L-88-016, Submittal of Unit 1 Cycle 14 Core Operating Limits Report (COLR): Difference between revisions

From kanterella
Jump to navigation Jump to search
(Created page by program invented by StriderTol)
(Created page by program invented by StriderTol)
Line 16: Line 16:


=Text=
=Text=
{{#Wiki_filter:Nuclear LaSalle Generating Stationwww.exeloncorp.com 2601 North zest Road Marseilles, I L 61341-9757 RA10-013 February 25, 2010 10CFR50.59 U. S. Nuclear Regulatory Commission ATTN: Document Control Desk Washington, DC 20555-0001 LaSalle County Station, Unit 1 Facility Operating License No. NPF-1 1 NRC Docket No. 50-373
{{#Wiki_filter:LaSalle Generating Station            www.exeloncorp.com 2601 North zest Road                                                                   Nuclear Marseilles, I L 61341-9757 RA10-013                                                               10CFR50.59 February 25, 2010 U. S. Nuclear Regulatory Commission ATTN: Document Control Desk Washington, DC 20555-0001 LaSalle County Station, Unit 1 Facility Operating License No. NPF-1 1 NRC Docket No. 50-373


==Subject:==
==Subject:==
Unit 1 Cycle 14 Core Operating Limits Report (COLR)
Unit 1 Cycle 14 Core Operating Limits Report (COLR)
The purpose of this letter is to advise you of the Exelon Generation Company, LLC (EGC) review and approval of the LaSalle Unit 1 Cycle 14 reload under the provisions of 10 CFR 50.59, "Changes, tests and experiments," and to transmit the Core Operating Limits Report (COLR) for Cycle 14, consistent with Generic Letter 88-16, "Removal of Cycle-Specific Parameter Limits From Technical Specifications." This report is being submitted in accordance with LaSalle County Station Technical Specification (TS) 5.6.5, "Core Operating Limits (COLR)," item d.The reload licensing analyses performed for Cycle 14 utilized NRC approved methodologies.
The purpose of this letter is to advise you of the Exelon Generation Company, LLC (EGC) review and approval of the LaSalle Unit 1 Cycle 14 reload under the provisions of 10 CFR 50.59, "Changes, tests and experiments," and to transmit the Core Operating Limits Report (COLR) for Cycle 14, consistent with Generic Letter 88-16, "Removal of Cycle-Specific Parameter Limits From Technical Specifications." This report is being submitted in accordance with LaSalle County Station Technical Specification (TS) 5.6.5, "Core Operating Limits (COLR)," item d.
The reload licensing analyses performed for Cycle 14 utilized NRC approved methodologies.
The Unit 1 Cycle 14 core, which consists of NRC approved fuel designs developed by AREVA NP Inc., was designed to operate within approved fuel design criteria provided in the Technical Specifications and related TS Bases. The core operating characteristics are bounded by the Updated Final Safety Analysis Report (UFSAR) allowable limits.
The Unit 1 Cycle 14 core, which consists of NRC approved fuel designs developed by AREVA NP Inc., was designed to operate within approved fuel design criteria provided in the Technical Specifications and related TS Bases. The core operating characteristics are bounded by the Updated Final Safety Analysis Report (UFSAR) allowable limits.
EGC has performed a review of the relevant reload licensing documents, associated TS Bases, and references in accordance with 10 CFR 50.59. This review concluded that the reload does not require NRC review and approval.
EGC has performed a review of the relevant reload licensing documents, associated TS Bases, and references in accordance with 10 CFR 50.59. This review concluded that the reload does not require NRC review and approval.
Should you have any questions concerning this submittal, please contact Mr. Terrence W.
Should you have any questions concerning this submittal, please contact Mr. Terrence W.
Simpkin, Regulatory Assurance Manager, at (815) 415-2800.
Simpkin, Regulatory Assurance Manager, at (815) 415-2800.
Respectfully, David B. Wozniak Site Vice President LaSalle County Station Attachment cc:Regional Administrator - NRC Region III NRC Senior Resident Inspector - LaSalle County Station COLR LaSalle I Revision 8 Core Operating Limits Report for LaSalle Unit 1 Cycle 14 Revision 0 Page 1 of 30 COLR LaSalle 1 Revision 8 Table of Contents 1.References
Respectfully, David B. Wozniak Site Vice President LaSalle County Station Attachment cc:         Regional Administrator - NRC Region III NRC Senior Resident Inspector - LaSalle County Station
...................................................................................................................................
 
5 2.Terms and Definitions ..................................................................................................................6 3.General Information
COLR LaSalle I Revision 8 Core Operating Limits Report for LaSalle Unit 1 Cycle 14 Revision 0 Page 1 of 30
..................................................................................................................... 7 4.Average Planar Linear Heat Generation Rate .............................................................................8 5.Operating Limit Minimum Critical Power Ratio ............................................................................ 9 5.1.Manual Flow Control MCPR Limits ...................................................................................... 9 5.1.1.Power-Dependent MCPR
 
..............................................................................................
COLR LaSalle 1 Revision 8 Table of Contents
9 5.1.2.Flow - Dependent MCPR
: 1. References ................................................................................................................................... 5
...............................................................................................
: 2. Terms and Definitions ..................................................................................................................6
9 5.2.Automatic Flow Control MCPR Limits ..................................................................................9 5.3.Scram Time
: 3. General Information ..................................................................................................................... 7
..........................................................................................................................
: 4. Average Planar Linear Heat Generation Rate .............................................................................8
9 5.4.Recirculation Flow Control Valve Settings ........................................................................... 9 6.Linear Heat Generation Rate .....................................................................................................17 7.Rod Block Monitor ...................................................................................................................... 25 8.Traversing In-Core Probe System
: 5. Operating Limit Minimum Critical Power Ratio ............................................................................ 9 5.1. Manual Flow Control MCPR Limits ...................................................................................... 9 5.1.1. Power-Dependent MCPR .............................................................................................. 9 5.1.2. Flow - Dependent MCPR ............................................................................................... 9 5.2. Automatic Flow Control MCPR Limits ..................................................................................9 5.3. Scram Time .......................................................................................................................... 9 5.4. Recirculation Flow Control Valve Settings ........................................................................... 9
............................................................................................
: 6. Linear Heat Generation Rate .....................................................................................................17
26 8.1Description:
: 7. Rod Block Monitor ...................................................................................................................... 25
.........................................................................................................................
: 8. Traversing In-Core Probe System ............................................................................................ 26 8.1
26 8.2Bases: .................................................................................................................................. 26 9.Stability Protection Setpoints
 
.................................................................................................... 27 10.Modes of Operation
== Description:==
.................................................................................................................
......................................................................................................................... 26
28 11.Methodology
 
............................................................................................................................
===8.2 Bases===
29 Page 2 of 30 COLR LaSalle 1 Revision 8 List of Tables Table 4-1 MAPLHGR for bundle(s):A10-4046B-13GV80A10-3537B-12GV80 A10-3537B-12GV80aA10-3913B-12GV80Al 0-4041 B
.................................................................................................................................. 26
-14GV80A10-3924B-14GV80A10-4064B-14GV80 Al 0-3971 B
: 9. Stability Protection Setpoints .................................................................................................... 27
-16GV80A10-4058 B
: 10. Modes of Operation ................................................................................................................. 28
-16G V80.......................................................................................8 Table 4-2 MAPLHGR SLO multiplier for AREVA Fuel .........................................8Table 5-1 MCPR(P) for ATRIUM
: 11. Methodology ............................................................................................................................ 29 Page 2 of 30
-10 Fuel BOC to NEOC Nominal Scram Speed (NSS) ..... 10 Table 5-2 MCPR(P) for ATRIUM-10 Fuel BOC to NEOC Technical Specification Scram Speed (TSSS)
 
.......................................................................................................
COLR LaSalle 1 Revision 8 List of Tables Table 4- 1 MAPLHGR for bundle(s):
11 Table 5-3 MCPR(P) for ATRIUM
A10-4046B- 13GV80 A10-3537B - 12GV80 A10-3537B- 12GV80a A10-3913B - 12GV80 Al 0-4041 B -14GV80 A10-3924B - 14GV80 A10-4064B -14GV80 Al 0-3971 B- 16GV80 A10-4058 B-16G V80 .......................................................................................           8 Table 4-2 MAPLHGR SLO multiplier for AREVA Fuel .........................................                                 8 Table 5- 1 MCPR(P) for ATRIUM - 10 Fuel BOC to NEOC Nominal Scram Speed (NSS) ..... 10 Table 5-2 MCPR(P) for ATRIUM-10 Fuel BOC to NEOC Technical Specification Scram Speed (TSSS) ....................................................................................................... 11 Table 5-3 MCPR(P) for ATRIUM - 10 Fuel NEOC to EOC Nominal Scram Speed (NSS)....... 12 Table 5-4 MCPR(P) for ATRIUM - 10 Fuel NEOC to EOC Technical Specification Scram Speed (TSSS) ....................................................................................................... 13 Table 5-5 MCPR(P) for ATRIUM - 10 Fuel Coastdown Operation Nominal Scram Speed (NSS) ....................................................................................................... 14 Table 5-6 MCPR(P) for ATRIUM - 10 Fuel Coastdown Operation Technical Specification Scram Speed (TSSS) ............................................................................ 15 Table 5-7 MCPR(F) Limits for AREVA Fuel, DLO and SLO Supports Base Case, FHOOS, and Combined EOOS 1 with All TBV Opening via the Pressure Control System ........................ 16 Table 5-8 MCPR(F) Limits for AREVA Fuel, DLO and SLO Supports Base Case, FHOOS, and Combined EOOS 1 with 2 or more TBV Opening via the Pressure Control System ............... 16 Table 5-9 MCPR(F) Limits for AREVA Fuel, DLO and SLO Supports Combined EOOS 2 and Combined EOOS 3 with 2 or more TBV Opening via the Pressure Control System ............... 16 Table 6- 1: LHGR Limit for AREVA ATRIUM- 10 Fuel A10-4046B- 13GV80 A10-3537B-12GV80 Al 0-3537B-12GV80a Al 0-3913B - 12GV80 Al 0-4041 B-14GV80 Al 0-39248- 14GV80 A10-4064B- 14GV80 Al 0-3971 B-16GV80 A10-4058 B - 16G V80 ....................................................................................... 17 Table 6-2 LHGRFAC(P) for ATRIUM - 10 Fuel BOC to NEOC Nominal Scram Speed (NSS) ................................................................................................................ 18 Table 6-3 LHGRFAC(P) for ATRIUM - 10 Fuel BOC to NEOC Technical Specification Scram Speed (TSSS) ............................................................................................ 19 Table 6-4 LHGRFAC(P) for ATRIUM -10 Fuel NEOC to EOC Nominal Scram Speed (NSS) ................................................................................................................. 20 Table 6-5 LHGRFAC(P) for ATRIUM-10 Fuel NEOC to EOC Technical Specification Scram Speed (TSSS) ............................................................................................ 21 Table 6-6 LHGRFAC(P) for ATRIUM - 10 Fuel Coastdown Operation Nominal Scram Speed (NSS) .................................................................................................................. 22 Table 6-7 LHGRFAC(P) for ATRIUM-10 Fuel Coastdown Operation Technical Specification Scram Speed (TSSS) ...........................................................................                           23 Table 6-8 LHGRFAC(F) Multipliers for ATRIUM-10 Fuel, DLO and SLO Supports Base Case, FHOOS, and Combined EOOS 1 with all TBV Opening via the Pressure Control System ...... 24 Page 3 of 30
-10 Fuel NEOC to EOC Nominal Scram Speed (NSS)....... 12 Table 5-4 MCPR(P) for ATRIUM
 
-10 Fuel NEOC to EOC Technical Specification Scram Speed (TSSS)
COLR LaSalle 1 Revision 8 Table 6-9 LHGRFAC(F) Multipliers for ATRIUM-10 Fuel, DLO and SLO Supports Base Case, FHOOS, Combined EOOS 1, Combined EOOS 2 and Combined EOOS 3 with 2 or more TBV Opening via the Pressure Control System ................................................................... 24 Table 7-1 Rod Block Monitor Setpoints ....................................................................... 25 Table 9-1 OPRM PBDA Trip Setpoints ....................................................................... 27 Page 4 of 30
.......................................................................................................13 Table 5-5 MCPR(P) for ATRIUM
 
-10 Fuel Coastdown Operation Nominal Scram Speed (NSS).......................................................................................................14 Table 5-6 MCPR(P) for ATRIUM
COLR LaSalle 1 Revision 8
-10 Fuel Coastdown Operation Technical Specification Scram Speed (TSSS)
: 1. References
............................................................................
: 1. Exelon Generation Company, LLC Docket No. 50-373 LaSalle County Station, Unit 1, License No.
15 Table 5-7 MCPR(F) Limits for AREVA Fuel, DLO and SLO Supports Base Case, FHOOS, and Combined EOOS 1 with All TBV Opening via the Pressure Control System
NPF-11.
........................
: 2. NRC Letter from D. M. Crutchfield to All Power Reactor Licensees and Applicants, Generic Letter 88-16; Concerning the Removal of Cycle-Specific Parameter Limits from Tech Specs, October 3, 1988.
16 Table 5-8 MCPR(F) Limits for AREVA Fuel, DLO and SLO Supports Base Case, FHOOS, and Combined EOOS 1 with 2 or more TBV Opening via the Pressure Control System ............... 16 Table 5-9 MCPR(F) Limits for AREVA Fuel, DLO and SLO Supports Combined EOOS 2 and Combined EOOS 3 with 2 or more TBV Opening via the Pressure Control System ............... 16 Table 6-1: LHGR Limit for AREVA ATRIUM
: 3. AREVA Report ANP-2882 Revision 0, "LaSalle Unit 1 Cycle 14 Reload Analysis," AREVA NP Inc.,
-10 FuelA10-4046B-13GV80A10-3537B-12GV80 Al 0-3537B
January 2010.
-12GV80aAl 0-3913B
: 4. AREVA Report ANP-2818 (P) Revision 0, "LaSalle Unit 1 Cycle 14 Principal Transient Analysis Parameters", AREVA NP, Inc., July 2009.
-12GV80Al 0-4041 B-14GV80Al 0-39248
: 5. Nuclear Fuels Letter NFM:MW:01-0106, from A. Giancatarino to J. Nugent, "LaSalle Unit 1 and Unit 2 Rod Block Monitor COLR Setpoint Change," April 3, 2001.
-14GV80A10-4064B-14GV80 Al 0-3971 B-16GV80A10-4058 B
: 6. AREVA document 51-9114888-000, "Plant Startup Testing Requirements for Power Distribution Uncertainty Verification", AREVA NP, Inc., July 2009.
-16G V80.......................................................................................17 Table 6-2 LHGRFAC(P) for ATRIUM
: 7. GE Nuclear Energy Document GE-NE-A1300384-07-01, Revision 1, "LaSalle County Station Power Uprate Project Task 201: Reactor Power/Flow Map", September 1999.
-10 Fuel BOC to NEOC Nominal Scram Speed (NSS)................................................................................................................18 Table 6-3 LHGRFAC(P) for ATRIUM
Page 5 of 30
-10 Fuel BOC to NEOC Technical Specification Scram Speed (TSSS)
 
............................................................................................19 Table 6-4 LHGRFAC(P) for ATRIUM
COLR LaSalle 1 Revision 8
-10 Fuel NEOC to EOC Nominal Scram Speed (NSS).................................................................................................................20 Table 6-5 LHGRFAC(P) for ATRIUM-10 Fuel NEOC to EOC Technical Specification Scram Speed (TSSS) ............................................................................................21 Table 6-6 LHGRFAC(P) for ATRIUM
: 2. Terms and Definitions APLHGR     Average planar linear heat generation rate APRM       Average power range monitor BOC         Beginning of cycle DLO         Dual loop operation EFPH       Effective full power hours ELLLA       Extended load line limit analysis EOC         End of cycle EOOS       Equipment out of service FFTR       Final feedwater temperature reduction FHOOS       Feedwater heater out of service ICF         Increased core flow LHGR       Linear heat generation rate LHGRFAC(F) Flow dependent LHGR multiplier LHGRFAC(P) Power dependent LHGR multiplier LPRM       Local power range monitor MAPLHGR     Maximum average planar linear heat generation rate MCPR       Minimum critical power ratio MCPR(F)     Flow dependent MCPR MCPR(P)     Power dependent MCPR MELLLA     Maximum extended load line limit analysis MSIV       Main steam isolation valve MSIVOOS     Main steam isolation valve out of service NEOC       Near end of cycle NSS         Nominal scram speed OLMCPR     Operating limit minimum critical power ratio OPRM       Oscillation power range monitor PBDA       Period based detection algorithm PLUOOS     Power load unbalance out of service PPD         Plant Parameter Document PROOS       Pressure regulator out of service RBM         Rod block monitor RPT         Recirculation pump trip RPTOOS     Recirculation pump trip out of service RWE         Rod withdrawal error SLMCPR     Safety limit minimum critical power ratio SLO        Single loop operation SRVOOS     Safety-relief valve out of service TBV         Turbine bypass valve TBVOOS     Turbine bypass valve out of service TCV         Turbine control valve TCVOOS     Turbine control valve out of service TIP         Traversing in-core probe TIPOOS     Traversing in-core probe out of service TSSS        Technical specification scram speed TSV        Turbine stop valve TSVOOS      Turbine stop valve out of service Page 6 of 30
-10 Fuel Coastdown Operation Nominal Scram Speed (NSS) ..................................................................................................................22 Table 6-7 LHGRFAC(P) for ATRIUM-10 Fuel Coastdown Operation Technical Specification Scram Speed (TSSS)
 
...........................................................................23 Table 6-8 LHGRFAC(F) Multipliers for ATRIUM-10 Fuel, DLO and SLO Supports Base Case, FHOOS, and Combined EOOS 1 with all TBV Opening via the Pressure Control System ...... 24 Page 3 of 30 COLR LaSalle 1 Revision 8 Table 6-9 LHGRFAC(F) Multipliers for ATRIUM-10 Fuel, DLO and SLO Supports Base Case, FHOOS, Combined EOOS 1, Combined EOOS 2 and Combined EOOS 3 with 2 or more TBV Opening via the Pressure Control System ................................................................... 24 Table 7-1 Rod Block Monitor Setpoints ....................................................................... 25 Table 9-1 OPRM PBDA Trip Setpoints .......................................................................
COLR LaSalle 1 Revision 8
27 Page 4 of 30 COLR LaSalle 1 Revision 8 1.References 1.Exelon Generation Company, LLC Docket No. 50-373 LaSalle County Station, Unit 1, License No.
NPF-11.2.NRC Letter from D. M. Crutchfield to All Power Reactor Licensees and Applicants, Generic Letter 88-16; Concerning the Removal of Cycle-Specific Parameter Limits from Tech Specs, October 3, 1988.3.AREVA Report ANP-2882 Revision 0, "LaSalle Unit 1 Cycle 14 Reload Analysis," AREVA NP Inc., January 2010.
4.AREVA Report ANP-2818 (P) Revision 0, "LaSalle Unit 1 Cycle 14 Principal Transient Analysis Parameters", AREVA NP, Inc., July 2009.
5.Nuclear Fuels Letter NFM:MW:01-0106, from A. Giancatarino to J. Nugent, "LaSalle Unit 1 and Unit 2 Rod Block Monitor COLR Setpoint Change," April 3, 2001.
6.AREVA document 51-9114888-000, "Plant Startup Testing Requirements for Power Distribution Uncertainty Verification", AREVA NP, Inc., July 2009.
7.GE Nuclear Energy Document GE-NE-A1300384-07-01, Revision 1, "LaSalle County Station Power Uprate Project Task 201: Reactor Power/Flow Map", September 1999.
Page 5 of 30 COLR LaSalle 1 Revision 8
: 2. Terms and Definitions APLHGR APRM BOC DLO EFPH ELLLA EOC EOOS FFTR FHOOS ICF LHGR LHGRFAC(F)
LHGRFAC(P)
LPRM MAPLHGR MCPR MCPR(F)MCPR(P)MELLLA MSIV MSIVOOS NEOC NSS OLMCPR OPRM PBDA PLUOOS PPD PROOS RBM RPT RPTOOS RWE SLMCPR SLO SRVOOS TBV TBVOOS TCV TCVOOS TIP TIPOOS TSSS TSV TSVOOS Average planar linear heat generation rate Average power range monitor Beginning of cycle Dual loop operation Effective full power hours Extended load line limit analysis End of cycle Equipment out of service Final feedwater temperature reduction Feedwater heater out of service Increased core flow Linear heat generation rate Flow dependent LHGR multiplier Power dependent LHGR multiplier Local power range monitor Maximum average planar linear heat generation rate Minimum critical power ratio Flow dependent MCPR Power dependent MCPR Maximum extended load line limit analysis Main steam isolation valve Main steam isolation valve out of service Near end of cycle Nominal scram speed Operating limit minimum critical power ratio Oscillation power range monitor Period based detection algorithm Power load unbalance out of service Plant Parameter Document Pressure regulator out of service Rod block monitor Recirculation pump trip Recirculation pump trip out of service Rod withdrawal error Safety limit minimum critical power ratio Single loop operation Safety-relief valve out of service Turbine bypass valve Turbine bypass valve out of service Turbine control valve Turbine control valve out of service Traversing in-core probe Traversing in-core probe out of service Technical specification scram speed Turbine stop valve Turbine stop valve out of service Page 6 of 30 COLR LaSalle 1 Revision 8
: 3. General Information Power and flow dependent limits are listed for various power and flow levels. Linear interpolation is to be used to find intermediate values.
: 3. General Information Power and flow dependent limits are listed for various power and flow levels. Linear interpolation is to be used to find intermediate values.
Rated core flow is 108.5 Mlb/hr. Operation up to 105% rated flow is licensed for this cycle.
Rated core flow is 108.5 Mlb/hr. Operation up to 105% rated flow is licensed for this cycle.
Licensed rated thermal power is 3489 MWth.
Licensed rated thermal power is 3489 MWth.
For thermal limit monitoring above 100% rated power or 100% rated core flow, the 100% rated power and the 100% core flow values, respectively, can be used unless otherwise indicated in the applicable table.
For thermal limit monitoring above 100% rated power or 100% rated core flow, the 100% rated power and the 100% core flow values, respectively, can be used unless otherwise indicated in the applicable table.
The thermal limits provided in the COLR support SLO for all analyzed equipment out of service options.However, SLO thermal limit sets for Base case and Combined EOOS 3 are only provided for online monitoring. Additional thermal limit sets can be provided for online monitoring as necessary.
The thermal limits provided in the COLR support SLO for all analyzed equipment out of service options. However, SLO thermal limit sets for Base case and Combined EOOS 3 are only provided for online monitoring. Additional thermal limit sets can be provided for online monitoring as necessary.
Core Exposure Definitions (Reference 3):
Core Exposure Definitions (Reference 3):
Exposure Nomenclature Core Average Exposure (MWD/MTU)NEOC14 30342 EOC14 33862 Maximum Core Exposure 37862 Page 7 of 30 COLR LaSalle 1 Revision 8
Exposure Nomenclature       Core Average Exposure (MWD/MTU)
: 4. Average Planar Linear Heat Generation Rate The MAPLHGR values for the most limiting lattice of each fuel type as a function of average planar exposure is given in Table 4-1. During single loop operation, these limits are multiplied bythe SLO multiplier listed in Table 4-2. The MAPLHGR values in Table 4-1 and MAPLHGR SLO multiplier in Table 4-2 encompass all modes of operation.
NEOC14                     30342 EOC14                       33862 Maximum Core Exposure       37862 Page 7 of 30
Table 4-1 MAPLHGR for bundle(s):A10-4046B-13GV80A10-3537B-12GV80 A10-3537B-12GV80aA10-3913B-12GV80A10-4041 B
 
-14GV80A10-3924B-14GV80A10-4064B-14GV80 B-16GV80 A10-4058B-16GV80 (Reference 3)
COLR LaSalle 1 Revision 8
Avg. Planar Exposure (GWd/MT)MAPLHGR (kW/ft)0.00 12.5 15.00 12.5 55.00 9.1 67.00 7.1Table 4-2 MAPLHGR SLO multiplier for AREVA Fuel (Reference 3)
: 4. Average Planar Linear Heat Generation Rate The MAPLHGR values for the most limiting lattice of each fuel type as a function of average planar exposure is given in Table 4-1. During single loop operation, these limits are multiplied by the SLO multiplier listed in Table 4-2. The MAPLHGR values in Table 4-1 and MAPLHGR SLO multiplier in Table 4-2 encompass all modes of operation.
SLO Fuel Type Multiplier ATRIUM-10 0.82 Page 8 of 30 COLR LaSalle 1 Revision 8
Table 4-1 MAPLHGR for bundle(s):
: 5. Operating Limit Minimum Critical Power Ratio 5.1.Manual Flow Control MCPR Limits The OLMCPR is determined for a given power and flow condition by evaluating the power-dependent MCPR and the flow
A10-4046B-13GV80 A10-3537B-12GV80 A10-3537B - 12GV80a A10-3913B-12GV80 A10-4041 B -14GV80 A10-3924B -14GV80 A10-4064B-14GV80 A10-3971 B-16GV80 A10-4058B -16GV80 (Reference 3)
-dependent MCPR and selecting the greater of the two.5.1.1.Power-Dependent MCPR The power-dependent MCPR limit, MCPR(P), is determined from Tables 5-1 through 5-6, and is dependent on exposure, fuel type, and scram speed, in addition to power level.
Avg. Planar Exposure         MAPLHGR (GWd/MT)           (kW/ft) 0.00             12.5 15.00             12.5 55.00             9.1 67.00               7.1 Table 4-2 MAPLHGR SLO multiplier for AREVA Fuel (Reference 3)
SLO Fuel Type Multiplier ATRIUM-10             0.82 Page 8 of 30
 
COLR LaSalle 1 Revision 8
: 5. Operating Limit Minimum Critical Power Ratio 5.1. Manual Flow Control MCPR Limits The OLMCPR is determined for a given power and flow condition by evaluating the power-dependent MCPR and the flow-dependent MCPR and selecting the greater of the two.
5.1.1. Power- Dependent MCPR The power-dependent MCPR limit, MCPR(P), is determined from Tables 5-1 through 5-6, and is dependent on exposure, fuel type, and scram speed, in addition to power level.
5.1.2. Flow - Dependent MCPR Tables 5-7 through 5-9 give the MCPR(F) limit as a function of the flow based on the applicable plant condition. The MCPR(F) limit determined from these tables is the flow dependent OLMCPR.
5.1.2. Flow - Dependent MCPR Tables 5-7 through 5-9 give the MCPR(F) limit as a function of the flow based on the applicable plant condition. The MCPR(F) limit determined from these tables is the flow dependent OLMCPR.
5.2.Automatic Flow Control MCPR Limits Automatic Flow Control MCPR Limits are not provided.
5.2. Automatic Flow Control MCPR Limits Automatic Flow Control MCPR Limits are not provided.
5.3.Scram Time NSS and TSSS refer to scram speeds.
5.3. Scram Time NSS and TSSS refer to scram speeds.
To utilize the MCPR limits for Technical Specification Scram Speed (TSSS), the scram speed insertion time must be equal to or less than the values provided below.
To utilize the MCPR limits for Technical Specification Scram Speed (TSSS), the scram speed insertion time must be equal to or less than the values provided below.
To utilize the MCPR limits for Nominal Scram Speed (NSS), the scram speed insertion time must be equal to or less than the values provided below (Reference 4).
To utilize the MCPR limits for Nominal Scram Speed (NSS), the scram speed insertion time must be equal to or less than the values provided below (Reference 4).
Notch Position TSSS Time (sec.)
Notch Position       TSSS Time (sec.)       NSS Time sec.
NSS Time sec.
45                   0.53                   0.38 39                   0.85                   0.68 25                   1.90                   1.68 05                   3.45                   2.68 5.4. Recirculation Flow Control Valve Settings Cycle 14 was analyzed with a maximum core flow runout of 105%; therefore the recirculation pump flow control valve must be set to maintain core flow less than 105%
45 0.53 0.38 39 0.85 0.68 25 1.90 1.68 05 3.45 2.68 5.4.Recirculation Flow Control Valve Settings Cycle 14 was analyzed with a maximum core flow runout of 105%; therefore therecirculation pump flow control valve must be set to maintain core flow less than 105%
(113.9 Mlb/hr) for all runout events (Reference 4). This value is consistent with the analyses of Reference 3.
(113.9 Mlb/hr) for all runout events (Reference 4). This value is consistent with the analyses of Reference 3.
Page 9 of 30 COLR LaSalle 1 Revision 8Table 5-1 MCPR(P) for ATRIUM-10 Fuel BOC to NEOC Nominal Scram Speed (NSS)(Reference 3)
Page 9 of 30
 
COLR LaSalle 1 Revision 8 Table 5-1 MCPR(P) for ATRIUM-10 Fuel BOC to NEOC Nominal Scram Speed (NSS)
(Reference 3)
Core Thermal Power (% of rated)
EOOS Combination    0            25                60          80          80.01    100 MCPRP Base Case      2.14          2.14              1.55                                1.40 Base Case SLO    2.15          2.15              1.56                                1.41 FHOOS        2.23          2.23              1.61                                1.40 FHOOS SLO      2.24          2.24              1.62                    0          1.41
                                                                        .,    ,,      ..
Combined EOOS 1  2.29          2.29                          1.74            1.53    1.45 Combined EOOS 1 SLO 2.30          2.30                          1.75            1.54    1.46 Combined EOOS 2  2.29          2. 29                        1.74            1.53    1.44 Combined EOOS 2 SLO 2.30          2.30                          1.75            1.54    1.45 Combined EOOS 3  2.29          2.29                          1.74            1.54    1.46 Combined EOOS 3 SLO 2.30          2.30                          1.75            1.55    1.47 Page 10 of 30
 
COLR LaSalle 1 Revision 8 Table 5-2 MCPR(P) for ATRIUM-10 Fuel BOC to NEOC Technical Specification Scram Speed (TSSS)
(Reference 3)
Core Thermal Power (% of rated)
Core Thermal Power (% of rated)
EOOS Combination 0 25 60 80 80.01 100 MCPRP Base Case 2.14 2.14 1.55 1.40 Base Case SLO 2.15 2.15 1.56 1.41 FHOOS 2.23 2.23 1.61 1.40 FHOOS SLO 2.24 2.24 1.62., 0 ,,..1.41 Combined EOOS 1 2.29 2.29 1.74 1.53 1.45 Combined EOOS 1 SLO 2.30 2.30 1.75 1.54 1.46 Combined EOOS 2 2.29 2.29 1.74 1.53 1.44 Combined EOOS 2 SLO 2.30 2.30 1.75 1.54 1.45 Combined EOOS 3 2.29 2.29 1.74 1.54 1.46 Combined EOOS 3 SLO 2.30 2.30 1.75 1.55 1.47 Page 10 of 30 COLR LaSalle 1 Revision 8Table 5-2 MCPR(P) for ATRIUM-10 Fuel BOC to NEOC Technical Specification Scram Speed (TSSS)(Reference 3)
EOOS Combination     0             25               60           80         80.01 100 MCPRP Base Case     2.19           2.19             1.58                             1.42 Base Case SLO   2.20           2.20             1.59                 MESS       1.43 FHOOS       2.29           2.29             1.64                             1.45 FHOOS SLO       2.30           2.30             1.65                             1.46 Combined EOOS 1   2.31           2.31                           1.74         1.57 1.51 Combined EOOS 1 SLO 2.32           2.32                           1.75         1.58 1.52 Combined EOOS 2   2.31           2.31                           1.74         1.56 1.47 Combined EOOS 2 SLO 2.32           2.32                           1.75         1.57 1.48 Combined EOOS 3   2.31           2.31                           1.74         1.58 1.51 gggwgmn Combined EOOS 3 SLO 2.32           2.32                           1.75         1.59 1.52 Page 11 of 30
Core Thermal Power
 
(%of rated)EOOS Combination 0 25 60 80 80.01 100 MCPRP Base Case 2.19 2.19 1.58 1.42 Base Case SLO 2.20 2.20 1.59 MESS 1.43 FHOOS 2.29 2.29 1.64 1.45 FHOOS SLO 2.30 2.30 1.65 1.46 Combined EOOS 1 2.31 2.31 1.74 1.57 1.51 Combined EOOS 1 SLO 2.32 2.32 1.75 1.58 1.52 Combined EOOS 2 2.31 2.31 1.74 1.56 1.47 Combined EOOS 2 SLO 2.32 2.32 1.75 1.57 1.48 Combined EOOS 3 2.31 2.31 1.74 1.58 1.51 Combined EOOS 3 SLO 2.32 2.32 gggwgmn 1.75 1.59 1.52 Page 11 of 30 COLR LaSalle 1 Revision 8Table 5-3 MCPR(P) for ATRIUM-10 Fuel NEOC to EOC Nominal Scram Speed (NSS)(Reference 3)
COLR LaSalle 1 Revision 8 Table 5-3 MCPR(P) for ATRIUM-10 Fuel NEOC to EOC Nominal Scram Speed (NSS)
Core Thermal Power
(Reference 3)
(%of rated)EOOS Combination 0 25 60 80 80.01 100 MCPRP Base Case 2.14 2.14 1.55 1.42 Base Case SLO 2.15 2.15 1.56 1.43 FHOOS 2.23 2.23 1.61 TM^- -------------
1.42 FHOOS SLO 2.24 2.24 1.62 1.43 Combined EGOS 1 2.29 2.29 1.74 1.53 1.49 Combined EOOS 1 SLO 2.30 2.30 1.75 1.54 1.50 Combined EGOS 2 2.29 2.29 1.74 1.53 1.48 Combined EOOS 2 SLO 2.30 2.30{W 1.75 1.54 1.49 Combined EOOS 3 2.29 2.29 1.74 1.54 1.48 Combined EOOS 3 SLO 2.30 2.30'gg 1.75 1.55 1.49 Page 12 of 30 COLR LaSalle 1 Revision 8 Table 5-4 MCPR(P) for ATRIUM
-10 Fuel NEOC to EOC Technical Specification Scram Speed (TSSS)(Reference 3)
Core Thermal Power
(%of rated)EOOS Combination 0 25 60 80 80.01 100 MCPRP Base Case 2.19 2.19 1.58 SRI 4-1 1.45 Base Case SLO 2.20 2.20 1.59 1.46 FHOOS 2.29 2.29 1.64 1.45 FHOOS SLO 2.30 2.30 1.65 1.46 Combined EOOS 1 2.31 2.31 , 1.74 1.57 1.52 Combined EGOS 1 SLO 2.32 2.32 1.75 1.58 1.53 Combined EOOS 2 2.31 2.31 1.74 1.56 1.52 Combined EOOS 2 SLO 2.32 2.32 1.75 1.57 1.53 Combined EGOS 3 2.31 2.31 1.74 1.58 1.52 Combined EOOS 3 SLO 2.32 2.32 1.75 1.59 1.53 Page 13 of 30 COLR LaSalle 1 Revision 8 Table 5-5 MCPR (P)for ATRIUM-10 Fuel Coastdown Operation Nominal Scram Speed (NSS)(Reference 3)
Core Thermal Power (% of rated)
Core Thermal Power (% of rated)
EOOS Combination 0 25 60 80 80.01 100 MCPRP Base Case 2.14 2.14 1.55 1.43 Base Case SLO 2.15 2.15 1.56 1.44 FHOOS 2.23 2.23 1.61 1.43 FHOOS SLO 2.24 2.24 1.62 1.44 Combined EOOS 1 2.29 2.29 1.74 1.54 1.50 Combined EOOS 1 SLO 2.30 2.30 1.75 1.55 1.51 Combined EOOS 2 2.29 2.29 1.74 1.53 1.50 Combined EOOS 2 SLO 2.30 2.30 1.75 1.54 1.51 Combined EOOS 3 2.29 2.29 1.74 1.54 1.50 Combined EOOS 3 SLO 2.30--------------
EOOS Combination     0           25                 60         80       80.01     100 MCPRP Base Case     2.14         2.14               1.55                           1.42 Base Case SLO   2.15         2.15               1.56                           1.43 FHOOS       2.23         2.23               1.61                         ^ 1.42 TM  - - --
2.30 1.75 1.55 1.51 Page 14 of 30 COLR LaSalle 1 Revision 8 Table 5-6 MCPR(P) for ATRIUM-10 Fuel Coastdown Operation Technical Specification Scram Speed (TSSS)(Reference 3)
FHOOS SLO       2.24         2.24               1.62                           1.43 Combined EGOS 1   2.29         2.29                         1.74         1.53  1.49 Combined EOOS 1 SLO 2.30         2.30                         1.75         1.54  1.50 Combined EGOS 2   2.29         2.29                         1.74         1.53   1.48 Combined EOOS 2 SLO 2.30         2.30             W          1.75         1.54   1.49
Core Thermal Power
{
(%of rated)EOOS Combination 0 25 60 80 80.01 100 MCPRP Base Case 2.19 2.19 1.58 1.45 Base Case SLO 2.20 2.20 1.59 1.46 FHOOS 2.29 2.29 1.64 1.45 FHOOS SLO 2.30 2.30 1.65 1.46 Combined EOOS 1 2.31 2.31 1.74 1.58 1.53 Combined EOOS 1 SLO 2.32 2.32 1.75 1.59 1.54 Combined EOOS 2 2.31 2.31 1.74 1.57 1.53 Combined EOOS 2 SLO 2.32 2.32 1.75 1.58 1.54 Combined EOOS 3 2.31 2.31 1.74 1.58 1.53 Combined EOOS 3 SLO 2.32 2.32 R 1.75 1.59 1.54 Page 15 of 30 COLR LaSalle 1 Revision 8 Table 5-7 MCPR(F) Limits for AREVA Fuel, DLO and SLO Supports Base Case, FHOOS, and Combined EOOS 1 with All TBV Opening via the Pressure Control System (Reference 3)
Combined EOOS 3   2.29         2.29                         1.74         1.54   1.48
Flow (% rated)MCPR(F)Limit 105.0 1.15 40.0 1.65 0.0 1.65 Table 5-8 MCPR(F) Limits for AREVA Fuel, DLO and SLO Supports Base Case, FHOOS, and Combined EOOS 1 with 2 or more TBV Opening via the Pressure Control System (Reference 3)
                                                'gg            1.75 Combined EOOS 3 SLO 2.30         2.30                                       1.55   1.49 Page 12 of 30
Flow (% rated)MCPR(F)Limit 105.0 1.30 40.0 1.70 0.0 1.70 Table 5-9 MCPR(F) Limits for AREVA Fuel, DLO and SLO Supports Combined EOOS 2 and Combined EOOS 3 with 2 or more TBV Opening via the Pressure Control System (Reference 3)
 
Flow (% rated)MCPR(F)Limit 105.0 1.40 40.0 1.80 0.0 1.80 Page 16 of 30 COLR LaSalle 1 Revision 8
COLR LaSalle 1 Revision 8 Table 5-4 MCPR(P) for ATRIUM -10 Fuel NEOC to EOC Technical Specification Scram Speed (TSSS)
: 6. Linear Heat Generation Rate The linear heat generation rate (LHGR) limit is the product of the exposure dependent LHGR limit from Table 6-1 and the minimum of: the power dependent LHGR Factor, LHGRFAC(P), or the flow dependent LHGR Factor, LHGRFAC(F) as applicable. The LHGRFAC(P) is determined from Tables 6-2 through 6-7. The LHGRFAC(F) is determined from Table 6-8 through 6-9.Table 6-1: LHGR Limit for AREVA ATRIUM-10 FuelAl 0-4046B
(Reference 3)
-13GV80A10-35378-12GV80 Al 0-3537B
-12GV80aA10-3913B-12GV80 A10-4041 B-I 4GV80Al 0-39248
-14GV80A10-40648-14GV80 B-16GV80 A10-4058B-16GV80 (Reference 3)
Pellet Exposure GWd/MTU LHGR Limit (kW/ft)0.00 13.40 17.70 13.40 61.10 9.10 70.40 7.30 Page 17 of 30 COLR LaSalle 1 Revision 8Table 6-2 LHGRFAC(P) for ATRIUM
-10 Fuel BOC to NEOC Nominal Scram Speed (NSS)(Reference 3)
Core Thermal Power (% of rated)
Core Thermal Power (% of rated)
EOOS Combination 0 25 60 80 80.01 100 LHGRFACP Multiplier Base Case 0.72 0.72 0.99 1.00 1.00 Base Case SLO 0.72 0.72 0.99 1.00 1.00 FHOOS 0.69 0.69 0.95 1.00 rrv 1.00 FHOOS SLO 0.69 0.69 0.95 1.00 1.00 Combined EOOS 1 0.65 0.65 0.87 0.97 1.00 Combined EOOS 1 SLO 0.65 0.65 0.87 0.97 1.00 Combined EOOS 2 0.65 0.65 0.87 1.00 1.00 Combined EOOS 2 SLO 0.65 0.65 0.87 1.00 1.00 Combined EOOS 3 0.65 0.65 0.87 0.96 1.00 Combined EOOS 3 SLO 0.65 0.65 0.87 0.96 1.00 Page 18 of 30 COLR LaSalle 1 Revision 8Table 6-3 LHGRFAC(P) for ATRIUM
EOOS Combination     0             25               60             80       80.01 100 MCPRP Base Case     2.19          2.19            1.58      SRI        4-1       1.45 Base Case SLO   2.20          2.20            1.59                            1.46 FHOOS       2.29          2.29            1.64                            1.45 FHOOS SLO       2.30          2.30            1.65                            1.46
-10 Fuel BOC to NEOC Technical Specification Scram Speed (TSSS)(Reference 3)
                                                        ,
Core Thermal Power
Combined EOOS 1   2.31          2.31                            1.74        1.57 1.52 Combined EGOS 1 SLO 2.32          2.32                            1.75        1.58 1.53 Combined EOOS 2   2.31          2.31                            1.74        1.56 1.52 Combined EOOS 2 SLO 2.32          2.32                            1.75        1.57 1.53 Combined EGOS 3   2.31          2.31                            1.74        1.58 1.52 Combined EOOS 3 SLO 2.32          2.32                            1.75        1.59 1.53 Page 13 of 30
(%of rated)EGOS Combination 0 25 60 80 80.01 100 LHGRFACP Multiplier Base Case 0.71 0.71 0.97 1.00 1.00 Base Case SLO 0.71 0.71 0.97 1.00 1.00 FHOOS 0.68 0.68 0.94 1.00 1.00 FHOOS SLO 0.68 0.68 0.94 1.00 1.00 Combined EOOS 1 0.65 0.65 0.87 0.94 0.98 Combined EOOS 1 SLO 0.65 0.65 0.87 0.94 0.98 Combined EOOS 2 0.65 0.65 0.87 0.97 1.00 Combined EOOS 2 SLO 0.65 0.65 ORz 0.87 0.97 1.00 Combined EOOS 3 0.65 0.65 0.87 0.93 0.97 Combined EOOS 3 SLO 0.65 0.65 0.87 0.93 0.97 Page 19 of 30 COLR LaSalle 1 Revision 8Table 6-4 LHGRFAC (P)for ATRIUM-10 Fuel NEOC to EOC Nominal Scram Speed (NSS)(Reference 3)
 
COLR LaSalle 1 Revision 8 Table 5- 5 MCPR(P) for ATRIUM -10 Fuel Coastdown Operation Nominal Scram Speed (NSS)
(Reference 3)
Core Thermal Power (% of rated)
Core Thermal Power (% of rated)
EOOS Combination 0 25 60 80 80.01 100 LHGRFACP Multiplier Base Case 0.72 0.72 0.99 1.00 1.00 Base Case SLO 0.72 0.72 0.99 1.00 1.00 FHOOS 0.69 0.69 0.95 1.00 5 S 1.00 FHOOS SLO 0.69 0.69 0.95 1.00 1.00 Combined EOOS 1 0.65 0.65 0.87 0.97 0.97 Combined EOOS I SLO 0.65 0.65"OK 0.87 0.97 0.97 Combined EOOS 2 0.65 0.65 0.87 0.97 0.97 Combined EOOS 2 SLO 0.65 0.65 0.87 0.97 0.97 Combined EOOS 3 0.65 0.65 0.87 0.96 0.97 Combined EOOS 3 SLO 0.65 0.65 0.87 0.96 0.97 Page 20 of 30 COLR LaSalle 1 Revision 8Table 6-5 LHGRFAC(P) for ATRIUM-10 Fuel NEOC to EOC Technical Specification Scram Speed (TSSS)(Reference 3)
EOOS Combination       0             25               60         80         80.01 100 MCPRP Base Case         2.14            2.14            1.55                          1.43 Base Case SLO       2.15            2.15            1.56                          1.44 FHOOS           2.23            2.23            1.61                          1.43 FHOOS SLO         2.24            2.24            1.62                          1.44 Combined EOOS 1     2.29            2.29                        1.74        1.54 1.50 Combined EOOS 1 SLO   2.30            2.30                         1.75        1.55 1.51 Combined EOOS 2      2.29            2.29                        1.74        1.53 1.50 Combined EOOS 2 SLO   2.30            2.30                        1.75        1.54 1.51 Combined EOOS 3     2.29            2.29                        1.74        1.54 1.50 Combined EOOS 3 SLO   2.30            2.30                        1.75        1.55 1.51
Core Thermal Power (%of rated)EOOS Combination 0 25 60 80 80.01 100 LHGRFACP Multiplier Base Case 0.71 0.71 0.97 1.00 1.00 Base Case SLO 0.71 0.71 0.97 1.00 1.00 FHOOS 0.68 0.68 0.94 1.00 1.00 FHOOS SLO 0.68 0.68 0.94 1.00 1.00 Combined EOOS 1 0.65 0.65 0.87 0.94 0.96 Combined EOOS 1 SLO 0.65 0.65 ggg 0.87 0.94 0.96 Combined EOOS 2 0.65 0.65 0.87 0.97 0.97 Combined EOOS 2 SLO 0.65 0.65 0.87 0.97 0.97 Combined EOOS 3 0.65 0.65 0.87 0.93 0.97 Combined EOOS 3 SLO 0.65 0.65 0.87 0.93 0.97 Page 21 of 30 COLR LaSalle 1 Revision 8 Table 6-6 LHGRFAC (P)for ATRIUM-10 Fuel Coastdown Operation Nominal Scram Speed (NSS)(Reference 3)
                    --------------
Page 14 of 30
 
COLR LaSalle 1 Revision 8 Table 5-6 MCPR(P) for ATRIUM-10 Fuel Coastdown Operation Technical Specification Scram Speed (TSSS)
(Reference 3)
Core Thermal Power (% of rated)
Core Thermal Power (% of rated)
EOOS Combination 0 25 60 80 80.01 100 LHGRFACP Multiplier Base Case 0.72 0.720.99 1.00 1.00 Base Case SLO 0.72 0.720.99 1.00 1.00 FHOOS 0.69 0.690.95 1.00 1.00 FHOOS SLO 0.69 0.690.95 1.00 1.00 Combined EOOS 1 0.65 0.65 0.87 0.96 0.97 Combined EOOS 1 SLO 0.65 0.65 st 0.87 0.96 0.97 Combined EOOS 2 0.65 0.65 0.87 0.96 0.97 Combined EOOS 2 SLO 0.65 wY 0.65 0.87 0.96 0.97 Combined EOOS 3 0.65 0.65 0.87 0.96 0.97 Combined EOOS 3 SLO 0.65 0.65`0.87 0.96 0.97 Page 22 of 30 COLR LaSalle 1 Revision 8 Table 6-7 LHGRFAC(P)for ATRIUM-10 Fuel Coastdown Operation Technical Specification Scram Speed (TSSS)(Reference 3)
EOOS Combination     0           25               60         80         80.01 100 MCPRP Base Case      2.19          2.19            1.58                          1.45 Base Case SLO    2.20          2.20            1.59                          1.46 FHOOS        2.29          2.29            1.64                          1.45 FHOOS SLO      2.30          2.30            1.65                          1.46 Combined EOOS 1  2.31          2.31                        1.74        1.58 1.53 Combined EOOS 1 SLO 2.32          2.32                        1.75        1.59 1.54 Combined EOOS 2  2.31          2.31                        1.74        1.57 1.53 Combined EOOS 2 SLO 2.32          2.32                        1.75        1.58 1.54 Combined EOOS 3  2.31          2.31                        1.74        1.58 1.53 Combined EOOS 3 SLO 2.32          2.32                  R      1.75        1.59 1.54 Page 15 of 30
Core Thermal Power (%of rated)EOOS Combination 0 25 60 80 80.01 100 LHGRFACP Multiplier Base Case 0.71 0.71 0.97 1.00 1.00 Base Case SLO 0.71 0.71 0.97 1.00- - - - -- -------1.00 FHOOS 0.68 0.68 0.94 1.00 1.00 FHOOS SLO 0.68 0.68 0.94 1.00 1.00 Combined EOOS 1 0.65 0.65 0.87 0.91 0.94 Combined EGOS I SLO 0.65 0.65 0.87 0.91 0.94 Combined EOOS 2 0.65 0.65 0.87 0.95 0.95 Combined EOOS 2 SLO 0.65 0.65 y 0.87 0.95 0.95 Combined EOOS 3 0.65 0.65 0.87 0.93 0.95 Combined EOOS 3 SLO 0.65 0.65 0.87 0.93 0.95 Page 23 of 30 COLR LaSalle 1 Revision 8-8 LHGRFAC(F) Multipliers for ATRIUM-10 Fuel, DLO and SLO Supports Base Case, FHOOS, and Combined EOOS 1 with all TBV Opening Via the Pressure Control System (Reference 3)
 
Flow (% rated)LHGRFAC(F)
COLR LaSalle 1 Revision 8 Table 5-7 MCPR(F) Limits for AREVA Fuel, DLO and SLO Supports Base Case, FHOOS, and Combined EOOS 1 with All TBV Opening via the Pressure Control System (Reference 3)
Multiplier 105.00 1.00 80.00 1.00 30.00 0.75 0.00 0.75-9 LHGRFAC(F) Multipliers for ATRIUM-10 Fuel, DLO and SLO Supports Base Case, FHOOS, Combined EOOS 1, Combined EOOS 2 and Combined EOOS 3 with 2 or more TBV Opening via the Pressure Control System (Reference 3)
Flow          MCPR(F)
Flow (% rated)LHGRFAC(F)
(% rated)          Limit 105.0              1.15 40.0              1.65 0.0              1.65 Table 5-8 MCPR(F) Limits for AREVA Fuel, DLO and SLO Supports Base Case, FHOOS, and Combined EOOS 1 with 2 or more TBV Opening via the Pressure Control System (Reference 3)
Multiplier 105.00 1.00 80.00 1.00 30.00 0.75 0.00 0.75 Page 24 of 30 COLR LaSalle 1 Revision 8 7.Rod Block Monitor The Rod Block Monitor Upscale Instrumentation Setpoints are determined from the relationships shown below (Reference 5):
Flow          MCPR(F)
Table 7-1 Rod Block Monitor Setpoints ROD BLOCK MONITOR UPSCALE TRIP FUNCTION ALLOWABLE VALUE Two Recirculation Loop 0.66 Wd + 54.0%
(% rated)          Limit 105.0              1.30 40.0              1.70 0.0              1.70 Table 5-9 MCPR(F) Limits for AREVA Fuel, DLO and SLO Supports Combined EOOS 2 and Combined EOOS 3 with 2 or more TBV Opening via the Pressure Control System (Reference 3)
Flow          MCPR(F)
(% rated)          Limit 105.0              1.40 40.0              1.80 0.0              1.80 Page 16 of 30
 
COLR LaSalle 1 Revision 8
: 6. Linear Heat Generation Rate The linear heat generation rate (LHGR) limit is the product of the exposure dependent LHGR limit from Table 6-1 and the minimum of: the power dependent LHGR Factor, LHGRFAC(P), or the flow dependent LHGR Factor, LHGRFAC(F) as applicable. The LHGRFAC(P) is determined from Tables 6-2 through 6-7. The LHGRFAC(F) is determined from Table 6-8 through 6-9.
Table 6-1: LHGR Limit for AREVA ATRIUM -10 Fuel Al 0-4046B -13GV80 A10-35378-12GV80 Al 0-3537B-12GV80a A10-3913B -12GV80 A10-4041 B-I 4GV80 Al 0-39248 -14GV80 A10-40648-14GV80 A10-3971 B-16GV80 A10-4058B-16GV80 (Reference 3)
Pellet Exposure                    LHGR Limit GWd/MTU                            (kW/ft) 0.00                            13.40 17.70                            13.40 61.10                            9.10 70.40                            7.30 Page 17 of 30
 
COLR LaSalle 1 Revision 8 Table 6-2 LHGRFAC(P) for ATRIUM -10 Fuel BOC to NEOC Nominal Scram Speed (NSS)
(Reference 3)
Core Thermal Power (% of rated)
EOOS Combination    0            25              60          80        80.01 100 LHGRFACP Multiplier Base Case     0.72           0.72            0.99         1.00             1.00 Base Case SLO   0.72           0.72            0.99         1.00             1.00 FHOOS       0.69           0.69            0.95         1.00             1.00 r rv FHOOS SLO       0.69           0.69            0.95         1.00              1.00 Combined EOOS 1  0.65          0.65                          0.87        0.97  1.00 Combined EOOS 1 SLO 0.65          0.65                          0.87        0.97  1.00 Combined EOOS 2  0.65          0.65                          0.87        1.00 1.00 Combined EOOS 2 SLO 0.65          0.65                          0.87        1.00 1.00 Combined EOOS 3  0.65           0.65                         0.87       0.96 1.00 Combined EOOS 3 SLO 0.65          0.65                          0.87        0.96  1.00 Page 18 of 30
 
COLR LaSalle 1 Revision 8 Table 6-3 LHGRFAC(P) for ATRIUM -10 Fuel BOC to NEOC Technical Specification Scram Speed (TSSS)
(Reference 3)
Core Thermal Power (% of rated)
EGOS Combination    0            25              60          80        80.01 100 LHGRFACP Multiplier Base Case      0.71          0.71            0.97         1.00            1.00 Base Case SLO    0.71          0.71            0.97        1.00            1.00 FHOOS        0.68          0.68            0.94        1.00            1.00 FHOOS SLO      0.68          0.68            0.94        1.00            1.00 Combined EOOS 1  0.65          0.65                          0.87        0.94 0.98 Combined EOOS 1 SLO 0.65           0.65                         0.87       0.94 0.98 Combined EOOS 2  0.65          0.65                          0.87        0.97 1.00 Combined EOOS 2 SLO 0.65 OR  z      0.87        0.97 0.65                                          1.00 Combined EOOS 3  0.65          0.65                          0.87        0.93 0.97 Combined EOOS 3 SLO 0.65          0.65                          0.87        0.93 0.97 Page 19 of 30
 
COLR LaSalle 1 Revision 8 Table 6-4 LHGRFAC (P) for ATRIUM-10 Fuel NEOC to EOC Nominal Scram Speed (NSS)
(Reference 3)
Core Thermal Power (% of rated)
EOOS Combination    0            25              60          80        80.01 100 LHGRFACP Multiplier Base Case      0.72          0.72            0.99        1.00              1.00 Base Case SLO    0.72          0.72            0.99        1.00              1.00 FHOOS        0.69          0.69            0.95        1.00      5 S    1.00 FHOOS SLO      0.69          0.69            0.95        1.00              1.00 Combined EOOS 1  0.65          0.65                          0.87        0.97  0.97 "OK Combined EOOS I SLO 0.65          0.65                          0.87        0.97  0.97 Combined EOOS 2  0.65          0.65                          0.87        0.97  0.97 Combined EOOS 2 SLO 0.65          0.65                          0.87        0.97  0.97 Combined EOOS 3  0.65          0.65                          0.87        0.96 0.97 Combined EOOS 3 SLO 0.65          0.65                          0.87        0.96  0.97 Page 20 of 30
 
COLR LaSalle 1 Revision 8 Table 6-5 LHGRFAC(P) for ATRIUM-10 Fuel NEOC to EOC Technical Specification Scram Speed (TSSS)
(Reference 3)
Core Thermal Power (% of rated)
EOOS Combination    0            25              60          80        80.01 100 LHGRFACP Multiplier Base Case      0.71          0.71            0.97        1.00            1.00 Base Case SLO    0.71          0.71            0.97        1.00            1.00 FHOOS        0.68          0.68            0.94        1.00            1.00 FHOOS SLO      0.68          0.68            0.94        1.00            1.00 Combined EOOS 1  0.65          0.65                          0.87      0.94  0.96 Combined EOOS 1 SLO 0.65          0.65        ggg              0.87      0.94  0.96 Combined EOOS 2   0.65           0.65                         0.87       0.97  0.97 Combined EOOS 2 SLO 0.65          0.65                          0.87      0.97  0.97 Combined EOOS 3  0.65          0.65                          0.87      0.93  0.97 Combined EOOS 3 SLO 0.65          0.65                          0.87      0.93  0.97 Page 21 of 30
 
COLR LaSalle 1 Revision 8 Table 6-6 LHGRFAC (P) for ATRIUM-10 Fuel Coastdown Operation Nominal Scram Speed (NSS)
(Reference 3)
Core Thermal Power (% of rated)
EOOS Combination    0              25              60            80      80.01 100 LHGRFACP Multiplier Base Case      0.72            0.72            0.99          1.00            1.00 Base Case SLO    0.72            0.72            0.99          1.00            1.00 FHOOS        0.69            0.69            0.95          1.00            1.00 FHOOS SLO      0.69            0.69            0.95          1.00            1.00 Combined EOOS 1  0.65            0.65                          0.87      0.96 0.97 Combined EOOS 1 SLO 0.65            0.65                          0.87      0.96 0.97 s        t Combined EOOS 2  0.65            0.65                          0.87      0.96 0.97 Combined EOOS 2 SLO 0.65           0.65       w      Y          0.87       0.96 0.97 Combined EOOS 3   0.65           0.65                           0.87       0.96 0.97 Combined EOOS 3 SLO 0.65           0.65           `               0.87       0.96 0.97 Page 22 of 30
 
COLR LaSalle 1 Revision 8 Table 6-7 LHGRFAC( P) for ATRIUM-10 Fuel Coastdown Operation Technical Specification Scram Speed (TSSS)
(Reference 3)
Core Thermal Power (% of rated)
EOOS Combination     0             25               60           80         80.01 100 LHGRFACP Multiplier Base Case     0.71           0.71             0.97         1.00               1.00 Base Case SLO   0.71           0.71             0.97         1.00              1.00
                                                                            ----- --
FHOOS       0.68           0.68             0.94         1.00               1.00 FHOOS SLO       0.68           0.68             0.94         1.00               1.00 Combined EOOS 1   0.65           0.65                           0.87         0.91 0.94 Combined EGOS I SLO 0.65           0.65                           0.87         0.91 0.94 Combined EOOS 2   0.65           0.65           y              0.87         0.95 0.95 Combined EOOS 2 SLO 0.65           0.65                           0.87         0.95 0.95 Combined EOOS 3   0.65           0.65                           0.87         0.93 0.95 Combined EOOS 3 SLO 0.65           0.65                           0.87         0.93 0.95 Page 23 of 30
 
COLR LaSalle 1 Revision 8 Table 6-8 LHGRFAC(F) Multipliers for ATRIUM-10 Fuel, DLO and SLO Supports Base Case, FHOOS, and Combined EOOS 1 with all TBV Opening Via the Pressure Control System (Reference 3)
Flow       LHGRFAC(F)
(% rated)      Multiplier 105.00             1.00 80.00             1.00 30.00             0.75 0.00             0.75 Table 6-9 LHGRFAC(F) Multipliers for ATRIUM-10 Fuel, DLO and SLO Supports Base Case, FHOOS, Combined EOOS 1, Combined EOOS 2 and Combined EOOS 3 with 2 or more TBV Opening via the Pressure Control System (Reference 3)
Flow       LHGRFAC(F)
(% rated)      Multiplier 105.00             1.00 80.00             1.00 30.00             0.75 0.00             0.75 Page 24 of 30
 
COLR LaSalle 1 Revision 8
: 7. Rod Block Monitor The Rod Block Monitor Upscale Instrumentation Setpoints are determined from the relationships shown below (Reference 5):
Table 7- 1 Rod Block Monitor Setpoints ROD BLOCK MONITOR UPSCALE TRIP FUNCTION             ALLOWABLE VALUE Two Recirculation Loop 0.66 Wd + 54.0%
Operation Single Recirculation Loop 0.66 Wd + 48.7%
Operation Single Recirculation Loop 0.66 Wd + 48.7%
Operation The setpoint may be lower/higher and will still comply with the rod withdrawal error (RWE) analysis because RWE is analyzed unblocked. The allowable value is clamped with a maximum value not to exceed the allowable value for a recirculation loop drive flow (Wd) of 100%.Wd - percent of recirculation loop drive flow required to produce a rated core flow of 108.5 Mlb/hr.Page 25 of 30 COLR LaSalle 1 Revision 8 8.Traversing In-Core Probe System 8.1
Operation The setpoint may be lower/higher and will still comply with the rod withdrawal error (RWE) analysis because RWE is analyzed unblocked. The allowable value is clamped with a maximum value not to exceed the allowable value for a recirculation loop drive flow (Wd) of 100%.
Wd - percent of recirculation loop drive flow required to produce a rated core flow of 108.5 Mlb/hr.
Page 25 of 30
 
COLR LaSalle 1 Revision 8
: 8. Traversing In-Core Probe System 8.1


== Description:==
== Description:==


When the traversing in-core probe (TIP) system (for the required measurement locations) is used for recalibration of the LPRM detectors and monitoring thermal limits, the TIP system shall be operable with the following:
When the traversing in-core probe (TIP) system (for the required measurement locations) is used for recalibration of the LPRM detectors and monitoring thermal limits, the TIP system shall be operable with the following:
1.movable detectors, drives and readout equipment to map the core in the required measurement locations, and 2.indexing equipment to allow all required detectors to be calibrated in a common location.The following applies for use of the SUBTIP methodology (Reference 6):
: 1. movable detectors, drives and readout equipment to map the core in the required measurement locations, and
: 2. indexing equipment to allow all required detectors to be calibrated in a common location.
The following applies for use of the SUBTIP methodology (Reference 6):
The total number of failed and bypassed LPRMs does not exceed 50%. With one or more TIP measurement locations inoperable, the TIP data for an inoperable measurement location may be replaced by data obtained from a 3-dimensional BWR core monitoring software system adjusted using the previously calculated uncertainties, provided the total number of simulated channels (measurement locations) does not exceed 42% (18 channels).
The total number of failed and bypassed LPRMs does not exceed 50%. With one or more TIP measurement locations inoperable, the TIP data for an inoperable measurement location may be replaced by data obtained from a 3-dimensional BWR core monitoring software system adjusted using the previously calculated uncertainties, provided the total number of simulated channels (measurement locations) does not exceed 42% (18 channels).
Otherwise, with the TIP system inoperable, suspend use of the system for the above applicable monitoring or calibration functions.
Otherwise, with the TIP system inoperable, suspend use of the system for the above applicable monitoring or calibration functions.
Line 156: Line 213:
===8.2 Bases===
===8.2 Bases===
The operability of the TIP system with the above specified minimum complement of equipment ensures that the measurements obtained from use of this equipment accurately represent the spatial neutron flux distribution of the reactor core. The normalization of the required detectors is performed internal to the core monitoring software system.
The operability of the TIP system with the above specified minimum complement of equipment ensures that the measurements obtained from use of this equipment accurately represent the spatial neutron flux distribution of the reactor core. The normalization of the required detectors is performed internal to the core monitoring software system.
Substitute TIP data, if needed, is 3-dimensional BWR core monitoring software calculated data which is adjusted based on axial and radial factors calculated from previous TIP sets.Since the simulation and adjustment process could introduce uncertainty, a maximum of 18 channels may be simulated to ensure that the uncertainties assumed in the substitution process methodology remain valid.
Substitute TIP data, if needed, is 3-dimensional BWR core monitoring software calculated data which is adjusted based on axial and radial factors calculated from previous TIP sets. Since the simulation and adjustment process could introduce uncertainty, a maximum of 18 channels may be simulated to ensure that the uncertainties assumed in the substitution process methodology remain valid.
Page 26 of 30 COLR LaSalle 1 Revision 8 9.Stability Protection Setpoints The OPRM PBDA Trip Settings (Reference 3):
Page 26 of 30
Table 9-1 OPRM PBDA Trip Setpoints PBDA Trip Amplitude Setpoint (Sp)
 
Corresponding Maximum Confirmation Count Setpoint (Np) 11.11 14 The PBDA is the only OPRM setting credited in the safety analysis as documented in the licensing basis for the OPRM system.
COLR LaSalle 1 Revision 8
The OPRM PBDA trip settings are based, in part, on the cycle specific OLMCPR and the power dependent MCPR limits. Any change to the OLMCPR values and/or the power dependent MCPR limits should be evaluated for potential impact on the OPRM PBDA trip settings.The OPRM PBDA trip settings are applicable when the OPRM system is declared operable, and the associated Technical Specifications are implemented.
: 9. Stability Protection Setpoints The OPRM PBDA Trip Settings (Reference 3):
Page 27 of 30 COLR LaSalle 1 Revision 8
Table 9-1 OPRM PBDA Trip Setpoints Corresponding Maximum PBDA Trip Amplitude Setpoint (Sp)       Confirmation Count Setpoint (Np) 1.11                                   14 1
: 10. Modes of Operation The allowed modes of operation with combinations of equipment out-of-service are as described below: Equipment Out of Service Options {1}{2}{4}
The PBDA is the only OPRM setting credited in the safety analysis as documented in the licensing basis for the OPRM system.
Thermal Limit set Base Case Base Base Case + SLO Base SLO Base Case+feedwater heater out-of-service (FHOOS) (Up to 100 degree F FHOOS reduction)
The OPRM PBDA trip settings are based, in part, on the cycle specific OLMCPR and the power dependent MCPR limits. Any change to the OLMCPR values and/or the power dependent MCPR limits should be evaluated for potential impact on the OPRM PBDA trip settings.
Base Case+ TCV slow closure + EOCRPTOOS + PROOS Base Case + TCV slow closure + EOCRPTOOS +
The OPRM PBDA trip settings are applicable when the OPRM system is declared operable, and the associated Technical Specifications are implemented.
5 turbine bypass valves out of Combined EOOS 1 service (5 TBVOOS) (i.e., base case + 4)
Page 27 of 30
 
COLR LaSalle 1 Revision 8
: 10. Modes of Operation The allowed modes of operation with combinations of equipment out-of-service are as described below:
Equipment Out of Service Options {1}{2}{4}                                 Thermal Limit set Base Case                                                                                           Base Base Case + SLO                                                                                   Base SLO Base Case + feedwater heater out-of-service (FHOOS) (Up to 100 degree F                             FHOOS reduction)
Base Case + TCV slow closure + EOCRPTOOS + PROOS Base Case + TCV slow closure + EOCRPTOOS + 5 turbine bypass valves out of                   Combined EOOS 1 service (5 TBVOOS) (i.e., base case + 4)
Base Case + TCV slow closure + EOCRPTOOS + FHOOS (Up to 100 degree F reduction)
Base Case + TCV slow closure + EOCRPTOOS + FHOOS (Up to 100 degree F reduction)
Base Case+ TCV slow closure +EOCRPTOOS + one Stuck Closed TCV and/or Combined EOOS 2 TSV{3} + one MSIVOOS{3}
Base Case + TCV slow closure +EOCRPTOOS + one Stuck Closed TCV and/or Combined EOOS 2 TSV{3} + one MSIVOOS{3}
Base Case + TCV Slow Closure + EOCRPTOOS + one Stuck Closed TCV and/or Combined EOOS 3 TSV{3} + one MSIVOOS{3} + FHOOS (up to 100 degree reduction)
Base Case + TCV Slow Closure + EOCRPTOOS + one Stuck Closed TCV and/or Combined EOOS 3 TSV{3} + one MSIVOOS{3} + FHOOS (up to 100 degree reduction) + PROOS + 2 TBVOOS ( i. e., base case + 1)
+ PROOS + 2 TBVOOS (i.e., base case + 1)
Base Case + TCV Slow Closure + EOCRPTOOS + one Stuck Closed TCV and/or Combined EOOS 3 TSV{3} + one MSIVOOS{3} + FHOOS (up to 100 degree reduction) + PROOS + 2 SLO TBVOOS i.e., base case + 1 + SLO                                                          1                    11
Base Case + TCV Slow Closure + EOCRPTOOS + one Stuck Closed TCV and/or Combined EOOS 3 TSV{3} + one MSIVOOS{3} + FHOOS (up to 100 degree reduction)
{1} Base case includes a feedwater temperature reduction of up to 30 F + I SRVOOS + 1 TBVOOS +
+ PROOS + 2 SLO TBVOOS i.e., base case + 1 + SLO1 11{1}Base case includes a feedwater temperature reduction of up to 30 F + I SRVOOS + 1 TBVOOS +
PLUOOS, and also includes 2 TIPOOS (or the equivalent number of TIP channels) and up to 50% of the LPRMs out-of-service. The base case limits support the ICF, ELLLA, and MELLLA operating domains and coastdown operation. ICF and MELLLA (Reference 7) are not valid during SLO. See Section 3 for SLO.
PLUOOS, and also includes 2 TIPOOS (or the equivalent number of TIP channels) and up to 50% of the LPRMs out-of-service. The base case limits support the ICF, ELLLA, and MELLLA operating domains and coastdown operation. ICF and MELLLA (Reference 7) are not valid during SLO. See Section 3 for SLO.
{2}The TBVOOS nomenclature described in the specific equipment out of service options represents the number of turbine bypass valves that the specific analysis supports not fast opening on either turbine control valve fast closure or turbine stop valve position. Additionally, the thermal limit sets in place to support all EOOS options (including the base case) require at least two turbine bypass valves opening on pressure control.{3}The one Stuck Closed TCV and/or TSV EOOS conditions require power level <_ 85% of rated. The one MSIVOOS condition is also supported as long as thermal power is maintained < 75% of the rated.
{2} The TBVOOS nomenclature described in the specific equipment out of service options represents the number of turbine bypass valves that the specific analysis supports not fast opening on either turbine control valve fast closure or turbine stop valve position. Additionally, the thermal limit sets in place to support all EOOS options (including the base case) require at least two turbine bypass valves opening on pressure control.
(4)The + sign that is used in the Equipment Out of Service Options descriptions designates an "and/or".
{3} The one Stuck Closed TCV and/or TSV EOOS conditions require power level <_ 85% of rated. The one MSIVOOS condition is also supported as long as thermal power is maintained < 75% of the rated.
Page 28 of 30 COLR LaSalle 1 Revision 8
(4) The + sign that is used in the Equipment Out of Service Options descriptions designates an "and/or".
Page 28 of 30
 
COLR LaSalle 1 Revision 8
: 11. Methodology The analytical methods used to determine the core operating limits shall be those previously reviewed and approved by the NRC, specifically those described in the following documents:
: 11. Methodology The analytical methods used to determine the core operating limits shall be those previously reviewed and approved by the NRC, specifically those described in the following documents:
1.XN-NF-81-58 (P)(A), Revision 2 and Supplements 1 and 2, "RODEX2 Fuel Rod Thermal-Mechanical Response Evaluation Model," March 1984.
: 1. XN-NF-81-58 (P)(A), Revision 2 and Supplements 1 and 2, "RODEX2 Fuel Rod Thermal-Mechanical Response Evaluation Model," March 1984.
2.ANF-524 (P)(A) Revision 2 and Supplements 1 and 2, "ANF Critical Power Methodology for Boiling Water Reactors," November 1990 [XN
: 2. ANF-524 (P)(A) Revision 2 and Supplements 1 and 2, "ANF Critical Power Methodology for Boiling Water Reactors," November 1990 [XN -NF-524 (P)(A)].
-NF-524 (P)(A)].3.ANF-913 (P)(A) Volume 1 Revision 1, and Volume 1 Supplements 2, 3, 4, "COTRANSA2: A Computer Program for Boiling Water Reactor Transient Analyses," August 1990.
: 3. ANF-913 (P)(A) Volume 1 Revision 1, and Volume 1 Supplements 2, 3, 4, "COTRANSA2: A Computer Program for Boiling Water Reactor Transient Analyses," August 1990.
4.XN-NF-84-105 (P)(A), Volume 1 and Volume 1 Supplements 1 and 2; Volume 1 Supplement 4, "XCOBRA-T: A Computer Code for BWR Transient Thermal-Hydraulic Core Analysis," February 1987 and June 1988, respectively.
: 4. XN-NF-84-105 (P)(A), Volume 1 and Volume 1 Supplements 1 and 2; Volume 1 Supplement 4, "XCOBRA-T: A Computer Code for BWR Transient Thermal-Hydraulic Core Analysis,"
5.EMF-2209 (P)(A), Revision 3, "SPCB Critical Power Correlation," September 2009.
February 1987 and June 1988, respectively.
6.ANF-89-98 (P)(A), Revision 1 and Revision 1 Supplement 1, "Generic Mechanical Design Criteria for BWR Fuel Designs," May 1995.
: 5. EMF-2209 (P)(A), Revision 3, "SPCB Critical Power Correlation," September 2009.
7.EMF-85-74 (P) Revision 0 Supplement 1(P)(A) and Supplement 2(P)(A), "RODEX2A (BWR)
: 6. ANF-89-98 (P)(A), Revision 1 and Revision 1 Supplement 1, "Generic Mechanical Design Criteria for BWR Fuel Designs," May 1995.
: 7. EMF-85-74 (P) Revision 0 Supplement 1(P)(A) and Supplement 2(P)(A), "RODEX2A (BWR)
Fuel Rod Thermal-Mechanical Evaluation Model," February 1998.
Fuel Rod Thermal-Mechanical Evaluation Model," February 1998.
8.EMF-CC-074 (P)(A) Volume 4 Revision 0, "BWR Stability Analysis: Assessment of STAIF with Input from MICROBURN
: 8. EMF-CC-074 (P)(A) Volume 4 Revision 0, "BWR Stability Analysis: Assessment of STAIF with Input from MICROBURN -B2," August 2000.
-B2," August 2000.
: 9. ANF-CC-33 (P)(A) Supplement 1 Revision 1 and Supplement 2, "HUXY: A Generalized Multirod Heatup Code with 10 CFR 50, Appendix K Heatup Option," August 1986 and January 1991, respectively.
9.ANF-CC-33 (P)(A)
: 10. XN-NF-80-19 (P)(A) Volume 4 Revision 1, "Exxon Nuclear Methodology for Boiling Water Reactors: Application of the ENC Methodology to BWR Reloads," June 1986.
Supplement 1 Revision 1 and Supplement 2, "HUXY: A Generalized Multirod Heatup Code with 10 CFR 50, Appendix K Heatup Option," August 1986 and January 1991, respectively.
: 11. XN-NF-85-67 (P)(A) Revision 1, "Generic Mechanical Design for Exxon Nuclear Jet Pump BWR Reload Fuel", September 1986.
10.XN-NF-80-19 (P)(A) Volume 4 Revision 1, "Exxon Nuclear Methodology for Boiling Water Reactors: Application of the ENC Methodology to BWR Reloads," June 1986.
: 12. XN-NF-80-19 (P)(A) Volume 3 Revision 2, "Exxon Nuclear Methodology for Boiling Water Reactors, THERMEX: Thermal Limits Methodology Summary Description," January 1987.
11.XN-NF-85-67 (P)(A) Revision 1, "Generic Mechanical Design for Exxon Nuclear Jet Pump BWR Reload Fuel", September 1986.
: 13. XN-NF-80-19 (P)(A) Volume 1 and Supplements 1 and 2, "Exxon Nuclear Methodology for Boiling Water Reactors - Neutronic Methods for Design and Analysis," March 1983.
12.XN-NF-80-19 (P)(A) Volume 3 Revision 2, "Exxon Nuclear Methodology for Boiling Water Reactors, THERMEX: Thermal Limits Methodology Summary Description," January 1987.
: 14. EMF-2158 (P)(A), Revision 0, "Siemens Power Corporation Methodology for Boiling Water Reactors: Evaluation and Validation of CASMO-4/MICROBURN-B2", Siemens Power Corporation, October 1999.
13.XN-NF-80-19 (P)(A) Volume 1 and Supplements 1 and 2, "Exxon Nuclear Methodology for Boiling Water Reactors - Neutronic Methods for Design and Analysis," March 1983.
: 15. EMF-2245 (P)(A), Revision 0, "Application of Siemens Power Corporation's Critical Power Correlations to Co-Resident Fuel", August 2000.
14.EMF-2158 (P)(A), Revision 0, "Siemens Power Corporation Methodology for Boiling Water Reactors: Evaluation and Validation of CASMO-4/MICROBURN-B2", Siemens Power Corporation, October 1999.
: 16. EMF-2361 (P)(A), Revision 0, "EXEM BWR-2000 ECCS Evaluation Model", May 2001.
15.EMF-2245 (P)(A), Revision 0, "Application of Siemens Power Corporation's Critical Power Correlations to Co-Resident Fuel", August 2000.
Page 29 of 30
16.EMF-2361 (P)(A), Revision 0, "EXEM BWR-2000 ECCS Evaluation Model", May 2001.
 
Page 29 of 30 COLR LaSalle 1 Revision 8 17.NEDO-32465-A, "BWR Owner's Group Reactor Stability Detect and Suppress Solutions Licensing Basis Methodology for Reload Applications", August 1996.
COLR LaSalle 1 Revision 8
18.ANF-1 358 (P)(A), Revision 3, "The Loss of Feedwater Heating Transient in Boiling Water Reactors", September 2005.
: 17. NEDO-32465-A, "BWR Owner's Group Reactor Stability Detect and Suppress Solutions Licensing Basis Methodology for Reload Applications", August 1996.
: 18. ANF-1 358 (P)(A), Revision 3, "The Loss of Feedwater Heating Transient in Boiling Water Reactors", September 2005.
Page 30 of 30}}
Page 30 of 30}}

Revision as of 22:30, 13 November 2019

Submittal of Unit 1 Cycle 14 Core Operating Limits Report (COLR)
ML100570160
Person / Time
Site: LaSalle Constellation icon.png
Issue date: 02/25/2010
From: Wozniak D
Exelon Generation Co, Exelon Nuclear
To:
Document Control Desk, Office of Nuclear Reactor Regulation
References
GL-88-016, RA10-013
Download: ML100570160 (31)


Text

LaSalle Generating Station www.exeloncorp.com 2601 North zest Road Nuclear Marseilles, I L 61341-9757 RA10-013 10CFR50.59 February 25, 2010 U. S. Nuclear Regulatory Commission ATTN: Document Control Desk Washington, DC 20555-0001 LaSalle County Station, Unit 1 Facility Operating License No. NPF-1 1 NRC Docket No. 50-373

Subject:

Unit 1 Cycle 14 Core Operating Limits Report (COLR)

The purpose of this letter is to advise you of the Exelon Generation Company, LLC (EGC) review and approval of the LaSalle Unit 1 Cycle 14 reload under the provisions of 10 CFR 50.59, "Changes, tests and experiments," and to transmit the Core Operating Limits Report (COLR) for Cycle 14, consistent with Generic Letter 88-16, "Removal of Cycle-Specific Parameter Limits From Technical Specifications." This report is being submitted in accordance with LaSalle County Station Technical Specification (TS) 5.6.5, "Core Operating Limits (COLR)," item d.

The reload licensing analyses performed for Cycle 14 utilized NRC approved methodologies.

The Unit 1 Cycle 14 core, which consists of NRC approved fuel designs developed by AREVA NP Inc., was designed to operate within approved fuel design criteria provided in the Technical Specifications and related TS Bases. The core operating characteristics are bounded by the Updated Final Safety Analysis Report (UFSAR) allowable limits.

EGC has performed a review of the relevant reload licensing documents, associated TS Bases, and references in accordance with 10 CFR 50.59. This review concluded that the reload does not require NRC review and approval.

Should you have any questions concerning this submittal, please contact Mr. Terrence W.

Simpkin, Regulatory Assurance Manager, at (815) 415-2800.

Respectfully, David B. Wozniak Site Vice President LaSalle County Station Attachment cc: Regional Administrator - NRC Region III NRC Senior Resident Inspector - LaSalle County Station

COLR LaSalle I Revision 8 Core Operating Limits Report for LaSalle Unit 1 Cycle 14 Revision 0 Page 1 of 30

COLR LaSalle 1 Revision 8 Table of Contents

1. References ................................................................................................................................... 5
2. Terms and Definitions ..................................................................................................................6
3. General Information ..................................................................................................................... 7
4. Average Planar Linear Heat Generation Rate .............................................................................8
5. Operating Limit Minimum Critical Power Ratio ............................................................................ 9 5.1. Manual Flow Control MCPR Limits ...................................................................................... 9 5.1.1. Power-Dependent MCPR .............................................................................................. 9 5.1.2. Flow - Dependent MCPR ............................................................................................... 9 5.2. Automatic Flow Control MCPR Limits ..................................................................................9 5.3. Scram Time .......................................................................................................................... 9 5.4. Recirculation Flow Control Valve Settings ........................................................................... 9
6. Linear Heat Generation Rate .....................................................................................................17
7. Rod Block Monitor ...................................................................................................................... 25
8. Traversing In-Core Probe System ............................................................................................ 26 8.1

Description:

......................................................................................................................... 26

8.2 Bases

.................................................................................................................................. 26

9. Stability Protection Setpoints .................................................................................................... 27
10. Modes of Operation ................................................................................................................. 28
11. Methodology ............................................................................................................................ 29 Page 2 of 30

COLR LaSalle 1 Revision 8 List of Tables Table 4- 1 MAPLHGR for bundle(s):

A10-4046B- 13GV80 A10-3537B - 12GV80 A10-3537B- 12GV80a A10-3913B - 12GV80 Al 0-4041 B -14GV80 A10-3924B - 14GV80 A10-4064B -14GV80 Al 0-3971 B- 16GV80 A10-4058 B-16G V80 ....................................................................................... 8 Table 4-2 MAPLHGR SLO multiplier for AREVA Fuel ......................................... 8 Table 5- 1 MCPR(P) for ATRIUM - 10 Fuel BOC to NEOC Nominal Scram Speed (NSS) ..... 10 Table 5-2 MCPR(P) for ATRIUM-10 Fuel BOC to NEOC Technical Specification Scram Speed (TSSS) ....................................................................................................... 11 Table 5-3 MCPR(P) for ATRIUM - 10 Fuel NEOC to EOC Nominal Scram Speed (NSS)....... 12 Table 5-4 MCPR(P) for ATRIUM - 10 Fuel NEOC to EOC Technical Specification Scram Speed (TSSS) ....................................................................................................... 13 Table 5-5 MCPR(P) for ATRIUM - 10 Fuel Coastdown Operation Nominal Scram Speed (NSS) ....................................................................................................... 14 Table 5-6 MCPR(P) for ATRIUM - 10 Fuel Coastdown Operation Technical Specification Scram Speed (TSSS) ............................................................................ 15 Table 5-7 MCPR(F) Limits for AREVA Fuel, DLO and SLO Supports Base Case, FHOOS, and Combined EOOS 1 with All TBV Opening via the Pressure Control System ........................ 16 Table 5-8 MCPR(F) Limits for AREVA Fuel, DLO and SLO Supports Base Case, FHOOS, and Combined EOOS 1 with 2 or more TBV Opening via the Pressure Control System ............... 16 Table 5-9 MCPR(F) Limits for AREVA Fuel, DLO and SLO Supports Combined EOOS 2 and Combined EOOS 3 with 2 or more TBV Opening via the Pressure Control System ............... 16 Table 6- 1: LHGR Limit for AREVA ATRIUM- 10 Fuel A10-4046B- 13GV80 A10-3537B-12GV80 Al 0-3537B-12GV80a Al 0-3913B - 12GV80 Al 0-4041 B-14GV80 Al 0-39248- 14GV80 A10-4064B- 14GV80 Al 0-3971 B-16GV80 A10-4058 B - 16G V80 ....................................................................................... 17 Table 6-2 LHGRFAC(P) for ATRIUM - 10 Fuel BOC to NEOC Nominal Scram Speed (NSS) ................................................................................................................ 18 Table 6-3 LHGRFAC(P) for ATRIUM - 10 Fuel BOC to NEOC Technical Specification Scram Speed (TSSS) ............................................................................................ 19 Table 6-4 LHGRFAC(P) for ATRIUM -10 Fuel NEOC to EOC Nominal Scram Speed (NSS) ................................................................................................................. 20 Table 6-5 LHGRFAC(P) for ATRIUM-10 Fuel NEOC to EOC Technical Specification Scram Speed (TSSS) ............................................................................................ 21 Table 6-6 LHGRFAC(P) for ATRIUM - 10 Fuel Coastdown Operation Nominal Scram Speed (NSS) .................................................................................................................. 22 Table 6-7 LHGRFAC(P) for ATRIUM-10 Fuel Coastdown Operation Technical Specification Scram Speed (TSSS) ........................................................................... 23 Table 6-8 LHGRFAC(F) Multipliers for ATRIUM-10 Fuel, DLO and SLO Supports Base Case, FHOOS, and Combined EOOS 1 with all TBV Opening via the Pressure Control System ...... 24 Page 3 of 30

COLR LaSalle 1 Revision 8 Table 6-9 LHGRFAC(F) Multipliers for ATRIUM-10 Fuel, DLO and SLO Supports Base Case, FHOOS, Combined EOOS 1, Combined EOOS 2 and Combined EOOS 3 with 2 or more TBV Opening via the Pressure Control System ................................................................... 24 Table 7-1 Rod Block Monitor Setpoints ....................................................................... 25 Table 9-1 OPRM PBDA Trip Setpoints ....................................................................... 27 Page 4 of 30

COLR LaSalle 1 Revision 8

1. References
1. Exelon Generation Company, LLC Docket No. 50-373 LaSalle County Station, Unit 1, License No.

NPF-11.

2. NRC Letter from D. M. Crutchfield to All Power Reactor Licensees and Applicants, Generic Letter 88-16; Concerning the Removal of Cycle-Specific Parameter Limits from Tech Specs, October 3, 1988.
3. AREVA Report ANP-2882 Revision 0, "LaSalle Unit 1 Cycle 14 Reload Analysis," AREVA NP Inc.,

January 2010.

4. AREVA Report ANP-2818 (P) Revision 0, "LaSalle Unit 1 Cycle 14 Principal Transient Analysis Parameters", AREVA NP, Inc., July 2009.
5. Nuclear Fuels Letter NFM:MW:01-0106, from A. Giancatarino to J. Nugent, "LaSalle Unit 1 and Unit 2 Rod Block Monitor COLR Setpoint Change," April 3, 2001.
6. AREVA document 51-9114888-000, "Plant Startup Testing Requirements for Power Distribution Uncertainty Verification", AREVA NP, Inc., July 2009.
7. GE Nuclear Energy Document GE-NE-A1300384-07-01, Revision 1, "LaSalle County Station Power Uprate Project Task 201: Reactor Power/Flow Map", September 1999.

Page 5 of 30

COLR LaSalle 1 Revision 8

2. Terms and Definitions APLHGR Average planar linear heat generation rate APRM Average power range monitor BOC Beginning of cycle DLO Dual loop operation EFPH Effective full power hours ELLLA Extended load line limit analysis EOC End of cycle EOOS Equipment out of service FFTR Final feedwater temperature reduction FHOOS Feedwater heater out of service ICF Increased core flow LHGR Linear heat generation rate LHGRFAC(F) Flow dependent LHGR multiplier LHGRFAC(P) Power dependent LHGR multiplier LPRM Local power range monitor MAPLHGR Maximum average planar linear heat generation rate MCPR Minimum critical power ratio MCPR(F) Flow dependent MCPR MCPR(P) Power dependent MCPR MELLLA Maximum extended load line limit analysis MSIV Main steam isolation valve MSIVOOS Main steam isolation valve out of service NEOC Near end of cycle NSS Nominal scram speed OLMCPR Operating limit minimum critical power ratio OPRM Oscillation power range monitor PBDA Period based detection algorithm PLUOOS Power load unbalance out of service PPD Plant Parameter Document PROOS Pressure regulator out of service RBM Rod block monitor RPT Recirculation pump trip RPTOOS Recirculation pump trip out of service RWE Rod withdrawal error SLMCPR Safety limit minimum critical power ratio SLO Single loop operation SRVOOS Safety-relief valve out of service TBV Turbine bypass valve TBVOOS Turbine bypass valve out of service TCV Turbine control valve TCVOOS Turbine control valve out of service TIP Traversing in-core probe TIPOOS Traversing in-core probe out of service TSSS Technical specification scram speed TSV Turbine stop valve TSVOOS Turbine stop valve out of service Page 6 of 30

COLR LaSalle 1 Revision 8

3. General Information Power and flow dependent limits are listed for various power and flow levels. Linear interpolation is to be used to find intermediate values.

Rated core flow is 108.5 Mlb/hr. Operation up to 105% rated flow is licensed for this cycle.

Licensed rated thermal power is 3489 MWth.

For thermal limit monitoring above 100% rated power or 100% rated core flow, the 100% rated power and the 100% core flow values, respectively, can be used unless otherwise indicated in the applicable table.

The thermal limits provided in the COLR support SLO for all analyzed equipment out of service options. However, SLO thermal limit sets for Base case and Combined EOOS 3 are only provided for online monitoring. Additional thermal limit sets can be provided for online monitoring as necessary.

Core Exposure Definitions (Reference 3):

Exposure Nomenclature Core Average Exposure (MWD/MTU)

NEOC14 30342 EOC14 33862 Maximum Core Exposure 37862 Page 7 of 30

COLR LaSalle 1 Revision 8

4. Average Planar Linear Heat Generation Rate The MAPLHGR values for the most limiting lattice of each fuel type as a function of average planar exposure is given in Table 4-1. During single loop operation, these limits are multiplied by the SLO multiplier listed in Table 4-2. The MAPLHGR values in Table 4-1 and MAPLHGR SLO multiplier in Table 4-2 encompass all modes of operation.

Table 4-1 MAPLHGR for bundle(s):

A10-4046B-13GV80 A10-3537B-12GV80 A10-3537B - 12GV80a A10-3913B-12GV80 A10-4041 B -14GV80 A10-3924B -14GV80 A10-4064B-14GV80 A10-3971 B-16GV80 A10-4058B -16GV80 (Reference 3)

Avg. Planar Exposure MAPLHGR (GWd/MT) (kW/ft) 0.00 12.5 15.00 12.5 55.00 9.1 67.00 7.1 Table 4-2 MAPLHGR SLO multiplier for AREVA Fuel (Reference 3)

SLO Fuel Type Multiplier ATRIUM-10 0.82 Page 8 of 30

COLR LaSalle 1 Revision 8

5. Operating Limit Minimum Critical Power Ratio 5.1. Manual Flow Control MCPR Limits The OLMCPR is determined for a given power and flow condition by evaluating the power-dependent MCPR and the flow-dependent MCPR and selecting the greater of the two.

5.1.1. Power- Dependent MCPR The power-dependent MCPR limit, MCPR(P), is determined from Tables 5-1 through 5-6, and is dependent on exposure, fuel type, and scram speed, in addition to power level.

5.1.2. Flow - Dependent MCPR Tables 5-7 through 5-9 give the MCPR(F) limit as a function of the flow based on the applicable plant condition. The MCPR(F) limit determined from these tables is the flow dependent OLMCPR.

5.2. Automatic Flow Control MCPR Limits Automatic Flow Control MCPR Limits are not provided.

5.3. Scram Time NSS and TSSS refer to scram speeds.

To utilize the MCPR limits for Technical Specification Scram Speed (TSSS), the scram speed insertion time must be equal to or less than the values provided below.

To utilize the MCPR limits for Nominal Scram Speed (NSS), the scram speed insertion time must be equal to or less than the values provided below (Reference 4).

Notch Position TSSS Time (sec.) NSS Time sec.

45 0.53 0.38 39 0.85 0.68 25 1.90 1.68 05 3.45 2.68 5.4. Recirculation Flow Control Valve Settings Cycle 14 was analyzed with a maximum core flow runout of 105%; therefore the recirculation pump flow control valve must be set to maintain core flow less than 105%

(113.9 Mlb/hr) for all runout events (Reference 4). This value is consistent with the analyses of Reference 3.

Page 9 of 30

COLR LaSalle 1 Revision 8 Table 5-1 MCPR(P) for ATRIUM-10 Fuel BOC to NEOC Nominal Scram Speed (NSS)

(Reference 3)

Core Thermal Power (% of rated)

EOOS Combination 0 25 60 80 80.01 100 MCPRP Base Case 2.14 2.14 1.55 1.40 Base Case SLO 2.15 2.15 1.56 1.41 FHOOS 2.23 2.23 1.61 1.40 FHOOS SLO 2.24 2.24 1.62 0 1.41

., ,, ..

Combined EOOS 1 2.29 2.29 1.74 1.53 1.45 Combined EOOS 1 SLO 2.30 2.30 1.75 1.54 1.46 Combined EOOS 2 2.29 2. 29 1.74 1.53 1.44 Combined EOOS 2 SLO 2.30 2.30 1.75 1.54 1.45 Combined EOOS 3 2.29 2.29 1.74 1.54 1.46 Combined EOOS 3 SLO 2.30 2.30 1.75 1.55 1.47 Page 10 of 30

COLR LaSalle 1 Revision 8 Table 5-2 MCPR(P) for ATRIUM-10 Fuel BOC to NEOC Technical Specification Scram Speed (TSSS)

(Reference 3)

Core Thermal Power (% of rated)

EOOS Combination 0 25 60 80 80.01 100 MCPRP Base Case 2.19 2.19 1.58 1.42 Base Case SLO 2.20 2.20 1.59 MESS 1.43 FHOOS 2.29 2.29 1.64 1.45 FHOOS SLO 2.30 2.30 1.65 1.46 Combined EOOS 1 2.31 2.31 1.74 1.57 1.51 Combined EOOS 1 SLO 2.32 2.32 1.75 1.58 1.52 Combined EOOS 2 2.31 2.31 1.74 1.56 1.47 Combined EOOS 2 SLO 2.32 2.32 1.75 1.57 1.48 Combined EOOS 3 2.31 2.31 1.74 1.58 1.51 gggwgmn Combined EOOS 3 SLO 2.32 2.32 1.75 1.59 1.52 Page 11 of 30

COLR LaSalle 1 Revision 8 Table 5-3 MCPR(P) for ATRIUM-10 Fuel NEOC to EOC Nominal Scram Speed (NSS)

(Reference 3)

Core Thermal Power (% of rated)

EOOS Combination 0 25 60 80 80.01 100 MCPRP Base Case 2.14 2.14 1.55 1.42 Base Case SLO 2.15 2.15 1.56 1.43 FHOOS 2.23 2.23 1.61 ^ 1.42 TM - - --

FHOOS SLO 2.24 2.24 1.62 1.43 Combined EGOS 1 2.29 2.29 1.74 1.53 1.49 Combined EOOS 1 SLO 2.30 2.30 1.75 1.54 1.50 Combined EGOS 2 2.29 2.29 1.74 1.53 1.48 Combined EOOS 2 SLO 2.30 2.30 W 1.75 1.54 1.49

{

Combined EOOS 3 2.29 2.29 1.74 1.54 1.48

'gg 1.75 Combined EOOS 3 SLO 2.30 2.30 1.55 1.49 Page 12 of 30

COLR LaSalle 1 Revision 8 Table 5-4 MCPR(P) for ATRIUM -10 Fuel NEOC to EOC Technical Specification Scram Speed (TSSS)

(Reference 3)

Core Thermal Power (% of rated)

EOOS Combination 0 25 60 80 80.01 100 MCPRP Base Case 2.19 2.19 1.58 SRI 4-1 1.45 Base Case SLO 2.20 2.20 1.59 1.46 FHOOS 2.29 2.29 1.64 1.45 FHOOS SLO 2.30 2.30 1.65 1.46

,

Combined EOOS 1 2.31 2.31 1.74 1.57 1.52 Combined EGOS 1 SLO 2.32 2.32 1.75 1.58 1.53 Combined EOOS 2 2.31 2.31 1.74 1.56 1.52 Combined EOOS 2 SLO 2.32 2.32 1.75 1.57 1.53 Combined EGOS 3 2.31 2.31 1.74 1.58 1.52 Combined EOOS 3 SLO 2.32 2.32 1.75 1.59 1.53 Page 13 of 30

COLR LaSalle 1 Revision 8 Table 5- 5 MCPR(P) for ATRIUM -10 Fuel Coastdown Operation Nominal Scram Speed (NSS)

(Reference 3)

Core Thermal Power (% of rated)

EOOS Combination 0 25 60 80 80.01 100 MCPRP Base Case 2.14 2.14 1.55 1.43 Base Case SLO 2.15 2.15 1.56 1.44 FHOOS 2.23 2.23 1.61 1.43 FHOOS SLO 2.24 2.24 1.62 1.44 Combined EOOS 1 2.29 2.29 1.74 1.54 1.50 Combined EOOS 1 SLO 2.30 2.30 1.75 1.55 1.51 Combined EOOS 2 2.29 2.29 1.74 1.53 1.50 Combined EOOS 2 SLO 2.30 2.30 1.75 1.54 1.51 Combined EOOS 3 2.29 2.29 1.74 1.54 1.50 Combined EOOS 3 SLO 2.30 2.30 1.75 1.55 1.51


Page 14 of 30

COLR LaSalle 1 Revision 8 Table 5-6 MCPR(P) for ATRIUM-10 Fuel Coastdown Operation Technical Specification Scram Speed (TSSS)

(Reference 3)

Core Thermal Power (% of rated)

EOOS Combination 0 25 60 80 80.01 100 MCPRP Base Case 2.19 2.19 1.58 1.45 Base Case SLO 2.20 2.20 1.59 1.46 FHOOS 2.29 2.29 1.64 1.45 FHOOS SLO 2.30 2.30 1.65 1.46 Combined EOOS 1 2.31 2.31 1.74 1.58 1.53 Combined EOOS 1 SLO 2.32 2.32 1.75 1.59 1.54 Combined EOOS 2 2.31 2.31 1.74 1.57 1.53 Combined EOOS 2 SLO 2.32 2.32 1.75 1.58 1.54 Combined EOOS 3 2.31 2.31 1.74 1.58 1.53 Combined EOOS 3 SLO 2.32 2.32 R 1.75 1.59 1.54 Page 15 of 30

COLR LaSalle 1 Revision 8 Table 5-7 MCPR(F) Limits for AREVA Fuel, DLO and SLO Supports Base Case, FHOOS, and Combined EOOS 1 with All TBV Opening via the Pressure Control System (Reference 3)

Flow MCPR(F)

(% rated) Limit 105.0 1.15 40.0 1.65 0.0 1.65 Table 5-8 MCPR(F) Limits for AREVA Fuel, DLO and SLO Supports Base Case, FHOOS, and Combined EOOS 1 with 2 or more TBV Opening via the Pressure Control System (Reference 3)

Flow MCPR(F)

(% rated) Limit 105.0 1.30 40.0 1.70 0.0 1.70 Table 5-9 MCPR(F) Limits for AREVA Fuel, DLO and SLO Supports Combined EOOS 2 and Combined EOOS 3 with 2 or more TBV Opening via the Pressure Control System (Reference 3)

Flow MCPR(F)

(% rated) Limit 105.0 1.40 40.0 1.80 0.0 1.80 Page 16 of 30

COLR LaSalle 1 Revision 8

6. Linear Heat Generation Rate The linear heat generation rate (LHGR) limit is the product of the exposure dependent LHGR limit from Table 6-1 and the minimum of: the power dependent LHGR Factor, LHGRFAC(P), or the flow dependent LHGR Factor, LHGRFAC(F) as applicable. The LHGRFAC(P) is determined from Tables 6-2 through 6-7. The LHGRFAC(F) is determined from Table 6-8 through 6-9.

Table 6-1: LHGR Limit for AREVA ATRIUM -10 Fuel Al 0-4046B -13GV80 A10-35378-12GV80 Al 0-3537B-12GV80a A10-3913B -12GV80 A10-4041 B-I 4GV80 Al 0-39248 -14GV80 A10-40648-14GV80 A10-3971 B-16GV80 A10-4058B-16GV80 (Reference 3)

Pellet Exposure LHGR Limit GWd/MTU (kW/ft) 0.00 13.40 17.70 13.40 61.10 9.10 70.40 7.30 Page 17 of 30

COLR LaSalle 1 Revision 8 Table 6-2 LHGRFAC(P) for ATRIUM -10 Fuel BOC to NEOC Nominal Scram Speed (NSS)

(Reference 3)

Core Thermal Power (% of rated)

EOOS Combination 0 25 60 80 80.01 100 LHGRFACP Multiplier Base Case 0.72 0.72 0.99 1.00 1.00 Base Case SLO 0.72 0.72 0.99 1.00 1.00 FHOOS 0.69 0.69 0.95 1.00 1.00 r rv FHOOS SLO 0.69 0.69 0.95 1.00 1.00 Combined EOOS 1 0.65 0.65 0.87 0.97 1.00 Combined EOOS 1 SLO 0.65 0.65 0.87 0.97 1.00 Combined EOOS 2 0.65 0.65 0.87 1.00 1.00 Combined EOOS 2 SLO 0.65 0.65 0.87 1.00 1.00 Combined EOOS 3 0.65 0.65 0.87 0.96 1.00 Combined EOOS 3 SLO 0.65 0.65 0.87 0.96 1.00 Page 18 of 30

COLR LaSalle 1 Revision 8 Table 6-3 LHGRFAC(P) for ATRIUM -10 Fuel BOC to NEOC Technical Specification Scram Speed (TSSS)

(Reference 3)

Core Thermal Power (% of rated)

EGOS Combination 0 25 60 80 80.01 100 LHGRFACP Multiplier Base Case 0.71 0.71 0.97 1.00 1.00 Base Case SLO 0.71 0.71 0.97 1.00 1.00 FHOOS 0.68 0.68 0.94 1.00 1.00 FHOOS SLO 0.68 0.68 0.94 1.00 1.00 Combined EOOS 1 0.65 0.65 0.87 0.94 0.98 Combined EOOS 1 SLO 0.65 0.65 0.87 0.94 0.98 Combined EOOS 2 0.65 0.65 0.87 0.97 1.00 Combined EOOS 2 SLO 0.65 OR z 0.87 0.97 0.65 1.00 Combined EOOS 3 0.65 0.65 0.87 0.93 0.97 Combined EOOS 3 SLO 0.65 0.65 0.87 0.93 0.97 Page 19 of 30

COLR LaSalle 1 Revision 8 Table 6-4 LHGRFAC (P) for ATRIUM-10 Fuel NEOC to EOC Nominal Scram Speed (NSS)

(Reference 3)

Core Thermal Power (% of rated)

EOOS Combination 0 25 60 80 80.01 100 LHGRFACP Multiplier Base Case 0.72 0.72 0.99 1.00 1.00 Base Case SLO 0.72 0.72 0.99 1.00 1.00 FHOOS 0.69 0.69 0.95 1.00 5 S 1.00 FHOOS SLO 0.69 0.69 0.95 1.00 1.00 Combined EOOS 1 0.65 0.65 0.87 0.97 0.97 "OK Combined EOOS I SLO 0.65 0.65 0.87 0.97 0.97 Combined EOOS 2 0.65 0.65 0.87 0.97 0.97 Combined EOOS 2 SLO 0.65 0.65 0.87 0.97 0.97 Combined EOOS 3 0.65 0.65 0.87 0.96 0.97 Combined EOOS 3 SLO 0.65 0.65 0.87 0.96 0.97 Page 20 of 30

COLR LaSalle 1 Revision 8 Table 6-5 LHGRFAC(P) for ATRIUM-10 Fuel NEOC to EOC Technical Specification Scram Speed (TSSS)

(Reference 3)

Core Thermal Power (% of rated)

EOOS Combination 0 25 60 80 80.01 100 LHGRFACP Multiplier Base Case 0.71 0.71 0.97 1.00 1.00 Base Case SLO 0.71 0.71 0.97 1.00 1.00 FHOOS 0.68 0.68 0.94 1.00 1.00 FHOOS SLO 0.68 0.68 0.94 1.00 1.00 Combined EOOS 1 0.65 0.65 0.87 0.94 0.96 Combined EOOS 1 SLO 0.65 0.65 ggg 0.87 0.94 0.96 Combined EOOS 2 0.65 0.65 0.87 0.97 0.97 Combined EOOS 2 SLO 0.65 0.65 0.87 0.97 0.97 Combined EOOS 3 0.65 0.65 0.87 0.93 0.97 Combined EOOS 3 SLO 0.65 0.65 0.87 0.93 0.97 Page 21 of 30

COLR LaSalle 1 Revision 8 Table 6-6 LHGRFAC (P) for ATRIUM-10 Fuel Coastdown Operation Nominal Scram Speed (NSS)

(Reference 3)

Core Thermal Power (% of rated)

EOOS Combination 0 25 60 80 80.01 100 LHGRFACP Multiplier Base Case 0.72 0.72 0.99 1.00 1.00 Base Case SLO 0.72 0.72 0.99 1.00 1.00 FHOOS 0.69 0.69 0.95 1.00 1.00 FHOOS SLO 0.69 0.69 0.95 1.00 1.00 Combined EOOS 1 0.65 0.65 0.87 0.96 0.97 Combined EOOS 1 SLO 0.65 0.65 0.87 0.96 0.97 s t Combined EOOS 2 0.65 0.65 0.87 0.96 0.97 Combined EOOS 2 SLO 0.65 0.65 w Y 0.87 0.96 0.97 Combined EOOS 3 0.65 0.65 0.87 0.96 0.97 Combined EOOS 3 SLO 0.65 0.65 ` 0.87 0.96 0.97 Page 22 of 30

COLR LaSalle 1 Revision 8 Table 6-7 LHGRFAC( P) for ATRIUM-10 Fuel Coastdown Operation Technical Specification Scram Speed (TSSS)

(Reference 3)

Core Thermal Power (% of rated)

EOOS Combination 0 25 60 80 80.01 100 LHGRFACP Multiplier Base Case 0.71 0.71 0.97 1.00 1.00 Base Case SLO 0.71 0.71 0.97 1.00 1.00


--

FHOOS 0.68 0.68 0.94 1.00 1.00 FHOOS SLO 0.68 0.68 0.94 1.00 1.00 Combined EOOS 1 0.65 0.65 0.87 0.91 0.94 Combined EGOS I SLO 0.65 0.65 0.87 0.91 0.94 Combined EOOS 2 0.65 0.65 y 0.87 0.95 0.95 Combined EOOS 2 SLO 0.65 0.65 0.87 0.95 0.95 Combined EOOS 3 0.65 0.65 0.87 0.93 0.95 Combined EOOS 3 SLO 0.65 0.65 0.87 0.93 0.95 Page 23 of 30

COLR LaSalle 1 Revision 8 Table 6-8 LHGRFAC(F) Multipliers for ATRIUM-10 Fuel, DLO and SLO Supports Base Case, FHOOS, and Combined EOOS 1 with all TBV Opening Via the Pressure Control System (Reference 3)

Flow LHGRFAC(F)

(% rated) Multiplier 105.00 1.00 80.00 1.00 30.00 0.75 0.00 0.75 Table 6-9 LHGRFAC(F) Multipliers for ATRIUM-10 Fuel, DLO and SLO Supports Base Case, FHOOS, Combined EOOS 1, Combined EOOS 2 and Combined EOOS 3 with 2 or more TBV Opening via the Pressure Control System (Reference 3)

Flow LHGRFAC(F)

(% rated) Multiplier 105.00 1.00 80.00 1.00 30.00 0.75 0.00 0.75 Page 24 of 30

COLR LaSalle 1 Revision 8

7. Rod Block Monitor The Rod Block Monitor Upscale Instrumentation Setpoints are determined from the relationships shown below (Reference 5):

Table 7- 1 Rod Block Monitor Setpoints ROD BLOCK MONITOR UPSCALE TRIP FUNCTION ALLOWABLE VALUE Two Recirculation Loop 0.66 Wd + 54.0%

Operation Single Recirculation Loop 0.66 Wd + 48.7%

Operation The setpoint may be lower/higher and will still comply with the rod withdrawal error (RWE) analysis because RWE is analyzed unblocked. The allowable value is clamped with a maximum value not to exceed the allowable value for a recirculation loop drive flow (Wd) of 100%.

Wd - percent of recirculation loop drive flow required to produce a rated core flow of 108.5 Mlb/hr.

Page 25 of 30

COLR LaSalle 1 Revision 8

8. Traversing In-Core Probe System 8.1

Description:

When the traversing in-core probe (TIP) system (for the required measurement locations) is used for recalibration of the LPRM detectors and monitoring thermal limits, the TIP system shall be operable with the following:

1. movable detectors, drives and readout equipment to map the core in the required measurement locations, and
2. indexing equipment to allow all required detectors to be calibrated in a common location.

The following applies for use of the SUBTIP methodology (Reference 6):

The total number of failed and bypassed LPRMs does not exceed 50%. With one or more TIP measurement locations inoperable, the TIP data for an inoperable measurement location may be replaced by data obtained from a 3-dimensional BWR core monitoring software system adjusted using the previously calculated uncertainties, provided the total number of simulated channels (measurement locations) does not exceed 42% (18 channels).

Otherwise, with the TIP system inoperable, suspend use of the system for the above applicable monitoring or calibration functions.

8.2 Bases

The operability of the TIP system with the above specified minimum complement of equipment ensures that the measurements obtained from use of this equipment accurately represent the spatial neutron flux distribution of the reactor core. The normalization of the required detectors is performed internal to the core monitoring software system.

Substitute TIP data, if needed, is 3-dimensional BWR core monitoring software calculated data which is adjusted based on axial and radial factors calculated from previous TIP sets. Since the simulation and adjustment process could introduce uncertainty, a maximum of 18 channels may be simulated to ensure that the uncertainties assumed in the substitution process methodology remain valid.

Page 26 of 30

COLR LaSalle 1 Revision 8

9. Stability Protection Setpoints The OPRM PBDA Trip Settings (Reference 3):

Table 9-1 OPRM PBDA Trip Setpoints Corresponding Maximum PBDA Trip Amplitude Setpoint (Sp) Confirmation Count Setpoint (Np) 1.11 14 1

The PBDA is the only OPRM setting credited in the safety analysis as documented in the licensing basis for the OPRM system.

The OPRM PBDA trip settings are based, in part, on the cycle specific OLMCPR and the power dependent MCPR limits. Any change to the OLMCPR values and/or the power dependent MCPR limits should be evaluated for potential impact on the OPRM PBDA trip settings.

The OPRM PBDA trip settings are applicable when the OPRM system is declared operable, and the associated Technical Specifications are implemented.

Page 27 of 30

COLR LaSalle 1 Revision 8

10. Modes of Operation The allowed modes of operation with combinations of equipment out-of-service are as described below:

Equipment Out of Service Options {1}{2}{4} Thermal Limit set Base Case Base Base Case + SLO Base SLO Base Case + feedwater heater out-of-service (FHOOS) (Up to 100 degree F FHOOS reduction)

Base Case + TCV slow closure + EOCRPTOOS + PROOS Base Case + TCV slow closure + EOCRPTOOS + 5 turbine bypass valves out of Combined EOOS 1 service (5 TBVOOS) (i.e., base case + 4)

Base Case + TCV slow closure + EOCRPTOOS + FHOOS (Up to 100 degree F reduction)

Base Case + TCV slow closure +EOCRPTOOS + one Stuck Closed TCV and/or Combined EOOS 2 TSV{3} + one MSIVOOS{3}

Base Case + TCV Slow Closure + EOCRPTOOS + one Stuck Closed TCV and/or Combined EOOS 3 TSV{3} + one MSIVOOS{3} + FHOOS (up to 100 degree reduction) + PROOS + 2 TBVOOS ( i. e., base case + 1)

Base Case + TCV Slow Closure + EOCRPTOOS + one Stuck Closed TCV and/or Combined EOOS 3 TSV{3} + one MSIVOOS{3} + FHOOS (up to 100 degree reduction) + PROOS + 2 SLO TBVOOS i.e., base case + 1 + SLO 1 11

{1} Base case includes a feedwater temperature reduction of up to 30 F + I SRVOOS + 1 TBVOOS +

PLUOOS, and also includes 2 TIPOOS (or the equivalent number of TIP channels) and up to 50% of the LPRMs out-of-service. The base case limits support the ICF, ELLLA, and MELLLA operating domains and coastdown operation. ICF and MELLLA (Reference 7) are not valid during SLO. See Section 3 for SLO.

{2} The TBVOOS nomenclature described in the specific equipment out of service options represents the number of turbine bypass valves that the specific analysis supports not fast opening on either turbine control valve fast closure or turbine stop valve position. Additionally, the thermal limit sets in place to support all EOOS options (including the base case) require at least two turbine bypass valves opening on pressure control.

{3} The one Stuck Closed TCV and/or TSV EOOS conditions require power level <_ 85% of rated. The one MSIVOOS condition is also supported as long as thermal power is maintained < 75% of the rated.

(4) The + sign that is used in the Equipment Out of Service Options descriptions designates an "and/or".

Page 28 of 30

COLR LaSalle 1 Revision 8

11. Methodology The analytical methods used to determine the core operating limits shall be those previously reviewed and approved by the NRC, specifically those described in the following documents:
1. XN-NF-81-58 (P)(A), Revision 2 and Supplements 1 and 2, "RODEX2 Fuel Rod Thermal-Mechanical Response Evaluation Model," March 1984.
2. ANF-524 (P)(A) Revision 2 and Supplements 1 and 2, "ANF Critical Power Methodology for Boiling Water Reactors," November 1990 [XN -NF-524 (P)(A)].
3. ANF-913 (P)(A) Volume 1 Revision 1, and Volume 1 Supplements 2, 3, 4, "COTRANSA2: A Computer Program for Boiling Water Reactor Transient Analyses," August 1990.
4. XN-NF-84-105 (P)(A), Volume 1 and Volume 1 Supplements 1 and 2; Volume 1 Supplement 4, "XCOBRA-T: A Computer Code for BWR Transient Thermal-Hydraulic Core Analysis,"

February 1987 and June 1988, respectively.

5. EMF-2209 (P)(A), Revision 3, "SPCB Critical Power Correlation," September 2009.
6. ANF-89-98 (P)(A), Revision 1 and Revision 1 Supplement 1, "Generic Mechanical Design Criteria for BWR Fuel Designs," May 1995.
7. EMF-85-74 (P) Revision 0 Supplement 1(P)(A) and Supplement 2(P)(A), "RODEX2A (BWR)

Fuel Rod Thermal-Mechanical Evaluation Model," February 1998.

8. EMF-CC-074 (P)(A) Volume 4 Revision 0, "BWR Stability Analysis: Assessment of STAIF with Input from MICROBURN -B2," August 2000.
9. ANF-CC-33 (P)(A) Supplement 1 Revision 1 and Supplement 2, "HUXY: A Generalized Multirod Heatup Code with 10 CFR 50, Appendix K Heatup Option," August 1986 and January 1991, respectively.
10. XN-NF-80-19 (P)(A) Volume 4 Revision 1, "Exxon Nuclear Methodology for Boiling Water Reactors: Application of the ENC Methodology to BWR Reloads," June 1986.
11. XN-NF-85-67 (P)(A) Revision 1, "Generic Mechanical Design for Exxon Nuclear Jet Pump BWR Reload Fuel", September 1986.
12. XN-NF-80-19 (P)(A) Volume 3 Revision 2, "Exxon Nuclear Methodology for Boiling Water Reactors, THERMEX: Thermal Limits Methodology Summary Description," January 1987.
13. XN-NF-80-19 (P)(A) Volume 1 and Supplements 1 and 2, "Exxon Nuclear Methodology for Boiling Water Reactors - Neutronic Methods for Design and Analysis," March 1983.
14. EMF-2158 (P)(A), Revision 0, "Siemens Power Corporation Methodology for Boiling Water Reactors: Evaluation and Validation of CASMO-4/MICROBURN-B2", Siemens Power Corporation, October 1999.
15. EMF-2245 (P)(A), Revision 0, "Application of Siemens Power Corporation's Critical Power Correlations to Co-Resident Fuel", August 2000.
16. EMF-2361 (P)(A), Revision 0, "EXEM BWR-2000 ECCS Evaluation Model", May 2001.

Page 29 of 30

COLR LaSalle 1 Revision 8

17. NEDO-32465-A, "BWR Owner's Group Reactor Stability Detect and Suppress Solutions Licensing Basis Methodology for Reload Applications", August 1996.
18. ANF-1 358 (P)(A), Revision 3, "The Loss of Feedwater Heating Transient in Boiling Water Reactors", September 2005.

Page 30 of 30