RBG-47573, Response to Request for Additional Information on Recommendation 2.1 Flood Hazard Re-evaluation

From kanterella
Jump to navigation Jump to search
Response to Request for Additional Information on Recommendation 2.1 Flood Hazard Re-evaluation
ML15162A272
Person / Time
Site: River Bend Entergy icon.png
Issue date: 05/27/2015
From: Olson E
Entergy Operations
To:
Document Control Desk, Office of Nuclear Reactor Regulation
References
RBG-47573
Download: ML15162A272 (65)


Text

Entergy Operations, Inc.

River Bend Station 5485 U. S. Highway 61 N St. Francisville, LA 70775 SEntergy Tel 225 381 4374 Fax 225 381 4872 eolson@entergy~comn Eric W.Olson Site Vice President RBG-47573 May 27, 2015 U.S. Nuclear Regulatory Commission ATTN: Document Control Desk Washington, DC 20555

Subject:

Response to Request for Additional Information on River Bend Station Recommendation 2.1 Flood Hazard Re-evaluation River Bend Station - Unit 1 Docket No. 50-458 License No. NPF-47

Reference:

1. Entergy Letter RBG-47447, Response to Request for Information Regarding Recommendation 2.1 of the Near-Term Task Force Review of Insights from the Fukushima Dai-ichi Accident, dated March 12, 2014
2. River Bend Station Recommendation 2.1 Flood Hazard Re-evaluation Request for Additional Information, email dated April 27, 2015 RBF1-15-0080

Dear Sir or Madam:

In Reference (1), Entergy Operations, Inc. (Entergy) submitted a response to the Near Term Task Force Recommendation 2.1: Flooding Hazard Re-evaluation Report in response to the Nuclear Regulatory Commission's request for information pursuant to Title 10 of the Code of FederalRegulations 50.54(f).

In reviewing the Flooding Hazard Re-evaluation Report, NRC determined that additional information was required to complete the review (Reference 2). The attachment to this letter contains the requested information.

if you have any questions, please contact Mr. Joseph Clark at 225-381-4177. There are no new commitments contained in this submittal. I declare under penalty of perjury that the foregoing is true and correct. Executed on May 27, 2015.

Respectfully, EWO/dhw

Attachment:

Response to Request for Additional Information

Enclosure:

One (1) CD containing three data files referenced in the RAI

Attachment:

- FLO-2D input output files (no VBS)

- FLO-2D input output files (no ARFs)

- HEC-RAS input / output files

RBG-47573 May 27, 2015 Page 2 of 2 cc: Ms. Tekia Govan (w/ attachment and enclosure)

U.S. Nuclear Regulatory Commission MS 13C05 11555 Rockville Pike Rockville, MD 20852-2738 U.S. Nuclear Regulatory Commission (w/o attachment and enclosure)

Region IV 1600 East Lamar Blvd.

Arlington, TX 76011-4511 NRC Resident Inspector (w/o attachment and enclosure)

R-SB-14 Central Records Clerk (w/o attachment and enclosure)

Public Utility Commission of Texas 1701 N. Congress Ave.

Austin, TX 78711-3326 Department of Environmental Quality (w/o attachment and enclosure)

Office of Environmental Compliance Radiological Emergency Planning and Response Section ATTN: AiYoung Wiley P.O. Box 4312 Baton Rouge, LA 70821-4312 Mr. Alan Wang, Project Manager (w/o attachment and enclosure)

U.S. Nuclear Regulatory Commission MS 0-8B1 11555 Rockville Pike Rockville, MD 20852-2738

Attachment to RBG-47573 Response to Request for Additional Information

RAI Item 1. Local Intense Precipitation: PMP Hvetoaraph and Sensitivity Analysis

Background:

The LIP flood reevaluationin the FHRR used a 1-hour,front-loaded probablemaximum precipitation (PMP) event based on the HydrometeorologicalReport Nos. 51 and 52. For the PMP hyetograph, the FHRR extended the 1-hour event by following it with steady precipitationbased on a 6-hour PMP.

Request: Conduct a sensitivity analysis on the LIP event durationto considerlocalized (one square mile) PMP events up to 72 hours8.333333e-4 days <br />0.02 hours <br />1.190476e-4 weeks <br />2.7396e-5 months <br /> in duration (e.g., 1-, 6-, 12-, 24-, 48-, 72-hour PMPs)and various rainfalldistributions(e.g., center-loaded and others in addition to a front-loaded distribution). The evaluationsshould identify potentially bounding scenarios with respect to flood height, event duration,and associatedeffects.

Response

NUREG/CR-7046, Section 3.2, states: "The local intense precipitation, therefore, deemed equivalent to the 1-hour, 1-square-mile PMP at the location of the site." The LIP scenario for the FHRR conservatively included the 1-hour, 1-square-mile PMP embedded within the 6-hour 10 square-mile PMP using a front-loaded distribution, following the example in Appendix B of NUREG/CR-7046. NUREG/CR-7046 does not illustrate other temporal distributions.

The bounding flood level of any duration LIP event is created by the 1-hour, 1-square-mile PMP, as indicated by the early peaks on the LIP time series plots shown in the FHRR. This makes intuitive sense since the lag time for the local plant watershed is expected to be quite short (much less than one hour). Therefore, longer duration PMPs are anticipated to be bounded the higher intensity of the 1-hour LIP. In that context, flood elevations are not expected to be significantly sensitive to the temporal distribution within the 1-hour LIP itself.

Similarly, shorter duration PMPs are also bounded by the 1-hour, 1-square-mile LIP analysis. This is because the 1-hour, 1-square mile LIP rainfall time series was developed by combining and embedding shorter duration PMPs (i.e.,

5-minute, 15-minute, and 30-minute) within the same 1-hour event.

RAI Item 2. Local Intense Precipitation: West Creek Inflow

Background:

Concerning the treatment of the modeled representationof West Creek in the FLO-2D model, AREVA Document No. 32-9207353-000 section 2.1.1 states that the LIP subwatershedfor West Creek was delineated at a point approximately 400ft (131m) upstream of the mouth of the channelized portion of the creek. However, the inflow hydrographfor West Creek was added to the inflow grid element directly upstream of the channelized section in FLO-2D.

Request: Discuss the conservatism of locatingthe West Creek inflow node at the mouth of the channelized portion of West Creek as opposed to where the inflow from the creek enters the grid system, along the computationalboundary.

Discuss the effect that backwaterfrom Grants Bayou into West Creek has on the model and how conservatism is employed in the model to appropriatelyrepresent this.

Response

The West Creek inflow node was located at the mouth of the channelized portion of West Creek to ensure that the total computed flow from the West Creek subwatershed north of the Northwest Service Road (AREVA, 2014a and AREVA, 2014b) is routed through the channelized portion of West Creek thereby maximizing the resulting water surface elevation in the channel near RBS.

Note that rainfall is simulated throughout the FLO-2D model domain and hence rain falling in the area between the computational boundary of the FLO-2D grid system where the inflow from the creek enters the FLO-2D (at the Northwest Service Road) grid system and the mouth of the channelized portion of West Creek is accounted for in the LIP analysis. See Figures 1 and 2 for the locations of the mouth of the channelized portion of West Creek and the watershed delineation point at the Northwest Service Road.

The confluence of West Creek and Grants Bayou is over 5,000 feet downstream of RBS and hence backwater effects from Grants Bayou at RBS are expected to be minimal. In addition, South Plant Road which traverses West Creek Page 1 of 22

about 1,000 feet downstream of RBS was modeled as completely blocked and results in more conservative backwater conditions at RBS than any backwater from Grants Bayou.

References:

AREVA, 2014a. AREVA Document No. 32-9207350-000, "River Bend Station Flooding Hazard Re-Evaluation - Local Intense Precipitation - Generated Flood Flow and Elevations Calculations", 2014.

AREVA, 2014b. AREVA Document No. 32-9207353-000, "River Bend Station Flooding Hazard Re-Evaluation - Probable Maximum Flood on Streams and Rivers - Grants Bayou and West Creek Flow and Elevations", 2014.

Page 2 of 22

Figure 1: West Creek Subwatershed LIP Configuration Page 3 of 22

Figure 2: LIP FLO-2D Model Layout Page 4 of 22

RAI Item 3. Local Intense Precipitation: Vehicle Barrier System (VBS) Simulation

Background:

FHRR section 3.1.2.1.2 states that "simulation of the LIP with the VBS results in a more conservative water surface elevation than without the VBS." The staff did not find the FLO-2D model to representa VBS within the Unit 2 Excavation.

Request: Provide a quantitativecomparisonof the peak watersurface elevations at criticalpoints. Justify the assumption that certainportions of the VBS (e.g., the pedestriancrossing along the southern edge of the VBS) remained open during the LIP event.

Response

The berm around the Unit 2 excavation and the VBS, with the exception of the portion in the Unit 2 excavation, at RBS was modeled in FLO-2D using the levee structures component. The portions of the VBS inside the Unit 2 excavation were not modeled in order to maintain model stability. The Unit 2 excavation is more than 20 feet deep (the ground elevation within the excavation is generally less than 70 feet NAVD88 and the general site grade is about 94 feet, NAVD88). The presence of the 4 feet high VBS has no impact on water surface elevations near safety-related SSCs or on the final maximum water surface elevation within the excavation.

The portions of the VBS that were modeled as open during the LIP event (e.g., the pedestrian crossing along the southern edge of the VBS) are passive openings that require no operation. These openings are generally more than 4 feet wide. Since the majority of the area within the VBS is paved, there are limited sources of debris that could block these openings.

A quantitative comparison of the peak water surface elevations, with and without the VBS, at critical points has been included as Table 1: Comparison of LIP Results with and without VBS. The water surface elevations from the simulation with the VBS are higher (at most of the locations) or equal to the water surface elevations from the simulation without the VBS. The FLO-2D Input and Output files for the simulation without the VBS are included as Attachment A.

Attachment A:

FLO-2D Input and Output Files - No VBS Page 5 of 22

Table 1: Comparison of LIP Results with and without VBS Maximum Water Surface Elevation Maximum Flood Depth in vicinity of Door Grid Element (ft, NAVD88) (ft)

Numbers LIP Calculation Simulation LIP Calculation Simulation with VBS without VBS with VBS without VBS DG-098-HO1 9,549 96.4 95.9 2.6 2.1 DG-098-H02 9,549 96.4 95.9 2.6 2.1 DG-098-01 9,227 96.3 95.9 2.2 1.9 DG-098-02 9,549 96.4 95.9 2.6 2.1 DG-098-03 9,711 96.4 95.9 2.5 2.0 DG-098-H03 9,711 96.4 95.9 2.5 2.0 CB-098-01 9,875 96.4 95.9 2.5 2.0 DG-098-11 9,705 96.2 96.0 1.7 1.5 JRB-D01HTCH 10,194 96.2 96.0 3.1 2.9 AB-098-03 11,036 97.5 97.5 0.5 0.5 AB-098-04 11,206 97.6 97.6 0.5 0.5 CB-098-17 11,207 97.6 97.6 0.4 0.4 FB-095-01 10,186 96.0 95.8 2.0 1.8 SP-098-01 10,348 96.0 95.8 1.8 1.6.

FB-098-04 11,025 95.9 95.5 1.7 1.3 AB-098-06 11,872 96.4 96.4 0.5 0.5 AB-098-05 12,041 96.6 96.6 0.4 0.4 Page 6 of 22

RAI Item 4. Local Intense Precipitation: Precipitation onto Buildings

Background:

Width Reduction Factors (WRFs) and Area Reduction Factors(ARFs) were assigned to grid elements representing buildings at RBS in the FLO-2D model. Grid elements that were completely within the extent of a building were blocked with WRFs and ARFs set equal to 1.0. Elements partially within the extent of a building were either completely blocked or completely open. FHRR section 3.1.2.1.2 states that FLO-2D calculates runofffrom blocked grid elements and translatessuch runoff to the nearest unblocked grid element; however, it is not clear how and where rainfallonto the interiorbuilding elements is distributedto these unblocked grid elements. Previousstaff experience has indicated discrepanciesbetween how software documentationstates that rainfall runoff is handled and how the selected model configurationproduces those desired effects. Furtherclarificationis required to ensure the selected model configurationmatches physical characteristicsat the site to ensure consistency, conservatism, and realism. The staff recognizes the coding issues for rainfall on roofs within FLO-2Dfor model builds before 2014. Before being re-coded in 2014, FLO-2D did not allow water to move outside the building perimeter.

Request: Provide a detailed description of how rainfall is routed to the nearest unblocked grid element in FLO-2D.

Clarify or reanalyze how rainfall onto building roofs is physically routed at the River Bend Station and demonstrate that the model implementation accountsfor roof runoff in a manner consistent with physical reality. Provide a figure showing locations of roof dischargeonto the site yard. If building rainfall is routed to a concentrateddischargepoint, provide a discussion of how the model conservatively simulates localized flooding impacts due to concentrated discharge,and, if necessary, provide sensitivity analysis results that demonstrate the significance of localized flooding impactsfrom roof discharge. Describe the extent to which the model restricts building rainfall volume from entering the site yard due to the selected reductionfactors (i.e., demonstratewhether there is a significantbackwater effect at the building interface).

Response

In the RBS LIP calculation (AREVA, 2014), ARFs and WRFs were used in conjunction with elevating the grids elements representing areas occupied by buildings to model buildings. A sensitivity analysis was performed by eliminating Area Reduction Factors (ARFs) and Width Reduction Factors (WRFs) to assess if the FLO-2D model implementation at RBS accounts for roof runoff realistically. Buildings at RBS were represented as elevated grid cells based on the site survey and the high resolution orthoimagery. Elevating building grid elements allows for FLO-2D to recognize those grid elements are obstructions relative to lower ground grid elements, and results in runoff from the building rooftops to the ground surface. Grid elements that were completely within the aerial extent of a building were assigned elevations at least 5 feet higher than the surrounding topography (See Figure 3). Uniform elevations were assigned to grid elements representing a single building to ensure that runoff from rooftops are uniformly distributed to the surrounding areas. The peak 1-hour duration LIP depth of 19.4 inches is less than the assumed 5 feet height of the buildings. Therefore, water will not build up high enough to result in flow over the elevated buildings. Elevating grid elements to represent buildings has the potential to create an artificially high hydraulic gradient that may decrease flow depths and increase velocities at the intersection of building grid elements and grid elements representing the adjacent grade. The use of an assumed building height of 5 feet was minimizes this potential.

A comparison of the results of the sensitivity analysis without ARF/WRFs and the results of the model implementation in the RBS LIP calculation (AREVA, 2014) are shown in Table 2: Comparison of Results with and without ARFs. The results from the model implementation in the RBS LIP calculation described in the FHRR are between 0 to 0.2 feet of the results from this sensitivity analysis. No door that was previously dry became wet (flood elevation exceeds elevation at bottom of door) based on the results from the sensitivity analysis. The results of this analysis indicate that the two methodologies for modeling rooftop precipitation drainage (using FLO-2D ARFs/WRFs and using manually elevated grid cells) are in relatively close agreement. Therefore it is demonstrated through this sensitivity analysis that water falling onto buildings in the RBS LIP calculation (AREVA, 2014) was routed as runoff onto the adjacent site grades. The FLO-2D input and output files for this sensitivity run are included as Attachment B.

Page 7 of 22

The more conservative flood elevations which would result from using manually elevated grid cells would not result in additional impacted areas.

Note that the version of FLO-2D used in the LIP calculation (Build No. 13.07.05) does not provide output of its internal routing from rooftops to the nearest unblocked cell when ARFs/WRFs are used. The FLO-2D, Build No.13.07.05 code does allow water to move outside the building perimeter if the water surface elevation on the building grid element is higher than that on the neighboring grid elements.

References:

AREVA, 2014. AREVA Document No. 32-9207350-000, "River Bend Station Flooding Hazard Re-Evaluation - Local Intense Precipitation - Generated Flood Flow and Elevations Calculations", 2014.

Attachment B:

FLO-2D Input and Output Files - No ARFs Page 8 of 22

Table 2: Comparison of Results with and without ARFs Maximum Water Surface Elevation Elevation at (ft, NAVD88) Change in Bottom of Previously Newly Grid Element Door Elevation Door Calculated Calculated Numbers LIP Calculation Elevated Grids- (ft) Margin Margin (Elevated Grids + ARFs) No ARFs (ft, NAVD88)

DG-098-H01 9,549 96.4 96.5 +0:1 97.3 +0.9 +0.8 DG-098-H02 9,549 96.4 96.5 +0.1 97.3 +0.9 +0.8 DG-098-01 9,227 96.3 96.4 +0.1 97.3 +1.0 +0.9 DG-098-02 9,549 96.4 96.5 +0.1 97.3 +0.9 +0.8 DG-098-03 9,711 96.4 96.5 +0.1 97.3 +0.9 +0.8 DG-098-H03 9,711 96.4 96.5 +0.1.. 97.3 +0.9 +0.8 CB-098-01 9,875 96.4 96.5 +0.1 97.3 +0.9 +0.8 DG-098-11 9,705 96.2 96.3 +0.1 97.4 +1.2 +1.1 JRB-DO1HTCH 10,194 96.2 96.3 +0.1 93.1 -3.1 -3.2 AB-098-03 11,036 97.5 97.7 +0.2 : 97.2 -0.3 -0.5 AB-098-04 11,206 97.6 97.8 +0.2 97.2 -0.4 -0.6 CB-098-17 11,207 97.6 97.8 +0.2:-. 97.4 -0.2 -0.4 FB-095-01 10,186 96.0 96.1 +0.1 94.3 -1.7 -1.8 SP-098-01 10,348 96.0 96.0 +0.0 97.7 +1.7 +1.7 FB-098-04 11,025 95.9 96.0 +0.1 97.3 +1.4 +1.3 AB-098-06 11,872 96.4 96.5 +0.1 97.3 +0.9 +0.8 AB-098-05 12,041 96.6 96.8 +0.2 97.2 +0.6 +0.4 Notes: (1) Elevations have been rounded to one decimal place. (2) Flood Margin above Elevation at Bottom of Door is the difference between LIP Peak Elevation and Elevation at Bottom of Door; negative numbers indicate water elevation is above the bottom of the door.

Page 9 of 22

Figure 3: FLO-2D Grid Element Elevation Rendering - No ARF Simulation f..t 137.72 129.09 12046 111.82 103.19 94.56 85.93 77,29 68.66

<=60.03 Page 10 of 22

RAI Item 5, Local Intense Precipitation: Manning's Roughness Coefficient

Background:

A GeographicInformation System shapefile was created by assigning Manning's roughness coefficients to the apparentland cover classes based on visual assessment of high resolution ortho-imagery.The Manning's roughness coefficients used were based on Table 1 in the FLO-2D Reference Manual. The FHRR states that the upper range values of the Manning's Roughness Coefficients were used. Furthercomparison between Table 1 from the FLO-2D Reference Manual (Appendix A, Document No. 32-9207350-000) and the calculated Manning's roughness coefficients for the site (Table 3, Document No. 32-9207350-000)shows that the upper range of each roughness coefficient was not always used.

Request: Providea detailed description of how Manning'sroughness coefficients were selectedfor each land cover class. Provide a discussion on the conservatism (relative to onsite effects from LIP) of using upper or lower Manning's roughness coefficients for various land cover classes and in specific site locations.

Response

Manning's roughness values were assigned based on apparent land cover visible in the digital orthophotos and observations during site visits. Attachment C shows the Manning's n values selected as compared to the digital orthophoto. Manning's n values were selected after review of typical ranges from the FLO-2D manual (FLO-2D, 2013) and from "Open Channel Hydraulics" by Chow (Chow, 1959), shown in the table below. The Manning's n-values for the "forest" and "short trees" landcover type were at the upper end of the range recommended in the FLO-2D manual. The Manning's n-values for the other landcover classes were selected based on engineering judgment and generally represent the upper ends (or greater) of the Manning's n-value ranges from the open-channel reference book by Chow. In some cases, such as the concrete and brush land cover classes, a more realistic value within the range of literature values was used based on engineering judgment and site observation. Higher Manning's n-values typically result in higher water surface elevations.

Manning's n Manning's n Manning's n Land Cover Class Class Covr Mning Used in MModell 2RangeaulCo from FLO- Range from 2D Manual Chow Asphalt Road 0.02 0.02 -0.05 0.013 - 0.016 Short Grass 0.05 0.20-0.40 0.025 - 0.035 Forest 0.40 0.30-0.40 0.08-0.120 Concrete 0.02 0.02 -0.05 0.011 - 0.027 Brush 0.10 0.30-0.40 0.035 - 0.160 Water 0.025 N/A Short Trees 0.20 0.10-0.20 0.08- 0.120

References:

Chow, 1959. "Table 5-6: Values of the Roughness Coefficient n", Open-Channel Hydraulics, Ven Te Chow, 1959.

FLO-2D, 2013. "FLO-2D Pro Reference Manual", FLO-2D Software Inc., Nutrioso, Arizona (www.flo-2d.com), 2013.

Attachment C:

Manning's n-values for LIP Analysis RAI Item 6. Streams and Rivers: Probable Maximum Flooding Page 11 of 22

Background:

The licensee included in the FHRR modeling of PMFflooding at RBS using HEC-RAS (v.4.0)for three separate watersheds- the Mississippi River watershed, Grants Bayou watershed, and the West Creek watershed. The licensee modeled individualPMFscenariosfor each of the three watersheds. The FHRR does not include analysis of modeling of PMFflooding considering combined watersheds.

Request: Demonstrate whether combined or independentanalysis of the three watersheds is more conservative and appropriate.

Response

The peak PMF elevations in the Mississippi River was used as the downstream boundary condition in the HEC-RAS model for calculating the PMF elevation in Grants Bayou and the peak PMF elevation in the Grants Bayou was used as downstream boundary condition for the analysis of the PMF elevation in West Creek. This methodology does combine the PMFs for each watershed hydraulically. This approach is more conservative than if the watersheds were combined and treated as a single watershed, since the flood elevations in the receiving streams are likely to be less than their peak PMF elevations if the watersheds were combined, due to differences in watershed lag times due to differences in watershed sizes. The drainage area of the Mississippi River at RBS is over 1,000,000 mi 2 . The drainage 2

areas for the Grants Bayou and West Creek at RBS are 8.4 mi 2 and 0.9 mi respectively (AREVA, 2014). Another layer of conservatism in the approach used compared to modeling all the watersheds as a single unit is that the effective PMP depth for a single combined watershed analysis will be less than the PMP depths used for the individual watershed analysis since the effective PMP depths would decrease with increasing drainage area.

References:

AREVA, 2014. AREVA Document No. 32-9207353-000, "River Bend Station Flooding Hazard Re-Evaluation - Probable Maximum Flood on Streams and Rivers - Grants Bayou and West Creek Flow and Elevations", 2014.

RAI Item 7, Streams and Rivers: Manning's Roughness Coefficient for the Mississippi River

Background:

The descriptionof the PMF analysisin FHRR Section 3.2.2.1.2 states that Manning's roughness coefficient was adjusted during HEC-RAS hydraulic model calibrationsfor the MississippiRiver. The staff was unable to find details in the FHRR on how the licensee performed this adjustment, which were the final coefficient values that were used, and how was the adequacy of the final coefficient values determined.

Request: Provide additionaldetails on the analysis and selection of the Manning's roughness coefficient values; and, describe how those values compare with recommended values in standardreferencesfor the Mississippi River near RBS.

Response

The Mississippi River HEC-RAS hydraulic model was calibrated based on stage data for the Mississippi River flood in 2011. The calibrated model was then verified by comparing to the flood elevations from the Mississippi River Project Design Flood (PDF) at Baton Rouge of 1,500,000 cfs (MRC, 2007).

The parameter that was adjusted in the calibration was the Manning's Roughness Coefficient (Manning's n). The Manning's Roughness Coefficients were adjusted until the model provided a peak water surface elevation based on a target elevation difference of 0.5 feet or lower for calibration and 1 foot for verification.

Initial Manning's n-values used in initiating the model were based on literature review (Chow, 1959). The initial Manning's n-values were then adjusted in regular increments until the target elevation difference was achieved.

The final Manning's n-values used in the Mississippi River HEC-RAS model are:

Left Overbank Channel Right Overbank 0.10 0.0294 0.10 Page 12 of 22

The calibrated Manning's n-values are within the published range of values for large rivers (Chow, 1959). Typical overbank Manning's n-values range from 0.10 to 0.16 for floodplains consisting of heavy stand of timber, a few downed trees, little undergrowth, and flood stage reaching the branches (Chow, 1959). Typical channel Manning's n-values range from 0.025 to 0.060 for major streams with regular sections and no brush (Chow, 1959). A curve of Manning's n versus flood stage for the Mississippi River is presented in Figure 5-4 (Chow, 1959) and shows that with large flood stages (i.e., the PMF), Manning's n for river channel tends to be approximately 0.030. This is consistent with calibrated Manning's n-value results.

The calibration results at HEC-RAS cross section 265.4 which is the cross section located at the Bayou Sara gage are:

Model Water Observed Water Surface Elevation Surface Elevation Difference Location (feet)

(feet NAVD88) (feet NAVD88)

Bayou Sara Gage 55.3 54.9 +0.4 The verification results at HEC-RAS cross section 263.9, which is the cross section located at RBS are:

Model Water Surface USACE Reported PDF Water Elevation Surface Elevation Difference Location (feet)

(feet NAVD88)

(feet NAVD88)

RBS 55.4 54.5 +0.9 Note that the hydraulic model as calibrated and verified tends to over predict water surface elevations in the Mississippi River. The calibration and verification methodology and results are detailed in the RBS Mississippi River PMF calculation (AREVA, 2014).

References:

MRC, 2007. "The Mississippi River & Tributaries Project: Controlling the Project Flood", Mississippi River Commission, Information Paper, 2007.

RBS, 2013. RBS Updated Final Safety Analysis Report, Revision 20, 2013 AREVA, 2014. AREVA Document No. 32-9207352-001, "River Bend Station Probable Maximum Flood on Streams and Rivers - Mississippi River Flow and Elevation Calculation", 2014.

Chow, 1959. "Table 5-6 Values of Roughness Coefficient n", Open Channel Hydraulics, Ven Te Chow, 1959.

RAI Item 8, Streams and Rivers: Baseflow

Background:

The FHRR assumes that baseflowfor West Creek and Grants Bayou is negligible in comparison to the peak PMFflow rates. The staff was not able to find information that the licensee modeled the baseflow for the two watersheds in HEC-RAS for the PMF watersurface elevation calculations.

Request: Provide substantiationfor the assumption that baseflow for West Creek and Grants Bayou is negligible.

Demonstrate whether omission of baseflowfrom the PMFsimulation adversely affects the conservatism of the water surface elevation estimate.

Response

A sensitivity analysis was performed to demonstrate that the baseflow for the West Creek and Grants Bayou watersheds is negligible under PMF conditions. There are no stream gages on West Creek or Grants Bayou. Using the stream gage records at the nearby Comite River USGS Gage (Gage 07377500) as a "surrogate," a monthly mean base Page 13 of 22

flow of 3.1 cfs per square mile of watershed area was calculated based on the maximum recorded mean monthly flowrate (USGS, 2015). The Comite River gage is located approximately 17 miles east from the site. The watershed of the Comite River gage is 145 square miles. Representative mean base flows were calculated for Grants Bayou and West Creek based on the Comite River watershed and are shown in the table below (Attachment G).

Mean monthly flows are significantly smaller (0.10% or less) than the peak PMF flows. However, as an additional check, the HEC-RAS model was re-run including baseflow (Attachment G). The inclusion of baseflows into the hydraulic models had negligible effects on maximum water elevations for Grants Bayou and West Creek (See Table below and Attachment G).

Drainage Area Estimated Base Percent of Peak (square miles) Flow (cfs) PMF Flow Grants Bayou Above 8.4 26.0 0.06%

Confluence of West Creek Grants Bayou Below 7.4 22.9 0.10%

Confluence of West Creek West Creek 0.9 2.8 0.04%

Peak PMF Elevation at RBS (ft, NAVD88)

Watershed Without Baseflow With Baseflow Grants Bayou 99.1 99.1 West Creek 94.4 94.4

References:

USGS, 2015. "USGS Surface-Water Monthly Statistics for Louisiana", USGS 0737500 Comite River near Olive Branch, LA, May 13, 2015.

Attachment G:

Baseflow Calculations RAI Item 9, Streams and Rivers: Bridges

Background:

The Louisiana State Highway 10 Bridge over Grants Bayou is modeled as 50 percent blocked by debris.

All other bridges downstream of RBS on Grants Bayou are assumed in the FHRR to be completely blocked. Bridges and culverts upstream of RBS are ignoredand not modeled for the PMFpeak water surface elevation simulation.

Request: Discuss the decision to exclude bridges and culverts upstream of RBS from the model and the conservatism of this approachas it relates to backwater of the river.Justify modeling the Louisiana State Highway 10 Bridge as only 50 percent blocked by debris; provide calculationsshowing the conservatism or need of this approachratherthan modeling the bridge as 100 percent blocked by debris.

Response

Excluding bridges and culverts upstream of RBS is conservative since these are likely to cause backwater effects upstream of the site and effectively reduce (e.g., attenuate) the PMF flowrates downstream, leading to lower maximum water surface elevations at the site.

Page 14 of 22

Louisiana State Highway 10 Bridge is over 1,000 feet long from abutment to abutment and consists of piers spaced approximately 72 feet apart. The low chord of the bridge deck is at approximately elevation 80 feet NAVD88 or 30 feet off the stream bed (see AREVA, 2014). The likelihood of significant debris blockage within this large flow conveyance area is judged to be low. Therefore, the assumption to model this bridge as 50% blocked is extremely conservative. Note that the NUREG/CR-7046 (NRC, 2011) guidance does not require hydraulic structures to be considered as blocked in PMF analysis.

References:

AREVA, 2014. AREVA Document No. 32-9207353-000, "River Bend Station Flooding Hazard Re-Evaluation - Probable Maximum Flood on Streams and Rivers - Grants Bayou and West Creek Flow and Elevations", 2014.

NRC, 2011. NUREG/CR-7046: Design-Basis Flood Estimation for Site Characterization at Nuclear Power Plants in the United States of America", U.S. Nuclear Regulatory Commission, Springfield, VA, National Technical Information Service, 2011.

RAI Item 10. General: Unit 2 Excavation during PMF

Background:

In the FHRR analysis of the site LIP and PMF, the Unit 2 Excavation is modeled as a storage area in HEC-RAS and acts as a receiving areaforflow that overtops West Plant Road (FHRR Section 3.2.2.3.3), which decreases the effective flood depth on site. Examination of the HEC-RAS files for the West Creek shows that the Unit 2 Excavation is considereddry at the beginning of the model (i.e., there is no standing water in the area to add to the PMF water level). This is also stated in the FHRR (Section 3.1.2.1.2) for the FLO-2D analysis. The FHRR mentions RBS Procedure OSP-0031 as the basis for this initial dry setting. Since the PMF is a flood resultingfrom the PMP, it is possible that water will accumulate within the Unit 2 Excavation priorto the startof the PMF, therefore affecting the finalflood elevation due to PMF at RBS.

Request: Justify modeling the Unit 2 Excavation with no initialstanding water conditions. Provide documentation that supports the Unit 2 Excavation being credited as a flood protectionfeature in the design basis. Provide information on whether the feature is consideredpermanent or whether its relevant characteristicsand/orfunction could change in the future.

Response

RBS Procedure OSP-0031 requires that equipment located at the base of the Unit 2 Excavation be inspected daily (RBS, 2013, Items 29 and 30). If there are accessibility issues due to flooding, pumps will be used to dewater the excavation as needed.

A 40% antecedent PMP event prior to the PMP induced PMF on West Creek would potentially result in standing water in the Unit 2 Excavation. The amount of water ponding in the Excavation is expected to be relatively low, due to the surrounding elevated berm, and the lack of overtopping from West Creek. Additionally, the 72-hour dry period between the antecedent rain event and the PMF, as well as the lag between the onset of the PMF and actual overtopping of West creek into the Unit 2 Excavation, is considered sufficient to dewater to allow for daily equipment inspection per RBS procedures.

The Unit 2 Excavation is not, however, being credited as a flood protection feature in the design basis. The Unit 2 Excavation is a site topographic feature which influences RBS site drainage and flood inundation. The impacts to flood propagation caused by potential future site topographic changes would be assessed on an "as needed" basis.

Reference:

RBS, 2013. "River Bend Station Operating Manual, Operations Section Procedure", Procedure Number OSP-0031, Revision 063, 2013.

RAI Item 11, Dam Failures: Total Volume Storage Methodology Page 15 of 22

Background:

The FHRR adopted methodology from the Guidancefor Assessment of Flooding Hazards Due to Dam Failure Report (NRC, 2013) for use in the RBS dam failure analysis (FHRR Section 3.3.2). The ISG presents three simplified dam failure modeling approachmethods: 1) volume, 2) peak outflow without attenuation,and 3) peak outflow with attenuation.The FHRR models dam failure using suggested steps outlinedfrom both the volume and peak outflow without attenuation methods. The FHRR approach uses the total upstream reservoirvolume approach (as outlinedfor the volume method) but uses regressionequations to calculatebreach outflow (as outlinedfor the peak outflow method). Following the peak outflow method by summing individualpeak outflows from each upstream dam may provide more conservative results than the FHRR approachof calculatingpeak outflow for a single "combined" dam breachfailure.

Request: Justify combining concepts from the two recommended ISG dam failure analysismethods. Discuss conservatism relative to modeling a dam breach outflow based on the total storage volume of a hypotheticaldam versus modeling the cumulative outflow resultingfrom individual upstream dam peak breach outflows. Describe whether the limit to which the regression equations are applicable applies to a dam of the size assumed in this analysis. Provide any supporting calculations and sensitivity analysis.

Response

Concepts from two recommended ISG dam failure analysis methods were not combined in the analysis of upstream dam failures at RBS. The "peak outflow without attenuation" method was primarily used in the analysis of dam failure at RBS. The first step of the "peak outflow without attenuation" method outlined in the ISG states that

"... Because of the potentially large number of dams at this stage of the analysis,justification of applicabilityfor individualdams will not be practical." Furthermore, the final paragraph of Section 3.2 discusses clustering of dams in general (below the fourth simplified dam failure approach of using hydrologic routing techniques): "Forwatersheds with many dams, setting up a single hypotheticaldam to conservatively representmultiple dams in a rainfall-runoff-routing model involves much less effort than modeling actual dams. The hypothetical dam(s) should include representativesituationsof dams in series and cascadingfailures (see example illustrationin Figure 16). The hypothetical dams should conserve the impounded volume of the dams they represent." This information appears to acknowledge the practicalities of working in a large watershed with a large number of dams and allows for the use of the representative dam concept in general in combination with simplified modeling approaches (with sufficient justification).

There were 114 major dams (dams 50 feet or more in height, dams with a normal storage capacity of 5,000 acre-feet or more, and dams with a maximum storage capacity of 25,000 acre-feet or more) identified for use in the analysis.

The dams were justifiably represented as a single large hypothetical dam following the approach described in Section 3.2.1 of the ISG for representing clusters of dams.

The analysis presented in the dam failure analysis is very conservative since it does not consider attenuation of the breach outflow as it travels along the river to the site. Peak breach outflow is generally halved every 10 miles traveled downstream (Reed, 2011).

The regression equation that resulted in the most conservative estimate of the breach outflow at RBS was the Froehlich equation (Froehlich, 1995). The historical dam breach outflow data used in developing the Froehlich regression equation included the Teton Dam in Idaho, which is over 285 feet tall. The height of the single hypothetical dam for RBS is 243 feet. The Froehlich regression equation is therefore appropriate for use in the RBS dam failure analysis.

References:

Reed, 2011. "Validation of a new GIS tool to rapidly develop simplified dam break models" Seann Reed and James Halgren. 2011.

Froehlich, 1995. Peak Outflow from Breached Embankment Dam. Froehlich, D.C. 1995. Journal of Water Resources Planning and Management, vol. 121, no. 1, p. 90-97.

Page 16 of 22

RAI Item 12, Dam Failures: Antecedent Conditions

Background:

The ISG volume and peak outflow without attenuationmethods for analyzing dam failure recommend setting antecedent conditionsat the site equal to the water surface elevation caused by a 500-yearflood. Since the FHRR conservatively modeled the dam failure analysisduring the PMF ratherthan the 500-yearflood, the initial conditionsat River Bend presumablyshould be the water surface elevation calculatedduring the PMF analysis, but the staff did not find the FHRR information to indicate what was used. The staff did notfind that the HEC-RAS dam failure input/outputfiles show any assumed conditionsat the site.

Request: Provide clarificationof the antecedent conditions at RBS implemented in the dam failure analysis model.

Response

The computed peak PMF flowrate of 5,580,000 cfs (AREVA, 2014a) was added to the peak dam breach outflow of 5,510,000 cfs (AREVA, 2014b) and the sum of the flows (11,090,000 cfs) was input to the HEC-RAS model to calculate the peak flood elevation resulting from upstream dam failures combined with the PMF. The HEC-RAS analysis used a steady state approach based on the combined maximum (11,090,000 cfs) flow rate, which does not require input of initial conditions at the site.

References:

AREVA, 2014a. AREVA Document No. 32-9207352-001, "River Bend Station Probable Maximum Flood on Streams and Rivers - Mississippi River Flow and Elevation Calculation", 2014.

AREVA, 2014b. AREVA Document No. 32-9207355-000, "River Bend Station Flooding Hazard Re-evaluation - Dam Failures", 2014.

Attachment D:

HEC-RAS Input and Output Files for RBS Dam Failure Calculation RAI Item 13, Combined Effects: Wind Speed

Background:

A Gumbel Distributionwas applied to the 2-minute wind speed datafrom the National Climatic Data Center (NCDC) to determine the 2-year returnperiod wind speed.

Request: Discuss the decision to apply the Gumbel Distributionto wind speed data. Compare the resultsfrom the Gumbel distribution to other widely used distributionssuch as the Weibull Distribution.

Response

A comparison of the results of the 2-year wind speed calculation using the Gumbel (Maidment, 1993), Weibull (Maidment, 1993), and Log Pearson III (USGS, 1982) distributions are shown in the table below. The distribution fits were assessed by calculating the Pearson r correlation coefficient for each method. The 2-year wind speed calculated using the Weibull distribution is higher, but also a significantly worse fit. The 2-year wind speed using the Log Pearson III distribution has a better fit but yields a less conservative wind speed value. Therefore, the 2-year wind speed calculated using the Gumbel distribution represents an appropriate estimate that both fits the data well and is also conservative. MathCAD and Excel calculation sheets are presented in Attachment E.

Distribution 2-Year Wind Pearson r Speed (mph)

Gumbel 43.4 0.906 Weibull 45.9 0.799 Log Pearson III 41.0 0.965 Page 17 of 22

References:

Maidment, 1993. "Frequency Analysis of Extreme Events", Handbook of Hydrology, David R. Maidment, 1993.

USGS, 1982. "Guidelines for Determining Flood Flow Frequency", Bulletin 17B of the Hydrology Subcommittee, U.S.

Department of the Interior, Geologic Survey, March, 1982.

Attachment E:

2-Year Wind Speed Calculation using other Distributions RAI Item 14: General: CLB and CDB

Background:

The FHRR refers to the current licensing basis (CLB) and the currentdesign basis (CDB) variously and in some instances without reference. For example, FHRR Tables 4.1-1, 4.1-2, and 4.1-4 refer to the CLB and compare the CLB to the reevaluatedflood hazard. A comparison between the CDB and the reevaluatedflood hazard is described in the instructions that are provided in the 50.54(f) letter. It is not clearto the staff whether the CLB and CDB are the same or different, and if different, what distinguishes them in the way that they are used in the FHRR.

Request: Provide clarificationfor the inconsistenciesidentified in the FHRR with regard to the comparison of the reevaluatedflood hazard to the current design bases and submit a revised hazard comparisonconsistent with the instructionsprovided in the 50.54(f) letter.

Response

The Design Basis Flood Level at RBS is 96.0 ft MSL, and is caused by PMP runoff at the site (generally comparable to an LIP event). The Design Basis for flooding at RBS requires protection to a minimum elevation of 98.0 ft MSL.

Evaluation of flooding events as documented in the RBS USAR represent plant-specific design bases information.

Discussions in the FHRR which include the terminology "design basis" indicates information developed to determine flooding hazard and requirements for flood protection, as indicated in Section 2.4 of the RBS USAR (RBS, 2013).

By definition, CLB (per 10CFR54.3(a)) includes any NRC requirements, current and effective licensee commitments, operation, and any design basis information for the site as documented in the most recent final safety analysis report.

For the purposes of the RBS FHRR, the two terms can be considered to have the same meaning.

RAI Item 15. General: Integrated Assessment Hazard Input

Background:

The FHRR identified local intense precipitationand PMFfrom streams and rivers (West Creek due to PMP)as flooding causing mechanisms that could potentially expose flood hazard to RBS. The staff did not find the FHRR to provide warning times, duration of inundation of the site, or time for flooding water to recede from the site (see definition and Figure6 of the NRC interim staff guidance document JLD-ISG-2012-05, "Guidancefor Performing an IntegratedAssessment," November 2012, ADAMS Accession No. ML12311A214). This includes (as applicable) the warning time the site will have to preparefor the event (e.g., the time between notification of an impendingflood event and arrivalof floodwaters on site) and the period of time the site is inundatedfor the mechanisms that are not bounded by the current design basis.

Request: Clarify which flood causing mechanism and associatedeffects, if applicable,will be included in the IntegratedAssessment. Provide the applicableflood event duration parametersassociated with each mechanism that triggersan integratedassessment using the results of the flood hazardreevaluation.Provide the basis or source of informationfor the flood event duration, which may include a description of relevantforecasting methods (e.g.,

productsfrom local, regional, or nationalweatherforecasting centers)and/or timing information derivedfrom the hazard analysis.

Response

Page 18 of 22

The Integrated Assessment for RBS will include evaluation of impacts and associated protection/mitigation measures for Local Intense Precipitation and for Probable Maximum Flooding on West Creek. Per the FHRR, Local Intense Precipitation generates the bounding flood elevations and exceeds the design basis flood protection elevation of 98.0 ft MSL in the vicinity of RBS SSCs important to safety. West Creek does not create the bounding flood elevation for the RBS site, but does result in inundation of the Unit 2 Excavation. Inundation of the Unit 2 Excavation due to PMF on West Creek is below the elevation where flooding in the Unit 2 Excavation could impact RBS SSCs important to safety.

The RBS Integrated Assessment will address specific flood durations for the LIP flood scenario, based on time series hydrographs at RBS exterior entrances. Flood protection features credited during the LIP event are passive and in place during normal operations, and no specific manual actions are required prior to the onset of the LIP event. As a result, specific forecast tools and methodologies are not discussed as part of the RBS Integrated Assessment.

RAI Item 16, General: Drainage Divides

Background:

In Table 4.1-1, basedon elevation alone, the Grants Bayou PMF water level would triggerinclusion in the IntegratedAssessment. The text on FHRR Section 4.1.9 (page 4-5) provides partialexplanation of this as a non-issue; and, the elevation of a "drainagedivide" thatprevents the Grants Bayou PMFfrom reaching the site is mentioned earlierin FHHR Section 3.2.2.2.3 (page3-12). This elevation is discussed in a calculationpackage, but is needed relative to the FHRR. Also, with respect to West Creek (FHRR Section 3.2.2.3.3), "[t]he top elevation of West Plant Road [WPR] drainagedivide at the lowest point is 93.5 ft NAVD88 (AREVA, 2013a)." It is not clear to staff whether this is a single point or a length of road.

Request: Provide delineationof site drainage divides, with pertinent elevation information, importantto the reevaluation;and, where appropriate,whether each drainagedivide provides a protected level in the design basis.

Provide a figure to include visual reference to drainagedivides mentioned in the text; and, clarify in Table 4.1-1 whether the Grants Bayou PMF, with and without wind and wave effects, is separatedfrom the site by a drainage divide with a stated elevation or range thereof. Provide a figure showing the WPR drainagedivide low point. Provide clarity to staff whether the WPR low-point this is a single point or a length of the road.

Response

While the PMF on Grants Bayou generates the bounding flood elevation at RBS, it does not trigger an integrated assessment. The re-evaluated flood elevation for PMF on Grants Bayou is 2.0 ft lower than the same flood level reported in the RBS USAR. Including wind-generated waves, the re-evaluated flood level for PMF on Grants Bayou is 1.7 ft lower than the Grants Bayou PMF flood level reported in the RBS USAR. The topographic layout of the RBS site prevents any Grants Bayou flooding from impacting SSCs important to safety.

Ground surface elevation profiles along the site drainage divides have been included as Attachment F. Low points referenced in the FHRR are called out along these drainage divides. The lowest point of West Plant Road, which is noted as 93.5 ft NAVD88, is a single point along the divide. The ground surface profile varies along West Plant Road (Drainage Divide 1) as shown in Figure F-1. The West Creek PMF overtops the divide along a distance of approximately 900 feet (Figure F-i). A map showing the drainage divide between West Creek and the RBS site is provided as Figure 4.

Two drainage divides exist between RBS and the Grants Bayou floodplain. Two low areas, less than the Grants Bayou peak PMF elevation, are present along the first berm northeast of the site (Drainage Divide 3 in Attachment F).

Drainage Divide 3 would effectively block wave action (i.e. waves would break) that develops along the longest straight line fetch presented in the FHRR. A second divide is located south of the berm near the center of the parking lot (Drainage Divide 4 in Attachment F) with a minimum elevation of approximately 100 feet NAVD88 along the profile. This is above the maximum PMF water surface elevation of 99.1 feet NAVD88 (AREVA, 2014a) and above the maximum combined water surface elevation of 99.4 feet NAVD88 (AREVA, 2014b) in Grants Bayou (including wave-runup). A map showing the drainage divides between Grants Bayou and the RBS site is provided as Figure 5.

Page 19 of 22

References:

AREVA, 2014a. AREVA Document No. 32-9207353-000, "River Bend Station Probable Maximum Flood on Streams and Rivers - Grants Bayou and West Creek Flow and Elevation Calculation", 2014.

AREVA, 2014b. AREVA Document No. 32-9207357-000, "River Bend Station Flooding Hazard Re-evaluation -

Combined Events Flood Analysis", 2014.

Attachment F:

Drainage Divide Profiles Page 20 of 22

Figure 4: Southeast Drainage Divides 7Legewnd

-Dmainawge DMOdm

-HEC-RAS Cross SeUons

__1-foat Contours firmi Survey a 126 250 Soo Page 21 of 22

Figure 5: Northeast Drainage Divides Legend

- Drainage Divides

- HEC-RAS Cross Sections

- 1-foot Contours from Survey Page 22 of 22

A02 K

Legend

- Computational Boundary Land Cover Asphalt Short Grass

- Forest

  • ] Concrete Concrete Brush N

- Asphalt

- Water

- Short Trees 350 700 iFe 1.400 AtUsmnI CPale 2 d 2

Attachment D - HEC-RAS Input and Output Files for RBS Dam Failure Calculation TIEC-RAS input and output files have been attached electronically.

Attachment D Page 1 of 1

Attachment E Year Wind Speed Calculation using other Distributions Attachment E Page 1 of 8

Gumbel Distribution Step 1: Maximum Wind Speeds from each year for the period of record Year Max (.1m/s) Max (m/s) Row Labels Max of WSF2 1993 179 17.9 1993 179 1994 161 16.1 1994 161 1995 174 17.4 1995 174 1996 443 44.3 1996 443 1997 165 16.5 1997 165 1998 174 17.4 1998 174 1999 174 17.4 1999 174 2000 165 16.5 2000 165 2001 174 17.4 2001 174 2002 268 26.8 2002 268 2003 174 17.4 2003 174 2004 161 16.1 2004 161 2005 183 18.3 2005 183 2006 174 17.4 2006 174 2007 295 29.5 2007 295 2008 273 27.3 2008 273 2009 228 22.8 2009 228 2010 161 16.1 2010 161 2011 219 21.9 2011 219 2012 201 20.1 2012 201 2013 161 16.1 2013 161 Grand Total 443 Step 2: Determine the 2 year return period wind speed using the Gumbel Distribution Peak Wind Year Speed (m/s) Rank Gringorten 1994 16.1 1 0.03 10.6 2004 16.1 2 0.07 12.4 2010 16.1 3 0.12 13.5 2013 16.1 4 0.17 14.4 1997 16.5 5 0.22 15.2 2000 16.5 6 0.26 15.9 1995 17.4 7 0.31 16.6 1998 17.4 8 0.36 17.3 1999 17.4 9 0.41 18.0 2001 17.4 10 0.45 18.7 2003 17.4 11 0.50 19.4 2006 17.4 12 0.55 20.1 1993 17.9 13 0.59 20.9 2005 18.3 14 0.64 21.8 2012 20.1 15 0.69 22.7 2011 21.9 16 0.74 23.7 2009 22.8 17 0.78 24.9 2002 26.8 18 0.83 26.4 2008 27.3 19 0.88 28.3 2007 29.5 20 0.93 31.0 1996 44.3 21 0.97 36.6 Attachment E Page 2 of 8

Gumbel Distribution Period of Record 21 Mean 20.51 a - = - o.s772ý = - ciin (-ln(p))

Standard Deviation 6.78 ,

a 5.29

_ __ _ 17.46 Nonexceedanc Exceedance Return Period (years) e Probability Probability Wind Speed (m/s) Wind Speed (mph) 500 0.998 0.002 50.3 112.53 200 0.995 0.005 45.5 101.68 100 0.99 0.01 41.8 93.45 50 0.98 0.02 38.1 85.20 25 0.96 0.04 34.4 76.88 10 0.9 0.1 29.4 65.67 5 0.8 0.2 25.4 56.79 2 0.5 0.5 19.4 43.39 IPearson r Coefficient 0.9054577571 Attachment E Page 3 of 8

Reads in wind speed values from Excel File data := sort(READEXCEL("J:\170,000-179,999\171705\171705-1 l.KDH\Work Files\Responses to RA Number of wind speed values (n) and index number for wind speed (i) n 21 i:= I..n Calculates mean, standard deviation and skew from data set and assigns these values to px, a:

and yx respectively.

mean(data) = 20.51 stdev(data) = 6.617 skew(data) = 2.4975

[tx:= mean(data) o-x := stdev(data) "1x:= skew(data)

A "solve block" is used for the lower bound of the the shape parameter (K)and the scale parameter (a)

The parameters are initialized:

cx:= 0.1 K := -0.3 Given The equations to solve for each of the parameters are used as constraints using the boolean equals

= Ot

.F(1 + O 2 - )( +

The "find" function can solve linear and nonlinear problems. For these equations the nonlinear solver is the Levenberg-Marquardt Algorithm x(t[tx,O'x) := Find(oL,r) + 1, or,') !- 2.8205 3 )

Attachment E Page 4 of 8

Assigns the solutions found through the solve block to a, K, and ,

tI := X(lix,O'x) I  := X(ltx,Cx)2 otl = 22.8205 K= 3.4257 The quantile function is used to solve storm surge height at a specified nonexceedance probability Xp(p, ot ,*1

r. I xl (-In(1I - p))

x (0.5,c , rI~)= 20.505 xmph := Xp(0.5,otI, I,1).2.23694 = 45.8684 The Weibull plotting position is substituted for the nonexceedance probability in the quantile function to create a probability plot Xest(Ql.1l ,i) :=Q1(l-In( 1 11 50 40 datai 30 20 IV 0 10 20 30 40 XestIi Attachment E Page 5 of 8

The "corr" function calculates the Pearson's r correlation coefficient between the wind speed data values and the wind speed values calculated using the Weibull Distribution. Pearson's r is a measure of the linear dependence between two variables and ranges between +1 and -1.

corr(data. Xestl) = 0.7989 Attachment E Page 6 of 8

Log Pearson Type III Distribution Step 1: Maximum Wind Speeds from each year for the period of record Year Max (.1m/s) Max (m/s) Row Labels Max of WSF2 1993 179 17.9 1993 179 1994 161 16.1 1994 161 1995 174 17.4 1995 174 1996 443 44.3 1996 443 1997 165 16.5 1997 165 1998 174 17.4 1998 174 1999 174 17.4 1999 174 2000 165 16.5 2000 165 2001 174 17.4 2001 174 2002 268 26.8 2002 268 2003 174 17.4 2003 174 2004 161 16.1 2004 161 2005 183 18.3 2005 183 2006 174 17.4 2006 174 2007 295 29.5 2007 295 2008 273 27.3 2008 273 2009 228 22.8 2009 228 2010 161 16.1 2010 161 2011 219 21.9 2011 219 2012 201 20.1 2012 201 2013 161 16.1 2013 G "161

.ran.. .. ....................................

Grand Total. 443.

Step 2: Determine the 2 year return period wind speed using the Log Pearson Type III Distribution Peak Wind Log Peak Wind Weibull Plotting K Xest Year Speed (m/s) Rank Speed Position 1996 44.3 1 1.65 0.05 1.982804 1.52212 2007 29.5 2 1.47 0.09 1.427291 1.45859 2008 27.3 3 1.44 0.14 1.070301 1.41777 2002 26.8 4 1.43 0.18 0.762943 1.38262 2009 22.8 5 1.36 0.23 0.53016 1.35600 2011 21.9 6 1.34 0.27 0.347092 1.33507 2012 20.1 7 1.30 0.32 0.181901 1.31618 2005 18.3 8 1.26 0.36 0.043523 1.30036 1993 17.9 9 1.25 0.41 -0.0869 1.28544 1995 17.4 10 1.24 0.45 -0.18549 1.27417 1998 17.4 11 1.24 0.50 -0.28409 1.26289 1999 17.4 12 1.24 0.55 -0.3717 1.25287 2001 17.4 13 1.24 0.59 -0.45931 1.24286 2003 17.4 14 1.24 0.64 -0.53791 1.23387 2006 17.4 15 1.24 0.68 -0.61427 1.22514 1997 16.5 16 1.22 0.73 -0.6862 1.21691 2000 16.5 17 1.22 0.77 -0.75519 1.20902 1994 16.1 18 1.21 0.82 -0.82265 1.20131 2004 16.1 19 1.21 0.86 -0.88781 1.19386 2010 16.1 20 1.21 0.91 -0.95204 1.18651 2013 16.1 21 1.21 0.95 -1.01255 1.17959 Attachment E Page 7 of 8

Log Pearson Type III Distribution Period of Record 21 Average Peak Wind Speed 20.51 Avereage Log Peak Wind Speed 1.30 Variance LogV 0.01 Skew LogV 1.82 Standard Deviation 0.11 Wind Return Period (years) Exceedance K Log V (m/s) Wind Speed (m/s) Speed Probability (mph) 500 0.002 5.021032 1.869547704 74.1 165.65 200 0.005 4.162272 1.771346239 59.1 132.13 100 0.01 3.51007 1.696765225 49.7 111.28 50 0.02 2.854966 1.621852359 41.9 93.65 25 0.04 2.195996 1.546497406 35.2 78.73 10 0.1 1.316188 1.445889046 27.9 62.45 5 0.2 0.640004 1.368565627 23.4 52.27 2 0.5 -0.28409 1.262893047 18.3 40.98 Goodness of Fit Test Pearson r Coefficient 0.965 Attachment E Page 8 of 8

Attachment F - Drainage Divide Profiles Attachment F Page 1 of 7

Figure F-i: Drainage Divide 1 - West Plant Road 98 West Plant Road Ground Surface Elevation

- West Creek PMF Elevation at Section 5060 97.5 00 a.2 4.-

97 96.5 96 95.5

_ __ _ _ /_

KM ________________

- __________________ ___________________i__________________ __________________ __________________ __________________

95 94.5 94 93.5 93 0 200 400 600 800 1000 1200 1400 1600 1800 Station (feet)

Attachment F Page 2 of 7

Figure F-2: Drainage Divide 2 - Southeast Divide 104 102 100 a

98 0

4-Cu 96 CU wU 94 92 on 0 200 400 600 800 1000 1200 1400 1600 1800 Station (feet)

Attachment F Page 3 of 7

Figure F-3: Drainage Divide 3 - Grants Bayou Northeast Berm 107 106 105 104 00 co 103 0

z 102 100 99 98 97 0 100 200 300 400 500 600 700 800 900 1000 Station (feet)

Attachment F Page 4 of 7

Figure F-4: Drainage Divide 4 - Grants Bayou Northeast Parking Lot 112 Northeast Parking Lot Ground Surface Elevation

- Grants Bayou PMF Elevation at Section 18960 110 _ _ _

108 - - _ _ - _ _

00

> 106 W 104 m

102 ___-... -...---- *- ----- * -------- .--- .-- *- -

100 0 100 200 300 400 500 600 700 800 900 1000 Station (feet)

Attachment F Page 5 of 7

Figure F-5: Southeast Drainage V I V '-'~

-1/-112, "1

/

vi 49 4

West Plant Road Low Point: 93.5 feet NAVD88!

J Legend I '-

-HEC-RAS Drainage Divides Cross Sections 1-foot Contours from Survey Fee t 0 125 250 500

-.- %. X;*g MWENw- , m Attachment t- Page 6 of 7

Figure F-6: Northeast Drainage Divides Low Point in Parking Lot:

100.1 feet NAVD88 I

Legend K -Drainage Divides HEC-RAS Cross Sections I 1-foot Contours from Survey Feet 0 100 200 400 Attachment F Page 7 of 7 I

Attachment G - Grants Bayou and West Creek Baseflow Results and HEC-RAS Input and Output Files Attachment G Page 1 of 23

07377500_monthly.txt 5/13/2015

  1. US Geological Survey, Water Resources Data
  1. retrieved: 2015-05-13 11:55:22 EDT (vaww02)
  1. This file contains USGS Surface-Water Monthly Statistics
  1. Note:The statistics generated from this site are based on approved daily-mean data and may not match those published by the USGS in official publications.
  1. The user is responsible for assessment and use of statistics from this site.
  1. For more details on why the statistics may not match, visit http://waterdata.usgs.gov/la/nwis/?dv-statisticsdisclaimer.
  1. ** No Incomplete data have been used for statistical calculation
  1. This file includes the following columns:
  1. agency-cd agency code
  1. siteno USGS site number
  1. parametercd
  1. ddnu
  1. yearnu Calendar year for value
  1. monthnu Month for value
  1. meanva monthly-mean value.
  1. if there is not complete record
  1. for a month this field is blank
  1. Sites in this file include:
  1. USGS 07377500 Comite River near Olive Branch, LA
  1. Explanation of Parameter Code and ddnu used in the Statistics Data
  1. parametercd Parameter Name ddnu Location Name
  1. 00060 Discharge, cubic feet per second 2 agency-cd site-no parametercd ddnu year-nu monthnu meanva 5s 15s 5s 3n 4s 2s 12n USGS 07377500 00060 2 1942 10 81.0 USGS 07377500 00060 2 1942 11 75.0 USGS 07377500 00060 2 1942 12 337.5 USGS 07377500 00060 2 1943 1 159.3 USGS 07377500 00060 2 1943 2 689.1 USGS 07377500 00060 2 1943 3 987.2 USGS 07377500 00060 2 1943 4 194.8 USGS 07377500 00060 2 1943 5 77.7 USGS 07377500 00060 2 1943 6 105.5 USGS 07377500 00060 2 1943 7 97.4 USGS 07377500 00060 2 1943 8 54.0 USGS 07377500 00060 2 1943 9 156.1 USGS 07377500 00060 2 1943 10 54.5 USGS 07377500 00060 2 1943 11 237.7 USGS 07377500 00060 2 1943 12 409.9 USGS 07377500 00060 2 1944 1 379.7 USGS 07377500 00060 2 1944 2 269.4 USGS 07377500 00060 2 1944 3 464.7 USGS 07377500 00060 2 1944 4 330.0 USGS 07377500 00060 2 1944 5 158.6 USGS 07377500 00060 2 1944 6 73.8 USGS 07377500 00060 2 1944 7 73.6 Attachment G Page 2 of 23

07377500_monthly.txt 5/13/2015 USGS 07377500 00060 2 1944 8 177.9 USGS 07377500 00060 2 1944 9 197.8 USGS 07377500 00060 2 1944 10 65.6 USGS 07377500 00060 2 1944 11 127.4 USGS 07377500 00060 2 1944 12 243.7 USGS 07377500 00060 2 1945 1 458.6 USGS 07377500 00060 2 1945 2 510.2 USGS 07377500 00060 2 1945 3 158.1 USGS 07377500 00060 2 1945 4 544.7 USGS 07377500 00060 2 1945 5 170.9 USGS 07377500 00060 2 1945 6 97.2 USGS 07377500 00060 2 1945 7 80.8 USGS 07377500 00060 2 1945 8 87.6 USGS 07377500 00060 2 1945 9. 71.1 USGS 07377500 00060 2 1945 10 183.9 USGS 07377500 00060 2 1945 11 78.1 USGS 07377500 00060 2 1945 12 253.9 USGS 07377500 00060 2 1946 1 584.0 USGS 07377500 00060 2 1946 2 436.5 USGS 07377500 00060 2 1946 3 377.7 USGS 07377500 00060 2 1946 4 76..8 USGS 07377500 00060 2 1946 5 513.7 USGS 07377500 00060 2 1946 6 274.4 USGS 07377500 00060 *2 1946 7 250.3 USGS 07377500 00060 2 1946 8 97.0 USGS 07377500 00060 2 1946 9 143.8 USGS 07377500 00060 2 1946 10 62.1 USGS 07377500 00060 2 1946 11 316.3 USGS 07377500 00060 2 1946 12 202.7 USGS 07377500 00060 2 1947 1 873.5 USGS 07377500 00060 2 1947 2 123.8 USGS 07377500 00060 2 1947 3 796.4 USGS 07377500 00060 2 1947 4 560.7 USGS 07377500 00060 2 1947 5 147.7 USGS 07377500 00060 2 1947 6 208.8 USGS 07377500 00060 2 1947 7 63.8 USGS 07377500 00060 2 1947 8 67.4 USGS 07377500 00060 2 1947 9 86.4 USGS 07377500 00060 2 1947 10 63.8 USGS 07377500 00060 2 1947 11 159.7 USGS 07377500 00060 2 1947 12 451.1 USGS 07377500 00060 2 1948 1 404.8 USGS 07377500 00060 2 1948 2 376.4 USGS 07377500 00060 2 1948 3 1041 USGS 07377500 00060 2 1948 4 240.1 USGS 07377500 00060 2 1948 5 169,.1 USGS 07377500 00060 2 1948 6 67.7 USGS 07377500 00060 2 1948 7 65.3 USGS 07377500 00060 2 1948 8 56.6 USGS 07377500 00060 2 1948 9 79.7 USGS 07377500 00060 2 1948 10 57.9 USGS 07377500 00060 2 1948 11 528.5 USGS 07377500 00060 2 1948 12 634.9 USGS 07377500 00060 2 1949 1 293.1 USGS 07377500 00060 2 1949 2 666.2 USGS 07377500 00060 2 1949 3 931.3 USGS 07377500 00060 2 1949 4 586.1 USGS 07377500 00060 2 1949 5 515.1 USGS 07377500 00060 2 1949 6 187.0 USGS 07377500 00060 2 1949 7 294.2 USGS 07377500 00060 2 1949 8 166.0 USGS 07377500 00060 2 1949 9 95.9 USGS 07377500 00060 2 1949 10 191.5 USGS 07377500 00060 2 1949 11 106.8 2

Attachment G Page 3 of 23

07377500_monthly.txt 5/13/2015 USGS 07377500 00060 2 1949 12 108.5 USGS 07377500 00060 2 1950 1 696.1 USGS 07377500 00060 2 1950 2 428.5 USGS 07377500 00060 2 1950 3 467.1 USGS 07377500 00060 2 1950 4 230.2 USGS 07377500 00060 2 1950 5 123.2 USGS 07377500 00060 2 1950 6 246.7 USGS 07377500 00060 2 1950 7 110.8 USGS 07377500 00060 2 1950 8 78.3 USGS 07377500 00060 2 1950 9 62.2 USGS 07377500 00060 2 1950 10 58.2 USGS 07377500 00060 2 1950 11 60.2 USGS 07377500 00060 2 1950 12 215.9 USGS 07377500 00060 2 1951 1 360.5 USGS 07377500 00060 2 1951 2 437.1 USGS 07377500 00060 2 1951 3 770.2 USGS 07377500 00060 2 1951 4 201.4 USGS 07377500 00060 2 1951 5 78.6 USGS 07377500 00060 2 1951 6 152.8 USGS 07377500 00060 2 1951 7 164.7 USGS 07377500 00060 2 1951 8 65.9 USGS 07377500 00060 2 1951 9 50.0 USGS 07377500 00060 2 1951 10 45.8 USGS 07377500 00060 2 1951 11 56.5 USGS 07377500 00060 2 1951 12 175.1 USGS 07377500 00060 2 1952 1 76.1 USGS 07377500 00060 2 1952 2 285.1 USGS 07377500 00060 2 1952 3 123.8 USGS 07377500 00060 2 1952 4 243.4 USGS 07377500 00060 2 1952 5 133.6 USGS 07377500 00060 2 1952 6 60.7 USGS 07377500 00060 2 1952 7 61.1 USGS 07377500 00060 2 1952 8 54.6 USGS 07377500 00060 2 1952 9 46.4 USGS 07377500 00060 2 1952 10 38.8 USGS 07377500 00060 2 1952 11 57.3 USGS 07377500 00060 2 1952 12 142.2 USGS 07377500 00060 2 1953 1 234.5 USGS 07377500 00060 2 1953 2 632.5 USGS 07377500 00060 2 1953 3 541.0 USGS 07377500 00060 2 1953 4 260.6 USGS 07377500 00060 2 1953 5 1232 USGS 07377500 00060 2 1953 6 106.1 USGS 07377500 00060 2 1953 7 180.0 USGS 07377500 00060 2 1953 8 97.1 USGS 07377500 00060 2 1953 9 53.2 USGS 07377500 00060 2 1953 10 46.3 USGS 07377500 00060 2 1953 11 56.9 USGS 07377500 00060 2 1953 12 276.8 USGS 07377500 00060 2 1954 1 247.8 USGS 07377500 00060 2 1954 2 153.9 USGS 07377500 00060 2 1954 3 121.6 USGS 07377500 00060 2 1954 4 97.2 USGS 07377500 00060 2 1954 5 198.9 USGS 07377500 00060 2 1954 6 50.3 USGS 07377500 00060 2 1954 7 97.8 USGS 07377500 00060 2 1954 8 45.6 USGS 07377500 00060 2 1954 9 63.9 USGS 07377500 00060 2 1954 10 70.9 USGS 07377500 00060 2 1954 11 51.2 USGS 07377500 00060 2 1954 12 140.9 USGS 07377500 00060 2 1955 1 259.1 USGS 07377500 00060 2 1955 2 810.8 USGS 07377500 00060 2 1955 3 77.2 3

Attachment G Page 4 of 23

07377500_monthly.txt 5/13/2015 USGS 07377500 00060 2 1955 4 845.2 USGS 07377500 00060 2 1955 5 128.6 USGS 07377500 00060 2 1955 6 101.2 USGS 07377500 00060 2 1955 7 280.3 USGS 07377500 00060 2 1955 8 412.3 USGS 07377500 00060 2 1955 9 59.1 USGS 07377500 00060 2 1955 10 50.0 USGS 07377500 00060 2 1955 11 61.7 USGS 07377500 00060 2 1955 12 554.5 USGS 07377500 00060 2 1956 1 93.9 USGS 07377500 00060 2 1956 2 898.2 USGS 07377500 00060 2 1956 3 808.1 USGS 07377500 00060 2 1956 4 98.2 USGS 07377500 00060 2 1956 5 55.4 USGS 07377500 00060 2 1956 6 82.3 USGS 07377500 00060 2 1956 7 49.3 USGS 07377500 00060 2 1956 8 53.0 USGS 07377500 00060 2 1956 9 39.7 USGS 07377500 00060 2 1956 10 38.5 USGS 07377500 00060 2 1956 11 42.4 USGS 07377500 00060 2 1956 12 79.5 USGS 07377500 00060 2 1957 1 62.8 USGS 07377500 00060 2 1957 2 167.6 USGS 07377500 00060 2 1957 3 341.5 USGS 07377500 00060 2 1957 4 305.9 USGS 07377500 00060 2 1957 5 123.1 USGS 07377500 00060 2 1957 6 368.4 USGS 07377500 00060 2 1957 7 89.6 USGS 07377500 00060 2 1957 8 42.5 USGS 07377500 00060 2 1957 9 95.3 USGS 07377500 00060 2 1957 10 177.8 USGS 07377500 00060 2 1957 11 525.2 USGS 07377500 00060 2 1957 12 235.7 USGS 07377500 00060 2 1958 1 353.9 USGS 07377500 00060 2 1958 2 275.1 USGS 07377500 00060 2 1958 3 340.0 USGS 07377500 00060 2 1958 4 195.0 USGS 07377500 00060 2 1958 5 103.6 USGS 07377500 00060 2 1958 6 148.2 USGS 07377500 00060 2 1958 7 79.3 USGS 07377500 00060 2 1958 8 134.5 USGS 07377500 00060 2 1958 9 315.3 USGS 07377500 00060 2 1958 10 63.6 USGS 07377500 00060 2 1958 11 60.7 USGS 07377500 00060 2 1958 12 62.2 USGS 07377500 00060 2 1959 1 186.0 USGS 07377500 00060 2 1959 2 723.8 USGS 07377500 00060 2 1959 3 185.6 USGS 07377500 00060 2 1959 4 222.2 USGS 07377500 00060 2 1959 5 123.7 USGS 07377500 00060 2 1959 6 184.6 USGS 07377500 00060 2 1959 7 148.7 USGS 07377500 00060 2 1959 8 152.3 USGS 07377500 00060 2 1959 9 96.4 USGS 07377500 00060 2 1959 10 110.3 USGS 07377500 00060 2 1959 11 166.6 USGS 07377500 00060 2 1959 12 457.7 USGS 07377500 00060 2 1960 1 359.8 USGS 07377500 00060 2 1960 2 290.0 USGS 07377500 00060 2 1960 3 119.0 USGS 07377500 00060 2 1960 4 99.9 USGS 07377500 00060 2 1960 5 133.5 USGS 07377500 00060 2 1960 6 66.7 USGS 07377500 00060 2 1960 7 63.5 4

Attachment G Page 5 of 23

07377500_monthly.txt 5/13/2015 USGS 07377500 00060 2 1960 8 217.7 USGS 07377500 00060 2 1960 9 77.7 USGS 07377500 00060 2 1960 10 99.3 USGS 07377500 00060 2 1960 11 83.9 USGS 07377500 00060 2 1960 12 130.3 USGS 07377500 00060 2 1961 1 621.0 USGS 07377500 00060 2 1961 2 787.0 USGS 07377500 00060 2 1961 3 1266 USGS 07377500 00060 2 1961 4 183.3 USGS 07377500 00060 2 1961 5 88.5 USGS 07377500 00060 2 1961 6 59.5 USGS 07377500 00060 2 1961 7 107.5 USGS 07377500 00060 2 1961 8 83.4 USGS 07377500 00060 2 1961 9 210.0 USGS 07377500 00060 2 1961 10 58.3 USGS 07377500 00060 2 1961 11 471.4 USGS 07377500 00060 2 1961 12 772.5 USGS 07377500 00060 2 1962 1 857.2 USGS 07377500 00060 2 1962 2 155.8 USGS 07377500 00060 2 1962 3 93.9 USGS 07377500 00060 2 1962 4 968.9 USGS 07377500 00060 2 1962 5 147.8 USGS 07377500 00060 2 1962 6 221.4 USGS 07377500 00060 2 1962 7 103.0 USGS 07377500 00060 2 1962 8 76.0 USGS 07377500 00060 2 1962 9 50.6 USGS 07377500 00060 2 1962 10 53.6 USGS 07377500 00060 2 1962 11 51.4 USGS 07377500 00060 2 1962 12 63.1 USGS 07377500 00060 2 1963 1 251.8 USGS 07377500 00060 2 1963 2 161.9 USGS 07377500 00060 2 1963 3 112.7 USGS 07377500 00060 2 1963 4 46.2 USGS 07377500 00060 2 1963 5 47.5 USGS 07377500 00060 2 1963 6 48.7 USGS 07377500 00060 2 1963 7 60.3 USGS 07377500 00060 2 1963 8 60.7 USGS 07377500 00060 2 1963 9 42.5 USGS 07377500 00060 2 1963 10 39.9 USGS 07377500 00060 2 1963 11 46.7 USGS 07377500 00060 2 1963 12 70.8 USGS 07377500 00060 2 1964 1 241.6 USGS 07377500 00060 2 1964 2 164.3 USGS 07377500 00060 2 1964 3 999.2 USGS 07377500 00060 2 1964 4 467.5 USGS 07377500 00060 2 1964 5 86.0 USGS 07377500 00060 2 1964 6 54.1 USGS 07377500 00060 2 1964 7 277.6 USGS 07377500 00060 2 1964 8 52.0 USGS 07377500 00060 2 1964 9 42.3 USGS 07377500 00060 2 1964 10 700.8 USGS 07377500 00060 2 1964 11 165.2 USGS 07377500 00060 2 1964 12 270.8 USGS 07377500 00060 2 1965 1 106.6 USGS 07377500 00060 2 1965 2 423.8 USGS 07377500 00060 2 1965 3 344.0 USGS 07377500 00060 2 1965 4 64.5 USGS 07377500 00060 2 1965 5 49.8 USGS 07377500 00060 2 1965 6 48.9 USGS 07377500 00060 2 1965 7 52.9 USGS 07377500 00060 2 1965 8 70.8 USGS 07377500 00060 2 1965 9 116.4 USGS 07377500 00060 2 1965 10 47.2 USGS 07377500 00060 2 1965 11 83.8 5

Attachment G Page 6 of 23

07377500_monthly.txt 5/13/2015 USGS 07377500 00060 2 1965 12 214.3 USGS 07377500 00060 2 1966 1 527.3 USGS 07377500 00060 2 1966 2 1454 USGS 07377500 00060 2 1966 3 298.1 USGS 07377500 00060 2 1966 4 385.9 USGS 07377500 00060 2 1966 5 138.1 USGS 07377500 00060 2 1966 6 63.2 USGS 07377500 00060 2 1966 7 99.4 USGS 07377500 00060 2 1966 8 122.5 USGS 07377500 00060 2 1966 9 49.4 USGS 07377500 00060 2 1966 10 46.9 USGS 07377500 00060 2 1966 11 56.1 USGS 07377500 00060 2 1966 12 53.1 USGS 07377500 00060 2 1967 1 97.6 USGS 07377500 00060 2 1967 2 177.8 USGS 07377500 00060 2 1967 3 105.0 USGS 07377500 00060 2 1967 4 800.3 USGS 07377500 00060 2 1967 5 504.6 USGS 07377500 00060 2 1967 6 56.8 USGS 07377500 00060 2 1967 7 92.0 USGS 07377500 00060 2 1967 8 90.2 USGS 07377500 00060 2 1967 9 49.0 USGS 07377500 00060 2 1967 10 41.2 USGS 07377500 00060 2 1967 11 42.3 USGS 07377500 00060 2 1967 12 193.7 USGS 07377500 00060 2 1968 1 166.1 USGS 07377500 00060 2 1968 2 80.3 USGS 07377500 00060 2 1968 3 133.5 USGS 07377500 00060 2 1968 4 177.7 USGS 07377500 00060 2 1968 5 152.7 USGS 07377500 00060 2 1968 6 70.7 USGS 07377500 00060 2 1968 7 53.6 USGS 07377500 00060 2 1968 8 57.0 USGS 07377500 00060 2 1968 9 42.2 USGS 07377500 00060 2 1968 10 38.4 USGS 07377500 00060 2 1968 11 35.7 USGS 07377500 00060 2 1968 12 352.2 USGS 07377500 00060 2 1969 1 84.0 USGS 07377500 00060 2 1969 2 427.3 USGS 07377500 00060 2 1969 3 422.3 USGS 07377500 00060 2 1969 4 549.4 USGS 07377500 00060 2 1969 5 319.9 USGS 07377500 00060 2 1969 6 48.2 USGS 07377500 00060 2 1969 7 107.1 USGS 07377500 00060 2 1969 8 46.1 USGS 07377500 00060 2 1969 9 45.0 USGS 07377500 00060 2 1969 10 103.7 USGS 07377500 00060 2 1969 11 42.2 USGS 07377500 00060 2 1969 12 148.0 USGS 07377500 00060 2 1970 1 92.7 USGS 07377500 00060 2 1970 2 77.2 USGS 07377500 00060 2 1970 3 167.0 USGS 07377500 00060 2 1970 4 90.3 USGS 07377500 00060 2 1970 5 51.6 USGS 07377500 00060 2 1970 6 106.0 USGS 07377500 00060 2 1970 7 63.0 USGS 07377500 00060 2 1970 8 61.7 USGS 07377500 00060 2 1970 9 59.9 USGS 07377500 00060 2 1970 10 167.1 USGS 07377500 00060 2 1970 11 85.0 USGS 07377500 00060 2 1970 12 181.7 USGS 07377500 00060 2 1971 1 148.5 USGS 07377500 00060 2 1971 2 271.4 USGS 07377500 00060 2 1971 3 279.7 6

Attachment G Page 7 of 23

07377500_monthly.txt 5/13/2015 USGS 07377500 00060 2 1971 4 64.3 USGS 07377500 00060 2 1971 5 105.8 USGS 07377500 00060 2 1971 6 54.7 USGS 07377500 00060 2 1971 7 94.1 USGS 07377500 00060 2 1971 8 71.2 USGS 07377500 00060 2 1971 9 353.3 USGS 07377500 00060 2 1971 10 52.7 USGS 07377500 00060 2 1971 11 59.3 USGS 07377500 00060 2 1971 12 1130 USGS 07377500 00060 2 1972 1 456.2 USGS 07377500 00060 2 1972 2 258.6 USGS 07377500 00060 2 1972 3 342.7 USGS 07377500 00060 2 1972 4 68.3 USGS 07377500 00060 2 1972 5 417.2 USGS 07377500 00060 2 1972 6 57.7 USGS 07377500 00060 2 1972 7 61.1 USGS 07377500 00060 2 1972 8 45.4 USGS 07377500 00060 2 1972 9 38.5 USGS 07377500 00060 2 1972 10 63.3 USGS 07377500 00060 2 1972 11 111.0 USGS 07377500 00060 2 1972 12 418.1 USGS 07377500 00060 2 1973 1 225.1 USGS 07377500 00060 2 1973 2 319.3 USGS 07377500 00060 2 1973 3 984.0 USGS 07377500 00060 2 1973 4 934.7 USGS 07377500 00060 2 1973 5 234.9 USGS 07377500 00060 2 1973 6 79.2 USGS 07377500 00060 2 1973 7 74.6 USGS 07377500 00060 2 1973 8 57.7 USGS 07377500 00060 2 1973 9 238.2 USGS 07377500 00060 2 1973 10 50.7 USGS 07377500 00060 2 1973 11 595.6 USGS 07377500 00060 2 1973 12 325.6 USGS 07377500 00060 2 1974 1 911.9 USGS 07377500 00060 2 1974 2 425.6 USGS 07377500 00060 2 1974 3 158.6 USGS 07377500 00060 2 1974 4 263.9 USGS 07377500 00060 2 1974 5 187.5 USGS 07377500 00060 2 1974 6 72.1 USGS 07377500 00060 2 1974 7 67.2 USGS 07377500 00060 2 1974 8 68.9 USGS 07377500 00060 2 1974 9 61.1 USGS 07377500 00060 2 1974 10 75.6 USGS 07377500 00060 2 1974 11 169.6 USGS 07377500 00060 2 1974 12 238.9 USGS 07377500 00060 2 1975 1 549.0 USGS 07377500 00060 2 1975 2 166.6 USGS 07377500 00060 2 1975 3 277.2 USGS 07377500 00060 2 1975 4 208.8 USGS 07377500 00060 2 1975 5 628.4 USGS 07377500 00060 2 1975 6 609.3 USGS 07377500 00060 2 1975 7 248.5 USGS 07377500 00060 2 1975 8 512.2 USGS 07377500 00060 2 1975 9 150.2 USGS 07377500 00060 2 1975 10 228.3 USGS 07377500 00060 2 1975 11 80.9 USGS 07377500 00060 2 1975 12 130.3 USGS 07377500 00060 2 1976 1 177.0 USGS 07377500 00060 2 1976 2 178.8 USGS 07377500 00060 2 1976 3 398.1 USGS 07377500 00060 2 1976 4 96.0 USGS 07377500 00060 2 1976 5 89.0 USGS 07377500 00060 2 1976 6 69.1 USGS 07377500 00060 2 1976 7 158.8 7

Attachment G Page 8 of 23

07377500_monthly.txt 5/13/2015 USGS 07377500 00060 2 1976 8 47.0 USGS 07377500 00060 2 1976 9 43.7 USGS 07377500 00060 2 1976 10 44.6 USGS 07377500 00060 2 1976 11 78.3 USGS 07377500 00060 2 1976 12 197.3 USGS 07377500 00060 2 1977 1 304.4 USGS 07377500 00060 2 1977 2 272.4 USGS 07377500 00060 2 1977 3 448.5 USGS 07377500 00060 2 1977 4 1010 USGS 07377500 00060 2 1977 5 67.0 USGS 07377500 00060 2 1977 6 47.4 USGS 07377500 00060 2 1977 7 58.5 USGS 07377500 00060 2 1977 8 271.0 USGS 07377500 00060 2 1977 9 623.1 USGS 07377500 00060 2 1977 10 85.8 USGS 07377500 00060 2 1977 11 757.6 USGS 07377500 00060 2 1977 12 445.2 USGS 07377500 00060 2 1978 1 495.8 USGS 07377500 00060 2 1978 2 245.6 USGS 07377500 00060 2 1978 3 172.9 USGS 07377500 00060 2 1978 4 105.1 USGS 07377500 00060 2 1978 5 225.3 USGS 07377500 00060 2 1978 6 81.7 USGS 07377500 00060 2 1978 7 68.3 USGS 07377500 00060 2 1978 8 351.0 USGS 07377500 00060 2 1978 9 118.8 USGS 07377500 00060 2 1978 10 51.0 USGS 07377500 00060 2 1978 11 63.1 USGS 07377500 00060 2 1978 12 133.3 USGS 07377500 00060 2 1979 1 427.8 USGS 07377500 00060 2 1979 2 1168 USGS 07377500 00060 2 1979 3 303.6 USGS 07377500 00060 2 1979 4 1248 USGS 07377500 00060 2 1979 5 119.3 USGS 07377500 00060 2 1979 6 65.2 USGS 07377500 00060 2 1979 7 122.0 USGS 07377500 00060 2 1979 8 84.2 USGS 07377500 00060 2 1979 9 114.3 USGS 07377500 00060 2 1979 10 55.8 USGS 07377500 00060 2 1979 11 117.5 USGS 07377500 00060 2 1979. 12 177.7 USGS 07377500 00060 2 1980 1 478.1 USGS 07377500 00060 2 1980 2 271.5 USGS 07377500 00060 2 1980 3 1236 USGS 07377500 00060 2 1980 4 915.6 USGS 07377500 00060 2 1980 5 532.0 USGS 07377500 00060 2 1980 6 132.9 USGS 07377500 00060 2 1980 7 84.0 USGS 07377500 00060 2 1980 8 64.7 USGS 07377500 00060 2 1980 9 57.5 USGS 07377500 00060 2 1980 10 115.1 USGS 07377500 00060 2 1980 11 186.2 USGS 07377500 00060 2 1980 12 204.3 USGS 07377500 00060 2 1981 1 71.0 USGS 07377500 00060 2 1981 2 188.6 USGS 07377500 00060 2 1981 3 130.3 USGS 07377500 00060 2 1981 4 84.3 USGS 07377500 00060 2 1981 5 193.7 USGS 07377500 00060 2 1981 6 131.5 USGS 07377500 00060 2 1981 7 169.1 USGS 07377500 00060 2 1981 8 60.4 USGS 07377500 00060 2 1981 9 78.3 USGS 07377500 00060 2 1981 10 55.4 USGS 07377500 00060 2 1981 11 44.2 8

Attachment G Page 9 of 23

07377500_monthly.txt 5/13/2015 USGS 07377500 00060 2 1981 12 72.6 USGS 07377500 00060 2 1982 1 198.8 USGS 07377500 00060 2 1982 2 552.8 USGS 07377500 00060 2 1982 3 126.8 USGS 07377500 00060 2 1982 4 320.9 USGS 07377500 00060 2 1982 5 98.2 USGS 07377500 00060 2 1982 6 64.0 USGS 07377500 00060 2 1982 7 72.5 USGS 07377500 00060 2 1982 8 155.3 USGS 07377500 00060 2 1982 9 46.8 USGS 07377500 00060 2 1982 10 46.4 USGS 07377500 00060 2 1982 11 96.3 USGS 07377500 00060 2 1982 12 1137 USGS 07377500 00060 2 1983 1 619.5 USGS 07377500 00060 2 1983 2 1378 USGS 07377500 00060 2 1983 3 366.3 USGS 07377500 00060 2 1983 4 1445 USGS 07377500 00060 2 1983 5 329.8 USGS 07377500 00060 2 1983 6 318.4 USGS 07377500 00060 2 1983 7 144.8 USGS 07377500 00060 2 1983 8 441.8 USGS 07377500 00060 2 1983 9 72.6 USGS 07377500 00060 2 1983 10 49.3 USGS 07377500 00060 2 1983 11 174.4 USGS 07377500 00060 2 1983 12 298.2 USGS 07377500 00060 2 1984 1 191.7 USGS 07377500 00060 2 1984 2 557.0 USGS 07377500 00060 2 1984 3 215.5 USGS 07377500 00060 2 1984 4 150.3 USGS 07377500 00060 2 1984 5 61.3 USGS 07377500 00060 2 1984 6 80.8 USGS 07377500 00060 2 1984 7 87.1 USGS 07377500 00060 2 1984 8 89.0 USGS 07377500 00060 2 1984 9 91.9 USGS 07377500 00060 2 1984 10 608.3 USGS 07377500 00060 2 1984 11 62.7 USGS 07377500 00060 2 1984 12 177.4 USGS 07377500 00060 2 1985 1 302.8 USGS 07377500 00060 2 1985 2 714.3 USGS 07377500 00060 2 1985 3 267.5 USGS 07377500 00060 2 1985 4 118.5 USGS 07377500 00060 2 1985 5 71.3 USGS 07377500 00060 2 1985 6 59.2 USGS 07377500 00060 2 1985 7 85.7 USGS 07377500 00060 2 1985 8 53.9 USGS 07377500 00060 2 1985 9 128.9 USGS 07377500 00060 2 1985 10 773.6 USGS 07377500 00060 2 1985 11 142.0 USGS 07377500 00060 2 1985 12 255.5 USGS 07377500 00060 2 1986 1 131.8 USGS 07377500 00060 2 1986 2 188.0 USGS 07377500 00060 2 1986 3 199.9 USGS 07377500 00060 2 1986 4 107.7 USGS 07377500 00060 2 1986 5 260.1 USGS 07377500 00060 2 1986 6 208.0 USGS 07377500 00060 2 1986 7 70.9 USGS 07377500 00060 2 1986 8 68.9 USGS 07377500 00060 2 1986 9 44.8 USGS 07377500 00060 2 1986 10 54.8 USGS 07377500 00060 2 1986 11 303.3 USGS 07377500 00060 2 1986 12 365.3 USGS 07377500 00060 2 1987 1 741.4 USGS 07377500 00060 2 1987 2 759.5 USGS 07377500 00060 2 1987 3 691.9 9

Attachment G Page 10 of 23

07377500_monthly.txt 5/13/2015 USGS 07377500 00060 2 1987 4 111.9 USGS 07377500 00060 2 1987 5 107.3 USGS 07377500 00060 2 1987 6 220.1 USGS 07377500 00060 2 1987 7 115.5 USGS 07377500 00060 2 1987 8 176.4 USGS 07377500 00060 2 1987 9 52.1 USGS 07377500 00060 2 1987 10 44.9 USGS 07377500 00060 2 1987 11 61.7 USGS 07377500 00060 2 1987 12 74.8 USGS 07377500 00060 2 1988 1 96.9 USGS 07377500 00060 2 1988 2 779.4 USGS 07377500 00060 2 1988 3 508.1 USGS 07377500 00060 2 1988 4 710.5 USGS 07377500 00060 2 1988 5 50.0 USGS 07377500 00060 2 1988 6 55.1 USGS 07377500 00060 2 1988 7 58.0 USGS 07377500 00060 2 1988 8 78.2 USGS 07377500 00060 2 1988 9 446.4 USGS 07377500 00060 2 1988 10 106.8 USGS 07377500 00060 2 1988 11 163.4 USGS 07377500 00060 2 1988 12 417.2 USGS 07377500 00060 2 1989 1 529.1 USGS 07377500 00060 2 1989 2 223.8 USGS 07377500 00060 2 1989 3 333.0 USGS 07377500 00060 2 1989 4 116.7 USGS 07377500 00060 2 1989 5 491.5 USGS 07377500 00060 2 1989 6 555.1 USGS 07377500 00060 2 1989 7 570.2 USGS 07377500 00060 2 1989 8 89.4 USGS 07377500 00060 2 1989 9 90.6 USGS 07377500 00060 2 1989 10 116.2 USGS 07377500 00060 2 1989 11 161.7 USGS 07377500 00060 2 1989 12 376.0 USGS 07377500 00060 2 1990 1 1506 USGS 07377500 00060 2 1990 2 987.8 USGS 07377500 00060 2 1990 3 249.0 USGS 07377500 00060 2 1990 4 136.3 USGS 07377500 00060 2 1990 5 137.5 USGS 07377500 00060 2 1990 6 132.3 USGS 07377500 00060 2 1990 7 86.0 USGS 07377500 00060 2 1990 8 69.5 USGS 07377500 00060 2 1990 9 78.4 USGS 07377500 00060 2 1990 10 63.5 USGS 07377500 00060 2 1990 11 92.5 USGS 07377500 00060 2 1990 12 333.8 USGS 07377500 00060 *2 1991 1 1029 USGS 07377500 00060 2 1991 2 939.3 USGS 07377500 00060 2 1991 3 203.0 USGS 07377500 00060 2 1991 4 932.2 USGS 07377500 00060 2 1991 5 823.9 USGS 07377500 00060 2 1991 6 141.3 USGS 07377500 00060 2 1991 7 112.8 USGS 07377500 00060 2 1991 8 134.5 USGS 07377500 00060 2 1991 9 104.9 USGS 07377500 00060 2 1991 10 62.1 USGS 07377500 00060 2 1991 11 67.1 USGS 07377500 00060 2 1991 12 72.3 USGS 07377500 00060 2 1992 1 611.3 USGS 07377500 00060 2 1992 2 635.0 USGS 07377500 00060 2 1992 3 952.3 USGS 07377500 00060 2 1992 4 102.0 USGS 07377500 00060 2 1992 5 100.1 USGS 07377500 00060 2 1992 6 183.4 USGS 07377500 00060 2 1992 7 145.4 10 Attachment G Page 11 of 23

07377500_monthly.txt 5/13/2015 USGS 07377500 00060 1992 8 358.3 USGS 07377500 00060 1992 9 95.3 USGS 07377500 00060 1992 10 52.3 USGS 07377500 00060 1992 11 258.2 USGS 07377500 00060 1992 12 157.3 USGS 07377500 00060 1993 1 1039 USGS 07377500 00060 1993 2 131.0 USGS 07377500 00060 1993 3 457.5 USGS 07377500 00060 1993 4 706.0 USGS 07377500 00060 1993 5 151.0 USGS 07377500 00060 1993 6 93.2 USGS 07377500 00060 1993 7 87.9 USGS 07377500 00060 1993 8 68.0 USGS 07377500 00060 1993 9 58.0 USGS 07377500 00060 1993 10 61.8 USGS 07377500 00060 1993 11 361.5 USGS 07377500 00060 1993 12 152.7 USGS 07377500 00060 1994 1 731.7 USGS 07377500 00060 1994 2 571.4 USGS 07377500 00060 1994 3 185.2 USGS 07377500 00060 1994 4 498.0 USGS 07377500 00060 1994 5 241.7 USGS 07377500 00060 1994 6 185.1 USGS 07377500 00060 1994 7 459.8 USGS 07377500 00060 1994 8 93.7 USGS 07377500 00060 1994 9 113.7 USGS 07377500 00060 1994 10 149.1 USGS 07377500 00060 1994 11 69.7 USGS 07377500 00060 1994 12 139.5 USGS 07377500 00060 1995 1 534.1 USGS 07377500 00060 1995 2 166.2 USGS 07377500 00060 1995 3 924.9 USGS 07377500 00060 1995 4 1294 USGS 07377500 00060 1995 5 339.6 USGS 07377500 00060 1995 6 92.9 USGS 07377500 00060 1995 7 101.5 USGS 07377500 00060 1995 8 103.9 USGS 07377500 00060 1995 9 61.6 USGS 07377500 00060 1995 10 70.3 USGS 07377500 00060 1995 11 182.3 USGS 07377500 00060 1995 12 543.2 USGS 07377500 00060 1996 1 320.8 USGS 07377500 00060 1996 2 157.4 USGS 07377500 00060 1996 3 150.1 USGS 07377500 00060 1996 4 194.0 USGS 07377500 00060 1996 5 86.6 USGS 07377500 00060 1996 6 88.3 USGS 07377500 00060 1996 7 60.5 USGS 07377500 00060 1996 8 72.8 USGS 07377500 00060 1996 9 82.3 USGS 07377500 00060 1996 10 173.2 USGS 07377500 00060 1996 11 81.0 USGS 07377500 00060 1996 12 86.0 USGS 07377500 00060 1997 1 311.4 USGS 07377500 00060 1997 2 1055 USGS 07377500 00060 1997 3 169.4 USGS 07377500 00060 1997 4 1507 USGS 07377500 00060 1997 5 171.3 USGS 07377500 00060 1997 6 500.7 USGS 07377500 00060 1997 7 113.6 USGS 07377500 00060 1997 8 68.2 USGS 07377500 00060 1997 9 49.4 USGS 07377500 00060 1997 10 51.3 USGS 07377500 00060 1997 11 98.7 II Attachment G Page 12 of 23

07377500_monthly.txt 5/13/2015 USGS 07377500 00060 2 1997 12 253.9 USGS 07377500 00060 2 1998 1 1268 USGS 07377500 00060 2 1998 2 450.1 USGS 07377500 00060 2 1998 3 285.8 USGS 07377500 00060 2 1998 4 265.6 USGS 07377500 00060 2 1998 5 88.3 USGS 07377500 00060 2 1998 6 61.6 USGS 07377500 00060 2 1998 7 55.8 USGS 07377500 00060 2 1998 8 53.1 USGS 07377500 00060 2 1998 9 88.7 USGS 07377500 00060 2 1998 10 82. 7 USGS 07377500 00060 2 1998 11 61.6 USGS 07377500 00060 2 1998 12 100.7 USGS 07377500 00060 2 1999 1 365.6 USGS 07377500 00060 2 1999 2 171.5 USGS 07377500 00060 2 1999 3 596.7 USGS 07377500 00060 2 1999 4 75. 7 USGS 07377500 00060 2 1999 5 61.4 USGS 07377500 00060 2 1999 6 78.1 USGS 07377500 00060 2 1999 7 76.8 USGS 07377500 00060 2 1999 8 54.9 USGS 07377500 00060 2 1999 9 69.2 USGS 07377500 00060 2 1999 10 103.4 USGS 07377500 00060 2 1999 11 46.2 USGS 07377500 00060 2 1999 12 67.6 USGS 07377500 00060 2 2000 1 70.9 USGS 07377500 00060 2 2000 2 43.9 USGS 07377500 00060 2 2000 3 65.5 USGS 07377500 00060 2 2000 4 111.0 USGS 07377500 00060 2 2000 5 43.9 USGS 07377500 00060 2 2000 6 49.4 USGS 07377500 00060 2 2000 7 56.3 USGS 07377500 00060 2 2000 8 44.5 USGS 07377500 00060 2 2000 9 42.7 USGS 07377500 00060 2 2000 10 33.5 USGS 07377500 00060 2 2000 11 155.6 USGS 07377500 00060 2 2000 12 62.5 USGS 07377500 00060 2 2001 1 338.1 USGS 07377500 00060 2 2001 2 138.0 USGS 07377500 00060 2 2001 3 736.5 USGS 07377500 00060 2 2001 4 61.2 USGS 07377500 00060 2 2001 5 41.8 USGS 07377500 00060 2 2001 6 1406 USGS 07377500 00060 2 2001 7 161.2 USGS 07377500 00060 2 2001 8 114.5 USGS 07377500 00060 2 2001 9 228.7 USGS 07377500 00060 2 2001 10 128.2 USGS 07377500 00060 2 2001 11 45.4 USGS 07377500 00060 2 2001 12 75.7 USGS 07377500 00060 2 2002 1 115.7 USGS 07377500 00060 2 2002 2 146.5 USGS 07377500 00060 2 2002 3 335.2 USGS 07377500 00060 2 2002 4 315.2 USGS 07377500 00060 2 2002 5 59.8 USGS 07377500 00060 2 2002 6 60.4 USGS 07377500 00060 2 2002 7 93.5 USGS 07377500 00060 2 2002 8 607.0 USGS 07377500 00060 2 2002 9 167.7 USGS 07377500 00060 2 2002 10 519.0 USGS 07377500 00060 2 2002 11 455.8 USGS 07377500 00060 2 2002 12 252.9 USGS 07377500 00060 2 2003 1 144.1 USGS 07377500 00060 2 2003 2 1119 USGS 07377500 00060 2 2003 3 372.6 12 Attachment G Page 13 of 23

07377500_monthly.txt 5/13/2015 USGS 07377500 00060 2 2003 4 455.3 USGS 07377500 00060 2 2003 5 81.9 USGS 07377500 00060 2 2003 6 86.2 USGS 07377500 00060 2 2003 7 85.6 USGS 07377500 00060 2 2003 8 54.6 USGS 07377500 00060 2 2003 9 48.2 USGS 07377500 00060 2 2003 10 48.5 USGS 07377500 00060 2 2003 11 52.6 USGS 07377500 00060 2 2003 12 67.5 USGS 07377500 00060 2 2004 1 110.1 USGS 07377500 00060 2 2004 2 939.0 USGS 07377500 00060 2 2004 3 92.2 USGS 07377500 00060 2 2004 4 88.7 USGS 07377500 00060 2 2004 5 971.9 USGS 07377500 00060 2 2004 6 584.8 USGS 07377500 00060 2 2004 7 117.2 USGS 07377500 00060 2 2004 8 71.8 USGS 07377500 00060 2 2004 9 54.6 USGS 07377500 00060 2 2004 10 140.9 USGS 07377500 00060 2 2004 11 107.5 USGS 07377500 00060 2 2004 12 190.8 USGS 07377500 00060 2 2005 1 161.6 USGS 07377500 00060 2 2005 2 448.5 USGS 07377500 00060 2 2005 3 114.9 USGS 07377500 00060 2 2005 4 167.0 USGS 07377500 00060 2 2005 5 73.3 USGS 07377500 00060 2 2005 6 100.6 USGS 07377500 00060 2 2005 7 90.4 USGS 07377500 00060 2 2005 8 105.3 USGS 07377500 00060 2 2005 9 107.4 USGS 07377500 00060 2 2005 10 56.7 USGS 07377500 00060 2 2005 11 77.4 USGS 07377500 00060 2 2005 12 141.7 USGS 07377500 00060 2 2006 1 102.3 USGS 07377500 00060 2 2006 2 187.9 USGS 07377500 00060 2 2006 3 93.2 USGS 07377500 00060 2 2006 4 59.8 USGS 07377500 00060 2 2006 5 51.4 USGS 07377500 00060 2 2006 6 42.2 USGS 07377500 00060 2 2006 7 92.3 USGS 07377500 00060 2 2006 8 61.1 USGS 07377500 00060 2 2006 9 45.1 USGS 07377500 00060 2 2006 10 678.1 USGS 07377500 00060 2 2006 11 142.0 USGS 07377500 00060 2 2006 12 239.8 USGS 07377500 00060 2 2007 1 481.2 USGS 07377500 00060 2 2007 2 118.3 USGS 07377500 00060 2 2007 3 81.7 USGS 07377500 00060 2 2007 4 74.9 USGS 07377500 00060 2 2007 5 110.8 USGS 07377500 00060 2 2007 6 59.9 USGS 07377500 00060 2 2007 7 67.5 USGS 07377500 00060 2 2007 8 44.6 USGS 07377500 00060 2 2007 9 52.2 USGS 07377500 00060 2 2007 10 55.2 USGS 07377500 00060 2 2007 11 61.3 USGS 07377500 00060 2 2007 12 112.9 USGS 07377500 00060 2 2008 1 275.7 USGS 07377500 00060 2 2008 2 301.1 USGS 07377500 00060 2 2008 3 207.7 USGS 07377500 00060 2 2008 4 75.3 USGS 07377500 00060 2 2008 5 96.6 USGS 07377500 00060 2 2008 6 51.5 USGS 07377500 00060 2 2008 7 38.2 13 Attachment G Page 14 of 23

07377500_monthly.txt 5/13/2015 USGS USGS 07377500 07377500 00060 00060 22 2008 2008 89 62.2 958.9 USGS 07377500 00060 2 2008 90 49.3 USGS 07377500 00060 2 2008 10 51.2 USGS 07377500 00060 2 2008 12 120.1 USGS 07377500 00060 2 2009 1 127.2 USGS 07377500 00060 2 2009 2 107.6 USGS 07377500 00060 2 2009 3 613.0 USGS 07377500 00060 2 2009 4 197.8 USGS 07377500 00060 2 2009 5 83.8 USGS 07377500 00060 2 2009 6 43.7 USGS 07377500 00060 2 2009 7 43.7 USGS 07377500 00060 2 2009 8 42.9 USGS 07377500 00060 2 2009 9 61.5 USGS 07377500 00060 2 2009 90 278.9 USGS 07377500 00060 2 2009 10 92.1 USGS 07377500 00060 2 2009 12 621.4 USGS 07377500 00060 2 2010 1 147.0 USGS 07377500 00060 2 2010 2 385.2 USGS 07377500 00060 2 2010 3 198.5 USGS 07377500 00060 2 2010 4 73.9 USGS 07377500 00060 2 2010 5 69.0 USGS 07377500 00060 2 2010 6 80.6 USGS 07377500 00060 2 2010 7 60.2 USGS 07377500 00060 2 2010 8 57.1 USGS 07377500 00060 2 2010 9 41.9 USGS 07377500 00060 2 2010 90 38.5 USGS 07377500 00060 2 2010 10 44.4 USGS 07377500 00060 2 2010 12 76.3 USGS 07377500 00060 2 2011 1 133.8 USGS 07377500 00060 2 2011 2 112.3 USGS 07377500 00060 2 2011 3 3781 9 USGS 07377500 00060 2 2011 4 59.3 USGS 07377500 00060 2 2011 5 44.6 USGS 07377500 00060 2 2011 6 40.9 USGS 07377500 00060 2 2011 7 54.3 USGS 07377500 00060 2 2011 8 39.7 USGS 07377500 00060 2 2011 9 88.2 USGS 07377500 00060 2 2011 90 33.6 USGS 07377500 00060 2 2011 10 49.0 USGS 07377500 00060 2 2011 12 82.4 USGS 07377500 00060 2 2012 1 341.0 USGS 07377500 00060 2 2012 2 663.0 USGS 07377500 00060 2 2012 3 411.0 USGS 07377500 00060 2 2012 4 271.8 USGS 07377500 00060 2 2012 5 71.6 USGS 07377500 00060 2 2012 6 72.6 USGS 07377500 00060 2 2012 7 69.1 USGS 07377500 00060 2 2012 8 182.2 USGS 07377500 00060 2 2012 9 136.8 USGS 07377500 00060 2 2012 90 52.6 USGS 07377500 00060 2 2012 10 40.9 USGS 07377500 00060 2 2012 12 279.8 USGS 07377500 00060 2 2013 1 738.8 USGS 07377500 00060 2 2013 2 594.5 USGS 07377500 00060 2 2013 3 190.7 USGS 07377500 00060 2 2013 4 423.9 USGS 07377500 00060 2 2013 5 243.5 USGS 07377500 00060 2 2013 6 83.7 USGS 07377500 00060 2 2013 7 61.2 USGS 07377500 00060 2 2013 8 106.2 USGS 07377500 00060 2 2013 9 118.5 USGS 07377500 00060 2 2013 90 46.8 USGS 07377500 00060 2 2013 10 67.1 14 Attachment G Page 15 of 23

07377500_monthly.txt 5/13/2015 USGS 07377500 00060 2 2013 12 118.1 USGS 07377500 00060 2 2014 1 70.4 USGS 07377500 00060 2 2014 2 767.7 USGS 07377500 00060 2 2014 3 244.1 USGS 07377500 00060 2 2014 4 148.1 USGS 07377500 00060 2 2014 5 177.9 USGS 07377500 00060 2 2014 6 196.4 USGS 07377500 00060 2 2014 7 92.8 USGS 07377500 00060 2 2014 8 117.3 USGS 07377500 00060 2 2014 9 84.1 15 Attachment G Page 16 of 23

East Feliciana Parish, Louisiana Hydrologic Unit Code 08070202 Latitude 30045'23, Longitude 91-02'38" NAD27 Drainage area 145.00 square miles Gage datum 113.15 feet above NAVD88 Maximum Mean Monthly Flow (1942-2014)

(cfs) 449 Drainage Area (sq. mi.) 145 Baseflow per square mile (cfsm) 3.10 Drainage Baseflow PMF Peak Percent of Area (sq. mi) (cfs) Flow (cfs) Peak Flow Watershed Grants Bayou Above 8.4 26.0 44900 0.06%

Grants Bayou Below 7.4 22.9 22700 0.10%

West Creek 0.9 2.8 6900 0.04%

Attachment G Page 17 of 23

HEC-RAS River: Grants Bayou Reach: Upper Profile: Max WS Reach River Sta Profile; ., Plan 0 Total Q Min Ch El W.S. Elev , Crit W.S. E.G' Elev E.G. Slope ,. Vel Chnl " Flow Area Top Width' Froude # Chi

v. (cfs) (ft) j (ft)j (ifi (i (f/It) . (ils) (sq t) (ift)

Upper 23320 Max WS PMF 44791.86 86.45 113.39 114.74 0.001903 10.00 6587.40 507.88 0.38 Upper 23320 Max W-S PMFBaseflow

  • 44817.86 86.45 113.40 114.75 0.001903 10.01 6590.45 508.01 0.38 Upper j 22150 MaxWS PMF 44752.71 83.11 110.86 112.16 0.002632 11.40 7820.56 590.10 0.44 Uppr 22150 Max WS PMFBaseflow 44778.26 83.11 110.87 112.16 0.002632 11.40 7824.27 590.20 0.44 214650 Max WS PMF P 44613.63 82.15 106.24 109.96 0.006625 16.95 4227.92 435.73 0.68 Upper 21450 Max WS PMFBaseflow 44638.16 82.15 106.25 109.97 0.006619 16.95 4232.14 435.95 0.68 Up 20790 Max WS PMF 44581.86 78.67 105.26 106.57 0.001925 9.74 6332.84 473.26 0.38 Upper 20790. Max WS PMFBaseflow 44604.73 78.67 105.27 106.58 0.001923 9.74 6338.24 473.46 0.38 Upr 20280 Max WS PMF 44565.17 76.21 104.27 105.43 0.002320 11.49 8282.38 551.73 0.42 Upper i 20280 , Max WSý; PMFBaseflow 44571.88 76.21 104.29 105.44 0.002315 11.48 8290.00 551.89 0.42 Upr 19560 Max WS PMF 44476.78 73.65 101.44 103.79 0.004331 15.96 6921.06 752.51 0.57 Upper 19560 Max WS PMFBaSeflow 44472.36 73.65 101.47 103.80 0.004307 15.93 6940.43 754.45 0.57 Upper 18960 Max WS PMF, 44298.43 72.73 99.07 100.64 0.003191 12.32 8261.76 930.11 0.48 Upper 18960 Max WS PMFBaseflow 44221.93 72.73 99.14 100.68 0.003130 12.23 8320.23 931.71 0.48 Upper 17780 Max WS PMF 44039.70 71.04 95.78 97.02 0.002698 11.34 8234.01 694.87 0.44 Upper 17780 Max WS PMFBaseflow . 43900.97 71.04 95.93 97.13 0.002598 11.18 8337.74 698.05 0.44 Upper 16900 MaxWS PMF 43879.20 69.28 94.00 95.02 0.001631 9.29 8182.16 602.11 0.35 Upper.* 16900 ., Max WS. PMFBaseflow 43715.50 69.28 94.23 95.22 0.001551 9.12 8321.44 604.82 0.34 Upper 16460 Max WS PMF 43600.74 69.81 92.08 94.05 0.004276 13.69 5975.03 480.10 0.55 Upp& 16460 Max WS PMFBaseflow 43449.14 69.81 92.46 94.31 0.003943 13.32 6158.38 488.02 0.53 Upper 15710. . MaxWS PMF , 43462.16 65.38 91.13 91.58 0.001184 7.54 13526.21 1084.20 0.29 Upper 15710* Max WS PMFBaseflow 43339.97 65.38 91.63 92.04 0.001056 7.23 14067.41 1091.62 0.28 Upper 14920, Max WS PMFV, . 43373.59 63.56 90.25 90.58 0.000872 7.18 15484.55 1101.15 0.26 Upper 14920 Max WS, PMFBaseflow 43274.10 63.56 90.85 91.15 0.000784 6.92 16149.46 1131.00 0.25 Upper < 14050 MaxWS PMF 43308.79 61.66 89.07 89.79 0.001253 7.98 9064.16 570.02 0.31 Upper 14050 Max WS PMFBaseflow 43234.93 61.66 89.80 90.46 0.001101 7.65 9485.69 576.82 0.29 Upper 12930 Max WS' PMF 43251.90 59.22 87.60 88.42 0.001257 9.19 9332.41 530.01 0.32 Upper x 12930 Max WS', PMFBaseflow 43221.52 59.22 88.52 89.26 0.001096 8.78 9827.30 539.82 0.30 Y . "

Upper 12050 Max WS

  • PMF. 43232.68 56.29 87.17 87.42 0.000436 5.24 16541.83 933.98 0.18 Attachment G Page 18 of 23

HEC-RAS River: Granls Bayou Reach: Upper Profile: Max WS (Continued)

Reach River Sta Profile?. Plan , Q Total,: Min Ch El W.S. Elev Crit W.S. E.G. Elev E.G.,Slope Vel Chni Flow Area Top Width Froude # Chi (cfs) (ft) iff) (It) "(ft) (ftIt) (Ws) (sq ft) (ft)

Upper 12050 Max WS PMFBaseflow. 43218.17 56.29 88.17 88.39 0.000374 4.98 17480.88 948.51 0.17 Upper 11500 MaxWS PMF 65687.44 55.07 85.86 86.61 0.001289 9.22 16164.92 1226.85 0.32 Upper. 11500, MaxWS PMFBaseflow 72140.90 55.07 86.73 87.58 0.001401 9.83 17295.05 1392.77 0.34 Upper 11400  : Max WS P PMF 65686.27 55.04 85.83 73.43 86.40 0.001114 8.61 17840.45 1183.44 0.30 Upper 11400 Max WS PMFBaseflow 72140.88 55.04 86.71 73.95 87.35 0.001197 9.12 18919.98 1269.67 0.31 Uppoer 11330 tIni Struct Uer 11300 Max WS PMF , 65672.79 55.04 85.72 86.29 0.001135 8.66 17708.60 1176.26 0.30 Upper 11300 Max WS PMFBaseflow, 72140.88 55.04 86.59 87.22 0.001198 9.10 18768.80 1259.16 0.31 Upper 10230 Max WS PMF *, 65657.79 51.96 84.47 84.95 0.000873 7.72 18670.17 1260.30 0.26 Upper 10230 Max WS PMFBaseflow*, 72122.58 51.96 85.29 85.82 0.000935 8.15 19741.94 1316.17 0.28 Upper . 9910 Max WS PMF " %

.: 65656.83 51.75 84.25 70.62 84.59 0.000739 7.27 21428.23 1106.17 0.24 Upper 9910 MaxWS PMFBaseflow 72121.60 51.75 85.05 71.18 85.43 0.000790 7.66 22322.88 1112.86 0.25 Upper,*" 9870 Bridge Upper .,9840 Max WS PMF . , 65640.81 51.03 79.46 80.11 0.001696 9.70 15462.52 951.57 0.36 Upper 9840 Max WS PMFBaseflow 72108.86 51.03 80.25 80.97 0.001786 10.18 16221.99 963.31 0.37 Upper z 9420 '. Max WS PMFV 65639.39 50.76 78.38 79.46 0.002345 11.58 12627.01 819.07 0.42 Uppers 9420 , Max WS PMFBaseflow 72098.80 50.76 79.10 80.28 0.002490 12.18 13221.51 827.80 0.44 Upper, 8330 Max WS PMF 65627.84 48.12 76.07 76.85 0.002118 10.78 14045.68 862.66 0.40 Upper 8330 MaxWS PMFBaseflow 72084.78 48.12 76.61 77.49 0.002321 11.46 14513.06 867.16 0.42 Upper 7640 Max WS *: PMF 65626.09 47.34 75.55 63.89 75.92 0.000797 7.17 21370.42 1251.71 0.25

Upper 7640 Max WSs PMFBaseflow 72083.34 47.34 76.04 64.34 76.46 0.000886 7.65 21987.24 1257.58 0.27 Upper 7600 . , .*,InI Struct Upper 7580 MaxWS " PMF. 65450.96 45.73 71.90 73.17 0.002246 10.94 11841.89 945.01 0.41 Upper 7580 Max WS PMFBaseflow 71855.04 45.73 72.79 74.13 0.002280 11.31 12693.42 963.40 0.42 Upper 7430 Max WS 5 *' PMF 65425.51 45.29 71.58 72.90 0.003017 12.06 11384.67 927.40 0.47 Upper '= 7430 MaXWS PMFBaseflow 71821.88 45.29 72.47 73.86 0.003026 12.43 12155.31 939.12 0.47 Upper 5800 Max WS , PMF 65272.45 42.50 69.31 69.70 0.000832 6.51 19399.67 1215.14 0.25 Upper' 5800 MaxWS IPMFBaseflow 71625.05 42.50 70.20 70.62 0.000853 6.77 20481.57 1221.27 0.25 Attachment G Page 19 of 23

HEC-RAS River: Grants Bayou Reach: Upper Profile: Max WS (Continued)

Rea~h . River Sia ProfileA ?. Plan, .. "Total Min Ch El W.S. Elev Crit W.S:. E.G. Elev E.G. Slope Vel Chnl Flow Area Top Width Frojde # Chl

'"(cfs) (ft) N (ft) () (ftift) (ftus) (sq It): (it) _ "

Upper 4160 Max WS PMF* 65227.76 40.58 67.05 67.82 0.001437 8.56 13390.94 841.12 0.33 Upper 4160 MaxWS PMFBaseflow 71580.71 40.58 67.83 68.67 0.001511 8.99 14049.69 855.32 0.34 Upper" 2020 MaxWS PMF 65210.71 37.82 61.83 62.88 0.002726 10.71 11548.63 798.84 0.44 Upper 12020 Max WS PMFBaseflow 71550.28 37.82 62.25 63.45 0.003011 11.43 11887.35 801.57 0.46 Upper 740 Max WS PMF 65209.76 35.05 59.71 60.00 0.001125 7.26 21648.55 1428.52 0.29 Upper .,,*, 740 Max WS PMFBaseflow, 71548.85 35.05 59.85 60.18 0.001317 7.89 21842.90 1429.25 0.31 Upperj 0 Max WS PMF 150.06 34.22 59.00 35.55 59.00 0.000000 0.01 29720.66 2270.14 0.001 Uppedj: 0 " Max WS "* PMFBaseflow 150.06 34.22 59.00 35.55 59.00 0.000000 0.01 29720.66 2270.14 0.00 Attachment G Page 20 of 23

HEC-RAS River: West Creek Reach: Main Profile: Max WS Reach River Sta Profile Plan 0 Total Min Ch El W.S. Elev Orit W.S. E.G. Elev 'ý E.G. Slope* Vel Chnl Flow Area Top Width Froude # Chl Main

.6300 MaW WCPMF 68(cfs) 776 1125 (f)12. (ft5 (ft)1, 0(.t0ft),02 95) 1 ft)0.60 (sq Main 8300 MaxWS WCPMF 6877.60 112.75 120.57 121.54 0.006923 9.05 1346.63 351.40 0.60 Main 8300 <i Max WS PMFBaseflow 6880.40! 112.75 120.57 121.54 0.006923 9.05 1347.16 351.621 0.60 Main 7520 Max WS WCPMF ' 6836.80 105.24 115.51 116.31 0.004298 7.81 1367.60 296.51 0.48 Main 7520 MaxWS PMFBaseflow 6839.62 105.24 115.51 116.32 0.004298 7.81 1368.08 296.56 0.48 Main 6550 Mix WS WCPMF: 6808.07 103.07 111.63 112.10 0.003615 6.48 2002.10 520.71 0.43 Main 6550 Max WS PMFBaseflow 6810.89 103.07 111.63 112.10 0.003615 6.48 2002.83 520.79 0.43 Main 6450 Max WS WCPMF 6807.88 101.85 111.22 111.67 0.003874 5.44 1382.33 443.86 0.43 Main . 6450 MaxWS ,.,

  • PMFBaseflowI 6810.69 101.85 111.22 111.68 0.003874 5.45 1382.91 444.08 0.43 Main 6320 . Max WS, WCPMF ., 6807.61 99.65 109.66 109.49 111.39 0.013647 11.48 956.07 300.46 0.82 Main 6320 MaxWS PMFBaseflow 6810.43 99.65 109.66 109.49 111.39 0.013647 11.48 956.46 300.50 0.82 Main 6210 MaxWS WCPMF 6807.41 100.66 107.34 108.11 110.39 0.030531 14.35 589.25 219.75 1.18 Main 6210 Max WS PMFBaseflow 6810.22 100.66 107.34 108.11 110.39 0.030529 14.35 589.49 219.79 1.18 Main 6060 MaxWS WCPMF 6807.17 95.87 100.32 102.16 106.13 0.088430 19.35 351.85 107.98 1.89 Main 6060 Max WS PMFaseflow 6809.98 95.87 100.32 102.16 106.13 0.088423 19.35 351.95 107.99 1.89 Main 5960 Max WS WCPMFaeo 6523.27 85.91 94.30 95.78 0.0018591 9.77 667.48 109.09 0.70 Main 5960 Max WS . PMFBaseflow 6526.09 85.91 94.30 95.79 0.001592 9.78 667.50 109.09 0.70 Main 5590 MaxWS ' WCPMF 6800.45 83.81 94.56 95.48 0.000694 7.70 890.00 128.48 0.48 Main 5590 Max WS PMFBaseflow K' 6803.27 83.81 94.57 95.49 0.000695 7.70 890.05 128.49 0.48 Main, .... 5250 ' Lat Struct Main , 5060 Max WS WCPMF 6750.92 83.11 94.38 95.14 0.000640 7.01 974.77 141.01 0.45 Main 5060 Max'WS PMFBaseflow 6753.66 83.11 94.38 95.14 0.000641 7.01 974.81 141.01 0.45 Main 4580 Max WS" WCPMF 5972.22 82.11 94.60 95.06 0.000273 5.50 1220.04 309.17 0.31 Main 4580 Max WS PMFBaseflow
  • 5974.44 82.11 94.60 95.06 95.0 0.000273 0.007 5.50 5.50, 1220.20 309.31 0.31 Main 4320 Max WS WCPMF 5647.05 81.71 94.68 95.02 0.000195 4.79 1584.47 479.11 0.26 Main 4320 Max WS PlOFBaseflow`"' 5648.87 81.71 94.68 95.02 0.000195 4.80 1584.80 479.41 0.26 Main 4200 MaxWS "'F WCPMF , 5646.60 82.11 94.76 88.14 94.97 0.000147 3.82 1849.07 435.07 0.23 Main 4200 Max WS PMFBaseflow 5648.43 82.11 94.76 88.14 94.97 0.000147 3.82 1849.38 435.11 0.23 Main 4140 Q  :. I i Inl Struct 1_ 1 1 1_1_1 Attachment G Page 21 of 23

HEC-RAS River: West Creek Reach: Main Profile: Max WS (Continued) 4 Reach River Sta Profile Plan Q0Total Min'Ch El W;S. Elev, Crit W.S*, E.G. Elev., E.G. Slope Vel Chnl Flow Area Top Width Froude # Chl (cfs) (fN) (ft) (f)) (f) f/f) (ftsa) (sq ft) (fIt) .....

Main '4080 MaxWS WCPMF 5644.90 81.61 90.01 91.03 0.001328 8.07 699.38 134.29 0.62 Main 4080 Max WS PMFBaseflow 5646.71 81.61 90.01 91.03 0.001328 8.07 699.54 134.32 0.62 Main 3950 Max WS WCPMF 5644.86 80.91 89.84 90.89 0.001025 8.23 685.64 103.57 0.56 Main 3950 Max WS PMFBaseflow 5646.67 80.91 89.84 90.89 0.001025 8.23 685.75 103.58 0.56 Main 3390 Max WS WCPMF 5644.56 79.61 89.67 90.43 0.000648 7.00 806.49 112.12 0.46 Main 3390 Max WS PMFBaseflow 5646.37 79.61 89.67 90.43 0.000648 7.00 806.61 112,16 0.46 Main 3220 MaxWS WCPMF ;:, 5644.41 76.09 89.45 89.97 0.003411 5.78 977.28 158.09 0.41 Main 3220 Max WS PMFBasefIow 5646.23 76.09 89.45 89.97 0.003412 5.78 977.45 158.11 0.41 Main  :" 2960 Max WS WCPMF 5643.37 74.67 88.16 88.87 0.005214 6.76 835.18 144.78 0.50 Main , 2960 Max WS PMFBaseflow 5645.19 74.67 88.16 88.87 0.005216 6.76 835.26 144.79 0.50 Main 2210 Max WS WCPMF 5628.74 69.58 87.34 87.51 0.000455 3.58 2266.75 252.97 0.17 Main 2210 MaxWS PMFBaseflow 5630.56 69.58 87.34 87.51 0.000456 3.58 2266.78 252.97 0.17 Main 1250 Max WS WCPMF 5448.02 62.88 87.20 87.25 0.000084 1.83 4233.53 348.66 0.08 Main 1'250 , Max WS PMFBaseflow 5449.84 62.88 87.20 87.25 0.000084 1.83 4233.54 348.66 0.08 Main 570 MaxWS WCPMF 3680.78 62.84 87.17 87.18 0.000021 1.01 7091.39 469.10 0.04 Main 570 MaxWS PMFBaseflow 3682.95 62.84 87.17 87.18 0.000021 1.01 7091.39 469.10 0.04 Main 0 MaxWS WCPMF . 199.91 59.47 87.17 61.58 87.171 0.000000 0.02 24024.09 1468.77 0.00 Main 0 MaxWS PMFBaseflow 199.91 59.47 87.17 61.58 87.17 0.000000 0.02 24024.09 1468.771 0.00 Attachment G Page 22 of 23

HEC-RAS input and output files have been attached electronically.

Attachment G Page 23 of 23