ML070871112: Difference between revisions

From kanterella
Jump to navigation Jump to search
(Created page by program invented by StriderTol)
(Created page by program invented by StriderTol)
Line 17: Line 17:


=Text=
=Text=
{{#Wiki_filter:MPR Associates, Inc.SMPR 320 King Street Alexandria, VA 22314 CALCULATION TITLE PAGE Client: PSEG Nuclear LLC Page 1 of 35 Project: Task No.Salem CFCU Simplification Project 0108-0606-0342-03 Title: Calculation No.Analysis of CCW Supply Temperature During LOCA Recirculation 0108-0342-JFL-01 Preparer / Date Checker/ Date Reviewer & Approver / Date Rev. No.J. Lundy, 02/16/07 A. Tastet J. Hibbard 0~92 I~o.1o7 QUALITY ASSURANCE DOCUMENT This document has been prepared, checked, and reviewed/approved in accordance with the Quality Assurance requirements of I OCFR50 Appendix B, as specified in the MPR Quality Assurance Manual.MPR-QA Form OA-3.1-l, Rev. 1 MPR Associates, Inc.WMPR 320oKing Street Alexandria, VA 22314 RECORD OF REVISIONS Calculation No. Prepared By Che 4 Page: 2 0108-0342-JFL-01 n / A. Tastet Revision Affected Pages Description 0 All Initial Issue Note: The revision number found on each individual page of the calculation carries the revision level of the calculation in effect at the time that page was last revised.MPR QA Form QA-3,1-2, Rev. 0  
{{#Wiki_filter:MPR Associates, Inc.
*MPR MPR Associates, Inc.320 King Street Alexandria, VA 22314 Calculation No.0 1 08-0342-JFL-0 I Table of Contents 1.0 2.0 3.0 3.1 3.2 3.3 3.4 4.0 A B C Purpose ..................................................................................................................
SMPR                                                                                   320 King Street Alexandria, VA 22314 CALCULATION TITLE PAGE Client:
4 Sum m ary of Results .........................................................................................
PSEG Nuclear LLC                                                                         Page 1 of 35 Project:                                                                                           Task No.
4 Discussion  
Salem CFCU Simplification Project                                                     0108-0606-0342-03 Title:                                                                                           Calculation No.
.... I ...................  
Analysis of CCW Supply Temperature During LOCA Recirculation 0108-0342-JFL-01 Preparer / Date                 Checker/ Date               Reviewer & Approver / Date         Rev. No.
..................  
J. Lundy, 02/16/07                   A. Tastet                       J. Hibbard                     0 I~o.1o7
.............................................................
                                          ~92 QUALITY ASSURANCE DOCUMENT This document has been prepared, checked, and reviewed/approved in accordance with the Quality Assurance requirements of I OCFR50 Appendix B, as specified in the MPR Quality Assurance Manual.
4 Analysis Inputs ..................................................................................................
MPR-QA Form OA-3.1-l, Rev. 1
6 Analysis Method ...............................................................................................
 
7 Assumptions  
MPR Associates, Inc.
....................................................................................................
WMPR                                                                               320oKing Street Alexandria, VA 22314 RECORD OF REVISIONS Calculation No.                     Prepared By                   Che       4           Page:   2 0108-0342-JFL-01                             n                 /   A. Tastet Revision     Affected Pages                                         Description 0               All           Initial Issue Note: The revision number found on each individualpage of the calculationcarries the revision level of the calculation in effect at the time that page was last revised.
10 Results .............................................................................................................
MPR QA Form QA-3,1-2, Rev. 0
10 References  
 
........................................................................................................
MPR Associates, Inc.
12 Salem Unit I RHR/CCW/SWS Transient Thermal Analysis Results .............
*MPR                                                                                                    320 King Street Alexandria, VA 22314 Calculation No.
A-1 Salem Unit 2 RHR/CCW/SWS Transient Thermal Analysis Results .............
0 108-0342-JFL-0 I Table of Contents 1.0 Purpose.................................................................................................................. 4 2.0    Sum m ary of Results .........................................................................................             4 3.0    Discussion.... I...................       .................. ............................................................. 4 3.1    Analysis Inputs ..................................................................................................         6 3.2    Analysis Method ............................................................................................... 7 3.3    Assumptions ....................................................................................................           10 3.4    Results .............................................................................................................     10 4.0    References........................................................................................................         12 A      Salem Unit I RHR/CCW/SWS Transient Thermal Analysis Results ............. A-1 B      Salem Unit 2 RHR/CCW/SWS Transient Thermal Analysis Results ............. B-1 C      RHR and CCW Heat Exchanger PROTO-HX Runs ......................................... C-1 MPR QA Form: QA-3.1-3, Rev. 0
B-1 RHR and CCW Heat Exchanger PROTO-HX Runs .........................................
 
C-1 MPR QA Form: QA-3.1-3, Rev. 0 MPR Associates, Inc.UMPR 320 King Street Alexa-dia, VA- --231-4---Calculation No. Prepared By ,hecked ~y Page: 4 01 08-0342-JTFL-0l  
MPR Associates, Inc.
/ Lundy 4 A "T stiet Revision:
UMPR                                                                               320 King Street Alexa-dia, VA- --231-4---
0 1.0 PURPOSE The purpose of this calculation is to verify that the Closed Cooling Water System (CCW), Service Water System (SWS) and Residual Heat Removal (RHR) Heat Exchanger can support the minimum safeguards containment cooling function for Salem Unit 1 and Unit 2 during initiation of LOCA Recirculation.
Calculation No.                   Prepared By                 ,hecked           ~y           Page: 4 01 08-0342-JTFL-0l                   /   Lundy               4 "TA        stiet           Revision: 0 1.0         PURPOSE The purpose of this calculation is to verify that the Closed Cooling Water System (CCW), Service Water System (SWS) and Residual Heat Removal (RHR) Heat Exchanger can support the minimum safeguards containment cooling function for Salem Unit 1 and Unit 2 during initiation of LOCA Recirculation. The CCW supply temperature should not exceed 120'F, Reference (3).
The CCW supply temperature should not exceed 120'F, Reference (3).2.0  
2.0        


==SUMMARY==
==SUMMARY==
OF RESULTS This calculation indicates that the peak CCW supply temperature during initiation of LOCA Recirculation is 111.0°T and 11 2.0°F for Salem Units I and 2, respectively.
OF RESULTS This calculation indicates that the peak CCW supply temperature during initiation of LOCA Recirculation is 111.0°T and 11 2.0°F for Salem Units I and 2, respectively. These values are less than the design basis CCW supply temperature of 120'F, Reference (3). The CCW supply temperature is the critical indicator of the heat rejection capacity of the RHR/CCW/SWS path from containment. A lower than design CCW supply temperature indicates that the heat rejection requirements from the RHR System are within its design basis thermal capacity.
These values are less than the design basis CCW supply temperature of 120'F, Reference (3). The CCW supply temperature is the critical indicator of the heat rejection capacity of the RHR/CCW/SWS path from containment.
3.0         DiSCUSSION The revised Salem containment analysis, Reference (1), assumes a reduced Containment Fan Cooler Unit (CFCU) heat removal capacity to. support a decrease in design basis CFCU Service Water flow and an increase in SWS flow available to other safety related equipment. This calculation confirms that the RHR/CCW/SWS heat rejection path is adequately sized to accommodate the potential increase in heat load due to the reduction in CFCU heat removal capacity.
A lower than design CCW supply temperature indicates that the heat rejection requirements from the RHR System are within its design basis thermal capacity.3.0 DiSCUSSION The revised Salem containment analysis, Reference (1), assumes a reduced Containment Fan Cooler Unit (CFCU) heat removal capacity to. support a decrease in design basis CFCU Service Water flow and an increase in SWS flow available to other safety related equipment.
The combined RHR/CCW/SWS system thermal analysis is performed using an indirect loop &-
This calculation confirms that the RHR/CCW/SWS heat rejection path is adequately sized to accommodate the potential increase in heat load due to the reduction in CFCU heat removal capacity.The combined RHR/CCW/SWS system thermal analysis is performed using an indirect loop &-NTU method, Reference (2). This analysis verifies that the required heat rejection to support containment cooling is less than the design basis requirement, as represented by the CCW supply temperature.
NTU method, Reference (2). This analysis verifies that the required heat rejection to support containment cooling is less than the design basis requirement, as represented by the CCW supply temperature. The original Westinghouse design basis for the CCW system was for a CCW supply temperature of 120'F fdr 3 hours, Reference (3). The CCW supply temperature is the critical indicator of overall heat rejection capacity as it will vary depending on the hot side (RHR system) and cold side (SWS) flows and inlet temperatures. The &-NTUmethod uses the concept of thermal exchange effectiveness to account for non-effective heat transfer. The maximum heat transfer possible is a function of the minimum thermal capacitance and the heat exchanger inlet temperatures. The a-NTU method is generally more amenable to heat transfer system performance calculations than the Log Mean Temperature Difference method. The s-NTU method only requires hot and cold side mass flow thermal capacitances and inlet temperatures and minimizes the need for significant iteration to satisfy conservation of energy. The indirect a-NTU method is an extension of the basic e-NTU method as it incorporates an intermediate heat transfer circuit and only relies on the hot and cold heat exchanger duties and thermal boundary conditions to calculate an overall system heat exchange effectiveness.
The original Westinghouse design basis for the CCW system was for a CCW supply temperature of 120'F fdr 3 hours, Reference (3). The CCW supply temperature is the critical indicator of overall heat rejection capacity as it will vary depending on the hot side (RHR system)and cold side (SWS) flows and inlet temperatures.
MPR QA Form: QA-3.1-3, Rev. 0
The &-NTU method uses the concept of thermal exchange effectiveness to account for non-effective heat transfer.
 
The maximum heat transfer possible is a function of the minimum thermal capacitance and the heat exchanger inlet temperatures.
MPR Associates, Inc.
The a-NTU method is generally more amenable to heat transfer system performance calculations than the Log Mean Temperature Difference method. The s-NTU method only requires hot and cold side mass flow thermal capacitances and inlet temperatures and minimizes the need for significant iteration to satisfy conservation of energy. The indirect a-NTU method is an extension of the basic e-NTU method as it incorporates an intermediate heat transfer circuit and only relies on the hot and cold heat exchanger duties and thermal boundary conditions to calculate an overall system heat exchange effectiveness.
UM PR                                                                                   320 King Street Ale~andria, VA 22314 Calculation No.                       7 pared By                                                     Page:     5 0108-0342-JFL-01                         J. Lundy                               astet             Revision:     0 The analysis of the energy and temperature distributions in the RHR, CCW and SW systems is accomplished using the system thermal model shown in Figure 3-1. The hot side of the system is modeled by the assumed RHR system flowrate and Containment (CV) Sump temperature calculated in the containment analysis. The RHR system flow rejects heat to the CCW System via the R-HR heat exchanger. The containment analysis, Reference (1), assumes that the RHR system flow is returned to the Emergency Core Cooling System (ECCS) for injection into the Reactor Coolant System and subsequent removal of reactor core decay heat. The heat rejected to the CCW system combines with other miscellaneous CCW system heat loads (i.e. Safety Injection Pump lube oil and seal coolers, etc.) and is directed to the CCW heat exchanger. The higher temperature CCW system water rejects heat to the SWS, which reduces the CCW supply temperature to less thant 120'F. The CCW pump supplies flow to the operating RHR heat exchanger (4000 gpm) and to the other safety related miscellaneous loads (140 gpm), consistent with WCAP- 16503.
MPR QA Form: QA-3.1-3, Rev. 0 MPR Associates, Inc.UM PR 320 King Street Ale~andria, VA 22314 Calculation No. 7 pared By Page: 5 0108-0342-JFL-01 J. Lundy astet Revision:
Containment Sump To Cont Sp ray (0% Flow)                  Q=3200 gpm (VWCAP-1 6503)
0 The analysis of the energy and temperature distributions in the RHR, CCW and SW systems is accomplished using the system thermal model shown in Figure 3-1. The hot side of the system is modeled by the assumed RHR system flowrate and Containment (CV) Sump temperature calculated in the containment analysis.
(100% Flow)                      T=   (WCAP-16503) and ECCS 1CH Other CCW Loads                                RHR Hx Q=2.0E6 BTU/hr (WCAP-i 6503)           UA=1.75E6 BTU/hr-F (WCAP-16503)
The RHR system flow rejects heat to the CCW System via the R-HR heat exchanger.
( ;CW Flow = 140 gpm (WCAP-1 6503)        CCW Flow = 4000 gpm (WCAP-16503 1                                          I tCCW   Pump 4140 gpm J               SW In Q=8000 gpm (WCAP16503)
The containment analysis, Reference (1), assumes that the RHR system flow is returned to the Emergency Core Cooling System (ECCS) for injection into the Reactor Coolant System and subsequent removal of reactor core decay heat. The heat rejected to the CCW system combines with other miscellaneous CCW system heat loads (i.e. Safety Injection Pump lube oil and seal coolers, etc.) and is directed to the CCW heat exchanger.
T=93F (max) (WNCAP-16503) swou                                         C CCW Hx UA=4.013E6 BTU/hr-F (WCAP-i6503)
The higher temperature CCW system water rejects heat to the SWS, which reduces the CCW supply temperature to less thant 120'F. The CCW pump supplies flow to the operating RHR heat exchanger (4000 gpm) and to the other safety related miscellaneous loads (140 gpm), consistent with WCAP- 16503.To Cont Sp and ECCS Other CCW Loads Q=2.0E6 BTU/hr (WCAP-i 6503);CW Flow = 140 gpm (WCAP-1 6503)1 Containment Sump ray (0% Flow) Q=3200 gpm (VWCAP-1 6503)(100% Flow) T= (WCAP-16503) 1CH (RHR Hx UA=1.75E6 BTU/hr-F (WCAP-16503)
Figure 3-1
CCW Flow = 4000 gpm (WCAP-16503 I tCCW Pump 4140 gpm J SW In Q=8000 gpm (WCAP16503)
                                                                                                                          *J MPR OA Form: QA-3.1-3, Rev. 0 ff
T=93F (max) (WNCAP-16503) swou C CCW Hx UA=4.013E6 BTU/hr-F (WCAP-i6503)
Figure 3-1 MPR OA Form: QA-3.1-3, Rev. 0 ff MPR Associates, Inc.F M P R 320 KingStreet Alexandria, VA 22314 Calculation No. Prepared By Checked y Page: 6 0108-0342-JFL-01 LA.d / stet Revision:
0 3.1 Analysis Inputs The analysis input thermal conditions are shown in Table I and are consistent with those conditions used in WCAP-16503, Reference (1), Pages 6-9 through 6-10. The RHR and CCW heat capacities for the as-built plant conditions are summarized in Table 1 and in Attachment (C)for comparison purposes.Table I Parameter Analysis Input RHR Heat Exchangers Units Operating 1 Minimum Safeguards 1748.3 see Recirculation Switchover Time Overall U=396.1 BTU/hr-sqft-0 F, Attachment (C)Heat Capacity, UA* Effective Surf Area, A=4455 sqfl, Attachment (C)UA=1.75E6 BTU/hr-0 F, Reference (1)Tubeside Flow (CCW Side Flof H4000 gpm, Reference (1)(CCW Side of RHR Hx)Shellside Flow (RHR) 3200 gpm, Reference (1)CCW Heat Exchangers Units Operating Heat Capacity, Overall U=241.5 BTU/hr-sqft-°F, Attachment (C)UA Effective Surf Area, A=16615 sqft, Attachment (C)UA=4.013E6 BTU/hr-°F, Reference (1)Tubeside Flow (SWS) 8000 gpm, Reference (1)Shellside Flow (CCW) 4140 gpm, Reference (1)Additional CCW SystedietLon ads 2.0E6 BTU/hr, Reference (1)System Heat Loads Tubeside Supply 93'F, Reference (1)Temperature (SWS)3 f 1he VY1,ir-J0 u3U ValUe O0 UA- Is slignluy less than or equal to the Salem PI.U LU-HA value, whncn is conservailve for this containment heat removal analysis.The specified SWS temperature of 93°F is more conservative than the Salem design basis value of 90*F, Reference (7), to provide additional analysis margin to accommodate future changes in Delaware River water temperatures.
The acceptance criteria for adequate RHR system heat removal capacity is based on the CCW supply temperature to the RHR heat exchanger.
The design basis for CCW supply temperature is 120°F, Reference (3), during a LOCA Recirculation scenario.MPR QA Form: QA-3.1-3, Rev. 0 MPR Associates, Inc.IVM R 320 King Street Alexandria, VA 22314 Calculation No. Prepared By Checked By Page: 7 0108-0342-JFL-01
/J. Lun ýy ' TA 'teRvsin 3.2 Analysis Method The indirect loop c-NTU model, Reference (2) Page 27, is defined using the following equations.
Hot Stream: C CH C= = W CPLR = pC- RnR Intermediate Loop: C, =C,,, = W -Ccv = ý PCLIT, Cold Stream: C Csqv., = W. Cp[sifs = 'TpC, C,,s where W = Stream Mass Flow, lbm/hr Reference (2) Page 14 C Stream Heat Capacitance, BTU/hr -'F V = Stream VolumetricFlow, gpm p Stream Density, lbm/cuft Cp, = Specific Heat Capacity, BTU/Ibm -'F 60mrai/hr C, = CR 7.48 lga= /ft 3 .3200 gpm 57.94 lbm/cuft *1.0 BTU/lbm -'F= 1.487E6 BTU/hr -OF at 280OF 60 CLC = 60 -4140gpm.61.71lbm/cuflf*.OBTU/Ibm-0 F 7.481= 2.049E6 BTU/hr -'F at 120'F 60 min/ hr C.7= CWS 1 8000 gpm 62.08 ibm/cuft 1.0 BTU/lbm -'F 3.983E6 BTU/hr- OF at 93 0 F The density reference temperatures are typical for the analysis being considered in this calculation, that is, the hot side reference temperature of 280°F bounds the typical RHR system temperatures during LOCA Recirculation, the 1257F intermediate loop reference temperature is the CCW system accident design basis temperature and the 93°F SWS reference temperature is the containment analysis assumed temperature.
Water densities are taken from Reference (5). Water heat capacities are assumed to be constant at 1.0 BTU/lbm-°F, Assumption (3).The RLIR heat exchanger thermal model is defined as: RI [(1 -hpH Z)i(1-e£&,, !-1 =0.5771 Reference (2), Equation 2-18[- , "Z)/(1- , ) -z MPR QA Form: QA-3.1-3, Rev. 0
*MPR MPR Associates, Inc.320 King Street Alexandria, VA 22314 -Calculation No.0108-0342-JFL-01
=1 -e-Vz = 0.1065 E P'?Ar,, F = (1- -e-ZTU/tn)
= 0.0846 Z m= C- CRHR =0.751 C.. Cc "40004140 NTU = UR4RI" = 1.18 n = 10 Baffle Spaces (Typical)Reference (2), Equation 2-15 Reference (2), Equation 2-15 Reference (2), Equation 2-8 Reference (2), Equation 2-7 Assumption (2)The value of Cmax in ihe above equation is adjusted by the ratio of the CCW flow to the RHR heat exchanger and the total CCW system flow for application to the calculation of the RHR heat exchanger effectiveness.
The CCW heat exchanger thermal model is defined as: KI -E P=61ý ' Z)/(l -6, )1 -1 6CCMY&0.7657 1(1-E Pcom" Z)/(i )t z E =I -e,, = 0.0833 F = (I -e-z"JUI")=
0.0448 z = Cmix -Cccv = 0.5 1 4 4 NTU = ý =1.96 Ccc.Reference (2), Equation 2-18 Reference (2), Equation 2-15 Reference (2), Equation 2-15 Reference (2), Equation 2-8 Reference (2), Equation 2-7 n = 22 Baffle Spaces Reference (4)The coupled RHR/CCW/SWS system thermal model is defined as: MPR QA Form: QA-3.1-3, Rev. 0 MPR Associates, Inc.INIMPR320 King Street Alexandria, VA 22314 Calculation No. Prepared By..- Checked By Page: 9 0108-0342-JFL-01
/J. Lundy "/ A.. Tst~et Revision:
0 8 RHRICCW/SW
+ 1 = 0.5116 1 +C R,.(R 1____ -1 (C if' C C(m. 1 Reference (2), Equation 2-20e Once the various heat transfer cffcctiveness values are known, the temperatures and exchanger heat duties, Reference (2), can be calculated.
Q = .Qi~ia = .(,o,-r,,,)
QRI[R,.x =Rf(RContSW
*inme RIn um ratur -Time)f f(Containmen t Sump Temperature, Time)General Form Reference (2), Equation 2-6 Reference (1)Reference (1)= 93 0 F QRR,, Cp (T,,R,,,I,, -TRJR,,xO,,, ) = CR,, "(TR,,R,,I,,, -)Reference (2), Equation 2-6 TRllaxw --= TRRRhx., QRI[Rhx CRIR QccWvX = QMi=sCcfLo,ýds
+ QR11Rh., = -M,. ' CCcW; '(TccPw,,1, -TWS,, )Reference (2), Equation 2-6 Tcc1Fl'X~n
= QcCIJi + Tsiv" CCYhx ' CCcW QC X = w. .c , --) =,,- c Reference (2), Equation 2-6 TccIVhx0ut=
ý TcCOV,,,1 QCCIVw, Cccw QCCJ,,X = Wj' .cp,,', (TrISo,,, -Tss,) = c,,,,.(T,,,,,o, -,,I,,,)Reference (2), Equation 2-6 ,,= Ts Qcc, TSW014 SIS1 +Cs;Vs MPR QA Form: QA-3.1-3, Rev. 0 MPR Associates, Inc.*M PR 320 King, Street Alexandria, VA-22314 Calculation No. Prepared By , By Page: 10 0108-0342-JFL-1
).J und, Alstet Revision:
0 This calculation is repeated at every time step reported in WCAP-16503, Reference (1), Tables 6.3-4 and A.6.3-6.3.3 Assumptions
: 1) CCW and RHR heat exchanger values of UA are assumed to be relatively constant and insensitive to the range of thermal boundary conditions evaluated in this calculation.
This assumption is reasonable as the limited thermal range of 90°F-280°F results in limhited changes in thermal properties.
: 2) The RHR heat exchanger is a typical shell and U-tube heat exchanger with approximately 10 internal tube baffles.3) Water heat capacities are assumed to be constant at 1.0 BTU/lbm-°F over the temperature range of 90-280'F, Reference (5). Comparison of ASME Steam Table values, Figure U-1 Page 273, indicate there is less'than a 3.5 Percent variation in water specific heat capacity over this temperature range, which is considered to be negligible.
3.4 Results Supplemental calculations, Attachments A and B, indicate that the peak CCW supply temperature during an initiation of LOCA Recirculation is 11 L.0F and 112.0°F for Salem Units I and 2, respectively.
The design basis CCW supply temperature is 120'F. As the peak CCW supply temperature is less than the design basis value, it is concluded that the thermal rejection path for containment cooling using the RHR/CCW/SWS systems is adequate to support the revised Salem containment analysis, Reference (1). Figures 3-2 and 3-3 summarize the results of this analysis.MPR QA Form: OA-3.1-3, Rev. 0 MPR Associates, Inc.320 King:Street Alexandria, VA 22314 Calculation.
No. Prepared By ..Checked By Page: I1 0108-0342-JFL-OI J. Lundy A. T-aster Revision:
0 SGS Unit I COW System Thermial Response to a LBLOCA Transient (WCAP-16503)..-...............-...........-
.1.................-.......
...... -. ... --.. -.........- -l 1 1 -a,'M 35 E I,______-_----------" S-____ -I.~. ---.-.-. _____________ I... tG .C .. ..... ..I .........
.Timo (saces)Figure 3-2 SGS Unit 2 CCW System Thermal Response to a LBLOCA Transient (WCAP-o16503)
Tim. (sacs)Figure-3-3 MPR OA Form: QA-3.1-3, Rev.') 0 4 MPR Associates, Inc.*M PR 320 King Street Alexandlria, VA 22314 Calculation No. Prepared By Checked By Page: 12 0108-0342-JFL-01 A. Lun y / at e t Revision:
0


==4.0 REFERENCES==
MPR Associates, Inc.
: 1. WCAP-16503 Revision 3.2. Kays, W. and A. London, Compact Heat Exchangers, Malabar, Florida: Krieger Publishing Company, © 1998.3. Salem VTD-304209, Westinghouse Precautions, Limitations and Setpoints, -Auxiliary Coolant System, Revision 35, dated 2/15/06, pg
F MP R                                                                                                320 KingStreet Alexandria, VA 22314 Calculation No.                            Prepared By                            Checked      y                  Page: 6 0108-0342-JFL-01                                    LA.d                        /          stet                Revision: 0 3.1 Analysis Inputs The analysis input thermal conditions are shown in Table I and are consistent with those conditions used in WCAP-16503, Reference (1), Pages 6-9 through 6-10. The RHR and CCW heat capacities for the as-built plant conditions are summarized in Table 1 and in Attachment (C) for comparison purposes.
Table I Parameter                                                Analysis Input RHR Heat Exchangers Units Operating                                                        1 Minimum Safeguards                                                  1748.3 see Recirculation Switchover Time Overall U=396.1 BTU/hr-sqft-0 F, Attachment (C)
Heat Capacity, UA*                        Effective Surf Area, A=4455 sqfl, Attachment (C)
UA=1.75E6 BTU/hr-0 F, Reference (1)
Tubeside (CCW  Side Flow Flof H4000                                      gpm, Reference (1)
(CCW Side
Tule-Sile hi lIHTIM/hr.f'°)
Tule-Sile hi lIHTIM/hr.f'°)
IMalU lelis I,MTD (:onaelioo Feelor Overall Fouling(hrll'ff./tO'U)
HleatTrnoisferied (ITII/nr)                                                      IMalU lelis l13TU/hrl:*f"F I.MTrI                                                                          I,MTD (:onaelioo Feelor Ellaucive Area (ft')
Tube-Side Shell-Side Shell Temp In (IF)Shell Tamp Out (7F)Prandtl Numnber Tube Taerp In (0 F)Tube Temp Oust (OF)Tav Tube (7F)Tube Skin Tamp (IF)Entrapolutlosu Calculation Restilts Shell Sln Temp (IF)'rav Sliall-lide 45.013-1.12 2.7712 1.0496 0.8702 61.2153 0.9997 0.37S6 2,000.99l.14 1.600,79&51 115,0R0,110.15 75.4 4,455.2 Tube-Side 8.26 122,367 1.6336 0.6353 0.6752 59.5084 1.0087 0.3923 Overall Fouling (lhlt-FI 3./TBM)Shell-Side he (BTUlvs.fl.'F)
Overall Fouling(hrll'ff./tO'U)
Tubl-Side hi (BTU/hr-rf'-n IValU Rena (I TU/lu'f"'Fý)
Property                            Shell-Side           Tube-Side Velocity (1l/0l                                                                  Shell Temp In(IF)
IM'rD Correction Factor U Owrall (BTU/srfttu-F)
Reynold's Number                                                                Shell Tamp Out (7F)
Shell Teasmp Ili (?I)Shelle Temp Out ("F)Tau Shell (IF)Shln Skits Total:, (fF)Tube Tensp In (IF)Tube Temsp Out (IF)Tas Tube (°F)Tube Sidn l'enp (fF)0.0000856 1,192.9 3,309.8 2,116.4 0.8651 396.1 120.0 177.5 148.8 173,9 260.0 188.7 224.4 213.6-Reynolds Number Range of Equntion Applicability I! Wilh i nus/g The Test Hlent Load Could Not Be Aehieved-3, Rev. 0 MPR Associates, Inc.UM PR 320 King Street Alexan-fitiiVA-223-14 ...Calculation No. Prepared By ,CheckedUy Page: C-4 0108-0342-JFL-01  
Bulk Vise (llm/,t.hr)                                                            Prandtl Numnber           Shell Sln Temp (IF)        'rav Shell (7F) 0 Skin Vise (Ibutlflt')                                                            Tube Taerp In ( F)
/ LJLuzndA.
Density (llsulflfl)                                                              Tube Temp Oust(OF)
Týastet Revision:
Cp (BTUlnbms.F)                                                                  Tav Tube (7F)
0 07-17-M006 16:09:54 PROTO-HX 4.10 by Proto-Pmver Corporation (SNgPHX-1009)
K (BTUh.0.fl.iF)                                                                Tube Skin Tamp (IF)
Salem Generating Station Unit I Data Report for I CCE5 -11 CC Heat Exchanger CCHX UA Shell and Tube Heat Exchanger Input Parameters Shell-Side Tube-Side Fluid Quantity, Total gor 6,817.00 9,890.00 Mass Fluid Quantity, Total Ibm/hr 0.00 0.00 Inlet Temperature IF 112.98 90.00 Outlet Temperature I 100.00 99.27 FoulingFactor lu-ft;.F/BTU 0.00050 0.00102 Shell Fluid Name Fresh Water Tube Fluid Name Brackish Water: Salinity=l 2ppt Design Q (B.TU/hr) 44,200,000 Design U (BTUur-ft'F) 267.16 Outside h Factor (Hoft) 0.667909000 Fixed U (BTU/hr'fta'F) 0 Fixed Arca (fit) 0.00 Perfornance Factor (*,% Reducti on) 0.00 Heat Exchanger Type TEMA -E Total Effective Area per Unit (ft') 16,954.00 Area Factor- 0.999838038 Area Ratio 1.10300 Number of Shells Per Unit I Shell Minimum Area 6.604000000 Shall Veloeity (W.sa) 2.300 Tube Pitch (in) 1.0000 Tube Pitch Type Triangular Nuanber of Tube Passes 2 U-Tubes No Total Number of Tubes 3,400 Nunber of Active Tubes 3,332 Tube Length (ft) 25.40 Tube Inside Diameter (in) 0.680 Tube Outside Diameter (in) 0)750 Tube Wall K (BTU/br-ft.*F) 1250 Lbc, Central Baffle Spacing (in) 01.000 Lbi, Inlet Baffle Spacing (in) 0.000 Lbo, Outlet Baffle Spacing (in) 0.000 Dotl, Tube Circle Diameter 0.000 Bh, Baffle Cut Height (in) 0.000 Ds, Shell Inside Dianiter (in) 0.000 Lab, Diametral difference between Baffle and Shell (in) 0.000 Ltb, Dianietral difference between Tube and Bamffe (in) 0.000 Nss. Number Sealing Strips 0.000-3, Rev. 0 ii 1A? A MPR Associates, Inc.320 King Street Alexandria, VA 22314 Calculation No.0108-0342-JFL-01 07-17-2006 16.09:54 PROTO-HX 4.10 by Proto-Power Corporation (S F#PHX-1009)
Entrapolutlosu Calculation Restilts 3
Salem Generating Station Unit I Calculation Rcport for ] CCE5 -11 CC Heal Exchanger CCHX UA Calculation Specifications Constant Intet Temperattru' Method Was Used Exthapolation Was to User Specified Condidtons poulat ' Was htpu( by User Page Text Data Data Date Shell Flow (pln)Shell Temp In (IF)Shell Temp Out (,F)Tithe How Fahe Temp hi (IFM Tuhe Teanp Out (IF)Eslrapojatiott Data'labe Flow (gpm)Shell Flow (gpn)Tubs Inlet Temp (IF)Shell MIdet Tamp (IF)Input Fouling Facto-Fouling Calculation Results U Ovetall (BTU/hr'f'-nF)
Shell MaenuFlow (Ib r)                                 2,000.99l.14             Overall Fouling (lhlt-FI./TBM)                 0.0000856 Tube Moss Hlw.; (Ibn/hr)                                1.600,79&51              Shell-Side he (BTUlvs.fl.'F)                       1,192.9 Tubl-Side hi (BTU/hr-rf'-n                       3,309.8 Heet Truoutorred (BTU/lus)                            115,0R0,110.15            IValU Rena (I TU/lu'f"'Fý)                       2,116.4 75.4            IM'rD Correction Factor                           0.8651 Effeclive /Ael (1l1)                                          4,455.2            U Owrall (BTU/srfttu-F)                             396.1 Prpeorty                            Sliall-lide            Tube-Side Velocity (fv/s)                                                  8.26            Shell TeasmpIli (?I)                                 120.0 Reynold's Number                        45.013-1.12          122,367            Shelle Temp Out ("F)                                 177.5 Primall Number                          2.7712                1.6336            Tau Shell (IF)                                       148.8 Bulk Vise (lbn/1ftlr)                    1.0496                0.6353            Shln SkitsTotal:, (fF)                               173,9 Skin Vise (loss/Il-hr)                  0.8702                0.6752            Tube Tensp In (IF)                                   260.0 Density (tbnu/ftl)                    61.2153                59.5084            Tube TemspOut (IF)                                   188.7 Cp (BTUIbli--eF1)                      0.9997                1.0087            Tas Tube (°F)                                       224.4 K (BTUfhrffl°)                          0.37S6                0.3923            Tube Sidn l'enp (fF)                                 213.6
Shell-Side ha (BITU!lu'fl''F)
          - Reynolds Number Ou*slideRange of Equntion Applicability I! Wilh 7.*ue        i nus/g The Test HlentLoad Could Not Be Aehieved
                                                                                                                                                        -3, Rev. 0
 
MPR Associates, Inc.
UM PR                                                                                                             320     King Street Alexan-fitiiVA- 223-14 ...
Calculation No.                                 Prepared By                                 ,CheckedUy                           Page:   C-4 0108-0342-JFL-01                                 /       LJLuzndA.                                   Týastet                   Revision: 0 07-17-M006 16:09:54             PROTO-HX 4.10 by Proto-Pmver Corporation (SNgPHX-1009)
Salem Generating Station Unit I Data Report for ICCE5 - 11 CC Heat Exchanger CCHX UA Shell and Tube Heat Exchanger Input Parameters Shell-Side                     Tube-Side Fluid Quantity, Total                         gor           6,817.00                         9,890.00 Mass Fluid Quantity, Total                   Ibm/hr               0.00                             0.00 Inlet Temperature                               IF               112.98                           90.00 Outlet Temperature                             I               100.00                           99.27 FoulingFactor                       lu-ft;.F/BTU             0.00050                         0.00102 Shell Fluid Name                                                                         Fresh Water Tube Fluid Name                                                         Brackish Water: Salinity=l 2ppt Design Q (B.TU/hr)                                                                         44,200,000 Design U (BTUur-ft'F)                                                                           267.16 Outside h Factor (Hoft)                                                                 0.667909000 Fixed U(BTU/hr'fta'F)                                                                                 0 Fixed Arca (fit)                                                                                   0.00 Perfornance Factor (*,% Reducti on)                                                               0.00 Heat Exchanger Type                                                                         TEMA - E Total Effective Area per Unit (ft')                                                           16,954.00 Area Factor-                                                                             0.999838038 Area Ratio                                                                                     1.10300 Number of Shells Per Unit                                                                               I Shell Minimum Area                                                                       6.604000000 Shall Veloeity (W.sa)                                                                             2.300 Tube Pitch (in)                                                                                   1.0000 Tube Pitch Type                                                                               Triangular Nuanber of Tube Passes                                                                                 2 U-Tubes                                                                                               No Total Number of Tubes                                                                             3,400 Nunber of Active Tubes                                                                             3,332 Tube Length (ft)                                                                                   25.40 Tube Inside Diameter (in)                                                                         0.680 Tube Outside Diameter (in)                                                                         0)750 Tube Wall K (BTU/br-ft.*F)                                                                         1250 Lbc, Central Baffle Spacing (in)                                                                   01.000 Lbi, Inlet Baffle Spacing (in)                                                                     0.000 Lbo, Outlet Baffle Spacing (in)                                                                   0.000 Dotl, Tube Circle Diameter                                                                         0.000 Bh, Baffle Cut Height (in)                                                                         0.000 Ds, Shell Inside Dianiter (in)                                                                     0.000 Lab, Diametral difference between Baffle and Shell (in)                                           0.000 Ltb, Dianietral difference between Tube and Bamffe (in)                                           0.000 Nss. Number Sealing Strips                                                                       0.000
                                                                                                                                          -3, Rev. 0 ii
 
MPR Associates, Inc.
1A? A                                                                                                                        320 King Street Alexandria, VA 22314 Calculation No.
0108-0342-JFL-01 07-17-2006 16.09:54         PROTO-HX 4.10 by Proto-Power Corporation (S                           F#PHX-1009)                       Page Salem Generating Station Unit I Calculation Rcport for ] CCE5 - 11 CC Heal Exchanger CCHX UA Calculation Specifications Constant Intet Temperattru' Method Was Used Exthapolation Was to User Specified Condidtons poulat 'Was htpu( by User Text Data                                                          Eslrapojatiott Data Data Date                                                               'labe Flow (gpm)                                8,000.00 Shell Flow (pln)                                                         Shell Flow (gpn)                                4,140.00 ShellTemp In (IF)                                                        Tubs Inlet Temp (IF)                                 90.00 Shell Temp Out (,F)                                                     Shell MIdetTamp (IF)                                170.00 Tithe How   (p*1)
Fahe Temp hi (IFM                                                       Input Fouling Facto-                            0.001600 Tuhe Teanp Out (IF)
Fouling Calculation Results Shell Mans Flow (lbntv(m)                                                   U Ovetall (BTU/hr'f'-nF)
Tube Mats Flow (Ibm/'r)                                                      Shell-Side ha (BITU!lu'fl''F)
Tube-Side hi (BTU/hr'-f'.*)
Tube-Side hi (BTU/hr'-f'.*)
l/Wall Resis (BTUuhr'-ft'-F)
Heat Trtasfet'ed (BTU/iu,)                                                  l/Wall Resis (BTUuhr'-ft'-F)
LMTD CoineetiOn Factor Overall Fouling (hrltr'.F/BTJ) 8,000.00 4, 140.00 90.00 170.00 0.001600 Shell Mans Flow (lbntv(m)Tube Mats Flow (Ibm/'r)Heat Trtasfet'ed (BTU/iu,)Effective Area (RI')Popeerty Velocity (fl/s)Reynold's Number Bulk Vise (llstiffh'la)
LMTD CoineetiOn Factor Effective Area (RI')
Shell (IF)Skin Vise Ibins/fllue)
Overall Fouling (hrltr'.F/BTJ)
Deisily (Ibtn/tWI)
Popeerty                        Shell-Side            Tube-Side Velocity (fl/s)                                                             Shell Teirtp InI(F)
CpI (RTt almtth'F)K (TI~l'-fl'"F)
Reynold's Number                                                           Shell Tern i Oat ('IF Bulk Vise (llstiffh'la)                                                     Prandil Ntunber            Shell Skin Temp (IF)        Ta"'
Shell Mass Flow (Ihbt/hr)Tube Mass Flaw (Obin/hr)Heat Transfetred (BTU/lIr)LMYTD Efleclive Area (1t1)Properly Velocity (1.)Reynold's umber Pmndtilll Number Bulk Vise (lbmifl-hr)
Shell (IF)
Skin Vise abn/l1-hr)
Skin Vise Ibins/fllue)                                                      Tube Temp lIt ('F')
Density hituilft')
Deisily (Ibtn/tWI)                                                          Tube Temp Otlt ('F)
Cp (BTt/flbtn.F)
CpI(RTt almtth'F)                                                             i'V TiTube('1F)
K (BTU/l-'fi'F)
K (TI~l'-fl'"F)                                                             Tube Skis Timlt fF)
Shell-Side Tube-Side Shell Teirtp InI (F)Shell Tern i Oat ('IF Prandil Ntunber Tube Temp lIt ('F')Tube Temp Otlt ('F)i'V TiTube ('1F)Tube Skis Timlt fF)E1\,trapolation Calculation Results Shell Skin Temp (IF) Ta"'Shell-Side 17,781.412 2.9217 1.1021 1.2297 61.3273 0.9994 0.3770 2,071,033.08 4,036.365.63 112,870,747.88 37.0 16,614.9 Tube-Side 4.27 33,655 4.3742 1.6175 1.4841 62.4693 0.9840 0.3639 Overall Fotling (hrr-'t?.F/BTU)
E1\,trapolation Calculation Results Shell Mass Flow (Ihbt/hr)                           2,071,033.08           Overall Fotling (hrr-'t?.F/BTU)                 0.001600 Tube Mass Flaw (Obin/hr)                            4,036.365.63            Shell-Side ho (BTU,Io.-1lt.F)                       726.4 Tube-Side hi (BTU/Ir'ft%"'F)                       1,200.9 Heat Transfetred (BTU/lIr)                      112,870,747.88            I/Mall Resis (BTU/hr.ft'-F)                       4,082.4 LMYTD                                                        37.0          LkITD Correeliaon Felor                           0.7601 Efleclive Area (1t1)                                    16,614.9            U Ocrell (BTIIhr.flt.aF)                             241.5 Properly                        Shell-Side            Tube-Side Velocity (1.)                                                4.27          Shell Temp In (IF)                                   170.0 Reynold's umber                    17,781.412            33,655            Shell Temp Oat (1F)                                 11 .5 PmndtilllNumber                      2.9217                4.3742            Tax' Shell ('F)                                     142.7 Bulk Vise (lbmifl-hr)                1.1021                1.6175            Shell Shlit Tatip ('F)                               129.9 Skin Vise abn/l1-hr)                1.2297                1.4841            Tibe TeampIn (MF)                                     90.0 Density hituilft')                61.3273                62.4693            Tube Talap Out (IF)                                 118.4 Cp (BTt/flbtn.F)                    0.9994                0.9840            Tov Tube (OF)                                       104.2 K (BTU/l-'fi'F)                     0.3770                0.3639            Tibe SkitsTamp ('F)                                  112.8
Shell-Side ho (BTU,Io.-1lt.F)
        ^ Reynolds Number Outside Range of Equation Appolichbilty H!With 7,ce Fouling The Test HeantIoad Cotuld Not Be Achieved
Tube-Side hi (BTU/Ir'ft%"'F)
                                                                                                                                                    -3, Rev. 0
I/Mall Resis (BTU/hr.ft'-F)
 
LkITD Correeliaon Felor U Ocrell (BTIIhr.flt.aF)
Engineering Evaluation:     S-C-CBV-MEE-1982     Revision 0                     Date:'02/19/2007 TITLE: Updated Containment Pressure/Temperature Response Analysis With SGFP Trip DCP Number:       N/A                                 .   .   .     .. ... .     ..     .
Shell Temp In (IF)Shell Temp Oat (1F)Tax' Shell ('F)Shell Shlit Tatip ('F)Tibe Teamp In (MF)Tube Talap Out (IF)Tov Tube (OF)Tibe Skits Tamp ('F)0.001600 726.4 1,200.9 4,082.4 0.7601 241.5 170.0 11 .5 142.7 129.9 90.0 118.4 104.2 112.8^ Reynolds Number Outside Range of Equation Appolichbilty H! With 7,ce Fouling The Test Heant Ioad Cotuld Not Be Achieved-3, Rev. 0 Engineering Evaluation:
Periodic Review Required       Yes   No X     Action Request Number   N/A Attachment 2 E-mail From PGE (J. Nelson) to PSEG (J. Rowey),
S-C-CBV-MEE-1982 Revision 0 Date:'02/19/2007 TITLE: Updated Containment Pressure/Temperature Response Analysis With SGFP Trip DCP Number: N/A ..... ... ... .Periodic Review Required Yes No X Action Request Number N/A Attachment 2 E-mail From PGE (J. Nelson) to PSEG (J. Rowey),  


==Subject:==
==Subject:==
  "RE: Salem Looking for DCPP MFWPP Design Info" dated May 11, 2006 Salem UFSAR Table 10.4-1 for Info Page I of 5 Lundy, Jeffrey From: Harriman, Mark [Mark. Harriman@
  "RE: Salem Looking for DCPP MFWPP Design Info" dated May 11, 2006
pseg.com]Sent: Monday, July 24, 2006 11:09 AM To: Lundy, Jeffrey  
 
Salem UFSAR Table 10.4-1 for Info                                                                         Page I of 5 Lundy, Jeffrey From:     Harriman, Mark [Mark. Harriman@ pseg.com]
Sent:     Monday, July 24, 2006 11:09 AM To:       Lundy, Jeffrey


==Subject:==
==Subject:==
FW: Diablo Canyon Feed Pump Trip----- Original Message -----From: Rowey, John A.Sent: Wednesday, May 24, 2006 8:56 AM To: 'Ballard, Jerry'; Nelson, James (DCPP); Railsback, Jerry Cc: Harriman, Mark  
FW: Diablo Canyon Feed Pump Trip Original Message -----
          -----
From: Rowey, John A.
Sent: Wednesday, May 24, 2006 8:56 AM To: 'Ballard, Jerry'; Nelson, James (DCPP); Railsback, Jerry Cc: Harriman, Mark


==Subject:==
==Subject:==
RE: Diablo Canyon Feed Pump Trip Jerry/ Jim Thanks for all the information.
RE: Diablo Canyon Feed Pump Trip Jerry/ Jim Thanks for all the information. This confirms our assumption that the feed pump coastdown component is an analytical assumption and not a tested parameter. As we originally discussed, our input to Westinghouse included only a 2 second delay before starting a 10 second coastdown. After comparing the Diablo SGFP parmeters with ours (they are very close), we feel comfortable trimming the coastdown analytical assumption back to 7 seconds with a more reasonable 5 second coastdown delay. This keeps the total time the same (12 seconds) and we hope should minimize the impact on the resulting containment pressure. Westinghouse will be working on this over the next few weeks.
This confirms our assumption that the feed pump coastdown component is an analytical assumption and not a tested parameter.
John Rowey
As we originally discussed, our input to Westinghouse included only a 2 second delay before starting a 10 second coastdown.
        -- Original
After comparing the Diablo SGFP parmeters with ours (they are very close), we feel comfortable trimming the coastdown analytical assumption back to 7 seconds with a more reasonable 5 second coastdown delay. This keeps the total time the same (12 seconds) and we hope should minimize the impact on the resulting containment pressure.
            ---     Message -----
Westinghouse will be working on this over the next few weeks.John Rowey-- --- Original Message -----From: Ballard, Jerry [mailto:J4B5(pge.com]
From: Ballard, Jerry [mailto:J4B5(pge.com]
Sent: Tuesday, May 23, 2006 1:05 AM To: Nelson, James (DCPP); Railsback, Jerry Cc: Rowey, John A.
Sent: Tuesday, May 23, 2006 1:05 AM To: Nelson, James (DCPP); Railsback, Jerry Cc: Rowey, John A.


==Subject:==
==Subject:==
RE: Salem Looking for DCPP MFWPP design info Jim, I have done much searching and I do not believe we test the actual MFWPP coastdown time. The 4 seconds listed in STP 1-33a Appendix 8.6 Table 8.6.2 just represents the allowable sum of the individual test components actuate a MFWPP trip. The table also lists the surveillance sources which record the time response data for the SG Hi Hi Level signal, slave relay response time, and trip valve closure. Note there is no discussion or surveillance associated with MFWPP coastdown time.As we documented in our design input transmittal letter to West. for the RSG safety analyses, the NRC has accepted our MFWPP trip response time test criteria, which include the 5 seconds to achieve MFWPP stop valve closure and 5 seconds for the MFWPP to coastdown.
RE: Salem Looking for DCPP MFWPP design info Jim, I have done much searching and I do not believe we test the actual MFWPP coastdown time. The 4 seconds listed in STP 1-33a Appendix 8.6 Table 8.6.2 just represents the allowable sum of the individual test components actuate a MFWPP trip. The table also lists the surveillance sources which record the time response data for the SG Hi Hi Level signal, slave relay response time, and trip valve closure. Note there is no discussion or surveillance associated with MFWPP coastdown time.
In this LA 140 we clearly identify the response time test criteria for the signal processing delay, slave relay delay, and stop valve closure (just as listed in STP l-33A) but there is no discussion of a MFWPP coastdown test. However, the NRC in their SER for LAR 140 stated "The proposed response time for MFWPP turbine trip is reasonable, and satisfies the assumptions in that were credited din the licensee's feedwater analysis." This indicates to me that the NRC has accepted as reasonable tart we test everything up to the MFWPP stop valve closure but not the MFWPP coastdown.
As we documented in our design input transmittal letter to West. for the RSG safety analyses, the NRC has accepted our MFWPP trip response time test criteria, which include the 5 seconds to achieve MFWPP stop valve closure and 5 seconds for the MFWPP to coastdown. In this LA 140 we clearly identify the response time test criteria for the signal processing delay, slave relay delay, and stop valve closure (just as listed in STP l-33A) but there is no discussion of a MFWPP coastdown test. However, the NRC in their SER for LAR 140 stated "The proposed response time for MFWPP turbine trip is reasonable, and satisfies the assumptions in that were credited din the licensee's feedwater analysis."
I did come across an old calculation M-903 which perform a calculation to show that based on the pump inertial design, hydraulic resistance, and pump 8/17/2006 Salem UFSAR Table 10.4-1 for Info Page 2 of 5 infinity laws the MFWPP will coast down to flow reversal (check valve closure) with 2.4 seconds aftertrip of the MFWPP. I placed a copy of this calculation on your chair. It is not clear to me if this calculated time includes the 1 second MFWPP turbine stop valve closure time or not. However it is also based on a SG pressure at an operating pressure of around 800 pisg associated with a FW malfunction event at power as opposed to a MLSB with a depressurizing-SG-.
This indicates to me that the NRC has accepted as reasonable tart we test everything up to the MFWPP stop valve closure but not the MFWPP coastdown. I did come across an old calculation M-903 which perform a calculation to show that based on the pump inertial design, hydraulic resistance, and pump 8/17/2006
In summary, in my opinion, we have assumed a MFWPP coastdown time of 5 seconds as an input to our safety analysis.
 
This is considered a reasonable established and accepted physical parameter for which we do not perform a response time test.From: Nelson, James (DCPP)Sent: Monday, May 22, 2006 4:43 PM To: Railsback, Jerry; Ballard, Jerry  
Salem UFSAR Table 10.4-1 for Info                                                                         Page 2 of 5 infinity laws the MFWPP will coast down to flow reversal (check valve closure) with 2.4 seconds aftertrip of the MFWPP. I placed a copy of this calculation on your chair. It is not clear to me if this calculated time includes the 1 second MFWPP turbine stop valve closure time or not. However it is also based on a SG pressure at an operating pressure of around 800 pisg associated with a FW malfunction event at power as opposed to a MLSB with a depressurizing-SG-.
In summary, in my opinion, we have assumed a MFWPP coastdown time of 5 seconds as an input to our safety analysis. This is considered a reasonable established and accepted physical parameter for which we do not perform a response time test.
From: Nelson, James (DCPP)
Sent: Monday, May 22, 2006 4:43 PM To: Railsback, Jerry; Ballard, Jerry


==Subject:==
==Subject:==
FW: Salem Looking for DCPP MFWPP design info Guys -Do either of you know if we test for main feedpump coastdown time? Do you know the basis for the 4 seconds mentioned in STP 1-33A? Thanks.Jim Nelson PG&E -DCPP (805) 545-6547 icn3@pge.com From: Rowey, John A. [mailto:John.Rowey~pseg.com]
FW: Salem Looking for DCPP MFWPP design info Guys - Do either of you know if we test for main feedpump coastdown time? Do you know the basis for the 4 seconds mentioned in STP 1-33A? Thanks.
Sent: Sunday, May 21, 2006 7:51 PM To: Nelson, James (DCPP)Cc: Ballard, Jerry  
Jim Nelson PG&E - DCPP (805) 545-6547 icn3@pge.com From: Rowey, John A. [mailto:John.Rowey~pseg.com]
Sent: Sunday, May 21, 2006 7:51 PM To: Nelson, James (DCPP)
Cc: Ballard, Jerry


==Subject:==
==Subject:==
RE: Salem Looking for DCPP MFWPP design info Jim Thanks this clears up my question.
RE: Salem Looking for DCPP MFWPP design info Jim Thanks this clears up my question. Diablo does check the entire SGFP control loop, not just the "steam isolation valve stroke". One other clarification, is it safe to say that the SGFP coastdown time is an
Diablo does check the entire SGFP control loop, not just the "steam isolation valve stroke". One other clarification, is it safe to say that the SGFP coastdown time is an'analytical assumption" and it is NOT tested?Thanks John Rowey From: Nelson, James (DCPP) [mailto:JCN3(@pge.com]
      'analytical assumption" and it is NOT tested?
Sent: Friday, May 19, 2006 7:59 PM To: Rowey, John A.Cc: Ballard, Jerry  
Thanks John Rowey From: Nelson, James (DCPP) [mailto:JCN3(@pge.com]
Sent: Friday, May 19, 2006 7:59 PM To: Rowey, John A.
Cc: Ballard, Jerry


==Subject:==
==Subject:==
RE: Salem Looking for DCPP MFWPP design info John -As Gilda used to say..NEVER MIND! I checked with our IST lead and he showed me the procedure that tests all these times, then adds them up. Our STP 1-33A Acceptance Criteria section for the main feedpump turbine trip states: "The total MFWP trip function response time must be less than 9 seconds, including signal-processing time, pump trip, and pump coast-down.
RE: Salem Looking for DCPP MFWPP design info John - As Gilda used to say..NEVER MIND! I checked with our IST lead and he showed me the procedure that tests all these times, then adds them up. Our STP 1-33A Acceptance Criteria section for the main feedpump turbine trip states: "The total MFWP trip function response time must be less than 9 seconds, including signal-processing time, pump trip, and pump coast-down. Of this time, an administrative limit of 5 seconds shall be used for the hardware related response time, leaving 4 seconds for pump coast-down." I think this is more of what you were looking for.
Of this time, an administrative limit of 5 seconds shall be used for the hardware related response time, leaving 4 seconds for pump coast-down." I think this is more of what you were looking for.Jim Nelson PG&E -DCPP 8/17/2006 Salem UFSAR Table 10.4-1 for Info Page 3 of 5 (805) 545-6547 icn3@poe.com From: Rowey, John A. [mailto:John.Rowey(hpseg.com]
Jim Nelson PG&E - DCPP 8/17/2006
 
Salem UFSAR Table 10.4-1 for Info                                                                     Page 3 of 5 (805) 545-6547 icn3@poe.com From: Rowey, John A. [mailto:John.Rowey(hpseg.com]
Sent: Thursday, May 18, 2006 4:32 PM To: Nelson, James (DCPP)
Sent: Thursday, May 18, 2006 4:32 PM To: Nelson, James (DCPP)


==Subject:==
==Subject:==
RE: Salem Looking for DCPP MFWPP design info Thanks for getting back to me Jim John----- Original Message -----From: Nelson, James (DCPP) [mailto:JCN3ftge.com]
RE: Salem Looking for DCPP MFWPP design info Thanks for getting back to me Jim John
            ----- Original Message -----
From: Nelson, James (DCPP) [mailto:JCN3ftge.com]
Sent: Thursday, May 18, 2006 6:51 PM To: Rowey, John A.
Sent: Thursday, May 18, 2006 6:51 PM To: Rowey, John A.


==Subject:==
==Subject:==
RE: Salem Looking for DCPP MFWPP design info John -I don't have an immediate answer so I'll need to talk to the IST guys about this and get back to you. -Jim Nelson From: Rowey, John A. [mailto:John.
RE: Salem Looking for DCPP MFWPP design info John - I don't have an immediate answer so I'll need to talk to the IST guys about this and get back to you. - Jim Nelson From: Rowey, John A. [mailto:John. Rowey pseg.com]
Rowey pseg.com]Sent: Wednesday, May 17, 2006 3:17 PM To: Nelson, James (DCPP)
Sent: Wednesday, May 17, 2006 3:17 PM To: Nelson, James (DCPP)


==Subject:==
==Subject:==
RE: Salem Looking for DCPP MFWPP design info Jim If I understood you correctly when we spoke last week, you indicated that time response testing for the Diablo Canyon Main Feed Pump trip on an safety injection was performed only stroke time of the stteam supply stop valves to the feedwater pump turbine. No response time testing was performed control signal process time. The input information that Jerry Ballard sent a few weeks ago, itentified the following accident analysis assumptions:
RE: Salem Looking for DCPP MFWPP design info Jim If I understood you correctly when we spoke last week, you indicated that time response testing for the Diablo Canyon Main Feed Pump trip on an safety injection was performed only stroke time of the stteam supply stop valves to the feedwater pump turbine. No response time testing was performed control signal process time. The input information that Jerry Ballard sent a few weeks ago, itentified the following accident analysis assumptions: 1) 2 seconds signal process delay, 2) 1 second slave relay 3) 1 second steam isolation valve plus an added 1 second "hardware margin".
: 1) 2 seconds signal process delay, 2) 1 second slave relay 3) 1 second steam isolation valve plus an added 1 second "hardware margin".This is a total of 5 seconds from the receipt of an SI signal.Is it possible that the reason the signal is not time response tested be that the assumptions are considered so conservative??
This is a total of 5 seconds from the receipt of an SI signal.
Does Diablo Canynon have an IST Basis document that may explain this?Thanks John Rowey PSEG Nuclear Salem Station 856 339 1870[Rowey, John A.]-----Original Message -----From: Nelson, James (DCPP) [mailto:JCN3(poe.com]
Is it possible that the reason the signal is not time response tested be that the assumptions are considered so conservative?? Does Diablo Canynon have an IST Basis document that may explain this?
Sent: Thursday, May 11, 2006 4:58 PM To: Rowey, John A.Cc: Ballard, Jerry  
Thanks John Rowey PSEG Nuclear Salem Station 856 339 1870
[Rowey, John A.]
              ----- Original Message-----
From: Nelson, James (DCPP) [mailto:JCN3(poe.com]
Sent: Thursday, May 11, 2006 4:58 PM To: Rowey, John A.
Cc: Ballard, Jerry


==Subject:==
==Subject:==
RE: Salem Looking for DCPP MFWPP design info 8/17/2006 Salem UFSAR Table 10.4-1 for Info Page 4 of 5 John -Here is the design info for our MFW pumps and turbines.
RE: Salem Looking for DCPP MFWPP design info 8/17/2006
The actual operating points are of course different.
 
The pumps are Byron-Jackson DVSR 14x14x17 and the turbines are Westinghouse EMM-25. Hope this helps.Characteristic Details Type Single stage, double suction, centrifugal Rated flow (design) 18,350 gpm @ 1089 psia Maximum flow 20,000 gpm Pressure @ Discharge 1089 psia design flow Suction 329 psia Differential Design 2000 ft Head Shutoff 2590 ft Pump drive Steam turbine Brake Design flow 9530 bhp Horsepower Max flow 9850 bhp Speed 5800 rpm NPSH Design flow 285 ft Required Max flow 301 ft Efficiency 86%Jim Nelson PG&E.- IDCPP (805) 545-6547 icn3@pge.com From: Ballard, Jerry Sent: Thursday, May 11, 2006 9:09 AM To: Nelson, James (DCPP)Cc: 'John.Rowey(pseg.com'
Salem UFSAR Table 10.4-1 for Info                                                               Page 4 of 5 John - Here is the design info for our MFW pumps and turbines. The actual operating points are of course different. The pumps are Byron-Jackson DVSR 14x14x17 and the turbines are Westinghouse EMM-25. Hope this helps.
Characteristic                         Details Type                             Single stage, double suction, centrifugal Rated flow (design)               18,350 gpm @ 1089 psia Maximum flow                     20,000 gpm Pressure @       Discharge       1089 psia design flow       Suction         329 psia Differential     Design         2000 ft Head             Shutoff         2590 ft Pump drive                       Steam turbine Brake             Design flow     9530 bhp Horsepower       Max flow       9850 bhp Speed                             5800 rpm NPSH             Design flow     285 ft Required         Max flow       301 ft Efficiency                       86%
Jim Nelson PG&E.- IDCPP (805) 545-6547 icn3@pge.com From: Ballard, Jerry Sent: Thursday, May 11, 2006 9:09 AM To: Nelson, James (DCPP)
Cc: 'John.Rowey(pseg.com'


==Subject:==
==Subject:==
Salem Looking for DCPP MFWPP design info Jim, John and I have been talking about the DCPP assumption for the main steam line break analysis that the MFWPPs trip on SI/FW isolation within 5 seconds, and then the pumps coast down to zero speed within another 5 seconds. We recently re-established these values for the RSG safety analysis currently being performed as documented in the attached design input transmittal SGRP-05-266 listed as item AIL-05-021 on page 9-10.John is looking to establish a similar assumption for the Salem plant and was looking for comparison data of our MFWPP design with theirs to establish they are similar in design and performance.
Salem Looking for DCPP MFWPP design info Jim, John and I have been talking about the DCPP assumption for the main steam line break analysis that the MFWPPs trip on SI/FW isolation within 5 seconds, and then the pumps coast down to zero speed within another 5 seconds. We recently re-established these values for the RSG safety analysis currently being performed as documented in the attached design input transmittal SGRP-05-266 listed as item AIL-05-021 on page 9-10.
He provided the attached Table from their FSAR which lists the Salem MFWPP design details. I could not find anything in our F-SAR Chapter 10 or DCM S-3 that provided a description of our MFWPP design here at DCPP. Could you please forward him the appropriate info for his comparison?
John is looking to establish a similar assumption for the Salem plant and was looking for comparison data of our MFWPP design with theirs to establish they are similar in design and performance. He provided the attached Table from their FSAR which lists the Salem MFWPP design details. I could not find anything in our F-SAR Chapter 10 or DCM S-3 that provided a description of our MFWPP design here at DCPP. Could you please forward him the appropriate info for his comparison?
I am also providing your phone number to John in case he has more questions.
I am also providing your phone number to John in case he has more questions.
Thanks for your time.8/17/2006 Salem UFSAR Table 10.4-1 for Info Page 5 of 5 Jim Nelsen icn3@cpge.com 805-545- 6547 From: Rowey, John A. [mailto:John.Roweycpseg.com]
Thanks for your time.
Sent: Thursday, May 11, 2006 8:46 AM To: Ballard, Jerry  
8/17/2006
 
Salem UFSAR Table 10.4-1 for Info                                                               Page 5 of 5 Jim Nelsen icn3@cpge.com 805-545- 6547 From: Rowey, John A. [mailto:John.Roweycpseg.com]
Sent: Thursday, May 11, 2006 8:46 AM To: Ballard, Jerry


==Subject:==
==Subject:==
Salem UFSAR Table 10.4-1 for Info<<Salem-SGFP Info T10.4-01 .DOC>>Jerry Attached please find the Salem UFSAR Table that we just discussed.
Salem UFSAR Table 10.4-1 for Info
I highlighted the Relevant Main Feed Pump Technical Information in yellow (on the first page). As I described, we are trying to make a comparison between the Diablo Canyon Main Feed Pumps and Salem's in order to support adjusting our MSLB feed pump trip delay and coastdown assumpitons.
                <<Salem-SGFP Info T10.4-01 .DOC>>
We currently assume only 2 seconds trip delay on a safety injection signal and a 10 second coastdown.
Jerry Attached please find the Salem UFSAR Table that we just discussed. I highlighted the Relevant Main Feed Pump Technical Information in yellow (on the first page). As I described, we are trying to make a comparison between the Diablo Canyon Main Feed Pumps and Salem's in order to support adjusting our MSLB feed pump trip delay and coastdown assumpitons. We currently assume only 2 seconds trip delay on a safety injection signal and a 10 second coastdown. I started to feel uncomfortable with the thought of attempting to time response test based on our current assumption of 2 second delay.
I started to feel uncomfortable with the thought of attempting to time response test based on our current assumption of 2 second delay.The more detail on your feed pumps the better. Please feel free to call if you have any questions.
The more detail on your feed pumps the better. Please feel free to call if you have any questions.
thanks John Rowey 856 339 1870 PSEG Nuclear Senior Engineer The information contained in this e-mail, including any attachment(s), is intended solely for use by the named addressee(s).
thanks John Rowey 856 339 1870 PSEG Nuclear Senior Engineer The information contained in this e-mail, including any attachment(s), is intended solely for use by the named addressee(s). If you are not the intended recipient, or a person designated as responsible for delivering such messages to the intended recipient, you are not authorized to disclose, copy, distribute or retain this message, in whole or in part, without written authorization from PSEG. This e-mail may contain proprietary, confidential or privileged information. If you have received this message in error, please notify the sender immediately. This notice is included in all e-mail messages leaving PSEG. Thank you for your cooperation.
If you are not the intended recipient, or a person designated as responsible for delivering such messages to the intended recipient, you are not authorized to disclose, copy, distribute or retain this message, in whole or in part, without written authorization from PSEG. This e-mail may contain proprietary, confidential or privileged information.
8/17/2006
If you have received this message in error, please notify the sender immediately.
 
This notice is included in all e-mail messages leaving PSEG. Thank you for your cooperation.
NC.CC-AP.ZZ-0010(Q)
8/17/2006 NC.CC-AP.ZZ-0010(Q)
FORM-I CERTIFICATION FOR DESIGN VERIFICATION (SAP Standard Text Key "NR/CDVI")
FORM-I CERTIFICATION FOR DESIGN VERIFICATION (SAP Standard Text Key "NR/CDVI")
Reference Number: S-C-CBV-MEE-1982, Rev. 0. Updated Containment PressurefTemperature Response Analysis With SGFP Trip  
Reference Number: S-C-CBV-MEE-1982, Rev. 0. Updated Containment PressurefTemperature Response Analysis With SGFP Trip


==SUMMARY==
==SUMMARY==
STATEMENT Each individual named below in the right column hereby certifies that the design verification for the subject document or .document portion has been completed, the questions from the generic checklist have been reviewed and addressed as appropriate, and all comments have been adequately incorpo-rated. The top right column individual is the Lead Design Verifier.
STATEMENT Each individual named below in the right column hereby certifies that the design verification for the subject document or .document portion has been completed, the questions from the generic checklist have been reviewed and addressed as appropriate, and all comments have been adequately incorpo-rated. The top right column individual is the Lead Design Verifier. SAP Order/Operation final confirma-tions are the legal equivalent of signatures.
SAP Order/Operation final confirma-tions are the legal equivalent of signatures.
Alan Johnson Design Verifier Assigned By                                                             Name of Lead Design Verifier I Date (print name of Manager/Director)
Alan Johnson Design Verifier Assigned By (print name of Manager/Director)
Design Verifier Assigned By                                                            Name of Design Verifier /Date (prnt name of Manager/Director)*
Name of Lead Design Verifier I Date Design Verifier Assigned By (prnt name of Manager/Director)*
Design Verifier Assigned By                                                            Name of Design Verifier / Date
Name of Design Verifier /Date Design Verifier Assigned By:(print name of ManageriDirector)
:(print name of ManageriDirector)
Name of Design Verifier / Date Design Vefifier Assigned By (print name of Manager/Director)
Design Vefifier Assigned By                                                              Name of Design Verifier / Date (print name of Manager/Director)
Name of Design Verifier / Date'If the ManagemSupervisor actsas the Design Verifier, the narne of tfe next higher level of technical management is required-in the left column.Page 1 of 1}}
'If the ManagemSupervisor actsas the Design Verifier, the narne of tfe next higher level of technical management is required-in the left column.
Page 1 of 1}}

Revision as of 07:55, 23 November 2019

Calculation 0108-0342-JFL-01, Rev 0, Analysis of CCW Supply Temperature During LOCA Recirculation.
ML070871112
Person / Time
Site: Salem  PSEG icon.png
Issue date: 02/19/2007
From: Hibbard J, Lundy J
MPR Associates
To:
Office of Nuclear Reactor Regulation, Public Service Enterprise Group
References
0108-0606-0342-03 0108-0342-JFL-01, Rev 0
Download: ML070871112 (42)


Text

MPR Associates, Inc.

SMPR 320 King Street Alexandria, VA 22314 CALCULATION TITLE PAGE Client:

PSEG Nuclear LLC Page 1 of 35 Project: Task No.

Salem CFCU Simplification Project 0108-0606-0342-03 Title: Calculation No.

Analysis of CCW Supply Temperature During LOCA Recirculation 0108-0342-JFL-01 Preparer / Date Checker/ Date Reviewer & Approver / Date Rev. No.

J. Lundy, 02/16/07 A. Tastet J. Hibbard 0 I~o.1o7

~92 QUALITY ASSURANCE DOCUMENT This document has been prepared, checked, and reviewed/approved in accordance with the Quality Assurance requirements of I OCFR50 Appendix B, as specified in the MPR Quality Assurance Manual.

MPR-QA Form OA-3.1-l, Rev. 1

MPR Associates, Inc.

WMPR 320oKing Street Alexandria, VA 22314 RECORD OF REVISIONS Calculation No. Prepared By Che 4 Page: 2 0108-0342-JFL-01 n / A. Tastet Revision Affected Pages Description 0 All Initial Issue Note: The revision number found on each individualpage of the calculationcarries the revision level of the calculation in effect at the time that page was last revised.

MPR QA Form QA-3,1-2, Rev. 0

MPR Associates, Inc.

  • MPR 320 King Street Alexandria, VA 22314 Calculation No.

0 108-0342-JFL-0 I Table of Contents 1.0 Purpose.................................................................................................................. 4 2.0 Sum m ary of Results ......................................................................................... 4 3.0 Discussion.... I................... .................. ............................................................. 4 3.1 Analysis Inputs .................................................................................................. 6 3.2 Analysis Method ............................................................................................... 7 3.3 Assumptions .................................................................................................... 10 3.4 Results ............................................................................................................. 10 4.0 References........................................................................................................ 12 A Salem Unit I RHR/CCW/SWS Transient Thermal Analysis Results ............. A-1 B Salem Unit 2 RHR/CCW/SWS Transient Thermal Analysis Results ............. B-1 C RHR and CCW Heat Exchanger PROTO-HX Runs ......................................... C-1 MPR QA Form: QA-3.1-3, Rev. 0

MPR Associates, Inc.

UMPR 320 King Street Alexa-dia, VA- --231-4---

Calculation No. Prepared By ,hecked ~y Page: 4 01 08-0342-JTFL-0l / Lundy 4 "TA stiet Revision: 0 1.0 PURPOSE The purpose of this calculation is to verify that the Closed Cooling Water System (CCW), Service Water System (SWS) and Residual Heat Removal (RHR) Heat Exchanger can support the minimum safeguards containment cooling function for Salem Unit 1 and Unit 2 during initiation of LOCA Recirculation. The CCW supply temperature should not exceed 120'F, Reference (3).

2.0

SUMMARY

OF RESULTS This calculation indicates that the peak CCW supply temperature during initiation of LOCA Recirculation is 111.0°T and 11 2.0°F for Salem Units I and 2, respectively. These values are less than the design basis CCW supply temperature of 120'F, Reference (3). The CCW supply temperature is the critical indicator of the heat rejection capacity of the RHR/CCW/SWS path from containment. A lower than design CCW supply temperature indicates that the heat rejection requirements from the RHR System are within its design basis thermal capacity.

3.0 DiSCUSSION The revised Salem containment analysis, Reference (1), assumes a reduced Containment Fan Cooler Unit (CFCU) heat removal capacity to. support a decrease in design basis CFCU Service Water flow and an increase in SWS flow available to other safety related equipment. This calculation confirms that the RHR/CCW/SWS heat rejection path is adequately sized to accommodate the potential increase in heat load due to the reduction in CFCU heat removal capacity.

The combined RHR/CCW/SWS system thermal analysis is performed using an indirect loop &-

NTU method, Reference (2). This analysis verifies that the required heat rejection to support containment cooling is less than the design basis requirement, as represented by the CCW supply temperature. The original Westinghouse design basis for the CCW system was for a CCW supply temperature of 120'F fdr 3 hours3.472222e-5 days <br />8.333333e-4 hours <br />4.960317e-6 weeks <br />1.1415e-6 months <br />, Reference (3). The CCW supply temperature is the critical indicator of overall heat rejection capacity as it will vary depending on the hot side (RHR system) and cold side (SWS) flows and inlet temperatures. The &-NTUmethod uses the concept of thermal exchange effectiveness to account for non-effective heat transfer. The maximum heat transfer possible is a function of the minimum thermal capacitance and the heat exchanger inlet temperatures. The a-NTU method is generally more amenable to heat transfer system performance calculations than the Log Mean Temperature Difference method. The s-NTU method only requires hot and cold side mass flow thermal capacitances and inlet temperatures and minimizes the need for significant iteration to satisfy conservation of energy. The indirect a-NTU method is an extension of the basic e-NTU method as it incorporates an intermediate heat transfer circuit and only relies on the hot and cold heat exchanger duties and thermal boundary conditions to calculate an overall system heat exchange effectiveness.

MPR QA Form: QA-3.1-3, Rev. 0

MPR Associates, Inc.

UM PR 320 King Street Ale~andria, VA 22314 Calculation No. 7 pared By Page: 5 0108-0342-JFL-01 J. Lundy astet Revision: 0 The analysis of the energy and temperature distributions in the RHR, CCW and SW systems is accomplished using the system thermal model shown in Figure 3-1. The hot side of the system is modeled by the assumed RHR system flowrate and Containment (CV) Sump temperature calculated in the containment analysis. The RHR system flow rejects heat to the CCW System via the R-HR heat exchanger. The containment analysis, Reference (1), assumes that the RHR system flow is returned to the Emergency Core Cooling System (ECCS) for injection into the Reactor Coolant System and subsequent removal of reactor core decay heat. The heat rejected to the CCW system combines with other miscellaneous CCW system heat loads (i.e. Safety Injection Pump lube oil and seal coolers, etc.) and is directed to the CCW heat exchanger. The higher temperature CCW system water rejects heat to the SWS, which reduces the CCW supply temperature to less thant 120'F. The CCW pump supplies flow to the operating RHR heat exchanger (4000 gpm) and to the other safety related miscellaneous loads (140 gpm), consistent with WCAP- 16503.

Containment Sump To Cont Sp ray (0% Flow) Q=3200 gpm (VWCAP-1 6503)

(100% Flow) T= (WCAP-16503) and ECCS 1CH Other CCW Loads RHR Hx Q=2.0E6 BTU/hr (WCAP-i 6503) UA=1.75E6 BTU/hr-F (WCAP-16503)

( ;CW Flow = 140 gpm (WCAP-1 6503) CCW Flow = 4000 gpm (WCAP-16503 1 I tCCW Pump 4140 gpm J SW In Q=8000 gpm (WCAP16503)

T=93F (max) (WNCAP-16503) swou C CCW Hx UA=4.013E6 BTU/hr-F (WCAP-i6503)

Figure 3-1

  • J MPR OA Form: QA-3.1-3, Rev. 0 ff

MPR Associates, Inc.

F MP R 320 KingStreet Alexandria, VA 22314 Calculation No. Prepared By Checked y Page: 6 0108-0342-JFL-01 LA.d / stet Revision: 0 3.1 Analysis Inputs The analysis input thermal conditions are shown in Table I and are consistent with those conditions used in WCAP-16503, Reference (1), Pages 6-9 through 6-10. The RHR and CCW heat capacities for the as-built plant conditions are summarized in Table 1 and in Attachment (C) for comparison purposes.

Table I Parameter Analysis Input RHR Heat Exchangers Units Operating 1 Minimum Safeguards 1748.3 see Recirculation Switchover Time Overall U=396.1 BTU/hr-sqft-0 F, Attachment (C)

Heat Capacity, UA* Effective Surf Area, A=4455 sqfl, Attachment (C)

UA=1.75E6 BTU/hr-0 F, Reference (1)

Tubeside (CCW Side Flow Flof H4000 gpm, Reference (1)

(CCW Side of RHR Hx)

Shellside Flow (RHR) 3200 gpm, Reference (1)

CCW Heat Exchangers Units Operating Heat Capacity, Overall U=241.5 BTU/hr-sqft-°F, Attachment (C)

UA Effective Surf Area, A=16615 sqft, Attachment (C)

UA=4.013E6 BTU/hr-°F, Reference (1)

Tubeside Flow (SWS) 8000 gpm, Reference (1)

Shellside Flow (CCW) 4140 gpm, Reference (1)

Additional SystedietLon CCW System Heat ads Loads 2.0E6 BTU/hr, Reference (1)

Tubeside Supply 93'F, Reference (1)

Temperature (SWS)3 f 1he VY1,ir-J0u3U ValUe O0UA- Is slignluy less than or equal to the Salem PI.U LU-HA value, whncn is conservailve for this containment heat removal analysis.

The specified SWS temperature of 93°F is more conservative than the Salem design basis value of 90*F, Reference (7), to provide additional analysis margin to accommodate future changes in Delaware River water temperatures.

The acceptance criteria for adequate RHR system heat removal capacity is based on the CCW supply temperature to the RHR heat exchanger. The design basis for CCW supply temperature is 120°F, Reference (3), during a LOCA Recirculation scenario.

MPR QA Form: QA-3.1-3, Rev. 0

MPR Associates, Inc.

IVM R 320 King Street Alexandria, VA 22314 Calculation No. Prepared By Checked By Page: 7 0108-0342-JFL-01 /J. Lun ýy ' TA 'teRvsin 3.2 Analysis Method The indirect loop c-NTU model, Reference (2) Page 27, is defined using the following equations.

Hot Stream: C CH = W CPLR = pC- RnR C=

Intermediate Loop: C, =C,,, = W - Ccv = ý PCLIT, Cold Stream: C Csqv., = W. Cp[sifs = 'TpC, C,,s where W = Stream Mass Flow, lbm/hr Reference (2) Page 14 C Stream Heat Capacitance, BTU/hr - 'F V = Stream VolumetricFlow, gpm p Stream Density, lbm/cuft Cp, = Specific Heat Capacity, BTU/Ibm - 'F 60mrai/hr 3

C, = CR 7.48 lga=/ft .3200 gpm 57.94 lbm/cuft *1.0 BTU/lbm -'F

= 1.487E6 BTU/hr - OF at 280OF 60 0 CLC =- 7.481 60 4140gpm.61.71lbm/cuflf*.OBTU/Ibm- F

= 2.049E6 BTU/hr - 'F at 120'F 60 min/ hr C.7= CWS 1 8000 gpm 62.08 ibm/cuft 1.0 BTU/lbm - 'F 3.983E6 BTU/hr- OF at 93 0F The density reference temperatures are typical for the analysis being considered in this calculation, that is, the hot side reference temperature of 280°F bounds the typical RHR system temperatures during LOCA Recirculation, the 1257F intermediate loop reference temperature is the CCW system accident design basis temperature and the 93°F SWS reference temperature is the containment analysis assumed temperature. Water densities are taken from Reference (5). Water heat capacities are assumed to be constant at 1.0 BTU/lbm-°F, Assumption (3).

The RLIR heat exchanger thermal model is defined as:

RI [(1 -hpH Z)i(1-e£&,,  !-1 =0.5771 Reference (2), Equation 2-18

[- , "Z)/(1- , ) - z MPR QA Form: QA-3.1-3, Rev. 0

MPR Associates, Inc.

  • MPR 320 King Street Alexandria, VA 22314-Calculation No.

0108-0342-JFL-01 E P'?Ar,,=1 - e-Vz = 0.1065 Reference (2), Equation 2-15 F = (1- -e-ZTU/tn)= 0.0846 Reference (2), Equation 2-15 Z C-m= CRHR =0.751 Reference (2), Equation 2-8 C.. Cc "40004140 NTU = UR4RI" = 1.18 Reference (2), Equation 2-7 n = 10 Baffle Spaces (Typical) Assumption (2)

The value of Cmax in ihe above equation is adjusted by the ratio of the CCW flow to the RHR heat exchanger and the total CCW system flow for application to the calculation of the RHR heat exchanger effectiveness.

The CCW heat exchanger thermal model is defined as:

KI - E P=61ý ' Z)/(l - 6, )1 - 1 6CCMY& 0.7657 Reference (2), Equation 2-18 1(1-E Pcom" Z)/(i )t z E =I-e,, = 0.0833 Reference (2), Equation 2-15 F = (I - e-z"JUI")=0.0448 Reference (2), Equation 2-15 z= Cmix - Cccv = 0. 5 14 4 Reference (2), Equation 2-8 NTU = ý =1.96 Reference (2), Equation 2-7 Ccc.

n = 22 Baffle Spaces Reference (4)

The coupled RHR/CCW/SWS system thermal model is defined as:

MPR QA Form: QA-3.1-3, Rev. 0

MPR Associates, Inc.

INIMPR320 King Street Alexandria, VA 22314 Calculation No. Prepared By..- Checked By Page: 9 0108-0342-JFL-01 /J. Lundy "/ A.. Tst~et Revision: 0 8

RHRICCW/SW 1 ++C R,.(R 1 1____ -1 = 0.5116 Reference (2), Equation 2-20e (C if' C(m. CCVCw,* 1 Once the various heat transfer cffcctiveness values are known, the temperatures and exchanger heat duties, Reference (2), can be calculated.

Q= .Qi~ia = *.c, .(,o,-r,,,) General Form QRI[R,.x =Rf(RContSW *inme RIn um -

ratur Time) Reference (2), Equation 2-6 ff(Containmen t Sump Temperature, Time) Reference (1)

= 93 0 F Reference (1)

QRR,, Cp (T,,R,,,I,, - TRJR,,xO,,, ) = CR,, "(TR,,R,,I,,, - TR,,,,*o, ) Reference (2), Equation 2-6 TRllaxw = -- TRRRhx., QRI[Rhx CRIR QccWvX = QMi=sCcfLo,ýds + QR11Rh., = -M,. ' CCcW;'(TccPw,,1, - TWS,, ) Reference (2), Equation 2-6 Tcc1Fl'X~n = QcCIJi + Tsiv" CCYhx ' CCcW QC X= w. .c

-) , - =,,- c Reference (2), Equation 2-6 TccIVhx0ut= ý TcCOV,,,1 QCCIVw, Cccw QCCJ,,X = Wj' .cp,,',(TrISo,,, - Tss,) = c,,,,.(T,,,,,o, - ,,I,,,) Reference (2), Equation 2-6

,,=Ts TSW014 Qcc, SIS1 +Cs;Vs MPR QA Form: QA-3.1-3, Rev. 0

320 King, Street Alexandria, VA-22314 Calculation No. Prepared By , By Page: 10 0108-0342-JFL-1 ).J und, Alstet Revision: 0 This calculation is repeated at every time step reported in WCAP-16503, Reference (1), Tables 6.3-4 and A.6.3-6.

3.3 Assumptions

1) CCW and RHR heat exchanger values of UA are assumed to be relatively constant and insensitive to the range of thermal boundary conditions evaluated in this calculation. This assumption is reasonable as the limited thermal range of 90°F-280°F results in limhited changes in thermal properties.
2) The RHR heat exchanger is a typical shell and U-tube heat exchanger with approximately 10 internal tube baffles.
3) Water heat capacities are assumed to be constant at 1.0 BTU/lbm-°F over the temperature range of 90-280'F, Reference (5). Comparison of ASME Steam Table values, Figure U-1 Page 273, indicate there is less'than a 3.5 Percent variation in water specific heat capacity over this temperature range, which is considered to be negligible.

3.4 Results Supplemental calculations, Attachments A and B, indicate that the peak CCW supply temperature during an initiation of LOCA Recirculation is 11 L.0F and 112.0°F for Salem Units I and 2, respectively. The design basis CCW supply temperature is 120'F. As the peak CCW supply temperature is less than the design basis value, it is concluded that the thermal rejection path for containment cooling using the RHR/CCW/SWS systems is adequate to support the revised Salem containment analysis, Reference (1). Figures 3-2 and 3-3 summarize the results of this analysis.

MPR QA Form: OA-3.1-3, Rev. 0

MPR Associates, Inc.

320 King:Street Alexandria, VA 22314 Calculation. No. Prepared By . . Checked By Page: I1 0108-0342-JFL-OI J. Lundy A. T-aster Revision: 0 SGS Unit I COW System Thermial Response to a LBLOCA Transient (WCAP-16503) td(*O

.. - . . .

. ..... --. ...-

............-...........- ..

.1.................-....... - .. .......- - l 1 1 -

a,

______-_----------"

'M35 E I, S-____ -

I.~. ---.-.-. _____________

- 4 -I tG .C

..... ..

. ....I.........

.

Timo(saces)

Figure 3-2 SGS Unit 2 CCW System Thermal Response to a LBLOCA Transient (WCAP-o16503)

Tim. (sacs)

Figure-3-3 MPR OA Form: QA-3.1-3, Rev.') 0 4

MPR Associates, Inc.

  • M PR 320 King Street Alexandlria, VA 22314 Calculation No. Prepared By Checked By Page: 12 0108-0342-JFL-01 Lun y / A. at e t Revision: 0

4.0 REFERENCES

1. WCAP-16503 Revision 3.
2. Kays, W. and A. London, Compact Heat Exchangers, Malabar, Florida: Krieger Publishing Company, © 1998.
3. Salem VTD-304209, Westinghouse Precautions, Limitations and Setpoints, - Auxiliary Coolant System, Revision 35, dated 2/15/06, pg 61.
4. Salem VTD-301 110, Component Cooling Heat Exchanger #s 11 and 21 Data Sheet, dated 02/02/95.
5. Bellows, J., W. Parry, J. Gallagher and A. Harvey, ASME International Steam Tables for Industrial Use, CRTD-Volume 58, NY NY: ASME Press, © 2000.
6. Salem Calculation S-C-CC-MDC- 1798, Revision 2.
7. Salem Calculation S-I-CC-MDC-1817, Revision 4.
8. Salem Calculation S-C-SW-MDC-1350, Revision 6.

V MPR QA Form: QA-3.1-3, Rev. 0

MPR Associates, Inc.

320 King Street Alexandria, VA 22314 Calculation No. P ed By ecledBy Page: A-]

010-0342-JFL-01 J. Lundy Revision: 0 A

Salem Unit 1 RHR/CCW/SWS Transient Thermal Analysis Results MPR QA Form: QA-3.1-3, Rev. 0

Calculation No. MPR Associates, Inc. Prepared By:ls'ý 0108-0342-JFL-01 320 King Street jJ. ~ndy Revision: 0 Alexandria, VA 22314 Checked By: BYi-A as Page -- ,of A-?q Aux CCW Trhrhx.in Trhrhxout Qrhrhx Tccwsupply Tccwreturn Qccwhx Tswin. Tsw_out Ht Load Time (sec) (F) (F) (BTU/hr) (F) (F) (BTU/hr) (F) (F) (BTU/hr) 0.00 120.0 120.0 0.000E+00 93.3 94.3 2.000E+06 93.0 93.5 2.000E+06 0.50 181.4 181.4 0.000E+00 93.3 94.3 2.000E+06 93.0 93.5 2.OOE+06 1.00 196.7 196.7 0.OOOE+00 93.3 94.3 2.OOOE+06 93.0 93.5 2.000E+06 2.00 210.1 210.1 0.000E+00 93.3 94.3 2.000E+06 93.0 93.5 2.OOOE+06 3.00 217.4 217.4 0.000E+00 93.3 94.3 2,000E+06 93.0 93.5 2.000E+06 4.00 222.2 222.2 0.000E+00 93.3 94.3 2,000+/-E06 93.0 93.5 2.000E+06 5.00 225.8 225.8 0.OOOE+00 93.3 94.3 2.000E+06 93.0 93.5 2.000E+06 6.00 228.8 228.8 0.000E+00 93.3 94.3 2.000E+06 93.0 93.5 2.000+/-E+06 7.00 231.4 231.4 0.OOOE÷00 93.3 94.3 2.OOOE+06 93.0 93.5 2.000E+06 8.00 233.6 233.6 0.000E+00 93.3 94.3 2.000E+06 93.0 93.5 2.000E+06 9.00 235.7 235.7 0.OOOE+00 93.3 94.3 2.OOOE+06 93.0 9315 2.OOOE+06 10.00 237.5 237.5 0.000E+00 93.3 94.3 2.OOOE+06 93.0 93.5 2.OOOE+06 11.00 239.2 239.2 0.000E+00 93.3 94.3 2.OOOE+06 93.0 93.5 2.000E106 12.00 240.6 240.6 0.OOOE+00 93.3 94.3 2.0002E06 93.0 93.5 2.000E+06 13.00 242.0 242.0 0.OOOE+00 93.3 94.3 2.000E+06 93.0 93.5 2,OOOE+/-06 14.00 243.1 243.1 0.OOOE+00 93.3 94.3 2.000E+06 93.0 93.5 2.000E+06 15.00 244.2 244.2 0.OOOE+00 93.3 94.3 2.OOOE+06 93.0 93.5 2.OOOE+06 16.00 245.1 245.1 0.000E+00 93.3 94.3 2.OOOE+06 93.0 93.5 2.000E+06 17.00 245.9 245.9 0.OOOE+00 93.3 94.3 2.000E-06 93.0 93.5 2.000E+06 18.00 246.6 246.6 0.000+E00 93.3 94.3 2.OOOE+06 93.0 93.5 2.000E+06 19.00 247.1 247.1 0.OOOE+00 93.3 94.3 2.OOOE+06 93.0 93.5 2.OOOE+06 20.00 247.5 247.5 0.000E+00 93.3 94.3 2.OOOE+06 93.0 93.5 2.000E+06

.21.00 248.1 248.1 0.000+E00 93.3 94,3 2.000E+06 93.0 93.5 2.000+/-E06 22.00 248.5 248.5 0.000E+00 93.3 94.3 2,000E+06 93.0 93.5 2.000E+06 23.00 248.9 248.9 0.0001E00 93.3 94.3 2.000E+06 93.0 93.5 2.0002E-06 24.00 249.1 249.1 0.000E+00 93.3 94.3 2.OOOE+06 93.0 93.5 2.000E+06 25.00 249.1 249.1 0.000E+00 93.3 94.3 2.000E+06 93.0 93.5 2.000E+06 26.00 249.1 249.1 0.000E+00 93.3 94.3 2.OOOE+06 93.0 93.5 2.000E+06 27.00 249.1 249.1 0.000E+00 93.3 94.3 2.000E+06 93.0 93.5 2.000E+06 28.00 249.1 249.1 0.000E+00 93.3 94.3 2.000E+06 93.0 93.5 2.000E+06 29.00 249.1 249.1 0.000E+00 93.3 94.3 2.000E+06 93.0 93.5 2.OOOE+06 30.00 249.1 249.1 0.OOOE+00 93.3 94.3 2.OOOE+06 93.0 93.5 2.000E+06 31.00 249.1 249.1 0.000E+00 93.3 94.3 2.000+E06 9310 93.5 2.000+E06 32.00 249.1 249.1 0.OOOE+00 93.3 94.3 2.OOOE+06 93.0 93.5 2.000E+06 33.00; 249.1 249.1 0.OOOE+00 93.3 94.3 2.000E+06 93.0 93.5 2.000E+06 34.00 249.1 249.1 0.000E+00 93.3 94.3 2.OOOE+/-06 93.0 93.5 2.OOOE+/-06 35.00 248.5 248.5 0.OOOE+00 93.3 94.3 2.000E+06 93.0 93.5 2.000+E06 36.00 247.7 247.7 0000E+00 93.3 94.3 2;600E+06 93.0 93.5 2.0002E06 37.00 246.7 246.7 O.O00E+00 93.3 94.3 2.000E+06 93.0 93.5 2.000E+06 38;00 245.8 245.8 O.O00E+00 93.3 94.3 2.000E+06 93.0 93.5 2.000E+06 39.00 245.0 245.0 O.O00E+00 93.3 94.3 2.000E+06 93.0 93.5 2.000E+06 40.00 244.2 244.2 O.O00E+00 93.3 94.3 2.000E+06 93.0 93.5 2.0002E06 41.00 243.4 243.4 .O002E+00 93.3 94.3 2.OOOE+06 93.0 93.5 2.000E+06 42.00 242.6 242.6 0.000E+00 93.3 94.3 2.000E+06 93.0 93.5 2.0002E'06 43.00 241.9 241.9 0.000E+00 93.3 94.3 2.000E+06 93.0 93.5 2.000E+06 44.00 241.2 241.2 OO.00E+00 93.3 94.3 2.OOOE+/-06 93.0 93.5 2.000E+06 45.00 240.6 240.6 O.O00E+00 93.3 94.3 2.000E+06 93.0 -93.5 2.000+E06 46.00 240.0 240.0 O.O00E+00 93.3 94.3 2.OOOE+06 93.0 93.5 2.000E+06 47.00 239.4 239.4 O.OOOE+00 93.3 94.3 2.000E+06 93.0 93.5 2.000E+06 48.00 238.8 238.8 .O002E+00 93.3 94.3 2.000E+06 93.0 93.5 2.000E+06 49.00 238.2 238.2 O.O00E+00 93.3 94.3 2.OOOE+06 93.0 93.5 2.000E+06 50.00 237.7 237.7 O.O00E+00 93.3 94.3 2.0002E06 93.0 93.5 2.000E+06 51.00 237.2 237.2 O.O00E+00 93.3 94.3 2.000E+06 93.0 93.5 2.000E+06 52.00 236.7 236.7 0.000E+00 93.3 94.3 2.000E+06 93.0 93.5 2.000E+06 Source: WCAP-16503 Rev 3 Table 6.3-4 UlSystemTransientTemps 2/16/2007

Calculation No. MPR Associates, Inc. Prepared By:_ <1ýZiý 0108-0342-JFL-01 320 King Street Revision: 0 Alexandria, VA 22314 Checked By:/4j st-

/ A.Tastet Page A-3_ of A- .

Aux CCW Trhrhx in Trhrhx .out Qrhrhx Tccwsupply Tccwreturn Qccwhx Tsw-in Tsw out Ht Load Time (sec) (F) (F) (BTU/hr) (F) (F) (BTU/hr) (F) (F) (BTU/hr) 53.00 236.3 236.3 0.000E+00 93.3 94.3 2.000+E06 93.0 93.5 2.000E+06 54.00 235.8 235.8 0.000E+00 93.3 94.3 2.OOOE+06 93.0 93.5 2.OOOE+06 55.00 235.5 235.5 0.000E+00 93.3 94.3 2.000OE+06 93.0 93.5 2.000+/-E06 56.00 235.3 235.3 0.OOOE+00 93.3 94.3 2.000E+06 93.0 93.5 2.000E+06 57.00 235.4 235.4 0.000E+00 93.3 94.3 2.000E+06 93.0 93.5 2.000E+06 58.00 235.4 235.4 0.000E+00 93.3 94.3 2,000E+06 93.0 93.5 2.000+E06 59.00 235.4 235.4 0.OOOE+00 93.3 94.3 2.OOOE+06 93.0 93.5 2.000E+06 60.00 235.4 235.4 0.OOOE+00 93.3 94.3 2.000E+06 93.0 93.5 2.000E+06 61.00 235.4 235.4 0.OOOE+00 93.3 94.3 2.000E-06 93.0 93.5 2.OOOE÷06 62.00 235.5 235.5 0.000E+00 93.3 94.3 2.OOOE+06 93.0 93.5 2.000+/-E06 63.00. 235.5 235.5 0.000E+00 93.3 94.3 2.000E+06 93.0 93.5 2.000E+06 64.00 235.5 235.5 O.OOOE+00 93.3 94.3 2.000E+06 93.0 93.5 2.000E+06 65.00 235.5 235.5 0.OOOE+00 93.3 94.3 2.OOOE+06 93.0 93.5 2.000+E06 66.00 235.5 235.5 0.000E+00 93.3 94.3 2.000E+06 93.0 93.5 2.000E+06 67.00 235.6 235.6 0.OOOE+00 93.3 94.3 2.000E+06 93.0 93.5 2.000E+06 68.00 235.6 235.6 0.000E+00 93.3 94.3 2.000+E06 93.0 93.5 2.000E+06 69.00 235.6 235.6 0.000E+00 93.3 94.3 2,000E+06 93.0 93.5 2.0006+06 70.00 235.6 235.6 0.OOOE+00 93.3 94.3 2.000E+06 93.0 93.5 2.000E+06 71.00 235.6 235.6 0.OOOE+00 93.3 94.3 2.000E+06 93.0 93.5 2.OOOE+06 72.00 235.7 235.7 0.000E+00 93.3 94.3 2.OOOE+06 93.0 93.5 2.OOOE+06 73.00 235.7 235.7 0.OO0E+00 93.3 94.3 2.000E+06 93.0 93.5 2.000E+06 74.00 2357 235.7 0.000E+00 93.3 94.3 2.000E+06 93.0 93.5 2.000E+06 75.00 235.7 235.7 0.OOOE+00 93.3 94.3 2.000E+06 93.0 93.5 2.OOOE÷06 76.00 235.7 235.7 0.000E+00 93.3 94.3 2.000E+06 93.0 93.5 2.000E+06 77.00 235.8 235.8 0.O00E+00 93.3 94.3 2.000E+06 93.0 93.5 2.OOOE+06 78.00 235.8 235.8 0.000E+00 93.3 94.3 2.000E+06 93.0 93.5 2.000+/-E06 79.00 235.8 235.8 0.000E+00 93.3 94.3 2.000E+06 93.0 93.5 2.OOOE+06 80.00 235.8 235.8 0.000E+00 93.3 94.3 2.000E+06 93.0 93.5 2.000E+06 81.00 235.9 235.9 0.000E+00 93.3 94.3 2.000+E06 93.0 93.5 2.OOOE+06 82.00 235.9 235.9 0.000E+00 93.3 94.3 2.000+/-E06 93.0 93.5 2.OOOE+06 83.00 235.9 235.9 0.000E+00 93.3 94.3 2.000E+06 93.0 93.5 2.OOOE+06 84.00 235.9 235.9 0.OOOE+00 93.3 94.3 2.OOOE+06 93.0 93.5 2.OOOE+06 85,00 235.9 235.9 0.000E+00 93.3 94.3 2.000+/-E06 93.0 93.5 2.000E+06 86.00 236.0 236.0 0.OOOE+00 93.3 94.3 2.000+/-E06 93.0 93.5 2.000E+06 87.00 236.0 236.0 0.OOOE+00 93.3 94.3 2.000E+06 93.0 93.5 2.000E+06 88.00 236.0 236.0 0.OOOE+00 93.3 94.3 2.OOOE+06 93.0 93.5 2.000E+06 89.00 236.0 236.0 0.000E+00 93.3 94.3 2.000E+06 93.0 93.5 2.OOOE+06 90,00 236.1 236.1 0.OOOE+00 93.3 94.3 2.OOOE+06 93.0 93.5 2.000E+06 91.00 236.1 236.1 0.OOOE+00 93.3 94.3 2.000+/-E06 93.0 93.5 2.000E÷06 92.00 236.1 236.1 0.000E+00 93.3 94.3 2.OOOE+06 93.0 93.5 2.000+/-E06 93.00 236.2 236.2 0.000E+00 93.3 94.3 2.OOOE+06 93.0 93.5 2.000E+06 94.00 236.2 236.2 O.000E+00 93.3 94.3 2.Q00E+06 93.0 93.5 2.000E+06 95.00 236.3 236.3 0.000+E00 93.3 94.3 2.000E+06 93.0 93.5 12.OOOE÷06 96.00 236.3 236.3 0.000E+00 93.3 94.3 2.000E+06 93.0 93.5 2.OOOE+06 97.00 236.4 236.4 O.000E+00 93.3 94.3 2.OOOE+06 93.0 93.5 2.OOOE+06 98.00 236.4 236.4 0.000E+00 93.3 94.3 2.000+E06 93.0 93.5 2.000E+06 99.00 236.4 236.4 0.000E+00 93.3 94.3 2.000E+06 93.0 93.5 2.OOOE+06 100.00 236.5 236.5 0.000E+00 93.3 94.3 2.000E+06 93.0 93.5 2.000E+06 101.00 236.5 236.5 0.000E+00 93.3 94.3 2.000E+06 93.0 93.5 2.OOOE+/-06 102.00 236.6 236.6 0.000E+00 93.3 94.3 2.000+E06 93.0 93.5 2.000+E06 103.00 236.6 236.6 0.000E+00 93.3 94.3 2.000E+06 93.0 93.5 2.000E+06 104.00 236.6 236.6 0.O000E00 93.3 94.3 2.000E+06 93.0 93.5 2.000E+06 105.00 236.7 236.7 0.000E+00 93.3 94.3 2.000E606 93.0 93.5 2.000+E06 106.00 236.7 236.7 0.000E+00 93.3 94.3 2.000E+06 93.0 93.5 2.000E+06 Source: WCAP-16503 Rev 3 Table 6.3-4 U1SystemTransientTemps 2/16/2007

Calculation No. MPR Associates, Inc. Prepared By:.i 0108-0342-JFL-01 320 King Street Revision:.0 Alexandria, VA 22314 Checked By:4 S A."rTastet Page A-'Y of A-5 Aux CCW Trhrhxin Trhrhxout Qrhrhx Tccwsupply Tccwretum Qccwhx Tsw-in Tswout Ht Load Time (sec) (F) . (F) (BTU/hr) (F) (F) (BTUIhr) (F) (F) (BTU/hr) 107.00 -236.8 236.8 0.OOOE+00 93.3 94.3 2.000E+06 93.0 93.5 2.000E+06 108.00 236.8 236.8 0.000E+00 93.3 94.3 2.000E+06 93.0 93.5 2:000E+06 109:00 23619 236:9 0.000+E001 93.3 94-3 2.000E+06 93.0 93:5 2:000E+06 110.00 236.9 236.9 0.000+E00 .93.3 94.3 2.000E+06 93.0 93.5 *2*000E+06 111.00 1236a9 236-9 0.OOOE+00 ,93.3 94.3 2:000E+06 93.0 M93.5 2."000E+06 112.00 237.0 237.0 0.000E+00 93.3 94.3 2.000E+06 93.0 -93.5 2.000E+06 113.00 ' 23710 237.0 0.000E+00 93.3 94.3 .2.000E+06 93.0 '93.5 2:000E+06 114:00, 237:1 237.1 0.002E+00 .93,3 94.3 2000E+06 93.0 93.5 2.0002+06 115.00 237.1 237.1 !0.000E+00 93,3 94.3 2.000E+06 93.0 '93.5 2:000E+06 116:00 237!1 2371 0.,000+E00 :93,3 94.3 .2.000E+06 93.0 193.5 2,:000E+08 117.00

  • 237,2 237.2 O.D00E+00 93.3 94.3 2.000E+06 93.0 93.5 2n000E06 2

118.00.,'. 237.2 237.2 0.000E+00 .. 93.3 94,3 2.000E+06 93.0 93.5 ,21000E+06 119.00 .237.3 237.3 0.000E+00 93:3 94.3 2.0002E06 93:0 93.5 2.000-+06 120.00 - l237.3 237.3 0.OOOE+00 --93.3 .94.3 2.0002E06 93.0 93.5 -2:000E+06 121,:00 .237.3 237.3 0.000E+00 .... 93:3 94.3 2.000E+06 93.0 93.5 2;000"+06 122100 -237-'4 237.4 0.000E+00 93.3 94.3 2.000E+06 -:93.0 --93.5 2.000E+06 123.00 . 237:4 237.4 0.000E+00 93.3 94.3 2.0002E06 93.0 93.5- 2.000E+0D6 124,00 237:5. 237,5 0.000E+00 93.3 94.3 2:000E+06 93:0 93.5- 2.000E+06 125.00 237:5 237.5 0o.000+00 93.3 -94.3 2.000+E06 93.0 93.5- ' 2000E+06 126.00 *,, 237:5 237.5 0000E+00 93.3 94.3 2.000E+06 :93.0 "93.5 2.000E+06 127:00 237:6-: 237.6 0.000E+00 93.3 94.3 2.000E+06 93.0 93.5 2:000E+06 128.00 - 237.6 237.6 0:00000E-0 93.3 94.3 2.000E+06 ..93.0 *.93.5 2:000E+06 129M:00 . 237.7. 237,7 0.000E+00 93.3 94.3 2.000r+06 93.0 93:5, 2:000E+06 130;00' :237:7 237.7 0.0002E00 .93,3 .94.3 .2.000E+06 93.0 93.5 2000E+06 131.00 '1237;7 237.7 0.000E+00 93.3 94.3 2.000E+06 93.0 '93.5 21000E+06 132:00 237:8 237.8 0,000E+00 93.3 94.3 2.000+E06 93.0 93.5 210001+06 133100 237:8 237.8 0.000E2+00 9313 94.3 :2000E+06 93.0 93.5 2.0002E06 134.00. 237!8 237.8 0.000+E00 93.3 94.3 2.000E+06 93.0 -. 93.5. 2.000E+06 135:00 .237.9 237.9 0.000E+00 93.3 .94.3 2.000E+06 93.0 .93.5 2.00DE+06 136:00 , :;', .2379, 237.9 0.000E+00 . 93:3 94:3 2:000E+06 93.0 193.5 2,000E+06 137:00  :. 237.9 .237.9 0.000E+00 93.3 94.3 2.000E+06 93.0 93.5 2.000E+06 138;00, 238.0 238,0 0 OO0E+00 - 93.3 94.3 2.000+E06 93.0 .93.5, 2.000E+06 139.00 -'21.238.0 238,0 0.0002+00, 93.3 94:3 2.000E+06 ' 93.0 93,5. 2:000O+06 140:00' '238:1 '238.1 0000+00 .933 :94,3 2:000E+06 93.0 93.5 2.00E2+06 141:00"':t: *238.1 "238.1 0.000E+00 93.3 94.3 2.0002+06 93.0 93.5 2.0002+06 142:00":":238:1 '238:1 0.0002+00 " 93:3 94.3 2.0002+06 93.0 93.5 2.0002+06 143.00 ,238, 38.2 0.0002+00 93.3 , 94.3 . 2:0002E06 93.0 .93.5: 2000E+06 144'00- -23821 '238.2 0.000+00 !933 193.5 94.3 2.0002+06 93.0 9 2.000E+06 145.00i*

. :238.2.** 238'.2 0.E000-"*O ; 93',3 94:3 .2.000+E06 93.0 93.5 2.0002+06 1463.00 . ' 238.3 238.3 0.000E+00 93.3 .94.3 2.000E+06 93.0 93.5 "2.000E+06 1474'00 *.1 238.3 238.3 0.000E 00 93:3 94.3 2.000E+06 93.0 ,93.5 2.000E+06, 148.00 *- .'238.3 238231 0.000E00 . 93.3 94.3 2.000E+06 93:0 93.5 ,. 2.0002-06 O

149600  : 238.4 238.4 0.0002+0 . 933. 943 2.0002+06 930 , 93.5 2.000E+06 150:00 . 238.4 238.4 0.00000 .....93.-3 94.3 2.000E+06 93.0 93.5 2.0002+06 151400'-' ,:238.4 1 238.3 0.000E+00 93.3 94.3 2.0002E06 93.0 _'93.5, 2.000E+06 152100 *.., .23835 238.5, 0.000+E00 93.3 94.3, 2.000E+06 9310 93.5 2.000E+06; 153400' 238.5.. 238.5 0'0002+*00 . 933 94:3 2:000'+061 93-0 93.5 2.0002O06 154.00. 2385 238.5 0.000+*00 ,93.3 94.3 2.000E+06' 93:0 93.5 2.000E+06 155100-m." 238.6 238:6 0.000E+00 .93.3' 94:3 2.000E+06 93.0 93.5 2.000E+06 156:00- " 238.6 238.6 0.000E+,00 ,93:3 94.3 2.0002+E06 93.0 93.5 2.000+E-06 157.00' .. 238.6 238.6 0.000E+00 ý', 93.3 94.3 2.000E+06 93:0 93.5 2.0002E-06 158.00- 238.7 238.7 '.0100GE00 93.3 94.3 2:000+E06 93.0 93.5 2.000+E06 159W00 238.7 238.7 0.000+E.00 93.3 94.3 2.000+E06 93.0 93.5 2.000E+06 160.00 j .238.7 238.7 0.000E+00 93.3.. 94.3 2.000E+06 .93.0 93.5. 2.000E÷05 Source: WCAP-16503 Rev 3 Table 6.3-4 UlSysteinTransientTemps 2/16/2007,

Calculation No.

0108-0342-JFL-01 MPR Associates, Inc.

320 King Street Prepared By:

I.

Revision: 0 Alexandria, VA 22314 Checked By::49 Page A-_S of A-i._ /A~astet Aux CCW Trhrhx_in Trhrhx-out Qrhrhx Tccwsupply Tccwreturn Qccwhx Tsw_in Tsw_out Ht Load Time (sec) (F) (F) (BTU/hr) (F) (F) (BTU/hr) (F) (F) (BTU/hr) 161.00 238.8 238.8 0.OOOE+00 93.3 94.3 2.OOOE+06 93.0 93.5 2.000E+06 162.00 238.8 238.8 0.OOOE+00 93.3 94.3 2.000E+06 93.0 93.5 2.000E+06 163.00 238.8 238.8 0.000E+00 93.3 94.3 2.000E+06 93.0 93.5 2.000E+06 164.00 238.9 238.9 0.0005+00 93.3 94.3 2.000E+06 93.0 93.5 2.000E+06 165.00 238.9 238.9 0.000E+00 93.3 94.3 2.000E+06 93.0 93.5 2.OOE+06, 166.00 238.9 238.9 0.000E+00 93.3 94,3 2.000E+06 93.0 93,5 2.000E+06 167.00 239.0 239.0 0.00OE+00 93.3 94.3 2.000E+06 93.0 93.5 2.000E+06 168.00 239.0 239.0 0.000E+00 93.3 94.3 2.000E+06 93.0 93.5 2.000E+06 169.00 239.0 239.0 0.000E+00 93.3 94.3 2.OOOE+06 93.0 93.5 2.000E+06 170.00 239.1 239.1 0.OOOE+00 93.3 94.3 2.000E+06 93.0 93.5 2.OOOE+06 171.00 239.1 239.1 0.OOOE+00 93.3 94.3 2.OOOE+06 93.0 93.5 2.000E+06 172.00 239.1 239.1 0.000E+00 93.3 94.3 2.OOOE+06 93.0 93.5 2.OOOE+06 173.00 239.2 239.2 0.OOOE+00 93.3 94.3 2.000E+06 93.0 93.5 2.000E+06 174.00 239.2 239.2 O.OOOE+00 93.3 94.3 2.OOOE+06 93.0 93.5 2,000E+06 175.00 239.2 239.2 0.000E+00 93.3 94.3 2.0001+06 93.0 93.5 2.000E+06 176.00 239.2 239.2 0.000E+00 93.3 94.3 2.000E+06 93.0 93.5 2.000E+06 177.00 239.3 239.3 0.000E+00 93.3 94.3 2.000+E06 93.0 93.5 2.OOOE+06 178.00 239.3 239.3 0.000E+00 93.3 94.3 2.000E+06 93.0 93.5 2,000E+06 179.00 239.3 239.3 0.000E+00 93.3 94.3 2.000E+06 93.0 93.5 2.000E+06 180.00 239.4 239.4 0.000E+00 93.3 94.3 2.000E+06 93.0 93.5 2.OOOE+06 181.00 239.4 239.4 0.000E+00 93.3 94.3 2.OOOE+06 93.0 93.5 2.OOOE+06 182.00 239.4 239.4 0.000E+00 93,3 94.3 2.000E+06 93.0 93.5 2,000E+06 183.00 239.5 239.5 0.000E+00 93.3 94.3 2.000+E06 93.0 93.5 2.000+E06 184.00 239.5 239.5 0.000E+00 93.3 94.3 2.000E+06 93.0 93.5 2.000E+06 185.00 239.5 239.5 0.000E+00 93.3 94.3 2,000E+06 93.0 93.5 2,000E+06 186.00 239.6 239.6 0.000E+00 93.3 94.3 2.000E+06 93.0 93.5 2.000E+06 187.00 239.6 239.6 0.000E+00 93.3 94.3 2.000E+06 93.0 93.5 2.000E+06 188.00 239.6 239.6 0.0005+00 93.3 94.3 2.000E+06 93.0 93.5 2.000E+06 189.00 239.7 239.7 0.000E+00 93.3 94.3 2.000E+06 93.0 93.5 2.000E+06 190.00 239.7 239.7 0.000E+00 93.3 94.3 2.000E+06 93.0 93.5 2.000E+06 191.00 239.8 239.8 O.000E+00 93.3 94.3 2.000E+06 93.0 93.5 2.000E+06 192.00 239.8 239.8 0.000E+00 93.3 94.3 2.000E+06 93.0 93.5 2.000E+06 193.00 239.8 239.8 O.000E+00 93.3 94.3 2.000E+06 93.0 93.5 2.000E+06 194.00 239.9 239.9 0.000E+00 93.3 94.3 2.000E+06 93.0 93.5 2.000E+06 195.00 239.9 239.9 0.000E+00 93.3 94.3 2.000E+06 93.0 93.5 2.000E+06 196.00 240.0 .240.0 0.O00E+00 93.3 94.3 2.000E+06 93.0 93.5 2.000E+06 197.00 240.0 240.0 0.000E+00 93.3 94.3 2.000E+06 93.0 93.5 2.000E+06 198.00 240.0 240.0 0.O00E+00 93.3 94.3 2.000E+06 93.0 93.5 2.000E+06 199.00 240.1 240.1 0.000E+00 93.3 94.3 2.000E+06 93.0 93.5 2.000E+06 209.00 240.5 240.5 0.000E+00 93.3 94.3 2.000E+06 93.0 93.5 2.000E+06 219.00 240.9 240.9 0.O00E+00 93.3 94.3 2.000E+06 93.0 93.5 2.000E+06 229.00 241.2 241.2 0.000E+00 93.3 94.3 2.000E+06 93.0 93.5 2.000E+06 239.00 241.6 241.6 0.000E+00 93.3 94.3 2.000E+06 93.0 93.5 2.000E+06 249.00 242.0 242.0 0.000E+00 93.3 94.3 2.000E+06 93.0 93.5 2.000E+06 259.00 242.3 242.3 O.000E+00 93.3 94.3 2.000E+06 93.0 93.5 2.0005E+06 269.00 242.7 242.7 0.000E+00 93.3 94.3 2.000+E06 93.0 93.5 2.000E+06 279.00 243.0 243.0 0.000E+00 93:3 94.3 2.000E+06 93.0 93.5 2.000E+06 289.00 243.4 243.4 0.000E+00 93.3 94.3 2.000E+06 93.0 93.5 2.000E+06 299.00 243.7 243.7 0.000E+00 93.3 94.3 2.000E+06 93.0 93.5 2.000E+06 309.00 244.0 244.0 0.000E+00 93.3 94.3 2.000E+06 93.0 93.5 2.000E+06 319.00 244.3 244.3 0.000E+00 93.3 94.3 2.000E+06 93.0 93.5 2.000E+06 329.00 244.6 244.6 0.O00E+00 93.3 94.3 2.000E+06 93.0 93.5 2.000E+06 339.00 244.9 244.9 0.000E+00 93.3 94.3 2.000E+06 93.0 93.5 2.000E+06 349.00 245.2 245.2 0.000E+00 93,3 94.3 2.000E+06 93.0 93.5 2.0005+06 Source: WCAP-16503 Rev 3 Table 6.3-4 UlSystemTransientTemps 2/16/2007

<I

1

~1

Calculation No. MPR Associates, Inc. Prepared By:

0108-0342-JFL-01 320 King Street L. y Revision: 0 Alexandria, VA 22314 Checked By:

A. tastet Aux CCW Trhrhxin Trhrhxout Qrhrhx Tccwsupply Tccwreturn Qccwhx Tsw_in Tswout Ht Load Time (sec) (F) (F) (BTU/hr) (F) (F) (BTU/hr) (F) (F) (BTU/hr) 359.00 245.5 245.5 0.000E+00 93.3 94.3 2.OOOE+06 93.0 93.5 2.000E+06 369.00 245.8 245.8 0.000E+00 93.3 94.3 2.000E+06 93.0 93.5 2.OOOE+06 379.00 246.1 246.1 0.000E+00 93.3 94.3 2.000E+06 93.0 93.5 2.000E+06 389.00 246.4 246.4 0.000E+00 93.3 94.3 2.000E+06 93.0 93.5 2.000E+06 399.00 246.7 246.7 0.OOOE+00 93.3 94.3 2.OOOE+06 93.0 93.5 2.OOE+06 409.00 246.9 246.9 0.000E+00 93.3 94.3 2.OOOE+06 93.0 93.5 2.000E+06

,419.00 247.2 247.2 :0,000E+00 93.3 94.3 2.000E+06 93.0 93.5 2.000E+06 429.00 247.5 247.5 0,000E+00 93.3 94.3 2.000E+06 93.0 93.5 2.OOOE+06 439.00 247.7 247.7 0.000E+00 93.3 94.3 2.OOOE+06 93.0 93.5 2.000E+06 449.00 248.0 248.0 0.000E+00 93.3 94.3 2.000E+06 93.0 93.5 Z000E+06 459:00 248.2 248.2 0.OOOE+00 93.3 94.3 2.000E+06 93.0 93.5 2.00E+06

ý469.00 248.5 248.5 0.000E+00 93.3 94.3 2.OOOE+06 93.0 93.5 2.000E+06 479.00 248.8 248.8 0.000E+00 93.3 94.3 2.OOOE+06 93.0 93.5 2.OOOE+06 489.00 249.1 249.1 0.000E+00 93.3 94.3 2.OOOE+06 93.0 93.5 ,2000E-06 499.00 249.4 249.4 0.000E+00 93.3 94.3 2.OOOE+06 93.0 93.5 2.000+E06 599.00 251.8 251.8 0.OOOE+00 93.3 94.3 2.OOOE+06 93.0 93.5 2.000E+06 699.00 253.7 253.7 0.000E+00 93.3 94.3 2.OOOE+06 93.0 93.5 2.000E+06 799.00 255.2 255.2 0.000E+00 93.3 94.3 2.OOOE+06 93.0 93.5 2.000E+06 899.00 256.5 .256.5 0.000E+00 93.3 94.3 2.000E+06 93.0 93.5 2.000E-06 999.00 257.6 257.6 0.000E+00 93.3 94.3 2.000+E06 93.0 93.5 2.0002+06 1099.00 258.5 258.5 0.OOOE+00 93.3 94.3 2.000E+06 93.0 93.5 2.000+E06 1199.00 259.3 259.3 '0.000E+00 93.3 94.3 2.OOOE+06 2.00OE+06 93.0 93.0 93.5 93.5 2.000+E06 2.0002+06 1299.00 260.1 260.1 0.000E+00 93.3 94.3 1399.00 .260.8 260.8 0.000E+00 93.3 94.3 2.OOOE+06 93.0 93.5 2.O00E+06 1499.00 257.3 257.3 0.000E+00 93.3 94.3 2.000E+06 93.0 93.5 2:0002+05 1599.00 253.4 253.4 0.000E+00 93.3 94.3 2.000E+06 93.0 93.5 2:000E+06 1699.00 249.9 249.9 0.000E+00 93.3 94.3 2.OOOE+06 93.0 93.5 2.0002+06 1748.30 249.1 169.3 1.187E+08 111.0 170.0 1.207E+08 93.0 123.3 2.000E+06 1799.00 248.3 168.9 1.181E+08 110.9 169.6 11,201E+08 93.0 123.2 2.0002+05 1899.00 248.5 169.0 1.183E+08 111.0 169.7 .1.2032+.08 93.0 123.2 2.000E÷06 1999.00 248.7 169.0 1.184E+08 111.0 169.8 1,204E+08 93.0 123.2 2.0002+06' 2099.00 248.8 169.1 1.1852+08 111.0 169.8 1.2052+08 93.0 123.3 .2.000E+06 2199.00 248.9 159.2 1.1862+08 111.0 169.9 1.2062+08 93.0 123:3 2.0002+/--06 2299.00 249.0 169.2 1.1872+08 111.0 169.9 1,207E+08 93.0 123.3 2.0002+06 2399.00 249.1 169.2 1.1872+08 111.0 169.9 1.2072+08 93.0 123.3 2:0002+06 2499*00- 249.1 169.2 1.1872+08 111.0 170.0 1.207E+08 93.0 123.3 2.0002+06 2599.00 249.1 189.2 1.1872+08. 111.0 170.0 1.2072+08 93.0 123.3 2.0002+06' 2699[06- 249.1 .169.2 !1.1872+08 111.0 170.0 1.2072+08 93.0 123.3 12.0002+06 2799.00 249.1 169.2 1.1872+08 111.0 169.9 1.2072+08 93.0 123.3 2.OO0E+06 2899.00 249.0 169.2 "1.1872+08 111.0 169.9 1.2072+08 93.0 123.3 2.0002+06 2999.00 248.9 169.2 1.1862+08 111.0 169.9 1.2062+08 93.0 123.3 2,000E+06 3099.00 248.6 169.0 1.1832+08 111.0 169.7 1.203E+08 93.0 123.2 2:0002+06 248.0 168.7 1.179E+08 110.9 169.4 1.1992+08 93.0 123.1 2.0002+06

,3199.00 3299.00 247.4 168.4 1.1752+08 110.8 169.2 1,195E+08 93.0 123.0 2.0002+*06 3399.00 246.9 168.2 1.1712+08 110.8 168.9 1.1912+08 93.0 122.9 2:0002+06 3499.00 246:3 167.9 1.1662+08 110.7 168.6 1.1862+08 93.0 122.8 2.0002+06 3599:00 245.8 167*.6 1.1622+08 110.7 168.4 1.1822+08 93.0 122.7 2.0002+06 3699.00 - 245.0 167.2 1.1562+08 110.6 167.9 1.1762+08 93.0 122.5 2.0002+06 3799.00 243.9 166.7 1.1482+08 110.4 167.4 1.168E+08 93.0 122.3 2.0002+06 3899.00 242.9 156.2 1.1402÷081 110.3 166.9 1.1602+08 93.0 122.1 2.0002+06 3999.00 241.8 165.7 1.1322+-08 i110.2 166.4 1.1522+08 93.0 121.9 2.0002+06 4999.00 233.7 16.1.7 1.0702+08 109.3 162.5 1.0902+08 93.0 120.4 2.0002+06 5999.00 226.8 158.3 1.0182+08 108.5 159.1 1.0382+08 93.0 119.1 2.0002+06 6999.00 220.8 155.4 9.7232+07 107.8 156.3 9.9232+07 93.0 117.9 2.0002+06 Source: WCAP-16503 Rev 3 Table 6.3-4 U1 SystemTransientTemps 211612007

Calculation No. MPR Associates, Inc. Prepared By: 4ý-ý 0108-0342-JFL-01 320 King Street Revision: 0 Alexandria, VA 22314 Checked By:, ýýu Page A-7 of A-3 / A.1fastet Aux CCW Trhrhxin Trhrhxout Qrhrhx Tccwsupply Tccwreturn Qccwhx Tsw in Tswout Ht Load Time (sec) (F) (F) (BTU/hr) (F) (F) (BTU/hr) (F) (F) (BTU/hr) 7999.00 214.1 152.2 9.213E+07 107.1 153.0 9.413E+07 93.0 116.6 2.000E+06 8999.00 208.3 149.3 8.773E+07 106.4 150.2 8.973E+07 93.0 115.5 2.000E+06 9999.00 203.3 146.9 8.389E+07 105.8 147.7 8.589E+07 93.0 114.6 2.000E+06 19999.00 171.3 131.3 5.957E+07 102.2 132.2 6.157E+07 93.0 108.5 2.OOOE+06 29999.00 164.4 127.9 5.428E+07 101.4 128.9 5.628E+07 93.0 107.1 2.000E+06 39999.00 162.5 127.0 5.288E+07 101.2 128.0 5.488E+07 93.0 106.8 2.000E÷06 49999.00 161.1 126.2 5.177E+07 101.0 127.3 5,377E+07 93.0 106.5 2.000E÷06 59999.00 142.4 117.2 3.761E+07 98.9 118.2 3.961E+07 93.0 102.9 2.000E+06.

69999.00 137.6 114.8 3.396E+07 98.4 115.9 3.596E+07 93.0 102.0 2.000E+06 79999.00 136.3 114.1 3.293E+07 98.2 115.3 3.493E+07 93.0 101.8 2.OOOE+06 89999.00 135.8 113.9 3.254E+07 98.2 115.0 3.454E+07 93.0 101.7 2.OOOE+06 99999.00 135.5 113.8 3.232E+07 . 98.1 114.9 3.432E+07 93.0 101.6 2.000E+06 109999.00 123.8 108.1 2.346E+07 96.8 109.2 2.546E+07 93.0 99.4 2.000E+06 119999.00 121.4 106.9 2.161E+07 96.5 108.0 2.361E+07 93.0 98.9 2.OOOE+06 129999.00 120.8 106.6 2.115E+07 96.5 107.8 12.315E+07 93.0 98.8 2.O0OE+06 139999.00 120.1 106.2 2.059E+07 96.4 107.4 2,259E+07 93.0 98.7 2.000E+06 149999.00 120.1 106.2 2.060E+07 96.4 107.4 2.260E+07 93.0 98.7 2.000E+06 159999.00 120.4 106.4 2.087E+07 96.4 107.6 2.287E+07 93.0 98.7 2.000E+06 169999.00 120.4 106.4 2.085E+07 96.4 107.6 2.285E+07 93.0 98.7 2.OOOE+06 179999.00 120.6 106.5 2.101E+07 96.4 107.7 2.301E+07 93.0 98.8 2.000E+06 189999.00 121.8 107.1 2.190E+07 96.6 108.2 2.390E+07 93.0 99.0 2.000E+06 199999.00 120.0 106.2 2.058E+07 96.4 107.4 2.258E+07 93.0 98.7 2.000E+06 209999.00 120.1 106.2 2.061E+07 96.4 107.4 2.261E+07 93.0 98.7 2.000+E06 219999,00 120.2 106.3 2.068E+07 96.4 107.5 2.268E+07 93.0 98.7 2.000E+06 229999.00 120.7 106.5 2.107E+07 96.4 107.7 2.307E+07 93.0 98.8 2.000E+06 239999.00 120.4 106.4 2.084E+07 96.4 107.6 2.284E+07 93.0 98.7 2.OOOE+06 249999.00 120.2 106.3 2.071E+07 96.4 107.5 2.271E+07 93.0 98.7 2.000E+06 259999.00 120.5 106.5 2.095E+07 96.4 107.6 2.2952+07 93.0 98.8 2.000E+06 269999.00 120.2 106.3 2.068E+07 96.4 107.5 2.268E+07 93.0 98.7 2.000E+06 279999.00 120.1 106.2 2,060E+07 96.4 107.4 2.260E+07 93.0 98.7 2.000E+06 289999.00 120.0 106.2 2.052E+07 96.4 107.4 2.252E+07 93.0 98.7 2.OOE+06 299999.00 121.0 106.7 2.132E+07 96.5 107.9 2.332E+07 93.0 98.9 2.000E+06 309999.00 119.8 106.1 2.042E+07 96.3 107.3 2.242E+07 93.0 98.6 2.O0E+06 319999.00 119.9 106.1 2.043E+07 96.4 107.3 2.243E+07 93.0 98.6 2.000E+06 329999.00 119.9 106.1 2.048E+07 96.4 107.3 2.248E+07 93.0 98.6 2.OOOE+06 339999.00 120.5 106.4 2.092E+07 96.4 107.6 2.292E+07 93.0 98.8 2.000E+06 349999:00 119.6 106.0 2.023E+07 96.3 107.2 2.223E+07 93.0 98.6 2.000E+06 359999.00 119.8 106.1 2.038E+07 96.3 107.3 2.238E+07 93.0 98.6 2.,OOE+06 369999.00 120.1 106.3 2.064E+07 96.4 107.4 2.264E+07 93.0 98.7 2.000E+06 379999.00 119.3 105.9 2.004E+07 96.3 107.0 2.204E+07 93.0 98.5 2.000E+06 389999.00 119.7 106.0 2.030E+07 96.3 107.2 2.230E+07 93.0 98.6 2.000E+06 399999.00 119.4 105.9 2.007E+07 96.3 107.1 2.207E+07 93.0 98.5 2.000E+06 409999.00 119.4 105.9 2.010E+07 96.3 107.1 2.210E+07 93.0 98.5 2.000E+06 419999.00 119.5 105.9 2.012E+07 96.3 107.1 2.212E+07 93.0 98.6 2.000E+06 429999.00 119.3 105.8 1,997E+07 96.3 107.0 2.197E+07 93.0 98.5 2.000E+06 439999.00 119.3 105.9 2.003E+07 96.3 107.0 2.203E+07 93.0 98.5 2.000E+06 449999.00 119.3 1,05.8 2.000E+07 96.3 107.0 2.200E+07 93.0 98.5 2.000E+06 459999.00 119.7 106.0 2,030E+07 96.3 107.2 2.230E+07 93.0 98.6 2.000E+06 469999.00 119.0 105.7 1.975E+07 96.2 106.9 2.175E+07 93.0 98.5 2.000E+06 479999.00 119.9 105.7 1.973E+07 96.2 106.8 2.173E+07 93.0 98.5 2.000E+06 489999.00 119.2 105.8 1.996E+07 96.3 107.0 2.196E+07 93.0 98.5 2.000E+06 499999.00 119.0 105.7 1.979E+07 96.3 106.9 2.179E+07 93.0 98.5 2.000E+06 509999.00 115.1 103.8 1.684E+07 95.8 105.0 1.884E+07 93.0 97.7 2.000E+06 519999.00 113.2 102.9 1.535E+07 95.6 104.1 1.735E+07 93.0 97.4 2.000E+06 Source: WCAP-16503 Rev 3 Table 6.3-4 U1SystemTransientTemps 2/1612007

Calculation No. MPR Associates, Inc. Prepared By:

0108-0342-JFL-01 320 King Street Revision: 0 Alexandria, VA 22314 Checked By: z I... -A.--l=& tet PageA- oEfA-.

Aux CCW Trhrhx in Trhrhxout Qrhrhx Tccwsupply Tccwreturn Qccwhx Tswin Tswout Ht Load Time (sec) (F) (F) (BTU/hr) (F) (F) (BTU/hr) (F) (F) (BTU/hr) 529999.00 113.7 103.1 1.577E+07 95.7 104.3 1.777E+07 93.0 97.5 2.OOOE+06 539999.00 113.0 102.8 1.521E+07 95.6 104.0 1.721E+07 93.0 97.3 2.000+E06 549999.00 113.1 102.8 1.530E+07 95.6 104.0 1.730E+07 93.0 97.3 2.000E+06 559999.00 113.1 102.8 1.531E+07 95.6 104.0 1.731E+07 93.0 97.3 2.OOOE+06 569999.00 112.9 102.7 1.514E+07 95.6 103.9 1.714E+07 93.0 97.3 2.OOOE+06 579999.00 112.9 102.7 1.512E+07 95.6 103.9 1.712E+07 93.0 97.3 2.000E+06 589999.00 113.0 102.8 1.520E+07 95.6 104.0 1.720E+07 93.0 97.3 2.OOOE+06 599999.00 113.0 102.8 1.524E+07 95.6 104.0 1.724E+07 93.0 97.3 2.000E+06 609999.00 112.8 102.7 1.507E+07 95.6 103.9 1.707E+07 93.0 97.3 2.000E+06 619999.00 112.8 102.7 1.505E+07 95.5 103.9 1.705E+07 93.0 97.3 2.OOOE+06 629999.00 112.8 102.7 1.509E+07 95.6 103.9 1.709E+07 93.0 97.3 2.OOOE+06 639999.00 112.8 102.7 1.505E+07 95.5 103.9 1.705E+07 93.0 97.3 2.000E+06 649999.00 112.9 102.7 1.512E+07 95.6 103.9 1.712E+07 93.0 97.3 2.OOOE+06 659999.00 112.8 102.7 1.507E+07 95.5 103.9 1.707E+07 93.0 97.3 2.OOOE+06 669999.00 112.8 102.7 1.506E+07 95.5 103.9 1.706E+07 93.0 97.3 2.000E+06 679999.00 113.4 1.03.0 1.552E+07 95.6 104.2 1.752E+07 93.0 97.4 2.OOOE+06 689999.00 112.8 102.7 1.507E+07 95.6 103.9 1.707E+07 93.0 97.3 2.000E+06 699999.00 112.8 102.6 1.503E+07 95.5 103.9 1.703E+07 93.0 97.3 2.OOOE+06 709999.00 112.8 102.7 1.507E+07 95.6 103.9 1.707E+07 93.0 97.3 2.000E+06 719999.00 112.7 102.6 1.499E+07 95.5 103.8 1.699E+07 93.0 97.3 2.000E+06 729999.00 112.6 102.6 1.492E+07 95.5 103.8 1.692E+07 93.0 97.2 2.000E+06 739999.00 112.7 102.6 1.502E+07 95.5 103.8 1.702E+07 93.0 97.3 2.000E+06 749999.00 112.7 102.6 1.496E+07 95.5 103.8 1.696E+07 93.0 97.3 2.000E+06 759999.00 112.8 102.7 1.503E+07 95.5 103.9 1.703E+07 93.0 97.3 2.OOOE+06 769999.00 112.7 102.6 1.498E+07 95.5 103.8 1.698E+07 93.0 97.3 2.000E+06 779999.00 112.7 102.6 1.498E+07 95.5 103.8 1.698E+07 93.0 97.3 2.000+E06 789999.00 113.2 102.9 1.536E-07 95.6 104.1 1.7362+07 93.0 97.4 2.000E+06 799999.00 112.7 102.6 1.496E+07 95.5 103.8 1.696E+07 93.0 97.3 2.000E+06 809999.00 109.9 101.2 1.285E+07 95.2 102.5 1.485E+07 93.0 96.7 2.OOOE+06 819999.00 109.1 100.8 1.221E+07 95.1 102.1 1.421E+07 93.0 96.6 2.000E+06 829999.00 108.8 100.7 1.198E+07 95.1 101.9 1.398E+07 93.0 96.5 2.000E+06 839999.00 108.7 100.7 1.196E+07 95.1 101.9 1.396E+07 93.0 96.5 2.000E+06 849999.00 108.7 100.7 1.195E+07 95.1 101.9 1.395E+07 93.0 96.5 2.000E+06 859999.00 108.6 100.6 1.189E+07 95.1 101,9 1.389E+07 93.0 96.5 2.000+E06 869999.00 108.6 100.6 1.187E+07 95.1 101.8 1.387E+07 93.0 96.5 2.000E+06 879999.00 109.5 101.0 1.252E+07 95.2 102.3 1.452E+07 93.0 96.6 2.000E+06 889999.00 108.7 100.7 1.192E+07 95.1 101.9 1.392E+07 93.0 96.5 2.000E+06 899999.00 108.6 100.6 1.186E+07 95.1 101.8 1.386E+07 93.0 96.5 2.000E+06 909999.00 108.7 100.7 1.192E+07 95.1 101.9 1.392E+07 93.0 96.5 2.000E+06 919999.00 108.6 100.6 1.188E+07 95.1 101.8 1.388E+07 93.0 96.5 2.000E+06 929999.00 108.6 100.6 1.187E+07 95.1 101.8 1.387E+07 93.0 96.5 2.000E+06 939999.00 .108.7 100.7 1.191E+07 95.1 101.9 1.391E+07 93,0 96.5 2.000E+06 949999.00 108.6 100.6 1.184E+07 95.1 101.8 1.384E+07 93.0 96.5 2.000+E06 959999.00 108.5 100.6 1.179E+07 95.1 101.8 1.379E+07 93.0 96.5 2.000E+06 969999.00 108.6 100.6 1.189E+07 95.1 101.9 1.389E+07 93.0 96.5 2.000E+06 979999.00 109.0 100.8 1.216E+07 95.1 102.0 1.416E+07 93.0 96.6 2.000E+06 989999.00 108.6 100.6 1.187E+07 95.1 101.8 1.387E+07 93.0 96.5 2.000E+06 999999.00 108.6 100.6 1.184E+07 95.1 101.8 1.384E+07 93.0 96.5 2.000E+06 1999999.00 107.6 100.1 1.110E+07 95.0 101.3 1.310E+07 93.0 96.3 2.000E+06 2999999.00 107.4 100.1 1.098E+07 94.9 101.3 1.298E+07 93.0 96.3 2.000+E06 3999999.00 107.2 99.9 1.080E+07 94.9 .101.2 1.280E+07 93.0 96.2 2.000E+06 4999999.00 107.1 99.9 1.076E+07 94.9 101.1 1.276E+07 93.0 96.2 2.000E+06 5999999.00 102.1 97.5 6.946E+06 94.3 98.7 8.946E+06 93.0 95.2 2.0002+06 6999999.00 102.1 97.4 6.926E+06 94.3 98.7 18.926E+06 93.0 95.2 2.000E+06 Source: WCAP-16503 Rev 3 Table 6.3-4 UI1System Transi entTemnps 2/16/2007

Calculation No. MPR Associates, Inc. Prepared By:

0108-0342-JFL-01 320 King Street Revision: 0 Alexandria, VA 22314 Checked By: .,.,

/ A. Tastet Page A-__ of A-_

Aux CCW Trhrhxin Trhrhxout Qrhrhx Tccwsupply Tccwreturn Qccwhx Tswin Tsw out Ht Load Time (sec) (F) (F) (BTU/hr) (F) (F) (BTU/hr) (F) (F) (BTU/hr) 7999999.00 102.0 97.4 6.872E+06 94.3 98.7 8.872E+06 93.0 95.2 2.000E+06 8999999.00 102.1 97.4 6.891E+06 94.3 98.7 8.891E+06 93.0 95.2 2.000E+06 9999999.00 102.0 97.4 6.876E+06 94.3 98.7 8.876E+06 93.0 95.2 2.OOE+06 10000000.00 102.0 97.4 6.876E+06 94.3 98.7 18.876E+06 93.0 95.2 2.000E+06 Source: WCAP-16503 Rev 3 Table 6.3-4 UlSystemTransientTemps 2/16/2007

MPR Associates, Inc.

320 King Street IMPR Alexandria, VA 22314 Calculation No.

0108-0342-JFL-01 B

Salem Unit 2 RHR/CCW/SWS Transient Thermal Analysis Results MPR QA Form: QA-3.1-3, Rev. 0

Calculation No. MPR Associates, Inc. Prepared By: 4s"*/

0108-0342-JFL-01 320 King Street Revision: 0 Alexandria. VA 22314 Checked By: "4,

/ A. Tiastet Page of B-1 Aux CCW Trhrhxin Trhrhxout Qrhrhx Tccwsupply Tccwreturn Qccwhx Tswin Tswout Ht Load Time (sec) (F) (F) (BTU/hr) (F) (F) (BTU/hr) (F) (F) (BTU/hr) 0.00 120.0 120.0 0.000E+00 93.3 94.3 2.000E+06 93.0 93.5 2.000E+06 0.50 181.7 181.7 0.OOEi00 93.3 94.3 2.000E+06 93.0 93.5 2.000E+06 1.00 197.0 197.0 0.0O0E+00 93.3 94.3 2.000E+06 93.0 93.5 2.OOOE+06 2.00 210.9 210.9 0.00OE+00 93.3 94.3 2.000E+06 93.0 93.5 2.000E+06 3.00 218.4 218,4 0.000E+00 93.3 94,3 2,000E+06 93.0 93.5 2-000E+06 4.00 223.0 223.0 O.0OOE÷00 93.3 94.3 2.000E+06 93.0 93.5 2.OOOE+06 5.00 226.6 226.6 O.OOOE+00 93.3 94.3 2.000E+06 93.0 93.5 2,000E+06 6.00 229.6 229.6 0,000E+00 93.3 94.3 2.000E+06 93.0 93.5 2.000E+06 7.00 232.2 232.2 0.000E+00 93.3 94.3 2.OOOE÷06 93,0 93.5 2,000E+06 8.00 234.4 234.4 0,OOE+00 93.3 94.3 2.OOOE+06 93.0 93.5 2,OOOE+061 9.00 236.6 236,6 0.000E+00 93.3 94.3 2.000E+06 93.0 93.5 2.000E+06 10.00 238.6 238.6 0.000E+00 93.3 94.3 2.000E+06 93.0 93.5 20OOOE+06 11.00 240.2 240.2 0.000E+00 93.3 94.3 2.000E+06 93.0 93.5 2.OOOE+06 12.00 241.7 241.7 0.OOOE+00 93.3 94.3 2.000E+06 93.0 93.5 2.OOOE+06 13.00 243.1 243.1 0.000E+00 93.3 94.3 2.000E+06 93.0 93.5 2.000E+06 14.00 244.3 244.3 0.OOE+00 93.3 94.3 2.000E+06 93.0 93.5 2.000E÷06 15.00 245.4 245.4 0.000E+00 93.3 94.3 2.000E+06 93.0 93.5 2.000E+06 16.00 246.4 246.4 0.OOE+00 93.3 94.3 2.000E+06 93.0 93.5 2.000E+06 17.00 247.3 247.3 0.0006÷00 93.3 94.3 2.000E+06 93.0 93.5 2.000E+06 18.00 248.1 248.1 0.000E+00 93.3 94.3 2.000E+06 93.0 93.5 2.OOOE+06 19.00 248.8 248.8 0.000E+00 93.3 94.3 2.000E+06 93.0 93.5 2.000E+06 20.00 249.4 249.4 0.000E+00 93.3 94.3 2.OOOE+06 93.0 93.5 2.000E+06 21.00 249.9 249.9 0.000E+00 93.3 94.3 2.OOOE+06 93.0 93.5 2.OOOE+06 22.00 250.3 250.3 0.000E+00 93.3 94.3 2.000E+06 93.0 93.5 2.0OOE+06 23.00 250.7 250.7 0.000E+00 93.3 94.3 2.000E+06 93.0 93.5 2.OOOE+06 24.00 251.0 251.0 0.000E+00 93.3 94.3 2.000E+06 93.0 93.5 2.OOOE+06 25.00 251.4 251.4 0.OOOE+00 93.3 94.3 2.000E+06 93.0 93.5 2.000E+06 26.00 251.6 251.6 0.OOOE+00 93.3 94.3 2.OOOE+06 93.0 93.5 2,000E+06 27.00 251.7 251.7 0.OOOE÷00 93.3 94.3 2.000E+06 93.0 93.5 2.OOOE+06 28.00 251.7 251.7 0.000E+00 93.3 94.3 2.OOOE+06 93.0 93.5 2.000E+06 29.00 251.7 251.7 0.000E+00 93.3 94.3 2.000E+06 93.0 93.5 2.000E+06 30.00 251.7 251.7 0.000E+00 93.3 94.3 2.OOOE+06 93.0 93.5 2.000E+06 31.00 251.7 251.7 0.000E+00 93.3 . 94.3 2.000E+06 93.0 93.5 2.000E+06 32.00 251.7 251.7 0.000E+00 93.3 94.3 2.000E+06 93.0 93.5 2.000E+06 33.00 251.7 251.7 0.OOOE+00 93.3 94.3 2.OOOE+06 93.0 93.5 2.000E+06 34.00 251.7 251.7 0.000E+00 93.3 94.3 2.00÷E+06 93.0 93.5 2.000E+06 35.00 251.6 251.6 0.OOOE+00 93.3 94.3 2.OOOE+06 93.0 93.5 12.0006÷06 36.00 251.6 251.6 0.000E+00 93.3 94.3 2.000E+06 93.0 93.5 2.OOOE+06 37.00 250.9 250.9 0.000E+00 93.3 94.3 2.000E+06 93.0 93.5 2.000E+06 38.00 250.0 250.0 0.000E+00 93.3 94.3 2.000E+06 93.0 93.5 2.000E+06 39.00 249.1 249.1 0.000E+00 93.3 94.3 2.000E+06 93.0 93.5 2.X00E+06 40.00 248.3 246.3 0.0006E00 93.3 94.3 2.000E+06 93.0 93.5 2.000E+06 41.00 247.5 247.5 0.000E+00 93.3 94.3 2.000E+06 93.0 93.5 2.000E+06 42.00 . 246.8 246.8 0.0OOE+00 93.3 94.3 2.000E+06 93.0 93.5 2.OOOE+06 43.00 246.1 246.1 0.000E+00 93.3 94.3 2.000E+06 93.0 93.5 2.000E+06 44.00 245.4 245.4 0.000E+00 93.3 94,3 2.000E+06 93.0 93.5 2.000E+06 45.00 244.7 244.7 0.000E+00 93.3 94.3 2.000E+06 93.0 93.5 2.000E+06 46.00 244.1 244.1 0.000E+00 93.3 94.3 2.000E+06 93.0 93.5 2.000E+06 47.00 243.5 243.5 0.000E+00 93.3 94.3 2.000E+06 93.0 93.5 2.OOOE+06 48.00 242.9 242.9 0.000E+00 93.3 94.3 2.000E+06 93.0 93.5 2.000E+06 49.00 242.4 242.4 0.000E+00 93.3 94.3 2.000E+06 93.0 93.5 2.000E+06 50.00 241.8 241.8 0.000E+00 93.3 94.3 2.0006÷06 93.0 93.5 2.OOOE÷06 51.00 241.3 241.3 0.000E+00 93.3 94.3 2.000E+06 93.0 93.5 2.OOOE+06 Source: WCAP-16503 Rev 3 Table A.6.3-6 U2SystemTransientTemps 2/16/2007

Calculation No. MPR Associates, Inc. Prepared By:jl iZ 0108-0342-JFL-01 320 King Street Revision: 0 Alexandria, VA 22314 Checked By:

Page EkZgof B-f Aux CCW Trhrhxin Trhrhxout Qrhrhx Tccwsupply Tccwreturn Qccwhx Tsw-in Tswout Ht Load Time (sec) (F) (F) (BTU/hr) (F) (F) (BTU/hr) (F) (F) (BTU/hr) 52.00 240.8 240.8 0.000E+00 93.3 94.3 2.000E+06 93.0 93.5 2.OOOE+06 53.00 240.4 240.4 0.000E+00 93.3 94.3 2.OOOE+06 93.0 93.5 2.OOOE+06 54.00 239.9 239.9 0.OOOE+00 93.3 94.3 2.000E+06 93.0 93.5 2.000E*06 55.00 239.5 239.5 0.OOOE+00 93.3 94.3 2.000E+06 93.0 93.5 2.000E+06 56.00 239.1 239.1 0.OOOE+00 93.3 94.3 2.OOE+06 93.0 93.5 2.000E+06 57.00 238.8 238.8 0.000E+00 93.3 94.3 2.OOOE+/-06 93.0 93.5 2.OOOE+06 5B.00 238.5 238.5 0.OOOE+00 93.3 94.3 2.OOOE+06 93.0 93.5 2.OOOE+06 59.00 238.5 238.5 0.OOOE+00 93.3 94.3 2.OOE+06 93.0 .93.5 2.OOOE+06 60.00 238;6 238.6 0.OOOE+00 93.3 94.3 2.OOOE+06 93.0 93.5 2.OOOE+06 61.00 238.6 238.6 0.000E+00 93.3 94.3 2.000E+06 93.0 93.5 2.000E+06 62.00 238.6 238.6 0.OOOE+00 93.3 94.3 2.000E+06 93.0 93.5 2.OOOE+06 63.00 238.6 238.6 0.OOOE+00 93.3 94.3 2.000E+06 93.0 93.5 2.OOOE+06 64.00 238.6 238.6 0.OOOE+00 93.3 94.3 2.OOOE+06 93.0 93.5 2.OOOE+06 65.00 238.7 238.7 0.OOOE+00 93.3 94.3 2.000E+06 93.0 93.5 2.OOOE÷06 66.00 238.7 238.7 0.000E+00 93.3 94.3 2.000E+06 93.0 93.5 2.000E+06 67.00 238.7 238.7 0.000E+00 93.3 94.3 2.OOOE+06 93.0 93.5 2.OOOE+06 68.00 238.7 238.7 0.OOOE+00 93.3 94.3 2.OOOE+06 93.0 93.5 2.OOOE+06 69.00 238.7 238.7 0.OOOE+00 93.3 94.3 2.OOOE+06 93.0 93.5 2.OOOE+06 70.00 238.8 238.8 0.O00E+00 93.3 94.3 2.000E+06 93.0 93.5 2.000E+06 71.00 238.8 238.8 o.000E+00 93.3 94.3 2.000E+06 93.0 93.5 2.OOOE+06 72.00 23828 238.8 0.000E+00 93.3 94.3 2.OOOE+06 93.0 93.5 2.OOOE+06 73.00 238.8 238.8 O.000E÷00 93.3 94.3 2.000E+06 93.0 93.5 2.OOOE+06 74.00 238.8 238.8 0.OOOE+00 93.3 94.3 2.OOOE+06 93,0 93.5 2.OOOE+06 75.00 238.9 238.9 0.000E+00 93.3 94.3 2.000E+06 93.0 93.5 2.000E+06 76.00 238.9 238.9 0.OOOE+00 93.3 " 94.3 2.OOOE+06 93.0 93.5 2.OOOE+06 77.00 238.9 238.9 0.OOOE+00 93.3 94.3 2.OOOE+06 93.0 93.5 2.OOOE+06 78.00 238.9 238.9 0.000E+00 93.3 94.3 2.OOOE+06 93.0 93.5 2.OOOE+06 79.00 239.0 239.0 0.OOOE+00 93.3 94.3 2.OOOE+06 93.0 93.5 2.OOOE+06 80.00 239.0 239.0 0OO0E+00 93.3 94.3 2.OOOE+06 93.0 93.5 2.000E+06 81.00 239.0 239.0 0.OOOE+00 93.3 94.3 2.OOOE+06 93.0 93.5 2.OOOE+06 82.00 239.0 239.0 O.OOOE+00 93.3 94.3 2.OOOE+06 93.0 93.5 2.OOOE+06 83.00 239.0 239.0 0.OOOE+00 93.3 94.3 2.000E+06 93.0 93.5 2.500E+06 84.00 239.1 239.1 0.OOOE+00 93.3 94.3 2.OOOE+06 93.0 93.5 2.050E+06 85.00 239.1 239.1 0.000E+00 93.3 94.3 2.OOOE+06 93.0 93.5 2.OOOE+06 86.00 239.1 239.1 0.OOOE+00 93.3 94.3 2.OOOE+06 93.0 93.5 2.OOOE+06 87.00 239.1 239.1 0.OOOE+00 93.3 94.3 2.OOOE+06 93.0. 93.5 2.OOOE+06 88.00 239.1 239.1 0.OOOE+00 93.3 94.3 2.OOOE+06 93.0 93:5 2.050E+06 89.00 239.2 239.2 0.OOOE+00 93.3 94.3 2.OOOE+06 93.0 '93.5 2.000E+06 90.00 239.2 239.2 0.OOOE+00 93.3 94.3 2.000E+06 93.0 93.5 2.OOOE+06 91.00 239.2 239.2 0.OOOE+00 93.3 94.3 2.OOOE+06 93.0 93.5 2.OOOE+06 92.00 239.3 239.3 0.OOOE+00 93.3 94.3 2.OOOE+06 93.0 93.5 12.OOOE+06 93.00 239.3 .239.3 0.O0OE+00 93.3 94.3 2.OOOE+06 93.0 93.5 2.OOOE+06 94.00 239.4 239.4 0.OOOE+00 93.3 94.3 2.OOOE+06 93.0 93.5 2.OOOE+06 95.00 239.4 239.4 0.000E+00 93.3 94.3 2.OOOE+06 93.0 93.5 2.000E+06 96.00 239.5 239.5 0.OOOE+00 93.3 94.3 2.OOOE+06 93.0 93.5 2.000E+06 97.00 239.5 239.5 0.OOE+00 93.3 94.3 2.OOOE+06 93.0 93.5 2.OOOE+06 98.00 239.5 239.5 0.000E+00 93.3 94.3 2.OOOE+06 93.0 93.5 2.U00E+06 99.00 239.6 239.6 0.OOOE+00 93.3 94.3 2.OOOE+06 93.0 93.5 2.000E+06 100.00 239.6 239.6 0.OOOE+00 93.3 94.3 2.OOOE+06 93.0 93.5 2.000E+06 101.00 239.7 239.7 C.OOOE+00 93.3 94.3 2.OOOE+06 93.0 93.5 2.000E+06 102.00 239.7 239.7 0.OOOE+00 93.3 94.3 2.OOOE+06 93.0 93.5 . 2.000E+06 103.00 239.7 239.7 0.OOOE+00j 93.3 94.3 2.OOOE+06 93.0 93.5 2.000E+06 104.00 239.8 239.8 0.OOOE+00 93.3 94.3 2.OOOE+06 93.0 93.5 2.OOOE+06 Source: WCAP-16503 Rev 3 Table A.6.3-6 U2SystemTransientTemps 2/16/2007 S

.1

Calculation No. MPR Associates, Inc. Prepared By: J*'i 0108-0342-JFL-01 320 King Street Revision: 0 Alexandria, VA 22314 Checked By:A --

/" A. "fastet Page B3fVof B-q Aux CCW Trhrhxin Trhrhx.out Qrhrhx Tccwsupply Tccwreturn Occwhx Tsw in Tsw out Ht Load Time (sec) (F) (F) (BTU/hr) (F) (F) (BTU/hr) (F) (F) (BTU/h r) 105,00 239.6 239.8 0.000E+00 93.3 94.3 2.000E+06 93.0 93.5 2.000E+06 106.00 239.9 239.9 O.000E÷00 93.3 94.3 2.000E+06 93.0 93.5 2.000E+06 107.00 239.9 239.9 0.000E+00 93.3 94.3 2.000E+06 93.0 93.5 2.000E+06 108.00 240.0 240.0 0.000E+00 93.3 94.3 2.000E+06 93.0 93.5 2.000E+06 109.00 240.0 240.0 0.000E+00 93.3 94.3 2.000E+06 93.0 93.5 2.000E+06 110.00 240.0 240.0 0.000E+00 93.3 94.3 2.000E+06 93.0 93.5 2.000E+06 111.00 240.1 240.1 0.0O0E+00 93.3 94.3 2.000E+06 93.0 93.5 2.OOOE+06 112.00 240.1 240.1 0.000E+00 93.3 94.3 2.000E+06 93.0 93.5 2.000E+06 113.00 240.2 240.2 0.OOOE+00 93.3 94.3 2.000E+06 93.0 93.5 2.OOOE+06 114.00 240.2 240.2 0.000E+00 93.3 94.3 2.000E+06 93.0 93.5 2.000E+06 115.00 240.2 240.2 0.OOOE+00 93.3 94.3 2.000E+06 93.0 93.5 2.OOOE+06 116.00 240.3 240.3 0.000E+00 93.3 94.3 2.OOOE+06 93.0 93.5 2.000E+06 117.00 240.3 240.3 0.OOOE+00 93.3 94.3 2.000E+06 93.0 93.5 2.000E+06 118.00 240.4 240.4 0.000E+00 93.3 94.3 2.000E+06 93.0 93.5 2.000E+06 119.00 240.4 240.4 0.000E+00 93.3 94.3 2.000E+06 93.0 93.5 2.OOOE+06 120.00 240.4 240.4 0.00OE+00 93.3 94.3 2.OOOE+06 93.0 93.5 2.000E+06 121.00 240.5 240.5 0.000E+00 93.3 94.3 2.OOOE+06 93.0 93.5 2.000+E06 122.00 240.5 240.5 0.OOOE+00 93.3 94.3 2.OOOE+06 93.0 93.5 2.000E+06 123.00 240.6 240.6 0.OOOE+00 93.3 94.3 2.000+E06 93.0 93.5 2.000E+06 124.00 240.6 240.6 0.0002+00 93.3 94.3 2.OOOE+06 93.0 93.5 2.OOOE+06 125.00 240.6 240.6 0.OOOE+00 93.3 94.3 2.OOOE+06 93.0 93.5 2.000E+06 126.00 240.7 240.7 0.000E+00 93.3 94.3 2.OOOE+06 93.0 93.5 2.OOOE+06 127.00 240.7 240.7 0.000E+00 93.3 94.3 2,OOOE+06 93.0 93.5 2.000E+06 128,00 240.8 240.8 0.OOOE+00 93.3 94.3 2.000E+06 93.0 93.5 2.000E+06 129.00 240.8 240.8 0.000E+00 93.3 94.3 2.000E+06 93.0 93.5 2,OOOE+06 130,00 240.8 240.8 0.000E+00 93.3 94.3 2.000E+06 93.0 93.5 2.000E+06 131.00 240.9 240.9 0.000+E00 93.3 94.3 2.000E+06 93.0 93.5 2.000E+06 132.00 240.9 240,9 0.000E+00 93.3 94.3 2.OOOE+06 93.0 93,5 2.000E+06 133.00 240.9 240.9 0.OOOE+00 93.3 94.3 2.000+E06 93.0 93.5 2.OOOE+06 134.00 241,0 241,0 0.000E+00 93.3 94.3 2.000E+06 93.0 93.5 2.000E+06 135.00 241.0 241.0 0.000E+00 93.3 94.3 2.000E+06 93.0 93.5 2.000E+06 136.00 241.1 241.1 0.000E+00 93.3 94.3 2.000E+06 93.0 93.5 2.000E+06 137.00 241.1 241.1 0.000E+00 93.3 94.3 2.000E+06 93.0 93.5 2.000E+06 138.00 241.1 241.1 0.000E+00 93.3 94.3 2.000E+06 93.0 93.5 2.000E+06 139.00 241.2 241.2 0.000E+00 93.3 94.3 2.000E+06 93.0 93.5 2.000E+06 140.00 241.2 241.2 0.000+/-E00 93.3 94.3 2.000E+06 93.0 9315 2.000E+06 141.00 241.2 241.2 0.000E+00 93.3 94.3 2.000E+06 93.0 93.5 2.000E+06 142.00 241.3 241.3 0.000E+00 93.3 94.3 2.000E+06 93.0 93.5 2.000E+06 143.00 241.3 241.3 0.000E+00 93.3 94.3 2.000E+06 93.0 93.5 2.000E+06 144.00 241.3 241.3 0.000E+00 93.3 94.3 2.000E+06 93.0 93.5 2.000E+06 145.00 241.4 241.4 O.000E+00 93.3 94.3 2.000E+06 93.0 93.5 2.000E+06 146.00 241.4 241.4 0.OOOE+00 93.3 94.3 2.000E+06 93.0 93.5 2.0001+06 147.00 241.4 241.4 0.000E+00 93.3 94.3 2.000+E06 93.0 93.5 2.0002+06 148.00 241.5 241.5 0.000E+00 93.3 94.3 2.000E+06 93.0 93.5 2.000E+06 149.00 241.5 241.5 0.000E+00 93.3 94.3 2.000E+06 93.0 93.5 2.000E+06 150.00 241.5 241.5 0.000E+00 93.3 94.3 2.000E+06 93.0 93.5 2.000E+06 151.00 241.6 241.6 0.000E+00 93.3 94.3 2.000E+06 93.0 93.5 2.000E+06 152.00 241.6 241.6 0.000E+00 93.3 94.3 2.000E+06 93.0 93.5 2.000E+06 153.00 241.6 241.6 0.000E+00 93.3 94.3 2.000E+06 93.0 93.5 2.000E+06 154.00 241.7 241.7 0.0002+00 93.3 94.3 2.000E+06 93.0 93.5 2.000E+06 155.00 241.7 241.7 0.000E+00 93.3 94.3 2.000E+06 93.0 93.5 2.000E+06 156.00 241.7 241.7 0.000E+00 93.3 94.3 2.000E+06 93.0 93.5 2.000E+06 157.00 241.8 241.8 0.000E+00 93.3 94.3 2.000E+06 93.0 93.5 2.000E+06 Source: WCAP-16503 Rev 3 Table A.6.3-6 U2SystemTransientTemps 2/16/2007

Calculation No. MPR Associates, Inc. Prepared By:

0108-0342-JFL-01 320 King Street Cek.ed BLuy Alexandria, VA 22314 Checked By : /*..

Revision: 0

/ A. T'astet Papge B-I'of B-Aux CCW Trhrhxin Trhrhxout Qrhrhx Tccwsupply Tccwreturn Qccwhx Tswin Tswout Ht Load Time (sec) (F) (F) (BTU/hr) (F) (F (BTU/hr) (F) (F) (BTU/hr) 158.00 241.8 241.8 0.000E+00 93.3 94.3 2.000E+06 93.0 93.5 2.000E+06 159.00 241.8 241.8 0.000E+00 93.3 94.3 2.OOOE+06 93.0 93.5 2.000E+06 160.00 241.9 241.9 0.000E+00 93.3 94.3 2.OOOE+06 93.0 93.5 2.OOOE+06 161.00 241.9 241.9 0.000E+00 93.3 94.3 2.000E+06 93.0 93.5 2.000E+06 162.00 241.9 241.9 0.000E+00 93.3 94.3 2.OOOE+06 93.0 93.5 2.000E+06 163.00 242.0 242.0 0.000E+00 93.3 94.3 2.000E+06 93.0 93.5 2.000E+06 164:00 242.0 242.0 0.000E+00 93.3 94.3 2.000E+06 93.0 93.5 2.000E+06 165.00 242.0 242.0 0.000+E00 93.3 94.3 2.000E+06 93.0 93.5 2.OOOE+06 166:00 242.1 242.1 0.000E+00 93.3 94.3 2.000E+06 93.0 93.5 2.OOOE+06 167:00 242.1 242.1 0.0002E00 93.3 94.3 2.000E+06 93.0 93.5 2.000E.06 168.00. 242.1 242.1 0.000E+00 93.3 94.3 2.000E+06 93.0 93.5 2.000E+06 169.00 242.2 242.2 0.000+E00 93.3 94.3 2.000E+06 93.0 93.5 2.000OE06 170.00 242.2 242.2 0.000E+00 93.3 94.3 2.OOOE+06 93.0 93.5 2.000E+06 171.00 242.2 242.2 0.000E+00 93.3 94.3 2.000E+06 93.0 93.5 2.000E+06 172.00 242.3 242.3 0.000E+00 93.3 94.3 2.000E+06 93.0 93.5 2.OOOE+06

173.00 242.3 242.3 0;000E+00 93.3 94.3 2.000E+06 93.0 93.5 2.OOOE+06 174:00 242:3 242.3 0.000E+00 93.3 94,3 2.OOOE+06 93.0 93.5 2.000E+06

-175.00 242.4 242.4 0.000E+00 93.3 94.3 2.000E+06 93.0 93.5 2.000E+06 176.00 242.4 242.4 '0:000E00 93.3 94.3 2.OOOE+06 93.0 93:5 2.OOOE+06 177:00 242.4 242.4 0.OOOE+00 93.3 94.3 2.000E+06 93.0 93.5 2.000E+06 178.00 242.4 242.4 0.OOOE+00 93.3 94.3 2.OOOE+06 93.0 93:5 2.000E+06

-1179.004 242.5 242.5 0.OOOE+00 93.3 94.3 2.OOOE+06 93.0 93.5 2.000E+06 180.00' 242.5 242.5 0.OOOE+00 93.3 94.3 2.000E+06 93.0 93.5 2.OOOE+06 181.00 242.5 242.5 0:OOOE+00 93.3 94.3 2.OOOE+06 93.0 93.5 2.OOE+06 182.00 242.6 242.6 0.OOOE+00 93.3 94.3 2.000E+06 93.0 93.5 2.000E+06 163.00 242.6 242.6 0.000+E00 93.3 94.3 2.OOOE+06 93.0 93.5 2.000E+06 184.00 242.6 242.6 0.00OE+00 93.3 94.3 2.000E+06 93.0 93.5 2.000E+06 185.00 242.7 242.7 0.000+E00 93.3 94.3 2.000E+06 93.0 93.5 2.000E+06 186.00 242.7 242.7 0.OOOE+00 93.3 94.3 2.000+E06 93.0 93.5 2.000E+06 187.00 242.7 242.7 0.OOOE+00 93.3 94.3 2.000E+06 93.0 93.5 2.000E+06 188.00 242:8 242.8 0.000E+00 93.3 94.3 2.000E+06 93.0 93.5 2.000E+06 189.00 242.8 242.8 0.000E+00 93.3 94.3 2.000E+06 93.0 93.5 2.000E+06 190.00 242.8 242.8 0.000E+00 93.3 94.3 2.0OOE+06 93.0 93.5 2.000E+06 191.00 242.9 242.9 O.000+E00 93.3 94.3 2.000E+06 93.0 93.5 2.000E+06 192.00 242.9 242.9 0:O0OE+00 93.3 94.3 2.OOOE+06 93.0 93.5 2.OOOE+06 193.00 243.0 243.0 0.000E+00 93.3 94.3 2.OOOE+06 93.0 9315 2.OOOE+06 194.00 243.0 243.0 0.000E+00 93.3 94.3 2.000E+06 93.0 93.5 2.000+E06 195.00 243;0 243.0 0:000E+00 93.3 94.3 2.000E+06 93.0 93.5 2.000+E06 196.00 243.1 243.1 0.OOOE+00 93.3 94.3 2.OOOE+06 93.0 93.5 2.000E+06 197.00 243.1 243,1 0,000E+00 93.3 94.3 2.000E+06 93.0 93.5 2.00OE+06 198.00 243.2 243.2 0:000E+00 93.3 94.3 2.000E+06 93.0 93.5 2.000E+06 199.00 243.2 243.2 0.000E+00 93.3 94.3 2:000E+06 93.0 93.5 2.000E+06 209.00 243.6 243.6 0.000E+00 93.3 94.3 2.000+E06 93.0 9315 2.000E+06

  • 219.00 244.0 244.0 0.000E+00 93.3 94.3 2000E+06 93.0 93.5 2.000E+06 229.00 244.3 244.3 0.000E+00 93'3 94.3 2:000E+06 93.0 93.5 2.OOOE+06 239.00 244.7 244.7 0.000E+00 93.3 94.3 2.000E+06 93.0 93.5 2.000E+06 249.00 245.0 245.0 0.000E+00 93.3 94.3 2.000E+06 93.0 93.5 2.000E+06 259.00 245.4 245.4 0.000E+00 93.3 94.3 2.000E+06 93.0 93.5 2.000E+06 269.00 245.7 245.7 O.000E+00 93.3 94.3 2.000E+06 93.0 93.5 2.000E+06 279.00 246.1 246.1 0.000E+00 93.3 94.3 2.000E+06 93.0 93.5 2.000E+06 289.00 246.4 246.4 0.000E+00 93.3 94.3 2.000E+06 93.0 93.5 2.000E+06 299.00 246.7 246.7 0.000E+00 93.3 94.3 2.000E+06 93.0 93.5 2.O0E+06 309.00 247.0 247.0 0,000E+00 93.3 94.3 2.000E+06 93.0 93.5 2,0002+06 Source: WCAP-16503 Rev 3 Table A.6.3-6 U2SystemTransientTem ps 2/16/2007

Calculation No. MPR Associates, Inc. Prepared By: .f`

0108-0342-JFL-01 320 King Street Revision: 0 Pare. B- B-~n Alexandria, VA 22314 Checked By:/'M ,a ,

Aux CCW Trhrhxin Trhrhxout Qrhrhx Tccwsupply Tccwreturn Qccwhx Tsw in Tswout Ht Load Time (sec) (F) (F) (BTU/hr) (F) (F) (BTU/hr) F6 (F) (BTU/hr) 319.00 247.3 247.3 0.O00E+00 93.3 94.3 2.000E+06 93.0 93.5 2.OOOE+06 329.00 247.6 247.6 0.OOOE+00 93.3 94.3 2.OOOE+06 93.0 93.5 2.000E+06 339.00 247.9 247.9 0.OOOE+00 93.3 94.3 2.000E+06 93.0 93.5 2.000E+06 349.00 248.2 248.2 0.OOOE+00 93.3 94.3 2.000E+06 93.0 93.5 2,OOE+06 359.00 248.5 248.5 0.OOOE+00 93.3 94.3 2.OOOE+06 93.0 93.5 2.OOOE+06 369.00 248.8 248.8 0.OOOE+00 93.3 94.3 2.000E+06 93.0 93.5 2.OOOE+06 379,00 249.1 249.1 0.OOOE+00 93.3 94.3 2.OOOE+06 93.0 93.5 2.000E+06 389.00 249.3 249.3 0.000E+00 93.3 94.3 2.OOOE+06 93.0 93.5 2.OOOE+06 399,00 249.6 249.6 O.OOOE+00 93.3 94.3 2.OOOE+06 93.0 93.5 2.OOOE+06 409.00 249.9 249.9 0.OOOE+00 93.3 94.3 2.OOOE+06 93.0 93.5 2.OOOE+06 419.00 250.1 250.1 0.OOOE+00 93.3 94.3 2.OOOE+06 93.0 93.5 2.000E+06 429.00 250.4 250.4 0.OOOE+00 93.3 94.3 2.000E+06 93.0 93.5 2.OOOE+06 439.00 250.7 250.7 0.OOOE+00 93.3 94.3 2.OOOE+06 93.0 93.5 2.OOOE+06 449.00 250.9 250.9 0.OOOE+00 93.3 94.3 2.OOOE+06 93.0 93.5 2.OOOE+06 459.00 251.2 251.2 0.OOOE+00 93.3 94.3 2.OOOE+06 93.0 93.5 2.OOOE+06 469.00 251.4 251.4 0.000E+00 93.3 94.3 2.OOOE+06 93.0 93.5 2.OOOE+06 479.00 251.6 251.6 0.OOE+00 93.3 94.3 2.OOOE+06 93.0 93.5 2.OOOE+06 489.00 251.9 251.9 0.OOOE+00 93.3 94.3 2.OOOE+06 93.0 93.5 2.OOOE+06 499.00 252.2 252.2 O.OOOE+00 93.3 94.3 2.OOOE+06 93.0 93.5 2.OOOE+06 599.00 254.6 254.6 0.000E+00 93.3 94.3 2.OOOE+06 93.0 93.5 2.OOOE+06 699.00 256.5 256.5 0.OOOE+00 93.3 94.3 2.000E+06 93.0 93.5 2.000E+06 799.00 258.0 258.0 0.000E+00 93.3 94.3 2.000E+06 93.0 93.5 2.OOOE+06 899.00 259.3 259.3 0.000E+00 93.3 94.3 2.000E+08 93.0 93.5 2.OOOE+06 999.00 260.4 260.4 0.000E+00 93.3 94.3 2.OOOE+06 93.0 93.5 2.000E+06 1099.00 261.3 261.3 0.OOOE+00 93.3 94.3 2.000E+06 93.0 93.5 2.OOOE+06 1199.00 262.1 262.1 0.000E+00 93.3 94.3 2.000E+06 93.0 93.5 2.OOOE+06 1299.00 262.8 262.8 0.000E+00 93.3 94.3 2.000E+06 93.0 93.5 2.000E+06 1399.00 263.4 263.4 0,OO0E+00 93.3 94.3 2.000E+06 93.0 93.5 2.000E+06 1499.00 263.9 263.9 0.000E+00 93.3 94.3 2.OOOE+06 93.0 93.5 2.000E+06 1599.00 262.9 262.9 0.000E+00 93.3 94.3 2.OOOE+06 93.0 93.5 2.OOOE+06 1699.00 259.1 259.1 0.000E+00 93.3 94.3 2.OOOE+06 93.0 93.5 2.000E+06 1748.30 257.8 173.5 1.253E+08 112.0 174.2 1.273E+08 93.0 125.0 2.000E+06 1799.00 256.4 172.8 1.243E+08 111.9 173.5 1.263E+08 93.0 124.7 2.000E+06 1899.00 256.5 172.9 1,244E+08 111.9 173.6 1.264E+08 93.0 124.7 2.000E+06 1999.00 256.6 172.9 1.244E+08 111.9 173.6 1.264E+08 93.0 124.7 2.000E+06 2099.00 256.6 172.9 1,244E+08 111.9 173.6 1.264E+08 93.0 124.7 2.000E+06 2199.00 256.6 172.9 1.244E+08 111.9 173.6 1.264E+08 93.0 124.7 2.OOOE+06 2299.00 256.5 172.9 1.244E+08 111.9 173.6 1.264E+08 93.0 124.7 2.OOOE+06 2399.00 256.5 172.9 1.244E+08 111.9 173.5 1.264E+08 93.0 124.7 2.OOOE+06 2499.00 256.4 172.8 1.243E+08 111.9 173.5 1.263E+08 93.0 124.7 2.000E+06 2599.00 256.3 172.8 1.243E+08 111.9 173.5 1.263E+08 93.0 124.7 2.000E+06 2699.00 256.2 172.7 1.242E+08 111.8 173.4 1,262E+08 93.0 124.7 2.OOOE+06 2799.00 256.1 172.7 1.241E+08 111.8 173.4 1.261E+08 93.0 124.7 2.OOOE+06 2899.00 256.0 172.6 1.240E+08 111.8 173.3 1.260E+08 93.0 124.6 2.OOOE+06 2999.00 255.9 172.5 1.239E+08 111.8 173.2 1.259E+08 93.0 124.6 2.OOOE+06 3099.00 255.5 172.4 1.236E+08 111:8 173.1 1.256E+08 93.0 124.5 2.000E+06 3199.00 254.9 172.1 1.231E+08 111.7 172.7 1.251E+08 93.0 124.4 2.000E+06 3299.00 254.2 171.8 1,227E+08 111.6 172.5 1.247E+08 93.0 124.3 2.OOOE+06 3399.00 253.6 171.5 1.222E+08 111.6 172.2 1.242E+08 93.0 124.2 2.000E+06 3499.00 253.1 171.2 1.218E+08 111.5 171.9 1.238E+08 93.0 124.1 2.OOOE+06 3599.00 252.5 170.9 1.213E+08 111.4 171.6 1.233E+08 93.0 124.0 2.000E+06 3699.00 251.6 170,5 1,206E+08 111.3 171.2 1.226E+08 93.0 123,8 2,000E+06 3799.00 250.4 169.9 1,198E+08 111.2 170.6 1.218E+08 93.0 123.6 2.000E+06 Source: WCAP-16503 Rev 3 Table A.6.3-6 U2SystemTransientTemps 2/16/2007

Calculation No. MPR Associates, Inc. Prepared By:

0108-0342-JFL-01 320 King Street Revision: 0 Alexandria, VA 22314 Checked By:

Page-ef B

,1 * "Aux CCW Trhrhxin Trhrhxout Qrhrhx Tccwsupply Tccwreturn Qccwhx Tswin Tsw_out Ht Load Time (sec) (F) (F) (BTU/hr (*F) (F) (BTU/hr) (F) (F) (BTU/fr)

,3899.00 249.3 169.3 1,189E+08 111.1 170.0 1.209E+08 93.0 123.3 2,000E+06 3999.00 248.2 168.8 1.180E+08 110.9 169.5 1.200E+08 93.0 123.1 2.OOOE+06 4999.00 242.3 165.9 1.135E+08 110.3 166.6 1.155E+08 93.0 122.0 2.000E+06 5999.00 239.4 164.5 1.114E+08 109.9 165.3 1.134E+08 93.0 121:5 2.000E+06 699900 236.8 163.2 1.094E+08 109.6 164.0 1.114E+08 93.0 121.0 2.000E+06 7999:00 234.0 161.9 1.073E+08 109.3 162.6 1.093E+08 93.0 120.4 2.000E+06

,8999.00 231.4 160.6 1.053E+08 109.0 161.4 1.073E+08 93.0 119.9 2,OOOE+06 9999.00 228.9 159.4 1,034E+08 108.7 160.2 1.054E+08 93.0 119.5 2:000E+06 19999.00. 208.0 149.2 8.748E+07 106.4 150.0 8.948E+07 93.0 115.5 2-000E+06 29999.00 195.7 143.2 7,810E+07 105,0 144.1 8.01E+07 93.0 113.1 2:000E+06 39999:00 188.6 139.7 7.273E+07 104.2 140.6 7.473E+07 93.0 111.8 2,000E+06 49999:00 183.3 137.1 6.867E+07 103.6 138.0 7.067E+07 93.0 110.7 2.000E+06 59999.00 171.4 131.3 5.961E+07 102.2 132.3 6.161E+07 93.0 108.5 2,OOOE+06 69999.00 163.4 127.4 5,356E+07 101.3 128.4 5.555E+07 93.0 106.9 2.O0OE+06 79999.00 158.4 124.9 4.972E+07 100.7 126.0 5.172E+07 93.0 106.0 2.OOOE+06 89999.00 155.1 123.3 4.724E+07 100.4 124.4 4.924E+07 93.0 105.4 2.0002E06 99999:00 152.9 122.2 4.554E+07 100.1 123.3 4.754E+07 93.0 104.9 2:000E+06 109999:00 146:9 119.3 4.101E+07 99.4 120.4 4.301E+07 93.0 103.8 2.000E+06 119999.00 142.7 11-7.3 3.782E+07 98.9 118.4 3.982E+07 93.0 103.0 2.000+/-E06 129999.00 140.1 116.0 3.581E+07 98.6 117.1 3.781E+07 93.0 102.5 2.000E+06 139999.00 138.6 115.3 3.472E+07 98.5 116.4 3.672E+07 93.0 102.2 2.000E+06 149999:00 137.8 114.9 3.405E+07 98.4 116.0 3.605E+07 93.0 102.1 2:000iE06 159999:00 137.4 114.7 3.378E207 98.3 115.8 3.578E+07 93.0 102.0 2.000E+06 169999.00 138.7 115.3 3,475E+07 98.5 116.4 3.675E+07 93.0 102.2 2.OOOE+06 179999:00 136.7 114.3 3.321E+07 98.3 115.4 ' 3.521E+07 93:0 101.8 2.000E+06 189999:00 136.3 114.1 3.292E+07 98.2 115.3 3.492E+07 93.0 101.8 2.OOOE+06 199999.00 137.9 114.9 3.416E+07 98.4 116.0 3.616E+07 93.0 102.1 2.OOOE+06 209999.00 136.0 114.0 3.272E+07 98.2 115.1 3.472E+07 93.0 101.7 2.000+/-E06 219999M00 135.7 113.9 3.247E+07 98.1 115.0 3.447E+07 93.0 101.7 2.OOOE+06 229999.00 135.9 113.9 3.260E+07 98.2 115.1 3.460E+07 93.0 101.7 2.000E+06 239999.00 135.5 113.7 3.229E+07 98.1 114.9 3.429E+07 93.0 101.6 2:000E+06 249999.00 135.2 113.6 3.212E+07 98.1 114.8 3.412E+07 93.0 101.6 2.000E+06 259999.00 135.7 113.9 3.249E+07 98.2 115.0 3.449E+07 93.0 101.7 2.000E+06 269999:00 135.1 113.6 3.200E+07 98.1 114.7 3.400E+07 93.0 101.5 2.000E+06 279999:00 134.9 113.5 3.186E+07 98.1 114.6 3.386E+07 93.0 101.5 2.000E+06 289999.00 135.1 113.5 3.199E+07 98.1 114.7 3.399E+07 93.0 101.5 2.OOOE+06 299999.00 134.7 113.4 3.170E+07 98.0 114.5 3.370E+07 93.0 101.5 2,0002+06 309999M00- 134.5 113.3 3.159E+07 98.0 114.4 3.359E+07 93.0 101.4 2.000E+06 319999.00 134.6 113.3 3.166E+07 98.0 114.5 3.366E+07 93.0 101.4 2OOOE+06 329999.00 135.4 113.7 3.225E+07 98.1 114.8 31425E+07 93.0 101.6. 2:000E+06 339999.00 134.0 113.0 3.116E+07 98.0 114.1 3.316E+07 93.0 101.3 2.000E+06 349999.00 133.9 113.0 3.115E+07 98.0 114.1 3.315E+07 93.0 101.3 2.000E+06 359999.00 133.9 113.0 3.110E+07 97.9 114.1 3.310E+07 93.0 101.3 2.000E+06 369999.00 133.9 113.0 3.114E+07 98.0 114.1 3.314E+07 93.0 101.3 2.OOOE+06 379999.00 134.7 113.4 3.176E+07 98.0 114.5 3.376E+07 93.0 101.5 2.OOOE+06 389999:00 133.5 112.8 3.081E+07 97.9 113.9 3.281E+/-07 93.0 101.2 2.OOOE+06 399999.00 133.4 112.8 3.076E+07 97.9 113.9 3.276E+07 93.0 101.2 2.000E+06 409999:00 133.4 112.7 3.076E+07 97.9 113.9 3.276E+07 93.0 101.2 2.000E+06

  • t 419999:00 133.3 112.7 3.065E+07 97.9 113.8 3.265E+07 93.0 101.2 2.000E+06 429999:00 133.9 113.0 3.112E+07 97.9 114.1 3.312E+07 93.0 101.3 2.OOOE+06 439999.00 132.9 112.5 3.035E+07 97.8 113.6 3.235E+07 93.0 101.1 2.000E+06 449999.00 133.1 112.6 3.053E+07 97.9 113.7 3.253E+07 93.0 101.2 2.000E+06 459999.00 133.1 112.6 3.050E+07 97.9 113.7 3.250E+07 93.0 101.2 2.0002+06 Source: WCAP-16503 Rev 3 Table A.6.3-6 U2SystemTransientTem ps 2/16/2007

Calculation No. MPR Associates, Inc. Prepared By: _*'/

0108-0342-JFL-01 320 King Street Revision: 0 F Alexandria, VA 22314 Checked By: 4ste Page B- t/'of B-p Aux CCW Trhrhxin Trhrhxout Qrhrhx Tccwsupply Tccwreturn Qccwhx Tswin Tswout Ht Load Time (sec) (F) (F) (BTU/hr) (F) (F) (BTU/hr) JFl (F) (BTU/hr) 469999.00 132.7 112.4 3.018E+07 97.8 113.5 3.218E+07 93.0 101.1 2.000E+06 479999.00 133.0 112.5 3.043E+07 97.8 113.7 3.243E+07 93.0 101.1 2.000E+06 489999.00 132.5 112.3 3.002E+07 97.8 113.4 3.202E+07 93.0 101.0 2.000E+06 499999.00 132.4 112.3 2.999E+07 97.8 113.4 3..199E+07 93.0 101.0 2.000E+06 509999.00 127.5 109.8 2.622E+07 97.2 111.0 2.822E+07 93.0 100.1 2.000E+06 519999.00 123.2 107.8 2.297E+07 96.7 108.9 2,497E+07 93.0 99.3 2.000E+06 529999.00 123.0 107.7 2.284E+07 96.7 108.8 2,484E+07 93.0 99.2 2,OOOE+06 539999.00 121.2 106.8 2.148E+07 96.5 108.0 2.348E+07 93.0 98.9 2.000E+06 549999.00 120.7 106.6 2.111E+07 96.5 107.7 2,311E+07 93.0 98.8 2.000E+06 559999.00 120.7 106.5 2.109E+07 96.4 107.7 2,309E+07 93.0 98.8 2.OOOE+06 569999.00 120.6 106.5 2.099E+07 96.4 107,7 2.299E+07 93.0 98.8 2.000E+06 579999.00 120.3 106.3 2.075E+07 96.4 107.5 2.275E+07 93.0 98.7 2.000E+06 589999.00 120.6 106.5 2.096E+07 96.4 107.6 2.296E+07 93.0 98.8 2.OOOE+06 599999.00 121.4 106.9 2,162E+07 96.5 108.1 2.362E+07 93.0 98.9 2.000E+06 609999.00 120.4 106.4 2.083E+07 96.4 107.5 2.283E+07 93.0 98.7 2.000E+06 619999.00 120.1 106.3 2.064E+07 96.4 107.4 2.264E+07 93.0 98.7 2.OOOE+06 629999.00 120.4 106.4 2.086E+07 96.4 107.6 2.286E+07 93.0 98.7 2.OOOE+06 639999.00 120.6 106.5 2.099E+07 96.4 107.7 2.299E+07 93.0 98.8 2.000E+06 649999.00 120.2 106.3 2.070E+07 96.4 107.5 2,270E+07 93.0 98.7 2.000E+06 659999.00 120.2 106.3 2.069E+07 96.4 107.5 2.269E+07 93.0 98.7 2.000E+06 669999.00 120.1 106.3 2.064E+07 96.4 107.4 2.264E+07 93.0 98.7 2.000E+06 679999.00 121.5 106.9 2.167E+07 96.5 108.1 2.367E+07 93.0 98.9 2.000E+06 689999.00 120.0 106.2 2.056E+07 96.4 107.4 2,256E+07 93.0 98.7 2.OOOE+06 699999.00 119.8 106.1 2.038E+07 96.3 107.3 2.238E+07 93.0 98.6 2.000E+06 709999.00 120.1 106.3 2.064E+07 96.4 107.4 2.264E+07 93.0 98.7 2.OOOE+06 719999.00 120.5 106.4 2.091E+07 96.4 107.6 2.291E+07 93.0 98.8 2.OOOE+06 729999.00 120.1 106.2 2.061E+07 96.4 107.4 2.261E+07 93.0 98.7 2.OOOE+06 739999.00 119.9 106.2 2.050E+07 96.4 107.3 2.250E+07 93.0 98.6 2.OOOE+06 749999.00 121.2 106.8 2.143E+07 96.5 107.9 2.343E+07 93.0 98.9 2.000E+06 759999.00 120.1 106.2 2.060E+07 96.4 107.4 2.260E+07 93.0 98.7 2.000E+06 769999.00 119.8 106.1 2.039E+07 96.3 107.3 2.239E+07 93.0 98.6 2.OOOE+06 779999.00 121.2 106.8 2.146E+07 96.5 108.0 2.346E+07 93.0 98.9 2.000E+06 789999.00 120.0 106.2 2.054E+07 96.4 107.4 2.254E+07 93.0 98.7 2.OOOE+06 799999.00 119.7 106.0 2.032E+07 96.3 107.2 2.232E+07 93.0 98.6 2.000E+06 809999.00 119.9 106.1 2.047E+07 96.4 107.3 2.247E+07 93.0 98.6 2.000E+06 819999.00 120.6 106.5 2.098E+07 96.4 107.6 2.298E607 93.0 98.8 2.000E+06 829999.00 119.8 106.1 2.035E+07 96.3 107.2 2.235E+07 93.0 98.6 2.OOOE+06 839999.00 119.6 106,0 2.023E+07 96,3 107.2 2,223E+07 93.0 98,6 2,000E+06 849999.00 120.8 106.6 2.112E+07 96.5 107.7 2,312E+07 93.0 98.8 2.000E+06 859999.00 119.6 106.0 2.027E÷07 96.3 107.2 2.227E+07 93.0 98.6 2.000E+06 869999.00 119.6 106.0 2.021E+07 96.3 107.2 2.221E+07 93.0 98.6 2.OOOE+06 879999.00 119.8 106.1 2.041E+07 96.3 107.3 2.241E+07 93.0 98.6 2.000E+06 889999.00 119.5 105.9 2.014E+07 96.3 107.1 2.214E+07 93.0 98.6 2.000E+06 899999.00 119.5 105.9 2.013E+07 96.3 107.1 2.213E+07 93.0 98.6 2.OOOE+06 909999.00 119.7 106.1 2.033E+07 96.3 107.2 2.233E+07 93.0 98.6 2.OOOE+06 919999.00 119.4 105.9 2.005E+07 96.3 107.1 2.205E+07 93.0 98.5 2.000E+06 929999.00 119.5 105.9 2.016E+07 96.3 107.1 2.216E+07 93.0 98.6 2.OOOE+06 939999.00 119.6 106.0 2.026E+07 96.3 107.2 2.226E+07 93.0 98.6 2.OOOE+06 949999.00 119.3 105.8 1.998E+07 96.3 107.0 2.198E+07 93.0 98.5 2.000E+06 959999.00 119.4 105.9 2.011E+07 96.3 107.1 2.211E+07 93.0 98.6 2.OOOE+06 969999.00 119.5 106.0 2.019E+07 96.3 107.1 2.219E+07 93.0 98.6 2.000+E06 979999.00 119.2 105.8 1.991E+07 96.3 107.0 2.191E+07 93.0 98.5 2.000E+06 989999.00 119.4 105.9 2.007E+07 96.3 107.1 2.207E+07 93.0 98.5 2.OOOE+06 Source: WCAP-16503 Rev 3 Table A.6.3-6 U2SystemTransientTemps 2/16/2007 I

Calculation No.. MPR Associates, Inc. Prepared By:

0108-0342-JFL-01 320 King Street Revision: 0,y Alexandria, VA 22314 Checked B d_,y,--

Page,ýXe-ofB*'I, / 'A. fastet Aux CCW Trhrhx_in Trhrhxout Qrhrhx Tccwsupply Tccwreturn Qccwhx Tsw_in Tswout HtLoad Time (sec) (F) (F) (BTU/hr) (F) (F) BTU/hr) (F) (F) (BTU/hr) 999999.00 119.8 106.1 2.038E+07 96.3 107.3 2.238E+07 93.0 98.6 2.000E+06 1999999.00 111.1 101.8 1,374E+07 95.4 103.0 1.574E+07 93.0 97.0 2.O00E+06 2999999.00 111.0 101.8 1.369E+07 95.3 103.0 1.569E+07 93.0 96.9 2.OOOE+06 3999999.00 110.6 101.6 1.341E+07 95.3 102.8 1.541E+07 93.0 96.9 2.OOOE+06 4999999.00 110.3 101.4 1.315E+07 95.3 102.7 1.515E+07 93.0 96.8 2,000E+06 5999999.00 107.3 100.0 1.085E+07 94.9 101.2 1.285E+07 93.0 96.2 2.OOOE+06 6999999.00 107.3 100.0 1.084E+07 94.9 101.2 1.284E+07 - 93.0. 96.2 2.000E+06 7999999.00 107.2 99:9 1.080E+07 94'9 101.2 1.280E+07 93.0 96.2 2.000E+06 8999999.00 107.1 99.9 1.075E+07 94.9 101.1 1.275E+07 93.0 96.2 2.OOOE+06 9999999.00 107.1 99.9 1.073E+07 94.9 101.1 1.273E+07 93.0 96.2 2.000E+06 10000000.00 107.1 99.9 1.073E+07 94.9 101.1 1.273E+07 93.0 96.2 2.0002+06 Source: WCAP-16503 Rev 3 Table A.6.3-6 U2SystemTransientTemps 2/16/2007

MPR Associates, Inc.

00M k320 P King Street Alexandria, VA 22314 Calculation No. Prepared By heckedy _ Page: C-i 0108-0342-JFL-0l J. Lutdy 7 A"t et Revision: 0 C RHR and CCW Heat Exchanger PROTO-HX Runs The purpose of this attachment is to document the RHR and CCW heat exchanger heat capacitance, UA. Attached are reports based on the current PROTO-HX models for the RHRHX and CCHX models included in S-C-CC-MDC-1798, Reference (6). The file entitled

"*datasheet.doc" includes the heat exchanger parameters upon which the models were built. It also includes the number of active tubes vs. total number of tubes (i.e. tube plugging). The files entitled "*HX report*.doc" are the actual model run outputs - the input data is on top of the page.

The reports are based on the following input assumptions. Note that the temperature assumptions will have minimal impact.

RHRHX:

RHR flow (min safeguards): 3200 gpm (Westinghouse model run Reference (1))

CC flow: 4000 gpm (design value - reference S-1-CC-MDC-1817, Reference (7))

RHR inlet temperature: 260'F (approx. sump temperature based on previous Westinghouse Contaimnent analyses, Reference (1))

CC inlet temperature:. 120'F (Reference (3))

tube plugging: 1% (Assumed for Reference (1))

design fouling from heat exchanger data sheet CCHX:

CC flow: 4140 gpm (RHRHX - 4000 gpm; misc flows (ECCS pump seals, PD charging pump - 140 gpm; based on previous Westinghouse analyses assumption, Reference (1))

SW flow: 8000 gpm (reference S-C-SW-MDC-1350, Reference (8))

CC inlet temperature: 170°F (approx. CC return temperature based on S-I-CC-MDC-1817, Reference (7))

SW inlet temperature: 907F (design SW temperature, Reference (7))

tube plugging: 2% (reference S-1-CC-MDC-1817, Reference (7))

design fouling = 0.0016 (reference S-1-CC-MDC-1817, Reference (7))

Kevin King 856-339-1858 Kevih.King 1pseigcom MPR QA Form: QA-3.1-3, Rev. 0

MPR Associates, Inc.

  • M PR 320 King Street Alexan-dria, VA- 223174----..

Calculation No. PreparedJ3 C Page: C-2 0108-0342-JFL-01 J. Lundy /f A ..T stet Revision: 0 01-17-2006 16:02:26 PROTO-HX 4.10 by Pinto-Power Corporation (SN#PILX-1009)

Salem Generating Station Units I & 2 Data Report for I RHE3&4 - RHRI-IX RHRHX UA for minintunsaftguards Shell and Tube Heat Exchanger Input Parameters Shell-Side Tube-Side Fluid Quantity. Total gpm 4,950.00 2,960.00 Mass Fluid Quantity, Total Ibm/hr 0.00 0.00 inlet Temperature 9F 95. 00 137.01)

OutletTempercture IF 108.80 14.00 FoulingFactor hr-ill.'FiBTU p0.0050 0.00030 Shell Fluid Name Fresh Water Tube Fluid Name Fresh Water Design Q (BTUt/hr) 34,150,000 Design U (BTUR7rfi,17) 364.00 Outside h Factor (11off) 0.504234000 5

Fixed U (BTU/hr.tl "F) 0 Fixed Area (ft) 0.00 Performance Factor (C.Reduction) 0.00 Fleet Exchanger Type TEMA . E Total Effective Area pee Unit (ft') 4,500.00 Area Factor 1.043435943 Area Ratio 0.00000 Number of Shells Per Unit I Shell Minimum Area 2.206000000 Shell Velocity (ftls) 5.000 Tube Pitch (in) 0.0750 Tube Pitch Type Triangular Number of Tube Passes 2 U-Tubas Yes Total Number of Tubes 603 Number of Active Tubes 597 Tube Length (ft) 43.71 Tube Inside Diamteter (in) 0.527 Tube Outside tiameter (in) 0.625 Tube Wall K (BTU./hr.i A'F) 9.40 Lbe. Central Baffle Spacing (in) 0.000 Lbi, Inlet Baffle Spacing (in) 0.000 thu. Outlet Baffle Spacing (in) 0.000 Doll, Tube Circle Diametele 0.000 Bh, Baffle Cut Height (in) 0.000 Ds, Shell Inside Dianiter (in) 0.000 Lsb, Diametral difference between Baffle and Shell (in) 0.000 LIb. Diametral difference between Tube and Baffle (in) 0.000 Nss, Number Sealing Strips 0.000 MPR CA Form: QA-3.1-3, Rev. 0

MPR Associates, )nc.

  • MPR 320 King Street Alexandria, VA 22314 Calculation No.

01 08-0342-JFL-0 1 I

07-17-2006 16:02:26 PROTO-HX 4.10 by Proto-Power Cot'poration (SNHPHX-1009) Page Salem Generating Station Units I & 2 Calculation Report oi" IRlE3&4 - RHRHX RHRHX UA fir itsinhturnusafeguoods Calculation Specifications Coshatnt hIlet Temperature Metlhod Was Used Exlrapolation Was to User Specified Conditions DcsigssFouling Faltors Were Used Test Data Extrapolation Data Data Date Tube Flow (gp*n) 3,2001.M1 Shell Flow (gpm) Shell Flow(spn) I 01I1.1 Shell Temp In (IF) Tolsb Inlet Tol') PF) 261011)

Shell Temp Oni ( ;,) Shell Inlei 'lem 0111.10" 12019.t

,TIc Fle Pos' (gpiu)

Tube T'emp [i ('Fl Tube Temp Out ('F)

Foaimng Calculation Reosilts Shell Mass Flow (Ibn/he) UIOverall (RTU/hlsfl"'F)

Tube Mass nlow Nllu/hlr) bhell-Sidehil('rshr'fltF)

Tule-Sile hi lIHTIM/hr.f'°)

HleatTrnoisferied (ITII/nr) IMalU lelis l13TU/hrl:*f"F I.MTrI I,MTD (:onaelioo Feelor Ellaucive Area (ft')

Overall Fouling(hrll'ff./tO'U)

Property Shell-Side Tube-Side Velocity (1l/0l Shell Temp In(IF)

Reynold's Number Shell Tamp Out (7F)

Bulk Vise (llm/,t.hr) Prandtl Numnber Shell Sln Temp (IF) 'rav Shell (7F) 0 Skin Vise (Ibutlflt') Tube Taerp In ( F)

Density (llsulflfl) Tube Temp Oust(OF)

Cp (BTUlnbms.F) Tav Tube (7F)

K (BTUh.0.fl.iF) Tube Skin Tamp (IF)

Entrapolutlosu Calculation Restilts 3

Shell MaenuFlow (Ib r) 2,000.99l.14 Overall Fouling (lhlt-FI./TBM) 0.0000856 Tube Moss Hlw.; (Ibn/hr) 1.600,79&51 Shell-Side he (BTUlvs.fl.'F) 1,192.9 Tubl-Side hi (BTU/hr-rf'-n 3,309.8 Heet Truoutorred (BTU/lus) 115,0R0,110.15 IValU Rena (I TU/lu'f"'Fý) 2,116.4 75.4 IM'rD Correction Factor 0.8651 Effeclive /Ael (1l1) 4,455.2 U Owrall (BTU/srfttu-F) 396.1 Prpeorty Sliall-lide Tube-Side Velocity (fv/s) 8.26 Shell TeasmpIli (?I) 120.0 Reynold's Number 45.013-1.12 122,367 Shelle Temp Out ("F) 177.5 Primall Number 2.7712 1.6336 Tau Shell (IF) 148.8 Bulk Vise (lbn/1ftlr) 1.0496 0.6353 Shln SkitsTotal:, (fF) 173,9 Skin Vise (loss/Il-hr) 0.8702 0.6752 Tube Tensp In (IF) 260.0 Density (tbnu/ftl) 61.2153 59.5084 Tube TemspOut (IF) 188.7 Cp (BTUIbli--eF1) 0.9997 1.0087 Tas Tube (°F) 224.4 K (BTUfhrffl°) 0.37S6 0.3923 Tube Sidn l'enp (fF) 213.6

- Reynolds Number Ou*slideRange of Equntion Applicability I! Wilh 7.*ue i nus/g The Test HlentLoad Could Not Be Aehieved

-3, Rev. 0

MPR Associates, Inc.

UM PR 320 King Street Alexan-fitiiVA- 223-14 ...

Calculation No. Prepared By ,CheckedUy Page: C-4 0108-0342-JFL-01 / LJLuzndA. Týastet Revision: 0 07-17-M006 16:09:54 PROTO-HX 4.10 by Proto-Pmver Corporation (SNgPHX-1009)

Salem Generating Station Unit I Data Report for ICCE5 - 11 CC Heat Exchanger CCHX UA Shell and Tube Heat Exchanger Input Parameters Shell-Side Tube-Side Fluid Quantity, Total gor 6,817.00 9,890.00 Mass Fluid Quantity, Total Ibm/hr 0.00 0.00 Inlet Temperature IF 112.98 90.00 Outlet Temperature I 100.00 99.27 FoulingFactor lu-ft;.F/BTU 0.00050 0.00102 Shell Fluid Name Fresh Water Tube Fluid Name Brackish Water: Salinity=l 2ppt Design Q (B.TU/hr) 44,200,000 Design U (BTUur-ft'F) 267.16 Outside h Factor (Hoft) 0.667909000 Fixed U(BTU/hr'fta'F) 0 Fixed Arca (fit) 0.00 Perfornance Factor (*,% Reducti on) 0.00 Heat Exchanger Type TEMA - E Total Effective Area per Unit (ft') 16,954.00 Area Factor- 0.999838038 Area Ratio 1.10300 Number of Shells Per Unit I Shell Minimum Area 6.604000000 Shall Veloeity (W.sa) 2.300 Tube Pitch (in) 1.0000 Tube Pitch Type Triangular Nuanber of Tube Passes 2 U-Tubes No Total Number of Tubes 3,400 Nunber of Active Tubes 3,332 Tube Length (ft) 25.40 Tube Inside Diameter (in) 0.680 Tube Outside Diameter (in) 0)750 Tube Wall K (BTU/br-ft.*F) 1250 Lbc, Central Baffle Spacing (in) 01.000 Lbi, Inlet Baffle Spacing (in) 0.000 Lbo, Outlet Baffle Spacing (in) 0.000 Dotl, Tube Circle Diameter 0.000 Bh, Baffle Cut Height (in) 0.000 Ds, Shell Inside Dianiter (in) 0.000 Lab, Diametral difference between Baffle and Shell (in) 0.000 Ltb, Dianietral difference between Tube and Bamffe (in) 0.000 Nss. Number Sealing Strips 0.000

-3, Rev. 0 ii

MPR Associates, Inc.

1A? A 320 King Street Alexandria, VA 22314 Calculation No.

0108-0342-JFL-01 07-17-2006 16.09:54 PROTO-HX 4.10 by Proto-Power Corporation (S F#PHX-1009) Page Salem Generating Station Unit I Calculation Rcport for ] CCE5 - 11 CC Heal Exchanger CCHX UA Calculation Specifications Constant Intet Temperattru' Method Was Used Exthapolation Was to User Specified Condidtons poulat 'Was htpu( by User Text Data Eslrapojatiott Data Data Date 'labe Flow (gpm) 8,000.00 Shell Flow (pln) Shell Flow (gpn) 4,140.00 ShellTemp In (IF) Tubs Inlet Temp (IF) 90.00 Shell Temp Out (,F) Shell MIdetTamp (IF) 170.00 Tithe How (p*1)

Fahe Temp hi (IFM Input Fouling Facto- 0.001600 Tuhe Teanp Out (IF)

Fouling Calculation Results Shell Mans Flow (lbntv(m) U Ovetall (BTU/hr'f'-nF)

Tube Mats Flow (Ibm/'r) Shell-Side ha (BITU!lu'flF)

Tube-Side hi (BTU/hr'-f'.*)

Heat Trtasfet'ed (BTU/iu,) l/Wall Resis (BTUuhr'-ft'-F)

LMTD CoineetiOn Factor Effective Area (RI')

Overall Fouling (hrltr'.F/BTJ)

Popeerty Shell-Side Tube-Side Velocity (fl/s) Shell Teirtp InI(F)

Reynold's Number Shell Tern i Oat ('IF Bulk Vise (llstiffh'la) Prandil Ntunber Shell Skin Temp (IF) Ta"'

Shell (IF)

Skin Vise Ibins/fllue) Tube Temp lIt ('F')

Deisily (Ibtn/tWI) Tube Temp Otlt ('F)

CpI(RTt almtth'F) i'V TiTube('1F)

K (TI~l'-fl'"F) Tube Skis Timlt fF)

E1\,trapolation Calculation Results Shell Mass Flow (Ihbt/hr) 2,071,033.08 Overall Fotling (hrr-'t?.F/BTU) 0.001600 Tube Mass Flaw (Obin/hr) 4,036.365.63 Shell-Side ho (BTU,Io.-1lt.F) 726.4 Tube-Side hi (BTU/Ir'ft%"'F) 1,200.9 Heat Transfetred (BTU/lIr) 112,870,747.88 I/Mall Resis (BTU/hr.ft'-F) 4,082.4 LMYTD 37.0 LkITD Correeliaon Felor 0.7601 Efleclive Area (1t1) 16,614.9 U Ocrell (BTIIhr.flt.aF) 241.5 Properly Shell-Side Tube-Side Velocity (1.) 4.27 Shell Temp In (IF) 170.0 Reynold's umber 17,781.412 33,655 Shell Temp Oat (1F) 11 .5 PmndtilllNumber 2.9217 4.3742 Tax' Shell ('F) 142.7 Bulk Vise (lbmifl-hr) 1.1021 1.6175 Shell Shlit Tatip ('F) 129.9 Skin Vise abn/l1-hr) 1.2297 1.4841 Tibe TeampIn (MF) 90.0 Density hituilft') 61.3273 62.4693 Tube Talap Out (IF) 118.4 Cp (BTt/flbtn.F) 0.9994 0.9840 Tov Tube (OF) 104.2 K (BTU/l-'fi'F) 0.3770 0.3639 Tibe SkitsTamp ('F) 112.8

^ Reynolds Number Outside Range of Equation Appolichbilty H!With 7,ce Fouling The Test HeantIoad Cotuld Not Be Achieved

-3, Rev. 0

Engineering Evaluation: S-C-CBV-MEE-1982 Revision 0 Date:'02/19/2007 TITLE: Updated Containment Pressure/Temperature Response Analysis With SGFP Trip DCP Number: N/A . . . .. ... . .. .

Periodic Review Required Yes No X Action Request Number N/A Attachment 2 E-mail From PGE (J. Nelson) to PSEG (J. Rowey),

Subject:

"RE: Salem Looking for DCPP MFWPP Design Info" dated May 11, 2006

Salem UFSAR Table 10.4-1 for Info Page I of 5 Lundy, Jeffrey From: Harriman, Mark [Mark. Harriman@ pseg.com]

Sent: Monday, July 24, 2006 11:09 AM To: Lundy, Jeffrey

Subject:

FW: Diablo Canyon Feed Pump Trip Original Message -----


From: Rowey, John A.

Sent: Wednesday, May 24, 2006 8:56 AM To: 'Ballard, Jerry'; Nelson, James (DCPP); Railsback, Jerry Cc: Harriman, Mark

Subject:

RE: Diablo Canyon Feed Pump Trip Jerry/ Jim Thanks for all the information. This confirms our assumption that the feed pump coastdown component is an analytical assumption and not a tested parameter. As we originally discussed, our input to Westinghouse included only a 2 second delay before starting a 10 second coastdown. After comparing the Diablo SGFP parmeters with ours (they are very close), we feel comfortable trimming the coastdown analytical assumption back to 7 seconds with a more reasonable 5 second coastdown delay. This keeps the total time the same (12 seconds) and we hope should minimize the impact on the resulting containment pressure. Westinghouse will be working on this over the next few weeks.

John Rowey

-- Original

--- Message -----

From: Ballard, Jerry [1]

Sent: Tuesday, May 23, 2006 1:05 AM To: Nelson, James (DCPP); Railsback, Jerry Cc: Rowey, John A.

Subject:

RE: Salem Looking for DCPP MFWPP design info Jim, I have done much searching and I do not believe we test the actual MFWPP coastdown time. The 4 seconds listed in STP 1-33a Appendix 8.6 Table 8.6.2 just represents the allowable sum of the individual test components actuate a MFWPP trip. The table also lists the surveillance sources which record the time response data for the SG Hi Hi Level signal, slave relay response time, and trip valve closure. Note there is no discussion or surveillance associated with MFWPP coastdown time.

As we documented in our design input transmittal letter to West. for the RSG safety analyses, the NRC has accepted our MFWPP trip response time test criteria, which include the 5 seconds to achieve MFWPP stop valve closure and 5 seconds for the MFWPP to coastdown. In this LA 140 we clearly identify the response time test criteria for the signal processing delay, slave relay delay, and stop valve closure (just as listed in STP l-33A) but there is no discussion of a MFWPP coastdown test. However, the NRC in their SER for LAR 140 stated "The proposed response time for MFWPP turbine trip is reasonable, and satisfies the assumptions in that were credited din the licensee's feedwater analysis."

This indicates to me that the NRC has accepted as reasonable tart we test everything up to the MFWPP stop valve closure but not the MFWPP coastdown. I did come across an old calculation M-903 which perform a calculation to show that based on the pump inertial design, hydraulic resistance, and pump 8/17/2006

Salem UFSAR Table 10.4-1 for Info Page 2 of 5 infinity laws the MFWPP will coast down to flow reversal (check valve closure) with 2.4 seconds aftertrip of the MFWPP. I placed a copy of this calculation on your chair. It is not clear to me if this calculated time includes the 1 second MFWPP turbine stop valve closure time or not. However it is also based on a SG pressure at an operating pressure of around 800 pisg associated with a FW malfunction event at power as opposed to a MLSB with a depressurizing-SG-.

In summary, in my opinion, we have assumed a MFWPP coastdown time of 5 seconds as an input to our safety analysis. This is considered a reasonable established and accepted physical parameter for which we do not perform a response time test.

From: Nelson, James (DCPP)

Sent: Monday, May 22, 2006 4:43 PM To: Railsback, Jerry; Ballard, Jerry

Subject:

FW: Salem Looking for DCPP MFWPP design info Guys - Do either of you know if we test for main feedpump coastdown time? Do you know the basis for the 4 seconds mentioned in STP 1-33A? Thanks.

Jim Nelson PG&E - DCPP (805) 545-6547 icn3@pge.com From: Rowey, John A. [2]

Sent: Sunday, May 21, 2006 7:51 PM To: Nelson, James (DCPP)

Cc: Ballard, Jerry

Subject:

RE: Salem Looking for DCPP MFWPP design info Jim Thanks this clears up my question. Diablo does check the entire SGFP control loop, not just the "steam isolation valve stroke". One other clarification, is it safe to say that the SGFP coastdown time is an

'analytical assumption" and it is NOT tested?

Thanks John Rowey From: Nelson, James (DCPP) [3]

Sent: Friday, May 19, 2006 7:59 PM To: Rowey, John A.

Cc: Ballard, Jerry

Subject:

RE: Salem Looking for DCPP MFWPP design info John - As Gilda used to say..NEVER MIND! I checked with our IST lead and he showed me the procedure that tests all these times, then adds them up. Our STP 1-33A Acceptance Criteria section for the main feedpump turbine trip states: "The total MFWP trip function response time must be less than 9 seconds, including signal-processing time, pump trip, and pump coast-down. Of this time, an administrative limit of 5 seconds shall be used for the hardware related response time, leaving 4 seconds for pump coast-down." I think this is more of what you were looking for.

Jim Nelson PG&E - DCPP 8/17/2006

Salem UFSAR Table 10.4-1 for Info Page 3 of 5 (805) 545-6547 icn3@poe.com From: Rowey, John A. [4]

Sent: Thursday, May 18, 2006 4:32 PM To: Nelson, James (DCPP)

Subject:

RE: Salem Looking for DCPP MFWPP design info Thanks for getting back to me Jim John


Original Message -----

From: Nelson, James (DCPP) [5]

Sent: Thursday, May 18, 2006 6:51 PM To: Rowey, John A.

Subject:

RE: Salem Looking for DCPP MFWPP design info John - I don't have an immediate answer so I'll need to talk to the IST guys about this and get back to you. - Jim Nelson From: Rowey, John A. Rowey pseg.com

Sent: Wednesday, May 17, 2006 3:17 PM To: Nelson, James (DCPP)

Subject:

RE: Salem Looking for DCPP MFWPP design info Jim If I understood you correctly when we spoke last week, you indicated that time response testing for the Diablo Canyon Main Feed Pump trip on an safety injection was performed only stroke time of the stteam supply stop valves to the feedwater pump turbine. No response time testing was performed control signal process time. The input information that Jerry Ballard sent a few weeks ago, itentified the following accident analysis assumptions: 1) 2 seconds signal process delay, 2) 1 second slave relay 3) 1 second steam isolation valve plus an added 1 second "hardware margin".

This is a total of 5 seconds from the receipt of an SI signal.

Is it possible that the reason the signal is not time response tested be that the assumptions are considered so conservative?? Does Diablo Canynon have an IST Basis document that may explain this?

Thanks John Rowey PSEG Nuclear Salem Station 856 339 1870

[Rowey, John A.]


Original Message-----

From: Nelson, James (DCPP) [6]

Sent: Thursday, May 11, 2006 4:58 PM To: Rowey, John A.

Cc: Ballard, Jerry

Subject:

RE: Salem Looking for DCPP MFWPP design info 8/17/2006

Salem UFSAR Table 10.4-1 for Info Page 4 of 5 John - Here is the design info for our MFW pumps and turbines. The actual operating points are of course different. The pumps are Byron-Jackson DVSR 14x14x17 and the turbines are Westinghouse EMM-25. Hope this helps.

Characteristic Details Type Single stage, double suction, centrifugal Rated flow (design) 18,350 gpm @ 1089 psia Maximum flow 20,000 gpm Pressure @ Discharge 1089 psia design flow Suction 329 psia Differential Design 2000 ft Head Shutoff 2590 ft Pump drive Steam turbine Brake Design flow 9530 bhp Horsepower Max flow 9850 bhp Speed 5800 rpm NPSH Design flow 285 ft Required Max flow 301 ft Efficiency 86%

Jim Nelson PG&E.- IDCPP (805) 545-6547 icn3@pge.com From: Ballard, Jerry Sent: Thursday, May 11, 2006 9:09 AM To: Nelson, James (DCPP)

Cc: 'John.Rowey(pseg.com'

Subject:

Salem Looking for DCPP MFWPP design info Jim, John and I have been talking about the DCPP assumption for the main steam line break analysis that the MFWPPs trip on SI/FW isolation within 5 seconds, and then the pumps coast down to zero speed within another 5 seconds. We recently re-established these values for the RSG safety analysis currently being performed as documented in the attached design input transmittal SGRP-05-266 listed as item AIL-05-021 on page 9-10.

John is looking to establish a similar assumption for the Salem plant and was looking for comparison data of our MFWPP design with theirs to establish they are similar in design and performance. He provided the attached Table from their FSAR which lists the Salem MFWPP design details. I could not find anything in our F-SAR Chapter 10 or DCM S-3 that provided a description of our MFWPP design here at DCPP. Could you please forward him the appropriate info for his comparison?

I am also providing your phone number to John in case he has more questions.

Thanks for your time.

8/17/2006

Salem UFSAR Table 10.4-1 for Info Page 5 of 5 Jim Nelsen icn3@cpge.com 805-545- 6547 From: Rowey, John A. [7]

Sent: Thursday, May 11, 2006 8:46 AM To: Ballard, Jerry

Subject:

Salem UFSAR Table 10.4-1 for Info

<<Salem-SGFP Info T10.4-01 .DOC>>

Jerry Attached please find the Salem UFSAR Table that we just discussed. I highlighted the Relevant Main Feed Pump Technical Information in yellow (on the first page). As I described, we are trying to make a comparison between the Diablo Canyon Main Feed Pumps and Salem's in order to support adjusting our MSLB feed pump trip delay and coastdown assumpitons. We currently assume only 2 seconds trip delay on a safety injection signal and a 10 second coastdown. I started to feel uncomfortable with the thought of attempting to time response test based on our current assumption of 2 second delay.

The more detail on your feed pumps the better. Please feel free to call if you have any questions.

thanks John Rowey 856 339 1870 PSEG Nuclear Senior Engineer The information contained in this e-mail, including any attachment(s), is intended solely for use by the named addressee(s). If you are not the intended recipient, or a person designated as responsible for delivering such messages to the intended recipient, you are not authorized to disclose, copy, distribute or retain this message, in whole or in part, without written authorization from PSEG. This e-mail may contain proprietary, confidential or privileged information. If you have received this message in error, please notify the sender immediately. This notice is included in all e-mail messages leaving PSEG. Thank you for your cooperation.

8/17/2006

NC.CC-AP.ZZ-0010(Q)

FORM-I CERTIFICATION FOR DESIGN VERIFICATION (SAP Standard Text Key "NR/CDVI")

Reference Number: S-C-CBV-MEE-1982, Rev. 0. Updated Containment PressurefTemperature Response Analysis With SGFP Trip

SUMMARY

STATEMENT Each individual named below in the right column hereby certifies that the design verification for the subject document or .document portion has been completed, the questions from the generic checklist have been reviewed and addressed as appropriate, and all comments have been adequately incorpo-rated. The top right column individual is the Lead Design Verifier. SAP Order/Operation final confirma-tions are the legal equivalent of signatures.

Alan Johnson Design Verifier Assigned By Name of Lead Design Verifier I Date (print name of Manager/Director)

Design Verifier Assigned By Name of Design Verifier /Date (prnt name of Manager/Director)*

Design Verifier Assigned By Name of Design Verifier / Date

(print name of ManageriDirector)

Design Vefifier Assigned By Name of Design Verifier / Date (print name of Manager/Director)

'If the ManagemSupervisor actsas the Design Verifier, the narne of tfe next higher level of technical management is required-in the left column.

Page 1 of 1