ML20215G400: Difference between revisions

From kanterella
Jump to navigation Jump to search
(StriderTol Bot insert)
 
(StriderTol Bot change)
 
Line 17: Line 17:


=Text=
=Text=
{{#Wiki_filter:}}
{{#Wiki_filter:'
TECHNICAL REPORT 87-1 SEISMIC ACTIVITY NEAR THE V.C. SUMMER NUCLEAR STATION 4
For the Period January - March 1987 by Pradeep Taiwani w                          Principal Investigator Geology Department            l University of South Carolina Columbia, S.C. 29208 L
Contract No. N449678 Q6' [!,850d $bObfb9S R              f UN
__ j
 
t i
TECHNICAL REPORT 87-1 l
l SEISMIC ACTIVITY NEAR THE V.C. SUMMER NUCLEAR STATION s.
FOR THE PERIOD JANUARY-MARCH, 1987 i
BY l
PRADEEP TALWANI PRINCIPAL INVESTIGATOR AND STEVE ACREE CHRIS WARD GEOLOGY DEPARTMENT UNIVERSITY OF SOUTH CAROLINA        .
l COLUMBIA, S.C. 29208 1
e CONTRACT NO. N449678 j
 
y 1
                                                                          )
1 INTRODUCTION Analysis of the seismic activity near the V.C. Summer          )
Nuclear Station in South Carolina between January 1 and March 31, 1987 is presented in'this report. During this period a
  -total of one'hundred twenty-three (123). events were recorded        3 l
of which one hundred seven (107) were located (87%). The        ]
l largest shock was of magnitude 1.9 (January 13-0545 UTC).      Of    )
l the remaining earthquakes, approximately twenty-three percent        l I
(23%) were of magnitudes greater than zero. Fifty-four          j i
percent (54%) of the located shocks.were of B quality.      All of the B quality events located at depths less than 3.5 km.
1 SEISNIC NETWORK Earthquakes recorded during this period were located using l
stations of the SCE&G and USGS/USC networks. The configuration of the stations utilized to locate the events in this report is shown in' Figure 1 and station coordinates are listed in Appendix I.                                                          j I
DATA ANALYSIS Hypocentral locations of the events were determined using      j the computer program HYP071 (Lee and Lahr, 1972) and the velocity model listed in Appendix II. The event magnitude (Mg)  was determined from signal duration at station JSC, using the            j following relation:
ML = -1.83 + 2.04 Log D J
 
I 2
l
                                                                                          \
l
            .N                                                                            \
x 1
i i
MONTICELLO          RESERVOIR
.          )
(  7
                                /
l  1  10 1                            ;
i 1
1 0
9A                  ^JS C STUDY AREA                            5H
              \
                                                                                          )
SOUTH CAROLIN A l
                                                                                          )
O              5KM                            l A            i 2            -
Figure 1. Location map of Monticello Reservoir area showing seismic stations used in locating activity during January-March 1987.
l l
________________a
 
3
                                                                      /
where D is the signal duration (seconds).
An estimate of daily energy release is determined using a simplified magnitude (M L) energy (E) relation by Gutenberg and Richter (1956).
log 0 E = 11.8 + 1.5 M 3 .
OBSERVED SEISMICITY FOR THE PERIOD JANUARY-MARCH, 1987 During this period, one hundred twenty-three (123) events were recorded, of which one hundred seven (107) (87%) were located (see Appendix III).      This level of activity was greater than'that observed during any reporting period in 1986 but does not appear to be significant within the context of the trend of declining activity (Figure 2).        The largest event of this quarter (M g =1.9) occurred on January 23 at 0545 UTC.
There were only two events with a magnitude of 1.0 or greater during this period.      Twenty-five shocks (25) (23%) were of magnitudes greater than zero.
The epicenters of earthquakes located during this quarter are presented in Figure 3.      Spatially, the earthquakes were concentrated in two clusters beneath the center of the reservoir.
The earthquakes which occurred during January were centered approximately 1-2 km north of the February earthquakes (Figures 4 and 5).      Only four (4) March earthquakes were located (Figure 6).      Temporally, the majority of the            i earthquakes occurred in two swarms.      The first of these swarms was of relatively short duration (January 10-14) with a peak
 
4 j*
                                            .:    a j:
E e
I w
                                              . e
                                            -      x a
:*  I E
n O  ,
c
                                            -      5 s
a v
8 E
i                                          -
                                                  ?
e  ;
:. ~
3
                                                    . 1
                                            .      ~  j ss                                    c  l 8
        - :"l
          .      !  I    a  $  H    R 8        a i
H1NOW BBd SB>IYnOHibfVE                !
i i
 
1 5
{
l 81    22.75'                                      81. 15.25'
                          .                                  34  24'
  .                                      t MONTICELLO EARTHQUAXES JANUARY-MARCH 1987.
O      O G          o o  o              .
O O                    .
0    0 0
ML
[        o, o
e  o    oOi    l (8 8-1 1-2      >2 ;
5 ya              ,
            .  .  .          .            .      . .  . 34  16.5' l
  .                                                                                      1 Figure 3. Seismic activity at Monticello Reservoir during January-March 1987.
i
 
6 81    22.75'                                      81  15.25' 34  24' W                  -
MONTICELLO
[
u                                  EARTHQUAXES      l J ANU ARY' 1987      i 0
0 0                                .
eo      o 0
g              h              .
M t.
a    o      OO
                                                                      <8    6-1    1-2 >2 5  Fm            >
          .        .  .      .                .            34  16.5' Figure 4. Seismic activity at Monticello Reservoir during January 1987.
 
l 1
7                                    .;
i l
l l
81    22.75'                                                                                                                                                                            81    15.25'
                            .                                .            .    .                                                        .                                .                .        34  24' i
k
                                                                                                        ,V MONTICELLO EARTHQUAXES FEBRUARY 1987 i
o        O P
O s go                                                                                                                  .
h5 l
nL
                                                                              *o                                                                    c) 1 es                                                                      0 o  o    OO
                                                                                                                                                                                                              <8 8-1 1-2      >2 5  Xm l            .  .  . .  .                                .              .    .                    .                                ......                                                        34  16.5' I
I l
Figure 5. Seismic activity at Monticello Reservoir during February 1987.
i 1
1 l
i                  _                        -_                                      _ - _ - - _ - - - _ _ _ _ - - - _ - - _ - - - - - - - - _ - - _ _ _ _ _ _ _ _ - - - _ - - - - - _
 
l 8
81      22.75'                                      81        15.25'
                                .      .                          .      34  24' b                          -
MONTICELLO EARTHQUAXES MARCH 1987 1
0                                                        j 0                    -
0
(>              '
Mt eN                                  o    o    OO      ;
                                                                                  <8 8-1 1-2      >2l 5  Km                                                                        i
                      . .  .  .  .  .  .      .  . .  . .  .        34  16.5'                  j l
l Figure 6. Seismic activity at Monticello Reservoir during March 1987.
 
9 of 23' events per day on January 13.                The largest event of this                                      I I
quarter (M g m 1.9) occurred on January 13 during the peak of the swarm. The second swarm was of longer duration (February.
19-28) with a peak ofLten events per day on February 24.
Fifty-four percent (54%) (58) of the located events were-4 of B quality. All but one of these earthquakes located within 3 km of the surface (Figure 7).              The majority of.the events were located at depths between 1.5 and 2.0 km.                          There appears ~        ,
i to be little difference in the distribution of depths of                                                    4'H earthquakes from the January and February swarms (Figure 17),                                                      i n
                                                                                                                        }
CORRELATION OF RESERVOIR NATER LEVEL WITH SEISMICITY                                                  -
n Monticello Reservoir is a pumped stora'ge facility.                              Any decrease in reservoir level associated with power generati                                  is recovered when water is pumped back into the reservoir.,ofhere can be normal variations up to approximately five feet per day between the maximum and minimum water level.                        We have been monitoring the water level to see if there is any correlation between the daily or seasonal changes in the reeervoir level and the local seismicity.          Water level was compared to seismicity in Figure 8. The top two plots show the median water level and the change in water level each day.                The number of events per day
      ~
and-the log of the energy released per day are shown in the<19wer
                                                                                                'f.
two histograms. T h e s e c h a r t s i n c l u d e b o t h l o c a t e d a n d u n l o c a t'e d '
events around the reservoir.            Nocorrelationbetweenwaterlepel' and seismicity during this period is readily apparent.
i l
 
(;
10 JANUARY-MARCH
'l '
PERCENT 8    18  28    38  48          68 8.25 8.75                                                                              .
1.25 DEPTH g    1.'75 2.25                            ^                                      -
4 2.75                              r
                                    ) 3.88                      >
                          .                                N : 58          -
4 i                                                                                          ,
                                                                                                                            ~J PDCDff                                                  PDCI
                        ?      18 28  38  48 58 - 68                          8    18      28            38    48 58 e,25                                                    8.25 8.75                                                    8.75 1        1.25                                                    1.25      s
    ,,    DM        3,7g                                            DN      1.75 (2)                                                      (2) 2.25                                                    2.25 4
2.75                                                    2.75
                > 3. 8e                                              > 2.88            ,                                    j i
JANUARY SWARM                                        FEBRUARY SWARM
                                ,'  b{    31                                              .N : 14 Figure 7., Distribution of depths of high quality hypotentars for January-March 1987 and during' the earthquake swarms of January 1987 and February 1987.
I
 
b                                                  11
  $ 425.0      1                                                _                _ _
ff 422.5 -
                                                                                          \
U          b                                                                                k 420.0                                j                ,      ,      ,
j
                        ;        i                i                                    i E
    -                                                                                        1 c
5.0 -
    !i y 2.5 -
5 c.o
* fw/
i        i        i      e      i                -
g                                                                                  ,
l 15 0
a g    -
3 25 sa 15'
                            .-      I        --        -              -    -  E        --
1        11      21      31      41      51      61      71        81 JULIAN DAY 1987 Figure 8.      Comparison of the median daily lake level and daily change in water level with the number of earthquakes per day and the log of the energy released.
1
 
12 CONCLUSIONS.
The. level of activity observed during the first quarter of 1987, though greater than that of any quarter in 1986, does not appear-to be significant.          No earthquake with a magnitude greater than 2.0 was recorded.          Only two events were of a magnitude greater than 1.0 (M g =1.9,      1.1).                    Twenty-three percent of the earthquakes were of magnitudes greater than 0.0.                                  All of the accurately located shocks were within the upper 3.5 km of the crust. The majority of the epicenters were concentrated beneath the central portion of the reservoir in two clusters.
 
D REFERENCES                                                    ,
l Gutenberg, D. and Richter, C.F. (1956). Magnitude and energy of earthquakes, Ann. Geof. 9, p. 1-15.          I Lee, W.H.K. and Lahr, J.C. (1972). A computer program for determining hypocenter, magnitude and first motion pattern of local earthquakes, Revisions of HYPO 71, U.S Geoiogicai Survey, Open-Fiie Report, 100 pp.
e 4
0 69
 
14 l
APPENDIX I STATION LOCATIONS NO. STN.        LAT.*N      LONG.*W 1  JSC      34* 16.80'  81* 15.60'
                                          \
2  001      34* 19.91'  81* 17.74' 3  002      34* 11.58'  81* 13.81' 4  05H      34* 16.05'  81* 20.05' 5  007      34* 22.23'  81* 19.50' 6  09A      34* 17.24'. 81* 19.75' 7  010      34* 20.18'  81* 20.25' i
4 I
1
 
l-c i
15 APPENDIX II MONTICELLO RESERVOIR VELOCITY MODEL.
Velocity                      Depth to top km/sec                            km 1.00'                          O.00 5.40                            0.03-5.90                            0.18 6.10                            0.46 6.30                            0.82 8.10                          30.00
 
16 APPENDIX III MONTICELLO' EARTHQUAKES-JANUARY - MARCH, 1987 HYP071 FORMAT                          ,
l
                                    . Column 1                                                                                  Date.                                              j i
Column 2                                                                                  Origin time (UTC) h.m.sec.
Column 3                                                                                  Latitude (N) degrees, min.
p                                      Column 4                                                                                  Longitude (W) degrees, min.
i Column 5                                                                                  Depth (km).
I Column 6                                                                                  Local duration magnitude.
1 i
Column 7                                                                                  No. of station readings used to locate event.      ,
I P and S arrivals from same stations are regarded as 2 readings.
Column 8                                                                                  Largest azimuthal separation in degrees between stations.
Column 9                                                                                  Epicentral distance in km to nearest station.
Column 10                                                                                                        error of time residuals in Root sec.      mean RMS squarg/NO,
                                                                                                                                                = R        where R  is the time    ,
residual for t e ith station Column 11                                                                                  Standard error of the epicenter in km*.
Column 12                                                                                  Standard error of the focal depth in km*.
* Statistical interpretation of standard errors involves assump-tions which may not be met in earthquake locations. Therefore standard errors may not represent actual error limits.
If ERH or ERZ is blank, this means that it cannot be computed, because of insufficient data.
_______.________________._._m_                                                                                _ _ . _ _ _ . _
 
y 1
17 MONTICELLO EARTHQUAKFS JANUARY-MARCH, 1987 DATE    ORIGIN    LAT N    LONG W    DEPTH    MAG NO GAP DMIN RMS ERH ERZ QM 870110  2048 19.95 34-20.06  81-19.62    3.38  -0.60  8 249  1.0 0.05 0.4 0.4 B1 870110  2048 42.07 34-19.30  81-19.48    1.70  -1.22  5 196  2.0 0.03 0.5 1.0 C1 870110  2115 3.83 34-20.03  81-19.98    2.93    0.82 9 155    0.5 0.06 0.4 0.4 B1 870110  2118 39.27 34-20.08  81-19.22    2.84  -0.40  6 139  1.6 0.06 0.7 0.7 B1 870110  2120 12.27 34-19.01  81-19.73    1.76    0.21 7 193    2.3 0.06 0.6 1.5 C1 870111  114 18.65 34-20.09  81-19.01    2.42    0.01 9 122    1.9 0.07 0.4 0.5 B1 870111  232 55.52 34-20.03  81-19.21    1.80  -0.60 6 143    1.6 0.09 0.6 1.2 B1 870111  823 51.02 34-19.84    81-19.49    1.84  0.73 8 148    1.3 0.07 0.4 0.7 B1 870111  2019 36.34 34-18.86  81-19.14    4.26  -0.40 5 200    2.9 0.09 1.7 2.0 C1 870111 2118 36.59 34-20,20 81-18.98      0.71  -0.60  7 129  1.9 0.03 0.1 0.4 B1 870111  2119 22.57 34-20.07  81-19.09    2. 38 -0.86  7 138  1.8 0.03 0.2 0.3 B1                                  j 870112  233 25.74 34-20.09  81-19.02    1.93    0.87 8 122    1.9 0.04 0.4 0.5 B1 870112  253 33.25 34-20.03  81-19.29    1.52  -0.60 8 144    1.5 0.08 0.5 0.8 B1 870112  344 18.70 34-19.73  81-19.29    0.72  -0.40 5 166    1.7 0.03 1.1 2.0 C1 870122  4 3 39.46 34-19.70  81-19.56    1.72  -0.11  8 160  1.4 0.06 0.4 0.8 B1 870112  451 12.47 34-20.11    81-19.43  1.24  -0.86  7 140  1.3 0.06 0.4 0.8 B1 870112  459 41.25 34-20.05  81-19.32    1.75  -0.86  6 143  1.4 0.03 0.2 0.4 B1 870112  527 13.11 34-20.25  81-19.11    1.90    0.82 8 126    1.8 0.05 0.3 0.5 B1 870112  548 47.90 34-19.94  81-19.34    1.79    0.91  8 152  1.5 0.08 0.5 0.7 B1 870113  246 36.13 34-20.00  81-19.45    1,62    0.21 7 150    1.3 0.07 0.5 1.0 B1 870113  545 51.79 34-20.15  81-19.30    1.70    1.87 10 105  1.5 0.06 0.3 0.6                    B1 870113  547 54.32 34-19.50  81-20.01    2.85  -1.83 5 217    1.3 0.05 0.7 0.8                    C1 870113  547 59.89 34-20.01    81-19.36  1.03  -0.86 6 148    1.4 0.05 0.3 0.9                    B1 870113  548 21.05 34-20.13  81-19.17    1.08    0.21  8 135  1.7 0.03 0.2 0.4                    B1              !
870113  548 35.28 34-20.18  81-19.70    3.58  -0.40  5 136  0.9 0.05 0.6 0.8 C1 870113  616 21.82 34-20.13  81-19.61    1.88  -0.86  6 140  1.0 0.00 0.0 0.0 B1 870113  643 52.70 34-20.15  81-19.66    2.04    0.12 7 139    0.9 0.02 0.2 0.2 B1 870113 645 8.87  34-20.46 81-19.39      1.71  -0.60  8 115  1.4 0.06 0.4 0.6 B1 870113 650 21.09  34-19.31 81-19.12      1.68  -1.22  4 182  2.4 0.08                            C1 870113 656 18.62  34-19.71 81-19.31      1.99  -1.22  4 168  1.7 0.03                              C1 870113 657 10.74  34-20.28 81-19.18    1.22    0.82 7 124    1.7 0.04 0.3 0.7 B1 870113 7 1 10.48 34-20,20 81-19.42      1.66  -0.24  7 131  1.3 0.02 0.1 0.2 B1 870113  7 9 24.97 34-20.07 81-19.15      2.66  -0.86  5 139  1.7 0.06 0.7 1.1 C1 870113  731 11.79 34-20.00 81-19.32      1.30  -1.22  5 147  1.5 0.04 0.4 0.8 C1 870113  737 28.01 34-20.40 81-19.08      0.99  -0.40  4 143  1.8 0.01                            C1 870113  744 17.82 34-19.72 81-19.44      1.72    1.12 7 172    1.5 0.07 0.5 0.9 B1 870113  8 5 47.60 34-20.20 81-19.27      2.06  -0.60 6 131    1.5 0.02 0.1 0.2 B1
. 870113  828 48.25 34-19.29 81-19.52      0.85  -1.22  4 198  2.0 0.07                            C1 870113  839 4).46 34-20.26 81-19.36      2.27    0.01  8 126  1.4 0.03 0.2 0.3                  B1 870113  1354 8.45 34-20.36 81-18.77      1.51    0.12 8 136    1.8 0.03 0.2 0.3                  B1 870113 2144 33.33 34-19.89 81-19.30      1.92  -1.22 5 155    1.6 0.07 0.6 1.1                  C1 870114  012 5.72 34-20.20 81-18.88      2.00  -0.60 7 121    1.8 0.05 0.3 0.5                  B1 870114  326 23.67 34-19.76 81-19.53      1.81  -0.40 8 173    1.4 0.05 0.3 0.4                  B1 870114 1519 34.99 34-20.07    81-19.04  1.82    0.63 10 123  1.9 0.09 0.5 0.7                  B1
 
18 870116  848 17.77 34-19.38  81-18.91  1.95 -1.22  4 172 2.0 0.06          C1 870118  739 30.88 34-19.68  81-19.45  1.66 -0.60  5 175 1.5 0.05 0.6 0.9 C1 870120  836 19.04 34-20.07  81-20.35  1.00 -0.24  7 248 0.3 0.09 0.9 1.2 C1 870120  19 0 17.19 34-20.10  81-19.13  0.36  -0.60  5 184 1.7 0.02 0.1 0.1 C1 870121 12 0 44.87 34-19.61    81-19.64 0.75 -0.86  6 189 1.4 0.02 0.1 0.2 C1 870121  1843 42.74 34-19.87  81-20.02  2.28  0.44 8 180  0.7 0.05 0.4 0.7 C1 870122 1332 28.41 34-20.28  81-19.25  1.70 -1.22 4 124  1.5 0.05          C1 870124  1629 13.37 34-20.48  81-19.16  1.L  -0.60 6 224  1.8 0.05 0.0 0.1  C1 870127 225 22.33 34-20.27 81-19.48    2.25 -0.86 6 111  1.2 0.06 0.6 0.9  B1 870127 429 3.76 34-19.96 81-19.57      1.00 -1.22 6 141  1.1 0.08 0.6 1.8  B1 870127 615 52.78 34-19.92 81-19.48    1,76 -1.22 6 158  1.3 0.09 0.8 1.3  B1 870129 1531 51.31 34-19.99 81-19.03    1.69 -0.11 6 174  1.9 0.04 0.6 0.7  B1 870130 647 7.56 34-19.81 81-19.27      1.71 -0.40 9 144  1.6 0.07 0.4 0.6  B1 870130 2330 21.39 34-17,86 81-19.48    2.83  0.95 10 202 4.5 0.03 0.3 0.5  C1 870131 2239 34.52 34-20.01  81 .9.00  2.02 -0.24 7 141  1.9 0.01 0.1 0.1 B1 870131  2338 42.39 34-19.90  81-19.22  1.89  0.12 9 136  1.7 0.05 0.3 0.4 B1 870202 15 0 26.02 34-19.82  81-18.89  1.91 -0.24 8 135  1.8 0.09 0.5 0.7 B1 870203  21 3 28.59 34-19.37  81-19.64  0.89 -0.40 7 201  1.8 0.05 0.5 1.9 C1 870206  425 29.25 34-19.95  81-19.41  0.90 -0.40 7 138  1.4 0.08 0.5 1.5 B1 870209  640 27.16 34-20.05  81-19.44  0.38 -0.60 6 137  1.3 0.08 1.4 2.7 C1 870210 1837 32.17 34-20.14  81-20.35  1.22 -0.40 4 231  0.2 0.02          C1 870213  317 40.13 34-21.01    81-20.32 1.66 -0.60 4 213  1.5 0.00          C1 870213 1141 43.75 34-20.86  81-19.80  1.10 -0.60 4 161  1.4 0.00          C1 870213  1655 27.31 34-19.30  81-18.81  0.61 -0.86 5 173  2.0 0.03 0.2 0.5 C1 870213 2212 56.97 34-20.89  81-18.89  0.80  0.01 10 156 2.5 0.06 0.3 0.5 B1 870216  1453 52.81 34-18.35  81-18.94  0.26 -0.60 4 182  3.9 0.01          C1 870217 1256 14.92 34-20.01  81-18.91  2.18  0.12 9 125  1.8 0.07 0.4 0.5  B1 870219 521 8.78 34-19.59 81-19.37      0.98  0.82 8 177  1.7 0.04 0.2 0.6  B1 870219 2143 10.23 34-19.42 81-19.09    2.61 -0.40  7 158 2.3 0.09 0.7 1.1  B1 870219 2243 54.13 34-19.33 81-19.04    2.84 -0.60  5 179 2.3 0.03 0.4 0.6  C1 870219 2250 43.88 34-19.48 81-18.77    1.95 -0.86  7 164 1.8 0.09 0.6 1.0  B1 870220 422 4.16 34-19.15 81-18.86      0.60 -1.22  5 181 2.2 0.08 1.5 4.8  C1 870220 835 8.27 34-17.47 81-16.76      0.25 -0.40  4 184 2.2 0.07          C1 870220  1134 28.76 34-19.24  81-19.36  2.72 -0.86  4 194 2.2 0.03          C1 870220 1247 48.91 34-20.28  81-17.18  3.33 -0.86  4 204 1.1 0.03          C1 870222  1156 17.15 34-19.67  81-18.75  2.81 -0.11  7 139 1.6 0.08 0.6 0.7 B1 870222 1157 10.65 34-18.48  81-19.04  0.04 -0.86  4 292 3.3 0.04          C1 870222  1157 25.97 34-19.79  81-19.09  0.71 -0.86  4 208 1.9 0.02          C1 870222 1641 11.53 34-19.36  81-19.27  2.30 -0.11  7 165 2.1 0.03 0.2 0.3 B1 870222  1738 50.17 34-19.76  81-19.07  1.00 -0.60  4 211 2.0 0.02          C1 870223  2241 3.33 34-19.56  81-19.22  1.94 -1.22  5 173 1.9 0.08 0.9 1.6 C1 870224  5 0 10.17 34-19.40  81-18.97  1.73 -0.86  7 173 2.1 0.09 0.6 1.2 B1 870224 54 2.77 34-19.41 81-19.53      0.59 -0.60  7 194 1.8 0.08 0.6 1.8 C1 870224 544 34.60 34-19.34 81-19,36    1,64 -0.40  8 169 2.1 0.09 0.6 1.1 B1 870224 7 4 11.10 34-19.41    81-19.48 1.72 -0.86  9 172 1.9 0.09 0.5 0.9 B1
  . 870224 7 5 23.58 34-19.61    81-19.18 1.00 -0.86  3 170 1.9 0.01          C1 870224 712 46.47 34-19.41    81-19.36 1.24 -0.24  9 166 2.0 0.08 0.4 1.0 B1 870224 738 3.28 34-19.37 81-18.83      2.40 -0.11  8 146 1.7 0.05 0.3 0.4 B1 870224 2346 37.29 34-19.46 81-19.31    1,76  0.37 9 163  2.0 0.05 0.3 0.5 B1 870227 657 50.01 34-19.67 81-19.21    0.92 -0.11  9 150 1.9 0.05 0.3 0.8 B1 870227 657 55.64 34-19.53 81-19.52    1.69 -0.11  8 168 1.6 0.07 0.4 0.8 B1 870227 8 4 28.36 34-19.54 81-19.20    1.90 -0.86  4 174 2.0 0.02          C1
 
19 870227 1049 50.42 34-19.15 81-19.51 1.00  -1.22  3 203 2.2 0.01          C1 870227 1052 0.79 34-19.62 81-19.41  1.17  -0.86  4 177 1.6 0.01          C1 870227 1054 30.09 34-19.46 81-19.33 0.42  -0.40  6 163 1.9 0.07 0.9 3.1 C1 870227 1111 49.48 34-20.01 81-18.64 2.36  -0.60  6 180 1.4 0.00 1.6 1.5 C1 870227 1349 32.51 34-19.34 81-19.30 1.83  -0.60  5 187 2.1 0.03 0.3 0.4 C1 870228 913 39.29 34-19.53 81-19.11  0.46  -0.60  5 171 2.1 0.05 0.7 3.2 C1 870228 1737 53.75 34-19.65 81-19.38 2.24  -0.86  6 174 1.7 0.02 0.2 0.2 B1 870301 16 7 12.85 34-19.25 81-18.67 1.59  0.01 7 171  1.9 0.08 1.0 1.9 B1 870310 040 34.63 34-20.00 81-20.35  1.00  0.68 7 248  0.4 0.05 0.4 0.6 C1 870314 1913 32.92 34-20.01 81-18.05 2.23  -1.22  4 196 0.5 0.06          C1 870329 1554 58.50 34-20.36 81-18.68 2.48  -0.60  6 140 1.7 0.07 0.5 0.7 B1 e
t
*}}

Latest revision as of 04:47, 3 May 2021

Technical Rept 87-1, Seismic Activity Near VC Summer Nuclear Station for Jan-Mar 1987
ML20215G400
Person / Time
Site: Summer South Carolina Electric & Gas Company icon.png
Issue date: 03/31/1987
From: Acree S, Talwani P, Ward C
SOUTH CAROLINA, UNIV. OF, COLUMBIA, SC
To:
Shared Package
ML20215G392 List:
References
87-1, NUDOCS 8706230241
Download: ML20215G400 (21)


Text

'

TECHNICAL REPORT 87-1 SEISMIC ACTIVITY NEAR THE V.C. SUMMER NUCLEAR STATION 4

For the Period January - March 1987 by Pradeep Taiwani w Principal Investigator Geology Department l University of South Carolina Columbia, S.C. 29208 L

Contract No. N449678 Q6' [!,850d $bObfb9S R f UN

__ j

t i

TECHNICAL REPORT 87-1 l

l SEISMIC ACTIVITY NEAR THE V.C. SUMMER NUCLEAR STATION s.

FOR THE PERIOD JANUARY-MARCH, 1987 i

BY l

PRADEEP TALWANI PRINCIPAL INVESTIGATOR AND STEVE ACREE CHRIS WARD GEOLOGY DEPARTMENT UNIVERSITY OF SOUTH CAROLINA .

l COLUMBIA, S.C. 29208 1

e CONTRACT NO. N449678 j

y 1

)

1 INTRODUCTION Analysis of the seismic activity near the V.C. Summer )

Nuclear Station in South Carolina between January 1 and March 31, 1987 is presented in'this report. During this period a

-total of one'hundred twenty-three (123). events were recorded 3 l

of which one hundred seven (107) were located (87%). The ]

l largest shock was of magnitude 1.9 (January 13-0545 UTC). Of )

l the remaining earthquakes, approximately twenty-three percent l I

(23%) were of magnitudes greater than zero. Fifty-four j i

percent (54%) of the located shocks.were of B quality. All of the B quality events located at depths less than 3.5 km.

1 SEISNIC NETWORK Earthquakes recorded during this period were located using l

stations of the SCE&G and USGS/USC networks. The configuration of the stations utilized to locate the events in this report is shown in' Figure 1 and station coordinates are listed in Appendix I. j I

DATA ANALYSIS Hypocentral locations of the events were determined using j the computer program HYP071 (Lee and Lahr, 1972) and the velocity model listed in Appendix II. The event magnitude (Mg) was determined from signal duration at station JSC, using the j following relation:

ML = -1.83 + 2.04 Log D J

I 2

l

\

l

.N \

x 1

i i

MONTICELLO RESERVOIR

. )

( 7

/

l 1 10 1  ;

i 1

1 0

9A ^JS C STUDY AREA 5H

\

)

SOUTH CAROLIN A l

)

O 5KM l A i 2 -

Figure 1. Location map of Monticello Reservoir area showing seismic stations used in locating activity during January-March 1987.

l l

________________a

3

/

where D is the signal duration (seconds).

An estimate of daily energy release is determined using a simplified magnitude (M L) energy (E) relation by Gutenberg and Richter (1956).

log 0 E = 11.8 + 1.5 M 3 .

OBSERVED SEISMICITY FOR THE PERIOD JANUARY-MARCH, 1987 During this period, one hundred twenty-three (123) events were recorded, of which one hundred seven (107) (87%) were located (see Appendix III). This level of activity was greater than'that observed during any reporting period in 1986 but does not appear to be significant within the context of the trend of declining activity (Figure 2). The largest event of this quarter (M g =1.9) occurred on January 23 at 0545 UTC.

There were only two events with a magnitude of 1.0 or greater during this period. Twenty-five shocks (25) (23%) were of magnitudes greater than zero.

The epicenters of earthquakes located during this quarter are presented in Figure 3. Spatially, the earthquakes were concentrated in two clusters beneath the center of the reservoir.

The earthquakes which occurred during January were centered approximately 1-2 km north of the February earthquakes (Figures 4 and 5). Only four (4) March earthquakes were located (Figure 6). Temporally, the majority of the i earthquakes occurred in two swarms. The first of these swarms was of relatively short duration (January 10-14) with a peak

4 j*

.: a j:

E e

I w

. e

- x a

  • I E

n O ,

c

- 5 s

a v

8 E

i -

?

e  ;

. ~

3

. 1

. ~ j ss c l 8

- :"l

.  ! I a $ H R 8 a i

H1NOW BBd SB>IYnOHibfVE  !

i i

1 5

{

l 81 22.75' 81. 15.25'

. 34 24'

. t MONTICELLO EARTHQUAXES JANUARY-MARCH 1987.

O O G o o o .

O O .

0 0 0

ML

[ o, o

e o oOi l (8 8-1 1-2 >2 ;

5 ya ,

. . . . . . . . 34 16.5' l

. 1 Figure 3. Seismic activity at Monticello Reservoir during January-March 1987.

i

6 81 22.75' 81 15.25' 34 24' W -

MONTICELLO

[

u EARTHQUAXES l J ANU ARY' 1987 i 0

0 0 .

eo o 0

g h .

M t.

a o OO

<8 6-1 1-2 >2 5 Fm >

. . . . . 34 16.5' Figure 4. Seismic activity at Monticello Reservoir during January 1987.

l 1

7 .;

i l

l l

81 22.75' 81 15.25'

. . . . . . . 34 24' i

k

,V MONTICELLO EARTHQUAXES FEBRUARY 1987 i

o O P

O s go .

h5 l

nL

  • o c) 1 es 0 o o OO

<8 8-1 1-2 >2 5 Xm l . . . . . . . . . ...... 34 16.5' I

I l

Figure 5. Seismic activity at Monticello Reservoir during February 1987.

i 1

1 l

i _ -_ _ - _ - - _ - - - _ _ _ _ - - - _ - - _ - - - - - - - - _ - - _ _ _ _ _ _ _ _ - - - _ - - - - - _

l 8

81 22.75' 81 15.25'

. . . 34 24' b -

MONTICELLO EARTHQUAXES MARCH 1987 1

0 j 0 -

0

(> '

Mt eN o o OO  ;

<8 8-1 1-2 >2l 5 Km i

. . . . . . . . . . . . . 34 16.5' j l

l Figure 6. Seismic activity at Monticello Reservoir during March 1987.

9 of 23' events per day on January 13. The largest event of this I I

quarter (M g m 1.9) occurred on January 13 during the peak of the swarm. The second swarm was of longer duration (February.

19-28) with a peak ofLten events per day on February 24.

Fifty-four percent (54%) (58) of the located events were-4 of B quality. All but one of these earthquakes located within 3 km of the surface (Figure 7). The majority of.the events were located at depths between 1.5 and 2.0 km. There appears ~ ,

i to be little difference in the distribution of depths of 4'H earthquakes from the January and February swarms (Figure 17), i n

}

CORRELATION OF RESERVOIR NATER LEVEL WITH SEISMICITY -

n Monticello Reservoir is a pumped stora'ge facility. Any decrease in reservoir level associated with power generati is recovered when water is pumped back into the reservoir.,ofhere can be normal variations up to approximately five feet per day between the maximum and minimum water level. We have been monitoring the water level to see if there is any correlation between the daily or seasonal changes in the reeervoir level and the local seismicity. Water level was compared to seismicity in Figure 8. The top two plots show the median water level and the change in water level each day. The number of events per day

~

and-the log of the energy released per day are shown in the<19wer

'f.

two histograms. T h e s e c h a r t s i n c l u d e b o t h l o c a t e d a n d u n l o c a t'e d '

events around the reservoir. Nocorrelationbetweenwaterlepel' and seismicity during this period is readily apparent.

i l

(;

10 JANUARY-MARCH

'l '

PERCENT 8 18 28 38 48 68 8.25 8.75 .

1.25 DEPTH g 1.'75 2.25 ^ -

4 2.75 r

) 3.88 >

. N : 58 -

4 i ,

~J PDCDff PDCI

? 18 28 38 48 58 - 68 8 18 28 38 48 58 e,25 8.25 8.75 8.75 1 1.25 1.25 s

,, DM 3,7g DN 1.75 (2) (2) 2.25 2.25 4

2.75 2.75

> 3. 8e > 2.88 , j i

JANUARY SWARM FEBRUARY SWARM

,' b{ 31 .N : 14 Figure 7., Distribution of depths of high quality hypotentars for January-March 1987 and during' the earthquake swarms of January 1987 and February 1987.

I

b 11

$ 425.0 1 _ _ _

ff 422.5 -

\

U b k 420.0 j , , ,

j

i i i E

- 1 c

5.0 -

!i y 2.5 -

5 c.o

  • fw/

i i i e i -

g ,

l 15 0

a g -

3 25 sa 15'

.- I -- - - - E --

1 11 21 31 41 51 61 71 81 JULIAN DAY 1987 Figure 8. Comparison of the median daily lake level and daily change in water level with the number of earthquakes per day and the log of the energy released.

1

12 CONCLUSIONS.

The. level of activity observed during the first quarter of 1987, though greater than that of any quarter in 1986, does not appear-to be significant. No earthquake with a magnitude greater than 2.0 was recorded. Only two events were of a magnitude greater than 1.0 (M g =1.9, 1.1). Twenty-three percent of the earthquakes were of magnitudes greater than 0.0. All of the accurately located shocks were within the upper 3.5 km of the crust. The majority of the epicenters were concentrated beneath the central portion of the reservoir in two clusters.

D REFERENCES ,

l Gutenberg, D. and Richter, C.F. (1956). Magnitude and energy of earthquakes, Ann. Geof. 9, p. 1-15. I Lee, W.H.K. and Lahr, J.C. (1972). A computer program for determining hypocenter, magnitude and first motion pattern of local earthquakes, Revisions of HYPO 71, U.S Geoiogicai Survey, Open-Fiie Report, 100 pp.

e 4

0 69

14 l

APPENDIX I STATION LOCATIONS NO. STN. LAT.*N LONG.*W 1 JSC 34* 16.80' 81* 15.60'

\

2 001 34* 19.91' 81* 17.74' 3 002 34* 11.58' 81* 13.81' 4 05H 34* 16.05' 81* 20.05' 5 007 34* 22.23' 81* 19.50' 6 09A 34* 17.24'. 81* 19.75' 7 010 34* 20.18' 81* 20.25' i

4 I

1

l-c i

15 APPENDIX II MONTICELLO RESERVOIR VELOCITY MODEL.

Velocity Depth to top km/sec km 1.00' O.00 5.40 0.03-5.90 0.18 6.10 0.46 6.30 0.82 8.10 30.00

16 APPENDIX III MONTICELLO' EARTHQUAKES-JANUARY - MARCH, 1987 HYP071 FORMAT ,

l

. Column 1 Date. j i

Column 2 Origin time (UTC) h.m.sec.

Column 3 Latitude (N) degrees, min.

p Column 4 Longitude (W) degrees, min.

i Column 5 Depth (km).

I Column 6 Local duration magnitude.

1 i

Column 7 No. of station readings used to locate event. ,

I P and S arrivals from same stations are regarded as 2 readings.

Column 8 Largest azimuthal separation in degrees between stations.

Column 9 Epicentral distance in km to nearest station.

Column 10 error of time residuals in Root sec. mean RMS squarg/NO,

= R where R is the time ,

residual for t e ith station Column 11 Standard error of the epicenter in km*.

Column 12 Standard error of the focal depth in km*.

  • Statistical interpretation of standard errors involves assump-tions which may not be met in earthquake locations. Therefore standard errors may not represent actual error limits.

If ERH or ERZ is blank, this means that it cannot be computed, because of insufficient data.

_______.________________._._m_ _ _ . _ _ _ . _

y 1

17 MONTICELLO EARTHQUAKFS JANUARY-MARCH, 1987 DATE ORIGIN LAT N LONG W DEPTH MAG NO GAP DMIN RMS ERH ERZ QM 870110 2048 19.95 34-20.06 81-19.62 3.38 -0.60 8 249 1.0 0.05 0.4 0.4 B1 870110 2048 42.07 34-19.30 81-19.48 1.70 -1.22 5 196 2.0 0.03 0.5 1.0 C1 870110 2115 3.83 34-20.03 81-19.98 2.93 0.82 9 155 0.5 0.06 0.4 0.4 B1 870110 2118 39.27 34-20.08 81-19.22 2.84 -0.40 6 139 1.6 0.06 0.7 0.7 B1 870110 2120 12.27 34-19.01 81-19.73 1.76 0.21 7 193 2.3 0.06 0.6 1.5 C1 870111 114 18.65 34-20.09 81-19.01 2.42 0.01 9 122 1.9 0.07 0.4 0.5 B1 870111 232 55.52 34-20.03 81-19.21 1.80 -0.60 6 143 1.6 0.09 0.6 1.2 B1 870111 823 51.02 34-19.84 81-19.49 1.84 0.73 8 148 1.3 0.07 0.4 0.7 B1 870111 2019 36.34 34-18.86 81-19.14 4.26 -0.40 5 200 2.9 0.09 1.7 2.0 C1 870111 2118 36.59 34-20,20 81-18.98 0.71 -0.60 7 129 1.9 0.03 0.1 0.4 B1 870111 2119 22.57 34-20.07 81-19.09 2. 38 -0.86 7 138 1.8 0.03 0.2 0.3 B1 j 870112 233 25.74 34-20.09 81-19.02 1.93 0.87 8 122 1.9 0.04 0.4 0.5 B1 870112 253 33.25 34-20.03 81-19.29 1.52 -0.60 8 144 1.5 0.08 0.5 0.8 B1 870112 344 18.70 34-19.73 81-19.29 0.72 -0.40 5 166 1.7 0.03 1.1 2.0 C1 870122 4 3 39.46 34-19.70 81-19.56 1.72 -0.11 8 160 1.4 0.06 0.4 0.8 B1 870112 451 12.47 34-20.11 81-19.43 1.24 -0.86 7 140 1.3 0.06 0.4 0.8 B1 870112 459 41.25 34-20.05 81-19.32 1.75 -0.86 6 143 1.4 0.03 0.2 0.4 B1 870112 527 13.11 34-20.25 81-19.11 1.90 0.82 8 126 1.8 0.05 0.3 0.5 B1 870112 548 47.90 34-19.94 81-19.34 1.79 0.91 8 152 1.5 0.08 0.5 0.7 B1 870113 246 36.13 34-20.00 81-19.45 1,62 0.21 7 150 1.3 0.07 0.5 1.0 B1 870113 545 51.79 34-20.15 81-19.30 1.70 1.87 10 105 1.5 0.06 0.3 0.6 B1 870113 547 54.32 34-19.50 81-20.01 2.85 -1.83 5 217 1.3 0.05 0.7 0.8 C1 870113 547 59.89 34-20.01 81-19.36 1.03 -0.86 6 148 1.4 0.05 0.3 0.9 B1 870113 548 21.05 34-20.13 81-19.17 1.08 0.21 8 135 1.7 0.03 0.2 0.4 B1  !

870113 548 35.28 34-20.18 81-19.70 3.58 -0.40 5 136 0.9 0.05 0.6 0.8 C1 870113 616 21.82 34-20.13 81-19.61 1.88 -0.86 6 140 1.0 0.00 0.0 0.0 B1 870113 643 52.70 34-20.15 81-19.66 2.04 0.12 7 139 0.9 0.02 0.2 0.2 B1 870113 645 8.87 34-20.46 81-19.39 1.71 -0.60 8 115 1.4 0.06 0.4 0.6 B1 870113 650 21.09 34-19.31 81-19.12 1.68 -1.22 4 182 2.4 0.08 C1 870113 656 18.62 34-19.71 81-19.31 1.99 -1.22 4 168 1.7 0.03 C1 870113 657 10.74 34-20.28 81-19.18 1.22 0.82 7 124 1.7 0.04 0.3 0.7 B1 870113 7 1 10.48 34-20,20 81-19.42 1.66 -0.24 7 131 1.3 0.02 0.1 0.2 B1 870113 7 9 24.97 34-20.07 81-19.15 2.66 -0.86 5 139 1.7 0.06 0.7 1.1 C1 870113 731 11.79 34-20.00 81-19.32 1.30 -1.22 5 147 1.5 0.04 0.4 0.8 C1 870113 737 28.01 34-20.40 81-19.08 0.99 -0.40 4 143 1.8 0.01 C1 870113 744 17.82 34-19.72 81-19.44 1.72 1.12 7 172 1.5 0.07 0.5 0.9 B1 870113 8 5 47.60 34-20.20 81-19.27 2.06 -0.60 6 131 1.5 0.02 0.1 0.2 B1

. 870113 828 48.25 34-19.29 81-19.52 0.85 -1.22 4 198 2.0 0.07 C1 870113 839 4).46 34-20.26 81-19.36 2.27 0.01 8 126 1.4 0.03 0.2 0.3 B1 870113 1354 8.45 34-20.36 81-18.77 1.51 0.12 8 136 1.8 0.03 0.2 0.3 B1 870113 2144 33.33 34-19.89 81-19.30 1.92 -1.22 5 155 1.6 0.07 0.6 1.1 C1 870114 012 5.72 34-20.20 81-18.88 2.00 -0.60 7 121 1.8 0.05 0.3 0.5 B1 870114 326 23.67 34-19.76 81-19.53 1.81 -0.40 8 173 1.4 0.05 0.3 0.4 B1 870114 1519 34.99 34-20.07 81-19.04 1.82 0.63 10 123 1.9 0.09 0.5 0.7 B1

18 870116 848 17.77 34-19.38 81-18.91 1.95 -1.22 4 172 2.0 0.06 C1 870118 739 30.88 34-19.68 81-19.45 1.66 -0.60 5 175 1.5 0.05 0.6 0.9 C1 870120 836 19.04 34-20.07 81-20.35 1.00 -0.24 7 248 0.3 0.09 0.9 1.2 C1 870120 19 0 17.19 34-20.10 81-19.13 0.36 -0.60 5 184 1.7 0.02 0.1 0.1 C1 870121 12 0 44.87 34-19.61 81-19.64 0.75 -0.86 6 189 1.4 0.02 0.1 0.2 C1 870121 1843 42.74 34-19.87 81-20.02 2.28 0.44 8 180 0.7 0.05 0.4 0.7 C1 870122 1332 28.41 34-20.28 81-19.25 1.70 -1.22 4 124 1.5 0.05 C1 870124 1629 13.37 34-20.48 81-19.16 1.L -0.60 6 224 1.8 0.05 0.0 0.1 C1 870127 225 22.33 34-20.27 81-19.48 2.25 -0.86 6 111 1.2 0.06 0.6 0.9 B1 870127 429 3.76 34-19.96 81-19.57 1.00 -1.22 6 141 1.1 0.08 0.6 1.8 B1 870127 615 52.78 34-19.92 81-19.48 1,76 -1.22 6 158 1.3 0.09 0.8 1.3 B1 870129 1531 51.31 34-19.99 81-19.03 1.69 -0.11 6 174 1.9 0.04 0.6 0.7 B1 870130 647 7.56 34-19.81 81-19.27 1.71 -0.40 9 144 1.6 0.07 0.4 0.6 B1 870130 2330 21.39 34-17,86 81-19.48 2.83 0.95 10 202 4.5 0.03 0.3 0.5 C1 870131 2239 34.52 34-20.01 81 .9.00 2.02 -0.24 7 141 1.9 0.01 0.1 0.1 B1 870131 2338 42.39 34-19.90 81-19.22 1.89 0.12 9 136 1.7 0.05 0.3 0.4 B1 870202 15 0 26.02 34-19.82 81-18.89 1.91 -0.24 8 135 1.8 0.09 0.5 0.7 B1 870203 21 3 28.59 34-19.37 81-19.64 0.89 -0.40 7 201 1.8 0.05 0.5 1.9 C1 870206 425 29.25 34-19.95 81-19.41 0.90 -0.40 7 138 1.4 0.08 0.5 1.5 B1 870209 640 27.16 34-20.05 81-19.44 0.38 -0.60 6 137 1.3 0.08 1.4 2.7 C1 870210 1837 32.17 34-20.14 81-20.35 1.22 -0.40 4 231 0.2 0.02 C1 870213 317 40.13 34-21.01 81-20.32 1.66 -0.60 4 213 1.5 0.00 C1 870213 1141 43.75 34-20.86 81-19.80 1.10 -0.60 4 161 1.4 0.00 C1 870213 1655 27.31 34-19.30 81-18.81 0.61 -0.86 5 173 2.0 0.03 0.2 0.5 C1 870213 2212 56.97 34-20.89 81-18.89 0.80 0.01 10 156 2.5 0.06 0.3 0.5 B1 870216 1453 52.81 34-18.35 81-18.94 0.26 -0.60 4 182 3.9 0.01 C1 870217 1256 14.92 34-20.01 81-18.91 2.18 0.12 9 125 1.8 0.07 0.4 0.5 B1 870219 521 8.78 34-19.59 81-19.37 0.98 0.82 8 177 1.7 0.04 0.2 0.6 B1 870219 2143 10.23 34-19.42 81-19.09 2.61 -0.40 7 158 2.3 0.09 0.7 1.1 B1 870219 2243 54.13 34-19.33 81-19.04 2.84 -0.60 5 179 2.3 0.03 0.4 0.6 C1 870219 2250 43.88 34-19.48 81-18.77 1.95 -0.86 7 164 1.8 0.09 0.6 1.0 B1 870220 422 4.16 34-19.15 81-18.86 0.60 -1.22 5 181 2.2 0.08 1.5 4.8 C1 870220 835 8.27 34-17.47 81-16.76 0.25 -0.40 4 184 2.2 0.07 C1 870220 1134 28.76 34-19.24 81-19.36 2.72 -0.86 4 194 2.2 0.03 C1 870220 1247 48.91 34-20.28 81-17.18 3.33 -0.86 4 204 1.1 0.03 C1 870222 1156 17.15 34-19.67 81-18.75 2.81 -0.11 7 139 1.6 0.08 0.6 0.7 B1 870222 1157 10.65 34-18.48 81-19.04 0.04 -0.86 4 292 3.3 0.04 C1 870222 1157 25.97 34-19.79 81-19.09 0.71 -0.86 4 208 1.9 0.02 C1 870222 1641 11.53 34-19.36 81-19.27 2.30 -0.11 7 165 2.1 0.03 0.2 0.3 B1 870222 1738 50.17 34-19.76 81-19.07 1.00 -0.60 4 211 2.0 0.02 C1 870223 2241 3.33 34-19.56 81-19.22 1.94 -1.22 5 173 1.9 0.08 0.9 1.6 C1 870224 5 0 10.17 34-19.40 81-18.97 1.73 -0.86 7 173 2.1 0.09 0.6 1.2 B1 870224 54 2.77 34-19.41 81-19.53 0.59 -0.60 7 194 1.8 0.08 0.6 1.8 C1 870224 544 34.60 34-19.34 81-19,36 1,64 -0.40 8 169 2.1 0.09 0.6 1.1 B1 870224 7 4 11.10 34-19.41 81-19.48 1.72 -0.86 9 172 1.9 0.09 0.5 0.9 B1

. 870224 7 5 23.58 34-19.61 81-19.18 1.00 -0.86 3 170 1.9 0.01 C1 870224 712 46.47 34-19.41 81-19.36 1.24 -0.24 9 166 2.0 0.08 0.4 1.0 B1 870224 738 3.28 34-19.37 81-18.83 2.40 -0.11 8 146 1.7 0.05 0.3 0.4 B1 870224 2346 37.29 34-19.46 81-19.31 1,76 0.37 9 163 2.0 0.05 0.3 0.5 B1 870227 657 50.01 34-19.67 81-19.21 0.92 -0.11 9 150 1.9 0.05 0.3 0.8 B1 870227 657 55.64 34-19.53 81-19.52 1.69 -0.11 8 168 1.6 0.07 0.4 0.8 B1 870227 8 4 28.36 34-19.54 81-19.20 1.90 -0.86 4 174 2.0 0.02 C1

19 870227 1049 50.42 34-19.15 81-19.51 1.00 -1.22 3 203 2.2 0.01 C1 870227 1052 0.79 34-19.62 81-19.41 1.17 -0.86 4 177 1.6 0.01 C1 870227 1054 30.09 34-19.46 81-19.33 0.42 -0.40 6 163 1.9 0.07 0.9 3.1 C1 870227 1111 49.48 34-20.01 81-18.64 2.36 -0.60 6 180 1.4 0.00 1.6 1.5 C1 870227 1349 32.51 34-19.34 81-19.30 1.83 -0.60 5 187 2.1 0.03 0.3 0.4 C1 870228 913 39.29 34-19.53 81-19.11 0.46 -0.60 5 171 2.1 0.05 0.7 3.2 C1 870228 1737 53.75 34-19.65 81-19.38 2.24 -0.86 6 174 1.7 0.02 0.2 0.2 B1 870301 16 7 12.85 34-19.25 81-18.67 1.59 0.01 7 171 1.9 0.08 1.0 1.9 B1 870310 040 34.63 34-20.00 81-20.35 1.00 0.68 7 248 0.4 0.05 0.4 0.6 C1 870314 1913 32.92 34-20.01 81-18.05 2.23 -1.22 4 196 0.5 0.06 C1 870329 1554 58.50 34-20.36 81-18.68 2.48 -0.60 6 140 1.7 0.07 0.5 0.7 B1 e

t