Information Notice 2013-05, Battery Expected Life and Its Potential Impact on Surveillance Requirements
| ML122130601 | |
| Person / Time | |
|---|---|
| Issue date: | 03/19/2013 |
| From: | Laura Dudes, Kokajko L Division of Construction Inspection and Operational Programs, Division of Policy and Rulemaking |
| To: | |
| Russell A | |
| References | |
| TAC MF0492 IN-13-005 | |
| Download: ML122130601 (5) | |
ML122130601 UNITED STATES
NUCLEAR REGULATORY COMMISSION
OFFICE OF NUCLEAR REACTOR REGULATION
OFFICE OF NEW REACTORS
WASHINGTON, DC 20555-0001
March 19, 2013
NRC INFORMATION NOTICE 2013-05:
BATTERY EXPECTED LIFE AND ITS POTENTIAL
IMPACT ON SURVEILLANCE REQUIREMENTS
ADDRESSEES
All holders of an operating license or construction permit for a nuclear power reactor under
Title 10 of the Code of Federal Regulations (10 CFR) Part 50, Domestic Licensing of
Production and Utilization Facilities, except those who have permanently ceased operations
and have certified that fuel has been permanently removed from the reactor vessel.
All holders or applicants for a combined license under 10 CFR Part 52, Licenses, Certifications, and Approvals for Nuclear Power Plants.
PURPOSE
The U.S. Nuclear Regulatory Commission (NRC) is issuing this information notice (IN) to inform
addressees about recent issues involving licensees nonconservative technical specifications
(TSs) regarding surveillance requirements (SRs) for direct current (DC) power systems due to
reductions in battery expected life. The NRC expects that recipients will review the information
for applicability to their facilities and consider actions, as appropriate, to avoid similar problems.
Suggestions contained in this IN are not NRC requirements; therefore, no specific action or
written response is required.
BACKGROUND
Class 1E batteries are used to supply DC loads at nuclear power plants and are designed
consistent with the requirements in General Design Criterion (GDC) 17, Electric Power
Systems, and GDC 18, Inspection and Testing of Electric Power Systems, of Appendix A,
General Design Criteria for Nuclear Power Plants, to 10 CFR Part 50 or similar plant-specific
design criteria.
The Class 1E batteries are lead-acid batteries which degrade over time, primarily as a result of
the buildup of lead sulfates on the plates. The battery manufacturers typical expected battery
life curve indicates a 100 percent battery capacity over the initial 14 years of service. The
capacity then decreases to 80 percent at the end of the expected 20-year life. At this point, the
Institute of Electrical and Electronics Engineers (IEEE) Standard (Std.) 450-2002, IEEE
Recommended Practice for Maintenance, Testing, and Replacement of Vented Lead-Acid
Batteries for Stationary Applications, as endorsed by Regulatory Guide 1.129, Maintenance, Testing, and Replacement of Vented Lead-Acid Storage Batteries for Nuclear Power Plants, recommends replacing the battery bank. To account for this degradation, IEEE Std. 485-1997, IEEE Recommended Practice for Sizing Lead-Acid Batteries for Stationary Applications, as
endorsed by Regulatory Guide 1.212, Sizing of Large Lead-Acid Storage Batteries, recommends that when sizing batteries for use at nuclear power plants, the rated capacity of the
battery, when put in service, should be at least 125 percent of the design load. This ensures
that at least 80 percent of the battery nameplate capacity will be available at the end of the
20-year expected life of the batteries, which will be sufficient to serve 100 percent of the design
load (80 percent of 125 percent equals 100 percent).
The NRC requires licensees to maintain batteries in an operable condition as specified in plant
TS. As such, the batteries must be capable of performing their intended function of supplying
100 percent of design DC loads. Standard TSs have a SR to Verify battery capacity is 80%
of the manufacturer's rating when subjected to a performance discharge test or a modified
performance discharge test. The specified frequency of this surveillance is 60 months AND
12 months when battery shows degradation, or has reached 85% of the expected life with
capacity < 100% of manufacturers rating AND 24 months when battery has reached 85% of the
expected life with capacity 100% of manufacturers rating. Note that the surveillance
frequency uses the term expected life but does not include a specific value (e.g., 20 years).
Because of this, licensees may not be immediately aware of the impact changes to the
expected life of their Class 1E batteries can have on their plants TS SRs.
DESCRIPTION OF CIRCUMSTANCES
In the examples below, the licensees discovered conditions that either increased battery design
loads or decreased rated battery capacity such that the battery no longer met the sizing design
basis. The batteries remained operable, at least in the near term, as the batteries were still
capable of supplying 100 percent of the design DC loads. However, the licensees did not
recognize the need to ensure the expected life of Class 1E batteries appropriately accounted
for the sizing requirements and post-accident DC loading assumptions contained in design
basis documents. As a result, certain TS SR testing frequencies, specifically those associated
with performance or modified performance discharge testing, were nonconservative.
Cooper Nuclear Station
On March 11, 2009, the licensee for Cooper Nuclear Station submitted a license amendment
request to address nonconservative TSs regarding the SRs for 125 volt (V) and 250 V DC
power systems. During its review of the amendment, the NRC staff noted that a reduction in the
expected service life would be needed to ensure the batteries would be capable of providing 90
percent of their rated capacity at the end of their service life. The NRC issued a request for
additional information that requested the licensee to describe the impact of this change on the
expected life of Cooper Nuclear Station batteries (e.g., conclusions drawn from the battery life
versus capacity curve for the batteries).
In its response to the NRC staffs request for additional information, the licensee noted that as
loads have increased over time, the required battery capacity is now closer to 90 percent of the
nameplate rating. The licensee further stated that its battery vendor does not estimate battery
life for 90 percent capacity. Therefore, the licensee conservatively established 15 years as the
point at which the batteries reach 85 percent of expected life. The licensee also conservatively
defined battery degradation to be when capacity drops by more than 5 percent (normally 10
percent as defined by the IEEE Std. 450-2002,) relative to the capacity on the previous
performance test or when the battery capacity reaches less than or equal to 95 percent of the
manufacturers rating (normally 90 percent or when it is 10 percent below the manufacturers
rating as defined by IEEE Std. 450-2002). On March 18, 2010, the NRC issued the above mentioned license amendment for Cooper
Nuclear Station. To address the above concern, the NRC staff required the licensee to update
its updated safety analysis report and TS bases for the batteries upon implementation of the
approved license amendment. These updates included the reduction to 15 years as the point at
which the safety-related batteries have reached 85 percent of expected life. See the licensee
amendment issuance package for further details (Agencywide Documents Access and
Management System (ADAMS) Accession No. ML100610233).
Indian Point Nuclear Generating, Unit 2 (IP2)
On March 29, 2009, the licensee for IP2 submitted a license amendment request to address
nonconservative TSs regarding SR 3.8.6.6 in TS section 3.8.6, Battery Parameters, for 125 V
DC power systems. The SR verifies battery capacity during a performance discharge test or a
modified performance discharge test. The licensee discovered that the 80 percent capacity
value was nonconservative with respect to the existing design basis calculation for battery
capacity under minimum design temperature conditions. The licensee determined that it should
implement a more restrictive battery acceptance criterion ( 85 percent of manufacturers rating)
to ensure that sufficient battery capacity exists at limiting conditions. During its review of the
amendment, the NRC staff identified that the licensee for IP2 applied a 117.6 percent (1.176)
aging factor in its design calculation for sizing the Class 1E batteries. While the aging factor is
less than that recommended by IEEE Std. 485-1997, the licensee followed this guidance since
the aging factor is appropriate for the assumed end-of-life criterion (i.e., 85 percent). However, based on standard battery life versus capacity curves, the licensee noted that aging these
batteries to 85 percent of rated capacity would indicate an expected battery life of approximately
18 years versus 20 years originally assumed.
On February 24, 2010, the NRC issued the above mentioned license amendment for IP2. To
address the above concern, the NRC staff required the licensee to update its battery monitoring
and maintenance program, TS bases for the batteries, and updated final safety analysis report
upon implementation of the approved license amendment. These updates included the
reduction to 18 years as the expected life of their safety-related batteries. See the licensee
amendment issuance package for further details (ADAMS Accession No. ML100270051).
DISCUSSION
Licensees rely on Class 1E batteries to supply DC loads when battery chargers are not
available. The batteries are sized in accordance with IEEE Std. 485-1997 to carry the expected
shutdown loads following a plant trip and a loss of all alternating current power without battery
terminal voltage falling below its minimum required voltage. This ensures that adequate DC
power will be available for starting and loading the emergency diesel generators, emergency
power to run instrumentation and controls, and emergency lighting.
IEEE Std. 485-1997, recommends applying at least a 125 percent (1.25) aging factor when
sizing batteries for nuclear power plants, to ensure the battery can perform its design function
with a greater than or equal to 80 percent capacity rating throughout its 20-year life. When
using an aging factor less than 1.25, the result is a reduction in expected life of the batteries
based on the manufacturers expected life versus capacity curves. The licensees identified
above were not immediately aware that an increase in battery design loads or a decrease in
rated battery capacity would result in a reduced expected life of the batteries. Certain TS SR
testing frequencies, specifically those associated with performance and modified performance
discharge testing, are directly tied to the expected life of batteries. The once per 60-month performance discharge test (which is based on 25 percent of a 20-year expected life) and the
increased TS SR frequencies (i.e., 12 and 24 months), when batteries reach 85 percent of
expected life, are consistent with the guidance provided in IEEE Std. 450 and are tied to known
age-related degradation of vented lead-acid batteries. The events described in this IN illustrate
the importance of considering the impact of a decrease in the battery expected life on plant TS
SRs.
CONTACT
This IN requires no specific action or written response. Please direct any questions about this
matter to the technical contacts listed below or the appropriate NRC project manager.
/RA/
/RA/
Lawrence E. Kokajko, Director
Laura A. Dudes, Director
Division of Policy and Rulemaking
Division of Construction Inspection
Office of Nuclear Reactor Regulation
and Operational Programs
Office of New Reactors
Technical Contacts: Matthew McConnell, NRR
301-415-1597
E-mail: Matthew.McConnell@nrc.gov
Sergiu Basturescu, NRR
301-415-1237
E-mail: Sergiu.Basturescu@nrc.gov
Note: NRC generic communications may be found on the NRC public Web site, http://www.nrc.gov, under NRC Library.
- via e-mail
TAC MF0492 OFFICE
NRR/DE/EEEB*
Tech Editor*
NRR/DE/EEEB/BC
NRR/DE/D
NRR/DPR/PGCB/PM
NAME
MMcConnell
JAndersen
(RMathew for)
PHiland
ARussell
DATE
02/13/13
01/18/13
02/14/13
02/14/13
02/19/13 OFFICE
NRR/DPR/PGCB/LA NRR/DPR/PGCB/BC NRO/DCIP/D
NRR/DPR/DD
NRR/DPR/D
NAME
CHawes, (GLappert
for)
DPelton
LDudes
SBahadur
LKokajko
DATE
02/19/13
03/04/13
03/14/13
03/18/13
03/19/13