate boiling allowed
8.

[

] (ac)

9. Licensing values of PCT and PLO were determined by special study [

](ac) that maximized PCT and/or PLO.

Plots of Key Variables for the EPU LBLOCA and SBLOCA The plots of key variables including the containment pressure are not included. The analyses have not been completed and the calculation documentation has not been finalized at this time.

2 Westinghouse proprietary information is bracketed for future considerations.

18.11 Additional Supporting Data (Loop Seal Clearing related and Hot Channel Conservatisms)

The Westinghouse response is as fOllows2:

L-2009-208 Page 16 of 16 Specifications for Modeling SBLOCA Loop Seal Clearing with the S2M for Discharge Leg Break Locations

1. The S2M model for loop seal clearing is specified in the following SBLOCA Topical Report and Section:

CENPD-137P, Section B.1.1.5.

2. For St. Lucie Unit 2 EPU, the limiting loop seal clearing configuration used in the SBLOCA analysis was full clearing of the broken side intact loop.

Specifications for Modeling SBLOCA Hot Channel Conservatisms with the S2M for Hot Rod Heatup Calculations

1. The S2M model for the hot channel thermal-hydraulics during the period of time of core uncovery with cooling by heat transfer to steam boiloff is specified in the following SBLOCA Topical Report and Section:

CENPD-138P, Section 2

2. A specific submittal to NRC regarding the S2M hot rod steaming rate conservatisms is documented in the following Topical Report and Section:

CENPD-137 Supplement 2-P-A, Appendix J

3. For St. Lucie Unit 2 EPU, the hot rod PLHGR used in the SBLOCA analysis was conservatively specified above the COLR limit as 13.0 kW/ft (COLR limit is 12.5 kW/ft),

which was used with a conservatively defined top peaked axial power profile.

4. For St. Lucie Unit 2 EPU, the hot channel steam flow rate from boiloff was conservatively defined [

] (a, c)

5. For st. Lucie Unit 2 EPU, the hot channel coolant energy balance for calculating steam superheat above the mixture level was conservatively defined [

] (a. c)

6. [

] (a, c)

7. No return to nucleate boiling allowed
8. [

] (a, c)

9. Licensing values of PCT and PLO were determined by special study [

] (a, c) that maximized PCT and/or PLO.

Plots of Key Variables for the EPU LBLOCA and SBLOCA The plots of key variables including the containment pressure are not included. The analyses have not been completed and the calculation documentation has not been finalized at this time.

2 Westinghouse proprietary information is bracketed for future considerations.