Regulatory Guide 3.24: Difference between revisions

From kanterella
Jump to navigation Jump to search
(Created page by program invented by StriderTol)
(Created page by program invented by StriderTol)
 
Line 14: Line 14:
| page count = 13
| page count = 13
}}
}}
{{#Wiki_filter:U.S. ATOMIC ENERGY COMMISSION
{{#Wiki_filter:December 1974 U.S.     ATOMIC ENERGY COMMISSION
REGULATORY  
                                REGULATORY
GU DIRECTORATE  
                                DIRECTORATE OF REGULATORY                                 STANDARDS
OF REGULATORY  
                                                                                                                                GU IDE
STANDARDS.REGULATORY  
                                                                .REGULATORY GUIDE 3.24 GUIDANCE ON THE LICENSE APPLICATION, SITING, DESIGN, AND
GUIDE 3.24 GUIDANCE ON THE LICENSE APPLICATION, SITING, DESIGN, AND PLANT PROTECTION  
                                PLANT PROTECTION FOR AN INDEPENDENT SPENT FUEL
FOR AN INDEPENDENT  
                                                              STORAGE INSTALLATION
SPENT FUEL STORAGE INSTALLATION
December 1974 IDE


==A. INTRODUCTION==
==A. INTRODUCTION==
An "independent spent fuel storage installation" (ISFSI) is a self-contained installation for storing spent fuel. It has its own support services and operates independently of any other facility;
applicable as a guide for the preparation of an environ- mental report for an ISFSI. Subjects that are pertinent An "independent spent fuel storage installation"                                only to nuclear power plants are obviously not (ISFSI) is a self-contained installation for storing spent                            applicable, however, and subjects that are important to fuel. It has its own support services and operates                                    an ISFSI, such as spent fuel transportation, should be independently of any other facility; i.e., it is not a part                          emphasized.
i.e., it is not a part of either a nuclear power plant or a fuel reprocessing plant. Such an installation is visualized as being capable of storing 1000 tons or more of spent light-water reactor fuel.Licensed spent fuel storage installations historically have been integral parts of either fuel reprocessing plants or nuclear power plants. Such plants have been licensed under 10 CFR Parts 30, 40, and 70 in addition to 10 CFR Part 50.An. ISFSI, independent and separate from either a nuclear power plant or a fuel reprocessing plant, would be licensed under Parts 30, 40, and 70. An applicant for a license for an ISFSI meeting the requirements for a Part 70 license would automatically satisfy the require-ments for a Part 30 and 40 license. Therefore, a license application for an ISFSI would be reviewed under the requirements of 10 CFR Part 70."Licensing and Regulatory Policy and Procedures for Environmental Protection," 10 CFR Part 51, sets forth the Atomic Energy Commission's policy and procedures for preparing and processing environmental impact statements and related documents pursuant to Section 102(2)(C)
of the National Environmental Policy Act of 1969 (83 Stat. 852). Certain limitations on the Com-mission's authority and responsibility pursuant to the NEPA are imposed by the Federal Water Pollution Control Act amendments of 1972 (86 Stat. 816). These limitations are addressed in an Interim Policy Statement published in the Federal Register on January 29, 1973 (38 FR 2679).Regulatory Guide 4.2, "Preparation of Environ-mental Reports for Nuclear Power Plants," is generally applicable as a guide for the preparation of an environ-mental report for an ISFSI. Subjects that are pertinent only to nuclear power plants are obviously not applicable, however, and subjects that are important to an ISFSI, such as spent fuel transportation, should be emphasized.


This guide discusses the license application, site evaluation, design, and plant protection of an ISFSI. It describes the measures acceptable to the Regulatory staff for meeting the requirements of 10 CFR Part 70. In addition, it identifies the information needed by the staff in its evaluation of an ISFSI application.
of either a nuclear power plant or a fuel reprocessing                                      This guide discusses the license application, site plant. Such an installation is visualized as being capable                            evaluation, design, and plant protection of an ISFSI. It of storing 1000 tons or more of spent light-water reactor                            describes the measures acceptable to the Regulatory fuel.                                                                                staff for meeting the requirements of 10 CFR Part 70. In Licensed spent fuel storage installations historically                          addition, it identifies the information needed by the have been integral parts of either fuel reprocessing plants                          staff in its evaluation of an ISFSI application.
 
or nuclear power plants. Such plants have been licensed under 10 CFR Parts 30, 40, and 70 in addition to 10                                                               


==B. DISCUSSION==
==B. DISCUSSION==
1. General Considerations An ISFSI could be substantially larger than. any existing spent fuel storage installation associated with either a nuclear power plant or a fuel reprocessing plant.The ISFSl could have an inventory of long-lived fission products and fissile materials greater than that in any existing nuclear reactor or presently projected fuel reprocdssing plant.An ISFSI will function solely in a protective custodial capacity, providing stable storage conditions pending some future disposition of the spent fuel. The fuel assemblies and their contents would not be changed by the activities conducted at an ISFSI.While the spent fuel is in passive storage. decay heat and the modest pressure within the fuel tubes are the only driving forces for dispersing the relatively large inventory of radionuclides contained in 1000 tons or more of spent fuel.The stored fuel elements should be protected from incidents or accidents resulting in massive ruptures of fuel elements, and the pool water level should be maintained.
CFR Part 50.


Leakers should have special handling, USAEC REGULATORY
An. ISFSI, independent and separate from either a                                1. General Considerations nuclear power plant or a fuel reprocessing plant, would be licensed under Parts 30, 40, and 70. An applicant for                                    An ISFSI could be substantially larger than. any a license for an ISFSI meeting the requirements for a                                  existing spent fuel storage installation associated with Part 70 license would automatically satisfy the require-                              either a nuclear power plant or a fuel reprocessing plant.
GUIDES Copies of published guides may be obtained by request indicating the divisions desired to the US. Atomic Energy Commission, Washington, D.C. 20545, Regulatory Guides are issued to describe and make available to the public Attenion Director of Regulatory Standards.


Comments and suggestions for methods acceptable to thp AEC Regulatory staff of implementing specific parts of mtprovementts in these guides are encouraged and should tbe sent to the Secretary the Commission's regulations, to delineate techniques by the staff in of the Commission.
ments for a Part 30 and 40 license. Therefore, a license                              The ISFSl could have an inventory of long-lived fission application for an ISFSI would be reviewed under the                                   products and fissile materials greater than that in any requirements of 10 CFR Part 70.                                                        existing nuclear reactor or presently projected fuel
      "Licensing and Regulatory Policy and Procedures for                              reprocdssing plant.


US. Atomic Energy Commission.
Environmental Protection," 10 CFR Part 51, sets forth                                      An ISFSI will function solely in a protective the Atomic Energy Commission's policy and procedures                                  custodial capacity, providing stable storage conditions for preparing and processing environmental impact                                    pending some future disposition of the spent fuel. The statements and related documents pursuant to Section                                  fuel assemblies and their contents would not be changed
102(2)(C) of the National Environmental Policy Act of                                by the activities conducted at an ISFSI.


Washington, D.C. 20545, evaluating specific problems or postulated accidents.
1969 (83 Stat. 852). Certain limitations on the Com-                                      While the spent fuel is in passive storage. decay heat mission's authority and responsibility pursuant to the                                and the modest pressure within the fuel tubes are the NEPA are imposed by the Federal Water Pollution                                        only driving forces for dispersing the relatively large Control Act amendments of 1972 (86 Stat. 816). These                                  inventory of radionuclides contained in 1000 tons or limitations are addressed in an Interim Policy Statement                              more of spent fuel.


or to provide guidance to Attention Docketing and Service Section.applicants.
published in the Federal Register on January 29, 1973                                      The stored fuel elements should be protected from
(38 FR 2679).                                                                        incidents or accidents resulting in massive ruptures of Regulatory Guide 4.2, "Preparation of Environ-                                  fuel elements, and the pool water level should be mental Reports for Nuclear Power Plants," is generally                                maintained. Leakers should have special handling, USAEC REGULATORY GUIDES                                      Copies of published guides may be obtained by request indicating the divisions desired to the US. Atomic Energy Commission, Washington, D.C. 20545, Regulatory Guides are issued to describe and make available to the public          Attenion Director of Regulatory Standards. Comments and suggestions for methods acceptable to thp AEC Regulatory staff of implementing specific parts of    mtprovementts in these guides are encouraged and should tbesent to the Secretary the Commission's regulations, to delineate techniques .*ed by the staff in          of the Commission. US. Atomic Energy Commission. Washington, D.C. 20545, evaluating specific problems or postulated accidents. or to provide guidance to     Attention Docketing and Service Section.


Regulatory Guides are not substitutes for regulations and compliance with them is not required.
applicants. Regulatory Guides are not substitutes for regulations and compliance with them is not required. Methods and solutions different from those set out in    The guides are issued in the following ten broad divisions:
  the guides will be acceptable if they provide a basis for the findings requisite to the isuance or continuance of a permit or license by the Commission.                I.  Power Reactors                       


Methods and solutions different from those set out in The guides are issued in the following ten broad divisions:
===6. Products===
the guides will be acceptable if they provide a basis for the findings requisite to the isuance or continuance of a permit or license by the Commission.
                                                                                        2. Research and Test Reactors            
 
I. Power Reactors 6. Products 2. Research and Test Reactors  


===7. Transportationn===
===7. Transportationn===
3. Fuels and Materials Facilities  
                                                                                        3. Fuels and Materials Facilities         8. Occupational Health Published guides will be revised periodically, as appropriate, to accommodate       4. Environmental and Siting               9. Antitrust Review comments and to reflect new information or experience.                               5.  Materials and Plant Protection        1
8. Occupational Health Published guides will be revised periodically, as appropriate, to accommodate  
4. Environmental and Siting 9. Antitrust Review comments and to reflect new information or experience.


5. Materials and Plant Protection
===0. General===
10. General including encapsulation.


to provide storage conditions equivalent to those for undamaged fuel elements.It is assumed that the storage pools will be built below grade. The large heat capacity of the pools should allow adequate time to take corrective action in case of an emergency.
including encapsulation. to provide storage conditions             contained in the 1000 tons or more of spent fuel equivalent to those for undamaged fuel elements.                   expected to be stored in the installation. The possibility It is assumed that the storage pools will be built             *of an uncontrolled release of radionuclides, driven -by below grade. The large heat capacity of the pools should           the energy available as decay heat and gases under allow adequate time to take corrective action in case of          :pressure within the fuel cladding, should be considered an emergency. Even in the event of an earthquake or                in the design of structures, systems, and components and other extreme natural phenomenon, sufficient cooling                in plant siting. Together, these criteria should be the can be provided by emergency action in time to protect              bases for the final engineering design and can only be the health and safety of the public.                                suitably developed from a relatively complete knowledge Storage pool water becomes contaminated with radio-            of the physical characteristics of the candidate sites.


Even in the event of an earthquake or other extreme natural phenomenon, sufficient cooling can be provided by emergency action in time to protect the health and safety of the public.Storage pool water becomes contaminated with radio-nuclides from defective fuel elements and with activation products on the fuel surfaces.
nuclides from defective fuel elements and with                         The siting considerations for an ISFSI should include activation products on the fuel surfaces. This material            the structural engineering plant siting factors, the should be confined and treated for disposal.                        environmental effects of construction, the potential Accident analyses should be based on the release of            effects of plant effluents from normal operations, and the volatile fission products contained in the stored fuel          the potential effects from off-standard conditions. Ad- under defined accident conditions.                                  ditionally, the potential for effects on the plan! and fuel in storage that might be attributable to site character-
2. License Application                                              istics or the environment should be reflected in the design of plant structures and equipment.


This material should be confined and treated for disposal.Accident analyses should be based on the release of the volatile fission products contained in the stored fuel under defined accident conditions.
Because of the substantial quantity of contained                    In general, safe storage of irradiated fuel is dependent radioactivity and the cooling requirements involved in an          on maintaining the integrity of the fuel cladding as the ISFSI, the review and evaluation of the engineered                  primary barrier to the release of radioactive materials.


2. License Application Because of the substantial quantity of contained radioactivity and the cooling requirements involved in an ISFSI, the review and evaluation of the engineered design and detailed safety analysis for the installation must be conducted prior to licensing.
design and detailed safety analysis for the installation           Fuel cladding is designed to withstand a far more severe must be conducted prior to licensing. For this reason, a            environment in a reactor than in a storage installation.


For this reason, a license application for an ISFSI should include a safety analysis report similar in scope and detail to the pertinent parts of a safety analysis report for a fuel reprocessing plant.The licensing of an ISFSI would be a major Federal action within the meaning of the National Environ-mental Policy Act of 1969. Therefore an applicant should prepare an Environmental Report that can serve as the technical basis for an evaluation by the Commis-sion of the potential environmental impact of the installation.
license application for an ISFSI should include a safety           Therefore, under the low temperature conditions of analysis report similar in scope and detail to the                 static storage, the cladding provides an effective barrier pertinent parts of a safety analysis report for a fuel             to the escape of fission products and fissile materials reprocessing plant.                                                into the storage facility. The installation should be The licensing of an ISFSI would be a major Federal             designed to ensure that the integrity of cladding is not action within the meaning of the National Environ-                 lost because of either mechanical damage or the effects mental Policy Act of 1969. Therefore an applicant                   of excessive temperature.


Detailed engineering plans should be filed with the license application, and -its supporting environmental report at least nine months before the start of con-struction activities.
should prepare an Environmental Report that can serve                  Historical information of public record concerning as the technical basis for an evaluation by the Commis-              the regional and local meteorology, geology-seismology, sion of the potential environmental impact of the                    and hydrology should be supplemented by on-site installation.                                                        analyses *to provide a basis for judgment specific to the Detailed engineering plans should be filed with the             candidate site. From these analyses the extremes of license application, and -its supporting environmental               wind, snow, and ice loadings; the precipitation; the report at least nine months before the start of con-                 probable maximum flood; the design earthquake; the struction activities.                                              surficial and foundation geological structures; the A site evaluation should be provided to ensure that              topography; and any potential for landslides, liquefac- the natural characteristics of the site are sufficiently well        tion, or subsidence should be determined.


A site evaluation should be provided to ensure that the natural characteristics of the site are sufficiently well known to provide the bases for the engineering design of the installation.
known to provide the bases for the engineering design of the installation.                                                  4. Design Considerations The applicant's safety analysis, environmental report, and security plan are fundamental. to developing the                    The design considerations of an ISFSI are somewhat basis for design of the installation. The license                  comparable to those for smaller facilities of the same application should take into account all proposed                  type at a reprocessing plant. However, particular normal operations, any credible off-standard conditions,            consideration may be needed for the ISFSI because of and the existing potential for interaction between the              its size, existence as an individual entity without the installation and the site due to natural phenomena.                backup of an associated facility, and loading of 1000
    When a fuel storage pool is part of a reprocessing              tons or more of spent fuel with a potential inventory of
.plant or a nuclear power plant,. fuel storage pool                  relatively long lived fission products in excess of 109 operators are licensed under the provisions of 10 CFR              curies and with cooling requirements in excess of 107 Part 55. ISFSI operators should have a comparable level            Btu/hr.


The applicant's safety analysis, environmental report, and security plan are fundamental.
of training.                                                            The safe storage of irradiated fuel depends on maintaining the integrity of the fuel cladding as the
  3. Site Selection                                                  primary barrier to the release of radioactive materials.


to developing the basis for design of the installation.
The basic design consideration is the protection of the Site selection criteria should be based on the safe-            fuel cladding, not the-protection of the pool structures.


The license application should take into account all proposed normal operations, any credible off-standard conditions, and the existing potential for interaction between the installation and the site due to natural phenomena.
keeping of the relatively large inventory of radionuclides        The ISFSI should be designed to ensure that the
                                                              3.24-2


When a fuel storage pool is part of a reprocessing.plant or a nuclear power plant,. fuel storage pool operators are licensed under the provisions of 10 CFR Part 55. ISFSI operators should have a comparable level of training.3. Site Selection Site selection criteria should be based on the safe-keeping of the relatively large inventory of radionuclides contained in the 1000 tons or more of spent fuel expected to be stored in the installation.
integrity of the cladding is not lost through mechanical          contained volatile radionuclides would escape. In disruption or excessive temperature.                              addition, cask unloading, decontamination, and other An ISFSI would be licensed under the provisions of             routine operations may result in airborne radioactive
10 CFR Parts 30, 40, and 70. Some provisions similar to           materials.


The possibility
those for plutonium processing plants would be appro-                    The ventilation system should be designed to oriate for these installations. Two of these that are of           protect the operators and to keep the activity levels in particular importance are: (1) confinement components,             the personnel occupancy areas (and radioactive materials systems, and structures important to safety should be             in gaseous effluents) as low as practicable and within the designed and constructed to withstand natural phenom-              limits of 10 CFR Par',20.
*of an uncontrolled release of radionuclides, driven -by the energy available as decay heat and gases under:pressure within the fuel cladding, should be considered in the design of structures, systems, and components and in plant siting. Together, these criteria should be the bases for the final engineering design and can only be suitably developed from a relatively complete knowledge of the physical characteristics of the candidate sites.The siting considerations for an ISFSI should include the structural engineering plant siting factors, the environmental effects of construction, the potential effects of plant effluents from normal operations, and the potential effects from off-standard conditions.


Ad-ditionally, the potential for effects on the plan! and fuel in storage that might be attributable to site character- istics or the environment should be reflected in the design of plant structures and equipment.
ena and (2) quality assurance criteria such as those in Appendix B to 10 CFR Part 50 should be applied to                     d. Liquid Effluents safety-related structures, systems, and components.


In general, safe storage of irradiated fuel is dependent on maintaining the integrity of the fuel cladding as the primary barrier to the release of radioactive materials.
Radioactive liquid effluents should not be a. Pool Integrity                                              discharged to the natural area drainage system. If this is not feasible, the treatment system for liquid effluents The design earthquake is based on the assumption            discharged to unrestricted areas should ensure that the that the storage pools will be built below grade and              radioactivity in such effluents is as low as practicable designed with a high degree of resistance to ground                and within the limits, of 10 CFR Part 20.


Fuel cladding is designed to withstand a far more severe environment in a reactor than in a storage installation.
motion. Furthermore, it is assumed that the storage pool or pools will be built either in impervious soils or with a            e. Waste Treatment secondarywater containment envelope. The leak rate of such a containment envelope should be low enough that,                    Provisions should be made to render contaminated in the event of a gross pool leak, makeup water could be          wastes into a form suitable for land burial or shipment supplied to the pool at a rate sufficient to keep the              to the planned Federal repository.


Therefore, under the low temperature conditions of static storage, the cladding provides an effective barrier to the escape of fission products and fissile materials into the storage facility.
stored fuel adequately covered. During the design for ultimate decommissioning of the installation, considera-              f. Accident Design Considerations tion should. be given to disposing of potentially contaminated soil or other fill materials between the                     An ISFSI should be designed to preclude the pool exterior walls and the secondary pool water                  following as credible accidents:
containment envelope.                                                    (1) Criticality Large. spent fuel storage pools should be built as a              (2) Exposure of stored fuel through loss of series..of separable modular units or with provisions for          shielding water isolating sections of the pool when necessary. A                          (3) Dropping of heavy loads on fuel maximum capacity of about 500 tons of spent fuel per                      (4) Multiple massive ruptures of fuel elements by pool module or section appears desirabl


The installation should be designed to ensure that the integrity of cladding is not lost because of either mechanical damage or the effects of excessive temperature.
====e. missiles====
                                                                          (5) Complete loss of cooling water b. Heat Dissipation g. Storage Racks *
      A 5000-ton ISFSI would be ex ected to have a cooling demand in the order of 5 x 10 Btu/hr or more.                    Storage racks should be designed with adequate No difficulty is anticipated in dissipating this quantity of       spacing to meet criticality requirements and be struc- heat by conventional means. If evaporative coolers are            turally compatible with seismic and missile protection used, a reliable water supply shouldbe available for pool          design criteria.


Historical information of public record concerning the regional and local meteorology, geology-seismology, and hydrology should be supplemented by on-site analyses *to provide a basis for judgment specific to the candidate site. From these analyses the extremes of wind, snow, and ice loadings;
makeup water and cooling tower blowdown. Regulatory Guide -1.27, "Ultimate Heat-Sink for Nuclear Power                5. Physical Protection Plants," gives guidance on the degree of reliability required.                                                              An ISFSI should be protected from acts of industrial Certain designs of the installation and local site         sabotage that could directly or indirectly endanger the conditions may result in a need for the cooling system to         public health and safety by releasing radiation (airborne be serviced by the emergency power supply system of               radioactive particulates rather than gaseous fission the installation.                                                  products). This protection should be achieved by estab- lishing and maintaining a physical protection system as c. Ventilation                                                required by 10 CFR Part 73.
the precipitation;
the probable maximum flood; the design earthquake;
the surficial and foundation geological structures;
the topography;
and any potential for landslides, liquefac-tion, or subsidence should be determined.


4. Design Considerations The design considerations of an ISFSI are somewhat comparable to those for smaller facilities of the same type at a reprocessing plant. However, particular consideration may be needed for the ISFSI because of its size, existence as an individual entity without the backup of an associated facility, and loading of 1000 tons or more of spent fuel with a potential inventory of relatively long lived fission products in excess of 109 curies and with cooling requirements in excess of 107 Btu/hr.The safe storage of irradiated fuel depends on maintaining the integrity of the fuel cladding as the primary barrier to the release of radioactive materials.
Further, interfacing the security organization and its A fraction of the fuel assemblies received for             functions with the plant should be considered. Iden- storage at an ISFSI will presumably be "leakers," and              tifying vital equipment, as defined in 10 CFR §73.2(i),
some fuel assemblies may develop leaks later while in             and integrating physical protection considerations into long-term storage. Such leakers should be encapsulated            the layout and design of the installation as early as in a secondary container reasonably promptly. However,            possible should help preclude requirements for sub- until they are encapsulated, some fraction of the                 sequent modification of the installation.


The basic design consideration is the protection of the fuel cladding, not the-protection of the pool structures.
3.24-3


The ISFSI should be designed to ensure that the 3.24-2 integrity of the cladding is not lost through mechanical disruption or excessive temperature.
Site location is important with respect to the                    71 - Packaging of Radioactive Material for availability of timely and significant assistance from            Transport and Transportation of Radioactive Material local law enforcement authorities (LLEAs) in the event            Under Certain Conditions of attempted industrial sabotage. A progressively larger              73 - Physical Protection of Plants and Materials
*onsite guard force will be needed as the distance of the nearest significant LLEA increases. In particular,                The applicant should provide:
licensees who possess or use SNM are required by 10
CFR Part 73 to take certain actions to protect the                   a. An emergency plan.. consistent with 10 CFR
installation against industrial sabotage. The particular          §70.24(a)(2), such as Annex B which is currently actions applicable to a spent fuel storage installation are      routinely incorporated in Part 70 licenses. A copy of prescribed in §73.50, which requires:                            Annex B is attached as Appendix A to this guide.


An ISFSI would be licensed under the provisions of 10 CFR Parts 30, 40, and 70. Some provisions similar to those for plutonium processing plants would be appro-oriate for these installations.
b. A quality assurance program consistent with 10
    a. A physical security organization including a              CFR.Part 50, Appendix B. A description of the program supervisor, qualified armed guards, and written security          and current status .of project design and procurement procedures.                                                      activities should be included in the license application. A
    b. Physical barriers, including multiple barriers and         copy of the applicant's Quality Assurance Manual monitored intervening clear areas and isolation zones.           covering design and procurement should be submitted to c. Detection and alarm systems, with annunciators in          the appropriate Regulatory Operations Regional Office two continuously manned central alarm stations .and              30 days before the license application.


Two of these that are of particular importance are: (1) confinement components, systems, and structures important to safety should be designed and constructed to withstand natural phenom-ena and (2) quality assurance criteria such as those in Appendix B to 10 CFR Part 50 should be applied to safety-related structures, systems, and components.
self-checking and tamper-indicating capability.                        c. Design criteria consistent ;with those in the d. Access controls to limit entrance of personnel,            proposed 10 CFR Part 50, Appendix P, "General Design vehicles, and packages into protected and vital areas,            Criteria for FuelReprocessing Plants."
including use of metal and explosives detectors, random              *d. Design criteria consistent with those in Sections I
searches, badging system, escorts, and appropriate keys,          and 11. of the proposed 10.CFR Part 50, Appendix Q,
locks, andcombinations.                                          "Design Criteria for the Protection of Fuel Reprocessing e. Communication systems, including continuous                Plants and the Licensed Material Therein."*
communication between each guard and the central                      e.. A two-part security plan consistent with 10 CFR
alarm station, capability to request assistance from the          §73.50.


a. Pool Integrity The design earthquake is based on the assumption that the storage pools will be built below grade and designed with a high degree of resistance to ground motion. Furthermore, it is assumed that the storage pool or pools will be built either in impervious soils or with a secondarywater containment envelope.
LLEA, two-way radio voice communication, con-                          f. Information . sufficient to demonstrate the ventional telephone service, and independent power                financial qualifications of the. applicant to carry out the source.                                                           activities for which the license is sought.


The leak rate of such a containment envelope should be low enough that, in the event of a gross pool leak, makeup water could be supplied to the pool at a rate sufficient to keep the stored fuel adequately covered. During the design for ultimate decommissioning of the installation, considera- tion should. be given to disposing of potentially contaminated soil or other fill materials between the pool exterior walls and the secondary pool water containment envelope.Large. spent fuel storage pools should be built as a series..of separable modular units or with provisions for isolating sections of the pool when necessary.
f. Liaison with local law enforcement autfiorities                g. Financial information pertinent to the proposed- capable of providing assistance to the licensee's security        decommissioning plan.


A maximum capacity of about 500 tons of spent fuel per pool module or section appears desirable.
organization in the event of a security threat.                        h. .A site evaluation based on the factors, to the g. Testing and maintenance of security equipment.            extent applicable to an ISFSI, identified in § 100.10(b),
                                                                  (c), and (d). of 10 CFR Part 100. This evaluation should Section 73.40 requires submission of a security plan to          contain an analysis, and evaluation of the major the Commission for approval. Such security plans consist          structures, systems, and components of the installation of two parts. Part I should discuss vital equipment, vital        that bear significantly on the acceptability of the site for areas, and isolation zones. It should also demonstrate            its intended use.


b. Heat Dissipation A 5000-ton ISFSI would be ex ected to have a cooling demand in the order of 5 x 10 Btu/hr or more.No difficulty is anticipated in dissipating this quantity of heat by conventional means. If evaporative coolers are used, a reliable water supply shouldbe available for pool makeup water and cooling tower blowdown.
how the applicant plans to comply with the require-                  i. A summary description and discussion of the ments of 10 CFR Part 73 cited above. Part II should list          installation, with special, attention to design and tests, inspections, and other means to be used to                operating characteristics, unusual or novel design demonstrate compliance with such requirements..                   features, and principal safety considerations.


Regulatory Guide -1.27, "Ultimate Heat-Sink for Nuclear Power Plants," gives guidance on the degree of reliability required.Certain designs of the installation and local site conditions may result in a need for the cooling system to be serviced by the emergency power supply system of the installation.
j. The principal, design features for the installation,


c. Ventilation A fraction of the fuel assemblies received for storage at an ISFSI will presumably be "leakers," and some fuel assemblies may develop leaks later while in long-term storage. Such leakers should be encapsulated in a secondary container reasonably promptly.
==C. REGULATORY POSITION==
including:
  1. License Application                                                    (1) The principal design criteria for the instal.


However, until they are encapsulated, some fraction of the contained volatile radionuclides would escape. In addition, cask unloading, decontamination, and other routine operations may result in airborne radioactive materials.
lation. (See proposed Appendix P to 10 CFR Part 50 for The applicable regulatory requirements are in the            guidance.*)
following parts of 10 CFR:                                                (2) The design bases and the relation of the design
      19 - Notices, Instructions and Reports to Workers;          bases to the principal design criteria.


The ventilation system should be designed to protect the operators and to keep the activity levels in the personnel occupancy areas (and radioactive materials in gaseous effluents)
Inspections                                                                (3) Information relative to materials of con-
as low as practicable and within the limits of 10 CFR Par',20.d. Liquid Effluents Radioactive liquid effluents should not be discharged to the natural area drainage system. If this is not feasible, the treatment system for liquid effluents discharged to unrestricted areas should ensure that the radioactivity in such effluents is as low as practicable and within the limits, of 10 CFR Part 20.e. Waste Treatment Provisions should be made to render contaminated wastes into a form suitable for land burial or shipment to the planned Federal repository.
    20 - Standards for Protection Against Radiation                struction, general arrangement, and approximate
    30 - Rules of General Applicability to Licensing of            dimensions sufficient to provide reasonable assurance Byproduct Material                                                that the final design will conform to the design bases
    40 - Licensing of Source Material                            .with an adequate margin for safety.


f. Accident Design Considerations An ISFSI should be designed to preclude the following as credible accidents:
51 - Licensing and Regulatory Policy and Proce- dures for Environmental Protection
(1) Criticality
    70 - Special Nuclear Material                                  *39 FR 26293, July. 18, 1974.
(2) Exposure of stored fuel through loss of shielding water (3) Dropping of heavy loads on fuel (4) Multiple massive ruptures of fuel elements by missiles (5) Complete loss of cooling water g. Storage Racks *Storage racks should be designed with adequate spacing to meet criticality requirements and be struc-turally compatible with seismic and missile protection design criteria.5. Physical Protection An ISFSI should be protected from acts of industrial sabotage that could directly or indirectly endanger the public health and safety by releasing radiation (airborne radioactive particulates rather than gaseous fission products).
This protection should be achieved by estab-lishing and maintaining a physical protection system as required by 10 CFR Part 73.Further, interfacing the security organization and its functions with the plant should be considered.


Iden-tifying vital equipment, as defined in 10 CFR §73.2(i), and integrating physical protection considerations into the layout and design of the installation as early as possible should help preclude requirements for sub-sequent modification of the installation.
3.24-4


3.24-3 Site location is important with respect to the availability of timely and significant assistance from local law enforcement authorities (LLEAs) in the event of attempted industrial sabotage.
*. -~a ilysi(ifid valualion W the ?design ýand .                  2.    iteiSelection:...          .      ...                  .
peffhtm'ce
    ...            f*Ltctues..
                          ..  systems, and ýcomponeMts;.ofib th iisait ný            e      i-jsmijpperiuing -servides-v with"-.        ..    e-i"xal,I    0      . 6'l;.      ,
                                                                                                                    -GI:.i tL.  i,.
the objective of assessing the risk to the publich)healthib
                                                                                      *n:<site;,.sould r*,im.et!sv the, nfollowi~g, *-general.*
                                                                                    IT
and safety resulting from the operation of the instal- conitd i rio s jir',, 1:      - ,:* .,*...              .- -.
lation and includiif tlg rm                      iflnfP.. ,(f-)io ofinatiai
        (1) The margins of safety during normal and                           (1) ,:Twrershould!he. m o stoApes, close enough to the abiio a.'Lcqnditfins- ntiipated, durgiihe'life of the                  prnoposedyi insiallation:-.to;ube ,a;:landslide hazard. Alter- natively., ;the !lopes!,shouldj,;be;,engineexedIt


A progressively larger*onsite guard force will be needed as the distance of the nearest significant LLEA increases.
====o. remain====
        ('2) rbt&#xfd;,adequacy ",.of;itructures, ;systermsT-and,
        ('2'                                                          stable.,with :a conservative !factor of safety iunder both components provided for the mitigation:of.the:,con-                    static: and dynamic conditions.


In particular, licensees who possess or use SNM are required by 10 CFR Part 73 to take certain actions to protect the installation against industrial sabotage.
sequences of accidents, including natural phenomena                            (2) Capable, faults* should-be sufficiently -remote even ts.                                      1; .. ..; "' i.- :      to preventr surface movements on the -main strand or any splay in the site area.


The particular actions applicable to a spent fuel storage installation are prescribed in &sect;73.50, which requires: a. A physical security organization including a supervisor, qualified armed guards, and written security procedures.
1. An identification of the variables, conditions, or                      (3) Foundation material should be unweathered other items that are determined. to be the probable                    bedrock or other material with a low liquefaction subjects of license conditions for the installation.                   potential.


b. Physical barriers, including multiple barriers and monitored intervening clear areas and isolation zones.c. Detection and alarm systems, with annunciators in two continuously manned central alarm stations .and self-checking and tamper-indicating capability.
m. An identification of any items requiring research                        (4) There should be no potential for differential or development to confirm the adequacy of their design;                subsidence such as that associated with karst topo- an identification and description of the research or                  graphy, solution cavities, differential compaction, or development program that will be conducted to resolve                  man's activities (such as fluid withdrawal from the any safety questions associated with the planned                      subsurface and . extraction of minerals). Karst topo- installation and its operation; and a schedule of the                  graphy need not necessarily eliminate a site from required programs showing that such safety questions                  consideration if the applicant can show that the will be resolved before completion of construction of                  potential. for sudden collapse can be eliminated by the facility.                                                         remedial work.


d. Access controls to limit entrance of personnel, vehicles, and packages into protected and vital areas, including use of metal and explosives detectors, random searches, badging system, escorts, and appropriate keys, locks, andcombinations.
.n. The technical qualifications of the applicant to engage in the proposed activities and his personnel                         b. Geology training program.


e. Communication systems, including continuous communication between each guard and the central alarm station, capability to request assistance from the LLEA, two-way radio voice communication, con-ventional telephone service, and independent power source.f. Liaison with local law enforcement autfiorities capable of providing assistance to the licensee's security organization in the event of a security threat.g. Testing and maintenance of security equipment.
o. A description of the instrumentation and control                      Information should be provided to show that site systems and of the auxiliary and emergency systems.                    conditions meet the above criteria. This information can p. A description of radioactive waste handling,                   be obtained from literature reviews and on-site field treatment, and disposal systems.                                       investigations such as.the following:
      q. A description of the means for controlling and                        (1) A visual inspection of the site and study of limiting radioactive effluents and radiation exposures to             rainfall, geologic structure, and topography 'can provide plant personnel. to levels that are as low as practicable              information to show that there is no landslide hazard to and well within the limits set forth in 10 CFR Part 20.                the fuel storage installation. Detailed investigations may r. An estimate of the quantities of each of the                  be required to determine stability under dynamic (earth- principal radionuclides expected to be released in                      quake) loading conditions.


Section 73.40 requires submission of a security plan to the Commission for approval.
gaseous and liquid effluents to unrestricted areas during                      (2) The absence of capable faults and the stability normal operations.                                                      of the foundation material can be determined by s. An identification of a spectrum of design basis                reviewing literature and confirming geotechnical site incidents (DBIs) due to industrial sabotage, the                      investigations. The site investigations may vary from possibility of which reasonably exists although the                    programs involving a simple visual examination for a site likelihood may be small. The plant design and security                 with completely exposed bedrock foundation material system should be evaluated in terms of adequacy to                     to programs that require trenching and stripping for sites preclude or to minimize the danger to the public that                  with bedrock covered by a thin (up to 15 ft) layer of may ensue in the event of a design basis incident. A                    unconsolidated material. Sites with deep soil will require
  "design basis incident" in this case is a postulated                  more detailed programs, including but not limited to credible incident and the resulting conditions for which                trenching, stripping, drilling, hydrologic testing, security related equipment meets its functional ob-                    laboratory and field testing of soil properties, and jectives. Examples of security related incidents include a              geophysical surveys.


Such security plans consist of two parts. Part I should discuss vital equipment, vital areas, and isolation zones. It should also demonstrate how the applicant plans to comply with the require-ments of 10 CFR Part 73 cited above. Part II should list tests, inspections, and other means to be used to demonstrate compliance with such requirements..
credible armed intrusion, breach of a protective barrier.                            Onsite investigations may reveal fractures. If or malfunction of security equipment.                                    so, conclusive evidence should be presented to demon- t. A description of systems used to clean up and                    strate that the fractures have not been displaced or are make up pool water, with particular emphasis on the                    not capable faults.
C. REGULATORY
POSITION 1. License Application The applicable regulatory requirements are in the following parts of 10 CFR: 19 -Notices, Instructions and Reports to Workers;Inspections
20 -Standards for Protection Against Radiation 30 -Rules of General Applicability to Licensing of Byproduct Material 40 -Licensing of Source Material 51 -Licensing and Regulatory Policy and Proce-dures for Environmental Protection
70 -Special Nuclear Material 71 -Packaging of Radioactive Material for Transport and Transportation of Radioactive Material Under Certain Conditions
73 -Physical Protection of Plants and Materials The applicant should provide: a. An emergency plan.. consistent with 10 CFR&sect;70.24(a)(2), such as Annex B which is currently routinely incorporated in Part 70 licenses.


A copy of Annex B is attached as Appendix A to this guide.b. A quality assurance program consistent with 10 CFR.Part 50, Appendix B. A description of the program and current status .of project design and procurement activities should be included in the license application.
capacity of these systems to handle the volumes involved                        (3) The absence of a potential for sudden sub- and both soluble and insoluble radionuclides.                           sidence can be determined from the literature review and u. A description of plans for preoperational testing of the installation.                                                    *See 10 CFR 100 Appendix A for a definition of capable faults.


A copy of the applicant's Quality Assurance Manual covering design and procurement should be submitted to the appropriate Regulatory Operations Regional Office 30 days before the license application.
3.24-5


c. Design criteria consistent
on-site investigations. Investigations will reveal whether              the material underlying the epicentral location and the o hghe    .-    s    .I
;with those in the proposed 10 CFR Part 50, Appendix P, "General Design Criteria for FuelReprocessing Plants."*d. Design criteria consistent with those in Sections I and 11. of the proposed 10.CFR Part 50, Appendix Q,"Design Criteria for the Protection of Fuel Reprocessing Plants and the Licensed Material Therein."*
or not the site is underlain by limestone&#xfd;,)4blbimi,."                 charactedstibs if *h i.r* gi*
e.. A two-part security plan consistent with 10 CFR&sect;73.50.
gypsum, or other soluble material that can result in karst topography. If such material is known to iindmlie the site, then onsite examinations can be expected to reveal th"196tigtik[l 4*.0s~d dd sttl*Me n * *.AiXssibl&#xfd;&#xfd;!,.indiat ors of such a potential would be the presence of sink,'lhlbE4;:-                   (3) Definition:-of lgiwogq Al                f      B!
soin        *-tf,*                lnraxul&ie.


====f. Information ====
-T1 iA .iI1*h sl~I~s4t:ia +n1imn*io~oil+/-liinducitig+*e~qa!
.sufficient to demonstrate the financial qualifications of the. applicant to carry out the activities for which the license is sought.g. Financial information pertinent to the proposed-decommissioning plan.h. .A site evaluation based on the factors, to the extent applicable to an ISFSI, identified in &sect; 100.10(b), (c), and (d). of 10 CFR Part 100. This evaluation should contain an analysis, and evaluation of the major structures, systems, and components of the installation that bear significantly on the acceptability of the site for its intended use.i. A summary description and discussion of the installation, with special, attention to design and operating characteristics, unusual or novel design features, and principal safety considerations.
a ?f$eW of thee*'g-flhefddral~ndlStat ageiie*-:                        quake event that has a reasonably high proba*.y of re~ `sis ri"ofrtMihoring.611i&#xb6;nd miring activities, or                  ocuurreaze&#xfd;r based ,on studies! -of .hiWrxj.sei city: and other activities such as waste, itlsposalror-&#xfd;'rawval.of.               stUttumaligeology.,...;.. .
flffidsg -fo*nm the,&#xfd;ibsu**fabe.,-6    n be eipewtad. rto provide the riirifoi mationfneeided ,,to": datermine .,,hethr.,such                    (4) Determination of the Design Earthquake activities have affected the site to the-extent -that they haveipioduced apot&#xfd;entiai for sudden subsidence. Should                              In evaluating historic seismicity and regional such a potential be indicated, a more detailed investiga-                structural geology, the historic earthquakes identified tion should be performed.                                               from the above investigations should be associated with tectonic structures to the extent practical.


j. The principal, design features for the installation, including:
c. Seismology - Design Earthquake                                              If historic earthquake. data indicate a high incidence of earthquakes along only a particular portion
(1) The principal design criteria for the instal.lation. (See proposed Appendix P to 10 CFR Part 50 for guidance.*)
          (1) General Seismic History                                    of a tectonic structure, the probability of similar earthquakes in the future should be assumed uniformly A full review of the seismic history of the               throughout the same segment of the tectonic structure.
(2) The design bases and the relation of the design bases to the principal design criteria.(3) Information relative to materials of con-struction, general arrangement, and approximate dimensions sufficient to provide reasonable assurance that the final design will conform to the design bases.with an adequate margin for safety.*39 FR 26293, July. 18, 1974.3.24-4
-~a ilysi(ifid valualion W the ?design &#xfd;and .peffhtm'ce
... .. f systems, and &#xfd;componeMts;.ofib th iisait n&#xfd; e i-js mijpperiuing -servides-v with"-.the objective of assessing the risk to the publich)healthib and safety resulting from the operation of the instal-lation and includiif tlg rm ofinatiai (f-)io iflnfP. ., (1) The margins of safety during normal and abiio a.'Lcqnditfins- ntiipated, durgiihe'life of the ('2' ('2) rbt&#xfd;,adequacy
",.of;itructures, ;systermsT-and, components provided for the mitigation:of.the:,con- sequences of accidents, including natural phenomena even ts. 1; .. .. ; "' i.- : 1. An identification of the variables, conditions, or other items that are determined.


to be the probable subjects of license conditions for the installation.
region in which the site is to be located should be made                (Where geologic evidence indicates that the structure is a to identify earthquakes that have taken place in historic              major,    continuous, through-going structure with time and that could affect the selection of a Design                    significant displacement, a more conservative assumption Earthquake. All earthquakes within the same tectonic                    may be appropriate.) These earthquakes should be used province as the site (or adjacent tectonic province to the              in determining the maximum vibratory motion at the site if near a border) should be examined for location,                  site that could be caused by an earthquake related to the size, reliability. of data, and effect on the site. Tectonic            tectonic structure.


m. An identification of any items requiring research or development to confirm the adequacy of their design;an identification and description of the research or development program that will be conducted to resolve any safety questions associated with the planned installation and its operation;
maps should be used to define the tectonic province(s)                              Correlation of tectonic structure and historic of significance to the site.                                            seismicity may not be possible because (a) there is insufficient data or (b) seismicity appears uniform over a
and a schedule of the required programs showing that such safety questions will be resolved before completion of construction of the facility..n. The technical qualifications of the applicant to engage in the proposed activities and his personnel training program.o. A description of the instrumentation and control systems and of the auxiliary and emergency systems.p. A description of radioactive waste handling, treatment, and disposal systems.q. A description of the means for controlling and limiting radioactive effluents and radiation exposures to plant personnel.
          (2) Specific Seismic History                                  network of tectonic. structures ,or cannot be correlated with specific structures. If so, the. seismicity should be Historic earthquakes that may have affected              identified with the tectonic province in which it is the site itself should also be considered. All those that              reported.


to levels that are as low as practicable and well within the limits set forth in 10 CFR Part 20.r. An estimate of the quantities of each of the principal radionuclides expected to be released in gaseous and liquid effluents to unrestricted areas during normal operations.
resulted in or are projected to have had an intensity of IV or greater at the plant site should be included in the                      (5) Selection of a Design Earthquake consideration. (Intensity IV earthquakes can be determined by a review of the U. S. Coast & Geodetic                                In view of the limited consequences of seismic Survey, National Oceanographic and Atmospheric                          events in excess of those used as the basis for.seismic Administration, and U. S. Geological Survey literature.)                design, it appears appropriate that the design earthquake All earthquakes with an epicentral intensity of            developed from the above information -should be such as V or greater should be shown in a table. This table                      to have a predicted recurrence interval of about once in should include the following estimated or measured                      a thousand years.


s. An identification of a spectrum of design basis incidents (DBIs) due to industrial sabotage, the possibility of which reasonably exists although the likelihood may be small. The plant design and security system should be evaluated in terms of adequacy to preclude or to minimize the danger to the public that may ensue in the event of a design basis incident.
data:
              (a) Earthquake magnitude or highest inten- sity;                                                                        d. Meteorology (b) Location of the epicenter or region of highest intensity;                                                                        While an elaborate continuing program of (c) For earthquakes with intensities of VII or            monitoring and measuring on-site meteorological greater at the site, an estimate of the resulting intensity              phenomena comparable to that for a fuel reprocessing or acceleration and duration of ground shaking at the                    plant should not be necessary, the consequences of the site.                                                                    release. of airborne radioactivity under both normal and An appropriate time span should be considered for                        accident conditions should be determined by the various intensity levels if a statistical analysis is applied.            applicant. Regulatory Guide 1.23, "On-Site Meteoro- It should be recognized that there may be                logical Programs," provides guidance for the basic appreciable differences between the characteristics of                    elements~of a suitable-program.


A"design basis incident" in this case is a postulated credible incident and the resulting conditions for which security related equipment meets its functional ob-jectives.
3.24-6


Examples of security related incidents include a credible armed intrusion, breach of a protective barrier.or malfunction of security equipment.
The meteorology program should be commen-                        Appropriate site selection can limit the potential surate with the postulated modes (release height and            for flooding. A high ground site above historical flood duration) of releases of airborne radionuclides under            plains is more suitable than a site at lower elevation. The normal and accident conditions, as determined by the            applicant should identify a design basis flood for the applicant and confirmed by the staff. Guidance is given          purpose of evaluating the safety of the selected site; the in Regulatory Guide 1.23 (Safety Guide 23), "Onsite              design of structures, equipment, and components Meteorological Programs."                                        essential to the protection of the public health and Presentation of long-term historical records of the      safety; and the possible consequences of a flood equal to extremes of temperature, precipitation, wind, snow, and          the Probable Maximum Flood or of floods caused by ice, and their resultant loading parameters, should be            means of comparable risk other than precipitation. The included to aid in evaluating the design bases. Addi-            Probable Maximum Flood or the controlling flood tionally, site-safety considerations require that the joint      conditions characteristic of the region and site should be frequency distribution of wind direction, velocity, ana          considered in evaluating site safety.


t. A description of systems used to clean up and make up pool water, with particular emphasis on the capacity of these systems to handle the volumes involved and both soluble and insoluble radionuclides.
stability be sufficiently well known to demonstrate with                At iocations near large surface bodies of water, the confidence the probable dispersion of airborne effluents.        occurrence of tsunami and seiches should be considered.


u. A description of plans for preoperational testing of the installation.
Representative (preferably onsite) data and conservative        The historical basis for assumptions should be atmospheric diffusion models such as those presented in          documented, along with the estimated consequences of Regulatory Guide 1.3, "Assumptions Used for Eval-                such phenomena. General information requirements on uating the Potential Radiological Consequences of a Loss          this subject are discussed in Regulatory Guide 1.59, of Coolant Accident for Boiling Water Reactors," may              "Design Basis Flood for Nuclear Power Plants."
be used to estimate the dispersion of airborne effluents.                Cooling water discharges such as those caused by The occurrence of extreme weather phenomena                cooling tower blowdown to surface waters are regulated such as hurricanes, tornados, water spouts, and violent          under the Federal Water Pollution Control Act thunderstorm activity should be considered as part of            Amendments of 1972 (86 Stat. 816). The applicant the site safety analysis to provide the essential technical      should determine what present and proposed regulations basis for site selection and installation design. The            are applicable to the. selected site. Section 401(a)( ) of tornado history in the area should be evaluated and              the Act requires, in part, that any applicant for a license applied to the analysis of safety as a potential source of        for an installation such as an ISFSI provide the AEC
missiles. Regulatory Guide 1.76, "Design Basis Tornado            with certification from the State that any discharge will for Nuclear Power Plants," is applicable to an ISFSI.            comply with applicable effluent limitations and other Also applicable is WASH 1300, "Technical Basis for               water pollution control requirements. In the absence of Interim Regional Tornado Criteria." The data applicable          such certification, no license can be issued by the AEC
to the. selected site in these documents should be used in        unless the State fails or refuses to act within a reasonable developing the missile protection design bases.                  period of time, The consequences of accidents due to extreme                        The applicant should make conservative calcula- weather conditions including missiles should be eval-            tions of the dispersion and dilution capabilities and uated based on (1) a postulated release of a justifiable          potential contamination pathways of the groundwater fraction of the stored available inventory of volatile            environment of the proposed installation under radionuclides in the spent fuels that have experienced the        operating and accident conditions. Applications for a minimum decay time since reactor shutdown for which              license for an ISFSI at sites that are in areas with a the ISFSI is designed and (2) expected adverse atmo-              complex groundwater hydrology              should include spheric diffusion conditions. The techniques in Regu-            assessment of potential impacts on the groundwater latory Guide 1.25 (Safety Guide 25), "Assumptions                system. Similar assessments should be made for sites Used for Evaluating the Potential Radiological Conse-            located over major aquifers that are used for domestic or quences of a Fuel Handling Accident in the Fuel                  industrial water supplies or for irrigation water.


2. iteiSelection:...
Handling and Storage Facility for Boiling and Pres- surized Water Reactors," are applicable to this eval-               f. Water Supply uation.
.... ...e-i" xal, I 0 6'l;. .-GI:.i tL , i,. .n:< IT site;,.sould the, nfollowi~g, conitd i rio s ir 1: j ',, -.- -.(1) ,:Twrershould!
.he m o stoApes, close enough to the prnoposedyi insiallation:-.to;ube ,a;:landslide hazard. Alter-natively., ;the !lopes!,shouldj,;be;,engineexedIto.


remain stable.,with
Water from surface or groundwater sources should e. Hydrology                                                be suitable, both in quality and quantity available, for use by the ISFSI on a uninterruptible basis. The need to The overriding considerations from the standpoint        maintain a depth of high quality shielding/coolant water of hydrology are the potential interactions of the ISFSI        conditioned to control corrosion, algae growth, and scale and the natural water bodies, surface, and ground                deposition is fundamental to the operational safety of an associated with the site, Direct communication between          ISFSI. The availability of highly dependable supplies of the fuel storage environment and surface or ground              high quality water is therefore a prinrw) consideration waters should be precluded. Such communication can              for site selection.
:a conservative
!factor of safety iunder both static: and dynamic conditions.


(2) Capable, faults* should-be sufficiently -remote to preventr surface movements on the -main strand or any splay in the site area.(3) Foundation material should be unweathered bedrock or other material with a low liquefaction potential.
generally be presented through controlled circulation of                Guidance on methods for ensuring reliability of coolant water and retention, cleanup, and controlled            the water supplies for normal and emergency use is release of potentially contaminated waste waters.                available in Regulatory Guide 1.27, "Ultimate Heat Sink
                                                          3.24-7


(4) There should be no potential for differential subsidence such as that associated with karst topo-graphy, solution cavities, differential compaction, or man's activities (such as fluid withdrawal from the subsurface and .extraction of minerals).  
for Nuclear Power Plants," and Section 2.4 of Regula-                           Reliable and frequently tested pool water tory. Guide 1.70, "Standard Format and Content of                   monitoring equipment should be provided to provide Safety Analysis Reports for Nuclear Power Plants." The              alarm both locally and in a continuously manned engineering design description should delineate the                location if the water level in the fuel storage pool falls bounds of the water supply systems and provide details              below a predetermined level or if there is a high local concerning volume, transfer capability, alternative                radiation level. The high radiation level instrumentation sources, pumping capability, redundant equipment and                should automatically actuate the pool water filtration components, operating procedures, and maintenance                  system.
Karst topo-graphy need not necessarily eliminate a site from consideration if the applicant can show that the potential.


for sudden collapse can be eliminated by remedial work.b. Geology Information should be provided to show that site conditions meet the above criteria.
plans.                                                                         Similarly, reliable and frequently tested air Water use and the resulting commitment of natural            monitoring equipment should be provided to alarm both resources should be addressed in the applicant's                    locally and in a continuously manned location if the environmental report.                                              activity level in air from the storage pool areas exceeds preset limits or if high radiation levels are detected. An g. Site Evaluation Considerations                              automatic interlock with the high radiation level instrumentation should actuate the ventilation confine-
      (1) Design Features                                          ment system.


This information can be obtained from literature reviews and on-site field investigations such as.the following:
Normal operations of an ISFSI should not                      (2) Off-Standard Conditions result in the release to the unrestricted area of contami- nated liquid effluents containing radioactive materials in                      The full range of conditions outside the concentrations exceeding the ALAP design objectives for            normal operating modes should be considered off- light-water-cooled nuclear power plants.*                          standard conditions. For the purpose of this guidance, The structure enclosing the fuel storage pool          off-standard conditions are considered to be bounded by should have an appropriate ventilation and filtration              normal operations on the one hand and design basis system to limit the release of gaseous and entrained                accidents on the other.
(1) A visual inspection of the site and study of rainfall, geologic structure, and topography
'can provide information to show that there is no landslide hazard to the fuel storage installation.


Detailed investigations may be required to determine stability under dynamic (earth-quake) loading conditions.
particulate radioactive mateiials under normal operating conditions to quantities that will not exceed the ALAP                          (a) Process Deviations design objectives for light-water-cooled nuclear power                              The applicant should provide a compre- plants.*                                                            hensive safety analysis that takes into account the full The heating, ventilating, and air conditioning          range of tasks and the conditions to be preserved for safe system should provide for controlled leakage of air from            operation. Engineering estimates of the potential hazards the fuel storage pool and the cask handling areas under            and consequences that may be associated with operating all normal and off-standard operating conditions. The                outside the bounds of normal conditions should be structure enclosing these areas need not be designed to             included. The analysis should determine the safe withstand extremely high wind loadings, but leakage                operating range of critical unit operations, identify should be suitably controlled under all conditions of fuel          potentially controllable off-standard conditions or transfer and storage. The design of the ventilation and            design features, and establish actions appropriate for filtration system should be based on experience in                  mitigating the consequences of off-standard conditions.


(2) The absence of capable faults and the stability of the foundation material can be determined by reviewing literature and confirming geotechnical site investigations.
similar facilities and on the assumption that the cladding on a fraction of the stored fuel might be breached as a                        (b) Loss of Power result of an accident. The inventory of radioactive                                  Loss of power is a site-safety-related off- materials available for leakage from the building should            standard condition of potentially serious consequences.


The site investigations may vary from programs involving a simple visual examination for a site with completely exposed bedrock foundation material to programs that require trenching and stripping for sites with bedrock covered by a thin (up to 15 ft) layer of unconsolidated material.
be based on the average fuel characteristics used for the            Circulation and cooling requirements will probably design basis fuel.                                                  require continuous pumping capability. Ancillary The use of a closed-circuit shielding/coolant            systems for safety and security should provide water system is assumed. This is a prudent means of                  continuous instrument, lighting, alarm, and ventilation limiting the risk of releasing radioactive material to the          control power. Availability of reliable primary power to unrestricted area. Drains, permanently connected                    essential systems is a basic consideration for site systems, and other features that by maloperation or                  selection. Redundant &sect;ystems for alternative power failure could cause loss of coolant that would uncover              sources or auxiliary systems such as diesel generator fuel should not be installed or included in the design.              installations can support the primary power source.


Sites with deep soil will require more detailed programs, including but not limited to trenching, stripping, drilling, hydrologic testing, laboratory and field testing of soil properties, and geophysical surveys.Onsite investigations may reveal fractures.
Systems designed for maintaining water quality and quantity should be designed so that any maloperation or failure in those systems from any cause will not cause the fuel to be uncovered.


If so, conclusive evidence should be presented to demon-strate that the fractures have not been displaced or are not capable faults.(3) The absence of a potential for sudden sub-sidence can be determined from the literature review and*See 10 CFR 100 Appendix A for a definition of capable faults.3.24-5 on-site investigations.
(3) Natural Phenomena The site-safety analysis provides a technical basis for design criteria considerations of plant-site i:,
*WASH 1258, Volumes 1 and 2. "Numerical Guides for Design          interactions. The potential actions bctween the natural Objectives and Limiting Conditions for Operation to Meet the       environment and man-made structures are factors in site Criterion 'As Low as Practicable' for Radioactive Material in      selection that should influence engineering judgments in Light-Water-Cooled Nuclear Power Plant Effluents."                choosing among design alternatives.


Investigations will reveal whether or not the site is underlain by limestone&#xfd;,)4blbimi,." gypsum, or other soluble material that can result in karst topography.
.24-8


If such material is known to iindmlie the site, then onsite examinations can be expected to reveal th"1 96tigtik[l dd n ors of such a potential would be the presence of sink,'lhlbE4;:-
.(a) Meteorology                                              (1) Leaking fuel assemblies, Site-safety considerations require that                  (2) Fire, meteorological parameters such as wind direction,                         (3) Loss of coolant or cooling capability, velocity, atmospheric stability, and the joint frequency                  (4) Dropped fuel assembly shipping cask during of occurrence be known well enough to demonstrate                cask handling operations.
soin lnraxul&ie.


-T1 iA sl~I~s4t:ia a ?f$eW of  re~ `sis ri"ofrtMihoring.611i
that the .joint dispersion of gaseous and particulate                    (5) Missile penetration of the storage building effluents will be predictable, within the bounds of              with fuel damaged in storage, conservative models conventionally used for analyzing                    (6) Natural phenomena, the radiological consequences of accidental releases of                  (7) Very low probability accidents (such as air- radioactive materials.                                            craft crashes).
&#xb6;nd miring activities, or other activities such as waste, itlsposalror-&#xfd;'rawval.of.
                                                                          The applicant should perform detailed engineering (b) Hydrology                                        analyses of such accidents and their calculated potential If pool water leaks to the ground,               effects in terms of radiation dose commitment to adequate time should be available to sink survey wells            individuals and populations within, the region that might for any monitoring that might be considered necessary            be affected. Such analyses will provide the -technical after the leak occurs and the. region to be monitored is          basis for judging the suitability of the selected site and defined. In addition, strategically located inspection            the proposed plant design.


flffidsg the, n be eipewtad.
wells should be sunk at the time of construction to check for subsurface water movement and possible outleakage.                                                        3. Design Considerations The ANSI draft standard N305, Revision 7, dated'
                                                                  November 8, 1974,* "Design Objectives for Highly h. Exclusion Area, Low Population Zone, Population            Radioactive Solid Material Handling and Storage Center Distance                                                    Facilities in a Reprocessing Plant," is applicable to an ISFSI with the following exceptions and clarifications:
        The applicant should determine the exclusion area,        "Section 2, Glossary of Terms":
low population zone, and population. center distance                  The terms "Operating Basis Earthquake" (OBE) and using a method analogous to that given in &sect; 100.11 of 10
CFR Part 100. This procedure involves an estimate of:
                                                                  "Safe Shutdown Earthquake" (SSE) are not applicable to an ISFSI. Rather, the term Design Earthquake as H
        .(1) The potential risk from the most severe upper        defined in Section. C.2.c. of this document is applicable.


rto provide the riirifoi mationfneeided
limit accident and                                                "Section 3,. Structural Criteria":
,,to": datermine
        (2) Dose rates at .various. points downwind due to            "3.1.2.2 Missiles" - The missiles of interest are those the. passage of the resulting radioactive cloud (under            that could rupture fuel within the pool or could damage conservative atmospheric dispersion conditions).                  equipment. or structures that could fall into the pool and No minimum values have been established for               potentially rupture stored fuel.
.,,hethr. ,such activities have affected the site to the-extent -that they haveipioduced apot&#xfd;entiai for sudden subsidence.


Should such a potential be indicated, a more detailed investiga- tion should be performed.
the size of the exclusion area, distance to the outer In addition, the Regulatory staff considers the following boundary of the low population zone (LPZ). or popu- lation center distance. Past practice has usually been to          design requirements to be applicable:
establish, the population center distance as being at                  a. The design should preclude cask handling cranes least 1 1/3 times the distance from the installation to            passing over the fuel storage pools.


====c. Seismology ====
the outer boundary of. the LPZ. Typically, the. distance              b. The building itself need not be designed to to, the boundary of the LPZ is about 3 miles..                    withstand high winds, provided critical, equipment is The.applicant should identify industrial, military,      protected. * .
-Design Earthquake
or other installations in the area with which the.ISFSI              c. The design basis for the ventilation system should may potentially interact.                                        be defined. This definition should include a description of the emergency air cleanup system used to accom- modate ruptured fuel. Calculations should be based on the design basis fuel characteristics.
(1) General Seismic History A full review of the seismic history of the region in which the site is to be located should be made to identify earthquakes that have taken place in historic time and that could affect the selection of a Design Earthquake.


All earthquakes within the same tectonic province as the site (or adjacent tectonic province to the site if near a border) should be examined for location, size, reliability.
i. Accident Analysis                                              d.. The heat removal system pumps, heat exchangers, and associated piping should be protected from credible The considerations of normal operations, off-              accidents and have a backup power supply. However, if standard conditions, design basis accidents, and natural          the applicant can show that under emergency conditions phenomena provide part of the technical basis foi                  the pool structure can stand the' stresses imposed, that assessing the suitability of structures, equipment, and            the consequences of any loss of normal cooling components relative to candidate sites. The accident              capability will not lead to excessive radiation doses, and analyses complement and supplement the other analyses by considering the possible effects of events that are            *Copies of this draft standard may be obtained from the characteristically infrequent, sudden, and potentially              American Institute of Chemical Engineers, 345 E. 47th St.,
serious incidents. Such events include:                            New York, N.Y. 10017.


of data, and effect on the site. Tectonic maps should be used to define the tectonic province(s)
3.24-9
of significance to the site.(2) Specific Seismic History Historic earthquakes that may have affected the site itself should also be considered.


All those that resulted in or are projected to have had an intensity of IV or greater at the plant site should be included in the consideration. (Intensity IV earthquakes can be determined by a review of the U. S. Coast & Geodetic Survey, National Oceanographic and Atmospheric Administration, and U. S. Geological Survey literature.)
that there is an assured source of pool makeup water,            consisting of the water containment structure and the cooling by boiling of the pool water is acceptable and           supporting auxiliary systems used to maintain appro- the cooling system need not be protected from                    priate radiation shielding and cooling. Vital equipment accidents. The makeup system should be capable of                in this area includes the nuclear fuel in storage, fuel withstanding any credible accident or a backup water              storage racks, radiation monitoring and alarm systems system capability should be provided. If the backup              for fuel cladding leakage, pool water leakage detection system is not permanently installed, the applicant should         system and liquid level monitors, pool water loss show that the time required to implement the system's            makeup and ,cleanup systems, decay heat removal use is less than the time required for hazardous                  system, ventilation and confinement system, and conditions to develop. If the pool structure cannot              emergency systems for purposes such as fire protection.
All earthquakes with an epicentral intensity of V or greater should be shown in a table. This table should include the following estimated or measured data: (a) Earthquake magnitude or highest inten-sity;(b) Location of the epicenter or region of highest intensity;(c) For earthquakes with intensities of VII or greater at the site, an estimate of the resulting intensity or acceleration and duration of ground shaking at the site.An appropriate time span should be considered for various intensity levels if a statistical analysis is applied.It should be recognized that there may be appreciable differences between the characteristics of the material underlying the epicentral location and the charactedstibs if h o hghe -.s .I (3) Definition:-of lgiw ogq Al f B!quake event that has a reasonably high of ocuurreaze&#xfd;r based ,on studies! -of .hiWrx j.sei ci ty: and stUttumaligeology.,...;..
.(4) Determination of the Design Earthquake In evaluating historic seismicity and regional structural geology, the historic earthquakes identified from the above investigations should be associated with tectonic structures to the extent practical.


If historic earthquake.
withstand the stress of water boiling, the cooling system
                                                                          (3) The onsite auxiliary power supply system, should be designed and built to withstand any credible regardless of its location, is considered vital.


data indicate a high incidence of earthquakes along only a particular portion of a tectonic structure, the probability of similar earthquakes in the future should be assumed uniformly throughout the same segment of the tectonic structure.(Where geologic evidence indicates that the structure is a major, continuous, through-going structure with significant displacement, a more conservative assumption may be appropriate.)
site-related natural phenomen
These earthquakes should be used in determining the maximum vibratory motion at the site that could be caused by an earthquake related to the tectonic structure.


Correlation of tectonic structure and historic seismicity may not be possible because (a) there is insufficient data or (b) seismicity appears uniform over a network of tectonic.
====a. The makeup coolant====
                                                                          (4) The onsite central alarm stations should be water system should be equally reliable.


structures ,or cannot be correlated with specific structures.
designated vital areas. Vital equipment in these areas e. Onsite radioactive waste treatment facilities should      includes communication equipment; primary control be provided. These facilities should be designed to                and annunciation equipment for alarms; metal and render all site generated wastes into a form suitable for        explosive detectors; card-key readers; closed circuit interim storage and ultimate final disposal.                      television; and an independent power supply system f. Provisions should be made for (1) receipt of casks        (i.e.,, backup or emegency power).
under abnormal circumstances, such as loss of coolant, and (2) expected cask maintenance, repair, -and modification activities.                                              b. Physical Protection Design Criteria g. A cask drop analysis should be made. This analysis indicates the need to provide a shock absorber in the                      (1) The design of an ISFSI should be based on the bottom of the cask unloading pool (CUP).                          physical protection criteria set forth for fuel repro- h. The storage pools should be of modular design.            cessing plants in proposed Appendix Q to 10 CFR Part Each module should have a maximum capacity of about              50.*
500 tons of spent fuel.                                                  (2) The design, fabrication, erecting, and testing of structures, systems, and components important to
4. Physical Protection                                          physical protection of the facility should be conducted in accordance with an acceptable quality assurance Some of the guidance on physical protection                  program, as outlined in 10 CFR Part 50, Appendix B,
provided in Regulatory Guides 5.7, 5.12, 5.20, and 5.30          "Quality Assurance Criteria for Nuclear Power Plants is applicable to an ISFSI. Regulatory Guide 5.7.                  and Fuel Reprocessing Plants."
"Control of Personnel Access to Protected Areas, Vital                    (3) The concept of isolation (e.g., automation, Areas, and Material Access Areas," is applicable for              remote handling, and controlled access) should be those parts related to material access areas (i.e., sections    incorporated into the design. The isolation should limit D.2, D.3, and D.5.b). Regulatory Guide 5.12, "General            access to vital areas or equipment to only those Use of Locks in the Protection and Control of Facilities          individuals who require access.for essential purposes or and Special Nuclear Materials," and Regulatory Guide              for performance of duty.


If so, the. seismicity should be identified with the tectonic province in which it is reported.(5) Selection of a Design Earthquake In view of the limited consequences of seismic events in excess of those used as the basis for.seismic design, it appears appropriate that the design earthquake developed from the above information -should be such as to have a predicted recurrence interval of about once in a thousand years.d. Meteorology While an elaborate continuing program of monitoring and measuring on-site meteorological phenomena comparable to that for a fuel reprocessing plant should not be necessary, the consequences of the release. of airborne radioactivity under both normal and accident conditions should be determined by the applicant.
5.20, "Training, Equipping, and Qualifying of Guards                    * (4) The location and arrangement of equipment in and Watchmen," are applicable in their entirety.                 a vital area should be evaluated with respect to the need Regulatory Guide 5.30, "Materials Protection Con-                for the equipment to be contained in that location and tingency Measures for Uranium and Plutonium Fuel                  the capability for regular testing and inspection. Equip.


Regulatory Guide 1.23, "On-Site Meteoro-logical Programs," provides guidance for the basic elements~of a suitable-program.
Manufacturing Plants," is generally applicable except for         ment other than. process or vital equipment should not those parts regarding emergency protection measures              be located in a vital area.


3.24-6 The meteorology program should be commen-surate with the postulated modes (release height and duration)  
that affect activities appropriate only to material access                (5) Equipment used to store, transfer, or protect areas.                                                           material or to protect the plant should be designed to facilitate maintenance and testing so that compliance a. Vital Areas and Vital Equipment                            with applicable regulations and license conditions can be verified.
of releases of airborne radionuclides under normal and accident conditions, as determined by the applicant and confirmed by the staff. Guidance is given in Regulatory Guide 1.23 (Safety Guide 23), "Onsite Meteorological Programs." Presentation of long-term historical records of the extremes of temperature, precipitation, wind, snow, and ice, and their resultant loading parameters, should be included to aid in evaluating the design bases. Addi-tionally, site-safety considerations require that the joint frequency distribution of wind direction, velocity, ana stability be sufficiently well known to demonstrate with confidence the probable dispersion of airborne effluents.


Representative (preferably onsite) data and conservative atmospheric diffusion models such as those presented in Regulatory Guide 1.3, "Assumptions Used for Eval-uating the Potential Radiological Consequences of a Loss of Coolant Accident for Boiling Water Reactors," may be used to estimate the dispersion of airborne effluents.
Several specific areas at an ISFSI should be                        (6) The double barrier concept, controlled access.


The occurrence of extreme weather phenomena such as hurricanes, tornados, water spouts, and violent thunderstorm activity should be considered as part of the site safety analysis to provide the essential technical basis for site selection and installation design. The tornado history in the area should be evaluated and applied to the analysis of safety as a potential source of missiles.
designated vital areas because of their importance for            monitored isolation zones, designation of vital areas, and protection against sabotage:                                      the use of keys, locks, and combinations should be
      (1) The cask unloading area should be a separate          integrated into the facility layout and design.


Regulatory Guide 1.76, "Design Basis Tornado for Nuclear Power Plants," is applicable to an ISFSI.Also applicable is WASH 1300, "Technical Basis for Interim Regional Tornado Criteria." The data applicable to the. selected site in these documents should be used in developing the missile protection design bases.The consequences of accidents due to extreme weather conditions including missiles should be eval-uated based on (1) a postulated release of a justifiable fraction of the stored available inventory of volatile radionuclides in the spent fuels that have experienced the minimum decay time since reactor shutdown for which the ISFSI is designed and (2) expected adverse atmo-spheric diffusion conditions.
pool connected by a canal to the main storage pool                        (7) Isolation zones should be monitored to system. The unloading pool should be designated a vital          provide timely detection of intrusion and to permit area.


The techniques in Regu-latory Guide 1.25 (Safety Guide 25), "Assumptions Used for Evaluating the Potential Radiological Conse-quences of a Fuel Handling Accident in the Fuel Handling and Storage Facility for Boiling and Pres-surized Water Reactors," are applicable to this eval-uation.e. Hydrology The overriding considerations from the standpoint of hydrology are the potential interactions of the ISFSI and the natural water bodies, surface, and ground associated with the site, Direct communication between the fuel storage environment and surface or ground waters should be precluded.
(2) The spent fuel storage area should be designated a vital area. It includes the pool system              *39 FR 26293, July 18, 1974.


Such communication can generally be presented through controlled circulation of coolant water and retention, cleanup, and controlled release of potentially contaminated waste waters.Appropriate site selection can limit the potential for flooding.
3.24-10


A high ground site above historical flood plains is more suitable than a site at lower elevation.
subsequent guard action and notification of the local law                (1) Security force equipment. organization, enforcement agencies (LLEA).                                    responsibilities; and.procedures.


The applicant should identify a design basis flood for the purpose of evaluating the safety of the selected site; the design of structures, equipment, and components essential to the protection of the public health and safety; and the possible consequences of a flood equal to the Probable Maximum Flood or of floods caused by means of comparable risk other than precipitation.
(8) Isolation zones and clear areas between                    (2) Integration of security provisions with the site barriers should be illuminated to at least 0.2 foot-candle.      and installation layout.


The Probable Maximum Flood or the controlling flood conditions characteristic of the region and site should be considered in evaluating site safety.At iocations near large surface bodies of water, the occurrence of tsunami and seiches should be considered.
(9) The design for access control of personnel,                  (3) A description of the physical protection packages, and vehicles through physical barriers should         features of the installation.


The historical basis for assumptions should be documented, along with the estimated consequences of such phenomena.
include provisions for verifying identity and authority,                (4) Security ajeas, including those protected by alarming, emergency exits, operating unmanned exits,            physical barriers and isolation zones: vital areas and searching packages and individuals upon entering, and            equipment.                    *
detecting firearms, explosives, or incendiary devices.                -(5) Access monitors'and controls- for personnel,
      (10) The design should preclude simultaneous              vehicles, and packages; a badge system; access authoriza- handling of shipments of irradiated fuel and receipt of        tion and registration; personnel escort; and the use of materials other than irradiated fuel in a single area.          keys, locks, and combinations.


General information requirements on this subject are discussed in Regulatory Guide 1.59,"Design Basis Flood for Nuclear Power Plants." Cooling water discharges such as those caused by cooling tower blowdown to surface waters are regulated under the Federal Water Pollution Control Act Amendments of 1972 (86 Stat. 816). The applicant should determine what present and proposed regulations are applicable to the. selected site. Section 401(a)( ) of the Act requires, in part, that any applicant for a license for an installation such as an ISFSI provide the AEC with certification from the State that any discharge will comply with applicable effluent limitations and other water pollution control requirements.
(11) The . facility should be designed to permit                  (6) Surveillance systems, including intrusion and continuous surveillance of occupied vital areas and             detection alarms.


In the absence of such certification, no license can be issued by the AEC unless the State fails or refuses to act within a reasonable period of time, The applicant should make conservative calcula-tions of the dispersion and dilution capabilities and potential contamination pathways of the groundwater environment of the proposed installation under operating and accident conditions.
alarming of unoccupied vital areas.                                    * (7) Central alarm and communication systems.


Applications for a license for an ISFSI at sites that are in areas with a complex groundwater hydrology should include assessment of potential impacts on the groundwater system. Similar assessments should be made for sites located over major aquifers that are used for domestic or industrial water supplies or for irrigation water.f. Water Supply Water from surface or groundwater sources should be suitable, both in quality and quantity available, for use by the ISFSI on a uninterruptible basis. The need to maintain a depth of high quality shielding/coolant water conditioned to control corrosion, algae growth, and scale deposition is fundamental to the operational safety of an ISFSI. The availability of highly dependable supplies of high quality water is therefore a prinrw) consideration for site selection.
(12) The facility should provide backup means                      (8) Response capability assessment arid followup such as emergency power and redundant hardware. It              for alarms and threats.


Guidance on methods for ensuring reliability of the water supplies for normal and emergency use is available in Regulatory Guide 1.27, "Ultimate Heat Sink 3.24-7 for Nuclear Power Plants," and Section 2.4 of Regula-tory. Guide 1.70, "Standard Format and Content of Safety Analysis Reports for Nuclear Power Plants." The engineering design description should delineate the bounds of the water supply systems and provide details concerning volume, transfer capability, alternative sources, pumping capability, redundant equipment and components, operating procedures, and maintenance plans.Water use and the resulting commitment of natural resources should be addressed in the applicant's environmental report.g. Site Evaluation Considerations
should accommodate alternative procedures to provide                    (9) Availability of assistance from local law continued protection in such events as power failure,           enforcement agencies.
(1) Design Features Normal operations of an ISFSI should not result in the release to the unrestricted area of contami-nated liquid effluents containing radioactive materials in concentrations exceeding the ALAP design objectives for light-water-cooled nuclear power plants.*The structure enclosing the fuel storage pool should have an appropriate ventilation and filtration system to limit the release of gaseous and entrained particulate radioactive mateiials under normal operating conditions to quantities that will not exceed the ALAP design objectives for light-water-cooled nuclear power plants.*The heating, ventilating, and air conditioning system should provide for controlled leakage of air from the fuel storage pool and the cask handling areas under all normal and off-standard operating conditions.


The structure enclosing these areas need not be designed to withstand extremely high wind loadings, but leakage should be suitably controlled under all conditions of fuel transfer and storage. The design of the ventilation and filtration system should be based on experience in similar facilities and on the assumption that the cladding on a fraction of the stored fuel might be breached as a result of an accident.
equipment malfunction, or individual guard                            (10) Testing and inspection of security related incapacitation.                                                 equipment and devices.


The inventory of radioactive materials available for leakage from the building should be based on the average fuel characteristics used for the design basis fuel.The use of a closed-circuit shielding/coolant water system is assumed. This is a prudent means of limiting the risk of releasing radioactive material to the unrestricted area. Drains, permanently connected systems, and other features that by maloperation or failure could cause loss of coolant that would uncover fuel should not be installed or included in the design.Systems designed for maintaining water quality and quantity should be designed so that any maloperation or failure in those systems from any cause will not cause the fuel to be uncovered.
(13) Alarm systems should be designed to meet                  (11) Maintenance of control records.


*WASH 1258, Volumes 1 and 2. "Numerical Guides for Design Objectives and Limiting Conditions for Operation to Meet the Criterion
performance and reliability. characteristics described in             (12) Security audit program.
'As Low as Practicable'
for Radioactive Material in Light-Water-Cooled Nuclear Power Plant Effluents." Reliable and frequently tested pool water monitoring equipment should be provided to provide alarm both locally and in a continuously manned location if the water level in the fuel storage pool falls below a predetermined level or if there is a high local radiation level. The high radiation level instrumentation should automatically actuate the pool water filtration system.Similarly, reliable and frequently tested air monitoring equipment should be provided to alarm both locally and in a continuously manned location if the activity level in air from the storage pool areas exceeds preset limits or if high radiation levels are detected.


An automatic interlock with the high radiation level instrumentation should actuate the ventilation confine-ment system.(2) Off-Standard Conditions The full range of conditions outside the normal operating modes should be considered off-standard conditions.
&sect; 73.50(d)(1).
      (i4). Communications equipment for use by plant                             


For the purpose of this guidance, off-standard conditions are considered to be bounded by normal operations on the one hand and design basis accidents on the other.(a) Process Deviations The applicant should provide a compre-hensive safety analysis that takes into account the full range of tasks and the conditions to be preserved for safe operation.
==D. IMPLEMENTATION==
personnel and the LLEA should be designed with appropriate re dundancy and flexibility, as described in            The purpose of this section isto provide information
&sect;73.50(e)(1) through (4).                                        to applicants and licensees regarding the Regulatory staff's plans for utilizing this regulatory guide.


Engineering estimates of the potential hazards and consequences that may be associated with operating outside the bounds of normal conditions should be included.
c. Security Plan                                                Except in those cases in whichthe applicant proposes an alternative method for complying with specified A two-part security plan should be submitted with        portions of the Commission's regulations, the methods a license application for an ISFSI..As a minimum, the            described herein will be used in the evaluation of license following elements should be addressed:                          applications docketed after January 11 1975.


The analysis should determine the safe operating range of critical unit operations, identify potentially controllable off-standard conditions or design features, and establish actions appropriate for mitigating the consequences of off-standard conditions.(b) Loss of Power Loss of power is a site-safety-related off-standard condition of potentially serious consequences.
3.24-11


Circulation and cooling requirements will probably require continuous pumping capability.
APPENDIX A
                                          ANNEX B to 10 CFR Part 70, Licenses
                                                        "Emergency Plan"
                          MINIMUM REQUIREMENTS FOR LICENSEE'S PLANS FOR
                                    COPING WITH RADIATION EMERGENCIES
The licensee shall develop and maintain an emergency plan and implementing procedures for coping with radiation emergencies which shall include, but not necessarily be limited to, the following:
  1. An organization for coping with radiation emergencies, in which specific authorities, responsibilities, and duties are clearly defined and assigned. The methods used to assure that persons assigned specific authority and responsibility are initially qualified and are periodically trained so that they can continue to properly fulfill their duties should be specified. The means of notifying persons assigned to the organization in the event of an emergency and the means of notifying appropriate local, state, and Federal agencies so that emergency action beyond the site boundary may be taken should be specified.


Ancillary systems for safety and security should provide continuous instrument, lighting, alarm, and ventilation control power. Availability of reliable primary power to essential systems is a basic consideration for site selection.
2. A list of employees of the licensee (by position), other than those assigned to the emergency organization, who have any special qualifications for coping with emergency conditions. A similar list shall be made of other persons whose assistance may be needed. The special qualifications of these employees and persons shall be specified. All of the foregoing lists shall be available to the individuals responsible for directing the action necessary to cope with the emergency.


Redundant
3. The actions planned to protect the health and safety of individuals and to prevent damage to property both within and outside the site boundary in the event of various types of emergencies that can be anticipated, i.e., internal accidents such as criticality, fire, and explosions, and natural occurrences such as floods, tornadoes, and earthquakes.
&sect;ystems for alternative power sources or auxiliary systems such as diesel generator installations can support the primary power source.(3) Natural Phenomena The site-safety analysis provides a technical basis for design criteria considerations of plant-site interactions.


The potential actions bctween the natural environment and man-made structures are factors in site selection that should influence engineering judgments in choosing among design alternatives.
This should include the means for determining: (i) the magnitude of the release of radioactive materials, including guidelines for evaluating the need for notification and participation of local, state and Federal agencies, and (ii) the type and extent of protective action to be taken within and outside the site boundary to protect health and safety and prevent damage to property.


.24-8 i:,
:4. The post-accident recovery and reentry actions including guidelines for implementing these actions which shall include (i) corrective actions that may be necessary to terminate or minimize the consequences of the accident, (ii)
.(a) Meteorology Site-safety considerations require that meteorological parameters such as wind direction, velocity, atmospheric stability, and the joint frequency of occurrence be known well enough to demonstrate that the .joint dispersion of gaseous and particulate effluents will be predictable, within the bounds of conservative models conventionally used for analyzing the radiological consequences of accidental releases of radioactive materials.(b) Hydrology If pool water leaks to the ground, adequate time should be available to sink survey wells for any monitoring that might be considered necessary after the leak occurs and the. region to be monitored is defined. In addition, strategically located inspection wells should be sunk at the time of construction to check for subsurface water movement and possible outleakage.
criteria for plant reentry, (iii) securing the accident area from inadvertent or unauthorized reentry, (iv) and resumption of operations.


h. Exclusion Area, Low Population Zone, Population Center Distance The applicant should determine the exclusion area, low population zone, and population.
5. Procedures for notifying and agreements to be reached with local, state, and Federal officials for the early warning of the public and for appropriate protective measures should such measures become necessary or desirable.


center distance using a method analogous to that given in &sect; 100.11 of 10 CFR Part 100. This procedure involves an estimate of:.(1) The potential risk from the most severe upper limit accident and (2) Dose rates at .various.
6. Provisions for maintaining up to date: (i) the organization for coping with emergencies, (ii) the procedures for use in emergencies, and (iii) the lists of persons with special qualifications for coping with emergency conditions.
 
points downwind due to the. passage of the resulting radioactive cloud (under conservative atmospheric dispersion conditions).
No minimum values have been established for the size of the exclusion area, distance to the outer boundary of the low population zone (LPZ). or popu-lation center distance.
 
Past practice has usually been to establish, the population center distance as being at least 1 1/3 times the distance from the installation to the outer boundary of. the LPZ. Typically, the. distance to, the boundary of the LPZ is about 3 miles..The.applicant should identify industrial, military, or other installations in the area with which the.ISFSI may potentially interact.i. Accident Analysis The considerations of normal operations, off-standard conditions, design basis accidents, and natural phenomena provide part of the technical basis foi assessing the suitability of structures, equipment, and components relative to candidate sites. The accident analyses complement and supplement the other analyses by considering the possible effects of events that are characteristically infrequent, sudden, and potentially serious incidents.
 
Such events include: (1) Leaking fuel assemblies, (2) Fire, (3) Loss of coolant or cooling capability, (4) Dropped fuel assembly shipping cask during cask handling operations.
 
(5) Missile penetration of the storage building with fuel damaged in storage, (6) Natural phenomena, (7) Very low probability accidents (such as air-craft crashes).The applicant should perform detailed engineering analyses of such accidents and their calculated potential effects in terms of radiation dose commitment to individuals and populations within, the region that might be affected.
 
Such analyses will provide the -technical basis for judging the suitability of the selected site and the proposed plant design.3. Design Considerations The ANSI draft standard N305, Revision 7, dated'November 8, 1974,* "Design Objectives for Highly Radioactive Solid Material Handling and Storage Facilities in a Reprocessing Plant," is applicable to an ISFSI with the following exceptions and clarifications: "Section 2, Glossary of Terms": The terms "Operating Basis Earthquake" (OBE) and"Safe Shutdown Earthquake" (SSE) are not applicable to an ISFSI. Rather, the term Design Earthquake as defined in Section. C.2.c. of this document is applicable."Section 3,. Structural Criteria":
"3.1.2.2 Missiles" -The missiles of interest are those that could rupture fuel within the pool or could damage equipment.
 
or structures that could fall into the pool and potentially rupture stored fuel.In addition, the Regulatory staff considers the following design requirements to be applicable:
a. The design should preclude cask handling cranes passing over the fuel storage pools.b. The building itself need not be designed to withstand high winds, provided critical, equipment is protected.
 
* .c. The design basis for the ventilation system should be defined. This definition should include a description of the emergency air cleanup system used to accom-modate ruptured fuel. Calculations should be based on the design basis fuel characteristics.
 
d.. The heat removal system pumps, heat exchangers, and associated piping should be protected from credible accidents and have a backup power supply. However, if the applicant can show that under emergency conditions the pool structure can stand the' stresses imposed, that the consequences of any loss of normal cooling capability will not lead to excessive radiation doses, and*Copies of this draft standard may be obtained from the American Institute of Chemical Engineers, 345 E. 47th St., New York, N.Y. 10017.H 3.24-9 that there is an assured source of pool makeup water, cooling by boiling of the pool water is acceptable and the cooling system need not be protected from accidents.


The makeup system should be capable of withstanding any credible accident or a backup water system capability should be provided.
7. The specifications for emergency first aid and personnel decontamination facilities, including:
        (i) Identification of individuals directly involved in the accident;
        (ii) Equipment at the site for personnel monitoring;
        (iii) Facilities and supplies at the site for decontamination of personnel;
        (iv) Facilities and medical supplies at the site for appropriate emergency first aid treatment;
        (v) Arrangements for the services of a physician and other medical personnel' qualified to handle radiation emergencies; and (vi) Arrangements for transportation of injured or contaminated individuals to treatment facilities outside the site boundary.


If the backup system is not permanently installed, the applicant should show that the time required to implement the system's use is less than the time required for hazardous conditions to develop. If the pool structure cannot withstand the stress of water boiling, the cooling system should be designed and built to withstand any credible site-related natural phenomena.
8. Arrangements for treatment of individuals at treatment facilities outside the site boundary.


The makeup coolant water system should be equally reliable.e. Onsite radioactive waste treatment facilities should be provided.
9. Provisions for testing, by periodic drills, of radiation emergency plans to assure that employees of the licensee are familiar with their specific duties. Provisions for participation in the drills by other persons whose assistance may be needed in the event of a radiation emergency shall be included.


These facilities should be designed to render all site generated wastes into a form suitable for interim storage and ultimate final disposal.f. Provisions should be made for (1) receipt of casks under abnormal circumstances, such as loss of coolant, and (2) expected cask maintenance, repair, -and modification activities.
3.24-12


g. A cask drop analysis should be made. This analysis indicates the need to provide a shock absorber in the bottom of the cask unloading pool (CUP).h. The storage pools should be of modular design.Each module should have a maximum capacity of about 500 tons of spent fuel.4. Physical Protection Some of the guidance on physical protection provided in Regulatory Guides 5.7, 5.12, 5.20, and 5.30 is applicable to an ISFSI. Regulatory Guide 5.7."Control of Personnel Access to Protected Areas, Vital Areas, and Material Access Areas," is applicable for those parts related to material access areas (i.e., sections D.2, D.3, and D.5.b). Regulatory Guide 5.12, "General Use of Locks in the Protection and Control of Facilities and Special Nuclear Materials," and Regulatory Guide 5.20, "Training, Equipping, and Qualifying of Guards and Watchmen," are applicable in their entirety.Regulatory Guide 5.30, "Materials Protection Con-tingency Measures for Uranium and Plutonium Fuel Manufacturing Plants," is generally applicable except for those parts regarding emergency protection measures that affect activities appropriate only to material access areas.a. Vital Areas and Vital Equipment Several specific areas at an ISFSI should be designated vital areas because of their importance for protection against sabotage: (1) The cask unloading area should be a separate pool connected by a canal to the main storage pool system. The unloading pool should be designated a vital area.(2) The spent fuel storage area should be designated a vital area. It includes the pool system consisting of the water containment structure and the supporting auxiliary systems used to maintain appro-priate radiation shielding and cooling. Vital equipment in this area includes the nuclear fuel in storage, fuel storage racks, radiation monitoring and alarm systems for fuel cladding leakage, pool water leakage detection system and liquid level monitors, pool water loss makeup and ,cleanup systems, decay heat removal system, ventilation and confinement system, and emergency systems for purposes such as fire protection.
(3) The onsite auxiliary power supply system, regardless of its location, is considered vital.(4) The onsite central alarm stations should be designated vital areas. Vital equipment in these areas includes communication equipment;
primary control and annunciation equipment for alarms; metal and explosive detectors;
card-key readers; closed circuit television;
and an independent power supply system (i.e.,, backup or emegency power).b. Physical Protection Design Criteria (1) The design of an ISFSI should be based on the physical protection criteria set forth for fuel repro-cessing plants in proposed Appendix Q to 10 CFR Part 50.*(2) The design, fabrication, erecting, and testing of structures, systems, and components important to physical protection of the facility should be conducted in accordance with an acceptable quality assurance program, as outlined in 10 CFR Part 50, Appendix B,"Quality Assurance Criteria for Nuclear Power Plants and Fuel Reprocessing Plants." (3) The concept of isolation (e.g., automation, remote handling, and controlled access) should be incorporated into the design. The isolation should limit access to vital areas or equipment to only those individuals who require access.for essential purposes or for performance of duty.* (4) The location and arrangement of equipment in a vital area should be evaluated with respect to the need for the equipment to be contained in that location and the capability for regular testing and inspection.
Equip.ment other than. process or vital equipment should not be located in a vital area.(5) Equipment used to store, transfer, or protect material or to protect the plant should be designed to facilitate maintenance and testing so that compliance with applicable regulations and license conditions can be verified.(6) The double barrier concept, controlled access.monitored isolation zones, designation of vital areas, and the use of keys, locks, and combinations should be integrated into the facility layout and design.(7) Isolation zones should be monitored to provide timely detection of intrusion and to permit*39 FR 26293, July 18, 1974.3.24-10
subsequent guard action and notification of the local law enforcement agencies (LLEA).(8) Isolation zones and clear areas between barriers should be illuminated to at least 0.2 foot-candle.
(9) The design for access control of personnel, packages, and vehicles through physical barriers should include provisions for verifying identity and authority, alarming, emergency exits, operating unmanned exits, searching packages and individuals upon entering, and detecting firearms, explosives, or incendiary devices.(10) The design should preclude simultaneous handling of shipments of irradiated fuel and receipt of materials other than irradiated fuel in a single area.(11) The .facility should be designed to permit continuous surveillance of occupied vital areas and alarming of unoccupied vital areas.(12) The facility should provide backup means such as emergency power and redundant hardware.
It should accommodate alternative procedures to provide continued protection in such events as power failure, equipment malfunction, or individual guard incapacitation.
(13) Alarm systems should be designed to meet performance and reliability.
characteristics described in&sect; 73.50(d)(1).(i4). Communications equipment for use by plant personnel and the LLEA should be designed with appropriate re dundancy and flexibility, as described in&sect;73.50(e)(1)
through (4).c. Security Plan A two-part security plan should be submitted with a license application for an ISFSI..As a minimum, the following elements should be addressed:
(1) Security force equipment.
organization, responsibilities;
and.procedures.
(2) Integration of security provisions with the site and installation layout.(3) A description of the physical protection features of the installation.
(4) Security ajeas, including those protected by physical barriers and isolation zones: vital areas and equipment.
*-(5) Access monitors'and controls- for personnel, vehicles, and packages;
a badge system; access authoriza- tion and registration;
personnel escort; and the use of keys, locks, and combinations.
(6) Surveillance systems, including intrusion and detection alarms.* (7) Central alarm and communication systems.(8) Response capability assessment arid followup for alarms and threats.(9) Availability of assistance from local law enforcement agencies.(10) Testing and inspection of security related equipment and devices.(11) Maintenance of control records.(12) Security audit program.
==D. IMPLEMENTATION==
The purpose of this section isto provide information to applicants and licensees regarding the Regulatory staff's plans for utilizing this regulatory guide.Except in those cases in whichthe applicant proposes an alternative method for complying with specified portions of the Commission's regulations, the methods described herein will be used in the evaluation of license applications docketed after January 11 1975.3.24-11 APPENDIX A ANNEX B to 10 CFR Part 70, Licenses"Emergency Plan" MINIMUM REQUIREMENTS
FOR LICENSEE'S
PLANS FOR COPING WITH RADIATION
EMERGENCIES
The licensee shall develop and maintain an emergency plan and implementing procedures for coping with radiation emergencies which shall include, but not necessarily be limited to, the following:
1. An organization for coping with radiation emergencies, in which specific authorities, responsibilities, and duties are clearly defined and assigned.
The methods used to assure that persons assigned specific authority and responsibility are initially qualified and are periodically trained so that they can continue to properly fulfill their duties should be specified.
The means of notifying persons assigned to the organization in the event of an emergency and the means of notifying appropriate local, state, and Federal agencies so that emergency action beyond the site boundary may be taken should be specified.
2. A list of employees of the licensee (by position), other than those assigned to the emergency organization, who have any special qualifications for coping with emergency conditions.
A similar list shall be made of other persons whose assistance may be needed. The special qualifications of these employees and persons shall be specified.
All of the foregoing lists shall be available to the individuals responsible for directing the action necessary to cope with the emergency.
3. The actions planned to protect the health and safety of individuals and to prevent damage to property both within and outside the site boundary in the event of various types of emergencies that can be anticipated, i.e., internal accidents such as criticality, fire, and explosions, and natural occurrences such as floods, tornadoes, and earthquakes.
This should include the means for determining: (i) the magnitude of the release of radioactive materials, including guidelines for evaluating the need for notification and participation of local, state and Federal agencies, and (ii) the type and extent of protective action to be taken within and outside the site boundary to protect health and safety and prevent damage to property.:4. The post-accident recovery and reentry actions including guidelines for implementing these actions which shall include (i) corrective actions that may be necessary to terminate or minimize the consequences of the accident, (ii)criteria for plant reentry, (iii) securing the accident area from inadvertent or unauthorized reentry, (iv) and resumption of operations.
5. Procedures for notifying and agreements to be reached with local, state, and Federal officials for the early warning of the public and for appropriate protective measures should such measures become necessary or desirable.
6. Provisions for maintaining up to date: (i) the organization for coping with emergencies, (ii) the procedures for use in emergencies, and (iii) the lists of persons with special qualifications for coping with emergency conditions.
7. The specifications for emergency first aid and personnel decontamination facilities, including: (i) Identification of individuals directly involved in the accident;(ii) Equipment at the site for personnel monitoring;(iii) Facilities and supplies at the site for decontamination of personnel;(iv) Facilities and medical supplies at the site for appropriate emergency first aid treatment;(v) Arrangements for the services of a physician and other medical personnel'
qualified to handle radiation emergencies;
and (vi) Arrangements for transportation of injured or contaminated individuals to treatment facilities outside the site boundary.8. Arrangements for treatment of individuals at treatment facilities outside the site boundary.9. Provisions for testing, by periodic drills, of radiation emergency plans to assure that employees of the licensee are familiar with their specific duties. Provisions for participation in the drills by other persons whose assistance may be needed in the event of a radiation emergency shall be included.3.24-12
10. The provisions for the training of persons other than employees of the licensee whose assistance may be needed in the event of a radiation emergency.
10. The provisions for the training of persons other than employees of the licensee whose assistance may be needed in the event of a radiation emergency.


I1. Provisions for maintenance and storage of emergency equipment, considering the various types of accidents that can be anticipated, also, the performance criteria of the various types of equipment.
I1. Provisions for maintenance and storage of emergency equipment, considering the various types of accidents that can be anticipated, also, the performance criteria of the various types of equipment.


The licensee's emergency plan shall consist of a document providing the objectives and the bases for the actions to be taken to cope with various types of accidents which affect, or threaten the health and safety of the general public, employees of the licensee or other persons temporarily or permanently assigned to the facility.
The licensee's emergency plan shall consist of a document providing the objectives and the bases for the actions to be taken to cope with various types of accidents which affect, or threaten the health and safety of the general public, employees of the licensee or other persons temporarily or permanently assigned to the facility. It should specify the objectives to be met by the' implementing procedures and should assign organizational and individual responsibilities to achieve such objectives.
 
It should specify the objectives to be met by the' implementing procedures and should assign organizational and individual responsibilities to achieve such objectives.


Emergency procedures shall consist of a document defining in detail the implementation actions and methods necessary to achieve the objectives of the emergency plan for each set of circumstances considered in the emergency plan. To the extent possible these two documents should be separated.
Emergency procedures shall consist of a document defining in detail the implementation actions and methods necessary to achieve the objectives of the emergency plan for each set of circumstances considered in the emergency plan. To the extent possible these two documents should be separated.


1-=3.24-13}}
1-=
                                                          3.24-13}}


{{RG-Nav}}
{{RG-Nav}}

Latest revision as of 23:32, 4 November 2019

Guidance on the License Application, Siting, Design, and Plant Protection for an Independent Spent Fuel Storage Installation
ML13038A434
Person / Time
Issue date: 12/31/1974
From:
US Atomic Energy Commission (AEC)
To:
References
RG-3.024
Download: ML13038A434 (13)


December 1974 U.S. ATOMIC ENERGY COMMISSION

REGULATORY

DIRECTORATE OF REGULATORY STANDARDS

GU IDE

.REGULATORY GUIDE 3.24 GUIDANCE ON THE LICENSE APPLICATION, SITING, DESIGN, AND

PLANT PROTECTION FOR AN INDEPENDENT SPENT FUEL

STORAGE INSTALLATION

A. INTRODUCTION

applicable as a guide for the preparation of an environ- mental report for an ISFSI. Subjects that are pertinent An "independent spent fuel storage installation" only to nuclear power plants are obviously not (ISFSI) is a self-contained installation for storing spent applicable, however, and subjects that are important to fuel. It has its own support services and operates an ISFSI, such as spent fuel transportation, should be independently of any other facility; i.e., it is not a part emphasized.

of either a nuclear power plant or a fuel reprocessing This guide discusses the license application, site plant. Such an installation is visualized as being capable evaluation, design, and plant protection of an ISFSI. It of storing 1000 tons or more of spent light-water reactor describes the measures acceptable to the Regulatory fuel. staff for meeting the requirements of 10 CFR Part 70. In Licensed spent fuel storage installations historically addition, it identifies the information needed by the have been integral parts of either fuel reprocessing plants staff in its evaluation of an ISFSI application.

or nuclear power plants. Such plants have been licensed under 10 CFR Parts 30, 40, and 70 in addition to 10

B. DISCUSSION

CFR Part 50.

An. ISFSI, independent and separate from either a 1. General Considerations nuclear power plant or a fuel reprocessing plant, would be licensed under Parts 30, 40, and 70. An applicant for An ISFSI could be substantially larger than. any a license for an ISFSI meeting the requirements for a existing spent fuel storage installation associated with Part 70 license would automatically satisfy the require- either a nuclear power plant or a fuel reprocessing plant.

ments for a Part 30 and 40 license. Therefore, a license The ISFSl could have an inventory of long-lived fission application for an ISFSI would be reviewed under the products and fissile materials greater than that in any requirements of 10 CFR Part 70. existing nuclear reactor or presently projected fuel

"Licensing and Regulatory Policy and Procedures for reprocdssing plant.

Environmental Protection," 10 CFR Part 51, sets forth An ISFSI will function solely in a protective the Atomic Energy Commission's policy and procedures custodial capacity, providing stable storage conditions for preparing and processing environmental impact pending some future disposition of the spent fuel. The statements and related documents pursuant to Section fuel assemblies and their contents would not be changed

102(2)(C) of the National Environmental Policy Act of by the activities conducted at an ISFSI.

1969 (83 Stat. 852). Certain limitations on the Com- While the spent fuel is in passive storage. decay heat mission's authority and responsibility pursuant to the and the modest pressure within the fuel tubes are the NEPA are imposed by the Federal Water Pollution only driving forces for dispersing the relatively large Control Act amendments of 1972 (86 Stat. 816). These inventory of radionuclides contained in 1000 tons or limitations are addressed in an Interim Policy Statement more of spent fuel.

published in the Federal Register on January 29, 1973 The stored fuel elements should be protected from

(38 FR 2679). incidents or accidents resulting in massive ruptures of Regulatory Guide 4.2, "Preparation of Environ- fuel elements, and the pool water level should be mental Reports for Nuclear Power Plants," is generally maintained. Leakers should have special handling, USAEC REGULATORY GUIDES Copies of published guides may be obtained by request indicating the divisions desired to the US. Atomic Energy Commission, Washington, D.C. 20545, Regulatory Guides are issued to describe and make available to the public Attenion Director of Regulatory Standards. Comments and suggestions for methods acceptable to thp AEC Regulatory staff of implementing specific parts of mtprovementts in these guides are encouraged and should tbesent to the Secretary the Commission's regulations, to delineate techniques .*ed by the staff in of the Commission. US. Atomic Energy Commission. Washington, D.C. 20545, evaluating specific problems or postulated accidents. or to provide guidance to Attention Docketing and Service Section.

applicants. Regulatory Guides are not substitutes for regulations and compliance with them is not required. Methods and solutions different from those set out in The guides are issued in the following ten broad divisions:

the guides will be acceptable if they provide a basis for the findings requisite to the isuance or continuance of a permit or license by the Commission. I. Power Reactors

6. Products

2. Research and Test Reactors

7. Transportationn

3. Fuels and Materials Facilities 8. Occupational Health Published guides will be revised periodically, as appropriate, to accommodate 4. Environmental and Siting 9. Antitrust Review comments and to reflect new information or experience. 5. Materials and Plant Protection 1

0. General

including encapsulation. to provide storage conditions contained in the 1000 tons or more of spent fuel equivalent to those for undamaged fuel elements. expected to be stored in the installation. The possibility It is assumed that the storage pools will be built *of an uncontrolled release of radionuclides, driven -by below grade. The large heat capacity of the pools should the energy available as decay heat and gases under allow adequate time to take corrective action in case of :pressure within the fuel cladding, should be considered an emergency. Even in the event of an earthquake or in the design of structures, systems, and components and other extreme natural phenomenon, sufficient cooling in plant siting. Together, these criteria should be the can be provided by emergency action in time to protect bases for the final engineering design and can only be the health and safety of the public. suitably developed from a relatively complete knowledge Storage pool water becomes contaminated with radio- of the physical characteristics of the candidate sites.

nuclides from defective fuel elements and with The siting considerations for an ISFSI should include activation products on the fuel surfaces. This material the structural engineering plant siting factors, the should be confined and treated for disposal. environmental effects of construction, the potential Accident analyses should be based on the release of effects of plant effluents from normal operations, and the volatile fission products contained in the stored fuel the potential effects from off-standard conditions. Ad- under defined accident conditions. ditionally, the potential for effects on the plan! and fuel in storage that might be attributable to site character-

2. License Application istics or the environment should be reflected in the design of plant structures and equipment.

Because of the substantial quantity of contained In general, safe storage of irradiated fuel is dependent radioactivity and the cooling requirements involved in an on maintaining the integrity of the fuel cladding as the ISFSI, the review and evaluation of the engineered primary barrier to the release of radioactive materials.

design and detailed safety analysis for the installation Fuel cladding is designed to withstand a far more severe must be conducted prior to licensing. For this reason, a environment in a reactor than in a storage installation.

license application for an ISFSI should include a safety Therefore, under the low temperature conditions of analysis report similar in scope and detail to the static storage, the cladding provides an effective barrier pertinent parts of a safety analysis report for a fuel to the escape of fission products and fissile materials reprocessing plant. into the storage facility. The installation should be The licensing of an ISFSI would be a major Federal designed to ensure that the integrity of cladding is not action within the meaning of the National Environ- lost because of either mechanical damage or the effects mental Policy Act of 1969. Therefore an applicant of excessive temperature.

should prepare an Environmental Report that can serve Historical information of public record concerning as the technical basis for an evaluation by the Commis- the regional and local meteorology, geology-seismology, sion of the potential environmental impact of the and hydrology should be supplemented by on-site installation. analyses *to provide a basis for judgment specific to the Detailed engineering plans should be filed with the candidate site. From these analyses the extremes of license application, and -its supporting environmental wind, snow, and ice loadings; the precipitation; the report at least nine months before the start of con- probable maximum flood; the design earthquake; the struction activities. surficial and foundation geological structures; the A site evaluation should be provided to ensure that topography; and any potential for landslides, liquefac- the natural characteristics of the site are sufficiently well tion, or subsidence should be determined.

known to provide the bases for the engineering design of the installation. 4. Design Considerations The applicant's safety analysis, environmental report, and security plan are fundamental. to developing the The design considerations of an ISFSI are somewhat basis for design of the installation. The license comparable to those for smaller facilities of the same application should take into account all proposed type at a reprocessing plant. However, particular normal operations, any credible off-standard conditions, consideration may be needed for the ISFSI because of and the existing potential for interaction between the its size, existence as an individual entity without the installation and the site due to natural phenomena. backup of an associated facility, and loading of 1000

When a fuel storage pool is part of a reprocessing tons or more of spent fuel with a potential inventory of

.plant or a nuclear power plant,. fuel storage pool relatively long lived fission products in excess of 109 operators are licensed under the provisions of 10 CFR curies and with cooling requirements in excess of 107 Part 55. ISFSI operators should have a comparable level Btu/hr.

of training. The safe storage of irradiated fuel depends on maintaining the integrity of the fuel cladding as the

3. Site Selection primary barrier to the release of radioactive materials.

The basic design consideration is the protection of the Site selection criteria should be based on the safe- fuel cladding, not the-protection of the pool structures.

keeping of the relatively large inventory of radionuclides The ISFSI should be designed to ensure that the

3.24-2

integrity of the cladding is not lost through mechanical contained volatile radionuclides would escape. In disruption or excessive temperature. addition, cask unloading, decontamination, and other An ISFSI would be licensed under the provisions of routine operations may result in airborne radioactive

10 CFR Parts 30, 40, and 70. Some provisions similar to materials.

those for plutonium processing plants would be appro- The ventilation system should be designed to oriate for these installations. Two of these that are of protect the operators and to keep the activity levels in particular importance are: (1) confinement components, the personnel occupancy areas (and radioactive materials systems, and structures important to safety should be in gaseous effluents) as low as practicable and within the designed and constructed to withstand natural phenom- limits of 10 CFR Par',20.

ena and (2) quality assurance criteria such as those in Appendix B to 10 CFR Part 50 should be applied to d. Liquid Effluents safety-related structures, systems, and components.

Radioactive liquid effluents should not be a. Pool Integrity discharged to the natural area drainage system. If this is not feasible, the treatment system for liquid effluents The design earthquake is based on the assumption discharged to unrestricted areas should ensure that the that the storage pools will be built below grade and radioactivity in such effluents is as low as practicable designed with a high degree of resistance to ground and within the limits, of 10 CFR Part 20.

motion. Furthermore, it is assumed that the storage pool or pools will be built either in impervious soils or with a e. Waste Treatment secondarywater containment envelope. The leak rate of such a containment envelope should be low enough that, Provisions should be made to render contaminated in the event of a gross pool leak, makeup water could be wastes into a form suitable for land burial or shipment supplied to the pool at a rate sufficient to keep the to the planned Federal repository.

stored fuel adequately covered. During the design for ultimate decommissioning of the installation, considera- f. Accident Design Considerations tion should. be given to disposing of potentially contaminated soil or other fill materials between the An ISFSI should be designed to preclude the pool exterior walls and the secondary pool water following as credible accidents:

containment envelope. (1) Criticality Large. spent fuel storage pools should be built as a (2) Exposure of stored fuel through loss of series..of separable modular units or with provisions for shielding water isolating sections of the pool when necessary. A (3) Dropping of heavy loads on fuel maximum capacity of about 500 tons of spent fuel per (4) Multiple massive ruptures of fuel elements by pool module or section appears desirabl

e. missiles

(5) Complete loss of cooling water b. Heat Dissipation g. Storage Racks *

A 5000-ton ISFSI would be ex ected to have a cooling demand in the order of 5 x 10 Btu/hr or more. Storage racks should be designed with adequate No difficulty is anticipated in dissipating this quantity of spacing to meet criticality requirements and be struc- heat by conventional means. If evaporative coolers are turally compatible with seismic and missile protection used, a reliable water supply shouldbe available for pool design criteria.

makeup water and cooling tower blowdown. Regulatory Guide -1.27, "Ultimate Heat-Sink for Nuclear Power 5. Physical Protection Plants," gives guidance on the degree of reliability required. An ISFSI should be protected from acts of industrial Certain designs of the installation and local site sabotage that could directly or indirectly endanger the conditions may result in a need for the cooling system to public health and safety by releasing radiation (airborne be serviced by the emergency power supply system of radioactive particulates rather than gaseous fission the installation. products). This protection should be achieved by estab- lishing and maintaining a physical protection system as c. Ventilation required by 10 CFR Part 73.

Further, interfacing the security organization and its A fraction of the fuel assemblies received for functions with the plant should be considered. Iden- storage at an ISFSI will presumably be "leakers," and tifying vital equipment, as defined in 10 CFR §73.2(i),

some fuel assemblies may develop leaks later while in and integrating physical protection considerations into long-term storage. Such leakers should be encapsulated the layout and design of the installation as early as in a secondary container reasonably promptly. However, possible should help preclude requirements for sub- until they are encapsulated, some fraction of the sequent modification of the installation.

3.24-3

Site location is important with respect to the 71 - Packaging of Radioactive Material for availability of timely and significant assistance from Transport and Transportation of Radioactive Material local law enforcement authorities (LLEAs) in the event Under Certain Conditions of attempted industrial sabotage. A progressively larger 73 - Physical Protection of Plants and Materials

  • onsite guard force will be needed as the distance of the nearest significant LLEA increases. In particular, The applicant should provide:

licensees who possess or use SNM are required by 10 CFR Part 73 to take certain actions to protect the a. An emergency plan.. consistent with 10 CFR

installation against industrial sabotage. The particular §70.24(a)(2), such as Annex B which is currently actions applicable to a spent fuel storage installation are routinely incorporated in Part 70 licenses. A copy of prescribed in §73.50, which requires: Annex B is attached as Appendix A to this guide.

b. A quality assurance program consistent with 10

a. A physical security organization including a CFR.Part 50, Appendix B. A description of the program supervisor, qualified armed guards, and written security and current status .of project design and procurement procedures. activities should be included in the license application. A

b. Physical barriers, including multiple barriers and copy of the applicant's Quality Assurance Manual monitored intervening clear areas and isolation zones. covering design and procurement should be submitted to c. Detection and alarm systems, with annunciators in the appropriate Regulatory Operations Regional Office two continuously manned central alarm stations .and 30 days before the license application.

self-checking and tamper-indicating capability. c. Design criteria consistent ;with those in the d. Access controls to limit entrance of personnel, proposed 10 CFR Part 50, Appendix P, "General Design vehicles, and packages into protected and vital areas, Criteria for FuelReprocessing Plants."

including use of metal and explosives detectors, random *d. Design criteria consistent with those in Sections I

searches, badging system, escorts, and appropriate keys, and 11. of the proposed 10.CFR Part 50, Appendix Q,

locks, andcombinations. "Design Criteria for the Protection of Fuel Reprocessing e. Communication systems, including continuous Plants and the Licensed Material Therein."*

communication between each guard and the central e.. A two-part security plan consistent with 10 CFR

alarm station, capability to request assistance from the §73.50.

LLEA, two-way radio voice communication, con- f. Information . sufficient to demonstrate the ventional telephone service, and independent power financial qualifications of the. applicant to carry out the source. activities for which the license is sought.

f. Liaison with local law enforcement autfiorities g. Financial information pertinent to the proposed- capable of providing assistance to the licensee's security decommissioning plan.

organization in the event of a security threat. h. .A site evaluation based on the factors, to the g. Testing and maintenance of security equipment. extent applicable to an ISFSI, identified in § 100.10(b),

(c), and (d). of 10 CFR Part 100. This evaluation should Section 73.40 requires submission of a security plan to contain an analysis, and evaluation of the major the Commission for approval. Such security plans consist structures, systems, and components of the installation of two parts. Part I should discuss vital equipment, vital that bear significantly on the acceptability of the site for areas, and isolation zones. It should also demonstrate its intended use.

how the applicant plans to comply with the require- i. A summary description and discussion of the ments of 10 CFR Part 73 cited above. Part II should list installation, with special, attention to design and tests, inspections, and other means to be used to operating characteristics, unusual or novel design demonstrate compliance with such requirements.. features, and principal safety considerations.

j. The principal, design features for the installation,

C. REGULATORY POSITION

including:

1. License Application (1) The principal design criteria for the instal.

lation. (See proposed Appendix P to 10 CFR Part 50 for The applicable regulatory requirements are in the guidance.*)

following parts of 10 CFR: (2) The design bases and the relation of the design

19 - Notices, Instructions and Reports to Workers; bases to the principal design criteria.

Inspections (3) Information relative to materials of con-

20 - Standards for Protection Against Radiation struction, general arrangement, and approximate

30 - Rules of General Applicability to Licensing of dimensions sufficient to provide reasonable assurance Byproduct Material that the final design will conform to the design bases

40 - Licensing of Source Material .with an adequate margin for safety.

51 - Licensing and Regulatory Policy and Proce- dures for Environmental Protection

70 - Special Nuclear Material *39 FR 26293, July. 18, 1974.

3.24-4

  • . -~a ilysi(ifid valualion W the ?design ýand . 2. iteiSelection:... . ... .

peffhtm'ce

... f*Ltctues..

.. systems, and ýcomponeMts;.ofib th iisait ný e i-jsmijpperiuing -servides-v with"-. .. e-i"xal,I 0 . 6'l;. ,

-GI:.i tL. i,.

the objective of assessing the risk to the publich)healthib

  • n:<site;,.sould r*,im.et!sv the, nfollowi~g, *-general.*

IT

and safety resulting from the operation of the instal- conitd i rio s jir',, 1: - ,:* .,*... .- -.

lation and includiif tlg rm iflnfP.. ,(f-)io ofinatiai

(1) The margins of safety during normal and (1) ,:Twrershould!he. m o stoApes, close enough to the abiio a.'Lcqnditfins- ntiipated, durgiihe'life of the prnoposedyi insiallation:-.to;ube ,a;:landslide hazard. Alter- natively., ;the !lopes!,shouldj,;be;,engineexedIt

o. remain

('2) rbtý,adequacy ",.of;itructures, ;systermsT-and,

('2' stable.,with :a conservative !factor of safety iunder both components provided for the mitigation:of.the:,con- static: and dynamic conditions.

sequences of accidents, including natural phenomena (2) Capable, faults* should-be sufficiently -remote even ts. 1; .. ..; "' i.- : to preventr surface movements on the -main strand or any splay in the site area.

1. An identification of the variables, conditions, or (3) Foundation material should be unweathered other items that are determined. to be the probable bedrock or other material with a low liquefaction subjects of license conditions for the installation. potential.

m. An identification of any items requiring research (4) There should be no potential for differential or development to confirm the adequacy of their design; subsidence such as that associated with karst topo- an identification and description of the research or graphy, solution cavities, differential compaction, or development program that will be conducted to resolve man's activities (such as fluid withdrawal from the any safety questions associated with the planned subsurface and . extraction of minerals). Karst topo- installation and its operation; and a schedule of the graphy need not necessarily eliminate a site from required programs showing that such safety questions consideration if the applicant can show that the will be resolved before completion of construction of potential. for sudden collapse can be eliminated by the facility. remedial work.

.n. The technical qualifications of the applicant to engage in the proposed activities and his personnel b. Geology training program.

o. A description of the instrumentation and control Information should be provided to show that site systems and of the auxiliary and emergency systems. conditions meet the above criteria. This information can p. A description of radioactive waste handling, be obtained from literature reviews and on-site field treatment, and disposal systems. investigations such as.the following:

q. A description of the means for controlling and (1) A visual inspection of the site and study of limiting radioactive effluents and radiation exposures to rainfall, geologic structure, and topography 'can provide plant personnel. to levels that are as low as practicable information to show that there is no landslide hazard to and well within the limits set forth in 10 CFR Part 20. the fuel storage installation. Detailed investigations may r. An estimate of the quantities of each of the be required to determine stability under dynamic (earth- principal radionuclides expected to be released in quake) loading conditions.

gaseous and liquid effluents to unrestricted areas during (2) The absence of capable faults and the stability normal operations. of the foundation material can be determined by s. An identification of a spectrum of design basis reviewing literature and confirming geotechnical site incidents (DBIs) due to industrial sabotage, the investigations. The site investigations may vary from possibility of which reasonably exists although the programs involving a simple visual examination for a site likelihood may be small. The plant design and security with completely exposed bedrock foundation material system should be evaluated in terms of adequacy to to programs that require trenching and stripping for sites preclude or to minimize the danger to the public that with bedrock covered by a thin (up to 15 ft) layer of may ensue in the event of a design basis incident. A unconsolidated material. Sites with deep soil will require

"design basis incident" in this case is a postulated more detailed programs, including but not limited to credible incident and the resulting conditions for which trenching, stripping, drilling, hydrologic testing, security related equipment meets its functional ob- laboratory and field testing of soil properties, and jectives. Examples of security related incidents include a geophysical surveys.

credible armed intrusion, breach of a protective barrier. Onsite investigations may reveal fractures. If or malfunction of security equipment. so, conclusive evidence should be presented to demon- t. A description of systems used to clean up and strate that the fractures have not been displaced or are make up pool water, with particular emphasis on the not capable faults.

capacity of these systems to handle the volumes involved (3) The absence of a potential for sudden sub- and both soluble and insoluble radionuclides. sidence can be determined from the literature review and u. A description of plans for preoperational testing of the installation. *See 10 CFR 100 Appendix A for a definition of capable faults.

3.24-5

on-site investigations. Investigations will reveal whether the material underlying the epicentral location and the o hghe .- s .I

or not the site is underlain by limestoneý,)4blbimi,." charactedstibs if *h i.r* gi*

gypsum, or other soluble material that can result in karst topography. If such material is known to iindmlie the site, then onsite examinations can be expected to reveal th"196tigtik[l 4*.0s~d dd sttl*Me n * *.AiXssiblýý!,.indiat ors of such a potential would be the presence of sink,'lhlbE4;:- (3) Definition:-of lgiwogq Al f B!

soin *-tf,* lnraxul&ie.

-T1 iA .iI1*h sl~I~s4t:ia +n1imn*io~oil+/-liinducitig+*e~qa!

a ?f$eW of thee*'g-flhefddral~ndlStat ageiie*-: quake event that has a reasonably high proba*.y of re~ `sis ri"ofrtMihoring.611i¶nd miring activities, or ocuurreazeýr based ,on studies! -of .hiWrxj.sei city: and other activities such as waste, itlsposalror-ý'rawval.of. stUttumaligeology.,...;.. .

flffidsg -fo*nm the,ýibsu**fabe.,-6 n be eipewtad. rto provide the riirifoi mationfneeided ,,to": datermine .,,hethr.,such (4) Determination of the Design Earthquake activities have affected the site to the-extent -that they haveipioduced apotýentiai for sudden subsidence. Should In evaluating historic seismicity and regional such a potential be indicated, a more detailed investiga- structural geology, the historic earthquakes identified tion should be performed. from the above investigations should be associated with tectonic structures to the extent practical.

c. Seismology - Design Earthquake If historic earthquake. data indicate a high incidence of earthquakes along only a particular portion

(1) General Seismic History of a tectonic structure, the probability of similar earthquakes in the future should be assumed uniformly A full review of the seismic history of the throughout the same segment of the tectonic structure.

region in which the site is to be located should be made (Where geologic evidence indicates that the structure is a to identify earthquakes that have taken place in historic major, continuous, through-going structure with time and that could affect the selection of a Design significant displacement, a more conservative assumption Earthquake. All earthquakes within the same tectonic may be appropriate.) These earthquakes should be used province as the site (or adjacent tectonic province to the in determining the maximum vibratory motion at the site if near a border) should be examined for location, site that could be caused by an earthquake related to the size, reliability. of data, and effect on the site. Tectonic tectonic structure.

maps should be used to define the tectonic province(s) Correlation of tectonic structure and historic of significance to the site. seismicity may not be possible because (a) there is insufficient data or (b) seismicity appears uniform over a

(2) Specific Seismic History network of tectonic. structures ,or cannot be correlated with specific structures. If so, the. seismicity should be Historic earthquakes that may have affected identified with the tectonic province in which it is the site itself should also be considered. All those that reported.

resulted in or are projected to have had an intensity of IV or greater at the plant site should be included in the (5) Selection of a Design Earthquake consideration. (Intensity IV earthquakes can be determined by a review of the U. S. Coast & Geodetic In view of the limited consequences of seismic Survey, National Oceanographic and Atmospheric events in excess of those used as the basis for.seismic Administration, and U. S. Geological Survey literature.) design, it appears appropriate that the design earthquake All earthquakes with an epicentral intensity of developed from the above information -should be such as V or greater should be shown in a table. This table to have a predicted recurrence interval of about once in should include the following estimated or measured a thousand years.

data:

(a) Earthquake magnitude or highest inten- sity; d. Meteorology (b) Location of the epicenter or region of highest intensity; While an elaborate continuing program of (c) For earthquakes with intensities of VII or monitoring and measuring on-site meteorological greater at the site, an estimate of the resulting intensity phenomena comparable to that for a fuel reprocessing or acceleration and duration of ground shaking at the plant should not be necessary, the consequences of the site. release. of airborne radioactivity under both normal and An appropriate time span should be considered for accident conditions should be determined by the various intensity levels if a statistical analysis is applied. applicant. Regulatory Guide 1.23, "On-Site Meteoro- It should be recognized that there may be logical Programs," provides guidance for the basic appreciable differences between the characteristics of elements~of a suitable-program.

3.24-6

The meteorology program should be commen- Appropriate site selection can limit the potential surate with the postulated modes (release height and for flooding. A high ground site above historical flood duration) of releases of airborne radionuclides under plains is more suitable than a site at lower elevation. The normal and accident conditions, as determined by the applicant should identify a design basis flood for the applicant and confirmed by the staff. Guidance is given purpose of evaluating the safety of the selected site; the in Regulatory Guide 1.23 (Safety Guide 23), "Onsite design of structures, equipment, and components Meteorological Programs." essential to the protection of the public health and Presentation of long-term historical records of the safety; and the possible consequences of a flood equal to extremes of temperature, precipitation, wind, snow, and the Probable Maximum Flood or of floods caused by ice, and their resultant loading parameters, should be means of comparable risk other than precipitation. The included to aid in evaluating the design bases. Addi- Probable Maximum Flood or the controlling flood tionally, site-safety considerations require that the joint conditions characteristic of the region and site should be frequency distribution of wind direction, velocity, ana considered in evaluating site safety.

stability be sufficiently well known to demonstrate with At iocations near large surface bodies of water, the confidence the probable dispersion of airborne effluents. occurrence of tsunami and seiches should be considered.

Representative (preferably onsite) data and conservative The historical basis for assumptions should be atmospheric diffusion models such as those presented in documented, along with the estimated consequences of Regulatory Guide 1.3, "Assumptions Used for Eval- such phenomena. General information requirements on uating the Potential Radiological Consequences of a Loss this subject are discussed in Regulatory Guide 1.59, of Coolant Accident for Boiling Water Reactors," may "Design Basis Flood for Nuclear Power Plants."

be used to estimate the dispersion of airborne effluents. Cooling water discharges such as those caused by The occurrence of extreme weather phenomena cooling tower blowdown to surface waters are regulated such as hurricanes, tornados, water spouts, and violent under the Federal Water Pollution Control Act thunderstorm activity should be considered as part of Amendments of 1972 (86 Stat. 816). The applicant the site safety analysis to provide the essential technical should determine what present and proposed regulations basis for site selection and installation design. The are applicable to the. selected site. Section 401(a)( ) of tornado history in the area should be evaluated and the Act requires, in part, that any applicant for a license applied to the analysis of safety as a potential source of for an installation such as an ISFSI provide the AEC

missiles. Regulatory Guide 1.76, "Design Basis Tornado with certification from the State that any discharge will for Nuclear Power Plants," is applicable to an ISFSI. comply with applicable effluent limitations and other Also applicable is WASH 1300, "Technical Basis for water pollution control requirements. In the absence of Interim Regional Tornado Criteria." The data applicable such certification, no license can be issued by the AEC

to the. selected site in these documents should be used in unless the State fails or refuses to act within a reasonable developing the missile protection design bases. period of time, The consequences of accidents due to extreme The applicant should make conservative calcula- weather conditions including missiles should be eval- tions of the dispersion and dilution capabilities and uated based on (1) a postulated release of a justifiable potential contamination pathways of the groundwater fraction of the stored available inventory of volatile environment of the proposed installation under radionuclides in the spent fuels that have experienced the operating and accident conditions. Applications for a minimum decay time since reactor shutdown for which license for an ISFSI at sites that are in areas with a the ISFSI is designed and (2) expected adverse atmo- complex groundwater hydrology should include spheric diffusion conditions. The techniques in Regu- assessment of potential impacts on the groundwater latory Guide 1.25 (Safety Guide 25), "Assumptions system. Similar assessments should be made for sites Used for Evaluating the Potential Radiological Conse- located over major aquifers that are used for domestic or quences of a Fuel Handling Accident in the Fuel industrial water supplies or for irrigation water.

Handling and Storage Facility for Boiling and Pres- surized Water Reactors," are applicable to this eval- f. Water Supply uation.

Water from surface or groundwater sources should e. Hydrology be suitable, both in quality and quantity available, for use by the ISFSI on a uninterruptible basis. The need to The overriding considerations from the standpoint maintain a depth of high quality shielding/coolant water of hydrology are the potential interactions of the ISFSI conditioned to control corrosion, algae growth, and scale and the natural water bodies, surface, and ground deposition is fundamental to the operational safety of an associated with the site, Direct communication between ISFSI. The availability of highly dependable supplies of the fuel storage environment and surface or ground high quality water is therefore a prinrw) consideration waters should be precluded. Such communication can for site selection.

generally be presented through controlled circulation of Guidance on methods for ensuring reliability of coolant water and retention, cleanup, and controlled the water supplies for normal and emergency use is release of potentially contaminated waste waters. available in Regulatory Guide 1.27, "Ultimate Heat Sink

3.24-7

for Nuclear Power Plants," and Section 2.4 of Regula- Reliable and frequently tested pool water tory. Guide 1.70, "Standard Format and Content of monitoring equipment should be provided to provide Safety Analysis Reports for Nuclear Power Plants." The alarm both locally and in a continuously manned engineering design description should delineate the location if the water level in the fuel storage pool falls bounds of the water supply systems and provide details below a predetermined level or if there is a high local concerning volume, transfer capability, alternative radiation level. The high radiation level instrumentation sources, pumping capability, redundant equipment and should automatically actuate the pool water filtration components, operating procedures, and maintenance system.

plans. Similarly, reliable and frequently tested air Water use and the resulting commitment of natural monitoring equipment should be provided to alarm both resources should be addressed in the applicant's locally and in a continuously manned location if the environmental report. activity level in air from the storage pool areas exceeds preset limits or if high radiation levels are detected. An g. Site Evaluation Considerations automatic interlock with the high radiation level instrumentation should actuate the ventilation confine-

(1) Design Features ment system.

Normal operations of an ISFSI should not (2) Off-Standard Conditions result in the release to the unrestricted area of contami- nated liquid effluents containing radioactive materials in The full range of conditions outside the concentrations exceeding the ALAP design objectives for normal operating modes should be considered off- light-water-cooled nuclear power plants.* standard conditions. For the purpose of this guidance, The structure enclosing the fuel storage pool off-standard conditions are considered to be bounded by should have an appropriate ventilation and filtration normal operations on the one hand and design basis system to limit the release of gaseous and entrained accidents on the other.

particulate radioactive mateiials under normal operating conditions to quantities that will not exceed the ALAP (a) Process Deviations design objectives for light-water-cooled nuclear power The applicant should provide a compre- plants.* hensive safety analysis that takes into account the full The heating, ventilating, and air conditioning range of tasks and the conditions to be preserved for safe system should provide for controlled leakage of air from operation. Engineering estimates of the potential hazards the fuel storage pool and the cask handling areas under and consequences that may be associated with operating all normal and off-standard operating conditions. The outside the bounds of normal conditions should be structure enclosing these areas need not be designed to included. The analysis should determine the safe withstand extremely high wind loadings, but leakage operating range of critical unit operations, identify should be suitably controlled under all conditions of fuel potentially controllable off-standard conditions or transfer and storage. The design of the ventilation and design features, and establish actions appropriate for filtration system should be based on experience in mitigating the consequences of off-standard conditions.

similar facilities and on the assumption that the cladding on a fraction of the stored fuel might be breached as a (b) Loss of Power result of an accident. The inventory of radioactive Loss of power is a site-safety-related off- materials available for leakage from the building should standard condition of potentially serious consequences.

be based on the average fuel characteristics used for the Circulation and cooling requirements will probably design basis fuel. require continuous pumping capability. Ancillary The use of a closed-circuit shielding/coolant systems for safety and security should provide water system is assumed. This is a prudent means of continuous instrument, lighting, alarm, and ventilation limiting the risk of releasing radioactive material to the control power. Availability of reliable primary power to unrestricted area. Drains, permanently connected essential systems is a basic consideration for site systems, and other features that by maloperation or selection. Redundant §ystems for alternative power failure could cause loss of coolant that would uncover sources or auxiliary systems such as diesel generator fuel should not be installed or included in the design. installations can support the primary power source.

Systems designed for maintaining water quality and quantity should be designed so that any maloperation or failure in those systems from any cause will not cause the fuel to be uncovered.

(3) Natural Phenomena The site-safety analysis provides a technical basis for design criteria considerations of plant-site i:,

  • WASH 1258, Volumes 1 and 2. "Numerical Guides for Design interactions. The potential actions bctween the natural Objectives and Limiting Conditions for Operation to Meet the environment and man-made structures are factors in site Criterion 'As Low as Practicable' for Radioactive Material in selection that should influence engineering judgments in Light-Water-Cooled Nuclear Power Plant Effluents." choosing among design alternatives.

.24-8

.(a) Meteorology (1) Leaking fuel assemblies, Site-safety considerations require that (2) Fire, meteorological parameters such as wind direction, (3) Loss of coolant or cooling capability, velocity, atmospheric stability, and the joint frequency (4) Dropped fuel assembly shipping cask during of occurrence be known well enough to demonstrate cask handling operations.

that the .joint dispersion of gaseous and particulate (5) Missile penetration of the storage building effluents will be predictable, within the bounds of with fuel damaged in storage, conservative models conventionally used for analyzing (6) Natural phenomena, the radiological consequences of accidental releases of (7) Very low probability accidents (such as air- radioactive materials. craft crashes).

The applicant should perform detailed engineering (b) Hydrology analyses of such accidents and their calculated potential If pool water leaks to the ground, effects in terms of radiation dose commitment to adequate time should be available to sink survey wells individuals and populations within, the region that might for any monitoring that might be considered necessary be affected. Such analyses will provide the -technical after the leak occurs and the. region to be monitored is basis for judging the suitability of the selected site and defined. In addition, strategically located inspection the proposed plant design.

wells should be sunk at the time of construction to check for subsurface water movement and possible outleakage. 3. Design Considerations The ANSI draft standard N305, Revision 7, dated'

November 8, 1974,* "Design Objectives for Highly h. Exclusion Area, Low Population Zone, Population Radioactive Solid Material Handling and Storage Center Distance Facilities in a Reprocessing Plant," is applicable to an ISFSI with the following exceptions and clarifications:

The applicant should determine the exclusion area, "Section 2, Glossary of Terms":

low population zone, and population. center distance The terms "Operating Basis Earthquake" (OBE) and using a method analogous to that given in § 100.11 of 10 CFR Part 100. This procedure involves an estimate of:

"Safe Shutdown Earthquake" (SSE) are not applicable to an ISFSI. Rather, the term Design Earthquake as H

.(1) The potential risk from the most severe upper defined in Section. C.2.c. of this document is applicable.

limit accident and "Section 3,. Structural Criteria":

(2) Dose rates at .various. points downwind due to "3.1.2.2 Missiles" - The missiles of interest are those the. passage of the resulting radioactive cloud (under that could rupture fuel within the pool or could damage conservative atmospheric dispersion conditions). equipment. or structures that could fall into the pool and No minimum values have been established for potentially rupture stored fuel.

the size of the exclusion area, distance to the outer In addition, the Regulatory staff considers the following boundary of the low population zone (LPZ). or popu- lation center distance. Past practice has usually been to design requirements to be applicable:

establish, the population center distance as being at a. The design should preclude cask handling cranes least 1 1/3 times the distance from the installation to passing over the fuel storage pools.

the outer boundary of. the LPZ. Typically, the. distance b. The building itself need not be designed to to, the boundary of the LPZ is about 3 miles.. withstand high winds, provided critical, equipment is The.applicant should identify industrial, military, protected. * .

or other installations in the area with which the.ISFSI c. The design basis for the ventilation system should may potentially interact. be defined. This definition should include a description of the emergency air cleanup system used to accom- modate ruptured fuel. Calculations should be based on the design basis fuel characteristics.

i. Accident Analysis d.. The heat removal system pumps, heat exchangers, and associated piping should be protected from credible The considerations of normal operations, off- accidents and have a backup power supply. However, if standard conditions, design basis accidents, and natural the applicant can show that under emergency conditions phenomena provide part of the technical basis foi the pool structure can stand the' stresses imposed, that assessing the suitability of structures, equipment, and the consequences of any loss of normal cooling components relative to candidate sites. The accident capability will not lead to excessive radiation doses, and analyses complement and supplement the other analyses by considering the possible effects of events that are *Copies of this draft standard may be obtained from the characteristically infrequent, sudden, and potentially American Institute of Chemical Engineers, 345 E. 47th St.,

serious incidents. Such events include: New York, N.Y. 10017.

3.24-9

that there is an assured source of pool makeup water, consisting of the water containment structure and the cooling by boiling of the pool water is acceptable and supporting auxiliary systems used to maintain appro- the cooling system need not be protected from priate radiation shielding and cooling. Vital equipment accidents. The makeup system should be capable of in this area includes the nuclear fuel in storage, fuel withstanding any credible accident or a backup water storage racks, radiation monitoring and alarm systems system capability should be provided. If the backup for fuel cladding leakage, pool water leakage detection system is not permanently installed, the applicant should system and liquid level monitors, pool water loss show that the time required to implement the system's makeup and ,cleanup systems, decay heat removal use is less than the time required for hazardous system, ventilation and confinement system, and conditions to develop. If the pool structure cannot emergency systems for purposes such as fire protection.

withstand the stress of water boiling, the cooling system

(3) The onsite auxiliary power supply system, should be designed and built to withstand any credible regardless of its location, is considered vital.

site-related natural phenomen

a. The makeup coolant

(4) The onsite central alarm stations should be water system should be equally reliable.

designated vital areas. Vital equipment in these areas e. Onsite radioactive waste treatment facilities should includes communication equipment; primary control be provided. These facilities should be designed to and annunciation equipment for alarms; metal and render all site generated wastes into a form suitable for explosive detectors; card-key readers; closed circuit interim storage and ultimate final disposal. television; and an independent power supply system f. Provisions should be made for (1) receipt of casks (i.e.,, backup or emegency power).

under abnormal circumstances, such as loss of coolant, and (2) expected cask maintenance, repair, -and modification activities. b. Physical Protection Design Criteria g. A cask drop analysis should be made. This analysis indicates the need to provide a shock absorber in the (1) The design of an ISFSI should be based on the bottom of the cask unloading pool (CUP). physical protection criteria set forth for fuel repro- h. The storage pools should be of modular design. cessing plants in proposed Appendix Q to 10 CFR Part Each module should have a maximum capacity of about 50.*

500 tons of spent fuel. (2) The design, fabrication, erecting, and testing of structures, systems, and components important to

4. Physical Protection physical protection of the facility should be conducted in accordance with an acceptable quality assurance Some of the guidance on physical protection program, as outlined in 10 CFR Part 50, Appendix B,

provided in Regulatory Guides 5.7, 5.12, 5.20, and 5.30 "Quality Assurance Criteria for Nuclear Power Plants is applicable to an ISFSI. Regulatory Guide 5.7. and Fuel Reprocessing Plants."

"Control of Personnel Access to Protected Areas, Vital (3) The concept of isolation (e.g., automation, Areas, and Material Access Areas," is applicable for remote handling, and controlled access) should be those parts related to material access areas (i.e., sections incorporated into the design. The isolation should limit D.2, D.3, and D.5.b). Regulatory Guide 5.12, "General access to vital areas or equipment to only those Use of Locks in the Protection and Control of Facilities individuals who require access.for essential purposes or and Special Nuclear Materials," and Regulatory Guide for performance of duty.

5.20, "Training, Equipping, and Qualifying of Guards * (4) The location and arrangement of equipment in and Watchmen," are applicable in their entirety. a vital area should be evaluated with respect to the need Regulatory Guide 5.30, "Materials Protection Con- for the equipment to be contained in that location and tingency Measures for Uranium and Plutonium Fuel the capability for regular testing and inspection. Equip.

Manufacturing Plants," is generally applicable except for ment other than. process or vital equipment should not those parts regarding emergency protection measures be located in a vital area.

that affect activities appropriate only to material access (5) Equipment used to store, transfer, or protect areas. material or to protect the plant should be designed to facilitate maintenance and testing so that compliance a. Vital Areas and Vital Equipment with applicable regulations and license conditions can be verified.

Several specific areas at an ISFSI should be (6) The double barrier concept, controlled access.

designated vital areas because of their importance for monitored isolation zones, designation of vital areas, and protection against sabotage: the use of keys, locks, and combinations should be

(1) The cask unloading area should be a separate integrated into the facility layout and design.

pool connected by a canal to the main storage pool (7) Isolation zones should be monitored to system. The unloading pool should be designated a vital provide timely detection of intrusion and to permit area.

(2) The spent fuel storage area should be designated a vital area. It includes the pool system *39 FR 26293, July 18, 1974.

3.24-10

subsequent guard action and notification of the local law (1) Security force equipment. organization, enforcement agencies (LLEA). responsibilities; and.procedures.

(8) Isolation zones and clear areas between (2) Integration of security provisions with the site barriers should be illuminated to at least 0.2 foot-candle. and installation layout.

(9) The design for access control of personnel, (3) A description of the physical protection packages, and vehicles through physical barriers should features of the installation.

include provisions for verifying identity and authority, (4) Security ajeas, including those protected by alarming, emergency exits, operating unmanned exits, physical barriers and isolation zones: vital areas and searching packages and individuals upon entering, and equipment. *

detecting firearms, explosives, or incendiary devices. -(5) Access monitors'and controls- for personnel,

(10) The design should preclude simultaneous vehicles, and packages; a badge system; access authoriza- handling of shipments of irradiated fuel and receipt of tion and registration; personnel escort; and the use of materials other than irradiated fuel in a single area. keys, locks, and combinations.

(11) The . facility should be designed to permit (6) Surveillance systems, including intrusion and continuous surveillance of occupied vital areas and detection alarms.

alarming of unoccupied vital areas. * (7) Central alarm and communication systems.

(12) The facility should provide backup means (8) Response capability assessment arid followup such as emergency power and redundant hardware. It for alarms and threats.

should accommodate alternative procedures to provide (9) Availability of assistance from local law continued protection in such events as power failure, enforcement agencies.

equipment malfunction, or individual guard (10) Testing and inspection of security related incapacitation. equipment and devices.

(13) Alarm systems should be designed to meet (11) Maintenance of control records.

performance and reliability. characteristics described in (12) Security audit program.

§ 73.50(d)(1).

(i4). Communications equipment for use by plant

D. IMPLEMENTATION

personnel and the LLEA should be designed with appropriate re dundancy and flexibility, as described in The purpose of this section isto provide information

§73.50(e)(1) through (4). to applicants and licensees regarding the Regulatory staff's plans for utilizing this regulatory guide.

c. Security Plan Except in those cases in whichthe applicant proposes an alternative method for complying with specified A two-part security plan should be submitted with portions of the Commission's regulations, the methods a license application for an ISFSI..As a minimum, the described herein will be used in the evaluation of license following elements should be addressed: applications docketed after January 11 1975.

3.24-11

APPENDIX A

ANNEX B to 10 CFR Part 70, Licenses

"Emergency Plan"

MINIMUM REQUIREMENTS FOR LICENSEE'S PLANS FOR

COPING WITH RADIATION EMERGENCIES

The licensee shall develop and maintain an emergency plan and implementing procedures for coping with radiation emergencies which shall include, but not necessarily be limited to, the following:

1. An organization for coping with radiation emergencies, in which specific authorities, responsibilities, and duties are clearly defined and assigned. The methods used to assure that persons assigned specific authority and responsibility are initially qualified and are periodically trained so that they can continue to properly fulfill their duties should be specified. The means of notifying persons assigned to the organization in the event of an emergency and the means of notifying appropriate local, state, and Federal agencies so that emergency action beyond the site boundary may be taken should be specified.

2. A list of employees of the licensee (by position), other than those assigned to the emergency organization, who have any special qualifications for coping with emergency conditions. A similar list shall be made of other persons whose assistance may be needed. The special qualifications of these employees and persons shall be specified. All of the foregoing lists shall be available to the individuals responsible for directing the action necessary to cope with the emergency.

3. The actions planned to protect the health and safety of individuals and to prevent damage to property both within and outside the site boundary in the event of various types of emergencies that can be anticipated, i.e., internal accidents such as criticality, fire, and explosions, and natural occurrences such as floods, tornadoes, and earthquakes.

This should include the means for determining: (i) the magnitude of the release of radioactive materials, including guidelines for evaluating the need for notification and participation of local, state and Federal agencies, and (ii) the type and extent of protective action to be taken within and outside the site boundary to protect health and safety and prevent damage to property.

4. The post-accident recovery and reentry actions including guidelines for implementing these actions which shall include (i) corrective actions that may be necessary to terminate or minimize the consequences of the accident, (ii)

criteria for plant reentry, (iii) securing the accident area from inadvertent or unauthorized reentry, (iv) and resumption of operations.

5. Procedures for notifying and agreements to be reached with local, state, and Federal officials for the early warning of the public and for appropriate protective measures should such measures become necessary or desirable.

6. Provisions for maintaining up to date: (i) the organization for coping with emergencies, (ii) the procedures for use in emergencies, and (iii) the lists of persons with special qualifications for coping with emergency conditions.

7. The specifications for emergency first aid and personnel decontamination facilities, including:

(i) Identification of individuals directly involved in the accident;

(ii) Equipment at the site for personnel monitoring;

(iii) Facilities and supplies at the site for decontamination of personnel;

(iv) Facilities and medical supplies at the site for appropriate emergency first aid treatment;

(v) Arrangements for the services of a physician and other medical personnel' qualified to handle radiation emergencies; and (vi) Arrangements for transportation of injured or contaminated individuals to treatment facilities outside the site boundary.

8. Arrangements for treatment of individuals at treatment facilities outside the site boundary.

9. Provisions for testing, by periodic drills, of radiation emergency plans to assure that employees of the licensee are familiar with their specific duties. Provisions for participation in the drills by other persons whose assistance may be needed in the event of a radiation emergency shall be included.

3.24-12

10. The provisions for the training of persons other than employees of the licensee whose assistance may be needed in the event of a radiation emergency.

I1. Provisions for maintenance and storage of emergency equipment, considering the various types of accidents that can be anticipated, also, the performance criteria of the various types of equipment.

The licensee's emergency plan shall consist of a document providing the objectives and the bases for the actions to be taken to cope with various types of accidents which affect, or threaten the health and safety of the general public, employees of the licensee or other persons temporarily or permanently assigned to the facility. It should specify the objectives to be met by the' implementing procedures and should assign organizational and individual responsibilities to achieve such objectives.

Emergency procedures shall consist of a document defining in detail the implementation actions and methods necessary to achieve the objectives of the emergency plan for each set of circumstances considered in the emergency plan. To the extent possible these two documents should be separated.

1-=

3.24-13