ML20195G998: Difference between revisions

From kanterella
Jump to navigation Jump to search
(StriderTol Bot insert)
 
(StriderTol Bot change)
 
(One intermediate revision by the same user not shown)
Line 14: Line 14:
| document type = TECHNICAL SPECIFICATIONS, TECHNICAL SPECIFICATIONS & TEST REPORTS
| document type = TECHNICAL SPECIFICATIONS, TECHNICAL SPECIFICATIONS & TEST REPORTS
| page count = 15
| page count = 15
| project = TAC:68688
| stage = Other
}}
}}


=Text=
=Text=
{{#Wiki_filter:}}
{{#Wiki_filter:- _______
t-  t Georgia Power A ENCLOSURE 3 PLANT HATCH - UNIT 1 NRC DOCKET 50-321 OPERATING LICENSE DPR-57 REQUES* '' 9EVISE TECHNICAL SPECIFICATIONS:
FUEL THERHAL LIMITS PAGE CHANGE INSTRUCTIONS Remove Page                                    Insert Pagg X                                . X Xi                                    Xi 3.11-la                                          3.11-la 3.11-2                                          3.11-2              l 3.11-3                                          3.11-3              )
3.11-4                                          3.11-4              !
3.11-4a                                        3.11-4a Figure 3.11-1 (Sheet 4)(deletion sheet)          Figure 3.11-1 (Sheet 4)          :
Figure 3.11-1 (Sheet 5)(deletion sheet)          Figure 3.11-1 (Sheet 5)          !
Figure 3.11-1 (Sheet 6)(deletion sheet)          Figure 3.11-1 (Sheet 6)(deletion)
,              Figure 3.11-1 (Sheet 8)                          Figure 3.11-1 (Sheet 8) l              Figure 3.11-2                                    Figure 3.11-2 (deletion) i              figure 3.11-4                                    Figure 3.11-4 Figure 3.11-5                                    Figure 3.11-5 (deletion)
          $$jg620o197080620 p      ADOCK 050003p3 PDR 2055C SL-4676                                E3-1                            06/20/88 700776
 
LIST OF FIGURES Figure                                        Title 1.1 -1    (Deleted) l 2.1 -1      Reactor Vessel Water Levels 4.1 -1    Graphical Aid for the Selection of an Adequate Interval 8etween Tests
: 4. 2 -1    System Unavailability
: 3. 4 -1    Sodium Pentaborate Solution Volume Versus Concent?ation Requirements 3.4-2      Sodium Pentaborate Solution Temperature Versus Concentration Requirements
: 3. 6 -1    Pressure versus Minimum Temperature for Pressure T sts 8ased on Surveillance Test Results 3.6-2      Pressure versus Minimum Temperature for Non-nuclear Heatup/Cooldown and Low-Power Physics Test 3.6-3      Pressure versus Minimum Temperature for Core Critical Operation other than Low-Power Physics Test (includes 40'F Margin Required by 10 CFR 50 Appendix G) 3.6-4      Deleted 3.6-5      Power-Flow Operating Map with One Reactor Coolant System Recirculation Loop in Operation 3.11-1    (Sheet 1) Limiting Value fcr APLHGR (Fuel Types 8P80R8265H, P80R8265H, BP80R284H, and P80R8284H) 3.11-1    (Sheet 2) Limiting Value for APLHGR (Fuel Types 8P80R8283, F80RB283, BP80RB299, and P80R8299) 3.11-1    (Sheet 3) Limiting Value for APLHGR (Fuel Types BP80R8301L, P80R8301L, and 1987 Hatch LTAs) 3.11-1    (Sheet 4) Limiting Value for APLHGR (Fuel Type 9x9 LFA)                          l 3.11-1    (Sheet 5) Limiting Value for APLHGR (Fuel Type BD296A)                          l 3.11-1    (Sheet 6) Deleted.
3.11-1    (Sheet 7) MAPFACp (Power Dependent Adjustment Factors to MAPLHGRs) 3.11-1    (Sheet 8) MAPFACF (Flow Dependent Adjustment Factors to MAPLHGRs) 3.11-2    (Deleted)                                                                        l 3.11-3    MCPRp (Flow Dependent Adjus*. ment Factors for MCPRs) 3.11-4    MCPR Limit for All 8x8 and 9x9 Fuel Types for Rated Power and Rated Flow HATCH - UNIT 1                                          x        Proposed TS/0212q/126-150
 
r-llST OF FIGURES Figure                          Title 3.11-5    (Deleted)                                                      l 3.11-6    Kp (Power Dependent Adjustment Factors for MCPRs) 3.15-1    Unrestricted Area Boundary l
: 6. 2.1 -1  Offsite Organization
: 6. 2. 2 -1 Unit Organization HATCH - UNIT 1                            xi    Proposed TS/02120/154-132
 
LIMIT _ING CONDITIONS FOR OPERATION                      $URVEILLANCE REQUIREMENT $
3.11,8.
Linear Heat Generation Rate (LH6R) 4.'<1.B. Linear Heat Generation Rate (LHGR)
During power operation, the LHGR            The LHGR shall be checked daily shall not exceed the limiting                during reactor operation at 1 25%  ]
value of 14.4 kW/ft for GE8x8E8              rated thermal power.
fuel or the limiting value of 13.4 kW/ft for any other 8 x 8 fuel. If at any time during HATCH - UNIT 1                              3.11-la    Proposed TS/02110/154-141
 
LIMITING CONDITIONS FOR OPERATION                          SURVEILLANCE REOUIREMENTS 3.11.B. Linear Heat Generation Rate (LHGR)
(Continued) operation it is determined by normal surveillance that the limiting value for LHGR is being exceeded, action shall be initiated within 15 minutes to restore operation to within the prescribed limits. If the LHGR is not returned to within the prescribed limits within 2 hours, then reduce reactor power to less than 25 percent of rated thermal power within the next 4 hours.
If the limiting condition for opera-tion is restored prior to expiration of the specified time interval, then further progression to less than 25 percent of rated thermal power is not required.
C. Minimum Critical Power Ratio (MCPR)        4.11.C.1, Minimum Critical Power Ratio (MCPR)
The minimum critical power ratio (MCPR) for two-loop operation shall                    MCPR shall be determined to be equal to or greater than the be equal to or greater than the                        applicable limit, daily during operating limit MCPR (OLMCPR), which                    reactor power operation at t 25-is a function of scram time, core                      percent rated thermal power and power, and core flow. For 25 percent                    following any change in power level 5 power < 30 percent, the OLMCPR is given in Figure 3.11-6. For power l                    or distribution that would cause 1 30 percent, the OLMCPR is the                        operation with a limiting control rod pattern as described in the greater of either:
bases for Specification 3.3.F.
: 1. The applicable limit determined from Figure 3.11-3, or            l 4.ll .C.2. Minimum Critical Power Ratio limit
: 2. The applicable limit from Figure 3.11-4 multiplied                        The MCPR limit at rated flow and l            rated power shall be determined for by the K pf actor determined                    each fuel type, as appropriate from Figure 3.11-6, where t      I              from Figure 3.11-4, using:
is the relative measured scram                                                                  )
speed with respect to Option A                  a,    t=1.0 prior to initial scram and Option 8 scram speeds. If                        time measurements for the t is determined to be less                            cycle, performed in accordance than zero, then the OLMCPR                            with Specification 4.3.C.2.a.
is evaluated at t=0.
or
: b. t is determined f rom scram time measurements performed in accordance with Specifica-tion 4.3.C.2.
The determination of the limit must be completed within 72 hours of the conclusion of each scram time surveillance test required by Specification 4.3.C.2.
HATCH - UNIT 1                                  3.11-2              Proposed TS/02110/154-141
 
BASES FOR t!MITICG CONDITIONS FOR OPERATION AND SURVEltLANCE REQUIREMENT $
3.11. FUEL R005 A. Average Planar Linear Heat Generation Rate ( APtHGR)
This specification assures that the peak cladding temperature following the postulated design basis loss-of-coolant accident (LOCA) will not exceed the limit specified in 10 CFR 50.46 even considering the postulated effects of fuel pellet densification.
The peak cladding temperature following a postulated loss-of-coolant acci-dent is primarily a function of the average heat generation rate of all the rods of a fuel assembly at any exial location and is only dependent second-arily on the rod to rod power distribution within an assembly. Since ex-pected local variations in power distribution within a fuel assembly affect the calculated peak clad temperature by less than i 20'F relative to the peak temperature for a typical fuel design, the limit on the average linear heat generation rate is sufficient to assure that calculated temperatures conform to 10 CFR 50.46. The limiting value for APLHGR at rated conditions is shown in figures 3.11-1, sheets 1 thru 6.
For convenience, the APLHGR limits are reported in the units of kW/f t, which is the bundle planar power normalized to the number of fueled rods.
Figure 3.11-1 (Sheet 4) shows that the 9x9 LFS$ have the same planar power limits as the GE 8/P80R8284H fuel; however, on a kW/ft basis, the APLHGR limits for the LFAs are 62/79 times the 8/P80RB284H limits.
The actual APLHGR limits for GE8x8E8 fuel are lattice-type dependent and are explicitly modeled in the process computer. At each espot Jre, the Technical Specifications APLHGR limit is defined as the most limiting value of all the enriched lattices. The Technical Specifications APLHGR limits will be used for manual calculations.
The calcu14tional procedure used to establish the APLHGR shown in figures 3.11-1, sheets 1 thru 6, is based on a LOCA analysis. The analysis was performed using General Electric (GE) calculational models which are consistent with the requirements of Appendix K to 10 CFR $0. The LOCA analysis was performed utilizing the new improved calculational model, SAFER /GESTR-LOCA. The analysis demonstrated that loss-of-coolant concerns do not limit the operation of the fuel since margin to the 2200'F limit was demonstrated (R0ference 9). Therefore, the APLHGR limits for the fuel types shown in figure 3.11-1 are derived to assure that the fuel thermal-mechanical design criteria are met.
A list of the significant plant input parameters to the LOCA analysis is presented in tables 4-1 and 4-2 of Ref erence g.      Further discussion of the APLHGR bases is found in NEDC-30474-P(*).
A flow dependent correction factor incorporated into figure 3.11-1 (sheet 8) is applied to the rated conditions APLHGR to assure that the 2200'F PCT limit is complied with during LOCA initiated from less than rated core flow. In addition, other power and flow dependent corrections given in figure 3.11-1 (Sheets 7 and 8) are applied to the rated conditions APLHGR limits to assure that the fuel thermal-mechanical design criteria are met during abnormal transients initiated f rom of f-rated conditions for two-1 cop and single-loop operations, References 2 and 8. For single-loop operation, a 0.75 multiplica-tion factor to APLHGR limits for all fuel bundle types conservatively bounds that required by Reference 2. For single-loop operation (SLO), the most restrictive of the SLO and ARTS (*) MAPLHGR5 will define the Limiting Conditon for Operation.
HATCH - UNIT 1                                3.11-3                  Proposed TS/02110/126-150
 
a O    8 BASES FOR LIMITING CONDITIONS FOR OPERATION AND SURVE!LLA:<E REQUIREMENTS                                                                                              ,
i 3.11.8. Linear Heat Generation Rate (LHGR)
This specification assures that the LHGR in any rod is less than the design linear heat generation if fuel pellet densification is postulated. For LHGR                                                                                    l to be a limiting value below 25-percent rated thermal power, the ratio                                                                                              ,
of peak LHGR to core average LHGR would have to be greater than 9.6, which                                                                                          ~
is precluded by a considerable margin when encloying any permissible control                                                                                        i rod cattern.
C. Minimum fritical Power Ratio (MCPR)
The required operating limit MCPR as specified in Specification 3.II.C. is derived from the established fuel cladding integrity Safety Limit MCPR and an analysis of abnormal operational transients presented in References 1, 2, and 8.
Various transient events will reduce the MCPR below the operating MCPR.
To assure that the fuel cladding integrity safety limit is not violated during anticipated abnormal operational transients, the most limiting transients have been analyzed to determine which one results in the largest reduction in critical power ratio (a MCPR). Addition of the largest a MCPR to the safety limit MCPR gives the minimum operating limit MCPR to avoid violation of the safety limit should the most limiting transient occur.
The type of transients evaluated were loss of flow, increase in pressure and power, positive reactivity insertion, and coolant temperature decrease, t
i t
HATCH - UNIT 1                                                                                                                  3.11-4      Proposed TS/02114/154-141 w
 
BASES F0k LIMITING CONDITIONS FOR OPERATION AND SURVEILLANCE RE0VIREMENTS 3.11.C. Minimus Critical Power Ratio (MCPR1 (Continued)
According to Figure 3.11-4 the 100-percent power,100-percent flow operating limit MCPR (OLMCPR) depends on the average scram time,          t, l
of the control rods, where:                                                              ,
t = 0 or ' ave    '8. whichever is greater t  -t g    g where:    'A = 1.096 sec (Specification 3.3.C.2.a. scram time limit to notch 36)    ,
2
                                      ' 8 = v + 1. 6 5  "1          e (Reference 1)
IN 1=1  .
where: u = 0.822 sec (mean scram time used in the transient analysis) o    = .018 sec (standard deviation of 9)
                                  ' ave =        IN i=1  t' n
IN
                                            . i=1        .
where: n = number of surveillance tests performed to date in the tycle Ni = number of active control rods measured in the ith surveillance test t1 = average scram time to notch 36 of all rods in the ith surveillance test Ng = total number of active rods measured in 4.3.C.2.a The purpose of the MCPRg, and the Kp of Figures 3.11-3 and 3.11-6, respectively, is to define operating limits at other than rated core flow and power conditions. At less than 100 percent of rated flow and power, the required MCPR is the larger value of the MCPRf and MCPRp at the existing core flow and power state. The MCPRys are established to protect the core from inadvertent core flow increases such that the 99.9-percent MCPR limit requirement can be assured.
The MCPRys were calculated such that for the maximum core flow rate and the corres-ponding THERMAL POWER along the 105 percent of rated steam flow control line, the limiting bundle's relative power was adjusted until the MCPR was slightly above the Safety Limit. Using this celative bundle power, the MCPRs were calculated at dif ferent points along the 105 percent of r4ted steam flow control line corresponding to different core flows. The calculated MCPR at a given point ef core flow is defined as MCPRt .
The core power dependent MCPR operating limit MCPR          p is the power rated flow MCPR operating limit multiplied by the Kp factor given in Figure 3.11-6.
The Kp s are established to protect the core from transients other than core flow increases, including the localized event such as Nd withdrawal error. The Kos were determined based upon the most limiting transient at the given core power level. (For further information on MCPR operating limits for off-rated conditions, reference NEDC-30474-P.(e))
When operating with a single-recirculation pump, the MCPR Safety and Operating Limits are increased by an amount of 0.01 over the comp ~ rable values for two-recirculation pump operation.(8)
HATCH - UNIT I                                      3.11-4a          Proposed T5/0211g/154-141
 
E d                                                                                                                                                                    -
1                                            AVERAGE PLANAR LINEAR HEAT GENERATION RATE vs 5                                                                                                                                  .
                                                                      ",                            14.0                                    AVERAGE PLANAR EXPOSURE f        f 7          7      -
7      7            e        , 10.9 9 13*0-        /        ''
                                                                                                            //
                                                                                                                /
                                                                                                                  - //,/jp//,f////
                                                                                                                      //u ar u.4 g e f u.4///                          gy
                                                                                                                                                                              / / / / / / / / / /
UNACCE'' TABLE OPERATION        / /,/  /  10'2 0 LE
                                                                                                              !                                                                    /
y}12'0 p''?Y= *i                                                          ~a'                              '
                                                                                                                                                                                                            ,///
                                                                                                                                                                                                                    ''  9~42 k
                                                                                              &D            /        "* " " "'
                                                                                                                        -                                                            ,Y''/''''/,//////'/                      54
                                                                                                          /
d5i  ,
dr;                      ACCEPTABLE OPERATION                  j/            //
gg:
                                                                                              ' i d        =                  ;
                                                                                                                                                                                                            /j/[/-            se m  Q' 10
                                                                                                      .0 -              #d no E
n.v                e f'        7.85    %
                                                                                              *                                                                                                                      /
                                                                        ,                                              M          #                                                                        '
g; 9.0 -
FUEL TYPE: 9X9 LFAs 7.06 I          I      I                                =w E                                                                                80-Mll CHANNELS g                              8.0    -
                                                                                                                                                    --:            :    -: -                                        6.28
                                                                      =                                  0.0      5.0          10.0                  15.0        20.0
                                                                  ,                                                                                                      25.0      30.0    35.0        40.0      45.0 j                            '*g " llj ""', 7                AVERAGE PLANAR EXPOSURE (GWd/st) g                            .() - wua:a tus rat e x e ta.                        FIGURE 3.11-1 (SHEET 4)
 
E Nc                                                                                                                                                                                      -
i y
_~,                AVERAGE PLANAR LINEAR HEAT GENERATION RATE LIMIT vs AVERAGE PLANAR EXPOSURE
                                                                        '        }77/,jffg77f[ff,u,77,7~7,;7
                                                                                                                                                                      /
                                                                              ^
                                                                                  ,//Wliff',77 n
g 11.0-
                                                                              -l                                                                /          ,
                                                                                                                                                                    ,/
                                                                                                                                                                ',l l-ff}/}%        //
tjNACCEPTABLE OPERATION //
                                                                                                                                                                                ,l,/                                            l '!I/
                                                                    )
LOW EXPOSLEE COORDINATES
                                                                                                              ~ ~ ~-~        ' - ~ ~ ~ ~ ' ~ "        ~ ~ -
                                                                                                                                                                                /
                                                                                                                                                                                '/
                                                                                                                                                                                    ~
                                                                                                                                                                                      / /l,!jl'/ /,7.
                                                                                                                                                                                          ,/                                        '~'~/^
                                                                                                                                                                                                                                      '    //
f
                                                                                                                                                                                                / /l/'/ /
X              Y                                                                                /
b                f.0
                                                                  ~
2 g,0    -
: 2. 0 11.
: 11. 64 ACCEP IABLE Ol'ERATIOpi
                                                                                                                                                                                      '3 7)l///                      /
                                                                                                                                                                                                                                    /          /
                                                                                                                                                                                                                                                /
J.. ..yl  /_y 10.0            12.81 FUEL TYPE: 83296A                                                                    /          /-    // '
80-MIL CHANELS                                                                        /!          //
: 7. 0-      - - -      --      --      - - - - -
                                                                                                                                                                                                                                    / '/
                                                          ;g o
                                                                                                                                                                                                                                                /
b G
5.
k,                  .d'        5. d '        50. b ' ' 55. 0 20.0              25.0        ' 30.b ~35.0 ' 40.b' 45.b' 50.0
                                                          }
AVERAGE PLANAR EXPOStRE (GWd/st)
                                                          $                                                                  FIGURE 3.11-1 (SEET 5)
                                                          --*  NOTE: TH8S IS THE ALPHGR L8MIT FOR THE O
MOST LIMITING LATT8CE AS A FUNCTION OF AVERAGE PLAsuAR EXPOSURE.
 
e O Figure 3.11 1 (Sheet 6) (Deleted)
)
HATCH - UNIT 1                                  Propos*d 75/02110/126-150
 
a x
9.H e
6    2
                                                                                                    /
102.5%
Y//                          ..,w 112 WE o So      -                                                                          MAX FLOUW - 117A%
                          ..as      -
i
'l I
ol ese        -
4                                                    asArteeOR, = MAPFAC,
* MArtHGRnD g
                    <                                                    MAPLHGR STO                              L ITS
{
ac                                                  MAPFAC, a RA0800MUh8188FRFO,, MArmout T,8 I,                  O g                    u                                                    Mare 8 ULT = 1 A FOst FLOUW).9%
* e.se                                                        a
                                                                                      .A5 FOR FLOuv$.1%
{
O                                                    MFRPO,tF)
* atesseteuas (3A. A, + e,F) g at                                                  F = FRACTeOes OF RATED COstE flout, C                                                    AND A,.5, ARE FUEL TYPE DEPf asOENT 1
i g
                    ;  .                                                COesETANTS G8VEN SELOUW:
MAXIt0Ute CORE flout
_fu RATEOS                          AF          EF o
g                                                                          tet.
usa eest  c. 7s.
m                                                                                                      e.nu rem a
m ut.
n>A
                                                                                                          .. 2 u . .          ,
O                                                                                                            == .
H w
N O
b
  ,-                  ..                                . i    i>
s                                                                            >              >
  "ro                        =                          #  98
                                                                                                                    >                      I SS            79 G                                                                                            W                  SG                      3.e e
el                                                                                                      33.
a N
ru COft4 FLOUWth ftATEDI FIGURE 3.11-1 (SHEET 8) MAPFACp
 
FIGURE 3.11-2 (Deleted) i l
HATCH - UNIT 1                                                                                Proposed TS/0211g/154-132
 
l I
I i
I l
l 1.as 1.34 1.33
                                                                /
1.32
                                                      ,s
                                                /
n i
t.s t s  W    /~#
s    1.30      e
                    /
                      /
129 1.2s 1.21
,            1.2e l            1.2s 0.0                                                1.0 t
FIGURE 3.114 l                      MCPR LIMlY ALL 8X8 AND 9X9 FUEL TYPES FOR RATED POWER AND RATED FLOW 1
l l
l l
l l
HATCH - UNIT 1 PROPOSED TS/02114/126-139 l
l l
L
 
l I
c                                                                                                                                                                              ;
FIGURE 3.11-5 (Deleted) i HATCH - UNIT 1                                                                                    Proposed TS/02119/154-132 l
I i
                    --.  .---,-..,n,., .- , , , - . ,- .----, - . - . - - , ,                                                                                              , ,
                                                                                    . - - - . - , . , , . . - . - - , , , , , - . - , - - . . . , . , , , - . - - - - - , ,}}

Latest revision as of 10:59, 9 December 2021

Proposed Tech Specs Allowing Use of Two New Fuel Types,Ge GE8X8EB Fuel Design & Advanced Nuclear Fuels Lead Fuel Assemblies
ML20195G998
Person / Time
Site: Hatch Southern Nuclear icon.png
Issue date: 06/20/1988
From:
GEORGIA POWER CO.
To:
Shared Package
ML19292H967 List:
References
SL-4676, TAC-68688, NUDOCS 8806280197
Download: ML20195G998 (15)


Text

- _______

t- t Georgia Power A ENCLOSURE 3 PLANT HATCH - UNIT 1 NRC DOCKET 50-321 OPERATING LICENSE DPR-57 REQUES* 9EVISE TECHNICAL SPECIFICATIONS:

FUEL THERHAL LIMITS PAGE CHANGE INSTRUCTIONS Remove Page Insert Pagg X . X Xi Xi 3.11-la 3.11-la 3.11-2 3.11-2 l 3.11-3 3.11-3 )

3.11-4 3.11-4  !

3.11-4a 3.11-4a Figure 3.11-1 (Sheet 4)(deletion sheet) Figure 3.11-1 (Sheet 4)  :

Figure 3.11-1 (Sheet 5)(deletion sheet) Figure 3.11-1 (Sheet 5)  !

Figure 3.11-1 (Sheet 6)(deletion sheet) Figure 3.11-1 (Sheet 6)(deletion)

, Figure 3.11-1 (Sheet 8) Figure 3.11-1 (Sheet 8) l Figure 3.11-2 Figure 3.11-2 (deletion) i figure 3.11-4 Figure 3.11-4 Figure 3.11-5 Figure 3.11-5 (deletion)

$$jg620o197080620 p ADOCK 050003p3 PDR 2055C SL-4676 E3-1 06/20/88 700776

LIST OF FIGURES Figure Title 1.1 -1 (Deleted) l 2.1 -1 Reactor Vessel Water Levels 4.1 -1 Graphical Aid for the Selection of an Adequate Interval 8etween Tests

4. 2 -1 System Unavailability
3. 4 -1 Sodium Pentaborate Solution Volume Versus Concent?ation Requirements 3.4-2 Sodium Pentaborate Solution Temperature Versus Concentration Requirements
3. 6 -1 Pressure versus Minimum Temperature for Pressure T sts 8ased on Surveillance Test Results 3.6-2 Pressure versus Minimum Temperature for Non-nuclear Heatup/Cooldown and Low-Power Physics Test 3.6-3 Pressure versus Minimum Temperature for Core Critical Operation other than Low-Power Physics Test (includes 40'F Margin Required by 10 CFR 50 Appendix G) 3.6-4 Deleted 3.6-5 Power-Flow Operating Map with One Reactor Coolant System Recirculation Loop in Operation 3.11-1 (Sheet 1) Limiting Value fcr APLHGR (Fuel Types 8P80R8265H, P80R8265H, BP80R284H, and P80R8284H) 3.11-1 (Sheet 2) Limiting Value for APLHGR (Fuel Types 8P80R8283, F80RB283, BP80RB299, and P80R8299) 3.11-1 (Sheet 3) Limiting Value for APLHGR (Fuel Types BP80R8301L, P80R8301L, and 1987 Hatch LTAs) 3.11-1 (Sheet 4) Limiting Value for APLHGR (Fuel Type 9x9 LFA) l 3.11-1 (Sheet 5) Limiting Value for APLHGR (Fuel Type BD296A) l 3.11-1 (Sheet 6) Deleted.

3.11-1 (Sheet 7) MAPFACp (Power Dependent Adjustment Factors to MAPLHGRs) 3.11-1 (Sheet 8) MAPFACF (Flow Dependent Adjustment Factors to MAPLHGRs) 3.11-2 (Deleted) l 3.11-3 MCPRp (Flow Dependent Adjus*. ment Factors for MCPRs) 3.11-4 MCPR Limit for All 8x8 and 9x9 Fuel Types for Rated Power and Rated Flow HATCH - UNIT 1 x Proposed TS/0212q/126-150

r-llST OF FIGURES Figure Title 3.11-5 (Deleted) l 3.11-6 Kp (Power Dependent Adjustment Factors for MCPRs) 3.15-1 Unrestricted Area Boundary l

6. 2.1 -1 Offsite Organization
6. 2. 2 -1 Unit Organization HATCH - UNIT 1 xi Proposed TS/02120/154-132

LIMIT _ING CONDITIONS FOR OPERATION $URVEILLANCE REQUIREMENT $

3.11,8.

Linear Heat Generation Rate (LH6R) 4.'<1.B. Linear Heat Generation Rate (LHGR)

During power operation, the LHGR The LHGR shall be checked daily shall not exceed the limiting during reactor operation at 1 25% ]

value of 14.4 kW/ft for GE8x8E8 rated thermal power.

fuel or the limiting value of 13.4 kW/ft for any other 8 x 8 fuel. If at any time during HATCH - UNIT 1 3.11-la Proposed TS/02110/154-141

LIMITING CONDITIONS FOR OPERATION SURVEILLANCE REOUIREMENTS 3.11.B. Linear Heat Generation Rate (LHGR)

(Continued) operation it is determined by normal surveillance that the limiting value for LHGR is being exceeded, action shall be initiated within 15 minutes to restore operation to within the prescribed limits. If the LHGR is not returned to within the prescribed limits within 2 hours2.314815e-5 days <br />5.555556e-4 hours <br />3.306878e-6 weeks <br />7.61e-7 months <br />, then reduce reactor power to less than 25 percent of rated thermal power within the next 4 hours4.62963e-5 days <br />0.00111 hours <br />6.613757e-6 weeks <br />1.522e-6 months <br />.

If the limiting condition for opera-tion is restored prior to expiration of the specified time interval, then further progression to less than 25 percent of rated thermal power is not required.

C. Minimum Critical Power Ratio (MCPR) 4.11.C.1, Minimum Critical Power Ratio (MCPR)

The minimum critical power ratio (MCPR) for two-loop operation shall MCPR shall be determined to be equal to or greater than the be equal to or greater than the applicable limit, daily during operating limit MCPR (OLMCPR), which reactor power operation at t 25-is a function of scram time, core percent rated thermal power and power, and core flow. For 25 percent following any change in power level 5 power < 30 percent, the OLMCPR is given in Figure 3.11-6. For power l or distribution that would cause 1 30 percent, the OLMCPR is the operation with a limiting control rod pattern as described in the greater of either:

bases for Specification 3.3.F.

1. The applicable limit determined from Figure 3.11-3, or l 4.ll .C.2. Minimum Critical Power Ratio limit
2. The applicable limit from Figure 3.11-4 multiplied The MCPR limit at rated flow and l rated power shall be determined for by the K pf actor determined each fuel type, as appropriate from Figure 3.11-6, where t I from Figure 3.11-4, using:

is the relative measured scram )

speed with respect to Option A a, t=1.0 prior to initial scram and Option 8 scram speeds. If time measurements for the t is determined to be less cycle, performed in accordance than zero, then the OLMCPR with Specification 4.3.C.2.a.

is evaluated at t=0.

or

b. t is determined f rom scram time measurements performed in accordance with Specifica-tion 4.3.C.2.

The determination of the limit must be completed within 72 hours8.333333e-4 days <br />0.02 hours <br />1.190476e-4 weeks <br />2.7396e-5 months <br /> of the conclusion of each scram time surveillance test required by Specification 4.3.C.2.

HATCH - UNIT 1 3.11-2 Proposed TS/02110/154-141

BASES FOR t!MITICG CONDITIONS FOR OPERATION AND SURVEltLANCE REQUIREMENT $

3.11. FUEL R005 A. Average Planar Linear Heat Generation Rate ( APtHGR)

This specification assures that the peak cladding temperature following the postulated design basis loss-of-coolant accident (LOCA) will not exceed the limit specified in 10 CFR 50.46 even considering the postulated effects of fuel pellet densification.

The peak cladding temperature following a postulated loss-of-coolant acci-dent is primarily a function of the average heat generation rate of all the rods of a fuel assembly at any exial location and is only dependent second-arily on the rod to rod power distribution within an assembly. Since ex-pected local variations in power distribution within a fuel assembly affect the calculated peak clad temperature by less than i 20'F relative to the peak temperature for a typical fuel design, the limit on the average linear heat generation rate is sufficient to assure that calculated temperatures conform to 10 CFR 50.46. The limiting value for APLHGR at rated conditions is shown in figures 3.11-1, sheets 1 thru 6.

For convenience, the APLHGR limits are reported in the units of kW/f t, which is the bundle planar power normalized to the number of fueled rods.

Figure 3.11-1 (Sheet 4) shows that the 9x9 LFS$ have the same planar power limits as the GE 8/P80R8284H fuel; however, on a kW/ft basis, the APLHGR limits for the LFAs are 62/79 times the 8/P80RB284H limits.

The actual APLHGR limits for GE8x8E8 fuel are lattice-type dependent and are explicitly modeled in the process computer. At each espot Jre, the Technical Specifications APLHGR limit is defined as the most limiting value of all the enriched lattices. The Technical Specifications APLHGR limits will be used for manual calculations.

The calcu14tional procedure used to establish the APLHGR shown in figures 3.11-1, sheets 1 thru 6, is based on a LOCA analysis. The analysis was performed using General Electric (GE) calculational models which are consistent with the requirements of Appendix K to 10 CFR $0. The LOCA analysis was performed utilizing the new improved calculational model, SAFER /GESTR-LOCA. The analysis demonstrated that loss-of-coolant concerns do not limit the operation of the fuel since margin to the 2200'F limit was demonstrated (R0ference 9). Therefore, the APLHGR limits for the fuel types shown in figure 3.11-1 are derived to assure that the fuel thermal-mechanical design criteria are met.

A list of the significant plant input parameters to the LOCA analysis is presented in tables 4-1 and 4-2 of Ref erence g. Further discussion of the APLHGR bases is found in NEDC-30474-P(*).

A flow dependent correction factor incorporated into figure 3.11-1 (sheet 8) is applied to the rated conditions APLHGR to assure that the 2200'F PCT limit is complied with during LOCA initiated from less than rated core flow. In addition, other power and flow dependent corrections given in figure 3.11-1 (Sheets 7 and 8) are applied to the rated conditions APLHGR limits to assure that the fuel thermal-mechanical design criteria are met during abnormal transients initiated f rom of f-rated conditions for two-1 cop and single-loop operations, References 2 and 8. For single-loop operation, a 0.75 multiplica-tion factor to APLHGR limits for all fuel bundle types conservatively bounds that required by Reference 2. For single-loop operation (SLO), the most restrictive of the SLO and ARTS (*) MAPLHGR5 will define the Limiting Conditon for Operation.

HATCH - UNIT 1 3.11-3 Proposed TS/02110/126-150

a O 8 BASES FOR LIMITING CONDITIONS FOR OPERATION AND SURVE!LLA:<E REQUIREMENTS ,

i 3.11.8. Linear Heat Generation Rate (LHGR)

This specification assures that the LHGR in any rod is less than the design linear heat generation if fuel pellet densification is postulated. For LHGR l to be a limiting value below 25-percent rated thermal power, the ratio ,

of peak LHGR to core average LHGR would have to be greater than 9.6, which ~

is precluded by a considerable margin when encloying any permissible control i rod cattern.

C. Minimum fritical Power Ratio (MCPR)

The required operating limit MCPR as specified in Specification 3.II.C. is derived from the established fuel cladding integrity Safety Limit MCPR and an analysis of abnormal operational transients presented in References 1, 2, and 8.

Various transient events will reduce the MCPR below the operating MCPR.

To assure that the fuel cladding integrity safety limit is not violated during anticipated abnormal operational transients, the most limiting transients have been analyzed to determine which one results in the largest reduction in critical power ratio (a MCPR). Addition of the largest a MCPR to the safety limit MCPR gives the minimum operating limit MCPR to avoid violation of the safety limit should the most limiting transient occur.

The type of transients evaluated were loss of flow, increase in pressure and power, positive reactivity insertion, and coolant temperature decrease, t

i t

HATCH - UNIT 1 3.11-4 Proposed TS/02114/154-141 w

BASES F0k LIMITING CONDITIONS FOR OPERATION AND SURVEILLANCE RE0VIREMENTS 3.11.C. Minimus Critical Power Ratio (MCPR1 (Continued)

According to Figure 3.11-4 the 100-percent power,100-percent flow operating limit MCPR (OLMCPR) depends on the average scram time, t, l

of the control rods, where: ,

t = 0 or ' ave '8. whichever is greater t -t g g where: 'A = 1.096 sec (Specification 3.3.C.2.a. scram time limit to notch 36) ,

2

' 8 = v + 1. 6 5 "1 e (Reference 1)

IN 1=1 .

where: u = 0.822 sec (mean scram time used in the transient analysis) o = .018 sec (standard deviation of 9)

' ave = IN i=1 t' n

IN

. i=1 .

where: n = number of surveillance tests performed to date in the tycle Ni = number of active control rods measured in the ith surveillance test t1 = average scram time to notch 36 of all rods in the ith surveillance test Ng = total number of active rods measured in 4.3.C.2.a The purpose of the MCPRg, and the Kp of Figures 3.11-3 and 3.11-6, respectively, is to define operating limits at other than rated core flow and power conditions. At less than 100 percent of rated flow and power, the required MCPR is the larger value of the MCPRf and MCPRp at the existing core flow and power state. The MCPRys are established to protect the core from inadvertent core flow increases such that the 99.9-percent MCPR limit requirement can be assured.

The MCPRys were calculated such that for the maximum core flow rate and the corres-ponding THERMAL POWER along the 105 percent of rated steam flow control line, the limiting bundle's relative power was adjusted until the MCPR was slightly above the Safety Limit. Using this celative bundle power, the MCPRs were calculated at dif ferent points along the 105 percent of r4ted steam flow control line corresponding to different core flows. The calculated MCPR at a given point ef core flow is defined as MCPRt .

The core power dependent MCPR operating limit MCPR p is the power rated flow MCPR operating limit multiplied by the Kp factor given in Figure 3.11-6.

The Kp s are established to protect the core from transients other than core flow increases, including the localized event such as Nd withdrawal error. The Kos were determined based upon the most limiting transient at the given core power level. (For further information on MCPR operating limits for off-rated conditions, reference NEDC-30474-P.(e))

When operating with a single-recirculation pump, the MCPR Safety and Operating Limits are increased by an amount of 0.01 over the comp ~ rable values for two-recirculation pump operation.(8)

HATCH - UNIT I 3.11-4a Proposed T5/0211g/154-141

E d -

1 AVERAGE PLANAR LINEAR HEAT GENERATION RATE vs 5 .

", 14.0 AVERAGE PLANAR EXPOSURE f f 7 7 -

7 7 e , 10.9 9 13*0- /

//

/

- //,/jp//,f////

//u ar u.4 g e f u.4/// gy

/ / / / / / / / / /

UNACCE TABLE OPERATION / /,/ / 10'2 0 LE

! /

y}12'0 p?Y= *i ~a' '

,///

9~42 k

&D / "* " " "'

- ,Y/''/,//////'/ 54

/

d5i ,

dr; ACCEPTABLE OPERATION j/ //

gg:

' i d =  ;

/j/[/- se m Q' 10

.0 - #d no E

n.v e f' 7.85  %

  • /

, M # '

g; 9.0 -

FUEL TYPE: 9X9 LFAs 7.06 I I I =w E 80-Mll CHANNELS g 8.0 -

--:  : -: - 6.28

= 0.0 5.0 10.0 15.0 20.0

, 25.0 30.0 35.0 40.0 45.0 j '*g " llj ""', 7 AVERAGE PLANAR EXPOSURE (GWd/st) g .() - wua:a tus rat e x e ta. FIGURE 3.11-1 (SHEET 4)

E Nc -

i y

_~, AVERAGE PLANAR LINEAR HEAT GENERATION RATE LIMIT vs AVERAGE PLANAR EXPOSURE

' }77/,jffg77f[ff,u,77,7~7,;7

/

^

,//Wliff',77 n

g 11.0-

-l / ,

,/

',l l-ff}/}% //

tjNACCEPTABLE OPERATION //

,l,/ l '!I/

)

LOW EXPOSLEE COORDINATES

~ ~ ~-~ ' - ~ ~ ~ ~ ' ~ " ~ ~ -

/

'/

~

/ /l,!jl'/ /,7.

,/ '~'~/^

' //

f

/ /l/'/ /

X Y /

b f.0

~

2 g,0 -

2. 0 11.
11. 64 ACCEP IABLE Ol'ERATIOpi

'3 7)l/// /

/ /

/

J.. ..yl /_y 10.0 12.81 FUEL TYPE: 83296A / /- // '

80-MIL CHANELS /! //

7. 0- - - - -- -- - - - - -

/ '/

g o

/

b G

5.

k, .d' 5. d ' 50. b ' ' 55. 0 20.0 25.0 ' 30.b ~35.0 ' 40.b' 45.b' 50.0

}

AVERAGE PLANAR EXPOStRE (GWd/st)

$ FIGURE 3.11-1 (SEET 5)

--* NOTE: TH8S IS THE ALPHGR L8MIT FOR THE O

MOST LIMITING LATT8CE AS A FUNCTION OF AVERAGE PLAsuAR EXPOSURE.

e O Figure 3.11 1 (Sheet 6) (Deleted)

)

HATCH - UNIT 1 Propos*d 75/02110/126-150

a x

9.H e

6 2

/

102.5%

Y// ..,w 112 WE o So - MAX FLOUW - 117A%

..as -

i

'l I

ol ese -

4 asArteeOR, = MAPFAC,

  • MArtHGRnD g

< MAPLHGR STO L ITS

{

ac MAPFAC, a RA0800MUh8188FRFO,, MArmout T,8 I, O g u Mare 8 ULT = 1 A FOst FLOUW).9%

  • e.se a

.A5 FOR FLOuv$.1%

{

O MFRPO,tF)

  • atesseteuas (3A. A, + e,F) g at F = FRACTeOes OF RATED COstE flout, C AND A,.5, ARE FUEL TYPE DEPf asOENT 1

i g

. COesETANTS G8VEN SELOUW

MAXIt0Ute CORE flout

_fu RATEOS AF EF o

g tet.

usa eest c. 7s.

m e.nu rem a

m ut.

n>A

.. 2 u . . ,

O == .

H w

N O

b

,- .. . i i>

s > >

"ro = # 98

> I SS 79 G W SG 3.e e

el 33.

a N

ru COft4 FLOUWth ftATEDI FIGURE 3.11-1 (SHEET 8) MAPFACp

FIGURE 3.11-2 (Deleted) i l

HATCH - UNIT 1 Proposed TS/0211g/154-132

l I

I i

I l

l 1.as 1.34 1.33

/

1.32

,s

/

n i

t.s t s W /~#

s 1.30 e

/

/

129 1.2s 1.21

, 1.2e l 1.2s 0.0 1.0 t

FIGURE 3.114 l MCPR LIMlY ALL 8X8 AND 9X9 FUEL TYPES FOR RATED POWER AND RATED FLOW 1

l l

l l

l l

HATCH - UNIT 1 PROPOSED TS/02114/126-139 l

l l

L

l I

c  ;

FIGURE 3.11-5 (Deleted) i HATCH - UNIT 1 Proposed TS/02119/154-132 l

I i

--. .---,-..,n,., .- , , , - . ,- .----, - . - . - - , , , ,

. - - - . - , . , , . . - . - - , , , , , - . - , - - . . . , . , , , - . - - - - - , ,