AEP-NRC-2024-11, Unit 2 - Response to Request for Additional Information on Requested Change Regarding Neutron Flux Instrumentation: Difference between revisions

From kanterella
Jump to navigation Jump to search
(StriderTol Bot insert)
 
(StriderTol Bot change)
Line 18: Line 18:


=Text=
=Text=
{{#Wiki_filter:Indiana                           Michigan         Power INDIANA                                                                                                                                                                                         Cook             Nuclear Plant MICHIGAN                                                                                                                                                                                             One         Cook             Place POWIR
{{#Wiki_filter:Indiana Michigan Power INDIANA Cook Nuclear Plant MICHIGAN One Cook Place POWIR
* Bridgman,     Ml 49106 indianamichiganpower.com An     MP Company BOUNDLESS             ENERGY"
* Bridgman, Ml 49106 indianamichiganpower.com An MP Company BOUNDLESS ENERGY"


AEP-NRC-2024-11 10 CFR   50.90
AEP-NRC-2024-11 10 CFR 50.90


Docket         Nos.:                               50-315 50-316
Docket Nos.: 50-315 50-316


U.                       S.     Nuclear           Regulatory                   Commission A TIN:                   Document                                           Control     Desk Washington,                                       D.C. 20555-0001
U. S. Nuclear Regulatory Commission A TIN: Document Control Desk Washington, D.C. 20555-0001


Donald                         C.       Cook                   Nuclear           Plant Unit       1 and                         Unit     2 RESPONSE     TO REQUEST                 FOR ADDITIONAL   INFORMATION     ON   REQUESTED CHANGE REGARDING       NEUTRON                       FLUX                     INSTRUMENTATION
Donald C. Cook Nuclear Plant Unit 1 and Unit 2 RESPONSE TO REQUEST FOR ADDITIONAL INFORMATION ON REQUESTED CHANGE REGARDING NEUTRON FLUX INSTRUMENTATION


==References:==
==References:==
: 1.                         Letter from       K. J. Ferneau,                           Indiana                               Michigan Power             Company                                                   (l&M), to U.S                   . Nuclear         Regulatory Commission                                                           (NRC),                                 "Request                           for                       Approval                               of                             Change                                                       Regarding                                     Neutron                                                   Flux Instrumentation,"                         dated   January                                                         26,     2023,   Agencywide                             Documents                                       Access               and                           Management System         (ADAMS) Accession                       No.             ML23026A284.
: 1. Letter from K. J. Ferneau, Indiana Michigan Power Company (l&M), to U.S. Nuclear Regulatory Commission (NRC), "Request for Approval of Change Regarding Neutron Flux Instrumentation," dated January 26, 2023, Agencywide Documents Access and Management System (ADAMS) Accession No. ML23026A284.
: 2.                           Letter from     Q. S. Lies, l&M, to NRC, "Supplement         to Request for Approval of Change                       Regarding Neutron                 Flux         Instrumentation,"                     dated August           2,   2023, ADAMS Accession                   No.               ML23214A289.
: 2. Letter from Q. S. Lies, l&M, to NRC, "Supplement to Request for Approval of Change Regarding Neutron Flux Instrumentation," dated August 2, 2023, ADAMS Accession No. ML23214A289.
: 3.                             E-mail from           S.       P.     Wall,   NRC,     to     M.       K.       Scarpello, l&M, "Final RAI     -               D.C. Cook                         1 &   2   -           License Amendment                                       Request   Regarding       Neutron                   Flux             Instrumentation                         (EPID   No.               L-2023-LLA-0011 ),"
: 3. E-mail from S. P. Wall, NRC, to M. K. Scarpello, l&M, "Final RAI - D.C. Cook 1 & 2 - License Amendment Request Regarding Neutron Flux Instrumentation (EPID No. L-2023-LLA-0011 ),"
dated November                                 17, 2023, ADAMS Accession                       No.             ML23321A122.
dated November 17, 2023, ADAMS Accession No. ML23321A122.


This letter provides Indiana                                 Michigan     Power               Company's                                                         (l&M), licensee for Donald                           C.       Cook                       Nuclear Plant (CNP)   Unit         1 and                         Unit       2,     response               to   the Request for Additional Information                         (RAI)       by                           the U.                       S .
This letter provides Indiana Michigan Power Company's (l&M), licensee for Donald C. Cook Nuclear Plant (CNP) Unit 1 and Unit 2, response to the Request for Additional Information (RAI) by the U. S.
Nuclear               Regulatory                       Commission                             (NRC)         regarding a                   request to         use             alternate means                               of   fulfilling the requirements of Regulatory                     Guide     1.97 with regards to     the plant safety function                 of   reactivity control.
Nuclear Regulatory Commission (NRC) regarding a request to use alternate means of fulfilling the requirements of Regulatory Guide 1.97 with regards to the plant safety function of reactivity control.
The   request would                     reclassify the wide range               neutron                           flux instrumentation         at CNP   Unit       1 and                         Unit     2 as Category             3 instrumentation,         and                     would                 modify     Technical       Specification (TS) Table       3.3.3-1, Post Accident Monitoring   Instrumentation,                         to   remove                   Function                             1,   Neutron                   Flux,         from       the list of required post-accident monitoring           instrumentation.                   The existing TS require two         channels                     of neutron                           flux instrumentation             to be operable.
The request would reclassify the wide range neutron flux instrumentation at CNP Unit 1 and Unit 2 as Category 3 instrumentation, and would modify Technical Specification (TS) Table 3.3.3-1, Post Accident Monitoring Instrumentation, to remove Function 1, Neutron Flux, from the list of required post-accident monitoring instrumentation. The existing TS require two channels of neutron flux instrumentation to be operable.
U                 .S Nuclear           Regulatory                 Commission                                                                                                 AEP-NRC-2024-11 Page             2
U.S Nuclear Regulatory Commission AEP-NRC-2024-11 Page 2


By           Reference   1,     l&M submitted a           request for approval         of the reclassification of the wide range                 neutron flux instrumentation       to   Category             3 and                       a             corresponding                     change                               to CNP Unit       1 and                         Unit   2 TS Table 3.3.3-1, Post Accident Monitoring Instrumentation.                                   By           Reference 2,     l&M submitted a           supplement       to Reference   1. By           Reference   3,   the NRC   submitted an                           RAI     concerning                                     the letter submitted by                       l&M as Reference   1. to   this letter provides an                         affirmation statement.               Enclosure                 2   to   this letter provides l&M's response           to the NRC's RAI   from     Reference   3.
By Reference 1, l&M submitted a request for approval of the reclassification of the wide range neutron flux instrumentation to Category 3 and a corresponding change to CNP Unit 1 and Unit 2 TS Table 3.3.3-1, Post Accident Monitoring Instrumentation. By Reference 2, l&M submitted a supplement to Reference 1. By Reference 3, the NRC submitted an RAI concerning the letter submitted by l&M as Reference 1. to this letter provides an affirmation statement. Enclosure 2 to this letter provides l&M's response to the NRC's RAI from Reference 3.


As         discussed       with NRC         staff during           the public         meeting         held January                                                               24,         2024         (ML24031A587),
As discussed with NRC staff during the public meeting held January 24, 2024 (ML24031A587),
related to   this RAI       response,                 l&M is requesting to   revise the scope               of the amendment                                                 request such that         Neutron                                     Flux                             remains                               as                             Function                                                 1                   in                 TS                   Table                             3.3.3-1,                   Post                 Accident                       Monitoring Instrumentation,                                 but                     is exempt                   from               the requirement     to           maintain                         environmental                                   qualification.                 A supplement                     to           the amendment                                                         request,     which             addresses           the scoping                         changes,                                             is included                 as to   this letter.
related to this RAI response, l&M is requesting to revise the scope of the amendment request such that Neutron Flux remains as Function 1 in TS Table 3.3.3-1, Post Accident Monitoring Instrumentation, but is exempt from the requirement to maintain environmental qualification. A supplement to the amendment request, which addresses the scoping changes, is included as to this letter.
and                           Enclosure                   5   provide Unit         1 and                         Unit       2   TS     pages,           respectively, marked                 to     show               'the proposed                       changes.                                                             Enclosure                       6           and                                   Enclosure                           7         provide   Unit             1         and                                   Unit             2           TS             Bases                 pages, respectively, marked               to   show                   the proposed               changes.                                       TS   Bases       markups                     are       included for information only.                                   Changes                     to   the existing TS   Bases,         consistent with the technical and                         regulatory       analysis,               will be implemented under               CNP's TS 5.5.12, "Technical         Specifications Bases     Control     Program."
and Enclosure 5 provide Unit 1 and Unit 2 TS pages, respectively, marked to show 'the proposed changes. Enclosure 6 and Enclosure 7 provide Unit 1 and Unit 2 TS Bases pages, respectively, marked to show the proposed changes. TS Bases markups are included for information only. Changes to the existing TS Bases, consistent with the technical and regulatory analysis, will be implemented under CNP's TS 5.5.12, "Technical Specifications Bases Control Program."
U.S Nuclear Regulatory Commission                                         AEP-NRC-2024-11 Page 3
U.S Nuclear Regulatory Commission AEP-NRC-2024-11 Page 3


The changes proposed in this letter do not impact the conclusions provided in Reference 1 that a finding of "no significant hazards consideration" is justified. There are no new regulatory commitments made in this letter. Should you have any questions, please contact Mr. Michael K. Scarpello, Regulatory Affairs Director, at (269) 466-2649.
The changes proposed in this letter do not impact the conclusions provided in Reference 1 that a finding of "no significant hazards consideration" is justified. There are no new regulatory commitments made in this letter. Should you have any questions, please contact Mr. Michael K. Scarpello, Regulatory Affairs Director, at (269) 466-2649.
Line 56: Line 56:


==Enclosures:==
==Enclosures:==
 
1. Affirmation
1 . Affirmation
: 2. Response to Request for Additional Information on Requested Change Regarding Neutron Flux Instrumentation
: 2. Response to Request for Additional Information on Requested Change Regarding Neutron Flux Instrumentation
: 3. Supplement to License Amendment Request Regarding Neutron Flux Instrumentation
: 3. Supplement to License Amendment Request Regarding Neutron Flux Instrumentation
: 4. Donald C. Cook Nuclear Plant Unit 1 Technical Specification Pages Marked to Show Proposed Changes
: 4. Donald C. Cook Nuclear Plant Unit 1 Technical Specification Pages Marked to Show Proposed Changes
Line 65: Line 64:
: 7. Donald C. Cook Nuclear Plant Unit 2 Technical Specification Bases Pages Marked to Show Proposed Changes
: 7. Donald C. Cook Nuclear Plant Unit 2 Technical Specification Bases Pages Marked to Show Proposed Changes


c:         EGLE -RMD/RPS J. B. Giessner- NRC Region Ill NRC Resident Inspector N. Quilico - MPSC R. M. Sistevaris -AEP Ft. Wayne, w/o enclosures S. P. Wall- NRC Washington, D.C.
c: EGLE -RMD/RPS J. B. Giessner-NRC Region Ill NRC Resident Inspector N. Quilico - MPSC R. M. Sistevaris -AEP Ft. Wayne, w/o enclosures S. P. Wall-NRC Washington, D.C.
A. J. Williamson -AEP Ft. Wayne, w/o enclosures Enclosure                                       1 to   AEP-NRC-2024-11
A. J. Williamson -AEP Ft. Wayne, w/o enclosures Enclosure 1 to AEP-NRC-2024-11


AFFIRMATION
AFFIRMATION


I,         Kelly J.         Ferneau,                                 being             duly               sworn,                           state that I   am                               the Site Vice               President of     Indiana                                   Michigan Power                     Company                                                             (l&M), that I     am                               authorized         to         sign   and                               file this request with the U                 .           S.     Nuclear Regulatory                   Commission                               on                           behalf of   l&M, and                         that the statements made                           and                           the matters set forth herein pertaining to     l&M are     true and                       correct to   the best of my                       knowledge,               information           , and                         belief.
I, Kelly J. Ferneau, being duly sworn, state that I am the Site Vice President of Indiana Michigan Power Company (l&M), that I am authorized to sign and file this request with the U. S. Nuclear Regulatory Commission on behalf of l&M, and that the statements made and the matters set forth herein pertaining to l&M are true and correct to the best of my knowledge, information, and belief.


Indiana                               Michigan   Power             Company
Indiana Michigan Power Company


Kelly J.       Ferneau Site Vice           President
Kelly J. Ferneau Site Vice President


SWORN                   TO AND SUBSCRIBED                   BEFORE   ME
SWORN TO AND SUBSCRIBED BEFORE ME


THIS                   c9           7                         DAY   OF       kbrua.r"I                                                                                                                         2024
THIS c9 7 DAY OF kbrua.r"I 2024
      ~                                                             ~~                                   ~
~ ~~ ~


My             Commission                         Expires                 0\\ I&\\ jac@o
My Commission Expires 0\\ I&\\ jac@o


                )
)
Enclosure                                     2 to     AEP-NRC-2024-11
Enclosure 2 to AEP-NRC-2024-11


Response                             to     Request             for Additional           Information                                               on                           Requested             Change Regarding                   Neutron                             Flux               Instrumentation
Response to Request for Additional Information on Requested Change Regarding Neutron Flux Instrumentation


By                       letter dated             January                                                                   26,               2023             (Agencywide                                         Documents                                               Access                         and                                   Management                                                             System (ADAMS)       Accession                             No.                 ML23026A284)       (Reference             1 ),           Indiana                                     Michigan         Power                   Company                                                           (l&M),
By {{letter dated|date=January 26, 2023|text=letter dated January 26, 2023}} (Agencywide Documents Access and Management System (ADAMS) Accession No. ML23026A284) (Reference 1 ), Indiana Michigan Power Company (l&M),
the licensee for Donald                       C.     Cook                       Nuclear           Plant (CNP)   Unit       1 and                         Unit       2,     submitted   a             request to   use alternate means                           of fulfilling the requirements of Regulatory               Guide (RG)       1.97 with regards to   the plant safety function                 of reactivity control             at   CNP   Unit         1 and                           Unit     2.                   The     request would                       reclassify the wide range                 neutron                           flux instrumentation       at CNP Unit     1 and                         Unit   2 as           Category               3 instrumentation,           and                       would modify       Technical       Specification (TS) Table       3.3.3-1, Post Accident Monitoring Instrumentation,                       to remove Function                               1,   Neutron                 Flux,       from       the list of required post-accident       monitoring           (PAM)   instrumentation.
the licensee for Donald C. Cook Nuclear Plant (CNP) Unit 1 and Unit 2, submitted a request to use alternate means of fulfilling the requirements of Regulatory Guide (RG) 1.97 with regards to the plant safety function of reactivity control at CNP Unit 1 and Unit 2. The request would reclassify the wide range neutron flux instrumentation at CNP Unit 1 and Unit 2 as Category 3 instrumentation, and would modify Technical Specification (TS) Table 3.3.3-1, Post Accident Monitoring Instrumentation, to remove Function 1, Neutron Flux, from the list of required post-accident monitoring (PAM) instrumentation.


By         letter dated August         2, 2023 (ADAMS Accession                         No.           ML23214A289)   (Reference       2),   l&M submitted a           supplement           to   Reference       1.
By {{letter dated|date=August 2, 2023|text=letter dated August 2, 2023}} (ADAMS Accession No. ML23214A289) (Reference 2), l&M submitted a supplement to Reference 1.


The     U.                         S.       Nuclear           Regulatory                     Commission                           (NRC)     staff is currently       reviewing the submittal and                         has determined that additional information                 is needed                 in order to   complete       the review (Reference         3).             The request for additional information             (RAI)   and                       l&M's response             are       provided below.
The U. S. Nuclear Regulatory Commission (NRC) staff is currently reviewing the submittal and has determined that additional information is needed in order to complete the review (Reference 3). The request for additional information (RAI) and l&M's response are provided below.


As   discussed     with NRC     staff during       the public       meeting     held January                                                             24,     2024,         related to     this RAI response,                 l&M is requesting to     revise the scope                 of the amendment                                               request such                   that Neutron                   Flux remains             as           Function                             1 in TS   Table             3.3.3-1,   Post Accident   Monitoring     Instrumentation,                             but             is exempt from               the requirement     to         maintain                           environmental                                   qualification.               A           supplement                 to         the amendment request, which     addresses the scoping                 changes,                                   is included   as           Enclosure                     3 to this letter.
As discussed with NRC staff during the public meeting held January 24, 2024, related to this RAI response, l&M is requesting to revise the scope of the amendment request such that Neutron Flux remains as Function 1 in TS Table 3.3.3-1, Post Accident Monitoring Instrumentation, but is exempt from the requirement to maintain environmental qualification. A supplement to the amendment request, which addresses the scoping changes, is included as Enclosure 3 to this letter.


EICB-RAl-1
EICB-RAl-1


In             the LAR,   the licensee states, in part, that:
In the LAR, the licensee states, in part, that:


In                 a               design basis       accident,                     wide range                     neutron                                 flux instrumentation             provides information               to control             room                               operators             in   two           situations -                 to     check           if the reactor         is no                       longer         critical and                         to monitor                         the core                   for   unexpected                                     additions   of   reactivity after reactor             shutdown                                         has                 been achieved.
In a design basis accident, wide range neutron flux instrumentation provides information to control room operators in two situations - to check if the reactor is no longer critical and to monitor the core for unexpected additions of reactivity after reactor shutdown has been achieved.


During     an                         accident           that involves normal                           containment                                       conditions,               the neutron                                 flux monitoring instrumentation                 is expected                 to       be                 available             for use.                 Under                             these conditions,                     control             room operators                 are               able                   to         monitor                         the reactivity state of     the core                 by                             evaluating                   neutron                                   flux behavior                 measured                     by                     all of the neutron                               flux monitoring             instrumentation               (Gamma-Metrics                       in addition to     Westinghouse               power             range,                   intermediate range,                 and                     source                   range                       Westinghouse instruments)           as                     well as                       Core               Exit Thermocouple                                               (GET)           temperatures,         Reactor                         Coolant System             (RCS) hot leg and                     cold   leg temperatures, and                   boron                                       concentration                             .
During an accident that involves normal containment conditions, the neutron flux monitoring instrumentation is expected to be available for use. Under these conditions, control room operators are able to monitor the reactivity state of the core by evaluating neutron flux behavior measured by all of the neutron flux monitoring instrumentation (Gamma-Metrics in addition to Westinghouse power range, intermediate range, and source range Westinghouse instruments) as well as Core Exit Thermocouple (GET) temperatures, Reactor Coolant System (RCS) hot leg and cold leg temperatures, and boron concentration.


                . . . . . Additionally, the shutdown                                   margin                 would                     be                 verified by                       measuring                           boron                                             concentration.
..... Additionally, the shutdown margin would be verified by measuring boron concentration.
The   EOPs would                 also         direct the operators             to   assure             that boric           acid     injection is taking place, adding         negative reactivity to ensure             that the core         remains             shut down. to   AEP-NRC-2024-11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 Page               2
The EOPs would also direct the operators to assure that boric acid injection is taking place, adding negative reactivity to ensure that the core remains shut down. to AEP-NRC-2024-11 Page 2


CNP Unit     1 and                     Unit   2 EOPs also     require control     room                             operators     to monitor               RCS temperature using           CETs and                           RCS     hot leg and                         cold       leg instruments,   and                         to   monitor                 boron                                         concentration and                         the assurance                                   of boron                                     injection.
CNP Unit 1 and Unit 2 EOPs also require control room operators to monitor RCS temperature using CETs and RCS hot leg and cold leg instruments, and to monitor boron concentration and the assurance of boron injection.
* Please         provide     information                       regarding           how                                   the indication             of         "boron                                                 concentration                                             and                                       the assurance                                     of boron                                       injection" instrumentation           or   sampling     process       may                                   each                     be             considered         as key                         variables         and                                     be                       measured                                       with high-quality instrumentation,                         in           lieu of       neutron                                         flux monitoring               (source                     range).
* Please provide information regarding how the indication of "boron concentration and the assurance of boron injection" instrumentation or sampling process may each be considered as key variables and be measured with high-quality instrumentation, in lieu of neutron flux monitoring (source range).


o                             Describe the response                   time characteristics of instrumentation                 used             for responding                   to       a change                               in boron                                       concentration                                   and                     for assuring         boron                                       injection is taking place.
o Describe the response time characteristics of instrumentation used for responding to a change in boron concentration and for assuring boron injection is taking place.


o                             Describe whether the use           of instrumentation               measuring                           boron                                           concentration                                           will enable plant operators         to   take timely mitigative action                   in an                       event of a         return to criticality following a             LOCA event.
o Describe whether the use of instrumentation measuring boron concentration will enable plant operators to take timely mitigative action in an event of a return to criticality following a LOCA event.


l&M Response                                 to       EICB-RAl-1
l&M Response to EICB-RAl-1


Boron                           concentration                                   would                     not             be           considered         as         a           key       variable with regards to subcriticality, but           would be                   used                 by                             control               room                                 operators               to       assess           shutdown                                   margin                     as                 part of     an                             aggregate             indication review. Continuous                                       indication of boron                                     concentration                                           via instrumentation             is not           available     at CNP Unit       1 or     Unit                 2,     rather RCS   boron                                       concentration                                           is measured                         by                     sampling       the RCS.
Boron concentration would not be considered as a key variable with regards to subcriticality, but would be used by control room operators to assess shutdown margin as part of an aggregate indication review. Continuous indication of boron concentration via instrumentation is not available at CNP Unit 1 or Unit 2, rather RCS boron concentration is measured by sampling the RCS.


While Emergency                                 Core     Cooling       Flow     is a       Type             A,   Category               1 variable included   in CNP Unit       1 and                     Unit     2 TS Table             3.3.3-1,   Post Accident     Monitoring   Instrumentation,                       as           Function                             20,   it is not           considered       a             key variable with regards to subcriticality.
While Emergency Core Cooling Flow is a Type A, Category 1 variable included in CNP Unit 1 and Unit 2 TS Table 3.3.3-1, Post Accident Monitoring Instrumentation, as Function 20, it is not considered a key variable with regards to subcriticality.


The   Emergency                                     Core       Cooling           System           (ECCS)     is designed to   inject borated               water     from       a           combination of the Accumulators                                   and                       the Refueling Water           Storage   Tank                   (RWST)                   to ensure             that an                     adequate                     supply of borated               water     is added               to the reactor     vessel following a           design basis     accident.                         The design ensures boron                                         injection through         at   least three intact loops         with the entire contents               of one                           loop             conservatively assumed                                   to     be               unavailable                           due               to   a               break.                                 The     safety analysis                   and                         rigorous         testing ensure               that the injection that occurs                         through         the three intact loops         is adequate                       for all design basis     accidents.
The Emergency Core Cooling System (ECCS) is designed to inject borated water from a combination of the Accumulators and the Refueling Water Storage Tank (RWST) to ensure that an adequate supply of borated water is added to the reactor vessel following a design basis accident. The design ensures boron injection through at least three intact loops with the entire contents of one loop conservatively assumed to be unavailable due to a break. The safety analysis and rigorous testing ensure that the injection that occurs through the three intact loops is adequate for all design basis accidents.


TS         Table                     3.3.3-1,         Post     Accident           Monitoring             Instrumentation,                                 Function                                 20         prescribes the minimum equipment           that is required for operability of an                       ECCS flow channel,                             and                       this is clarified by                   a           note         stating "Any                             combination                                               of     two                   instruments       per train, including         Centrifugal Charging               Pump                                   Flow,             Safety Injection         Pump                               Flow,           Centrifugal Charging         Pump                             Circuit Breaker Status,   and                           Safety       Injection       Pump Circuit Breaker Status, can                               be             used         to satisfy Function                             20 OPERABILITY         requirements."
TS Table 3.3.3-1, Post Accident Monitoring Instrumentation, Function 20 prescribes the minimum equipment that is required for operability of an ECCS flow channel, and this is clarified by a note stating "Any combination of two instruments per train, including Centrifugal Charging Pump Flow, Safety Injection Pump Flow, Centrifugal Charging Pump Circuit Breaker Status, and Safety Injection Pump Circuit Breaker Status, can be used to satisfy Function 20 OPERABILITY requirements."


Step 7 of Emergency                                 Operating Procedure                 OHP-4023-E-0,     Reactor             Trip or   Safety     Injection,   directs an operator             to   perform Attachment           A   of the procedure                   which     systematically reviews expected         equipment response               to start pumps                     and                       align equipment           that is required for the accident           conditions.                       This includes ensuring               that ECCS     pumps                         are       operating       with a             flow path   from           the RWST                     to     the RCS     through         their respective injection flow paths.         This is confirmed               by                     observing             pump                       running                         currents,     valve positions, and                         injection flow indication   on                       the control           panels. to   AEP-NRC-2024-11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       Page3
Step 7 of Emergency Operating Procedure OHP-4023-E-0, Reactor Trip or Safety Injection, directs an operator to perform Attachment A of the procedure which systematically reviews expected equipment response to start pumps and align equipment that is required for the accident conditions. This includes ensuring that ECCS pumps are operating with a flow path from the RWST to the RCS through their respective injection flow paths. This is confirmed by observing pump running currents, valve positions, and injection flow indication on the control panels. to AEP-NRC-2024-11 Page3


EICB-RAl-2
EICB-RAl-2


Currently the Neutron                   Flux           are       fulfilling the requirements of 10     CFR     50.36(c)(2)(ii), as           are         the RCS Hot Leg Temperature       (Wide Range),                           RCS Cold Leg   Temperature       (Wide Range),                     and                   GET monitoring instrumentations.       If during an                     accident           that involves elevated temperature containment                                     conditions           the neutron                             flux instrument   is not           available,         the operators           will be           relying on                         boron                                       concentration                                     and                       the assurance                                         of   boron                                             injection as               key                 variables. Per RG             1.97       Revision     3,             key                 variable         should               be qualified to             meet                 Category                             design             specifications. The                 CNP                   TS                 Bases                     states that     the   PAM instrumentation               TSs ensures           the operability of RG       1.97 Type         A and                     Category                     1 variables so           that the control       room                           operating   staff can                             (among                                           other items):
Currently the Neutron Flux are fulfilling the requirements of 10 CFR 50.36(c)(2)(ii), as are the RCS Hot Leg Temperature (Wide Range), RCS Cold Leg Temperature (Wide Range), and GET monitoring instrumentations. If during an accident that involves elevated temperature containment conditions the neutron flux instrument is not available, the operators will be relying on boron concentration and the assurance of boron injection as key variables. Per RG 1.97 Revision 3, key variable should be qualified to meet Category design specifications. The CNP TS Bases states that the PAM instrumentation TSs ensures the operability of RG 1.97 Type A and Category 1 variables so that the control room operating staff can (among other items):
* Perform   the diagnosis       specified in     the emergency                                       operating       procedures                       (these variables are restricted to preplanned               actions               for the primary       success                 path of DBAs), e.g.,   LOCA.
* Perform the diagnosis specified in the emergency operating procedures (these variables are restricted to preplanned actions for the primary success path of DBAs), e.g., LOCA.
* Take             the specified, pre-planned                   manually                                         controlled actions,                 for which       no                         automatic                                 control           is provided, and                     that are   required for safety systems       to accomplish                   their safety functions.
* Take the specified, pre-planned manually controlled actions, for which no automatic control is provided, and that are required for safety systems to accomplish their safety functions.
* Determine whether systems     important   to safety are     performing their intended functions.
* Determine whether systems important to safety are performing their intended functions.


Provide   the basis               for concluding                                       that boron                                               concentration                                               monitoring                         instrumentations                   and                                   the assurance                                   of boron                                         injection is not         required to be           added               to the PAM table.
Provide the basis for concluding that boron concentration monitoring instrumentations and the assurance of boron injection is not required to be added to the PAM table.


l&M Response                           to       EICB-RAl-2
l&M Response to EICB-RAl-2


As discussed in response               to   EICB-RAl-1 above,                                   boron                                       concentration                                       monitoring               and                       the assurance                                 of boron                                         injection are         not             considered           key           variables with regards to   subcriticality, though               ECCS     flow is a Type             A,   Category                   1 variable and                         is included   as         Function                           20 in CNP Unit       1 and                       Unit   2 TS Table           3.3.3-1, Post Accident Monitoring   Instrumentation.                               Instrumentation                       to continuously                                           monitor           boron                                     concentration is not           available     at CNP Unit     1 or     Unit     2 .
As discussed in response to EICB-RAl-1 above, boron concentration monitoring and the assurance of boron injection are not considered key variables with regards to subcriticality, though ECCS flow is a Type A, Category 1 variable and is included as Function 20 in CNP Unit 1 and Unit 2 TS Table 3.3.3-1, Post Accident Monitoring Instrumentation. Instrumentation to continuously monitor boron concentration is not available at CNP Unit 1 or Unit 2.


EICB-RAl-3
EICB-RAl-3


Currently   the Neutron                       Flux             monitoring                 instrumentations               are         Category                             1,           as               are             the RCS         Hot     Leg Temperature                     (Wide               Range),                                   RCS                 Cold         Leg               Temperature                     (Wide             Range),                                 and                                 GET         monitoring instrumentations.                     Describe     how                               the boron                                             concentration                                               monitoring                       instrumentations                   meets         the qualifications of   Category                         1.       If not                   currently       at       Category                           1     qualification, are               there any                                       plans                   to upgrading                 the qualification of boron                                       concentration                                     instrumentation             to   Category                       1? Please describe if so.
Currently the Neutron Flux monitoring instrumentations are Category 1, as are the RCS Hot Leg Temperature (Wide Range), RCS Cold Leg Temperature (Wide Range), and GET monitoring instrumentations. Describe how the boron concentration monitoring instrumentations meets the qualifications of Category 1. If not currently at Category 1 qualification, are there any plans to upgrading the qualification of boron concentration instrumentation to Category 1? Please describe if so.


l&M Response                           to       EICB-RAl-3
l&M Response to EICB-RAl-3


As discussed   in response                 to   EICB-RAl-1 above,                                 boron                                         concentration                                           is not             considered         a             key           variable with regards to   subcriticality, but             is considered         a             backup                                         variable,   as           further discussed   in response           to EICB-RAl-4.
As discussed in response to EICB-RAl-1 above, boron concentration is not considered a key variable with regards to subcriticality, but is considered a backup variable, as further discussed in response to EICB-RAl-4.


EICB-RAl-4
EICB-RAl-4


In               the LAR,       the licensee indicates that a               DC   Cook                 plant operator         would                 rely on                         indications from       core exit temperatures, hot and                 cold leg temperatures, boron                                     concentration,                           and                     assurance                             of boron                                   injection to   verify that there is no                         continued                     or     unexpected                         reactivity occurring.               Any                       actions                 to   be               taken         by                         the to AEP-NRC-2024-11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   Page4
In the LAR, the licensee indicates that a DC Cook plant operator would rely on indications from core exit temperatures, hot and cold leg temperatures, boron concentration, and assurance of boron injection to verify that there is no continued or unexpected reactivity occurring. Any actions to be taken by the to AEP-NRC-2024-11 Page4


operator         must         be             taken         timely enough                                 during     the event to   have             a           high degree of success                     in achieving or returning to   cold   shutdown,                             and                   hence                   a           safe reactor     state.
operator must be taken timely enough during the event to have a high degree of success in achieving or returning to cold shutdown, and hence a safe reactor state.
: a.                         Demonstrate                       whether there will be                   adequate                               time for detection of process                 changes                           at     the location             of the CETs and                     whether there is appropriate instrument response                 time and                       sufficient time available     from         the onset       of reactor         shutdown,                             for an                       operator       relying on                       CET or   Hot/Cold Leg Temperature,       and                     boron                                   concentration                                     indications to verify that reactor     shutdown                         has       been successfully   accomplished                   through       the insertion of the control       rods   or boron                                       addition during   an accident             with energy               added           to the containment.
: a. Demonstrate whether there will be adequate time for detection of process changes at the location of the CETs and whether there is appropriate instrument response time and sufficient time available from the onset of reactor shutdown, for an operator relying on CET or Hot/Cold Leg Temperature, and boron concentration indications to verify that reactor shutdown has been successfully accomplished through the insertion of the control rods or boron addition during an accident with energy added to the containment.
: b.                                     Demonstrate                 whether there will be               adequate                         time for process           changes                           at the location               of the instruments     and                             whether there is appropriate   instrument       response                     time and                           sufficient time available         from         the onset         of unexpected                                 reactivity, for an                       operator           using         GET or     Hot/Cold Leg Temperature                 indications       and                               boron                                                 concentration                                                   to           observe                     that unexpected                                   reactivity is occurring                       to   enable                   timely action                 to mitigate this condition.
: b. Demonstrate whether there will be adequate time for process changes at the location of the instruments and whether there is appropriate instrument response time and sufficient time available from the onset of unexpected reactivity, for an operator using GET or Hot/Cold Leg Temperature indications and boron concentration to observe that unexpected reactivity is occurring to enable timely action to mitigate this condition.
: c.                                     Please provide an                       overview of an                         evaluation               of expected       process         variations and                       the expected response           of the GET and                     Hot/Cold Leg   Temperature         instruments to those variations regarding the time delay       needed             to allow   for process         changes                             to occur                       at the location             of the Hot/Cold Leg Temperature       instruments in response                 to those process           variations.
: c. Please provide an overview of an evaluation of expected process variations and the expected response of the GET and Hot/Cold Leg Temperature instruments to those variations regarding the time delay needed to allow for process changes to occur at the location of the Hot/Cold Leg Temperature instruments in response to those process variations.
* Describe the expected           response                 of these instruments     to       enable                       plant       operators             to       take appropriate       mitigative actions                       to         recover             from                 the accident                 and                             avoid                   further adverse consequences                                             of the event.
* Describe the expected response of these instruments to enable plant operators to take appropriate mitigative actions to recover from the accident and avoid further adverse consequences of the event.
* Include                       your                                       assumptions                               and                                   conditions                   regarding             whether   the     evaluation                           assumes whether the reactor               coolant                               pumps                                 are           running                                 and                               whether vessel or         piping voiding conditions         are     occurring.
* Include your assumptions and conditions regarding whether the evaluation assumes whether the reactor coolant pumps are running and whether vessel or piping voiding conditions are occurring.


l&M Response                             to     EICB-RAl-4
l&M Response to EICB-RAl-4


With regards to   EICB-RAl-4 (a),               as           discussed with NRC   staff during     the public     meeting held January 24, 2024, related to this RAI   response,           l&M is requesting to revise the scope           of the amendment                                           request such                           that   Neutron                             Flux                     remains                         as                       Function                                         1             in           TS             Table                         3.3.3-1,           Post           Accident             Monitoring Instrumentation,                               but                     is exempt                     from             the requirement     to           maintain                         environmental                                   qualification.             For purposes           of verifying initial reactor   shutdown                             at CNP Unit     1 and                         Unit   2 Neutron                 Flux         would                 continue                             to be           the key         variable.           A supplement       to the amendment                                               request, which   addresses the scoping           changes, is included   as           Enclosure                 3 to this letter.
With regards to EICB-RAl-4 (a), as discussed with NRC staff during the public meeting held January 24, 2024, related to this RAI response, l&M is requesting to revise the scope of the amendment request such that Neutron Flux remains as Function 1 in TS Table 3.3.3-1, Post Accident Monitoring Instrumentation, but is exempt from the requirement to maintain environmental qualification. For purposes of verifying initial reactor shutdown at CNP Unit 1 and Unit 2 Neutron Flux would continue to be the key variable. A supplement to the amendment request, which addresses the scoping changes, is included as Enclosure 3 to this letter.


The     remainder         of   l&M's response               to     EICB-RAl-4 is intended   to     address     items (b)                   and                           (c),           regarding operator           response             to the onset       of unexpected                               reactivity.
The remainder of l&M's response to EICB-RAl-4 is intended to address items (b) and (c), regarding operator response to the onset of unexpected reactivity.


In                   all cases                     where       adverse           containment                                           conditions                 would                         render     the non-environmentally                                                           qualified source                         range                     detection instruments     unreliable,   the event     will be                 accompanied                                                         by                           a               Safety     Injection signal.
In all cases where adverse containment conditions would render the non-environmentally qualified source range detection instruments unreliable, the event will be accompanied by a Safety Injection signal.


Following completion         of immediate actions,             licensed operators     prioritize starting and                       aligning any                               ECCS equipment                     that should                     have                       actuated                               automatically.                                                       This is rapidly done                                   using                     the operator's knowledge               and                     will typically take place   within the first two         to three minutes     of the reactor   trip, depending on                       the operator's       tasks for the event. to   AEP-NRC-2024-11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               Page             5
Following completion of immediate actions, licensed operators prioritize starting and aligning any ECCS equipment that should have actuated automatically. This is rapidly done using the operator's knowledge and will typically take place within the first two to three minutes of the reactor trip, depending on the operator's tasks for the event. to AEP-NRC-2024-11 Page 5


Since   ECCS flow is intended for both           reactivity and                       inventory             control,         insertion of control           rods, the build up         of Xenon,                                       and                       verification of ECCS injection ensure             that significant negative reactivity is being     added at         the early           stages     of       the accident                     without   any                                           reliance     on                                 nuclear                             instrumentation                 or             Core               Exit Thermocouple                                 readings.
Since ECCS flow is intended for both reactivity and inventory control, insertion of control rods, the build up of Xenon, and verification of ECCS injection ensure that significant negative reactivity is being added at the early stages of the accident without any reliance on nuclear instrumentation or Core Exit Thermocouple readings.


Steam               Line Break     Inside Containment
Steam Line Break Inside Containment


While return to     criticality and                           reactor       power               are         not             credible during     the accident               mitigation stage of a LOCA event,     it is a             possibility during     the initial phase           of a             steam             line break               due             to   the large reactivity addition associated             with an                       uncontrolled                     RCS   cooldown.                                                         A steam           line break             inside containment                                     could also                       create                 the       conditions                         to                 render             the     non-environmentally                                                                     qualified nuclear                                     instrumentation unreliable.         However,             a           postulated return to power           for this type of cooldown                                               event is self-limiting.
While return to criticality and reactor power are not credible during the accident mitigation stage of a LOCA event, it is a possibility during the initial phase of a steam line break due to the large reactivity addition associated with an uncontrolled RCS cooldown. A steam line break inside containment could also create the conditions to render the non-environmentally qualified nuclear instrumentation unreliable. However, a postulated return to power for this type of cooldown event is self-limiting.


Assuming               the initial reactor   trip verification was                   successful,     any                               return to criticality from         an                       uncontrolled RCS   cooldown                                               during a           steam           line break           event would                       be           terminated through     temperature feedback               as the RCS   heats up.                       The RCS   temperature following the heat up         would                       be           below                 the temperature of the RCS at the time of the initial reactor     trip, since boron                                       would                 have           been                     added           by                     ECCS injection during the initial event response,           and                       since control         rods would                   insert during the reactor   trip. The plant UFSAR accident             analysis                 considers       the return to     power               possibility from       a               steam             line break,               where     the core                 is ultimately shut down                                 by                       boric         acid       delivered by                     the ECCS to   the RCS,   which   remains             intact.
Assuming the initial reactor trip verification was successful, any return to criticality from an uncontrolled RCS cooldown during a steam line break event would be terminated through temperature feedback as the RCS heats up. The RCS temperature following the heat up would be below the temperature of the RCS at the time of the initial reactor trip, since boron would have been added by ECCS injection during the initial event response, and since control rods would insert during the reactor trip. The plant UFSAR accident analysis considers the return to power possibility from a steam line break, where the core is ultimately shut down by boric acid delivered by the ECCS to the RCS, which remains intact.


The   recovery               actions               that follow include   termination of ECCS injection, reestablishing normal                         charging and                       letdown,   and                     eventually   cooling             down                               and                   depressurizing the RCS.           ECCS termination is performed only                   after verifying procedural               requirements for RCS     inventory               and                         subcooling                                   are         met.               This ensures that Pressurizer Level is on                       scale and                     that no                     voids are     present in the reactor   vessel. At this point there is no                     accident               in progress.
The recovery actions that follow include termination of ECCS injection, reestablishing normal charging and letdown, and eventually cooling down and depressurizing the RCS. ECCS termination is performed only after verifying procedural requirements for RCS inventory and subcooling are met. This ensures that Pressurizer Level is on scale and that no voids are present in the reactor vessel. At this point there is no accident in progress.


During     post-accident               recovery                   with the RCS       intact, in   a               situation where         Gamma-Metrics                       instruments are     not           available,       control         room                           operators       are   trained and                       directed by                     emergency                                 operating     procedures to   monitor                 RCS     temperature indication   as           a             key           variable   to   identify any                                     postulated return to   criticality and                         rising core           power             level. One           or   more               indications of RCS temperature would                     be           available     to control room                                           operators,                         including             CET                 temperature,                 RCS                     Hot                 Leg                 temperature,               and                                             RCS                     Cold               Leg temperature.           These key         parameters           are     all included     in CNP Unit       1 and                         Unit     2 TS   Table             3.3 .3-1, Post Accident       Monitoring       Instrumentation,                             and                             conform                                         to       the design and                             qualification requirements of   a Category               1 variable as         described in RG       1.97, Revision 3 (Reference   4), other than           deviations approved by                       the NRC   in Reference     5.
During post-accident recovery with the RCS intact, in a situation where Gamma-Metrics instruments are not available, control room operators are trained and directed by emergency operating procedures to monitor RCS temperature indication as a key variable to identify any postulated return to criticality and rising core power level. One or more indications of RCS temperature would be available to control room operators, including CET temperature, RCS Hot Leg temperature, and RCS Cold Leg temperature. These key parameters are all included in CNP Unit 1 and Unit 2 TS Table 3.3.3-1, Post Accident Monitoring Instrumentation, and conform to the design and qualification requirements of a Category 1 variable as described in RG 1.97, Revision 3 (Reference 4), other than deviations approved by the NRC in Reference 5.


If a               natural               circulation     cooldown                                                 were         required, procedural                 shutdown                                   margin                 requirements are         more stringent with no                             Reactor               Coolant                           Pumps                       (RCPs)     running                             to     account                                                 for reduced               mixing             and                         longer loop           transport times. Throughout                               the event, licensed operators       and                         the Shift Technical           Advisor verify that natural             circulation cooling                 is occurring.                               Although loop         transport times are     slower without RCPs in service, temperature changes                       of just a           few degrees Fahrenheit can                                   be             observed                 on                           RCS     Hot Leg and Cold         Leg           temperature           instruments             and                                   CETs.                                     In                       summary,                                                       the   RCS             temperature           indication         is responsive enough                                     to   be           the key         variable to   monitor             for a             return to   criticality when                   the RCS   is intact.
If a natural circulation cooldown were required, procedural shutdown margin requirements are more stringent with no Reactor Coolant Pumps (RCPs) running to account for reduced mixing and longer loop transport times. Throughout the event, licensed operators and the Shift Technical Advisor verify that natural circulation cooling is occurring. Although loop transport times are slower without RCPs in service, temperature changes of just a few degrees Fahrenheit can be observed on RCS Hot Leg and Cold Leg temperature instruments and CETs. In summary, the RCS temperature indication is responsive enough to be the key variable to monitor for a return to criticality when the RCS is intact.


In                       addition,       Pressurizer Level with an                                 intact     RCS                 is very               responsive           to             small     changes                                           in           RCS temperature   and                           would                     provide defense   in   depth for monitoring             a               return to     criticality in   this scenario.
In addition, Pressurizer Level with an intact RCS is very responsive to small changes in RCS temperature and would provide defense in depth for monitoring a return to criticality in this scenario.
While this parameter                         is in           CNP             Unit               1         and                                   Unit               2           TS           Table                     3.3 .3-1,             Post       Accident               Monitoring Instrumentation,                               as                     Function                                           12,           this parameter                     is considered               a                     backup                                               variable         with respect to monitoring         for a             return to criticality. to AEP-NRC-2024-11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     Page6
While this parameter is in CNP Unit 1 and Unit 2 TS Table 3.3.3-1, Post Accident Monitoring Instrumentation, as Function 12, this parameter is considered a backup variable with respect to monitoring for a return to criticality. to AEP-NRC-2024-11 Page6


Note       that shutdown                                         margin                     requirements   are             verified by                                   RCS           sampling             prior to         initiating an                                 RCS cooldown,                                                         and                             the RCS           is repeatedly sampled             during         the cooldown                                                     to       ensure                   shutdown                                     margin                       is maintained.                           However,               RCS boron                                   concentration                                     sampling       is considered     a           backup                                   variable with respect to   monitoring         for a             return to criticality.
Note that shutdown margin requirements are verified by RCS sampling prior to initiating an RCS cooldown, and the RCS is repeatedly sampled during the cooldown to ensure shutdown margin is maintained. However, RCS boron concentration sampling is considered a backup variable with respect to monitoring for a return to criticality.


Loss     of Coolant                 Accident
Loss of Coolant Accident


During     the long-term       recovery               actions                 that follow a             design basis     LOCA   event there are       three credible dilution sources                       to       consider.                           Essential Service Water             (ESW)                   operational                 leakage         through             an                         out             of service Containment                               Spray             (CTS) heat exchanger,                               Component                                               Cooling     Water       (CCW)               leakage       through an                           out             of   service Residual Heat     Removal                           (RHR)           heat       exchanger,                                       and                           Auxiliary   Feedwater         addition through       a             Steam             Generator             to   a             depressurized RCS     are       possible dilution sources.                                 The   remainder       of services in   and                         out             of containment                                       are         isolated by                       either a               Containment                                     Isolation       Phase             A     or       Phase 8/CTS     signal.
During the long-term recovery actions that follow a design basis LOCA event there are three credible dilution sources to consider. Essential Service Water (ESW) operational leakage through an out of service Containment Spray (CTS) heat exchanger, Component Cooling Water (CCW) leakage through an out of service Residual Heat Removal (RHR) heat exchanger, and Auxiliary Feedwater addition through a Steam Generator to a depressurized RCS are possible dilution sources. The remainder of services in and out of containment are isolated by either a Containment Isolation Phase A or Phase 8/CTS signal.


Dilution via CCW                 leakage           is not             considered           a             credible source                   of a             return to     criticality since       the CCW surge     tank             level is trended by                         two             independent             level channels                           with an                           alarm               function.                                 Leak             rates of less than               1 gpm             are       easily observable,                         allowing   mitigating action                 to   be             taken           before     it could                 become                                         a significant dilution source.
Dilution via CCW leakage is not considered a credible source of a return to criticality since the CCW surge tank level is trended by two independent level channels with an alarm function. Leak rates of less than 1 gpm are easily observable, allowing mitigating action to be taken before it could become a significant dilution source.


CNP Unit   1 and                       Unit   2 TS 3.4.13, Reactor             Coolant                 System         (RCS),   limits Steam           Generator       tube           leakage to         150   gallons       per day;                           and,                         without assuming                               an                           additional failure, Auxiliary     Feedwater       operational leakage         into the RCS   would                       be             bounded                                                 by                       the more                 credible case             of ESW               leakage       through       an                     out         of service CTS heat exchanger.
CNP Unit 1 and Unit 2 TS 3.4.13, Reactor Coolant System (RCS), limits Steam Generator tube leakage to 150 gallons per day; and, without assuming an additional failure, Auxiliary Feedwater operational leakage into the RCS would be bounded by the more credible case of ESW leakage through an out of service CTS heat exchanger.


Even             with a             relatively large ESW                 leakage           rate postulated, the boron                                       concentration                                       dilution rate of the aggregate           inventory                     recirculated through             the reactor             core,                   consisting   of     a                   mix             of     the initial reactor inventory,                   ECCS       injection, and                           melted ice from           the ice bed,                 would                           be                   relatively slow.           If a                 return   to criticality is postulated without identification by                       the plant operators,       then the corresponding                         core           power rise rate will also               be                   relatively slow.                                   In                 a                   situation where           the Gamma-Metrics                         instruments     are             not available,             control                   room                                 operators               are             trained and                               directed by                             emergency                                           operating           procedures                       to monitor               RCS temperature to identify a           return to criticality and                       rising core           power             level. The key         variables monitored               are     the CETs and                         Hot   Leg   and                           Cold Leg   RCS     temperature indications.           These parameters are     included   in CNP Unit     1 and                       Unit   2 TS Table         3.3.3-1,   Post Accident Monitoring Instrumentation,                         and conform                                   to the design and                     qualification requirements of a           Category                 1 variable as         described in RG     1.97, Revision 3 (Reference     4 ),   other than             deviations approved                 by                       the NRC   in Reference   5.
Even with a relatively large ESW leakage rate postulated, the boron concentration dilution rate of the aggregate inventory recirculated through the reactor core, consisting of a mix of the initial reactor inventory, ECCS injection, and melted ice from the ice bed, would be relatively slow. If a return to criticality is postulated without identification by the plant operators, then the corresponding core power rise rate will also be relatively slow. In a situation where the Gamma-Metrics instruments are not available, control room operators are trained and directed by emergency operating procedures to monitor RCS temperature to identify a return to criticality and rising core power level. The key variables monitored are the CETs and Hot Leg and Cold Leg RCS temperature indications. These parameters are included in CNP Unit 1 and Unit 2 TS Table 3.3.3-1, Post Accident Monitoring Instrumentation, and conform to the design and qualification requirements of a Category 1 variable as described in RG 1.97, Revision 3 (Reference 4 ), other than deviations approved by the NRC in Reference 5.


Function                         Restoration   Procedure               OHP-4023-FR-S.1,     Response                     to Nuclear         Power             Generation/A   TWS,                 is exited when                       Wide     Range                           Power                 is less than                 5%   and                         neutron                             flux is lowering.             While the exact                   power level for fuel damage                                       to     occur                               would                         be               dependent                 on                           many                                               variables,   including   RCS       pressure and reactor         power               distribution, reactor       power                 less than                 5%       provides assurance                                           that there is no                           imminent threat to a           critical safety function               from       criticality. For   the postulated dilution, the time to   return to a           core power                 level of 5%     would                         be               on                         a             time scale   of one                           to   several hours             .             This slow       rate of dilution would provide control           room                             operators         sufficient time to   respond                 to   a             postulated return to   criticality and                         rising core               power                 level, even                 in   the event   that indications for CETs or       Hot   Leg     and                             Cold   Leg   temperatures experience         delays.
Function Restoration Procedure OHP-4023-FR-S.1, Response to Nuclear Power Generation/A TWS, is exited when Wide Range Power is less than 5% and neutron flux is lowering. While the exact power level for fuel damage to occur would be dependent on many variables, including RCS pressure and reactor power distribution, reactor power less than 5% provides assurance that there is no imminent threat to a critical safety function from criticality. For the postulated dilution, the time to return to a core power level of 5% would be on a time scale of one to several hours. This slow rate of dilution would provide control room operators sufficient time to respond to a postulated return to criticality and rising core power level, even in the event that indications for CETs or Hot Leg and Cold Leg temperatures experience delays.


It is noted           that a             slow     dilution of RCS     boron                                       concentration                                             via ingress of unborated                                   water   would                   likely be             identified by                     control           room                         operators       prior to returning to criticality using       other variables.       These other variables   would                             be                   considered             as                 backup                                             variables   with respect to         subcriticality. In                   the case                   of   a to   AEP-NRC-2024-11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       Page?
It is noted that a slow dilution of RCS boron concentration via ingress of unborated water would likely be identified by control room operators prior to returning to criticality using other variables. These other variables would be considered as backup variables with respect to subcriticality. In the case of a to AEP-NRC-2024-11 Page?


breached                         RCS,   changes                                 in Containment                             Water         Level would                   be             an                     effective indication of an                     in-progress dilution. The RCS boron                                       concentration                                         is also       repeatedly sampled         during   post-accident             conditions           and would                     indicate if there was                     an                       in-progress dilution of the RCS.
breached RCS, changes in Containment Water Level would be an effective indication of an in-progress dilution. The RCS boron concentration is also repeatedly sampled during post-accident conditions and would indicate if there was an in-progress dilution of the RCS.


Sample/Demonstration                                   Calculation           of Hypothetical Long-Term                             Dilution Rate
Sample/Demonstration Calculation of Hypothetical Long-Term Dilution Rate


A quantitative sample       calculation                   was                 performed as         a       demonstration                       that the core           dilution rate following a           LOCA   event will be             relatively slow.                   It should           be             noted           that the sample         calculation                     was                   not           designed or         intended   to       be               a               bounding                                               accident               analysis                   case                     and                         was                       not               intended   to     define any                                 new                       plant design or     licensing limits.
A quantitative sample calculation was performed as a demonstration that the core dilution rate following a LOCA event will be relatively slow. It should be noted that the sample calculation was not designed or intended to be a bounding accident analysis case and was not intended to define any new plant design or licensing limits.


The     sample           calculation                       considers       the effects of a             20   gallon         per minute           (gpm)               leak through         an                         out-of service CTS     heat   exchanger                                         diluting the recirculation sump                         inventory                 through         the spray                   ring header following a                 LOCA       event.                         Note       that while there are             no                         TS       limits on                               CTS       tube                   leakage,               these heat exchangers                                   are       rigorously       inspected by                       the Generic Letter 89-13     program,                       and                         a               20   gpm               leak would be                 considered               very           large and                             detectable by                           plant   personnel.                                   As     a                 point   of   reference, all four           heat exchangers                                 are     currently     below                 detectable values       for leakage.
The sample calculation considers the effects of a 20 gallon per minute (gpm) leak through an out-of service CTS heat exchanger diluting the recirculation sump inventory through the spray ring header following a LOCA event. Note that while there are no TS limits on CTS tube leakage, these heat exchangers are rigorously inspected by the Generic Letter 89-13 program, and a 20 gpm leak would be considered very large and detectable by plant personnel. As a point of reference, all four heat exchangers are currently below detectable values for leakage.


The sample         calculation                   uses       a             simple dilution of solution     chemistry formula               (i.e., Lf=i Ci
The sample calculation uses a simple dilution of solution chemistry formula (i.e., Lf=i Ci
* Vi           = Cfinal
* Vi = Cfinal
* Vtinat,                     where             C               and                               V                             are             the concentrations                                                 and                             volumes,                             respectively, of     the original and                             final solutions)         to       derive the amount                                           of     leakage             volume                               in     gallons             to       decrease               the reactor           vessel boron concentration.                                                     Key           inputs and                       assumptions                       for the sample         calculation                     include:
* Vtinat, where C and V are the concentrations and volumes, respectively, of the original and final solutions) to derive the amount of leakage volume in gallons to decrease the reactor vessel boron concentration. Key inputs and assumptions for the sample calculation include:
* The aggregate     solution       volume                 of the recirculation inventory             before   any                             dilution effects includes the initial RCS volume,                     the volume                   introduced         during safety injection, and                     the volume                   introduced by                       the melting of the ice bed.
* The aggregate solution volume of the recirculation inventory before any dilution effects includes the initial RCS volume, the volume introduced during safety injection, and the volume introduced by the melting of the ice bed.
* The   core                 is assumed                                   to   already                 be               critical at zero       power                 before       any                                 dilution of the aggregate solution         occurs.                               This approach                                         is conservative           for this demonstration                           because                                           a             higher initial boron                                     concentration                                       maximizes               the rate at which   the dilution changes                           the boron                                       concentration.
* The core is assumed to already be critical at zero power before any dilution of the aggregate solution occurs. This approach is conservative for this demonstration because a higher initial boron concentration maximizes the rate at which the dilution changes the boron concentration.
* The     boron                                       concentration                                     of the ice bed               and                           the RWST                   for safety   injection are         conservatively assumed                               to be           at the maximum                                                   concentration                                       allowed       by                       TS.
* The boron concentration of the ice bed and the RWST for safety injection are conservatively assumed to be at the maximum concentration allowed by TS.
* The       boron                                         concentration                                                     in     the RCS           is assumed                                     to       be                 relatively high, but               not               necessarily         a bounding                                             value.
* The boron concentration in the RCS is assumed to be relatively high, but not necessarily a bounding value.
* The       volume                       of     water           in     the RWST                       is set to     the TS       minimum                                   value,                 and                           it is assumed                                 that operators         transition the plant to   recirculation mode                       prior to emptying           the RWST,                     such               that only about                                   69% of the volume                   of the RWST                 ends             up             inside containment.
* The volume of water in the RWST is set to the TS minimum value, and it is assumed that operators transition the plant to recirculation mode prior to emptying the RWST, such that only about 69% of the volume of the RWST ends up inside containment.
* The     volume                     of   melted ice from         the containment                                           ice bed                 corresponds                               to     the TS     minimum                                   ice condenser                                   ice mass                     value.
* The volume of melted ice from the containment ice bed corresponds to the TS minimum ice condenser ice mass value.


Based           on                         the conservative           assumptions                         described above,                                 and                         a             20   gpm           leak of unborated                                       water,       it is calculated           that it would                   take   nearly               300 gallons       of water   to   dilute the recirculation inventory                 by                         1 ppm, and                     the dilution would               occur                         at roughly             4.1     ppm           per hour.                     At this rate of boron                                   dilution, the time duration to   raise power               from       0% to   5%   on                         a             hypothetical return to   criticality would                     be             on                       a             time scale   of one                           to several hours.
Based on the conservative assumptions described above, and a 20 gpm leak of unborated water, it is calculated that it would take nearly 300 gallons of water to dilute the recirculation inventory by 1 ppm, and the dilution would occur at roughly 4.1 ppm per hour. At this rate of boron dilution, the time duration to raise power from 0% to 5% on a hypothetical return to criticality would be on a time scale of one to several hours.


It is noted           that this slow     dilution rate would                 also       provide plant operators       significant time to diagnose                 and mitigate the dilution prior to a           return to criticality occurring                   with the monitoring         of backup                                       variables such as         post-accident             RCS   boron                                       concentration                                       sampling       . to AEP-NRC-2024-11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   Page8
It is noted that this slow dilution rate would also provide plant operators significant time to diagnose and mitigate the dilution prior to a return to criticality occurring with the monitoring of backup variables such as post-accident RCS boron concentration sampling. to AEP-NRC-2024-11 Page8


EICB-RAl-5
EICB-RAl-5


In               the LAR,     the licensee states, in part, that:
In the LAR, the licensee states, in part, that:


In                     addition,   neutron                                     flux     instrumentation                 is not                   always                               proportional                 to         reactor           power,                     and therefore may                                       provide anomalous                                                                     indications       which           can                                 potentially mislead   the operator.
In addition, neutron flux instrumentation is not always proportional to reactor power, and therefore may provide anomalous indications which can potentially mislead the operator.
Excore                         neutron                             flux instrumentation             response               is dependent               on                           the location               of voi<;ling in     the core                       and/or                                           downcomer,                                                                     the     degree       of         core                           uncovery,                                                   and                                 detector   location.                                     This is particularly likely for accidents             which produce                       harsh     containment                                       environments                         since   reactor vessel voiding     may                                             be                     occurring.                               Anomalous                                                             neutron                                     flux       indication               (i.e., indication           not proportional           to   reactor     power)                     was                   observed             at the Three Mile Island         accident               (Reference     3
Excore neutron flux instrumentation response is dependent on the location of voi<;ling in the core and/or downcomer, the degree of core uncovery, and detector location. This is particularly likely for accidents which produce harsh containment environments since reactor vessel voiding may be occurring. Anomalous neutron flux indication (i.e., indication not proportional to reactor power) was observed at the Three Mile Island accident (Reference 3
[of LAR]) and                   has         been                       demonstrated               in NRC   financed                 experiments   (Reference   4 [of LAR]).
[of LAR]) and has been demonstrated in NRC financed experiments (Reference 4 [of LAR]).


The NRC staff notes         that one                     outcome                                   of the Three Mile Island       (TM/) recommendations                                                       was                     to have all PWR             plants install a           reactor     vessel level indication system         (RVLIS)                   to detect and                   monitor             recovery from   inadequate                   core           cooling             (ICC). All PWR             plants were required to have         redundant,                           environmentally qualified Class IE ICC   systems.         These systems       were     required to     be             functional                 during   and                       following LOCA                         events.                     As                       described                     in                         Summary                                                                         Report,                       "Westinghouse                                       Reactor                                       Vessel                   Level Instrumentation                                                 System                                 for                 Monitoring                         Inadequate                                                               Core                           Cooling"                             dated                       December                                                   1980 (ML181398695),       Westinghouse-designed                   RVLIS                   systems         are       capable                         of monitoring             reactor         vessel upper   head         and                   plenum,                     and                       wide range                   (dynamic)                                       level. Indication               from     this level system       should       be capable                           of informing     plant   operators         of the location               of any                                     voiding occurring                         inside reactor           vessel.
The NRC staff notes that one outcome of the Three Mile Island (TM/) recommendations was to have all PWR plants install a reactor vessel level indication system (RVLIS) to detect and monitor recovery from inadequate core cooling (ICC). All PWR plants were required to have redundant, environmentally qualified Class IE ICC systems. These systems were required to be functional during and following LOCA events. As described in Summary Report, "Westinghouse Reactor Vessel Level Instrumentation System for Monitoring Inadequate Core Cooling" dated December 1980 (ML181398695), Westinghouse-designed RVLIS systems are capable of monitoring reactor vessel upper head and plenum, and wide range (dynamic) level. Indication from this level system should be capable of informing plant operators of the location of any voiding occurring inside reactor vessel.
Information                                       regarding             the   location                         of           voiding         in               the     reactor                   vessel should                       serve       to               support interpretation of readings           from             the neutron                                   detectors outside   reactor             vessel which           appear                         to             be anomalous.
Information regarding the location of voiding in the reactor vessel should serve to support interpretation of readings from the neutron detectors outside reactor vessel which appear to be anomalous.
* Please describe the RVLIS               installed at CNP and                     confirm         that it meets the TM/ recommendations for monitoring             ICC following a           LOCA event.
* Please describe the RVLIS installed at CNP and confirm that it meets the TM/ recommendations for monitoring ICC following a LOCA event.
* Please   provide a                   description of the process             or       procedure                           the plant       operators               would                           use                   to interpret potentially anomalous                                                                   neutron                                 source                         range                       readings     by                           using           information                     from             the RVLIS                 regarding the location           of potential reactor     vessel voiding.
* Please provide a description of the process or procedure the plant operators would use to interpret potentially anomalous neutron source range readings by using information from the RVLIS regarding the location of potential reactor vessel voiding.


l&M Response                           to     EICB-RAl-5
l&M Response to EICB-RAl-5


At CNP Unit       1 and                         Unit   2 a           RVLIS                   is provided to indicate the relative vessel water     level or   the relative void   content                   of fluid in   the vessel during         post-accident                 conditions.                               This level indication         assists the operator           in recognizing         conditions           which   may                                 lead to   high temperatures that could               damage                                 the vessel or   its internals. Level indicators and                     recorders are     located       in the CNP Unit     1 and                     Unit   2 control           rooms.
At CNP Unit 1 and Unit 2 a RVLIS is provided to indicate the relative vessel water level or the relative void content of fluid in the vessel during post-accident conditions. This level indication assists the operator in recognizing conditions which may lead to high temperatures that could damage the vessel or its internals. Level indicators and recorders are located in the CNP Unit 1 and Unit 2 control rooms.


Sensors               measuring                         the differential pressure, between                       the vessel head               and                         the bottom                         and                         between the head                 and                       the hot     legs, provide the basis       for level indication.                     Because                             flow through           the vessel affects differential pressure   measurement,                                             three level indication       ranges                     are           provided by                           separate sensors.                           One             range                 monitors               void content                         in the reactor       vessel when                       one                     or     more                 Reactor               Coolant Pumps                     are     running.                                     The remaining             two           ranges             monitor             the entire vessel level and                       partial water     level (from         the top   of the reactor         head               to   the hot   leg) at   zero     forced     flow conditions                   (no                         Reactor                 Coolant Pump                       operating).
Sensors measuring the differential pressure, between the vessel head and the bottom and between the head and the hot legs, provide the basis for level indication. Because flow through the vessel affects differential pressure measurement, three level indication ranges are provided by separate sensors. One range monitors void content in the reactor vessel when one or more Reactor Coolant Pumps are running. The remaining two ranges monitor the entire vessel level and partial water level (from the top of the reactor head to the hot leg) at zero forced flow conditions (no Reactor Coolant Pump operating).


The   differential pressure measurements                                         are       compensated                                       for process           effects using           reactor         coolant system               pressure and                           temperature       measurements.                                                     They                 are         also           compensated                                             for environmental to AEP-NRC-2024-11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 Page9
The differential pressure measurements are compensated for process effects using reactor coolant system pressure and temperature measurements. They are also compensated for environmental to AEP-NRC-2024-11 Page9


temperature   effects on                         the RVLIS                     sensing       lines using         temperature   measurements                                       at representative sensing       line locations.
temperature effects on the RVLIS sensing lines using temperature measurements at representative sensing line locations.


At CNP   Unit       1 and                         Unit     2 the RVLIS,                   also           called the Reactor                 Coolant                       Inventory                           Tracking           System,               is included     in TS Table           3.3.3-1,   Post Accident   Monitoring   Instrumentation,                         as           Function                               6.             The installed RVLIS                   conforms                                 to the design and                         qualification requirements of a             Category                   1 variable     per RG         1.97, Revision 3 (Reference     4 ),     other than           deviations approved                 by                     the NRC   in Reference         5,     and                       meets the TMI   recommendations                                                   for monitoring           for inadequate                         core             cooling               following a           LOCA   event.
At CNP Unit 1 and Unit 2 the RVLIS, also called the Reactor Coolant Inventory Tracking System, is included in TS Table 3.3.3-1, Post Accident Monitoring Instrumentation, as Function 6. The installed RVLIS conforms to the design and qualification requirements of a Category 1 variable per RG 1.97, Revision 3 (Reference 4 ), other than deviations approved by the NRC in Reference 5, and meets the TMI recommendations for monitoring for inadequate core cooling following a LOCA event.


At CNP   Unit       1 and                           Unit       2     Function                             Restoration       Procedure                 OHP-4023-FR-l-3, Response                       to   Voids                   in Reactor               Vessel,   provides guidance                               to   interpret RVLIS                   indication     and                       take appropriate action.                               While this does               not               specifically address     interpretation of   source                         range                     indication,       licensed operators             and the Shift Technical           Advisor are     trained on                       the limitation of excore                           neutron                           instrumentation               and                       would therefore expect       anomalous                                                                 indication any                                 time subcooling                                   requirements are       not             met.
At CNP Unit 1 and Unit 2 Function Restoration Procedure OHP-4023-FR-l-3, Response to Voids in Reactor Vessel, provides guidance to interpret RVLIS indication and take appropriate action. While this does not specifically address interpretation of source range indication, licensed operators and the Shift Technical Advisor are trained on the limitation of excore neutron instrumentation and would therefore expect anomalous indication any time subcooling requirements are not met.


==References:==
==References:==
: 1.                         Letter from       K. J. Ferneau,                           Indiana                             Michigan Power           Company                                                       (l&M), to   U.S.                 Nuclear       Regulatory Commission                                                       (NRC),                                   "Request                           for                         Approval                           of                             Change                                                   Regarding                                     Neutron                                                 Flux Instrumentation,"                     dated   January                                                       26,     2023, Agencywide                             Documents                                     Access             and                         Management System         (ADAMS) Accession                   No.             ML23026A284.
: 1. Letter from K. J. Ferneau, Indiana Michigan Power Company (l&M), to U.S. Nuclear Regulatory Commission (NRC), "Request for Approval of Change Regarding Neutron Flux Instrumentation," dated January 26, 2023, Agencywide Documents Access and Management System (ADAMS) Accession No. ML23026A284.
: 2.                           Letter from   Q. S. Lies, l&M, to NRC, "Supplement       to Request for Approval of Change                     Regarding Neutron                 Flux         Instrumentation,"                   dated August         2,   2023, ADAMS Accession                     No.               ML23214A289.
: 2. Letter from Q. S. Lies, l&M, to NRC, "Supplement to Request for Approval of Change Regarding Neutron Flux Instrumentation," dated August 2, 2023, ADAMS Accession No. ML23214A289.
: 3.                       E-mail from         S.         P.       Wall,   NRC,     to     M.       K.       Scarpello, l&M, "Final RAI     -             D.C. Cook                       1 & 2 -             License Amendment                                   Request   Regarding     Neutron                   Flux           Instrumentation                       (EPID   No           . L-2023-LLA-0011 ),"
: 3. E-mail from S. P. Wall, NRC, to M. K. Scarpello, l&M, "Final RAI - D.C. Cook 1 & 2 - License Amendment Request Regarding Neutron Flux Instrumentation (EPID No. L-2023-LLA-0011 ),"
dated November                               17, 2023, ADAMS Accession                     No           . ML23321A122.
dated November 17, 2023, ADAMS Accession No. ML23321A122.
: 4.                     Regulatory                           Guide           1.97,         "Instrumentation                             for     Light-Water-Cooled   Nuclear                     Power                       Plants       to Assess Plant and                             Environs               Conditions           During       and                               Following     an                             Accident,"       Revision 3,           May 1983, ADAMS Accession                     No.             ML003740282.
: 4. Regulatory Guide 1.97, "Instrumentation for Light-Water-Cooled Nuclear Power Plants to Assess Plant and Environs Conditions During and Following an Accident," Revision 3, May 1983, ADAMS Accession No. ML003740282.
: 5.                           NRC               letter, T .           G.               Colburn                                 (NRC)               to               M.                   P.               Alexich   (Indiana                                           Michigan               Power                       Company),
: 5. NRC letter, T. G. Colburn (NRC) to M. P. Alexich (Indiana Michigan Power Company),
                  "Emergency                                   Response                     Capability -                     Conformance                                                           to   Regulatory               Guide 1.97   Revision 3 for the D.       C.       Cook                     Nuclear           Plant, Units     1 and                             2," dated   December                             14,     1990, ADAMS   Accession                     No           .
"Emergency Response Capability - Conformance to Regulatory Guide 1.97 Revision 3 for the D. C. Cook Nuclear Plant, Units 1 and 2," dated December 14, 1990, ADAMS Accession No.
ML17328A824.
ML17328A824.
Enclosure                                     3 to     AEP-NRC-2024-11
Enclosure 3 to AEP-NRC-2024-11


Supplement                           to       License             Amendment                                                     Request           Regarding Neutron                             Flux                 Instrumentation
Supplement to License Amendment Request Regarding Neutron Flux Instrumentation


By                       letter dated               January                                                                   26,               2023             (Agencywide                                         Documents                                               Access                         and                                   Management                                                               System (ADAMS)       Accession                             No.                 ML23026A284)       (Reference           1 ),           Indiana                                   Michigan         Power                   Company                                                             (l&M),
By {{letter dated|date=January 26, 2023|text=letter dated January 26, 2023}} (Agencywide Documents Access and Management System (ADAMS) Accession No. ML23026A284) (Reference 1 ), Indiana Michigan Power Company (l&M),
the licensee for Donald                     C . Cook                       Nuclear           Plant (CNP)   Unit       1 and                         Unit       2,     submitted a             request to   use alternate means                           of fulfilling the requirements of Regulatory                 Guide (RG)       1.97 with regards to the plant safety function               of reactivity control             at   CNP     Unit         1 and                           Unit       2.                   The     request would                       reclassify the wide range                 neutron                           flux instrumentation       at CNP Unit     1 and                         Unit   2 as         Category               3 instrumentation,         and                       would modify     Technical       Specification (TS) Table       3.3.3-1, Post Accident Monitoring Instrumentation,                     to remove Function                               1,   Neutron                 Flux,         from     the list of required post-accident       monitoring           (PAM) instrumentation.
the licensee for Donald C. Cook Nuclear Plant (CNP) Unit 1 and Unit 2, submitted a request to use alternate means of fulfilling the requirements of Regulatory Guide (RG) 1.97 with regards to the plant safety function of reactivity control at CNP Unit 1 and Unit 2. The request would reclassify the wide range neutron flux instrumentation at CNP Unit 1 and Unit 2 as Category 3 instrumentation, and would modify Technical Specification (TS) Table 3.3.3-1, Post Accident Monitoring Instrumentation, to remove Function 1, Neutron Flux, from the list of required post-accident monitoring (PAM) instrumentation.


By         letter dated August         2, 2023 (ADAMS Accession                       No.           ML23214A289) (Reference     2),   l&M submitted a           supplement           to   Reference       1.
By {{letter dated|date=August 2, 2023|text=letter dated August 2, 2023}} (ADAMS Accession No. ML23214A289) (Reference 2), l&M submitted a supplement to Reference 1.


By               Reference       3,       the NRC     submitted a             Request for Additional Information                         (RAI)     concerning                                           the letter submitted by                         l&M as           Reference   1.
By Reference 3, the NRC submitted a Request for Additional Information (RAI) concerning the letter submitted by l&M as Reference 1.


Proposed                             Changes                           to       License               Amendment                                                   Request
Proposed Changes to License Amendment Request


As   discussed   with NRC   staff during       the public     meeting   held January                                                           24,   2024,     l&M is requesting to revise the scope             of the amendment                                             request such             that Neutron               Flux       remains             as           Function                             1 in TS Table 3.3.3-1,     Post Accident   Monitoring     Instrumentation,                         but           a           note             would                       be             added           to   the table indicating that Function                                 1   is exempt               from         the requirement to     maintain                     environmental                           qualification (EQ).             This change                                     in scope                     is to   address   the inability to environmentally                       qualify one                   of the existing instruments at CNP   Unit     2 due             to   lack of available         parts and                       vendor                   support.
As discussed with NRC staff during the public meeting held January 24, 2024, l&M is requesting to revise the scope of the amendment request such that Neutron Flux remains as Function 1 in TS Table 3.3.3-1, Post Accident Monitoring Instrumentation, but a note would be added to the table indicating that Function 1 is exempt from the requirement to maintain environmental qualification (EQ). This change in scope is to address the inability to environmentally qualify one of the existing instruments at CNP Unit 2 due to lack of available parts and vendor support.


===
===
Background===
Background===
In December of 1980, the NRC issued Revision 2 of Regulatory Guide (RG) 1.97, Instrumentation for Light-Water-Cooled Nuclear Power Plants to Assess Plant and Environs Conditions During and Following an Accident (Reference 4). This was followed by Revision 3 of RG 1.97 in May of 1983 (Reference 5). The stated purpose of RG 1.97 is to describe a method acceptable to the NRC staff for complying with the Commission's regulations to provide instrumentation to monitor plant variables and systems during and following an accident in a light-water-cooled nuclear power plant. Included in RG 1.97 Revision 2 and Revision 3 was the establishment of Neutron Flux as a Type B, Category 1 variable associated with the plant safety function of reactivity control, provided for the purposes of function detection and accomplishment of mitigation.


In            December                    of 1980, the NRC    issued Revision 2 of Regulatory              Guide (RG)      1.97, Instrumentation                        for Light-Water-Cooled      Nuclear                  Power                        Plants    to          Assess  Plant      and                                Environs                    Conditions                  During          and Following        an                          Accident      (Reference            4).      This was                      followed by                          Revision  3  of    RG          1.97      in    May                    of    1983 (Reference        5).              The  stated purpose              of RG        1.97  is to  describe a            method              acceptable                          to  the NRC    staff for complying                        with the Commission's                          regulations to  provide instrumentation          to  monitor              plant variables and                        systems        during      and                      following an                        accident                in a              light-water-cooled nuclear                    power                  plant.              Included in  RG        1.97  Revision 2 and                        Revision 3 was                    the establishment of Neutron                    Flux        as          a            Type                B,      Category 1 variable    associated                with the plant safety function                of reactivity control,            provided for the purposes          of function                  detection and                      accomplishment                              of mitigation.
As stated in Reference 1, at CNP Unit 1 and Unit 2, in a design basis accident wide range neutron flux instrumentation provides information to control room operators in two situations - to verify the initial shutdown of the reactor following the accident and to monitor the core for unexpected additions of reactivity after reactor shutdown has been achieved.
 
As stated in Reference         1,     at   CNP   Unit         1 and                         Unit         2,       in   a             design basis         accident             wide range                   neutron flux     instrumentation                 provides information                   to       control                 room                               operators               in   two             situations -                 to     verify the initial shutdown                         of the reactor   following the accident             and                         to monitor             the core         for unexpected                                 additions of reactivity after reactor     shutdown                                 has           been                       achieved.


Technical                         Analysis
Technical Analysis


As         described           in         Reference                 1,           for     events         that do                       not                     result in         a                       harsh             environment                                       inside the containment                                           volume,                         wide range                   neutron                             flux would                       still be             available       for use,           regardless of whether to   AEP-NRC-2024-11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             Page           2
As described in Reference 1, for events that do not result in a harsh environment inside the containment volume, wide range neutron flux would still be available for use, regardless of whether to AEP-NRC-2024-11 Page 2


the instruments meet EQ criteria. When                             considering     events that do             result in an                       adverse   containment atmosphere,                   Reference       1 describes how                     wide range                   neutron                           flux   instrumentation               is expected           to     be able               to       continue                                   to       be                 available         to     verify initial reactor         shutdown,                                   since       the associated                 step in   the emergency                                               operating                 procedures                         will be                           performed           before                 the   neutron                                       flux           instrumentation                           is adversely   impacted     by                         the degrading     conditions           within the containment                                       volume.
the instruments meet EQ criteria. When considering events that do result in an adverse containment atmosphere, Reference 1 describes how wide range neutron flux instrumentation is expected to be able to continue to be available to verify initial reactor shutdown, since the associated step in the emergency operating procedures will be performed before the neutron flux instrumentation is adversely impacted by the degrading conditions within the containment volume.


With regards to       monitoring               for unexpected                                   additions of   reactivity following an                           event     that results in adverse       containment                                           conditions,               Reference         1,       Reference       2,       and                           Enclosure                     2   to     this letter describe how                   control         room                           operators     would                   rely on                         information         from       the Core     Exit Thermocouples                               (CETs) and the Reactor           Coolant                       System       (RCS)   Hot and                         Cold Leg temperature instruments to identify an                     increase in   RCS   temperature   associated             with a             return to   criticality, and                         would                       be             able             to take timely action                   to mitigate this condition.
With regards to monitoring for unexpected additions of reactivity following an event that results in adverse containment conditions, Reference 1, Reference 2, and Enclosure 2 to this letter describe how control room operators would rely on information from the Core Exit Thermocouples (CETs) and the Reactor Coolant System (RCS) Hot and Cold Leg temperature instruments to identify an increase in RCS temperature associated with a return to criticality, and would be able to take timely action to mitigate this condition.


Regulatory                               Assessment
Regulatory Assessment


RG         1.97,   Revision 3 established Neutron                     Flux           as           a             Type                 B,       Category                   1 variable   with regards to   the plant           safety         function                         of         reactivity control,                       provided for     the purposes                   of         function                             detection       and accomplishment                           of mitigation.
RG 1.97, Revision 3 established Neutron Flux as a Type B, Category 1 variable with regards to the plant safety function of reactivity control, provided for the purposes of function detection and accomplishment of mitigation.


RG         1.97 states, in   part, that a             key           variable   is that single variable   (or       minimum                               number                                   of variables) that most             directly indicates the accomplishment                             of   a               safety function.                                     It also           states that the design and                                   qualification criteria category                                   assigned                   to             each                               variable             indicates whether     the variable               is considered           to       be                 a                 key             variable   or     for system           status indication   or       for backup                                           or         diagnosis,         i.e., for Types             B and                           C,     the key         variables are     Category                     1;   backup                                       variables are     generally   Category                   3.
RG 1.97 states, in part, that a key variable is that single variable (or minimum number of variables) that most directly indicates the accomplishment of a safety function. It also states that the design and qualification criteria category assigned to each variable indicates whether the variable is considered to be a key variable or for system status indication or for backup or diagnosis, i.e., for Types B and C, the key variables are Category 1; backup variables are generally Category 3.


For       the overall safety function                   of   reactivity control,                 l&M considers       the key             variables     to       be                 Neutron Flux,             CET temperature,   and                               RCS     Hot   and                           Cold Leg   temperatures.             For       purposes             of verifying initial reactor     shutdown                                 l&M considers     Neutron                 Flux         to   be           the key         variable.           For   events that do           not           result in an                                 adverse               containment                                                 environment                                     Neutron                           Flux                   would                               still be                     available               for     use                     to           monitor subcriticality following the initial reactor       shutdown.                                             For     events that result in an                         adverse   containment environment,                                 l&M considers         CET   temperature   and                               RCS       Hot   and                             Cold     Leg   temperatures to       be               the key         variables used           to   monitor             subcriticality following initial reactor     shutdown.
For the overall safety function of reactivity control, l&M considers the key variables to be Neutron Flux, CET temperature, and RCS Hot and Cold Leg temperatures. For purposes of verifying initial reactor shutdown l&M considers Neutron Flux to be the key variable. For events that do not result in an adverse containment environment Neutron Flux would still be available for use to monitor subcriticality following the initial reactor shutdown. For events that result in an adverse containment environment, l&M considers CET temperature and RCS Hot and Cold Leg temperatures to be the key variables used to monitor subcriticality following initial reactor shutdown.


In                       August                     2016             the   NRC             issued     Revision       6         of           NUREG-0800,                                 Standard                             Review           Plan,                     Branch Technical           Position 7-10, Guidance                           on                     Application of Regulatory             Guide 1.97 (Reference   6).       The stated objectives of   this Branch                           Technical               Position are         to       clarify the staff position on                           accident                 monitoring instrumentation,                     and                                     to           identify alternatives acceptable                                     to           the staff for     satisfying the guidelines identified in RG       1.97.
In August 2016 the NRC issued Revision 6 of NUREG-0800, Standard Review Plan, Branch Technical Position 7-10, Guidance on Application of Regulatory Guide 1.97 (Reference 6). The stated objectives of this Branch Technical Position are to clarify the staff position on accident monitoring instrumentation, and to identify alternatives acceptable to the staff for satisfying the guidelines identified in RG 1.97.


With regards to the variable of Neutron                 Flux,         Reference 6 Table         2,     For     PWRs:               Acceptable             Deviations and                           Clarifications to       Revision 2   and                           3   of   Regulatory                   Guide   1.97, states that a               non-environmentally qualified instrument               is acceptable                                 if qualified CETs           and                                         RCS               Hot             and                                       Cold               Leg           temperature indications are         provided in conjunction                                             with directions in   emergency                                     procedures               for operator             action to assure           that boric         acid       injection is occurring.
With regards to the variable of Neutron Flux, Reference 6 Table 2, For PWRs: Acceptable Deviations and Clarifications to Revision 2 and 3 of Regulatory Guide 1.97, states that a non-environmentally qualified instrument is acceptable if qualified CETs and RCS Hot and Cold Leg temperature indications are provided in conjunction with directions in emergency procedures for operator action to assure that boric acid injection is occurring.


At CNP     Unit         1   and                           Unit       2   CETs and                               RCS       Hot   and                             Cold     Leg   temperature   instruments   are         Type                 A, Category                         1   variables       included         in     TS       Table                 3.3.3-1,         Post   Accident       Monitoring         Instrumentation.                                                     In addition, emergency                                       operating       procedures                   at     CNP     Unit         1   and                           Unit         2   direct operators             to       verify that boric             acid         injection is occurring.                                   Thus             the request to     exempt               Neutron                   Flux           from       the requirement to maintain                   environmental                         qualification is within the guidance                             provided by                       Reference   6 to AEP-NRC-2024-11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       Page             3
At CNP Unit 1 and Unit 2 CETs and RCS Hot and Cold Leg temperature instruments are Type A, Category 1 variables included in TS Table 3.3.3-1, Post Accident Monitoring Instrumentation. In addition, emergency operating procedures at CNP Unit 1 and Unit 2 direct operators to verify that boric acid injection is occurring. Thus the request to exempt Neutron Flux from the requirement to maintain environmental qualification is within the guidance provided by Reference 6 to AEP-NRC-2024-11 Page 3


Revisions           to     Text     of   Original License             Amendment                                                   Request
Revisions to Text of Original License Amendment Request


Due                 to     the requested change                                         in     scope                 of   the license amendment                                                   request, l&M proposes               that the following substitutions be           made                         to the text of Enclosure                 2 to   Reference     1.               It should           be             noted           that the changes                               proposed                 in this supplement       do             not             impact     the conclusions                                       provided in   Reference     1 that a finding of "no                       significant hazards           consideration"                     is justified.
Due to the requested change in scope of the license amendment request, l&M proposes that the following substitutions be made to the text of Enclosure 2 to Reference 1. It should be noted that the changes proposed in this supplement do not impact the conclusions provided in Reference 1 that a finding of "no significant hazards consideration" is justified.


Update                                 1:       Section                   1.0, Summary                                                             Description,         Paragraphs                                         1,   5,   and                           6
Update 1: Section 1.0, Summary Description, Paragraphs 1, 5, and 6


Original Paragraph                       1
Original Paragraph 1


Pursuant                             to     10 CFR     50.90,     Indiana                                 Michigan     Power               Company                                                         (l&M), the licensee for Donald                         C.
Pursuant to 10 CFR 50.90, Indiana Michigan Power Company (l&M), the licensee for Donald C.
Cook                     Nuclear         Plant (CNP)   Unit       1 and                       Unit       2,     is requesting U.S.                   Nuclear         Regulatory                   Commission (NRC)       approval                 to     use           alternate means                             of fulfilling the requirements of   Regulatory                     Guide (RG) 1.97 with regards to the plant safety function                 of reactivity control.                         l&M is requesting to   reclassify the     wide             range                                 neutron                                           flux               instrumentation                       at                 CNP                 Unit                     1               and                                       Unit                     2               as                         Category                                 3 instrumentation,         and                           is requesting a           corresponding                     change                                 to the Technical         Specification (TS) for CNP       Unit           1   and                           Unit           2.                           l&M proposes                     to       modify             TS     Table                 3.3.3-1,       Post   Accident       Monitoring Instrumentation,                               to         remove                         Function                                           1,             Neutron                         Flux,                 from               the list of       required post-accident monitoring                           (PAM)                 instrumentation.                         The                 existing TS                 require two                         channels                                       of               neutron                                       flux instrumentation         to   be             operable.
Cook Nuclear Plant (CNP) Unit 1 and Unit 2, is requesting U.S. Nuclear Regulatory Commission (NRC) approval to use alternate means of fulfilling the requirements of Regulatory Guide (RG) 1.97 with regards to the plant safety function of reactivity control. l&M is requesting to reclassify the wide range neutron flux instrumentation at CNP Unit 1 and Unit 2 as Category 3 instrumentation, and is requesting a corresponding change to the Technical Specification (TS) for CNP Unit 1 and Unit 2. l&M proposes to modify TS Table 3.3.3-1, Post Accident Monitoring Instrumentation, to remove Function 1, Neutron Flux, from the list of required post-accident monitoring (PAM) instrumentation. The existing TS require two channels of neutron flux instrumentation to be operable.


Revised Paragraph                       1
Revised Paragraph 1


Pursuant                             to     10 CFR     50.90,     Indiana                               Michigan     Power             Company                                                           (l&M), the licensee for Donald                         C.
Pursuant to 10 CFR 50.90, Indiana Michigan Power Company (l&M), the licensee for Donald C.
Cook                     Nuclear         Plant (CNP)   Unit       1 and                       Unit       2,     is requesting U.S.                   Nuclear         Regulatory                   Commission (NRC) approval             to add           a         note           to CNP Unit     1 and                       Unit 2 TS Table       3.3.3-1, Post Accident Monitoring Instrumentation,                           Function                                     1,       Neutron                     Flux,             exempting             channels                               used             to   satisfy Function                             1 from the requirement to         be                 environmentally                           qualified. The       existing TS       require the two               channels                           of neutron                           flux instrumentation           to   be           environmentally                     qualified in order to     be             considered         operable.
Cook Nuclear Plant (CNP) Unit 1 and Unit 2, is requesting U.S. Nuclear Regulatory Commission (NRC) approval to add a note to CNP Unit 1 and Unit 2 TS Table 3.3.3-1, Post Accident Monitoring Instrumentation, Function 1, Neutron Flux, exempting channels used to satisfy Function 1 from the requirement to be environmentally qualified. The existing TS require the two channels of neutron flux instrumentation to be environmentally qualified in order to be considered operable.


Original Paragraph                   5 and                       6
Original Paragraph 5 and 6


The   proposed             change                                 to the CNP Unit       1 and                       Unit   2 TS would                     remove               neutron                           flux from     the list of required PAM instrumentation         because                                   other existing instrumentation       remains           available   to control room                             operators       to   confirm           that the reactor       is no                     longer   critical.
The proposed change to the CNP Unit 1 and Unit 2 TS would remove neutron flux from the list of required PAM instrumentation because other existing instrumentation remains available to control room operators to confirm that the reactor is no longer critical.


The         proposed                   reclassification of     wide     range                       neutron                               flux       instrumentation,                 and                               associated                 TS change,                                 would                   more               closely   align with the role of the wide range                 neutron                           flux instrumentation           as backup                                         instrumentation         for the purposes           of PAM at CNP   Unit       1 and                         Unit       2 and                           would                   allow         l&M to     pursue                   resolution of   an                             inoperable                 neutron                               flux   channel                               without undue                                     risk of a             TS-required shut down.
The proposed reclassification of wide range neutron flux instrumentation, and associated TS change, would more closely align with the role of the wide range neutron flux instrumentation as backup instrumentation for the purposes of PAM at CNP Unit 1 and Unit 2 and would allow l&M to pursue resolution of an inoperable neutron flux channel without undue risk of a TS-required shut down.


Revised Paragraph                     5 and                       6
Revised Paragraph 5 and 6


The proposed               change                             to the CNP Unit     1 and                         Unit 2 TS would                   allow     non-environmentally                                                     qualified neutron                         flux instruments to satisfy the requirements of TS Table           3.3.3-1 Function                                 1,   Neutron               Flux, because                                         environmental                         qualification is not               required in   order for the neutron                             flux   instrumentation to       accomplish                         its role as               the key             variable         used               to       confirm                 initial reactor           shutdown                                   following a reactor                 trip or               safety           injection.                         For               events         that do                       not                         result in             an                                   adverse               containment to   AEP-NRC-2024-11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 Page4
The proposed change to the CNP Unit 1 and Unit 2 TS would allow non-environmentally qualified neutron flux instruments to satisfy the requirements of TS Table 3.3.3-1 Function 1, Neutron Flux, because environmental qualification is not required in order for the neutron flux instrumentation to accomplish its role as the key variable used to confirm initial reactor shutdown following a reactor trip or safety injection. For events that do not result in an adverse containment to AEP-NRC-2024-11 Page4


environment                           Neutron               Flux       would                   continue                         to be           available     for use       to monitor             subcriticality following the initial reactor       shutdown.                                             For     events that result in an                       adverse       containment                                         environment,                               l&M considers           CET     temperature       and                                 RCS       Hot     and                               Cold     Leg     temperatures     to       be               the key             variables used           to   monitor               subcr                   iticality following initial reactor       shutdown.
environment Neutron Flux would continue to be available for use to monitor subcriticality following the initial reactor shutdown. For events that result in an adverse containment environment, l&M considers CET temperature and RCS Hot and Cold Leg temperatures to be the key variables used to monitor subcr iticality following initial reactor shutdown.


The proposed               exemption                 of environmental                       qualification requirements for TS-required neutron                         flux instrumentation           would                 allow     the continued                           use       of the Gamma-Metrics                       neutron                         flux instruments for the purposes             of post-accident           monitoring           at CNP   Unit     1 and                       Unit     2 without adverse       impact     to the ability of control             room                           operators           to   respond             to an                         event.
The proposed exemption of environmental qualification requirements for TS-required neutron flux instrumentation would allow the continued use of the Gamma-Metrics neutron flux instruments for the purposes of post-accident monitoring at CNP Unit 1 and Unit 2 without adverse impact to the ability of control room operators to respond to an event.


Update                             2:     Section                   2.3, Reason                                     for the Proposed                           Change,                                 Paragraph                                   5
Update 2: Section 2.3, Reason for the Proposed Change, Paragraph 5


Original Paragraph
Original Paragraph


Reclassifying the wide range                   neutron                           flux instrumentation             at CNP   Unit       1 and                         Unit     2 as           Category 3   instrumentation,                 and                         removing                   the instrumentation               from         TS   Table               3.3 .3-1         would                       allow           l&M to pursue             resolution of an                       inoperable             wide range                 neutron                           flux instrument   without undue                                 risk of a         TS required shutdown.                                                   This becomes                                           particularly important         as               the instrument       vendor                       prepares to end             support     an~                       maintenance                                           of the currently     installed instrumentation.
Reclassifying the wide range neutron flux instrumentation at CNP Unit 1 and Unit 2 as Category 3 instrumentation, and removing the instrumentation from TS Table 3.3.3-1 would allow l&M to pursue resolution of an inoperable wide range neutron flux instrument without undue risk of a TS required shutdown. This becomes particularly important as the instrument vendor prepares to end support an~ maintenance of the currently installed instrumentation.


Revised Paragraph
Revised Paragraph


The proposed               exemption                 of environmental                       qualification requirements for TS-required neutron                         flux instrumentation             would                 allow     the continued                         use       of the Gamma-Metrics                     neutron                       flux instruments for the purposes           of post-accident           monitoring           at CNP   Unit     1 and                       Unit     2 without adverse       impact     to the ability of control             room                           operators             to   respond                 to   an                         event.               This becomes                                         particularly important     as the instrument               vendor                         prepares           to             end                       support                 and                                 maintenance                                                         of         the   currently                 installed instrumentation,                   and                           support       of   the instruments     transitions to       a               new                         vendor,                       with timelines for parts availability still uncertain,                                 impacting             l&M's ability to         environmentally                               qualify         one                           of       the existing instruments at CNP   Unit     2.
The proposed exemption of environmental qualification requirements for TS-required neutron flux instrumentation would allow the continued use of the Gamma-Metrics neutron flux instruments for the purposes of post-accident monitoring at CNP Unit 1 and Unit 2 without adverse impact to the ability of control room operators to respond to an event. This becomes particularly important as the instrument vendor prepares to end support and maintenance of the currently installed instrumentation, and support of the instruments transitions to a new vendor, with timelines for parts availability still uncertain, impacting l&M's ability to environmentally qualify one of the existing instruments at CNP Unit 2.


Update                               3:       Section                   2.4, Description       of the Proposed                             Change,                               Entire Section
Update 3: Section 2.4, Description of the Proposed Change, Entire Section


Updated                   Text (replaces existing section)
Updated Text (replaces existing section)


l&M is requesting NRC   approval                   to   add               a             note               to   CNP   Unit       1 and                           Unit       2 TS   Table             3 .3.3-   1,     Post Accident           Monitoring           Instrumentation                         ,       Function                                           1,           Neutron                             Flux,                   exempting                     channels                                     used                 to satisfy Function                             1 from     the requirement to   be           environmentally                         qualified.
l&M is requesting NRC approval to add a note to CNP Unit 1 and Unit 2 TS Table 3.3.3-1, Post Accident Monitoring Instrumentation, Function 1, Neutron Flux, exempting channels used to satisfy Function 1 from the requirement to be environmentally qualified.


The             proposed                           change                                           to             CNP           Unit                 1       and                                 Unit               2         TS           would                               also                 supersede             the regulatory commitment                             made                         by                         l&M in Reference     1 to provide two         channels                       of neutron                         flux instrumentation that meet           Category                           1       requirements,       including         environmental                                   qualification.                   Two                             channels                             of neutron                           flux instrumentation         would                     remain             installed, but         environmental                         qualification of the neutron flux instrumentation           would                       no                       longer     be             required.
The proposed change to CNP Unit 1 and Unit 2 TS would also supersede the regulatory commitment made by l&M in Reference 1 to provide two channels of neutron flux instrumentation that meet Category 1 requirements, including environmental qualification. Two channels of neutron flux instrumentation would remain installed, but environmental qualification of the neutron flux instrumentation would no longer be required.


No             changes                             are       requested to   CNP   Unit       1 nor                 Unit     2 TS 3.9 .2,     Nuclear           Instrumentation. to AEP-NRC-2024-11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               Page             5
No changes are requested to CNP Unit 1 nor Unit 2 TS 3.9.2, Nuclear Instrumentation. to AEP-NRC-2024-11 Page 5


Update                             4:       Section                   4.1, Applicable             Regulatory                                 Requirements/Criteria,   Paragraphs                                           6,   9 and                         10
Update 4: Section 4.1, Applicable Regulatory Requirements/Criteria, Paragraphs 6, 9 and 10


Original Paragraph                   6
Original Paragraph 6


l&M proposes                 an                             alternative method                 of     fulfilling the requirements of       RG               1.97     with regards   to reactivity control.                                                   It is proposed                         that   RCS                 Hot               Leg             Water                   Temperature,                           RCS                   Cold               Leg Temperature,     and                       Core   Exit Temperature         be           considered     as         Type           B variables for reactivity control, for         the     purpose                         of             function                               detection,         and                                     that     the     associated                           instrumentation                         meet               the requirements of         Category                           1         instrumentation.                                     Neutron                         flux       would                                 be                     considered                   as                     backup instrumentation     for the purpose         of verification of reactivity control,         and                       a           Category               3 classification is appropriate.
l&M proposes an alternative method of fulfilling the requirements of RG 1.97 with regards to reactivity control. It is proposed that RCS Hot Leg Water Temperature, RCS Cold Leg Temperature, and Core Exit Temperature be considered as Type B variables for reactivity control, for the purpose of function detection, and that the associated instrumentation meet the requirements of Category 1 instrumentation. Neutron flux would be considered as backup instrumentation for the purpose of verification of reactivity control, and a Category 3 classification is appropriate.


Revised Paragraph                   6
Revised Paragraph 6


l&M proposes                 an                               alternative method               of   fulfilling the requirements of       RG               1.97     with regards   to reactivity control.                                               It is proposed                         that   RCS                 Hot               Leg             Water                   Temperature,                           RCS                 Cold               Leg Temperature,               and                                 Core           Exit Temperature                 be                   considered                 as                   key               variables     for the purpose                 of identifying unexpected                                     reactivity following an                               accident                   that involves an                               adverse           containment environment,                                   and                               that the associated                     instrumentation                 meet         the requirements   of       Category                           1 instrumentation.                     Neutron               flux would                       be             considered     as         a             key         variable for the purpose           of verifying initial reactor   shutdown                               following an                       accident           and                       would                       be             available   for events that do             not           result in             an                                     adverse             containment                                                 environment,                                         and                                 would                                 continue                                         to             meet           the requirements     of Category                       1       instrumentation                 with the exception                       that environmental                             qualification would                             not                       be required.
l&M proposes an alternative method of fulfilling the requirements of RG 1.97 with regards to reactivity control. It is proposed that RCS Hot Leg Water Temperature, RCS Cold Leg Temperature, and Core Exit Temperature be considered as key variables for the purpose of identifying unexpected reactivity following an accident that involves an adverse containment environment, and that the associated instrumentation meet the requirements of Category 1 instrumentation. Neutron flux would be considered as a key variable for the purpose of verifying initial reactor shutdown following an accident and would be available for events that do not result in an adverse containment environment, and would continue to meet the requirements of Category 1 instrumentation with the exception that environmental qualification would not be required.


Original Paragraphs                 9 and                             10
Original Paragraphs 9 and 10


10     CFR     50.49,   Environmental                         qualification of electric equipment             important     to     safety for nuclear power                   plants, requires licensee of     nuclear                         plants to       establish a                   program                       for qualifying certain electrical equipment               important       to       safety,     including   environmental                           qualification. The       equipment covered             by                       this section   includes safety-related equipment         that is relied upon                                   to   remain           functional during and                     following design basis   events to ensure           ( 1) the integrity of the reactor   coolant                         pressure boundary,                                                             (2) the capability to shut down                                   the reactor and                       maintain                 it in a           safe shutdown                           condition, or           (3)     the capability       to       prevent or         mitigate the consequences                                                       of   accidents               that could                     result in potential offsite radiation           exposures.                                     Also         covered                           by                                   this section                   is certain         post-accident monitoring             equipment,               per guidance                                 provided in   Revision 2   of   RG           1.97.                       As     discussed above, neutron                                 flux   would                           be                 considered             as                 backup                                         instrumentation             for the purpose                   of     verification of reactivity control,       and                       while control       room                           operators would                   continue                         to use       the information         provided by                         the Gamma-Metrics                     instruments as               long           as             it is available,       the instruments themselves would not               be               relied upon                                         in the event of an                         adverse   containment                                         environment.                                       Thus,             with neutron                           flux considered       as           backup                                         instrumentation,         the requirements of   10   CFR   50.49 would                     not           dictate that neutron                           flux instrumentation         be             environmentally                   qualified.
10 CFR 50.49, Environmental qualification of electric equipment important to safety for nuclear power plants, requires licensee of nuclear plants to establish a program for qualifying certain electrical equipment important to safety, including environmental qualification. The equipment covered by this section includes safety-related equipment that is relied upon to remain functional during and following design basis events to ensure ( 1) the integrity of the reactor coolant pressure boundary, (2) the capability to shut down the reactor and maintain it in a safe shutdown condition, or (3) the capability to prevent or mitigate the consequences of accidents that could result in potential offsite radiation exposures. Also covered by this section is certain post-accident monitoring equipment, per guidance provided in Revision 2 of RG 1.97. As discussed above, neutron flux would be considered as backup instrumentation for the purpose of verification of reactivity control, and while control room operators would continue to use the information provided by the Gamma-Metrics instruments as long as it is available, the instruments themselves would not be relied upon in the event of an adverse containment environment. Thus, with neutron flux considered as backup instrumentation, the requirements of 10 CFR 50.49 would not dictate that neutron flux instrumentation be environmentally qualified.


10       CFR         50.36(c)(2)(ii) provides four             criteria that would                           necessitate establishing a                   TS         limiting condition           for operation.                             When                           considering     neutron                       flux as           a             Category               3 variable, consistent with its use             as               backup                                           instrumentation         for PAM     at     CNP     Unit         1 and                           Unit         2,         none                                   of   the four         criteria apply,           and                         removal             from       TS Table           3.3.3-1, Post Accident Monitoring Instrumentation,                         is justified. to AEP-NRC-2024-11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               Page             6
10 CFR 50.36(c)(2)(ii) provides four criteria that would necessitate establishing a TS limiting condition for operation. When considering neutron flux as a Category 3 variable, consistent with its use as backup instrumentation for PAM at CNP Unit 1 and Unit 2, none of the four criteria apply, and removal from TS Table 3.3.3-1, Post Accident Monitoring Instrumentation, is justified. to AEP-NRC-2024-11 Page 6


Revised Paragraph                     9 (Paragraph                           10 would                     be             deleted)
Revised Paragraph 9 (Paragraph 10 would be deleted)


10   CFR       50.49,     Environmental                           qualification of   electric equipment               important     to     safety for nuclear power                     plants, requires licensee of     nuclear                           plants to       establish a                 program                       for qualifying certain electrical equipment               important           to         safety,     including       environmental                               qualification. The       equipment covered           by                       this section   includes safety-related equipment         that is relied upon                                 to   remain             functional during and                     following design basis   events to ensure             ( 1) the integrity of the reactor     coolant                         pressure boundary,                                                               (2) the capability to shut down                               the reactor     and                     maintain                   it in a           safe shutdown                               condition, or         (3)       the capability     to       prevent or         mitigate the consequences                                                         of   accidents             that could                       result in potential offsite radiation             exposures.                                   Also           covered                       by                                 this section                 is certain             post-accident monitoring                 equipment,             per guidance                               provided in     Revision 2     of   RG           1.97.                 As   discussed   above, neutron                             flux   would                       be               considered             as             a               key             variable   for verifying reactor       shutdown                                   following an accident,             and                       while control             room                           operators     would                   continue                           to   use         the information             provided by                     the Gamma-Metrics                     instruments as               long         as             it is available,       the instruments themselves would                     not               be required to withstand the effects of an                         adverse       containment                                       environment                               in order to   accomplish this function.                               Thus,         while neutron                           flux instrumentation           is expected         to remain             functional               for a           brief period following the start of a           design basis   accident,             the requirements of 10 CFR   50.49 would                 not dictate that neutron                         flux instrumentation           be           environmentally                       qualified.
10 CFR 50.49, Environmental qualification of electric equipment important to safety for nuclear power plants, requires licensee of nuclear plants to establish a program for qualifying certain electrical equipment important to safety, including environmental qualification. The equipment covered by this section includes safety-related equipment that is relied upon to remain functional during and following design basis events to ensure ( 1) the integrity of the reactor coolant pressure boundary, (2) the capability to shut down the reactor and maintain it in a safe shutdown condition, or (3) the capability to prevent or mitigate the consequences of accidents that could result in potential offsite radiation exposures. Also covered by this section is certain post-accident monitoring equipment, per guidance provided in Revision 2 of RG 1.97. As discussed above, neutron flux would be considered as a key variable for verifying reactor shutdown following an accident, and while control room operators would continue to use the information provided by the Gamma-Metrics instruments as long as it is available, the instruments themselves would not be required to withstand the effects of an adverse containment environment in order to accomplish this function. Thus, while neutron flux instrumentation is expected to remain functional for a brief period following the start of a design basis accident, the requirements of 10 CFR 50.49 would not dictate that neutron flux instrumentation be environmentally qualified.


Update                               5:       Section                   4.2, No               Significant   Hazards                   Determination,                           Entire Section
Update 5: Section 4.2, No Significant Hazards Determination, Entire Section


Updated                 Text (replaces existing section)
Updated Text (replaces existing section)


Pursuant                             to     10 CFR     50 .90,     Indiana                               Michigan     Power               Company                                                         (l&M), the licensee for Donald                       C.
Pursuant to 10 CFR 50.90, Indiana Michigan Power Company (l&M), the licensee for Donald C.
Cook                     Nuclear           Plant (CNP)   Unit       1 and                         Unit       2,     is requesting U.S.                     Nuclear         Regulatory                   Commission (NRC) approval           to add         a         note           to CNP Unit   1 and                       Unit 2 TS Table         3.3.3-1, Post Accident Monitoring Instrumentation,                           Function                                   1,       Neutron                   Flux,             exempting           channels                                   used           to     satisfy Function                             1 from the requirement to         be                 environmentally                           qualified. The     existing TS       require the two                 channels                         of neutron                           flux instrumentation         to   be           environmentally                     qualified in order to   be           considered         operable.
Cook Nuclear Plant (CNP) Unit 1 and Unit 2, is requesting U.S. Nuclear Regulatory Commission (NRC) approval to add a note to CNP Unit 1 and Unit 2 TS Table 3.3.3-1, Post Accident Monitoring Instrumentation, Function 1, Neutron Flux, exempting channels used to satisfy Function 1 from the requirement to be environmentally qualified. The existing TS require the two channels of neutron flux instrumentation to be environmentally qualified in order to be considered operable.


l&M has                   evaluated                 whether     or               not                   a                     significant hazards                       consideration                               is involved     with the proposed                         TS           Bases             change                                       by                             focusing                         on                                 the three standards                     set forth in           10         CFR           50.92, "Issuance                               of amendment,"                                               as           discussed below:
l&M has evaluated whether or not a significant hazards consideration is involved with the proposed TS Bases change by focusing on the three standards set forth in 10 CFR 50.92, "Issuance of amendment," as discussed below:
: 1.                         Does                             the         proposed                                 amendment                                                                 involve               a                             significant increase                             in                   the           probability               or consequences                                                   of an                       accident               previously evaluated?
: 1. Does the proposed amendment involve a significant increase in the probability or consequences of an accident previously evaluated?


Response:                         No.
Response: No.


The     proposed                   TS     change                                 involves elimination of environmental                           qualification (EQ) requirements from         a             specific set of required PAM     instrumentation.                             The   proposed                   change                             does               not             involve a physical change                               to the plant or   a         change                               in the manner                                         in which the plant is operated       or   controlled.
The proposed TS change involves elimination of environmental qualification (EQ) requirements from a specific set of required PAM instrumentation. The proposed change does not involve a physical change to the plant or a change in the manner in which the plant is operated or controlled.
The       PAM     instrumentation             provides information                 to     control             room                                 operators         after an                           accident               has occurred.                                               Therefore, the probability of   occurrence                                               of     an                             accident                   previously     evaluated                 is not significantly increased       by                       the proposed             amendment.
The PAM instrumentation provides information to control room operators after an accident has occurred. Therefore, the probability of occurrence of an accident previously evaluated is not significantly increased by the proposed amendment.


The                   proposed                                 change                                               removes                                     EQ             requirements           from                         a                             specific set   of                 required PAM instrumentation,                       but                     ensures                     that the information                       required by                               control                   room                                     operators                   is still available           in     the event   of     an                             accident,             thus     not               significantly increasing         the consequences                                                         of     an accident               previously evaluated. to   AEP-NRC-2024-11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       Page             7
The proposed change removes EQ requirements from a specific set of required PAM instrumentation, but ensures that the information required by control room operators is still available in the event of an accident, thus not significantly increasing the consequences of an accident previously evaluated. to AEP-NRC-2024-11 Page 7


Therefore, it is concluded                                 that the proposed               change                               does           not           involve a           significant increase           in the probability or     consequences                                               of an                         accident             previously evaluated.
Therefore, it is concluded that the proposed change does not involve a significant increase in the probability or consequences of an accident previously evaluated.
: 2. Does         the proposed               amendment                                               create the possibility of a           new                 or   different kind of accident             from any                                 accident               previously evaluated?
: 2. Does the proposed amendment create the possibility of a new or different kind of accident from any accident previously evaluated?


Response:                           No.
Response: No.


The             proposed                           TS           change                                       removes                               EQ     requirements       from                 a                   specific set of         required PAM instrumentation               and                           does             not             alter the design function                     or       operation               of any                                   structure, system,         or component                                                 that may                                       be             involved in the initiation of an                         accident.                       The   proposed               change                               does             not create   new                   failure mechanisms,                                     malfunctions,                     or   accident                 initiators. The   proposed               change                               does not                 involve   a                 physical       change                                   to       the plant   (i.e.,           no                             new                       or       different type       of     equipment                 will be installed) or       a             change                                   to the manner                                               in which     the plant is operated       or     controlled.           Therefore, the proposed                 change                                   does           not             create     the possibility of a               new                     or     different kind of accident               from         any previously evaluated             .
The proposed TS change removes EQ requirements from a specific set of required PAM instrumentation and does not alter the design function or operation of any structure, system, or component that may be involved in the initiation of an accident. The proposed change does not create new failure mechanisms, malfunctions, or accident initiators. The proposed change does not involve a physical change to the plant (i.e., no new or different type of equipment will be installed) or a change to the manner in which the plant is operated or controlled. Therefore, the proposed change does not create the possibility of a new or different kind of accident from any previously evaluated.
: 3. Does         the proposed               amendment                                               involve a           significant reduction           in a             margin           of safety?
: 3. Does the proposed amendment involve a significant reduction in a margin of safety?


Response                     : No           .
Response : No.


The   proposed                 TS   change                             involves elimination of EQ requirements from       a           specific set of required PAM instrumentation             .       This change                             does         not         alter the manner                                         in which   safety limits, limiting safety system         setpoints, or     limiting conditions             for operation                 are       determined.           The   EQ requirements of a specific set of required PAM instrumentation           are   changed,                             but         the necessary                             information           available to           control                     room                                     operators                     is retained.                     Therefore, the proposed                         change                                     does                 not                     involve     a significant reduction               in a           margin             of safety.
The proposed TS change involves elimination of EQ requirements from a specific set of required PAM instrumentation. This change does not alter the manner in which safety limits, limiting safety system setpoints, or limiting conditions for operation are determined. The EQ requirements of a specific set of required PAM instrumentation are changed, but the necessary information available to control room operators is retained. Therefore, the proposed change does not involve a significant reduction in a margin of safety.


In               conclusion,                                               based                         on                         the considerations                   discussed     above,                                 (1)   there is reasonable                                     assurance that the health and                             safety   of   the public       will not                     be                   endangered                                 by                             operation                       in     the proposed manner,                                       (2)     such                   activities will be               conducted                                             in   compliance                                     with the NRC's   regulations,     and                           (3) approval               of the proposed                 TS   change                                 will not               be               inimical to the common                                                                 defense and                         security or to   the health and                         safety of the public     .               l&M concludes                                   that the proposed                 TS   change                               presents no significant hazards                           consideration                               under                             the   standards                           set forth in                 10             CFR                 50.92(c)                       and, accordingly,                           a           finding of "no                       significant hazards           consideration"                       is justified.
In conclusion, based on the considerations discussed above, (1) there is reasonable assurance that the health and safety of the public will not be endangered by operation in the proposed manner, (2) such activities will be conducted in compliance with the NRC's regulations, and (3) approval of the proposed TS change will not be inimical to the common defense and security or to the health and safety of the public. l&M concludes that the proposed TS change presents no significant hazards consideration under the standards set forth in 10 CFR 50.92(c) and, accordingly, a finding of "no significant hazards consideration" is justified.


==References:==
==References:==
: 1.                     Letter from       K. J. Ferneau,                       Indiana                               Michigan Power             Company                                                   (l&M), to U.S.                 Nuclear       Regulatory Commission                                                           (NRC),                               "Request                             for                       Approval                               of                               Change                                                       Regarding                                   Neutron                                                   Flux Instrumentation,"                       dated January                                                         26,   2023, Agencywide                             Documents                                     Access             and                         Management System         (ADAMS) Accession                     No           . ML23026A284.
: 1. Letter from K. J. Ferneau, Indiana Michigan Power Company (l&M), to U.S. Nuclear Regulatory Commission (NRC), "Request for Approval of Change Regarding Neutron Flux Instrumentation," dated January 26, 2023, Agencywide Documents Access and Management System (ADAMS) Accession No. ML23026A284.
: 2.                         Letter from     Q. S. Lies, l&M, to NRC, "Supplement       to Request for Approval of Change                     Regarding Neutron               Flux           Instrumentation,"                 dated August         2,     2023, ADAMS Accession                     No.             ML23214A289.
: 2. Letter from Q. S. Lies, l&M, to NRC, "Supplement to Request for Approval of Change Regarding Neutron Flux Instrumentation," dated August 2, 2023, ADAMS Accession No. ML23214A289.
: 3.                           E-mail from           S.       P. Wall,   NRC,     to     M.       K.       Scarpello, l&M, "Final RAI       -             D.C. Cook                       1 &   2   -             License Amendment                                     Request Regarding       Neutron                 Flux             Instrumentation                   (EPID     No.               L-2023-LLA-0011 ), "
: 3. E-mail from S. P. Wall, NRC, to M. K. Scarpello, l&M, "Final RAI - D.C. Cook 1 & 2 - License Amendment Request Regarding Neutron Flux Instrumentation (EPID No. L-2023-LLA-0011 ), "
dated November                               17, 2023, ADAMS Accession                     No.             ML23321A122. to AEP-NRC-2024-11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             Page             8
dated November 17, 2023, ADAMS Accession No. ML23321A122. to AEP-NRC-2024-11 Page 8
: 4.                             Regulatory                         Guide             1.97,         "Instrumentation                               for     Light-Water-Cooled   Nuclear                     Power                       Plants       to Assess       Plant           and                                       Environs                       Conditions                   During                 and                                       Following               an                                     Accident ,"             Revision           2, December                         1980, ADAMS Accession                     No           . ML060750525.
: 4. Regulatory Guide 1.97, "Instrumentation for Light-Water-Cooled Nuclear Power Plants to Assess Plant and Environs Conditions During and Following an Accident," Revision 2, December 1980, ADAMS Accession No. ML060750525.
: 5.                           Regulatory                         Guide             1.97,         "Instrumentation                               for     Light-Water-Cooled   Nuclear                     Power                         Plants       to Assess Plant and                               Environs               Conditions           During       and                               Following     an                             Accident,"       Revision 3,         May 1983, ADAMS Accession                       No.             ML003740282.
: 5. Regulatory Guide 1.97, "Instrumentation for Light-Water-Cooled Nuclear Power Plants to Assess Plant and Environs Conditions During and Following an Accident," Revision 3, May 1983, ADAMS Accession No. ML003740282.
: 6.                         NUREG-0800                   , Standard                 Review Plan       -Chapter   7,     Branch                     Technical         Position 7-10, Revision 6, Guidance                           on                       Application of Regulatory               Guide 1.97, dated August       2016 , ADAMS Accession                   No.
: 6. NUREG-0800, Standard Review Plan -Chapter 7, Branch Technical Position 7-10, Revision 6, Guidance on Application of Regulatory Guide 1.97, dated August 2016, ADAMS Accession No.
ML16019A169.
ML16019A169.
Enclosure                           4 to AEP-NRC-2024-11
Enclosure 4 to AEP-NRC-2024-11


Donald                           C. Cook                       Nuclear             Plant Unit       1 Technical               Specification Pages Marked   to Show                       Proposed                   Changes PAM   Instrumentation 3.3 .3
Donald C. Cook Nuclear Plant Unit 1 Technical Specification Pages Marked to Show Proposed Changes PAM Instrumentation 3.3.3


Table         3.3 .3-1     (page           1 of 2)
Table 3.3.3-1 (page 1 of 2)
Post Accident     Monitoring   Instrumentation
Post Accident Monitoring Instrumentation


CONDITION FROM     REQUIRED REFERENCED
CONDITION FROM REQUIRED REFERENCED


FUNCTION                                                                                                                                                                                                                                                                                                                                                                           REQUIRED               CHANNELS ACTION     E.1
FUNCTION REQUIRED CHANNELS ACTION E.1
: 1.                                 Neutron               Flux                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       2~ F
: 1. Neutron Flux 2~ F
: 2.                                   Steam           Generator           Pressure (per steam         generator)                                                                                                                                                                                                                                                 2                                                                                                     F
: 2. Steam Generator Pressure (per steam generator) 2 F
: 3.                                   Reactor           Coolant                   System         (RCS)   Hot   Leg                                                                                                                                                                                                                                                                                                                                                                           2 F Temperature           (Wide     Range)
: 3. Reactor Coolant System (RCS) Hot Leg 2 F Temperature (Wide Range)


4 .                                 RCS   Cold Leg Temperature           (Wide   Range)                                                                                                                                                                                                                                                                                                                                                         2                   F
4. RCS Cold Leg Temperature (Wide Range) 2 F
: 5.                               RCS   Pressure (Wide   Range)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   2 F
: 5. RCS Pressure (Wide Range) 2 F
: 6.                                 Reactor             Coolant                 lnventol)' Tracking         System                                                                                                                                                                                                                                                                                                                               2                   G (Reactor             Vessel   Level Indication)
: 6. Reactor Coolant lnventol)' Tracking System 2 G (Reactor Vessel Level Indication)
: 7.                                 Containment                         Water         Level                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           2 ~ F
: 7. Containment Water Level 2 ~ F
: 8.                                 Containment                             Pressure (Narrow               Range)                                                                                                                                                                                                                                                                                                                                                                                                         2 F
: 8. Containment Pressure (Narrow Range) 2 F
: 9.                                 Penetration       Flow       Path Containment                           Isolation     Valve                                                                                 2 per penetration     flow                                                                                                                                                                                                                       F Position                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 path   !l>l<cl~
: 9. Penetration Flow Path Containment Isolation Valve 2 per penetration flow F Position path !l>l<cl~
: 10.                             Containment                           Area       Radiation         (High Range)                                                                                                                                                                                                                                                                                                                                                             2 G
: 10. Containment Area Radiation (High Range) 2 G


11     .                               Deleted 12   .                             Pressurizer Level                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     2 F
11. Deleted 12. Pressurizer Level 2 F


13 .                               Steam           Generator         Water         Level (Wide     Range)                                                                                                                                                                                                                                                                                                                             4                                   F
13. Steam Generator Water Level (Wide Range) 4 F


14 .                               Condensate                           Storage     Tank                   Level                                                                                                                                                                                                                                                                                                                                                           G
14. Condensate Storage Tank Level G
: 15.                               Core     Exit Temperature           -         Quadrant                   1                                                                                                                                                                                                                                                                                                                                                                                                 2~ F
: 15. Core Exit Temperature - Quadrant 1 2~ F
: 16.                             Core     Exit Temperature           -         Quadrant                 2                                                                                                                                                                                                                                                                                                                                                                                                   2~ F
: 16. Core Exit Temperature - Quadrant 2 2~ F


17 .                               Core       Exit Temperature           -         Quadrant                 3                                                                                                                                                                                                                                                                                                                                                                                                   2~ F
17. Core Exit Temperature - Quadrant 3 2~ F


18 .                               Core     Exit Temperature           -       Quadrant                 4                                                                                                                                                                                                                                                                                                                                         2~                     F I (a)                         Channels                 used         to satisfy Function                       1 are     not         required to   be         environmentally                     qualified.
18. Core Exit Temperature - Quadrant 4 2~ F I (a) Channels used to satisfy Function 1 are not required to be environmentally qualified.


~               Up             to one                 channel                   of Function                       7 OPERABILITY           requirements can                       be         satisfied by                   an                 OPERABLE     train of containment                               water     level switches if both           Containment                         Water       Level channels                     are     inoperable             . This substitution is only                 allowed       until the end         of the current       operating     cycle         when                 it is invoked.
~ Up to one channel of Function 7 OPERABILITY requirements can be satisfied by an OPERABLE train of containment water level switches if both Containment Water Level channels are inoperable. This substitution is only allowed until the end of the current operating cycle when it is invoked.


~             Not required for isolation valves whose               associated           penetration       is isolated by                 at least one                 closed     and                 deactivated automatic                         valve, closed   manual                                   valve, blind flange, or   check         valve with flow through       the valve secured.
~ Not required for isolation valves whose associated penetration is isolated by at least one closed and deactivated automatic valve, closed manual valve, blind flange, or check valve with flow through the valve secured.
m         Only         one                 position indication   channel                         is required for penetration     flow paths with only               one                 installed control           room indication   channel.
m Only one position indication channel is required for penetration flow paths with only one installed control room indication channel.


~             A   channel                       consists of one                 core         exit thennocouple                                       (CET) .
~ A channel consists of one core exit thennocouple (CET).


Cook                     Nuclear       Plant Unit     1                                                                                                                                                                                                                                                                                                                                                                             3.3.3-4                                                                                                                                                                                                                           Amendment                                   No.         ~. 343, 3eG PAM   Instrumentation 3.3.3
Cook Nuclear Plant Unit 1 3.3.3-4 Amendment No. ~. 343, 3eG PAM Instrumentation 3.3.3


Table           3.3.3-1   (page           2 of 2)
Table 3.3.3-1 (page 2 of 2)
Post Accident   Monitoring     Instrumentation
Post Accident Monitoring Instrumentation


REFERENCED CONDITION
REFERENCED CONDITION


FROM     REQUIRED FUNCTION                                                                                                                                                                                                                                                                                                                                                                                 REQUIRED               CHANNELS ACTION     E.1
FROM REQUIRED FUNCTION REQUIRED CHANNELS ACTION E.1
: 19.                               Secondary                                   Heat Sink Indication                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   2 ~ F (per steam         generator)
: 19. Secondary Heat Sink Indication 2 ~ F (per steam generator)


20 .                             Emergency                             Core     Cooling         System         Flow     (per train)                                                                                                                                                                                                               2 ~                                 F
20. Emergency Core Cooling System Flow (per train) 2 ~ F


21     .                             Containment                             Pressure (Wide   Range)                                                                                                                                                                                                                                                                                                                                                                                                                                       2 F
21. Containment Pressure (Wide Range) 2 F


22   .                               Refueling Water         Storage     Tank                 Level                                                                                                                                                                                                                                                                                                                                                                                                                   2 F
22. Refueling Water Storage Tank Level 2 F


23 .                               RCS     Subcooling                             Margin     Monitor                                                                                                                                                                                                                                                                                                                                                                                                                                                               1~ F
23. RCS Subcooling Margin Monitor 1~ F


24 .                             Component                                       Cooling     Water           Pump                 Circuit Breaker                                                                                                                                                                                                                                                 2 G Status
24. Component Cooling Water Pump Circuit Breaker 2 G Status
: 25.                               Containment                           Recirculation       Sum                 p Water         Level                                                                                                                                                                                                                                                                                   2 F
: 25. Containment Recirculation Sum p Water Level 2 F


~                     Any                   combination                                 of two         instruments per steam       generator           , includ   ing           Steam           Generator       Water           Level (Narrow Range)                       and                 Auxiliary   Feedwater     Flow,       can                       be           used         to satisfy Function                         19 OPERABILITY         requirements.
~ Any combination of two instruments per steam generator, includ ing Steam Generator Water Level (Narrow Range) and Auxiliary Feedwater Flow, can be used to satisfy Function 19 OPERABILITY requirements.


~                       Any                   combination                                 of two         instruments   per train, including   Centrifugal Charging     Pump                   Flow     , Safety     Injection     Pump Flow     , Centrifugal Charging       Pump                 Circuit Breaker Status, and                   Safety   Injection       Pump                 Circuit Breaker Status, can be           used         to   satisfy Function                         20 OPERABILITY         requirements .
~ Any combination of two instruments per train, including Centrifugal Charging Pump Flow, Safety Injection Pump Flow, Centrifugal Charging Pump Circuit Breaker Status, and Safety Injection Pump Circuit Breaker Status, can be used to satisfy Function 20 OPERABILITY requirements.


~                 An           OPERABLE     plant process         computer                   (PPG) subcooling                           margin             readout               can                       be         used       as       a         substitute for an inoperable             Function                       23,     RCS   Subcooling                             Margin     Monitor   .
~ An OPERABLE plant process computer (PPG) subcooling margin readout can be used as a substitute for an inoperable Function 23, RCS Subcooling Margin Monitor.


Cook                   Nuclear         Plant Unit     1                                                                                                                                                                                                                                                                                                                                                                           3.3.3-5                                                                                                                                     Amendment                                       No.         ~. 299, ~. 3eQ Enclosure                           5 to AEP-NRC-2024-11
Cook Nuclear Plant Unit 1 3.3.3-5 Amendment No. ~. 299, ~. 3eQ Enclosure 5 to AEP-NRC-2024-11


Donald                           C. Cook                     Nuclear           Plant Unit       2 Technical                 Specification Pages Marked to Show                     Proposed                 Changes PAM   Instrumentation 3.3.3
Donald C. Cook Nuclear Plant Unit 2 Technical Specification Pages Marked to Show Proposed Changes PAM Instrumentation 3.3.3


Table           3.3.3-1   (page           1 of 2)
Table 3.3.3-1 (page 1 of 2)
Post Accident     Monitoring   Instrumentation
Post Accident Monitoring Instrumentation


REFERENCED CONDITION
REFERENCED CONDITION


FROM     REQUIRED FUNCTION                                                                                                                                                                                                                                                                                                                                                                           REQUIRED               CHANNELS ACTION   E.1
FROM REQUIRED FUNCTION REQUIRED CHANNELS ACTION E.1
: 1.                               Neutron             Flux                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         2~ F
: 1. Neutron Flux 2~ F


2 .                               Steam           Generator           Pressure (per steam         generator)                                                                                                                                                                                                                                                 2                                                                                                           F 3 .                               Reactor           Coolant                 System           (RCS)   Hot Leg Temperature         (Wide     Range)                                                                                                                                                                                       2                                                                                                                               F
2. Steam Generator Pressure (per steam generator) 2 F 3. Reactor Coolant System (RCS) Hot Leg Temperature (Wide Range) 2 F
: 4.                                     RCS   Cold Leg   Temperature           (Wide   Range)                                                                                                                                                                                                                                                                                                                                                           2               F 5 .                                   RCS   Pressure (Wide     Range)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     2 F
: 4. RCS Cold Leg Temperature (Wide Range) 2 F 5. RCS Pressure (Wide Range) 2 F


6 .                             Reactor           Coolant                   Inventory                       Tracking       System                                                                                                                                                                                                                                                                                                                                 2     G (Reactor           Vessel Level Indication)
6. Reactor Coolant Inventory Tracking System 2 G (Reactor Vessel Level Indication)
: 7.                             Containment                         Water         Level                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             2 ~ F 8 .                             Containment                           Pressure (Narrow               Range)                                                                                                                                                                                                                                                                                                                                                                                                         2 F
: 7. Containment Water Level 2 ~ F 8. Containment Pressure (Narrow Range) 2 F
: 9.                                 Penetration     Flow       Path   Containment                           Isolation       Valve                                                                                 2 per penetration     flow                                                                                                                                                                                                                             F Position                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 path   l&llc~
: 9. Penetration Flow Path Containment Isolation Valve 2 per penetration flow F Position path l&llc~
: 10.                             Containment                         Area       Radiation         (High Range)                                                                                                                                                                                                                                                                                                                                                             2   G
: 10. Containment Area Radiation (High Range) 2 G
: 11.                               Deleted
: 11. Deleted


12   .                             Pressurizer Level                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         2 F
12. Pressurizer Level 2 F
: 13.                               Steam         Generator         Water         Level (Wide     Range)                                                                                                                                                                                                                                                                                                                               4                                       F
: 13. Steam Generator Water Level (Wide Range) 4 F
: 14.                             Condensate                         Storage       Tank                 Level                                                                                                                                                                                                                                                                                                                                                                                                                                                                           1 G
: 14. Condensate Storage Tank Level 1 G
: 15.                               Core     Exit Temperature             -       Quadrant                   1                                                                                                                                                                                                                                                                                                                                                                                                   2!d~ F
: 15. Core Exit Temperature - Quadrant 1 2!d~ F


16 .                             Core     Exit Temperature             -       Quadrant                 2                                                                                                                                                                                                                                                                                                                                                                                                     2!d~ F
16. Core Exit Temperature - Quadrant 2 2!d~ F
: 17.                                 Core     Exit Temperature             -       Quadrant                 3                                                                                                                                                                                                                                                                                                                                                                                                   2{<1 ~ F
: 17. Core Exit Temperature - Quadrant 3 2{<1 ~ F


18 .                             Core     Exit Tem         perature -         Quadrant                 4                                                                                                                                                                                                                                                                                                                                                                                                     2 !df:I F I (a)                         Channels                 used         to sa       tisfy Function                       1 are     not           required to   be           environmentally                     qualified.
18. Core Exit Tem perature - Quadrant 4 2 !df:I F I (a) Channels used to sa tisfy Function 1 are not required to be environmentally qualified.


~               Up               to one                 channel                   of Function                       7 OPERABILITY         requirements can                       be         satisfied by                     an                 OPERABLE       train of containment                             water     level switches if both         Containment                           Water       Level channels                     are     inoperable             . This substitution is only                   allowed     until the end         of the current     operating       cycle         when                 it is invoked.
~ Up to one channel of Function 7 OPERABILITY requirements can be satisfied by an OPERABLE train of containment water level switches if both Containment Water Level channels are inoperable. This substitution is only allowed until the end of the current operating cycle when it is invoked.


~             Not   required for isolation valves whose               associated               penetration     is isolated by                   at least one                 closed     and                   deactivated automatic                       valve, closed     manual                                   valve, blind flange,   or   check         valve with flow through     the valve   secured.
~ Not required for isolation valves whose associated penetration is isolated by at least one closed and deactivated automatic valve, closed manual valve, blind flange, or check valve with flow through the valve secured.


~               Only       one                 position indication   channel                       is required for penetration   flow paths with only               one                   installed control         room indication   channel.
~ Only one position indication channel is required for penetration flow paths with only one installed control room indication channel.


~             A channel                       consists of one                 core           exit thermocouple                     (CET) .
~ A channel consists of one core exit thermocouple (CET).


Cook                     Nuclear     Plant Unit   2                                                                                                                                                                                                                                                                                                                                                                                                   3.3.3-4                                                                                                                                                                                                                               Amendment                                 No.         ~. ~. ~
Cook Nuclear Plant Unit 2 3.3.3-4 Amendment No. ~. ~. ~
PAM   Instrumentation 3.3.3
PAM Instrumentation 3.3.3


Table         3 .3.3-1   (page           2 of 2)
Table 3.3.3-1 (page 2 of 2)
Post Accident   Monitoring     Instrumentation
Post Accident Monitoring Instrumentation


CONDITION REFERENCED FUNCTION                                                                                                                                                                                                                                                                                                                                                                                       REQUIRED             CHANNELS FROM     REQUIRED ACTION       E.1
CONDITION REFERENCED FUNCTION REQUIRED CHANNELS FROM REQUIRED ACTION E.1
: 19.                           Secondary                                     Heat Sink Indication                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   2!erJ F (per steam         generator)
: 19. Secondary Heat Sink Indication 2!erJ F (per steam generator)


20   .                             Emergency                             Core     Cooling         System         Flow     (per train)                                                                                                                                                                                                             2{1)~                               F
20. Emergency Core Cooling System Flow (per train) 2{1)~ F


21       .                             Containment                             Pressure (Wide   Range)                                                                                                                                                                                                                                                                                                                                                                                                                                     2 F
21. Containment Pressure (Wide Range) 2 F
: 22.                               Refueling Water       Storage     Tank                 Level                                                                                                                                                                                                                                                                                                                                                                                                                   2 F
: 22. Refueling Water Storage Tank Level 2 F
: 23.                                   RCS   Subcooling                               Margin     Monitor                                                                                                                                                                                                                                                                                                                                                                                                                                                             119~ F
: 23. RCS Subcooling Margin Monitor 119~ F


24 .                             Component                                       Cooling       Water         Pump                   Circuit Breaker                                                                                                                                                                                                                                                 2 G Status
24. Component Cooling Water Pump Circuit Breaker 2 G Status


25   .                           Containment                             Recirculation     Sum                   p Water         Level                                                                                                                                                                                                                                                                                   2 F
25. Containment Recirculation Sum p Water Level 2 F


~                     Any                 combination                                   of two         instruments     per steam       generator,           including   Steam           Generator         Water         Level (Narrow Range)                       and                 Auxiliary Feedwater       Flow,     can                       be         used         to satisfy Function                   19 OPERABILITY         requirements.
~ Any combination of two instruments per steam generator, including Steam Generator Water Level (Narrow Range) and Auxiliary Feedwater Flow, can be used to satisfy Function 19 OPERABILITY requirements.


~                         Any                   combination                                     of two       instruments   per train, including   Centrifugal Charging       Pump                     Flow,       Safety   Injection       Pump Flow,       Centrifugal Charging     Pump                   Circuit Breaker Status, and                 Safety   Injection     Pump                   Circuit Breaker Status, can be         used         to satisfy Function                       20 OPERABILITY         requirements.
~ Any combination of two instruments per train, including Centrifugal Charging Pump Flow, Safety Injection Pump Flow, Centrifugal Charging Pump Circuit Breaker Status, and Safety Injection Pump Circuit Breaker Status, can be used to satisfy Function 20 OPERABILITY requirements.


~                 An           OPERABLE       plant process       computer                   (PPC) subcooling                               margin           readout               can                       be         used         as       a         substitute for an inoperable             Function                       23,   RCS   Subcooling                             Margin     Monitor.
~ An OPERABLE plant process computer (PPC) subcooling margin readout can be used as a substitute for an inoperable Function 23, RCS Subcooling Margin Monitor.


Cook                   Nuclear           Plant Unit     2                                                                                                                                                                                                                                                                                                                                                                 3.3.3-5                                                                                                                                 Amendment                                       No.           2e9, ~. ~. ~
Cook Nuclear Plant Unit 2 3.3.3-5 Amendment No. 2e9, ~. ~. ~
Enclosure                           6 to AEP-NRC-2024-11
Enclosure 6 to AEP-NRC-2024-11


Donald                           C. Cook                     Nuclear             Plant Unit       1 Technical               Specification Bases Pages           Marked   to Show                   Proposed                   Changes PAM     Instrumentation B 3.3   .3
Donald C. Cook Nuclear Plant Unit 1 Technical Specification Bases Pages Marked to Show Proposed Changes PAM Instrumentation B 3.3.3


B 3.3             INSTRUMENTATION
B 3.3 INSTRUMENTATION


B 3.3.3           Post Accident     Monitoring       (PAM)   Instrumentation
B 3.3.3 Post Accident Monitoring (PAM) Instrumentation


BASES
BASES


BACKGROUND                                     The   primary         purpose             of the PAM   instrumentation                 is to   display unit variables     that provide information                 required by                   the control             room                         operators during       accident             situations.       This information                 provides the necessary support     for the operator           to take the manual                                         actions             for which       no                   automatic control               is provided and                     that are       required for safety systems       to   accomplish their safety functions               for Design Basis Accidents     (DBAs).
BACKGROUND The primary purpose of the PAM instrumentation is to display unit variables that provide information required by the control room operators during accident situations. This information provides the necessary support for the operator to take the manual actions for which no automatic control is provided and that are required for safety systems to accomplish their safety functions for Design Basis Accidents (DBAs).


The   OPERABILITY           of the accident               monitoring               instrumentation                 ensures that there is sufficient information               available         on                       selected unit parameters         to monitor                 and                     to assess       unit status and                       behavior                 following an                       accident.
The OPERABILITY of the accident monitoring instrumentation ensures that there is sufficient information available on selected unit parameters to monitor and to assess unit status and behavior following an accident.


The   availability of accident               monitoring               instrumentation               is important       so       that responses               to corrective actions               can                             be           observed                 and                     the need             for, and magnitude                           of, further actions                 can                             be           determined.         These   essential instruments   are     identified in References       1,               2,ffi;J and                     al] addressing   the recommendations                                               of Regulatory                 Guide   1.97 (Ref. 3) as         required by Supplement                 1 to   NUREG-0737                         (Ref. 4).
The availability of accident monitoring instrumentation is important so that responses to corrective actions can be observed and the need for, and magnitude of, further actions can be determined. These essential instruments are identified in References 1, 2,ffi;J and al] addressing the recommendations of Regulatory Guide 1.97 (Ref. 3) as required by Supplement 1 to NUREG-0737 (Ref. 4).


The   instrument   channels                             required to be           OPERABLE         by                   this LCO   include two           classes of parameters             identified during       unit specific implementation           of Regulatory                     Guide   1.97 as       Type             A and                       Category                     1 variables     .
The instrument channels required to be OPERABLE by this LCO include two classes of parameters identified during unit specific implementation of Regulatory Guide 1.97 as Type A and Category 1 variables.


These   key         variables   are       identified by                   the unit specific Regulatory Guide   1.97 analyses                             (Ref. 1,               2, ffi;J and                     e[zj).             These analyses                               identify the unit specific Type           A   and                     Category                   1 variables     and                     provide justification for deviating from     the NRC   guidance                               in Reference           3.
These key variables are identified by the unit specific Regulatory Guide 1.97 analyses (Ref. 1, 2, ffi;J and e[zj). These analyses identify the unit specific Type A and Category 1 variables and provide justification for deviating from the NRC guidance in Reference 3.


The   specific instrument     Functions                         listed in Table             3.3.3-1   are     discussed     in the LCO section.
The specific instrument Functions listed in Table 3.3.3-1 are discussed in the LCO section.


APPLICABLE                                     The     PAM   instrumentation                 LCO ensures               the OPERABILITY             of Regulatory SAFETY                                         Guide   1.97 Type           A variables   so       that the control             room                         operating       staff can:
APPLICABLE The PAM instrumentation LCO ensures the OPERABILITY of Regulatory SAFETY Guide 1.97 Type A variables so that the control room operating staff can:
ANALYSES
ANALYSES
* Perform the diagnosis       specified in the emergency                                 operating procedures                 (these variables   are     restricted to preplanned                   actions               for the primary         success                     path of DBAs), e.g.,   loss of coolant                           accident (LOCA);     and
* Perform the diagnosis specified in the emergency operating procedures (these variables are restricted to preplanned actions for the primary success path of DBAs), e.g., loss of coolant accident (LOCA); and
* Take         the specified, pre-planned,                 manually                                         controlled actions,               for which       no                   automatic                             control             is provided, and                     that are     required for safety   systems     to   accomplish                 their safety function.
* Take the specified, pre-planned, manually controlled actions, for which no automatic control is provided, and that are required for safety systems to accomplish their safety function.


Cook                   Nuclear             Plant Unit       1                                                                                                                                                                                                                                                                                           B 3.3.3-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                 Revision No.           48 PAM   Instrumentation B 3.3.3
Cook Nuclear Plant Unit 1 B 3.3.3-1 Revision No. 48 PAM Instrumentation B 3.3.3


BASES
BASES


LCO             (continued)
LCO (continued)


One           exception                 to the two         channel                             requirement is Containment                                   Isolation Valve               (CIV)                 Position.         In           this case,               the important     information                 is the status of the containment                                       penetrations.               The   LCO requires one                         position indicator for each                   active CIV.                           This is sufficient to   redundantly                         verify the isolation status of each                   isolable penetration       either via indicated status of the active valve and                       prior knowledge             of a             passive valve, or   via system           boundary status.         If a           normally                       active CIV                 is known                                       to   be           closed     and                       deactivated, position indication     is not           needed             to determine status.         Therefore, the position indication for valves in this state is not           required to   be OPERABLE.
One exception to the two channel requirement is Containment Isolation Valve (CIV) Position. In this case, the important information is the status of the containment penetrations. The LCO requires one position indicator for each active CIV. This is sufficient to redundantly verify the isolation status of each isolable penetration either via indicated status of the active valve and prior knowledge of a passive valve, or via system boundary status. If a normally active CIV is known to be closed and deactivated, position indication is not needed to determine status. Therefore, the position indication for valves in this state is not required to be OPERABLE.


Type             A and                       Category                   1 variables   meet Regulatory                   Guide   1.97 Category                     1 (Ref. 3) design and                     qualification requirements for seismic and environmental                           qualification, single failure criterion, utilization of emergency                                   standby                                 power,               immediately accessible       display, continuous readout,                 and                       recording     of ~lay,                   except       for approved                   deviations, as described in References     1l11 and                       ~                                     -
Type A and Category 1 variables meet Regulatory Guide 1.97 Category 1 (Ref. 3) design and qualification requirements for seismic and environmental qualification, single failure criterion, utilization of emergency standby power, immediately accessible display, continuous readout, and recording of ~lay, except for approved deviations, as described in References 1l11 and ~ -


Listed below                 are     discussions       of the specified instrument   Functions                           listed in Table           3 .3.3 - 1.           For     all applicable     Functions                         , the recorder or     indicator may                                     be             used         as         the qualified instrument.
Listed below are discussions of the specified instrument Functions listed in Table 3.3.3 - 1. For all applicable Functions, the recorder or indicator may be used as the qualified instrument.
: 1.                                 Neutron                   Flux
: 1. Neutron Flux


Neutron                   Flux         (NRl-21 and                       NRl-23) is a           Category                   1 variable     provided to verify reactor       shutdown.                                       The range               of each               of the two         neutron                           flux instruments   ( 1 0E-8 to   200 % power)               covers           the full range               of flux that may                             occur                               post accident.
Neutron Flux (NRl-21 and NRl-23) is a Category 1 variable provided to verify reactor shutdown. The range of each of the two neutron flux instruments ( 1 0E-8 to 200 % power) covers the full range of flux that may occur post accident.


As stated in Note (a)           to Table           3.3.3-1     , neutron                           flux instruments are not           required to   be           environmentally                         qualified to   be           considered OPERABLE.                 This is acceptable                         because                                     verification of initial reactor shutdown                                   is expected         to   be           completed         prior to   any                                 potential impact     to the neutron                           flux instrumentation               due           to   an                     adverse       containment environment.                                     Other instruments   will be               used           to   monitor           for subcriticality in the event   of an                       adverse   containment                                       environment.
As stated in Note (a) to Table 3.3.3-1, neutron flux instruments are not required to be environmentally qualified to be considered OPERABLE. This is acceptable because verification of initial reactor shutdown is expected to be completed prior to any potential impact to the neutron flux instrumentation due to an adverse containment environment. Other instruments will be used to monitor for subcriticality in the event of an adverse containment environment.


2 .                               Steam             Generator           (SG ) Pressure (p er SG )
2. Steam Generator (SG ) Pressure (p er SG )


Steam             Generator           Pressure is a           Type             A,     Category                   1 variable     provided for determination     of required core           exit temperature.             Three steam generator             pressure channels                         per steam           generator           are     provided (MPP-210,     MPP-211,   MPP-212,     MPP-220   , MPP-221,   MPP-222, MPP-230,     MPP-231   , MPP-232,     MPP-240,   MPP-241,   and                       MPP-242).
Steam Generator Pressure is a Type A, Category 1 variable provided for determination of required core exit temperature. Three steam generator pressure channels per steam generator are provided (MPP-210, MPP-211, MPP-212, MPP-220, MPP-221, MPP-222, MPP-230, MPP-231, MPP-232, MPP-240, MPP-241, and MPP-242).
Each                 channel                             has         a           range               of 0 psig to   1200 psig. However,               only                   two steam           generator           pressure channels                           per steam           generator           are       required
Each channel has a range of 0 psig to 1200 psig. However, only two steam generator pressure channels per steam generator are required


Cook                     Nuclear           Plant Unit       1                                                                                                                                                                                                                                               83.3.3-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                           Revision No.         44 PAM     Instrumentation B3.3.3
Cook Nuclear Plant Unit 1 83.3.3-3 Revision No. 44 PAM Instrumentation B3.3.3


BASES
BASES


LCO             (continued)
LCO (continued)


3,     4.                                     Reactor. Coolant                     System           (RCS)     Hot and                       Cold Leg Temperatures (Wide   Range)
3, 4. Reactor. Coolant System (RCS) Hot and Cold Leg Temperatures (Wide Range)


RCS     Hot and                         Cold Leg Temperatures             are     Type             A , Category                     1 variables provided for verification of core           cooling               and                         long         term surveillance.       RCS   hot and                       cold       leg tern     eratures are       used         to determine RCS     subcooling                                 margin                                             nd           to   monitor             for subcriticalit in he event of an                     adverse     containment                                         environmen                                       .
RCS Hot and Cold Leg Temperatures are Type A, Category 1 variables provided for verification of core cooling and long term surveillance. RCS hot and cold leg tern eratures are used to determine RCS subcooling margin nd to monitor for subcriticalit in he event of an adverse containment environmen.


The   RCS     hot leg and                           RCS   cold       leg channels                         each                 receive input from one                       resistance temperature   detector (RTD).                   In           each                 of RCS     loops           1 and                           3,   there is one                           RCS   hot leg RTD   (NTR-110   with MR-9,     and NTR-130   with MR-11)     and                     one                         RCS     cold       leg RTD   (NTR-210       with MR-9   , and                     NTR-230     with MR-11)   that satisfy the guidance                         of Reference     3 .         The channels                         provide indication   over     a             range             of 0&deg;F to   700&deg;F.
The RCS hot leg and RCS cold leg channels each receive input from one resistance temperature detector (RTD). In each of RCS loops 1 and 3, there is one RCS hot leg RTD (NTR-110 with MR-9, and NTR-130 with MR-11) and one RCS cold leg RTD (NTR-210 with MR-9, and NTR-230 with MR-11) that satisfy the guidance of Reference 3. The channels provide indication over a range of 0&deg;F to 700&deg;F.
: 5.                                         RCS     Pressure (Wide   Range)
: 5. RCS Pressure (Wide Range)


RCS   wide range                   pressure is a           Type             A , Category                 1 variable     provided for verification of core           cooling               and                         RCS   integrity long           term surveillance.
RCS wide range pressure is a Type A, Category 1 variable provided for verification of core cooling and RCS integrity long term surveillance.


RCS   wide range                   pressure is used         as         criteria to manually                                         trip the reactor     coolant                             pumps.
RCS wide range pressure is used as criteria to manually trip the reactor coolant pumps.


In           addition, RCS   wide range               pressure is used         for determining RCS subcooling                                 margin.
In addition, RCS wide range pressure is used for determining RCS subcooling margin.


Two                       RCS   Pressure (Wide   Range)                         channels                         are       provided (NPS-110 and                         NPS-111, with MR-13),   each                   with a           range             of O psig to   3000   psig.
Two RCS Pressure (Wide Range) channels are provided (NPS-110 and NPS-111, with MR-13), each with a range of O psig to 3000 psig.
: 6.                                   Reactor             Coolant                     Inventory                         Tracking           System           {Reactor                   Vessel Level Indication)
: 6. Reactor Coolant Inventory Tracking System {Reactor Vessel Level Indication)


Reactor             coolant                           inventory                 is a           Category                     1 variable   provided for verification and                       long         term surveillance of core           cooling.
Reactor coolant inventory is a Category 1 variable provided for verification and long term surveillance of core cooling.


The   Reactor             Coolant                     Inventory                         Tracking           System         consists   of two channels                     of instrumentation             (NLl-110, NLl-111, NLl-120, NLl-121, NLl-130, and                       NLl-131). Each                 channel                                 is capable                       of measuring                         upper plenum                       level, narrow                               range                 level, and                     dynamic                                       head               (i.e. , wide range level). The   Reactor               Coolant                   Inventory                           Tracking         System             provides a direct measurement                               of the collapsed     liquid level above                                 the fuel alignment         plate.           The collapsed   level represents the amount                                     of liquid mass               that is in the reactor     vessel above                                 the core.                       Measurement                       of
The Reactor Coolant Inventory Tracking System consists of two channels of instrumentation (NLl-110, NLl-111, NLl-120, NLl-121, NLl-130, and NLl-131). Each channel is capable of measuring upper plenum level, narrow range level, and dynamic head (i.e., wide range level). The Reactor Coolant Inventory Tracking System provides a direct measurement of the collapsed liquid level above the fuel alignment plate. The collapsed level represents the amount of liquid mass that is in the reactor vessel above the core. Measurement of


Cook                     Nuclear           Plant Unit       1                                                                                                                                                                                                                                                                                           B 3 .3.3-4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           Revision No           . 0 PAM   Instrumentation B 3.3.3
Cook Nuclear Plant Unit 1 B 3.3.3-4 Revision No. 0 PAM Instrumentation B 3.3.3


BASES
BASES


LCO           (continued)
LCO (continued)
: 13.                                 Steam             Generator         Water           Level (Wide   Range)
: 13. Steam Generator Water Level (Wide Range)


SG Water           Level is a           Category                     1 variable     provided to monitor operation             of decay                           heat removal               via the SGs.             Four               steam         generator level (wide range)               channels                           (one                     per steam           generator)             are       provided (BLl-110, BLl-120, BLl-130, and                       BLl-140). Each                 channel                             is capable of monitoring             from           12 inches   above                               the steam           generator         tube             sheet to the separators.
SG Water Level is a Category 1 variable provided to monitor operation of decay heat removal via the SGs. Four steam generator level (wide range) channels (one per steam generator) are provided (BLl-110, BLl-120, BLl-130, and BLl-140). Each channel is capable of monitoring from 12 inches above the steam generator tube sheet to the separators.
: 14.                                   Condensate                               Storage       Tank                     (CST)   Level
: 14. Condensate Storage Tank (CST) Level


CST Level is a           Category                   1 variable   provided to ensure             water     supply for auxiliary           feedwater (AFW).                         The   CST provides the qualified water supply         for the AFW               System.                       Inventory                               is monitored               from       essentially the top   of the CST to the bottom                   of the CST (95% total volume)                         by                     a single channel                           provided to   satisfy the guidance                         of Reference         3,   as described in Reference         1.           CST Level is displayed on                       a           control               room indicator (CLl-114).
CST Level is a Category 1 variable provided to ensure water supply for auxiliary feedwater (AFW). The CST provides the qualified water supply for the AFW System. Inventory is monitored from essentially the top of the CST to the bottom of the CST (95% total volume) by a single channel provided to satisfy the guidance of Reference 3, as described in Reference 1. CST Level is displayed on a control room indicator (CLl-114).


15,   16,   17,   18.                                 Core       Exit Temperature
15, 16, 17, 18. Core Exit Temperature


Core       Exit Temperature             is a           Type             A,   Category                     1 variable   used         to determine whether to manually                                         reduce             ECCS flow.       This variable     is also         provided for verification and                       long       term surveillance of core cooling.                               In             addition, core             exit tern     erature is used         for determinin RCS     subcooling                                 margin                                             nd           to monitor             for subcriticalit in the even f an                       adverse     containment                                       environmen                                         .
Core Exit Temperature is a Type A, Category 1 variable used to determine whether to manually reduce ECCS flow. This variable is also provided for verification and long term surveillance of core cooling. In addition, core exit tern erature is used for determinin RCS subcooling margin nd to monitor for subcriticalit in the even f an adverse containment environmen.


Two                   OPERABLE     channels                       of Core     Exit Temperature,               with one                     core exit thermocouple                       per channel,                           are     required in each                 quadrant                           to provide indication   of radial distribution of the coolant                           temperature   rise across                   representative regions   of the core.                     Two                     core             exit temperature channels                           per quadrant                           ensure               a           single failure will not           disable the ability to determine the radial temperature   gradient.         Each                 core           exit temperature   channel                           (SG-30   and                         SG-31   for TC   1 through       65)   has         a range             of 200&deg;F to 2300   &deg;F.
Two OPERABLE channels of Core Exit Temperature, with one core exit thermocouple per channel, are required in each quadrant to provide indication of radial distribution of the coolant temperature rise across representative regions of the core. Two core exit temperature channels per quadrant ensure a single failure will not disable the ability to determine the radial temperature gradient. Each core exit temperature channel (SG-30 and SG-31 for TC 1 through 65) has a range of 200&deg;F to 2300 &deg;F.
: 19.                                   Secondary                                             Heat Sink Indication               (per SG)
: 19. Secondary Heat Sink Indication (per SG)


Secondary                                             Heat Sink Indication               is a         Type               A,     Category                   1 variable used         to determine whether to manually                                       reduce               ECCS flow.       This variable   is also       provided to monitor             operation               of decay                           heat removal via the SGs.
Secondary Heat Sink Indication is a Type A, Category 1 variable used to determine whether to manually reduce ECCS flow. This variable is also provided to monitor operation of decay heat removal via the SGs.


As stated in Note         ~                                                                   to   Table           3.3.3-1, the requirements for this variable   are     met by                   any                               combination                                         of two           instruments per SG,
As stated in Note ~ to Table 3.3.3-1, the requirements for this variable are met by any combination of two instruments per SG,


Cook                     Nuclear           Plant Unit     1                                   B 3.3.3-7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       Revision No.             Q PAM   Instrumentation B 3.3.3
Cook Nuclear Plant Unit 1 B 3.3.3-7 Revision No. Q PAM Instrumentation B 3.3.3


BASES
BASES


SURVEILLANCE                                       REQUIREMENTS                               (continued)
SURVEILLANCE REQUIREMENTS (continued)


SR             3 .3.3.2             Deleted
SR 3.3.3.2 Deleted


SR             3.3.3.3
SR 3.3.3.3


CHANNEL   CALIBRATION       is a           complete       check         of the instrument   loop, including the sensor.                       The test verifies that the channel                           responds             to measured                       parameter           with the necessary                             range                 and                       accuracy.                                                                   This SR     is modified by                     a             Note that excludes               neutron                           detectors. For     Function                               9,   the CHANNEL CALIBRATION       shall consist   of verifying that the position indication conforms                                   to   actual               valve position.     For     Functions                                 15,   16,   17, and                           18, whenever                 a           sensing     element is replaced, the next             required CHANNEL   CALIBRATION     of the Core       Exit Temperature           thermocouple sensors             is accomplished                       by                         an                     inplace     cross       calibration       that compares the other sensing       elements with the recently installed sensing       elements.
CHANNEL CALIBRATION is a complete check of the instrument loop, including the sensor. The test verifies that the channel responds to measured parameter with the necessary range and accuracy. This SR is modified by a Note that excludes neutron detectors. For Function 9, the CHANNEL CALIBRATION shall consist of verifying that the position indication conforms to actual valve position. For Functions 15, 16, 17, and 18, whenever a sensing element is replaced, the next required CHANNEL CALIBRATION of the Core Exit Temperature thermocouple sensors is accomplished by an inplace cross calibration that compares the other sensing elements with the recently installed sensing elements.
For     Functions                         20   (Circuit Breaker Status channels)                           and                         24,   the CHANNEL CALIBRATION       shall consist   of verifying that the position indication conforms                                 to   actual               circuit breaker       position.     The Surveillance Frequency                                       is controlled under             the Surveillance Frequency                                   Control Program.
For Functions 20 (Circuit Breaker Status channels) and 24, the CHANNEL CALIBRATION shall consist of verifying that the position indication conforms to actual circuit breaker position. The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.


REFERENCES                                         1.                                                   NRC   letter, T. G . Colburn                         (NRC)   to   M. P. Alexich (Indiana                                 Michigan Power             Company),                                                       "Emergency                                   Response               Capability-                     Conformance to Regulatory                 Guide 1.97 Revision 3 for the D. C. Cook                     Nuclear Plant, Units     1 and                     2," dated   December                             14,   1990.
REFERENCES 1. NRC letter, T. G. Colburn (NRC) to M. P. Alexich (Indiana Michigan Power Company), "Emergency Response Capability-Conformance to Regulatory Guide 1.97 Revision 3 for the D. C. Cook Nuclear Plant, Units 1 and 2," dated December 14, 1990.
: 2.                                               UFSAR,                   Table           7 .8-1     .
: 2. UFSAR, Table 7.8-1.


3 .                                         Regulatory                 Guide 1.97, Revision 3,     May                           1983.
3. Regulatory Guide 1.97, Revision 3, May 1983.
: 4.                         NUREG-0737                     , Supplement               1,   "TMI   Action       Items."
: 4. NUREG-0737, Supplement 1, "TMI Action Items."


5 .                     NRC   letter, P. S. Tam                         (NRC), to M . K.     Nazar,               (Indiana                               Michigan   Power Company),                                                       "Donald                   C . Cook                   Nuclear           Plant, Units     1 & 2 (DCCNP-1 AND   DCCNP-2)   -           Issuance                             of Amendments                                     Re:               Containment                               Sump Modifications per Generic Letter 2004-02   (TAC Nos.             MD5901 AND MD5902)," dated October               18, 2007 .
5. NRC letter, P. S. Tam (NRC), to M. K. Nazar, (Indiana Michigan Power Company), "Donald C. Cook Nuclear Plant, Units 1 & 2 (DCCNP-1 AND DCCNP-2) - Issuance of Amendments Re: Containment Sump Modifications per Generic Letter 2004-02 (TAC Nos. MD5901 AND MD5902)," dated October 18, 2007.
: 6.                           Letter from         Indiana                               Michigan     Power             Company                                                             (K. J. Ferneau)                         to the NRC   dated XXXX,                       XX         2024.
: 6. Letter from Indiana Michigan Power Company (K. J. Ferneau) to the NRC dated XXXX, XX 2024.
: 7.                             NRC   letter, X     . X.         XXXXXX                             (NRC),     to   Q. S.     Lies (Indiana                                 Michigan Power             Company),                                                         XXXX,                   dated   XXXX                     XX,           2024 .
: 7. NRC letter, X. X. XXXXXX (NRC), to Q. S. Lies (Indiana Michigan Power Company), XXXX, dated XXXX XX, 2024.


Cook                     Nuclear           Plant Unit       1                                                                                                                                                                                                                                                                               B 3 .3.3-14                                                                                                                                                                                                                                                                                                                                                                                                                                                                           Revision No.           93 Enclosure                         7 to AEP-NRC-2024-11
Cook Nuclear Plant Unit 1 B 3.3.3-14 Revision No. 93 Enclosure 7 to AEP-NRC-2024-11


Donald                         C. Cook                       Nuclear           Plant   Unit     2 Technical                 Specification Bases Pages           Marked   to Show                     Proposed                 Changes PAM     Instrumentation B 3.3.3
Donald C. Cook Nuclear Plant Unit 2 Technical Specification Bases Pages Marked to Show Proposed Changes PAM Instrumentation B 3.3.3


B 3.3             INSTRUMENTATION
B 3.3 INSTRUMENTATION


B 3.3.3             Post Accident     Monitoring     (PAM)     Instrumentation
B 3.3.3 Post Accident Monitoring (PAM) Instrumentation


BASES
BASES


BACKGROUND                                     The   primary         purpose             of the PAM   instrumentation               is to display unit variables that provide information                   required by                   the control               room                         operators during     accident               situations.       This information               provides the necessary support     for the operator           to take the manual                                       actions               for which       no                   automatic control             is provided and                     that are       required for safety   systems       to   accomplish their safety functions                 for Design Basis Accidents     (DBAs).
BACKGROUND The primary purpose of the PAM instrumentation is to display unit variables that provide information required by the control room operators during accident situations. This information provides the necessary support for the operator to take the manual actions for which no automatic control is provided and that are required for safety systems to accomplish their safety functions for Design Basis Accidents (DBAs).


The OPERABILITY             of the accident                 monitoring               instrumentation                 ensures that there is sufficient information                 available       on                       selected unit parameters           to monitor             and                   to assess     unit status and                       behavior               following an                     accident.
The OPERABILITY of the accident monitoring instrumentation ensures that there is sufficient information available on selected unit parameters to monitor and to assess unit status and behavior following an accident.


The availability of accident             monitoring                 instrumentation                 is important       so       that responses           to corrective actions                 can                             be           observed                 and                     the need           for, and magnitude                           of, further actions               can                                 be           determined.         These   essential instruments   are       identified in References         1,   2,[&sect;1 and                   a[] addressing     the recommendations                                               of Regulatory                   Guide   1.97 (Ref. 3) as         required by Supplement                 1 to   NUREG-0737                         (Ref. 4).
The availability of accident monitoring instrumentation is important so that responses to corrective actions can be observed and the need for, and magnitude of, further actions can be determined. These essential instruments are identified in References 1, 2,[&sect;1 and a[] addressing the recommendations of Regulatory Guide 1.97 (Ref. 3) as required by Supplement 1 to NUREG-0737 (Ref. 4).


The   instrument     channels                           required to   be           OPERABLE           by                     this LCO   include two         classes of parameters           identified during     unit specific implementation           of Regulatory                   Guide   1.97 as         Type             A   and                       Category                     1 variables.
The instrument channels required to be OPERABLE by this LCO include two classes of parameters identified during unit specific implementation of Regulatory Guide 1.97 as Type A and Category 1 variables.


These key         variables     are       identified by                   the unit specific Regulatory Guide 1.97 analyses                               (Ref. 1,   2,[&sect;1 and                   a[]).               These   analyses                             identify the unit specific Type             A and                     Category                       1 variables and                       provide justification for deviating from         the NRC   guidance                                     in Reference         3.
These key variables are identified by the unit specific Regulatory Guide 1.97 analyses (Ref. 1, 2,[&sect;1 and a[]). These analyses identify the unit specific Type A and Category 1 variables and provide justification for deviating from the NRC guidance in Reference 3.


The   specific instrument     Functions                             listed in Table             3.3.3-1     are     discussed     in the LCO section.
The specific instrument Functions listed in Table 3.3.3-1 are discussed in the LCO section.


APPLICABLE                                     The   PAM   instrumentation               LCO ensures               the OPERABILITY             of Regulatory SAFETY                                         Guide 1.97 Type           A   variables so       that the control             room                           operating       staff can:
APPLICABLE The PAM instrumentation LCO ensures the OPERABILITY of Regulatory SAFETY Guide 1.97 Type A variables so that the control room operating staff can:
ANALYSES
ANALYSES
* Perform the diagnosis       specified in the emergency                                     operating procedures                   (these variables   are       restricted to preplanned                   actions             for the primary           success                     path of DBAs), e.g.,   loss of coolant                           accident (LOCA);     and
* Perform the diagnosis specified in the emergency operating procedures (these variables are restricted to preplanned actions for the primary success path of DBAs), e.g., loss of coolant accident (LOCA); and
* Take         the specified, pre-planned,                   manually                                       controlled   actions,             for which       no                   automatic                           control               is provided, and                     that are       required for safety systems       to   accomplish                     their safety function.
* Take the specified, pre-planned, manually controlled actions, for which no automatic control is provided, and that are required for safety systems to accomplish their safety function.


Cook                   Nuclear             Plant Unit     2                                                                                                                                                                                                                                                                                             B 3 .3.3-1                                                                                                                                                                                                                                                                                                                                                                                                                                                           Revision No.               16 PAM   Instrumentation B 3.3.3
Cook Nuclear Plant Unit 2 B 3.3.3-1 Revision No. 16 PAM Instrumentation B 3.3.3


BASES
BASES


LCO             (continued)
LCO (continued)


One           exception                 to the two         channel                           requirement is Containment                                     Isolation Valve               (CIV)                 Position.           In           this case,               the important     information                 is the status of the containment                                         penetrations.             The   LCO   requires one                         position indicator for each                   active CIV.                           This is sufficient to   redundantly                       verify the isolation status of each                 isolable penetration     either via indicated status of the active valve and                       prior knowledge               of a           passive valve, or   via system           boundary status.         If a           normally                       active CIV                 is known                                     to be           closed     and                       deactivated, position indication     is not           needed             to determine status.         Therefore, the position indication for valves in this state is not           required to be OPERABLE.
One exception to the two channel requirement is Containment Isolation Valve (CIV) Position. In this case, the important information is the status of the containment penetrations. The LCO requires one position indicator for each active CIV. This is sufficient to redundantly verify the isolation status of each isolable penetration either via indicated status of the active valve and prior knowledge of a passive valve, or via system boundary status. If a normally active CIV is known to be closed and deactivated, position indication is not needed to determine status. Therefore, the position indication for valves in this state is not required to be OPERABLE.


Type             A and                       Category                   1 variables meet   Regulatory                 Guide     1.97 Category                 1 (Ref. 3) design and                     qualification requirements for seismic and environmental                           qualification, single failure criterion, utilization of emergency                                   standby                                 power,               immediately accessible       display, continuous readout,                   and                       recording     of ~lay,                 except         for approved                 deviations, as described   in References     1 ~         and                 -0.
Type A and Category 1 variables meet Regulatory Guide 1.97 Category 1 (Ref. 3) design and qualification requirements for seismic and environmental qualification, single failure criterion, utilization of emergency standby power, immediately accessible display, continuous readout, and recording of ~lay, except for approved deviations, as described in References 1 ~ and -0.


Listed below                 are     discussions       of the specified instrument     Functions                           listed in Table             3.3.3-1.           For     all applicable   Functions,                           the recorder or   indicator may                                       be             used         as         the qualified instrument.
Listed below are discussions of the specified instrument Functions listed in Table 3.3.3-1. For all applicable Functions, the recorder or indicator may be used as the qualified instrument.
: 1.                                   Neutron                 Flux
: 1. Neutron Flux


Neutron                 Flux         (NRl-21 and                     NRl-23) is a           Category                   1 variable     provided to verify reactor       shutdown.                                       The   range               of each               of the two           neutron                         flux instruments ( 1 0E-8 to   200% power)               covers           the full range               of flux that may                               occur                           post accident.
Neutron Flux (NRl-21 and NRl-23) is a Category 1 variable provided to verify reactor shutdown. The range of each of the two neutron flux instruments ( 1 0E-8 to 200% power) covers the full range of flux that may occur post accident.


As stated in Note   (a)             to   Table         3 .3 .3-1,   neutron                         flux instruments are not           required to   be           environmentally                         qualified to   be           considered OPERABLE.                 This is acceptable                         because                                     verification of initial reactor shutdown                               is expected           to   be           completed         prior to   any                                 potential impact   to the neutron                         flux instrumentation             due           to an                     adverse       containment environment.                                     Other instruments will be             used         to   monitor               for subcriticality in the event   of an                       adverse     containment                                       environment.
As stated in Note (a) to Table 3.3.3-1, neutron flux instruments are not required to be environmentally qualified to be considered OPERABLE. This is acceptable because verification of initial reactor shutdown is expected to be completed prior to any potential impact to the neutron flux instrumentation due to an adverse containment environment. Other instruments will be used to monitor for subcriticality in the event of an adverse containment environment.
: 2.                                   Steam             Generator             (SG ) Pressure (p er SG )
: 2. Steam Generator (SG ) Pressure (p er SG )


Steam             Generator             Pressure is a           Type               A,   Category                   1 variable     provided for determination     of required core           exit temperature.             Three steam generator           pressure channels                       per steam           generator         are       provided (MPP-210,     MPP-211,     MPP-212,   MPP-220,     MPP-221,     MPP-222, MPP-230,   MPP-231,     MPP-232,   MPP-240,     MPP-241,     and                       MPP-242).
Steam Generator Pressure is a Type A, Category 1 variable provided for determination of required core exit temperature. Three steam generator pressure channels per steam generator are provided (MPP-210, MPP-211, MPP-212, MPP-220, MPP-221, MPP-222, MPP-230, MPP-231, MPP-232, MPP-240, MPP-241, and MPP-242).
Each                   channel                           has         a             range             of 0 psig to   1200 psig. However,               only                   two steam           generator             pressure channels                         per steam           generator             are       required
Each channel has a range of 0 psig to 1200 psig. However, only two steam generator pressure channels per steam generator are required


Cook                     Nuclear           Plant Unit     2                                                                                                                                                                                                                                                                                             B 3.3.3-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                             Revision No.         44 PAM   Instrumentation B 3.3.3
Cook Nuclear Plant Unit 2 B 3.3.3-3 Revision No. 44 PAM Instrumentation B 3.3.3


BASES
BASES


LCO           (continued)
LCO (continued)


3,     4.                         Reactor               Coolant                   System           (RCS)     Hot and                         Cold Leg Temperatures (Wide   Range)
3, 4. Reactor Coolant System (RCS) Hot and Cold Leg Temperatures (Wide Range)


RCS     Hot and                         Cold Leg Temperatures           are     Type               A,     Category                   1 variables   provided for verification of core           cooling                 and                       long         term surveillance.         RCS   hot and                       cold         le         tern     eratures are       used       to determine RCS   subcooling                                     margin                 and                       to   monitor               for subcriticalit in he event of an                     adverse     containment                                     environmen                                           .
RCS Hot and Cold Leg Temperatures are Type A, Category 1 variables provided for verification of core cooling and long term surveillance. RCS hot and cold le tern eratures are used to determine RCS subcooling margin and to monitor for subcriticalit in he event of an adverse containment environmen.


The   RCS     hot leg and                       RCS   cold         leg channels                           each                   receive input from one                       resistance temperature   detector (RTD).                   In           each               of RCS     loops         1 and                           3, there is one                     RCS     hot leg RTD   (NTR-110       with MR-9,   and NTR-130     with MR-11)   and                       one                         RCS   cold       leg RTD   (NTR-210     with MR-9,     and                       NTR-230   with MR-11)   that satisfy the guidance                       of Reference       3.             The channels                           provide indication     over     a             range             of 0&deg;F to 700&deg;F.
The RCS hot leg and RCS cold leg channels each receive input from one resistance temperature detector (RTD). In each of RCS loops 1 and 3, there is one RCS hot leg RTD (NTR-110 with MR-9, and NTR-130 with MR-11) and one RCS cold leg RTD (NTR-210 with MR-9, and NTR-230 with MR-11) that satisfy the guidance of Reference 3. The channels provide indication over a range of 0&deg;F to 700&deg;F.
: 5.                                       RCS     Pressure (Wide   Range)
: 5. RCS Pressure (Wide Range)


RCS   wide range                 pressure is a           Type             A,     Category                   1 variable   provided for verification of core           cooling                 and                           RCS     integrity long         term surveillance.
RCS wide range pressure is a Type A, Category 1 variable provided for verification of core cooling and RCS integrity long term surveillance.


RCS   wide range                 pressure is used           as         criteria to manually                                     trip the reactor       coolant                             pumps.
RCS wide range pressure is used as criteria to manually trip the reactor coolant pumps.


In             addition, RCS   wide range                 pressure is used         for determining RCS subcooling                                     margin.
In addition, RCS wide range pressure is used for determining RCS subcooling margin.


Two                       RCS     Pressure (Wide     Range)                       channels                         are       provided (NPS-110 and                       NPS-111,   with MR-13),       each                 with a           range               of O psig to   3000   psig.
Two RCS Pressure (Wide Range) channels are provided (NPS-110 and NPS-111, with MR-13), each with a range of O psig to 3000 psig.
: 6.                                 Reactor               Coolant                     Inventory                           Tracking       System           (Reactor               Vessel Level Indication)
: 6. Reactor Coolant Inventory Tracking System (Reactor Vessel Level Indication)


Reactor               coolant                           inventory               is a           Category                   1 variable     provided for verification and                         long       term surveillance of core             cooling.
Reactor coolant inventory is a Category 1 variable provided for verification and long term surveillance of core cooling.


The   Reactor               Coolant                   Inventory                             Tracking       System           consists of two channels                       of instrumentation             (NLl-110, NLl-111, NLl-120, NLl-121, NLl-130, and                         NLl-131 ) .           Each                 channel                             is capable                         of measuring                       upper plenum                       level, narrow                           range                   level, and                     dynamic                                         head             (i.e., wide range level). The   Reactor             Coolant                     Inventory                         Tracking           System           provides a direct measurement                               of the collapsed   liquid level above                             the fuel alignment             plate. The collapsed     level represents the amount                                     of liquid mass                 that is in the reactor       vessel above                             the core.                       Measurement                       of
The Reactor Coolant Inventory Tracking System consists of two channels of instrumentation (NLl-110, NLl-111, NLl-120, NLl-121, NLl-130, and NLl-131 ). Each channel is capable of measuring upper plenum level, narrow range level, and dynamic head (i.e., wide range level). The Reactor Coolant Inventory Tracking System provides a direct measurement of the collapsed liquid level above the fuel alignment plate. The collapsed level represents the amount of liquid mass that is in the reactor vessel above the core. Measurement of


Cook                   Nuclear           Plant Unit     2                                                                                                                                                                                                                                                                                             B 3.3.3-4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         Revision No.           G PAM   Instrumentation B 3.3.3
Cook Nuclear Plant Unit 2 B 3.3.3-4 Revision No. G PAM Instrumentation B 3.3.3


BASES
BASES


LCO             (continued}
LCO (continued}
: 13.                                     Steam             Generator           Water         Level (Wide     Range)
: 13. Steam Generator Water Level (Wide Range)


SG Water         Level is a           Category                 1 variable     provided to   monitor operation             of decay                               heat removal               via the SGs.           Four               steam           generator level (wide range}         channels                         (one                     per steam         generator}     are       provided (BLl-110, BLl-120, BLl-130, and                       BLl-140). Each                 channel                                   is capable of monitoring             from         12 inches   above                               the steam         generator           tube             sheet to the separators.
SG Water Level is a Category 1 variable provided to monitor operation of decay heat removal via the SGs. Four steam generator level (wide range} channels (one per steam generator} are provided (BLl-110, BLl-120, BLl-130, and BLl-140). Each channel is capable of monitoring from 12 inches above the steam generator tube sheet to the separators.
: 14.                                     Condensate                               Storage       Tank                   (CST)   Level
: 14. Condensate Storage Tank (CST) Level


CST Level is a           Category                   1 variable     provided to ensure               water   supply for auxiliary         feedwater (AFW}.                 The   CST provides the qualified water supply       for the AFW               System.                     Inventory                                   is monitored                 from       essentially the top   of the CST to the bottom                   of the CST (95% total volume}             by                     a single channel                             provided to   satisfy the guidance                       of Reference         3,   as described in Reference       1.             CST   Level is displayed on                       a           control           room indicator (CLl-114).
CST Level is a Category 1 variable provided to ensure water supply for auxiliary feedwater (AFW}. The CST provides the qualified water supply for the AFW System. Inventory is monitored from essentially the top of the CST to the bottom of the CST (95% total volume} by a single channel provided to satisfy the guidance of Reference 3, as described in Reference 1. CST Level is displayed on a control room indicator (CLl-114).


15,   16,   17,   18.                                   Core       Exit Temperature
15, 16, 17, 18. Core Exit Temperature


Core     Exit Temperature               is a         Type               A,   Category                   1 variable     used         to determine whether to manually                                     reduce               ECCS flow.           This variable   is also       provided for verification and                       long         term surveillance of core cooling.                             In             addition, core           exit tern       erature is used       for determinin RCS   subcooling                                   margin                 and                       to   monitor               for subcriticalit in the even fan               adverse     containment                                     environmen                                         .
Core Exit Temperature is a Type A, Category 1 variable used to determine whether to manually reduce ECCS flow. This variable is also provided for verification and long term surveillance of core cooling. In addition, core exit tern erature is used for determinin RCS subcooling margin and to monitor for subcriticalit in the even fan adverse containment environmen.


Two                   OPERABLE       channels                     of Core       Exit Temperature,               with one                     core exit thermocouple                       per channel,                           are       required in each                   quadrant                           to provide indication   of radial distribution of the coolant                           temperature rise across                   representative regions of the core.                     Two                   core             exit temperature channels                         per quadrant                           ensure               a           single failure will not           disable the ability to determine the radial temperature     gradient.         Each                 core           exit temperature   channel                             (SG-30 and                         SG-31   for TC   1 through         65) has         a range             of 200&deg;F to   2300 &deg;F.
Two OPERABLE channels of Core Exit Temperature, with one core exit thermocouple per channel, are required in each quadrant to provide indication of radial distribution of the coolant temperature rise across representative regions of the core. Two core exit temperature channels per quadrant ensure a single failure will not disable the ability to determine the radial temperature gradient. Each core exit temperature channel (SG-30 and SG-31 for TC 1 through 65) has a range of 200&deg;F to 2300 &deg;F.
: 19.                                   Secondary                                           Heat Sink Indication             (per SG)
: 19. Secondary Heat Sink Indication (per SG)


Secondary                                           Heat Sink Indication               is a           Type             A,     Category                     1 variable used         to determine whether to   manually                                         reduce             ECCS   flow.         This variable   is also         provided to monitor               operation           of decay                             heat removal via the SGs.
Secondary Heat Sink Indication is a Type A, Category 1 variable used to determine whether to manually reduce ECCS flow. This variable is also provided to monitor operation of decay heat removal via the SGs.


As stated in Note           ~                                                                 to Table           3.3 .3-1, the requirements for this variable   are     met   by                     any                             combination                                         of two           instruments   per SG,
As stated in Note ~ to Table 3.3.3-1, the requirements for this variable are met by any combination of two instruments per SG,


Cook                     Nuclear           Plant Unit     2                                     B 3.3.3-7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 Revision No.           Q PAM   Instrumentation B 3.3.3
Cook Nuclear Plant Unit 2 B 3.3.3-7 Revision No. Q PAM Instrumentation B 3.3.3


BASES
BASES


SURVEILLANCE                                       REQUIREMENTS                             (continued)
SURVEILLANCE REQUIREMENTS (continued)


SR             3.3.3.2               Deleted
SR 3.3.3.2 Deleted


SR               3.3.3.3
SR 3.3.3.3


CHANNEL   CALIBRATION       is a           complete     check           of the instrument   loop, including the sensor.                     The test verifies that the channel                           responds             to measured                           parameter       with the necessary                           range                   and                     accuracy.                                                                     This SR     is modified by                     a             Note that excludes                 neutron                           detectors. For     Function                               9,   the CHANNEL   CALIBRATION     shall consist of verifying that the position indication   conforms                               to actual                 valve position.       For     Functions                               15,   16,   17, and                           18, whenever               a           sensing       element is replaced, the next           required CHANNEL   CALIBRATION     of the Core     Exit Temperature           thermocouple sensors             is accomplished                     by                         an                       inplace   cross         calibration     that compares the other sensing     elements with the recently installed sensing       elements.
CHANNEL CALIBRATION is a complete check of the instrument loop, including the sensor. The test verifies that the channel responds to measured parameter with the necessary range and accuracy. This SR is modified by a Note that excludes neutron detectors. For Function 9, the CHANNEL CALIBRATION shall consist of verifying that the position indication conforms to actual valve position. For Functions 15, 16, 17, and 18, whenever a sensing element is replaced, the next required CHANNEL CALIBRATION of the Core Exit Temperature thermocouple sensors is accomplished by an inplace cross calibration that compares the other sensing elements with the recently installed sensing elements.
For     Functions                           20 (Circuit Breaker Status channels)                             and                         24, the CHANNEL   CALIBRATION     shall consist of verifying that the position indication   conforms                             to actual                 circuit breaker       position.       The Surveillance Frequency                                         is controlled under               the Surveillance Frequency                                 Control Program.
For Functions 20 (Circuit Breaker Status channels) and 24, the CHANNEL CALIBRATION shall consist of verifying that the position indication conforms to actual circuit breaker position. The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.


REFERENCES                                           1.                                           NRC     letter, T.     G. Colburn                           (NRG) to M. P . Alexich (Indiana                               Michigan Power               Company),                                                   "Emergency                                   Response                       Capability -                     Conformance to   Regulatory               Guide 1.97 Revision 3 for the D. C. Cook                     Nuclear Plant, Units   1 and                       2," dated   December                         14,   1990.
REFERENCES 1. NRC letter, T. G. Colburn (NRG) to M. P. Alexich (Indiana Michigan Power Company), "Emergency Response Capability - Conformance to Regulatory Guide 1.97 Revision 3 for the D. C. Cook Nuclear Plant, Units 1 and 2," dated December 14, 1990.
: 2.                                               UFSAR,                     Table           7.8-1.
: 2. UFSAR, Table 7.8-1.
: 3.                                             Regulatory                 Guide 1.97,   Revision 3,     May                       1983.
: 3. Regulatory Guide 1.97, Revision 3, May 1983.
: 4.                                             NUREG                   -0737, Supplement                 1,   "TMI Action         Items."
: 4. NUREG -0737, Supplement 1, "TMI Action Items."
: 5.                                                 NRG   letter, P.S.Tam                       (NRG),   to   M. K. Nazar,               (Indiana                               Michigan     Power Company),                                                         "Donald                       C. Cook                     Nuclear         Plant, Units   1 & 2 (DCCNP-1 and                         DCCNP-2) -           Issuance                             of Amendments                                       Re:     Containment                               Sump Modifications per Generic Letter 2004-02     (TAC Nos.           MD5901   and MD5902),"   dated October                 18, 2007.
: 5. NRG letter, P.S.Tam (NRG), to M. K. Nazar, (Indiana Michigan Power Company), "Donald C. Cook Nuclear Plant, Units 1 & 2 (DCCNP-1 and DCCNP-2) - Issuance of Amendments Re: Containment Sump Modifications per Generic Letter 2004-02 (TAC Nos. MD5901 and MD5902)," dated October 18, 2007.


6 .                                       Letter from       Indiana                               Michigan     Power             Company                                                               (K. J . Ferneau)                           to the NRC   dated   XXXX,                   XX           2024.
6. Letter from Indiana Michigan Power Company (K. J. Ferneau) to the NRC dated XXXX, XX 2024.


7 .                                     NRC     letter, X   . X.       XXXXXX                               (NRG), to Q. S. Lies (Indiana                                 Michigan Power               Company),                                                       XXXX,                   dated XXXX,                   XX         2024 .
7. NRC letter, X. X. XXXXXX (NRG), to Q. S. Lies (Indiana Michigan Power Company), XXXX, dated XXXX, XX 2024.


Cook                   Nuclear             Plant Unit     2                                                                                                                                                                                                                                                                                 B 3.3.3-15                                                                                                                                                                                                                                                                                                                                                                                                                                                         Revision No.             eO}}
Cook Nuclear Plant Unit 2 B 3.3.3-15 Revision No. eO}}

Revision as of 13:54, 5 October 2024

Unit 2 - Response to Request for Additional Information on Requested Change Regarding Neutron Flux Instrumentation
ML24058A357
Person / Time
Site: Cook  American Electric Power icon.png
Issue date: 02/27/2024
From: Ferneau K
Indiana Michigan Power Co
To:
Office of Nuclear Reactor Regulation, Document Control Desk
References
AEP-NRC-2024-11
Download: ML24058A357 (1)


Text

Indiana Michigan Power INDIANA Cook Nuclear Plant MICHIGAN One Cook Place POWIR

  • Bridgman, Ml 49106 indianamichiganpower.com An MP Company BOUNDLESS ENERGY"

AEP-NRC-2024-11 10 CFR 50.90

Docket Nos.: 50-315 50-316

U. S. Nuclear Regulatory Commission A TIN: Document Control Desk Washington, D.C. 20555-0001

Donald C. Cook Nuclear Plant Unit 1 and Unit 2 RESPONSE TO REQUEST FOR ADDITIONAL INFORMATION ON REQUESTED CHANGE REGARDING NEUTRON FLUX INSTRUMENTATION

References:

1. Letter from K. J. Ferneau, Indiana Michigan Power Company (l&M), to U.S. Nuclear Regulatory Commission (NRC), "Request for Approval of Change Regarding Neutron Flux Instrumentation," dated January 26, 2023, Agencywide Documents Access and Management System (ADAMS) Accession No. ML23026A284.
2. Letter from Q. S. Lies, l&M, to NRC, "Supplement to Request for Approval of Change Regarding Neutron Flux Instrumentation," dated August 2, 2023, ADAMS Accession No. ML23214A289.
3. E-mail from S. P. Wall, NRC, to M. K. Scarpello, l&M, "Final RAI - D.C. Cook 1 & 2 - License Amendment Request Regarding Neutron Flux Instrumentation (EPID No. L-2023-LLA-0011 ),"

dated November 17, 2023, ADAMS Accession No. ML23321A122.

This letter provides Indiana Michigan Power Company's (l&M), licensee for Donald C. Cook Nuclear Plant (CNP) Unit 1 and Unit 2, response to the Request for Additional Information (RAI) by the U. S.

Nuclear Regulatory Commission (NRC) regarding a request to use alternate means of fulfilling the requirements of Regulatory Guide 1.97 with regards to the plant safety function of reactivity control.

The request would reclassify the wide range neutron flux instrumentation at CNP Unit 1 and Unit 2 as Category 3 instrumentation, and would modify Technical Specification (TS) Table 3.3.3-1, Post Accident Monitoring Instrumentation, to remove Function 1, Neutron Flux, from the list of required post-accident monitoring instrumentation. The existing TS require two channels of neutron flux instrumentation to be operable.

U.S Nuclear Regulatory Commission AEP-NRC-2024-11 Page 2

By Reference 1, l&M submitted a request for approval of the reclassification of the wide range neutron flux instrumentation to Category 3 and a corresponding change to CNP Unit 1 and Unit 2 TS Table 3.3.3-1, Post Accident Monitoring Instrumentation. By Reference 2, l&M submitted a supplement to Reference 1. By Reference 3, the NRC submitted an RAI concerning the letter submitted by l&M as Reference 1. to this letter provides an affirmation statement. Enclosure 2 to this letter provides l&M's response to the NRC's RAI from Reference 3.

As discussed with NRC staff during the public meeting held January 24, 2024 (ML24031A587),

related to this RAI response, l&M is requesting to revise the scope of the amendment request such that Neutron Flux remains as Function 1 in TS Table 3.3.3-1, Post Accident Monitoring Instrumentation, but is exempt from the requirement to maintain environmental qualification. A supplement to the amendment request, which addresses the scoping changes, is included as to this letter.

and Enclosure 5 provide Unit 1 and Unit 2 TS pages, respectively, marked to show 'the proposed changes. Enclosure 6 and Enclosure 7 provide Unit 1 and Unit 2 TS Bases pages, respectively, marked to show the proposed changes. TS Bases markups are included for information only. Changes to the existing TS Bases, consistent with the technical and regulatory analysis, will be implemented under CNP's TS 5.5.12, "Technical Specifications Bases Control Program."

U.S Nuclear Regulatory Commission AEP-NRC-2024-11 Page 3

The changes proposed in this letter do not impact the conclusions provided in Reference 1 that a finding of "no significant hazards consideration" is justified. There are no new regulatory commitments made in this letter. Should you have any questions, please contact Mr. Michael K. Scarpello, Regulatory Affairs Director, at (269) 466-2649.

Sincerely,

Kelly J. Ferneau Site Vice President

BMC/sjh

Enclosures:

1. Affirmation

2. Response to Request for Additional Information on Requested Change Regarding Neutron Flux Instrumentation
3. Supplement to License Amendment Request Regarding Neutron Flux Instrumentation
4. Donald C. Cook Nuclear Plant Unit 1 Technical Specification Pages Marked to Show Proposed Changes
5. Donald C. Cook Nuclear Plant Unit 2 Technical Specification Pages Marked to Show Proposed Changes
6. Donald C. Cook Nuclear Plant Unit 1 Technical Specification Bases Pages Marked to Show Proposed Changes
7. Donald C. Cook Nuclear Plant Unit 2 Technical Specification Bases Pages Marked to Show Proposed Changes

c: EGLE -RMD/RPS J. B. Giessner-NRC Region Ill NRC Resident Inspector N. Quilico - MPSC R. M. Sistevaris -AEP Ft. Wayne, w/o enclosures S. P. Wall-NRC Washington, D.C.

A. J. Williamson -AEP Ft. Wayne, w/o enclosures Enclosure 1 to AEP-NRC-2024-11

AFFIRMATION

I, Kelly J. Ferneau, being duly sworn, state that I am the Site Vice President of Indiana Michigan Power Company (l&M), that I am authorized to sign and file this request with the U. S. Nuclear Regulatory Commission on behalf of l&M, and that the statements made and the matters set forth herein pertaining to l&M are true and correct to the best of my knowledge, information, and belief.

Indiana Michigan Power Company

Kelly J. Ferneau Site Vice President

SWORN TO AND SUBSCRIBED BEFORE ME

THIS c9 7 DAY OF kbrua.r"I 2024

~ ~~ ~

My Commission Expires 0\\ I&\\ jac@o

)

Enclosure 2 to AEP-NRC-2024-11

Response to Request for Additional Information on Requested Change Regarding Neutron Flux Instrumentation

By letter dated January 26, 2023 (Agencywide Documents Access and Management System (ADAMS) Accession No. ML23026A284) (Reference 1 ), Indiana Michigan Power Company (l&M),

the licensee for Donald C. Cook Nuclear Plant (CNP) Unit 1 and Unit 2, submitted a request to use alternate means of fulfilling the requirements of Regulatory Guide (RG) 1.97 with regards to the plant safety function of reactivity control at CNP Unit 1 and Unit 2. The request would reclassify the wide range neutron flux instrumentation at CNP Unit 1 and Unit 2 as Category 3 instrumentation, and would modify Technical Specification (TS) Table 3.3.3-1, Post Accident Monitoring Instrumentation, to remove Function 1, Neutron Flux, from the list of required post-accident monitoring (PAM) instrumentation.

By letter dated August 2, 2023 (ADAMS Accession No. ML23214A289) (Reference 2), l&M submitted a supplement to Reference 1.

The U. S. Nuclear Regulatory Commission (NRC) staff is currently reviewing the submittal and has determined that additional information is needed in order to complete the review (Reference 3). The request for additional information (RAI) and l&M's response are provided below.

As discussed with NRC staff during the public meeting held January 24, 2024, related to this RAI response, l&M is requesting to revise the scope of the amendment request such that Neutron Flux remains as Function 1 in TS Table 3.3.3-1, Post Accident Monitoring Instrumentation, but is exempt from the requirement to maintain environmental qualification. A supplement to the amendment request, which addresses the scoping changes, is included as Enclosure 3 to this letter.

EICB-RAl-1

In the LAR, the licensee states, in part, that:

In a design basis accident, wide range neutron flux instrumentation provides information to control room operators in two situations - to check if the reactor is no longer critical and to monitor the core for unexpected additions of reactivity after reactor shutdown has been achieved.

During an accident that involves normal containment conditions, the neutron flux monitoring instrumentation is expected to be available for use. Under these conditions, control room operators are able to monitor the reactivity state of the core by evaluating neutron flux behavior measured by all of the neutron flux monitoring instrumentation (Gamma-Metrics in addition to Westinghouse power range, intermediate range, and source range Westinghouse instruments) as well as Core Exit Thermocouple (GET) temperatures, Reactor Coolant System (RCS) hot leg and cold leg temperatures, and boron concentration.

..... Additionally, the shutdown margin would be verified by measuring boron concentration.

The EOPs would also direct the operators to assure that boric acid injection is taking place, adding negative reactivity to ensure that the core remains shut down. to AEP-NRC-2024-11 Page 2

CNP Unit 1 and Unit 2 EOPs also require control room operators to monitor RCS temperature using CETs and RCS hot leg and cold leg instruments, and to monitor boron concentration and the assurance of boron injection.

  • Please provide information regarding how the indication of "boron concentration and the assurance of boron injection" instrumentation or sampling process may each be considered as key variables and be measured with high-quality instrumentation, in lieu of neutron flux monitoring (source range).

o Describe the response time characteristics of instrumentation used for responding to a change in boron concentration and for assuring boron injection is taking place.

o Describe whether the use of instrumentation measuring boron concentration will enable plant operators to take timely mitigative action in an event of a return to criticality following a LOCA event.

l&M Response to EICB-RAl-1

Boron concentration would not be considered as a key variable with regards to subcriticality, but would be used by control room operators to assess shutdown margin as part of an aggregate indication review. Continuous indication of boron concentration via instrumentation is not available at CNP Unit 1 or Unit 2, rather RCS boron concentration is measured by sampling the RCS.

While Emergency Core Cooling Flow is a Type A, Category 1 variable included in CNP Unit 1 and Unit 2 TS Table 3.3.3-1, Post Accident Monitoring Instrumentation, as Function 20, it is not considered a key variable with regards to subcriticality.

The Emergency Core Cooling System (ECCS) is designed to inject borated water from a combination of the Accumulators and the Refueling Water Storage Tank (RWST) to ensure that an adequate supply of borated water is added to the reactor vessel following a design basis accident. The design ensures boron injection through at least three intact loops with the entire contents of one loop conservatively assumed to be unavailable due to a break. The safety analysis and rigorous testing ensure that the injection that occurs through the three intact loops is adequate for all design basis accidents.

TS Table 3.3.3-1, Post Accident Monitoring Instrumentation, Function 20 prescribes the minimum equipment that is required for operability of an ECCS flow channel, and this is clarified by a note stating "Any combination of two instruments per train, including Centrifugal Charging Pump Flow, Safety Injection Pump Flow, Centrifugal Charging Pump Circuit Breaker Status, and Safety Injection Pump Circuit Breaker Status, can be used to satisfy Function 20 OPERABILITY requirements."

Step 7 of Emergency Operating Procedure OHP-4023-E-0, Reactor Trip or Safety Injection, directs an operator to perform Attachment A of the procedure which systematically reviews expected equipment response to start pumps and align equipment that is required for the accident conditions. This includes ensuring that ECCS pumps are operating with a flow path from the RWST to the RCS through their respective injection flow paths. This is confirmed by observing pump running currents, valve positions, and injection flow indication on the control panels. to AEP-NRC-2024-11 Page3

EICB-RAl-2

Currently the Neutron Flux are fulfilling the requirements of 10 CFR 50.36(c)(2)(ii), as are the RCS Hot Leg Temperature (Wide Range), RCS Cold Leg Temperature (Wide Range), and GET monitoring instrumentations. If during an accident that involves elevated temperature containment conditions the neutron flux instrument is not available, the operators will be relying on boron concentration and the assurance of boron injection as key variables. Per RG 1.97 Revision 3, key variable should be qualified to meet Category design specifications. The CNP TS Bases states that the PAM instrumentation TSs ensures the operability of RG 1.97 Type A and Category 1 variables so that the control room operating staff can (among other items):

  • Perform the diagnosis specified in the emergency operating procedures (these variables are restricted to preplanned actions for the primary success path of DBAs), e.g., LOCA.
  • Take the specified, pre-planned manually controlled actions, for which no automatic control is provided, and that are required for safety systems to accomplish their safety functions.
  • Determine whether systems important to safety are performing their intended functions.

Provide the basis for concluding that boron concentration monitoring instrumentations and the assurance of boron injection is not required to be added to the PAM table.

l&M Response to EICB-RAl-2

As discussed in response to EICB-RAl-1 above, boron concentration monitoring and the assurance of boron injection are not considered key variables with regards to subcriticality, though ECCS flow is a Type A, Category 1 variable and is included as Function 20 in CNP Unit 1 and Unit 2 TS Table 3.3.3-1, Post Accident Monitoring Instrumentation. Instrumentation to continuously monitor boron concentration is not available at CNP Unit 1 or Unit 2.

EICB-RAl-3

Currently the Neutron Flux monitoring instrumentations are Category 1, as are the RCS Hot Leg Temperature (Wide Range), RCS Cold Leg Temperature (Wide Range), and GET monitoring instrumentations. Describe how the boron concentration monitoring instrumentations meets the qualifications of Category 1. If not currently at Category 1 qualification, are there any plans to upgrading the qualification of boron concentration instrumentation to Category 1? Please describe if so.

l&M Response to EICB-RAl-3

As discussed in response to EICB-RAl-1 above, boron concentration is not considered a key variable with regards to subcriticality, but is considered a backup variable, as further discussed in response to EICB-RAl-4.

EICB-RAl-4

In the LAR, the licensee indicates that a DC Cook plant operator would rely on indications from core exit temperatures, hot and cold leg temperatures, boron concentration, and assurance of boron injection to verify that there is no continued or unexpected reactivity occurring. Any actions to be taken by the to AEP-NRC-2024-11 Page4

operator must be taken timely enough during the event to have a high degree of success in achieving or returning to cold shutdown, and hence a safe reactor state.

a. Demonstrate whether there will be adequate time for detection of process changes at the location of the CETs and whether there is appropriate instrument response time and sufficient time available from the onset of reactor shutdown, for an operator relying on CET or Hot/Cold Leg Temperature, and boron concentration indications to verify that reactor shutdown has been successfully accomplished through the insertion of the control rods or boron addition during an accident with energy added to the containment.
b. Demonstrate whether there will be adequate time for process changes at the location of the instruments and whether there is appropriate instrument response time and sufficient time available from the onset of unexpected reactivity, for an operator using GET or Hot/Cold Leg Temperature indications and boron concentration to observe that unexpected reactivity is occurring to enable timely action to mitigate this condition.
c. Please provide an overview of an evaluation of expected process variations and the expected response of the GET and Hot/Cold Leg Temperature instruments to those variations regarding the time delay needed to allow for process changes to occur at the location of the Hot/Cold Leg Temperature instruments in response to those process variations.
  • Describe the expected response of these instruments to enable plant operators to take appropriate mitigative actions to recover from the accident and avoid further adverse consequences of the event.
  • Include your assumptions and conditions regarding whether the evaluation assumes whether the reactor coolant pumps are running and whether vessel or piping voiding conditions are occurring.

l&M Response to EICB-RAl-4

With regards to EICB-RAl-4 (a), as discussed with NRC staff during the public meeting held January 24, 2024, related to this RAI response, l&M is requesting to revise the scope of the amendment request such that Neutron Flux remains as Function 1 in TS Table 3.3.3-1, Post Accident Monitoring Instrumentation, but is exempt from the requirement to maintain environmental qualification. For purposes of verifying initial reactor shutdown at CNP Unit 1 and Unit 2 Neutron Flux would continue to be the key variable. A supplement to the amendment request, which addresses the scoping changes, is included as Enclosure 3 to this letter.

The remainder of l&M's response to EICB-RAl-4 is intended to address items (b) and (c), regarding operator response to the onset of unexpected reactivity.

In all cases where adverse containment conditions would render the non-environmentally qualified source range detection instruments unreliable, the event will be accompanied by a Safety Injection signal.

Following completion of immediate actions, licensed operators prioritize starting and aligning any ECCS equipment that should have actuated automatically. This is rapidly done using the operator's knowledge and will typically take place within the first two to three minutes of the reactor trip, depending on the operator's tasks for the event. to AEP-NRC-2024-11 Page 5

Since ECCS flow is intended for both reactivity and inventory control, insertion of control rods, the build up of Xenon, and verification of ECCS injection ensure that significant negative reactivity is being added at the early stages of the accident without any reliance on nuclear instrumentation or Core Exit Thermocouple readings.

Steam Line Break Inside Containment

While return to criticality and reactor power are not credible during the accident mitigation stage of a LOCA event, it is a possibility during the initial phase of a steam line break due to the large reactivity addition associated with an uncontrolled RCS cooldown. A steam line break inside containment could also create the conditions to render the non-environmentally qualified nuclear instrumentation unreliable. However, a postulated return to power for this type of cooldown event is self-limiting.

Assuming the initial reactor trip verification was successful, any return to criticality from an uncontrolled RCS cooldown during a steam line break event would be terminated through temperature feedback as the RCS heats up. The RCS temperature following the heat up would be below the temperature of the RCS at the time of the initial reactor trip, since boron would have been added by ECCS injection during the initial event response, and since control rods would insert during the reactor trip. The plant UFSAR accident analysis considers the return to power possibility from a steam line break, where the core is ultimately shut down by boric acid delivered by the ECCS to the RCS, which remains intact.

The recovery actions that follow include termination of ECCS injection, reestablishing normal charging and letdown, and eventually cooling down and depressurizing the RCS. ECCS termination is performed only after verifying procedural requirements for RCS inventory and subcooling are met. This ensures that Pressurizer Level is on scale and that no voids are present in the reactor vessel. At this point there is no accident in progress.

During post-accident recovery with the RCS intact, in a situation where Gamma-Metrics instruments are not available, control room operators are trained and directed by emergency operating procedures to monitor RCS temperature indication as a key variable to identify any postulated return to criticality and rising core power level. One or more indications of RCS temperature would be available to control room operators, including CET temperature, RCS Hot Leg temperature, and RCS Cold Leg temperature. These key parameters are all included in CNP Unit 1 and Unit 2 TS Table 3.3.3-1, Post Accident Monitoring Instrumentation, and conform to the design and qualification requirements of a Category 1 variable as described in RG 1.97, Revision 3 (Reference 4), other than deviations approved by the NRC in Reference 5.

If a natural circulation cooldown were required, procedural shutdown margin requirements are more stringent with no Reactor Coolant Pumps (RCPs) running to account for reduced mixing and longer loop transport times. Throughout the event, licensed operators and the Shift Technical Advisor verify that natural circulation cooling is occurring. Although loop transport times are slower without RCPs in service, temperature changes of just a few degrees Fahrenheit can be observed on RCS Hot Leg and Cold Leg temperature instruments and CETs. In summary, the RCS temperature indication is responsive enough to be the key variable to monitor for a return to criticality when the RCS is intact.

In addition, Pressurizer Level with an intact RCS is very responsive to small changes in RCS temperature and would provide defense in depth for monitoring a return to criticality in this scenario.

While this parameter is in CNP Unit 1 and Unit 2 TS Table 3.3.3-1, Post Accident Monitoring Instrumentation, as Function 12, this parameter is considered a backup variable with respect to monitoring for a return to criticality. to AEP-NRC-2024-11 Page6

Note that shutdown margin requirements are verified by RCS sampling prior to initiating an RCS cooldown, and the RCS is repeatedly sampled during the cooldown to ensure shutdown margin is maintained. However, RCS boron concentration sampling is considered a backup variable with respect to monitoring for a return to criticality.

Loss of Coolant Accident

During the long-term recovery actions that follow a design basis LOCA event there are three credible dilution sources to consider. Essential Service Water (ESW) operational leakage through an out of service Containment Spray (CTS) heat exchanger, Component Cooling Water (CCW) leakage through an out of service Residual Heat Removal (RHR) heat exchanger, and Auxiliary Feedwater addition through a Steam Generator to a depressurized RCS are possible dilution sources. The remainder of services in and out of containment are isolated by either a Containment Isolation Phase A or Phase 8/CTS signal.

Dilution via CCW leakage is not considered a credible source of a return to criticality since the CCW surge tank level is trended by two independent level channels with an alarm function. Leak rates of less than 1 gpm are easily observable, allowing mitigating action to be taken before it could become a significant dilution source.

CNP Unit 1 and Unit 2 TS 3.4.13, Reactor Coolant System (RCS), limits Steam Generator tube leakage to 150 gallons per day; and, without assuming an additional failure, Auxiliary Feedwater operational leakage into the RCS would be bounded by the more credible case of ESW leakage through an out of service CTS heat exchanger.

Even with a relatively large ESW leakage rate postulated, the boron concentration dilution rate of the aggregate inventory recirculated through the reactor core, consisting of a mix of the initial reactor inventory, ECCS injection, and melted ice from the ice bed, would be relatively slow. If a return to criticality is postulated without identification by the plant operators, then the corresponding core power rise rate will also be relatively slow. In a situation where the Gamma-Metrics instruments are not available, control room operators are trained and directed by emergency operating procedures to monitor RCS temperature to identify a return to criticality and rising core power level. The key variables monitored are the CETs and Hot Leg and Cold Leg RCS temperature indications. These parameters are included in CNP Unit 1 and Unit 2 TS Table 3.3.3-1, Post Accident Monitoring Instrumentation, and conform to the design and qualification requirements of a Category 1 variable as described in RG 1.97, Revision 3 (Reference 4 ), other than deviations approved by the NRC in Reference 5.

Function Restoration Procedure OHP-4023-FR-S.1, Response to Nuclear Power Generation/A TWS, is exited when Wide Range Power is less than 5% and neutron flux is lowering. While the exact power level for fuel damage to occur would be dependent on many variables, including RCS pressure and reactor power distribution, reactor power less than 5% provides assurance that there is no imminent threat to a critical safety function from criticality. For the postulated dilution, the time to return to a core power level of 5% would be on a time scale of one to several hours. This slow rate of dilution would provide control room operators sufficient time to respond to a postulated return to criticality and rising core power level, even in the event that indications for CETs or Hot Leg and Cold Leg temperatures experience delays.

It is noted that a slow dilution of RCS boron concentration via ingress of unborated water would likely be identified by control room operators prior to returning to criticality using other variables. These other variables would be considered as backup variables with respect to subcriticality. In the case of a to AEP-NRC-2024-11 Page?

breached RCS, changes in Containment Water Level would be an effective indication of an in-progress dilution. The RCS boron concentration is also repeatedly sampled during post-accident conditions and would indicate if there was an in-progress dilution of the RCS.

Sample/Demonstration Calculation of Hypothetical Long-Term Dilution Rate

A quantitative sample calculation was performed as a demonstration that the core dilution rate following a LOCA event will be relatively slow. It should be noted that the sample calculation was not designed or intended to be a bounding accident analysis case and was not intended to define any new plant design or licensing limits.

The sample calculation considers the effects of a 20 gallon per minute (gpm) leak through an out-of service CTS heat exchanger diluting the recirculation sump inventory through the spray ring header following a LOCA event. Note that while there are no TS limits on CTS tube leakage, these heat exchangers are rigorously inspected by the Generic Letter 89-13 program, and a 20 gpm leak would be considered very large and detectable by plant personnel. As a point of reference, all four heat exchangers are currently below detectable values for leakage.

The sample calculation uses a simple dilution of solution chemistry formula (i.e., Lf=i Ci

  • Vi = Cfinal
  • Vtinat, where C and V are the concentrations and volumes, respectively, of the original and final solutions) to derive the amount of leakage volume in gallons to decrease the reactor vessel boron concentration. Key inputs and assumptions for the sample calculation include:
  • The aggregate solution volume of the recirculation inventory before any dilution effects includes the initial RCS volume, the volume introduced during safety injection, and the volume introduced by the melting of the ice bed.
  • The core is assumed to already be critical at zero power before any dilution of the aggregate solution occurs. This approach is conservative for this demonstration because a higher initial boron concentration maximizes the rate at which the dilution changes the boron concentration.
  • The boron concentration of the ice bed and the RWST for safety injection are conservatively assumed to be at the maximum concentration allowed by TS.
  • The boron concentration in the RCS is assumed to be relatively high, but not necessarily a bounding value.
  • The volume of water in the RWST is set to the TS minimum value, and it is assumed that operators transition the plant to recirculation mode prior to emptying the RWST, such that only about 69% of the volume of the RWST ends up inside containment.
  • The volume of melted ice from the containment ice bed corresponds to the TS minimum ice condenser ice mass value.

Based on the conservative assumptions described above, and a 20 gpm leak of unborated water, it is calculated that it would take nearly 300 gallons of water to dilute the recirculation inventory by 1 ppm, and the dilution would occur at roughly 4.1 ppm per hour. At this rate of boron dilution, the time duration to raise power from 0% to 5% on a hypothetical return to criticality would be on a time scale of one to several hours.

It is noted that this slow dilution rate would also provide plant operators significant time to diagnose and mitigate the dilution prior to a return to criticality occurring with the monitoring of backup variables such as post-accident RCS boron concentration sampling. to AEP-NRC-2024-11 Page8

EICB-RAl-5

In the LAR, the licensee states, in part, that:

In addition, neutron flux instrumentation is not always proportional to reactor power, and therefore may provide anomalous indications which can potentially mislead the operator.

Excore neutron flux instrumentation response is dependent on the location of voi<;ling in the core and/or downcomer, the degree of core uncovery, and detector location. This is particularly likely for accidents which produce harsh containment environments since reactor vessel voiding may be occurring. Anomalous neutron flux indication (i.e., indication not proportional to reactor power) was observed at the Three Mile Island accident (Reference 3

[of LAR]) and has been demonstrated in NRC financed experiments (Reference 4 [of LAR]).

The NRC staff notes that one outcome of the Three Mile Island (TM/) recommendations was to have all PWR plants install a reactor vessel level indication system (RVLIS) to detect and monitor recovery from inadequate core cooling (ICC). All PWR plants were required to have redundant, environmentally qualified Class IE ICC systems. These systems were required to be functional during and following LOCA events. As described in Summary Report, "Westinghouse Reactor Vessel Level Instrumentation System for Monitoring Inadequate Core Cooling" dated December 1980 (ML181398695), Westinghouse-designed RVLIS systems are capable of monitoring reactor vessel upper head and plenum, and wide range (dynamic) level. Indication from this level system should be capable of informing plant operators of the location of any voiding occurring inside reactor vessel.

Information regarding the location of voiding in the reactor vessel should serve to support interpretation of readings from the neutron detectors outside reactor vessel which appear to be anomalous.

  • Please describe the RVLIS installed at CNP and confirm that it meets the TM/ recommendations for monitoring ICC following a LOCA event.
  • Please provide a description of the process or procedure the plant operators would use to interpret potentially anomalous neutron source range readings by using information from the RVLIS regarding the location of potential reactor vessel voiding.

l&M Response to EICB-RAl-5

At CNP Unit 1 and Unit 2 a RVLIS is provided to indicate the relative vessel water level or the relative void content of fluid in the vessel during post-accident conditions. This level indication assists the operator in recognizing conditions which may lead to high temperatures that could damage the vessel or its internals. Level indicators and recorders are located in the CNP Unit 1 and Unit 2 control rooms.

Sensors measuring the differential pressure, between the vessel head and the bottom and between the head and the hot legs, provide the basis for level indication. Because flow through the vessel affects differential pressure measurement, three level indication ranges are provided by separate sensors. One range monitors void content in the reactor vessel when one or more Reactor Coolant Pumps are running. The remaining two ranges monitor the entire vessel level and partial water level (from the top of the reactor head to the hot leg) at zero forced flow conditions (no Reactor Coolant Pump operating).

The differential pressure measurements are compensated for process effects using reactor coolant system pressure and temperature measurements. They are also compensated for environmental to AEP-NRC-2024-11 Page9

temperature effects on the RVLIS sensing lines using temperature measurements at representative sensing line locations.

At CNP Unit 1 and Unit 2 the RVLIS, also called the Reactor Coolant Inventory Tracking System, is included in TS Table 3.3.3-1, Post Accident Monitoring Instrumentation, as Function 6. The installed RVLIS conforms to the design and qualification requirements of a Category 1 variable per RG 1.97, Revision 3 (Reference 4 ), other than deviations approved by the NRC in Reference 5, and meets the TMI recommendations for monitoring for inadequate core cooling following a LOCA event.

At CNP Unit 1 and Unit 2 Function Restoration Procedure OHP-4023-FR-l-3, Response to Voids in Reactor Vessel, provides guidance to interpret RVLIS indication and take appropriate action. While this does not specifically address interpretation of source range indication, licensed operators and the Shift Technical Advisor are trained on the limitation of excore neutron instrumentation and would therefore expect anomalous indication any time subcooling requirements are not met.

References:

1. Letter from K. J. Ferneau, Indiana Michigan Power Company (l&M), to U.S. Nuclear Regulatory Commission (NRC), "Request for Approval of Change Regarding Neutron Flux Instrumentation," dated January 26, 2023, Agencywide Documents Access and Management System (ADAMS) Accession No. ML23026A284.
2. Letter from Q. S. Lies, l&M, to NRC, "Supplement to Request for Approval of Change Regarding Neutron Flux Instrumentation," dated August 2, 2023, ADAMS Accession No. ML23214A289.
3. E-mail from S. P. Wall, NRC, to M. K. Scarpello, l&M, "Final RAI - D.C. Cook 1 & 2 - License Amendment Request Regarding Neutron Flux Instrumentation (EPID No. L-2023-LLA-0011 ),"

dated November 17, 2023, ADAMS Accession No. ML23321A122.

4. Regulatory Guide 1.97, "Instrumentation for Light-Water-Cooled Nuclear Power Plants to Assess Plant and Environs Conditions During and Following an Accident," Revision 3, May 1983, ADAMS Accession No. ML003740282.
5. NRC letter, T. G. Colburn (NRC) to M. P. Alexich (Indiana Michigan Power Company),

"Emergency Response Capability - Conformance to Regulatory Guide 1.97 Revision 3 for the D. C. Cook Nuclear Plant, Units 1 and 2," dated December 14, 1990, ADAMS Accession No.

ML17328A824.

Enclosure 3 to AEP-NRC-2024-11

Supplement to License Amendment Request Regarding Neutron Flux Instrumentation

By letter dated January 26, 2023 (Agencywide Documents Access and Management System (ADAMS) Accession No. ML23026A284) (Reference 1 ), Indiana Michigan Power Company (l&M),

the licensee for Donald C. Cook Nuclear Plant (CNP) Unit 1 and Unit 2, submitted a request to use alternate means of fulfilling the requirements of Regulatory Guide (RG) 1.97 with regards to the plant safety function of reactivity control at CNP Unit 1 and Unit 2. The request would reclassify the wide range neutron flux instrumentation at CNP Unit 1 and Unit 2 as Category 3 instrumentation, and would modify Technical Specification (TS) Table 3.3.3-1, Post Accident Monitoring Instrumentation, to remove Function 1, Neutron Flux, from the list of required post-accident monitoring (PAM) instrumentation.

By letter dated August 2, 2023 (ADAMS Accession No. ML23214A289) (Reference 2), l&M submitted a supplement to Reference 1.

By Reference 3, the NRC submitted a Request for Additional Information (RAI) concerning the letter submitted by l&M as Reference 1.

Proposed Changes to License Amendment Request

As discussed with NRC staff during the public meeting held January 24, 2024, l&M is requesting to revise the scope of the amendment request such that Neutron Flux remains as Function 1 in TS Table 3.3.3-1, Post Accident Monitoring Instrumentation, but a note would be added to the table indicating that Function 1 is exempt from the requirement to maintain environmental qualification (EQ). This change in scope is to address the inability to environmentally qualify one of the existing instruments at CNP Unit 2 due to lack of available parts and vendor support.

=

Background===

In December of 1980, the NRC issued Revision 2 of Regulatory Guide (RG) 1.97, Instrumentation for Light-Water-Cooled Nuclear Power Plants to Assess Plant and Environs Conditions During and Following an Accident (Reference 4). This was followed by Revision 3 of RG 1.97 in May of 1983 (Reference 5). The stated purpose of RG 1.97 is to describe a method acceptable to the NRC staff for complying with the Commission's regulations to provide instrumentation to monitor plant variables and systems during and following an accident in a light-water-cooled nuclear power plant. Included in RG 1.97 Revision 2 and Revision 3 was the establishment of Neutron Flux as a Type B, Category 1 variable associated with the plant safety function of reactivity control, provided for the purposes of function detection and accomplishment of mitigation.

As stated in Reference 1, at CNP Unit 1 and Unit 2, in a design basis accident wide range neutron flux instrumentation provides information to control room operators in two situations - to verify the initial shutdown of the reactor following the accident and to monitor the core for unexpected additions of reactivity after reactor shutdown has been achieved.

Technical Analysis

As described in Reference 1, for events that do not result in a harsh environment inside the containment volume, wide range neutron flux would still be available for use, regardless of whether to AEP-NRC-2024-11 Page 2

the instruments meet EQ criteria. When considering events that do result in an adverse containment atmosphere, Reference 1 describes how wide range neutron flux instrumentation is expected to be able to continue to be available to verify initial reactor shutdown, since the associated step in the emergency operating procedures will be performed before the neutron flux instrumentation is adversely impacted by the degrading conditions within the containment volume.

With regards to monitoring for unexpected additions of reactivity following an event that results in adverse containment conditions, Reference 1, Reference 2, and Enclosure 2 to this letter describe how control room operators would rely on information from the Core Exit Thermocouples (CETs) and the Reactor Coolant System (RCS) Hot and Cold Leg temperature instruments to identify an increase in RCS temperature associated with a return to criticality, and would be able to take timely action to mitigate this condition.

Regulatory Assessment

RG 1.97, Revision 3 established Neutron Flux as a Type B, Category 1 variable with regards to the plant safety function of reactivity control, provided for the purposes of function detection and accomplishment of mitigation.

RG 1.97 states, in part, that a key variable is that single variable (or minimum number of variables) that most directly indicates the accomplishment of a safety function. It also states that the design and qualification criteria category assigned to each variable indicates whether the variable is considered to be a key variable or for system status indication or for backup or diagnosis, i.e., for Types B and C, the key variables are Category 1; backup variables are generally Category 3.

For the overall safety function of reactivity control, l&M considers the key variables to be Neutron Flux, CET temperature, and RCS Hot and Cold Leg temperatures. For purposes of verifying initial reactor shutdown l&M considers Neutron Flux to be the key variable. For events that do not result in an adverse containment environment Neutron Flux would still be available for use to monitor subcriticality following the initial reactor shutdown. For events that result in an adverse containment environment, l&M considers CET temperature and RCS Hot and Cold Leg temperatures to be the key variables used to monitor subcriticality following initial reactor shutdown.

In August 2016 the NRC issued Revision 6 of NUREG-0800, Standard Review Plan, Branch Technical Position 7-10, Guidance on Application of Regulatory Guide 1.97 (Reference 6). The stated objectives of this Branch Technical Position are to clarify the staff position on accident monitoring instrumentation, and to identify alternatives acceptable to the staff for satisfying the guidelines identified in RG 1.97.

With regards to the variable of Neutron Flux, Reference 6 Table 2, For PWRs: Acceptable Deviations and Clarifications to Revision 2 and 3 of Regulatory Guide 1.97, states that a non-environmentally qualified instrument is acceptable if qualified CETs and RCS Hot and Cold Leg temperature indications are provided in conjunction with directions in emergency procedures for operator action to assure that boric acid injection is occurring.

At CNP Unit 1 and Unit 2 CETs and RCS Hot and Cold Leg temperature instruments are Type A, Category 1 variables included in TS Table 3.3.3-1, Post Accident Monitoring Instrumentation. In addition, emergency operating procedures at CNP Unit 1 and Unit 2 direct operators to verify that boric acid injection is occurring. Thus the request to exempt Neutron Flux from the requirement to maintain environmental qualification is within the guidance provided by Reference 6 to AEP-NRC-2024-11 Page 3

Revisions to Text of Original License Amendment Request

Due to the requested change in scope of the license amendment request, l&M proposes that the following substitutions be made to the text of Enclosure 2 to Reference 1. It should be noted that the changes proposed in this supplement do not impact the conclusions provided in Reference 1 that a finding of "no significant hazards consideration" is justified.

Update 1: Section 1.0, Summary Description, Paragraphs 1, 5, and 6

Original Paragraph 1

Pursuant to 10 CFR 50.90, Indiana Michigan Power Company (l&M), the licensee for Donald C.

Cook Nuclear Plant (CNP) Unit 1 and Unit 2, is requesting U.S. Nuclear Regulatory Commission (NRC) approval to use alternate means of fulfilling the requirements of Regulatory Guide (RG) 1.97 with regards to the plant safety function of reactivity control. l&M is requesting to reclassify the wide range neutron flux instrumentation at CNP Unit 1 and Unit 2 as Category 3 instrumentation, and is requesting a corresponding change to the Technical Specification (TS) for CNP Unit 1 and Unit 2. l&M proposes to modify TS Table 3.3.3-1, Post Accident Monitoring Instrumentation, to remove Function 1, Neutron Flux, from the list of required post-accident monitoring (PAM) instrumentation. The existing TS require two channels of neutron flux instrumentation to be operable.

Revised Paragraph 1

Pursuant to 10 CFR 50.90, Indiana Michigan Power Company (l&M), the licensee for Donald C.

Cook Nuclear Plant (CNP) Unit 1 and Unit 2, is requesting U.S. Nuclear Regulatory Commission (NRC) approval to add a note to CNP Unit 1 and Unit 2 TS Table 3.3.3-1, Post Accident Monitoring Instrumentation, Function 1, Neutron Flux, exempting channels used to satisfy Function 1 from the requirement to be environmentally qualified. The existing TS require the two channels of neutron flux instrumentation to be environmentally qualified in order to be considered operable.

Original Paragraph 5 and 6

The proposed change to the CNP Unit 1 and Unit 2 TS would remove neutron flux from the list of required PAM instrumentation because other existing instrumentation remains available to control room operators to confirm that the reactor is no longer critical.

The proposed reclassification of wide range neutron flux instrumentation, and associated TS change, would more closely align with the role of the wide range neutron flux instrumentation as backup instrumentation for the purposes of PAM at CNP Unit 1 and Unit 2 and would allow l&M to pursue resolution of an inoperable neutron flux channel without undue risk of a TS-required shut down.

Revised Paragraph 5 and 6

The proposed change to the CNP Unit 1 and Unit 2 TS would allow non-environmentally qualified neutron flux instruments to satisfy the requirements of TS Table 3.3.3-1 Function 1, Neutron Flux, because environmental qualification is not required in order for the neutron flux instrumentation to accomplish its role as the key variable used to confirm initial reactor shutdown following a reactor trip or safety injection. For events that do not result in an adverse containment to AEP-NRC-2024-11 Page4

environment Neutron Flux would continue to be available for use to monitor subcriticality following the initial reactor shutdown. For events that result in an adverse containment environment, l&M considers CET temperature and RCS Hot and Cold Leg temperatures to be the key variables used to monitor subcr iticality following initial reactor shutdown.

The proposed exemption of environmental qualification requirements for TS-required neutron flux instrumentation would allow the continued use of the Gamma-Metrics neutron flux instruments for the purposes of post-accident monitoring at CNP Unit 1 and Unit 2 without adverse impact to the ability of control room operators to respond to an event.

Update 2: Section 2.3, Reason for the Proposed Change, Paragraph 5

Original Paragraph

Reclassifying the wide range neutron flux instrumentation at CNP Unit 1 and Unit 2 as Category 3 instrumentation, and removing the instrumentation from TS Table 3.3.3-1 would allow l&M to pursue resolution of an inoperable wide range neutron flux instrument without undue risk of a TS required shutdown. This becomes particularly important as the instrument vendor prepares to end support an~ maintenance of the currently installed instrumentation.

Revised Paragraph

The proposed exemption of environmental qualification requirements for TS-required neutron flux instrumentation would allow the continued use of the Gamma-Metrics neutron flux instruments for the purposes of post-accident monitoring at CNP Unit 1 and Unit 2 without adverse impact to the ability of control room operators to respond to an event. This becomes particularly important as the instrument vendor prepares to end support and maintenance of the currently installed instrumentation, and support of the instruments transitions to a new vendor, with timelines for parts availability still uncertain, impacting l&M's ability to environmentally qualify one of the existing instruments at CNP Unit 2.

Update 3: Section 2.4, Description of the Proposed Change, Entire Section

Updated Text (replaces existing section)

l&M is requesting NRC approval to add a note to CNP Unit 1 and Unit 2 TS Table 3.3.3-1, Post Accident Monitoring Instrumentation, Function 1, Neutron Flux, exempting channels used to satisfy Function 1 from the requirement to be environmentally qualified.

The proposed change to CNP Unit 1 and Unit 2 TS would also supersede the regulatory commitment made by l&M in Reference 1 to provide two channels of neutron flux instrumentation that meet Category 1 requirements, including environmental qualification. Two channels of neutron flux instrumentation would remain installed, but environmental qualification of the neutron flux instrumentation would no longer be required.

No changes are requested to CNP Unit 1 nor Unit 2 TS 3.9.2, Nuclear Instrumentation. to AEP-NRC-2024-11 Page 5

Update 4: Section 4.1, Applicable Regulatory Requirements/Criteria, Paragraphs 6, 9 and 10

Original Paragraph 6

l&M proposes an alternative method of fulfilling the requirements of RG 1.97 with regards to reactivity control. It is proposed that RCS Hot Leg Water Temperature, RCS Cold Leg Temperature, and Core Exit Temperature be considered as Type B variables for reactivity control, for the purpose of function detection, and that the associated instrumentation meet the requirements of Category 1 instrumentation. Neutron flux would be considered as backup instrumentation for the purpose of verification of reactivity control, and a Category 3 classification is appropriate.

Revised Paragraph 6

l&M proposes an alternative method of fulfilling the requirements of RG 1.97 with regards to reactivity control. It is proposed that RCS Hot Leg Water Temperature, RCS Cold Leg Temperature, and Core Exit Temperature be considered as key variables for the purpose of identifying unexpected reactivity following an accident that involves an adverse containment environment, and that the associated instrumentation meet the requirements of Category 1 instrumentation. Neutron flux would be considered as a key variable for the purpose of verifying initial reactor shutdown following an accident and would be available for events that do not result in an adverse containment environment, and would continue to meet the requirements of Category 1 instrumentation with the exception that environmental qualification would not be required.

Original Paragraphs 9 and 10

10 CFR 50.49, Environmental qualification of electric equipment important to safety for nuclear power plants, requires licensee of nuclear plants to establish a program for qualifying certain electrical equipment important to safety, including environmental qualification. The equipment covered by this section includes safety-related equipment that is relied upon to remain functional during and following design basis events to ensure ( 1) the integrity of the reactor coolant pressure boundary, (2) the capability to shut down the reactor and maintain it in a safe shutdown condition, or (3) the capability to prevent or mitigate the consequences of accidents that could result in potential offsite radiation exposures. Also covered by this section is certain post-accident monitoring equipment, per guidance provided in Revision 2 of RG 1.97. As discussed above, neutron flux would be considered as backup instrumentation for the purpose of verification of reactivity control, and while control room operators would continue to use the information provided by the Gamma-Metrics instruments as long as it is available, the instruments themselves would not be relied upon in the event of an adverse containment environment. Thus, with neutron flux considered as backup instrumentation, the requirements of 10 CFR 50.49 would not dictate that neutron flux instrumentation be environmentally qualified.

10 CFR 50.36(c)(2)(ii) provides four criteria that would necessitate establishing a TS limiting condition for operation. When considering neutron flux as a Category 3 variable, consistent with its use as backup instrumentation for PAM at CNP Unit 1 and Unit 2, none of the four criteria apply, and removal from TS Table 3.3.3-1, Post Accident Monitoring Instrumentation, is justified. to AEP-NRC-2024-11 Page 6

Revised Paragraph 9 (Paragraph 10 would be deleted)

10 CFR 50.49, Environmental qualification of electric equipment important to safety for nuclear power plants, requires licensee of nuclear plants to establish a program for qualifying certain electrical equipment important to safety, including environmental qualification. The equipment covered by this section includes safety-related equipment that is relied upon to remain functional during and following design basis events to ensure ( 1) the integrity of the reactor coolant pressure boundary, (2) the capability to shut down the reactor and maintain it in a safe shutdown condition, or (3) the capability to prevent or mitigate the consequences of accidents that could result in potential offsite radiation exposures. Also covered by this section is certain post-accident monitoring equipment, per guidance provided in Revision 2 of RG 1.97. As discussed above, neutron flux would be considered as a key variable for verifying reactor shutdown following an accident, and while control room operators would continue to use the information provided by the Gamma-Metrics instruments as long as it is available, the instruments themselves would not be required to withstand the effects of an adverse containment environment in order to accomplish this function. Thus, while neutron flux instrumentation is expected to remain functional for a brief period following the start of a design basis accident, the requirements of 10 CFR 50.49 would not dictate that neutron flux instrumentation be environmentally qualified.

Update 5: Section 4.2, No Significant Hazards Determination, Entire Section

Updated Text (replaces existing section)

Pursuant to 10 CFR 50.90, Indiana Michigan Power Company (l&M), the licensee for Donald C.

Cook Nuclear Plant (CNP) Unit 1 and Unit 2, is requesting U.S. Nuclear Regulatory Commission (NRC) approval to add a note to CNP Unit 1 and Unit 2 TS Table 3.3.3-1, Post Accident Monitoring Instrumentation, Function 1, Neutron Flux, exempting channels used to satisfy Function 1 from the requirement to be environmentally qualified. The existing TS require the two channels of neutron flux instrumentation to be environmentally qualified in order to be considered operable.

l&M has evaluated whether or not a significant hazards consideration is involved with the proposed TS Bases change by focusing on the three standards set forth in 10 CFR 50.92, "Issuance of amendment," as discussed below:

1. Does the proposed amendment involve a significant increase in the probability or consequences of an accident previously evaluated?

Response: No.

The proposed TS change involves elimination of environmental qualification (EQ) requirements from a specific set of required PAM instrumentation. The proposed change does not involve a physical change to the plant or a change in the manner in which the plant is operated or controlled.

The PAM instrumentation provides information to control room operators after an accident has occurred. Therefore, the probability of occurrence of an accident previously evaluated is not significantly increased by the proposed amendment.

The proposed change removes EQ requirements from a specific set of required PAM instrumentation, but ensures that the information required by control room operators is still available in the event of an accident, thus not significantly increasing the consequences of an accident previously evaluated. to AEP-NRC-2024-11 Page 7

Therefore, it is concluded that the proposed change does not involve a significant increase in the probability or consequences of an accident previously evaluated.

2. Does the proposed amendment create the possibility of a new or different kind of accident from any accident previously evaluated?

Response: No.

The proposed TS change removes EQ requirements from a specific set of required PAM instrumentation and does not alter the design function or operation of any structure, system, or component that may be involved in the initiation of an accident. The proposed change does not create new failure mechanisms, malfunctions, or accident initiators. The proposed change does not involve a physical change to the plant (i.e., no new or different type of equipment will be installed) or a change to the manner in which the plant is operated or controlled. Therefore, the proposed change does not create the possibility of a new or different kind of accident from any previously evaluated.

3. Does the proposed amendment involve a significant reduction in a margin of safety?

Response : No.

The proposed TS change involves elimination of EQ requirements from a specific set of required PAM instrumentation. This change does not alter the manner in which safety limits, limiting safety system setpoints, or limiting conditions for operation are determined. The EQ requirements of a specific set of required PAM instrumentation are changed, but the necessary information available to control room operators is retained. Therefore, the proposed change does not involve a significant reduction in a margin of safety.

In conclusion, based on the considerations discussed above, (1) there is reasonable assurance that the health and safety of the public will not be endangered by operation in the proposed manner, (2) such activities will be conducted in compliance with the NRC's regulations, and (3) approval of the proposed TS change will not be inimical to the common defense and security or to the health and safety of the public. l&M concludes that the proposed TS change presents no significant hazards consideration under the standards set forth in 10 CFR 50.92(c) and, accordingly, a finding of "no significant hazards consideration" is justified.

References:

1. Letter from K. J. Ferneau, Indiana Michigan Power Company (l&M), to U.S. Nuclear Regulatory Commission (NRC), "Request for Approval of Change Regarding Neutron Flux Instrumentation," dated January 26, 2023, Agencywide Documents Access and Management System (ADAMS) Accession No. ML23026A284.
2. Letter from Q. S. Lies, l&M, to NRC, "Supplement to Request for Approval of Change Regarding Neutron Flux Instrumentation," dated August 2, 2023, ADAMS Accession No. ML23214A289.
3. E-mail from S. P. Wall, NRC, to M. K. Scarpello, l&M, "Final RAI - D.C. Cook 1 & 2 - License Amendment Request Regarding Neutron Flux Instrumentation (EPID No. L-2023-LLA-0011 ), "

dated November 17, 2023, ADAMS Accession No. ML23321A122. to AEP-NRC-2024-11 Page 8

4. Regulatory Guide 1.97, "Instrumentation for Light-Water-Cooled Nuclear Power Plants to Assess Plant and Environs Conditions During and Following an Accident," Revision 2, December 1980, ADAMS Accession No. ML060750525.
5. Regulatory Guide 1.97, "Instrumentation for Light-Water-Cooled Nuclear Power Plants to Assess Plant and Environs Conditions During and Following an Accident," Revision 3, May 1983, ADAMS Accession No. ML003740282.
6. NUREG-0800, Standard Review Plan -Chapter 7, Branch Technical Position 7-10, Revision 6, Guidance on Application of Regulatory Guide 1.97, dated August 2016, ADAMS Accession No.

ML16019A169.

Enclosure 4 to AEP-NRC-2024-11

Donald C. Cook Nuclear Plant Unit 1 Technical Specification Pages Marked to Show Proposed Changes PAM Instrumentation 3.3.3

Table 3.3.3-1 (page 1 of 2)

Post Accident Monitoring Instrumentation

CONDITION FROM REQUIRED REFERENCED

FUNCTION REQUIRED CHANNELS ACTION E.1

1. Neutron Flux 2~ F
2. Steam Generator Pressure (per steam generator) 2 F
3. Reactor Coolant System (RCS) Hot Leg 2 F Temperature (Wide Range)

4. RCS Cold Leg Temperature (Wide Range) 2 F

5. RCS Pressure (Wide Range) 2 F
6. Reactor Coolant lnventol)' Tracking System 2 G (Reactor Vessel Level Indication)
7. Containment Water Level 2 ~ F
8. Containment Pressure (Narrow Range) 2 F
9. Penetration Flow Path Containment Isolation Valve 2 per penetration flow F Position path !l>l<cl~
10. Containment Area Radiation (High Range) 2 G

11. Deleted 12. Pressurizer Level 2 F

13. Steam Generator Water Level (Wide Range) 4 F

14. Condensate Storage Tank Level G

15. Core Exit Temperature - Quadrant 1 2~ F
16. Core Exit Temperature - Quadrant 2 2~ F

17. Core Exit Temperature - Quadrant 3 2~ F

18. Core Exit Temperature - Quadrant 4 2~ F I (a) Channels used to satisfy Function 1 are not required to be environmentally qualified.

~ Up to one channel of Function 7 OPERABILITY requirements can be satisfied by an OPERABLE train of containment water level switches if both Containment Water Level channels are inoperable. This substitution is only allowed until the end of the current operating cycle when it is invoked.

~ Not required for isolation valves whose associated penetration is isolated by at least one closed and deactivated automatic valve, closed manual valve, blind flange, or check valve with flow through the valve secured.

m Only one position indication channel is required for penetration flow paths with only one installed control room indication channel.

~ A channel consists of one core exit thennocouple (CET).

Cook Nuclear Plant Unit 1 3.3.3-4 Amendment No. ~. 343, 3eG PAM Instrumentation 3.3.3

Table 3.3.3-1 (page 2 of 2)

Post Accident Monitoring Instrumentation

REFERENCED CONDITION

FROM REQUIRED FUNCTION REQUIRED CHANNELS ACTION E.1

19. Secondary Heat Sink Indication 2 ~ F (per steam generator)

20. Emergency Core Cooling System Flow (per train) 2 ~ F

21. Containment Pressure (Wide Range) 2 F

22. Refueling Water Storage Tank Level 2 F

23. RCS Subcooling Margin Monitor 1~ F

24. Component Cooling Water Pump Circuit Breaker 2 G Status

25. Containment Recirculation Sum p Water Level 2 F

~ Any combination of two instruments per steam generator, includ ing Steam Generator Water Level (Narrow Range) and Auxiliary Feedwater Flow, can be used to satisfy Function 19 OPERABILITY requirements.

~ Any combination of two instruments per train, including Centrifugal Charging Pump Flow, Safety Injection Pump Flow, Centrifugal Charging Pump Circuit Breaker Status, and Safety Injection Pump Circuit Breaker Status, can be used to satisfy Function 20 OPERABILITY requirements.

~ An OPERABLE plant process computer (PPG) subcooling margin readout can be used as a substitute for an inoperable Function 23, RCS Subcooling Margin Monitor.

Cook Nuclear Plant Unit 1 3.3.3-5 Amendment No. ~. 299, ~. 3eQ Enclosure 5 to AEP-NRC-2024-11

Donald C. Cook Nuclear Plant Unit 2 Technical Specification Pages Marked to Show Proposed Changes PAM Instrumentation 3.3.3

Table 3.3.3-1 (page 1 of 2)

Post Accident Monitoring Instrumentation

REFERENCED CONDITION

FROM REQUIRED FUNCTION REQUIRED CHANNELS ACTION E.1

1. Neutron Flux 2~ F

2. Steam Generator Pressure (per steam generator) 2 F 3. Reactor Coolant System (RCS) Hot Leg Temperature (Wide Range) 2 F

4. RCS Cold Leg Temperature (Wide Range) 2 F 5. RCS Pressure (Wide Range) 2 F

6. Reactor Coolant Inventory Tracking System 2 G (Reactor Vessel Level Indication)

7. Containment Water Level 2 ~ F 8. Containment Pressure (Narrow Range) 2 F
9. Penetration Flow Path Containment Isolation Valve 2 per penetration flow F Position path l&llc~
10. Containment Area Radiation (High Range) 2 G
11. Deleted

12. Pressurizer Level 2 F

13. Steam Generator Water Level (Wide Range) 4 F
14. Condensate Storage Tank Level 1 G
15. Core Exit Temperature - Quadrant 1 2!d~ F

16. Core Exit Temperature - Quadrant 2 2!d~ F

17. Core Exit Temperature - Quadrant 3 2{<1 ~ F

18. Core Exit Tem perature - Quadrant 4 2 !df:I F I (a) Channels used to sa tisfy Function 1 are not required to be environmentally qualified.

~ Up to one channel of Function 7 OPERABILITY requirements can be satisfied by an OPERABLE train of containment water level switches if both Containment Water Level channels are inoperable. This substitution is only allowed until the end of the current operating cycle when it is invoked.

~ Not required for isolation valves whose associated penetration is isolated by at least one closed and deactivated automatic valve, closed manual valve, blind flange, or check valve with flow through the valve secured.

~ Only one position indication channel is required for penetration flow paths with only one installed control room indication channel.

~ A channel consists of one core exit thermocouple (CET).

Cook Nuclear Plant Unit 2 3.3.3-4 Amendment No. ~. ~. ~

PAM Instrumentation 3.3.3

Table 3.3.3-1 (page 2 of 2)

Post Accident Monitoring Instrumentation

CONDITION REFERENCED FUNCTION REQUIRED CHANNELS FROM REQUIRED ACTION E.1

19. Secondary Heat Sink Indication 2!erJ F (per steam generator)

20. Emergency Core Cooling System Flow (per train) 2{1)~ F

21. Containment Pressure (Wide Range) 2 F

22. Refueling Water Storage Tank Level 2 F
23. RCS Subcooling Margin Monitor 119~ F

24. Component Cooling Water Pump Circuit Breaker 2 G Status

25. Containment Recirculation Sum p Water Level 2 F

~ Any combination of two instruments per steam generator, including Steam Generator Water Level (Narrow Range) and Auxiliary Feedwater Flow, can be used to satisfy Function 19 OPERABILITY requirements.

~ Any combination of two instruments per train, including Centrifugal Charging Pump Flow, Safety Injection Pump Flow, Centrifugal Charging Pump Circuit Breaker Status, and Safety Injection Pump Circuit Breaker Status, can be used to satisfy Function 20 OPERABILITY requirements.

~ An OPERABLE plant process computer (PPC) subcooling margin readout can be used as a substitute for an inoperable Function 23, RCS Subcooling Margin Monitor.

Cook Nuclear Plant Unit 2 3.3.3-5 Amendment No. 2e9, ~. ~. ~

Enclosure 6 to AEP-NRC-2024-11

Donald C. Cook Nuclear Plant Unit 1 Technical Specification Bases Pages Marked to Show Proposed Changes PAM Instrumentation B 3.3.3

B 3.3 INSTRUMENTATION

B 3.3.3 Post Accident Monitoring (PAM) Instrumentation

BASES

BACKGROUND The primary purpose of the PAM instrumentation is to display unit variables that provide information required by the control room operators during accident situations. This information provides the necessary support for the operator to take the manual actions for which no automatic control is provided and that are required for safety systems to accomplish their safety functions for Design Basis Accidents (DBAs).

The OPERABILITY of the accident monitoring instrumentation ensures that there is sufficient information available on selected unit parameters to monitor and to assess unit status and behavior following an accident.

The availability of accident monitoring instrumentation is important so that responses to corrective actions can be observed and the need for, and magnitude of, further actions can be determined. These essential instruments are identified in References 1, 2,ffi;J and al] addressing the recommendations of Regulatory Guide 1.97 (Ref. 3) as required by Supplement 1 to NUREG-0737 (Ref. 4).

The instrument channels required to be OPERABLE by this LCO include two classes of parameters identified during unit specific implementation of Regulatory Guide 1.97 as Type A and Category 1 variables.

These key variables are identified by the unit specific Regulatory Guide 1.97 analyses (Ref. 1, 2, ffi;J and e[zj). These analyses identify the unit specific Type A and Category 1 variables and provide justification for deviating from the NRC guidance in Reference 3.

The specific instrument Functions listed in Table 3.3.3-1 are discussed in the LCO section.

APPLICABLE The PAM instrumentation LCO ensures the OPERABILITY of Regulatory SAFETY Guide 1.97 Type A variables so that the control room operating staff can:

ANALYSES

  • Perform the diagnosis specified in the emergency operating procedures (these variables are restricted to preplanned actions for the primary success path of DBAs), e.g., loss of coolant accident (LOCA); and
  • Take the specified, pre-planned, manually controlled actions, for which no automatic control is provided, and that are required for safety systems to accomplish their safety function.

Cook Nuclear Plant Unit 1 B 3.3.3-1 Revision No. 48 PAM Instrumentation B 3.3.3

BASES

LCO (continued)

One exception to the two channel requirement is Containment Isolation Valve (CIV) Position. In this case, the important information is the status of the containment penetrations. The LCO requires one position indicator for each active CIV. This is sufficient to redundantly verify the isolation status of each isolable penetration either via indicated status of the active valve and prior knowledge of a passive valve, or via system boundary status. If a normally active CIV is known to be closed and deactivated, position indication is not needed to determine status. Therefore, the position indication for valves in this state is not required to be OPERABLE.

Type A and Category 1 variables meet Regulatory Guide 1.97 Category 1 (Ref. 3) design and qualification requirements for seismic and environmental qualification, single failure criterion, utilization of emergency standby power, immediately accessible display, continuous readout, and recording of ~lay, except for approved deviations, as described in References 1l11 and ~ -

Listed below are discussions of the specified instrument Functions listed in Table 3.3.3 - 1. For all applicable Functions, the recorder or indicator may be used as the qualified instrument.

1. Neutron Flux

Neutron Flux (NRl-21 and NRl-23) is a Category 1 variable provided to verify reactor shutdown. The range of each of the two neutron flux instruments ( 1 0E-8 to 200 % power) covers the full range of flux that may occur post accident.

As stated in Note (a) to Table 3.3.3-1, neutron flux instruments are not required to be environmentally qualified to be considered OPERABLE. This is acceptable because verification of initial reactor shutdown is expected to be completed prior to any potential impact to the neutron flux instrumentation due to an adverse containment environment. Other instruments will be used to monitor for subcriticality in the event of an adverse containment environment.

2. Steam Generator (SG ) Pressure (p er SG )

Steam Generator Pressure is a Type A, Category 1 variable provided for determination of required core exit temperature. Three steam generator pressure channels per steam generator are provided (MPP-210, MPP-211, MPP-212, MPP-220, MPP-221, MPP-222, MPP-230, MPP-231, MPP-232, MPP-240, MPP-241, and MPP-242).

Each channel has a range of 0 psig to 1200 psig. However, only two steam generator pressure channels per steam generator are required

Cook Nuclear Plant Unit 1 83.3.3-3 Revision No. 44 PAM Instrumentation B3.3.3

BASES

LCO (continued)

3, 4. Reactor. Coolant System (RCS) Hot and Cold Leg Temperatures (Wide Range)

RCS Hot and Cold Leg Temperatures are Type A, Category 1 variables provided for verification of core cooling and long term surveillance. RCS hot and cold leg tern eratures are used to determine RCS subcooling margin nd to monitor for subcriticalit in he event of an adverse containment environmen.

The RCS hot leg and RCS cold leg channels each receive input from one resistance temperature detector (RTD). In each of RCS loops 1 and 3, there is one RCS hot leg RTD (NTR-110 with MR-9, and NTR-130 with MR-11) and one RCS cold leg RTD (NTR-210 with MR-9, and NTR-230 with MR-11) that satisfy the guidance of Reference 3. The channels provide indication over a range of 0°F to 700°F.

5. RCS Pressure (Wide Range)

RCS wide range pressure is a Type A, Category 1 variable provided for verification of core cooling and RCS integrity long term surveillance.

RCS wide range pressure is used as criteria to manually trip the reactor coolant pumps.

In addition, RCS wide range pressure is used for determining RCS subcooling margin.

Two RCS Pressure (Wide Range) channels are provided (NPS-110 and NPS-111, with MR-13), each with a range of O psig to 3000 psig.

6. Reactor Coolant Inventory Tracking System {Reactor Vessel Level Indication)

Reactor coolant inventory is a Category 1 variable provided for verification and long term surveillance of core cooling.

The Reactor Coolant Inventory Tracking System consists of two channels of instrumentation (NLl-110, NLl-111, NLl-120, NLl-121, NLl-130, and NLl-131). Each channel is capable of measuring upper plenum level, narrow range level, and dynamic head (i.e., wide range level). The Reactor Coolant Inventory Tracking System provides a direct measurement of the collapsed liquid level above the fuel alignment plate. The collapsed level represents the amount of liquid mass that is in the reactor vessel above the core. Measurement of

Cook Nuclear Plant Unit 1 B 3.3.3-4 Revision No. 0 PAM Instrumentation B 3.3.3

BASES

LCO (continued)

13. Steam Generator Water Level (Wide Range)

SG Water Level is a Category 1 variable provided to monitor operation of decay heat removal via the SGs. Four steam generator level (wide range) channels (one per steam generator) are provided (BLl-110, BLl-120, BLl-130, and BLl-140). Each channel is capable of monitoring from 12 inches above the steam generator tube sheet to the separators.

14. Condensate Storage Tank (CST) Level

CST Level is a Category 1 variable provided to ensure water supply for auxiliary feedwater (AFW). The CST provides the qualified water supply for the AFW System. Inventory is monitored from essentially the top of the CST to the bottom of the CST (95% total volume) by a single channel provided to satisfy the guidance of Reference 3, as described in Reference 1. CST Level is displayed on a control room indicator (CLl-114).

15, 16, 17, 18. Core Exit Temperature

Core Exit Temperature is a Type A, Category 1 variable used to determine whether to manually reduce ECCS flow. This variable is also provided for verification and long term surveillance of core cooling. In addition, core exit tern erature is used for determinin RCS subcooling margin nd to monitor for subcriticalit in the even f an adverse containment environmen.

Two OPERABLE channels of Core Exit Temperature, with one core exit thermocouple per channel, are required in each quadrant to provide indication of radial distribution of the coolant temperature rise across representative regions of the core. Two core exit temperature channels per quadrant ensure a single failure will not disable the ability to determine the radial temperature gradient. Each core exit temperature channel (SG-30 and SG-31 for TC 1 through 65) has a range of 200°F to 2300 °F.

19. Secondary Heat Sink Indication (per SG)

Secondary Heat Sink Indication is a Type A, Category 1 variable used to determine whether to manually reduce ECCS flow. This variable is also provided to monitor operation of decay heat removal via the SGs.

As stated in Note ~ to Table 3.3.3-1, the requirements for this variable are met by any combination of two instruments per SG,

Cook Nuclear Plant Unit 1 B 3.3.3-7 Revision No. Q PAM Instrumentation B 3.3.3

BASES

SURVEILLANCE REQUIREMENTS (continued)

SR 3.3.3.2 Deleted

SR 3.3.3.3

CHANNEL CALIBRATION is a complete check of the instrument loop, including the sensor. The test verifies that the channel responds to measured parameter with the necessary range and accuracy. This SR is modified by a Note that excludes neutron detectors. For Function 9, the CHANNEL CALIBRATION shall consist of verifying that the position indication conforms to actual valve position. For Functions 15, 16, 17, and 18, whenever a sensing element is replaced, the next required CHANNEL CALIBRATION of the Core Exit Temperature thermocouple sensors is accomplished by an inplace cross calibration that compares the other sensing elements with the recently installed sensing elements.

For Functions 20 (Circuit Breaker Status channels) and 24, the CHANNEL CALIBRATION shall consist of verifying that the position indication conforms to actual circuit breaker position. The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.

REFERENCES 1. NRC letter, T. G. Colburn (NRC) to M. P. Alexich (Indiana Michigan Power Company), "Emergency Response Capability-Conformance to Regulatory Guide 1.97 Revision 3 for the D. C. Cook Nuclear Plant, Units 1 and 2," dated December 14, 1990.

2. UFSAR, Table 7.8-1.

3. Regulatory Guide 1.97, Revision 3, May 1983.

4. NUREG-0737, Supplement 1, "TMI Action Items."

5. NRC letter, P. S. Tam (NRC), to M. K. Nazar, (Indiana Michigan Power Company), "Donald C. Cook Nuclear Plant, Units 1 & 2 (DCCNP-1 AND DCCNP-2) - Issuance of Amendments Re: Containment Sump Modifications per Generic Letter 2004-02 (TAC Nos. MD5901 AND MD5902)," dated October 18, 2007.

6. Letter from Indiana Michigan Power Company (K. J. Ferneau) to the NRC dated XXXX, XX 2024.
7. NRC letter, X. X. XXXXXX (NRC), to Q. S. Lies (Indiana Michigan Power Company), XXXX, dated XXXX XX, 2024.

Cook Nuclear Plant Unit 1 B 3.3.3-14 Revision No. 93 Enclosure 7 to AEP-NRC-2024-11

Donald C. Cook Nuclear Plant Unit 2 Technical Specification Bases Pages Marked to Show Proposed Changes PAM Instrumentation B 3.3.3

B 3.3 INSTRUMENTATION

B 3.3.3 Post Accident Monitoring (PAM) Instrumentation

BASES

BACKGROUND The primary purpose of the PAM instrumentation is to display unit variables that provide information required by the control room operators during accident situations. This information provides the necessary support for the operator to take the manual actions for which no automatic control is provided and that are required for safety systems to accomplish their safety functions for Design Basis Accidents (DBAs).

The OPERABILITY of the accident monitoring instrumentation ensures that there is sufficient information available on selected unit parameters to monitor and to assess unit status and behavior following an accident.

The availability of accident monitoring instrumentation is important so that responses to corrective actions can be observed and the need for, and magnitude of, further actions can be determined. These essential instruments are identified in References 1, 2,[§1 and a[] addressing the recommendations of Regulatory Guide 1.97 (Ref. 3) as required by Supplement 1 to NUREG-0737 (Ref. 4).

The instrument channels required to be OPERABLE by this LCO include two classes of parameters identified during unit specific implementation of Regulatory Guide 1.97 as Type A and Category 1 variables.

These key variables are identified by the unit specific Regulatory Guide 1.97 analyses (Ref. 1, 2,[§1 and a[]). These analyses identify the unit specific Type A and Category 1 variables and provide justification for deviating from the NRC guidance in Reference 3.

The specific instrument Functions listed in Table 3.3.3-1 are discussed in the LCO section.

APPLICABLE The PAM instrumentation LCO ensures the OPERABILITY of Regulatory SAFETY Guide 1.97 Type A variables so that the control room operating staff can:

ANALYSES

  • Perform the diagnosis specified in the emergency operating procedures (these variables are restricted to preplanned actions for the primary success path of DBAs), e.g., loss of coolant accident (LOCA); and
  • Take the specified, pre-planned, manually controlled actions, for which no automatic control is provided, and that are required for safety systems to accomplish their safety function.

Cook Nuclear Plant Unit 2 B 3.3.3-1 Revision No. 16 PAM Instrumentation B 3.3.3

BASES

LCO (continued)

One exception to the two channel requirement is Containment Isolation Valve (CIV) Position. In this case, the important information is the status of the containment penetrations. The LCO requires one position indicator for each active CIV. This is sufficient to redundantly verify the isolation status of each isolable penetration either via indicated status of the active valve and prior knowledge of a passive valve, or via system boundary status. If a normally active CIV is known to be closed and deactivated, position indication is not needed to determine status. Therefore, the position indication for valves in this state is not required to be OPERABLE.

Type A and Category 1 variables meet Regulatory Guide 1.97 Category 1 (Ref. 3) design and qualification requirements for seismic and environmental qualification, single failure criterion, utilization of emergency standby power, immediately accessible display, continuous readout, and recording of ~lay, except for approved deviations, as described in References 1 ~ and -0.

Listed below are discussions of the specified instrument Functions listed in Table 3.3.3-1. For all applicable Functions, the recorder or indicator may be used as the qualified instrument.

1. Neutron Flux

Neutron Flux (NRl-21 and NRl-23) is a Category 1 variable provided to verify reactor shutdown. The range of each of the two neutron flux instruments ( 1 0E-8 to 200% power) covers the full range of flux that may occur post accident.

As stated in Note (a) to Table 3.3.3-1, neutron flux instruments are not required to be environmentally qualified to be considered OPERABLE. This is acceptable because verification of initial reactor shutdown is expected to be completed prior to any potential impact to the neutron flux instrumentation due to an adverse containment environment. Other instruments will be used to monitor for subcriticality in the event of an adverse containment environment.

2. Steam Generator (SG ) Pressure (p er SG )

Steam Generator Pressure is a Type A, Category 1 variable provided for determination of required core exit temperature. Three steam generator pressure channels per steam generator are provided (MPP-210, MPP-211, MPP-212, MPP-220, MPP-221, MPP-222, MPP-230, MPP-231, MPP-232, MPP-240, MPP-241, and MPP-242).

Each channel has a range of 0 psig to 1200 psig. However, only two steam generator pressure channels per steam generator are required

Cook Nuclear Plant Unit 2 B 3.3.3-3 Revision No. 44 PAM Instrumentation B 3.3.3

BASES

LCO (continued)

3, 4. Reactor Coolant System (RCS) Hot and Cold Leg Temperatures (Wide Range)

RCS Hot and Cold Leg Temperatures are Type A, Category 1 variables provided for verification of core cooling and long term surveillance. RCS hot and cold le tern eratures are used to determine RCS subcooling margin and to monitor for subcriticalit in he event of an adverse containment environmen.

The RCS hot leg and RCS cold leg channels each receive input from one resistance temperature detector (RTD). In each of RCS loops 1 and 3, there is one RCS hot leg RTD (NTR-110 with MR-9, and NTR-130 with MR-11) and one RCS cold leg RTD (NTR-210 with MR-9, and NTR-230 with MR-11) that satisfy the guidance of Reference 3. The channels provide indication over a range of 0°F to 700°F.

5. RCS Pressure (Wide Range)

RCS wide range pressure is a Type A, Category 1 variable provided for verification of core cooling and RCS integrity long term surveillance.

RCS wide range pressure is used as criteria to manually trip the reactor coolant pumps.

In addition, RCS wide range pressure is used for determining RCS subcooling margin.

Two RCS Pressure (Wide Range) channels are provided (NPS-110 and NPS-111, with MR-13), each with a range of O psig to 3000 psig.

6. Reactor Coolant Inventory Tracking System (Reactor Vessel Level Indication)

Reactor coolant inventory is a Category 1 variable provided for verification and long term surveillance of core cooling.

The Reactor Coolant Inventory Tracking System consists of two channels of instrumentation (NLl-110, NLl-111, NLl-120, NLl-121, NLl-130, and NLl-131 ). Each channel is capable of measuring upper plenum level, narrow range level, and dynamic head (i.e., wide range level). The Reactor Coolant Inventory Tracking System provides a direct measurement of the collapsed liquid level above the fuel alignment plate. The collapsed level represents the amount of liquid mass that is in the reactor vessel above the core. Measurement of

Cook Nuclear Plant Unit 2 B 3.3.3-4 Revision No. G PAM Instrumentation B 3.3.3

BASES

LCO (continued}

13. Steam Generator Water Level (Wide Range)

SG Water Level is a Category 1 variable provided to monitor operation of decay heat removal via the SGs. Four steam generator level (wide range} channels (one per steam generator} are provided (BLl-110, BLl-120, BLl-130, and BLl-140). Each channel is capable of monitoring from 12 inches above the steam generator tube sheet to the separators.

14. Condensate Storage Tank (CST) Level

CST Level is a Category 1 variable provided to ensure water supply for auxiliary feedwater (AFW}. The CST provides the qualified water supply for the AFW System. Inventory is monitored from essentially the top of the CST to the bottom of the CST (95% total volume} by a single channel provided to satisfy the guidance of Reference 3, as described in Reference 1. CST Level is displayed on a control room indicator (CLl-114).

15, 16, 17, 18. Core Exit Temperature

Core Exit Temperature is a Type A, Category 1 variable used to determine whether to manually reduce ECCS flow. This variable is also provided for verification and long term surveillance of core cooling. In addition, core exit tern erature is used for determinin RCS subcooling margin and to monitor for subcriticalit in the even fan adverse containment environmen.

Two OPERABLE channels of Core Exit Temperature, with one core exit thermocouple per channel, are required in each quadrant to provide indication of radial distribution of the coolant temperature rise across representative regions of the core. Two core exit temperature channels per quadrant ensure a single failure will not disable the ability to determine the radial temperature gradient. Each core exit temperature channel (SG-30 and SG-31 for TC 1 through 65) has a range of 200°F to 2300 °F.

19. Secondary Heat Sink Indication (per SG)

Secondary Heat Sink Indication is a Type A, Category 1 variable used to determine whether to manually reduce ECCS flow. This variable is also provided to monitor operation of decay heat removal via the SGs.

As stated in Note ~ to Table 3.3.3-1, the requirements for this variable are met by any combination of two instruments per SG,

Cook Nuclear Plant Unit 2 B 3.3.3-7 Revision No. Q PAM Instrumentation B 3.3.3

BASES

SURVEILLANCE REQUIREMENTS (continued)

SR 3.3.3.2 Deleted

SR 3.3.3.3

CHANNEL CALIBRATION is a complete check of the instrument loop, including the sensor. The test verifies that the channel responds to measured parameter with the necessary range and accuracy. This SR is modified by a Note that excludes neutron detectors. For Function 9, the CHANNEL CALIBRATION shall consist of verifying that the position indication conforms to actual valve position. For Functions 15, 16, 17, and 18, whenever a sensing element is replaced, the next required CHANNEL CALIBRATION of the Core Exit Temperature thermocouple sensors is accomplished by an inplace cross calibration that compares the other sensing elements with the recently installed sensing elements.

For Functions 20 (Circuit Breaker Status channels) and 24, the CHANNEL CALIBRATION shall consist of verifying that the position indication conforms to actual circuit breaker position. The Surveillance Frequency is controlled under the Surveillance Frequency Control Program.

REFERENCES 1. NRC letter, T. G. Colburn (NRG) to M. P. Alexich (Indiana Michigan Power Company), "Emergency Response Capability - Conformance to Regulatory Guide 1.97 Revision 3 for the D. C. Cook Nuclear Plant, Units 1 and 2," dated December 14, 1990.

2. UFSAR, Table 7.8-1.
3. Regulatory Guide 1.97, Revision 3, May 1983.
4. NUREG -0737, Supplement 1, "TMI Action Items."
5. NRG letter, P.S.Tam (NRG), to M. K. Nazar, (Indiana Michigan Power Company), "Donald C. Cook Nuclear Plant, Units 1 & 2 (DCCNP-1 and DCCNP-2) - Issuance of Amendments Re: Containment Sump Modifications per Generic Letter 2004-02 (TAC Nos. MD5901 and MD5902)," dated October 18, 2007.

6. Letter from Indiana Michigan Power Company (K. J. Ferneau) to the NRC dated XXXX, XX 2024.

7. NRC letter, X. X. XXXXXX (NRG), to Q. S. Lies (Indiana Michigan Power Company), XXXX, dated XXXX, XX 2024.

Cook Nuclear Plant Unit 2 B 3.3.3-15 Revision No. eO