ML11279A119

From kanterella
Revision as of 14:47, 12 November 2019 by StriderTol (talk | contribs) (Created page by program invented by StriderTol)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search
Comment (8) of William R. Harris on Environmental Risk Management & Mitigation Issues That Are Essential for NRC to Analyze in the Final Supplemental Environmental Impact Statement for Relicensing of Seabrook Station Unit 1
ML11279A119
Person / Time
Site: Seabrook NextEra Energy icon.png
Issue date: 09/15/2011
From: Harris W
- No Known Affiliation
To:
Rulemaking, Directives, and Editing Branch
References
76FR47612 00008
Download: ML11279A119 (6)


Text

I ,

ENVIRONMENTAL RISK MANAGEMENT AND MITIGATION ISSUES THAT ARE ESSENTIAL FOR NRC TO ANALYZE IN THE FINAL SUPPLEMENTAL ENVIRONMENTAL IMPACT STATEMENT FOR RELICENSING OF SEABROOK STATION NO. 1 Submitted by William R. Harris at a Public Hearing of the Nuclear Regulatory Commission September 15, 2011 Hampton, NH 03842 DD 652~/~e9J ~Z-Ž~ // Ti1 F] C-)

C/:)

C-)1

.,t.

"E 7_D)5 ::-/4. Z - -/ -

L~5Y5 William R. Harris Summary of Severe Accident Mitigation Alternatives Requiring NRC Analysis within Final SEIS to NUREG-1437 Supplement 46 of Seabrook Station No. 1 Relicensing, September 15, 2011

2 ENVIRONMENTAL RISK MANAGEMENT AND MITIGATION ISSUES RISK MANAGEMENT/ ENVIRONMENTAL SIGNIFICANCE REFERENCE DOCUMENTS MITIGATION ISSUES

1. On-site backup power for Solar geomagnetic disturbances Thomas Popik, Foundation for spent fuel pool cooling in event constitute highest risk of Resilient Societies, NRC of LOOP during & after solar common mode failures: Proposed Rulemaking March geomagnetic disturbances extended LOOP; on site 14, 2011, including electromagnetic pulse. transformer fire; dysfunction of backup diesel generators to William R. Harris Comments on Mitigation measures are highly electro- magnetic pulse (EMP). Proposed Rulemaking, July 20 cost-effective. PRA Type III 2011.

analysis indicates Benefit-to- Site specific risks to Seabrook cost ratio of about 110. Station No. 1 are 2 orders of magnitude greater than all NUREG-1437 Supplement 46, other SAMA risks analyzed in Seabrook Station Draft SEIS Draft SEIS. Long term LOOP probability 2011-2030: 17.4%

Probab. Water boil off 8.7%

Probab. Zirconium fire 4.3%.

With 20 year license renewal, See Harris Comments on Popik Probability of zirconium fire(s) Proposed Rulemaking, July 20, at Seabrook Station No. 1 about 2011.

1 in 12 (period 2011 - 2050).

East-West 345kV transmission lines + end of line at plant +

ocean proximity + geology of New Hampshire result in above average EMP vulnerabilities requiring site specific

2. Retrofit for on-site backup Reduce dependence on outside Calvert Cliffs MD reactor is a AC power for Seabrook reactor power, especially during events prototype for generation of control & emergency functions triggering common mode station power onsite. Also during long term LOOP - failures, such as solar coronal review European nuclear power including options to retrofit mass ejections causing risks to plants designed to generate heat exchangers to convert the U.S. transmission grid and power from on-site thermal reactor-related thermal energy station power from onsite energy in event of loss of into backup AC power for backup sources. outside power (LOOP).

station power.

3. On-site backup diesel Reduce risks of zirconium fires if NRC Miller Task Force Report generator operability extension backup onsite generators fail July 11, 2011 from 7 days to longer and spent fuel pools are not (parametric) periods, continuously cooled Harris Comments of July 20, 2011.

William R. Harris Summary of Severe Accident Mitigation Alternatives Requiring NRC Analysis within Final SEIS to NUREG-1437 Supplement 46 of Seabrook Station No. 1 Relicensing, September 15, 2011

I . . , 0 .

3

4. Reduce reactor trip and fire Reduce risks of fires dispersing Thomas Popik, Presentation to risk due to solar geomagnetic sulfur hexafluoride (SF6), 2300 North American Electric disturbance damage to times C02 impacts on global Reliability Corp. Atlanta, GA Generator Step Up transformer. warming August 30-31, 2011.

Reduction can be accomplished Credible Reports of with neutral current blocking Reduce risk of loss of onsite Geomagnetic Disturbance device, power Impacts

5. Installation of remote Allow remote command & NRC Miller Task Force Report of readout & SCADA system triage to restore backup power July 12, 2011.

command capabilities, including in event of station blackout. Harris Rulemaking Comments protection of satellite relays July 20, 2011 from system generated Marginal cost per nuclear power electromagnetic pulse during plant reduced if nationwide adverse solar weather access to EMP-protected Comsat and commo links

6. Extend coverage & duration Existing 22 regional sensor sites C-10 Foundation for C-10 Foundation regional (n (northeast Massachusetts only)

= 22) radiation monitors & utilize back-up batteries with remote readouts by (a) adding short duration. Extended

-30 sites in Southeast New reporting capacity would enable Hampshire; and (b) extending better-staged evacuation of battery life for monitoring sites radiation hot spots, reduce loss to > 14 days. of life.

7. Utilize U.S. Dept. of Transportation modeling systems to plan staged Avert evacuation congestion, contraflow evacuations with & e.g., region of Three Mile Island w/o upgrades to MA Route 110 (1979), when randomized 2 lane on-ramps & off-ramps at evacuation impaired evacuation 1-95 and 1-495, and other flow rates.

evacuation route connectors.

8. Deploy "intelligent" remote Reduce energy consumption & U.S. Department of SCADA controlled signal system's air pollution in day to day use; Transportation Emergency for unmanned evacuation signal protect emergency personnel Evacuation DOT websites.

management for relevant traffic from radiation exposure in corridors, event of spent fuel zirconium fires'

9. Shelter on-site AC Battery Reduce risks of loss of on-site Appendix F at page F-41 to Chargers & Diesel Generator to capability to cool spent fuel NUREG 1437 Supp. 46, July recharge on station batteries, pools. Avert zirconium fires. 2011.

Variant of SAMA 157 See EMP Commission Report on Critical Infrastructure, April 2008, for vulnerabilities of

  • _battery chargers and switches.

William R. Harris Summary of Severe Accident Mitigation Alternatives Requiring NRC Analysis within Final SEIS to NUREG-1437 Supplement 46 of Seabrook Station No. 1 Relicensing, September 15, 2011

/

Probability of Zirconium Fire at Spent Fuel Pools Estimates Over Remaining Reactor Operation Probability of No Outside Assistance 50%

Probability of Spontaneous Zirconium Ignition 50%

Within Area of Probable Years Power Remaining Long-Term Probability Zirconium System in Reactor LOOP of Water Fire Collapse State Plant Operation Probability Boil-Off Probability yes Illinois Clinton 15 14.0% 7.0% 3.5%

yes Illinois Dresden 2 18 16.5% 8.3% 4.1%

yes Illinois Dresden 3 20 18.2% 9.1% 4.6%

yes Illinois La Salle 1 11 10.5% 5.2% 2.6%

yes Illinois La Salle 2 12 11.4% 5.7% 2.8%

no Illinois Quad Cities 1 21 0.0% 0.0% 0.0%

no Illinois Quad Cities 2 21 0.0% 0.0% 0.0%

no Iowa Duane Arnold 3 0.0% 0.0% 0.0%

no Kansas Wolf Creek 34 0.0% 0.0% 0.0%

no Louisiana River Bend 14 0.0% 0.0% 0.0%

no Louisiana Waterford 13 0.0% 0.0% 0.0%

yes Maryland Calvert Cliffs 1 23 20.6% 10.3% 5.2%

yes Maryland Calvert Cliffs 2 25 22.2% 11.1% 5.6%

yes Massachusetts Pilgrim 1 1.0% 0.5% 0.3%

yes Michigan Cook 1 23 20.6% 10.3% 5.2%

yes Michigan Cook 2 26 23.0% 11.5% 5.7%

yes Michigan Enrico Fermi 2 14 13.1% 6.6% 3.3%

yes Michigan Palisades 20 18.2% 9.1% 4.6%

no Minnesota Monticello 19 0.0% 0.0% 0.0%

no Minnesota Prairie Island 1 2 0.0% 0.0% 0.0%

no Minnesota Prairie Island 2 3 0.0% 0.0% 0.0%

no Mississippi Grand Gulf 13 0.0% 0.0% 0.0%

no Missouri Callaway 13 0.0% 0.0% 0.0%

no Nebraska Cooper 3 0.0% 0.0% 0.0%

no Nebraska Fort Calhoun 22 0.0% 0.0% 0.0%

yes New Hampshire Seabrook 19 17.4% 8.7% 4.3%

yes New Jersey Hope Creek 15 14.0% 7.0% 3.5%

yes New Jersey Oyster Creek 18 16.5% 8.3% 4.1%

yes New Jersey Salem 1 5 4.9% 2.5% 1.2%

yes New Jersey Salem 2 9 8.6% 4.3% 2.2%

Probability of Zirconium Fire at Spent Fuel Pools Estimates Over Remaining Reactor Operation Probability of No Outside Assistance 50%

Probability of Spontaneous Zirconium Ignition 50%

Within Area of Probable Years Power Remaining Long-Term Probability Zirconium System in Reactor LOOP of Water Fire Collapse State Plant Operation Probability Boil-Off Probability yes New York FitzPatrick 23 20.6% 10.3% 5.2%

yes New York Ginna 18 16.5% 8.3% 4.1%

yes New York Indian Point 2 2 2.0% 1.0% 0.5%

yes New York Indian Point 3 4 3.9% 2.0% 1.0%

yes New York Nine Mile Point 1 18 16.5% 8.3% 4.1%

yes New York Nine Mile Point 2 35 29.7% 14.8% 7.4%

yes North Carolina Brunswick 1 25 22.2% 11.1% 5.6%

yes North Carolina Brunswick 2 23 20.6% 10.3% 5.2%

yes North Carolina Harris 35 29.7% 14.8% 7.4%

yes North Carolina McGuire 1 30 26.0% 13.0% 6.5%

yes North Carolina McGuire 2 32 27.5% 13.8% 6.9%

yes Ohio Davis-Bessie 6 5.9% 2.9% 1.5%

yes Ohio Perry 15 14.0% 7.0% 3.5%

yes Pennsylvania Beaver Valley 1 5 4.9% 2.5% 1.2%

yes Pennsylvania Beaver Valley 2 16 14.9% 7.4% 3.7%

yes Pennsylvania Limerick 1 13 12.2% 6.1% 3.1%

yes Pennsylvania Limerick 2 18 16.5% 8.3% 4.1%

yes Pennsylvania Peach Bottom 2 22 19.8% 9.9% 5.0%

yes Pennsylvania Peach Bottom 3 23 20.6% 10.3% 5.2%

yes Pennsylvania Susquehanna 1 11 10.5% 5.2% 2.6%

yes Pennsylvania Susquehanna 2 13 12.2% 6.1% 3.1%

yes Pennsylvania Three Mile Island 23 20.6% 10.3% 5.2%

yes South Carolina Catawba 1 32 27.5% 13.8% 6.9%

yes South Carolina Catawba 2 32 27.5% 13.8% 6.9%

yes South Carolina Oconee 1 22 19.8% 9.9% 5.0%

yes South Carolina Oconee 2 22 19.8% 9.9% 5.0%

yes South Carolina Oconee 3 23 20.6% 10.3% 5.2%

yes South Carolina Robinson 19 17.4% 8.7% 4.3%

yes South Carolina Summer 31 26.8% 13.4% 6.7%

3 Probability of Zirconium Fire at Spent Fuel Pools Estimates Over Remaining Reactor Operation Probability of No Outside Assistance 50%

Probability of Spontaneous Zirconium Ignition 50%

Within Area of Probable Years Power Remaining Long-Term Probability Zirconium Sysem in Reactor LOOP of Water Fire Collapse State Plant Operation Probability Boil-Off Probability yes Tennessee Sequoyah 1 9 8.6% 4.3% 2.2%

yes Tennessee Sequoyah 2 10 9.6% 4.8% 2.4%

yes Tennessee Watts Bar 24 21.4% 10.7% 5.4%

no Texas Comanche Peak 1 19 0.0% 0.0% 0.0%

no Texas Comanche Peak 2 22 0.0% 0.0% 0.0%

no Texas South Texas 1 16 0.0% 0.0% 0.0%

no Texas South Texas 2 17 0.0% 0.0% 0.0%

yes Vermont Vermont Yankee 1 1.0% 0.5% 0.3%

yes Virginia North Anna 1 27 23.8% 11.9% 5.9%

yes Virginia North Anna 2 29 25.3% 12.6% 6.3%

yes Virginia Surry 1 21 19.0% 9.5% 4.8%

yes Virginia Surry 2 22 19.8% 9.9% 5.0%

yes Washington Columbia 12 11.4% 5.7% 2.8%

yes Wisconsin Kewaunee 2 2.0% 1.0% 0.5%

yes Wisconsin Point Beach 1 19 17.4% 8.7% 4.3%

yes Wisconsin Point Beach 2 22 19.8% 9.9% 5.0%