PLA-5425, Part B - Susquehanna Steam Electric Station, Supplement to Proposed Amendment No. 239 to License NPF-14 & Proposed Amendment No. 204 to License NPF-22, HPCI Automatic Transfer to Suppression Pool Logic Elimination

From kanterella
Jump to navigation Jump to search
Part B - Susquehanna Steam Electric Station, Supplement to Proposed Amendment No. 239 to License NPF-14 & Proposed Amendment No. 204 to License NPF-22, HPCI Automatic Transfer to Suppression Pool Logic Elimination
ML021420100
Person / Time
Site: Susquehanna  Talen Energy icon.png
Issue date: 02/04/2002
From: Byram R
Susquehanna
To:
Document Control Desk, Office of Nuclear Reactor Regulation
References
PLA-5425, SIP Test Sample upto2-6-04
Download: ML021420100 (229)


Text

{{#Wiki_filter:PAGE 200 5.13 Check of SABRE Steady-State Initialization and Fuel/Clad Temperature Calculations with Partial Length Fuel Model In this test problem, a 20-second steady-state calculation is run with the base SABRE input deck for U2C10. This benchmark tests the SABRE steady-state initialization process. In addition, this benchmark problem validates the steady-state fuel heat transfer model used in SABRE. This input deck contains an ATRIUM-10 fuel model. The input deck specifies the number of fuel pins in each of the 25 axial nodes comprising the active core region. The steady-state, code calculated fuel and clad temperatures at 2 axial locations are checked against hand calculations to verify that FORTRAN coding of the fuel model is correct. The input deck for this benchmark problem is the same as that listed in Appendix G. This SABRE calculation corresponds to SABRE Case 13 in the Computer Case Summary. The sequence of events computed by SABRE is listed in Table 5.13-1. Table 5.13-2 shows selected SABRE fuel temperature results at t=0.0 seconds of the steady-state run. Also included in Table 5.13-2 are the results of hand calculations carried out below. The good comparison between the results verifies correct coding of the partial length fuel model. The SABRE general output edit for t=0.0 is shown in Table 5.13-3. Figure 5.13-1 shows plots of reactor power, water level, pressure, and total core flow for the 20 second steady-state run. There are some small fluctuations in the steady-state power results, and the power is slightly above the value of 100% specified in the SABRE input deck, but these variations are small and they would have negligible effect on the results of a transient simulation. Also, the steady downcomer water level is slightly less than the value of +35" specified in the SABRE input deck, but again, the difference is very small. Based on the results plotted in Figure 5.13-1, it is concluded that the SABRE methodology produces an acceptable steady-state condition from which a transient simulation can be initiated. This case (SABRE Case 13) was run using the U2C1O kinetics file (u2clO.simtran.out) which is the output file for SlMTRAN Run#9900341. The slightly higher steady-state power level and slightly lower steady-state water level (relative to input values) computed by SABRE are a result of the dynamic initialization process discussed in §2.4.3. This initialization process performs temporal integration of the kinetics and thermal hydraulic equations in order to remove any initial perturbations from the solution -prior to beginning the transient calculation. Generally, the dynamic initialization scheme introduces some changes in reactor operating parameters relative to those specified in the SABRE input deck. However, these differences are small, and do not have a significant effect on the predicted transient response of the reactor and containment. For instance, SABRE calculates an initial steady-state core thermal power of 3446 MW versus the value of 3441 specified in the input deck-

PAGE 201 Hand Calculation of Fuel and Clad Temperatures is given by the simultaneous solution of the From §3.1.4, the steady-state fuel temperature following equations: 2 kf, (Tfl,J - Tf2,J) r-wql 2

                                                    -rf2ql                                      (5.13-1)

In(r~ r2) 2 km1j(Tfi,j - Tf 2 ,j) ýf22 _ 21q-2j, 4 rf2 kf2,j 2ri Hg 4r,, rf2a xii (5.13-2)

                                                                               =0.               (5.13-3) and
                                                                                  =0              (5.13-4) where s(t)    Qd(t)
  • s lfq 2 ),
                                   '+ + N
                                                           -fq (i

q" ft-* Nc Vf j Nc Vf,y q7lj (t)=Cs q (t), qj() = (2- CS )q7,j (t), j of the active core region (flW), Vf,1 = volume of fuel in axial control volume core region as direct moderator heating, fq1 = fraction of total core power deposited in active

fq 2 = fraction of total core power deposited in bypass region as direct moderator heating, Nc = number of control volumes in active core region, Qfi., (t) = total core fission power (Btu/sec), Qd (t) = total decay heat generation rate (Btu/sec), Sy(t) = axial power shape function = (power in node j)/(average nodal power), and Cs = fraction of pin power generated in- inner radial fuel node. Note that the subscript j defines the axial node (j=1,2,...,Nc). All other variables have been defined previously (see §2.3). The following parameters are taken from the SABRE input and output files for this case: Core power = 3446 MW = 3.2689E-+06 Btu/sec Decay Power = (0.07)(3446 MW) = 241.22 MW = 2.2882E+05 Btu/see Fission Power = (0.93)(3446 MW) = 3204.78 MW = 3.0401 E+06 Btu/sec fql = 0.015 fq2 =0.020 Nc =25 VO= C(O. 1707 in)2 (0.5 ft)(91 rods)(764 bundles)/(144 in 2/ft 2) = 22.098 ft3 2 2 3 Vf'20 = 7r(0.1707 in)2(0.5 ft)(83 rods)(764 bundles)/(144 in /fi ) = 20.156 ft rn = radius of inner radial fuel node = 0. 1207 inches = 0.01006 ft rf 2 = radius of outer radial fuel node = 0.1707 inches = 0.01423 ft r,,i = radius at inside of cladding = 0.1740 inches = 0.01450 ft rc, = radius at outside of cladding 0.1979 inches = 0.01649 ft S= gap conductance = 1090 BTU/ft2 -hr-OF = 0.3028 Btu/ft2-sec-TF CS = fuel-pin radial peaking factor due to self-shielding effects = 0.9 The thermal conductivities of U0 2 and Zircaloy-2 are given by the following correlations: t 3978.1 Btu k(UO2 ) = (692.61 + T) + (6"02366x10 12 XT +460) ' - ft-0 F and t Lahey, KT. and Moody, F.J., The Thermal-Hydraulicsofa Boiling Water Nuclear Reactor,p. 252, ANS, 1977.

Btu k(Zr-2)= 7.151+(2.472x10-2 )T + (1.674xl 04)T 2 - (3.334xl0-' )T 3, hr - ft-0 F where T is in OF. Using these correlations, the following fuel and clad thermal conductivities are computed and used in the hand calculation. 1076.67: 1197.6%1 847.31 7.213E-04 908.77 6.943E-04 _ 573.957 2.516E-03 579.877 2.523E-03 The following constants are defined: 22kfl,j K rfl + rf 2 b,= r~1 1,j' C [ (rf2 -rfl_)IT 1 (roro 0 k). L rf2 kf 2 ,j + Hg 1rc 4rco krc,j d*= (rf2 - rl) 47;2,j, 2 rco Hfilm,j and f r _ ," i. S2 - rfl I L4 rf2 kf 2 ,j 2 rci Hg 2rco kcl,j

The constants a,, b> cj, d,*, ej, and fj for nodes 5 and 20 are listed in the table below. 5 I2358E-03 *5.416E-01 4.396E-03 6.625E-01 1.041E-01 4.176E-03I 20 2.214E-03 !6.396E-01 4.322E-03 7.824E-01 .1.153E-01 4.109E-03 Solving (5-7) - (5-10) for the clad and fuel temperatures results in (d + bj). TCI,surf,j =TCOOtJ + rTc,j = T~,,,,fj +(dj +bj) ,c Tf2,j = cI,j + C and D,j, *- j + aj .

Table 5.13-1 Sequence of Events Calculated by SABRE

  • Kinetics file is /dOO/appL/sabre-3vO/data/u2clO.siimtran.out
      • SABRE data fiMe is /home/eamac/sabre_31/irnput/ec-atws-O5O5/cl3.dat
      • This is not a restart case 1 S A B R E - Version 3.1 (13) Base Case Input Deck (ATRIUM Core) -- 20 sec SS run t(sec)= .000 Low-Pres Condensate Injection Inop.

Table 5.13-2 Comparison of SABRE-Calculated Fuel Temperatures Against Hand Calculations No. of fuel pins 91 83 SABRE Axial Power Factor 1.0413 1.1431 SABRE film coefficient 3.1558 3.497 (BTU/sec-ft-F) SABRE coolant temperature (TF) 547.986 550.535 SABRE fuel temp. for inner radial 1076.63 1197.65 node (T) Hand-calculated fuel temp. for inner 1077.56 1197.75 radial node (*F) SABRE fuel temp. for outer radial 847.31 908.77 node (OF) Hand-calculated fuel temp. for outer 847.87 908.89 radial node (TF) SABRE clad temp. (CF) 573.957 579.877 Hand-calculated clad temp. (CF) 573.99 579.87 SABRE clad surface temp. (TF) 559.534 562.861 Hand-calculated clad surface temp. 559.55 562.86 (*F) I I

Table 5.13-3 SABRE General Output Edit for t=0 1 SABRE - Version3.1 0 (13) Base Case Input Deck (ATRIUM Core) -- 20 sec SS run problem time and soLver parameters time (sec) no. of steps step size (sec)

           .00              8000               .0050 0"** 1-D Kinetics Results VoLume No.       Axial Power      Axial Power           Fast FLux        Therm FLux AbsXSThrm profile                                         LicLBoron profile                                                         (cm**-l)

(fiss) (decay)

                                        .1344        .126874E+01     .4658443E+00    .OOOOOE+00 25              .1328                                          .9003212E+00    .OOOOOE+00
                       .3416            .3456        .330460E+01 24                                                             .9586140E+00    .OOOOOE+00 23               .7643            .7730        .570546E+01
                                        .9407        .730322E+01     .1192712E+01    .OOOOOE+00 22               .9305                                         .1347351E+01    .OOOOOE+00 1.0515           1.0623          .826894E+01 21                                                             .1473281E+01       0000OE+00 1.1322          .882119E+01 20             1.1217                                          .1565077E+01    .00000E+00 1.1678           1.1773          .911617E+01 19                                                             .1632249E+01    .OOOOOE+00 1.2072          .925690E+01 18             1.1991                                          .1674188E+01    .OOOOOE+O0 1.2228          .932422E+01 17             1.2165                           .940065E+01    .1586635E+01    .OOOOOE+00 1.2678            1.2722 16                                              .925781E+01    .1600912E+01     .OOOOOE÷00 15             1.2634            1.2655 1.2496         .897398E+01     .1612164E+01    .OOOOOE+00 14             1.2498                           .861164E+01     .1612762E+01    .O0000E+00 1.2266            1.2243 13                                              .820261E+01    .1606402E+01    .OOOOOE+00 12            1.1990            1.1947 1.1611          .777185E+01    .1596388E+01    .OOOOOE+00 11            1.1669                                           .1587441E+01    .OOOOOE+00 1.1298          .733957E+01 10             1.1366                           .692392E+01    .1579538E+01    .OOOOOE+00 9             1.1077           1.1003 1.0752          .653663E+01    .1574683E+01    .O0000E+00 8             1.0826                                          .1575442E+01     .OOOOOE+00 1.0549          .618848E+01 7             1.0621                            .589352E+01    .1583941E+01    .OOOOOE+00 1.0478           1.0411 6                                               .565621E+01    .1599193E+01    .OOOOOE+00 1.0413           1.0335 5                                              .544810E+01    .1592021E+01    .OoaooE+o0 1.0289 4            1.0361                            .509629E+01    .1500402E+01    .OOOOOE+00 1.0009 3            1.0072                            .408356E+01    .1229887E+01    .OOOOOE+00
                        .8744            .8693 2                                              .200493E+01    .9597727E+00    .OOOOOE+00
                                         .3032 1               .3049 NJ

'U Yw ww 1*** fuel/clad conditions clad surface heat flux film coefficient tcrit t(rewet) volume no. avg fuel temp clad temp (degf) temp (btu/ft2-sec) (btu/hr-ft2-f) (deg f) (deg f) (degf) 556.812 554.776 5.104 4332.0 572.95 643.71 25 604.291 562.561 557.338 13.131 6948.2 572.98 643.71 24 688.936 875.730 572.345 560.710 29.376 10392.7 573.07 643.71 23 22 955.875 575.904 561.762 35.764 11467.0 573.28 643.71 21 1016.839 578.432 562.470 40.414 12189.7 573.53 643.71 20 1053.202 579.877 562.861 43.107 12589.3 573.82 643.71 19 1077.489 580.817 563.111 44.874 12844.8 574.14 643.71 18 1094.123 581.450 563.278 46.071 13014.9 574.48 643.71 17 1103.436 581.801 563.370 46.735 13108.4 574.83 643.71 580.574 563.047 44.418 12779.3 575.20 643.71 16 1071.176 15 1068.952 580.488 563.024 44.256 12756.0 575.59 643.71 14 1062.321 580.232 562.956 43.774 12686.4 575.99 643.71 13 1051.130 579.796 562.840 42.956 12567.2 576.40 643.71 12 1037.888 579.274 562.699 41.981 12423.8 576.81 643.71 11 1022.680 578.668 562.534 40.851 12255.5 577.22 643.71 10 1008.457 578.093 562.377 39.786 12094.6 577.63 643.71 995.024 577.544 562.225 38.771 11939.4 578.03 643.71 9 983.456 577.066 562.091 37.891 11803.1 578.44 643.71 8 974.047 576.673 561.981 37.170 11690.3 578.85 643.71 7 576.400 561.904 36.670 11611.3 579.26 643.71 6 967.546 643.71 573.957 559.534 36.445 11360.7 579.42 5 961.964 643.71 570.034 555.656 36.266 11010.0 579.42 4 955.251 565.946 551.943 35.256 10274.1 579.42 643.71 3 938.233 563.670 551.501 30.609 6868.5 579.42 643.71 2 880.306 1 549.369 544.686 11.703 3279.7 579.42 643.71 660.752 0 C,

4" 'S 1voLume no. fuel templ fuel temp2 heat gen heat genl heat gen2 (degf) (degf) (btu/ft3-sec) (btu/ft3-sec) (btu/ft3-sec) 25 616.26 592.32 832.02 748.82 915.22 24 722.18 655.70 2140.37 1926.33 2354.41 23 962.42 789.05 4788.56 4309.70 5267.42 22 1067.88 843.88 5829.77 5246.79 6412.74 21 1148.96 884.73 6587.74 5928.96 7246.51 20 1197.65 908.77 7026.83 6324.15 7729.51 19 1230.30 924.69 7314.97 6583.47 8046.47 18 1252.72 935.54 7510.05 6759.05 8261.06 17 1265.29 941.60 7618.55 6856.69 8380.40 16 1221.80 920.57 7240.85 6516.76 7964.93 15 1218.81 919.11 7214.73 6493.25 7936.20 14 1209.89 914.77 7136.31 6422.68 7849.94 13 1194.86 907.41 7003.14 6302.83 7703.45 12 1177.10 898.69 6844.41 6159.97 7528.85 11 1156.75 888.62 6660.56 5994.50 7326.62 10 1137.76 879.17 6487.15 5838.44 7135.87 9 1119.85 870.21 6322.02 5689.82 6954.22 8 1104.46 862.47 6178.78 5560.91 6796.66 7 1091.96 856.15 6061.57 5455.41 6667.72 6 1083.33 851.78 5980.18 5382.16 6578.20 5 1076.63 847.31 5942.64 5348.38 6536.90 4 1068.87 841.64 5913.37 5322.03 6504.71 3 1047.40 829.08. 5748.81 5173.93 6323.69 2 971.07 789.55 4990.94 4491.85 5490.03 1 689.71 631.80 1907.91 1717.12 2098.70 1"** steam dome fluid conditions vol no. density void fract temp enthalpy w(bubt rise) w(stm line) w(cond) cond eff w-break (lb/ft3) (deg f) (btu/Lb) (tb/sec) (tb/sec) (lb/sec) (X) (Lbm/s) 1 2.351 1.000 550.535 1191.048 .000 3999.253 .000 .000 .00 0"** separator fluid conditions vot no. density void fract temp enthaLpy boron conc gamma heat w-Liquid w-gas ([b/ft3) (deg f) (btu/lb) (Ppr) (btu/sec) (tb/sec) (tb/sec) 1 16.038 .687 550.535 614.689 .000 .000 23786.600 3999.194 23786.549 3999.201 0"** riser fluid conditions vot no. density void fract temp enthatpy boron conc gamma heat w-Liquid w-gas (Cb/ft3) (deg f) (btu/tb) (ppm) (btu/sec) (Cb/sec) (tb/sec) 1 15.976 .688 550.535 615.072 .000 .000 23786.549 3999.201 23786.516 3999.208

'Uw 0"** upper plenum fluid conditions void fract temp enthaLpy boron conc gamma heat w-liquid w-gas (tb/sec) vol no. density (btu/Lb) Cppm) (btu/sec) (Ib/sec) (Lb/ft3) (deg f) 23786.516 3999.208 550.535 614.362 .000 .000 3 16.091 .686 .000 23786.485 3999.213 2 .645 550.535 604.433 .000 17.892 .000 .000 23786.435 3999.220 1 .645 550.535 604.433 17.892 23770.967 4017.730 1*** by-pass fluid conditions enthaLpy boron conc w-gas vol no. density void fract ternp gamma heat w-Liquid (Ib/sec) (deg f) (btu/lb) (ppm) (btu/sec) (Ib/sec) (Lb/ft3) 5823.896 3059.043 .000

                              .000       547.520       546.234          .000 5        46.308
                                                                       .000       17025.472        3059.109         .000
                              .000       546. 032      544.313 4        46.417                                                 .000      18043.419        3059.195          .000
                              .000       541.669       538.724 3        46.732                                                 .000      16122.407        3059.281          .000
                              .000       536.998       532.803 2        47.060                                                 .000       8364.368        3059.360          .000 47.346       .000       532.781       527.511 1                                                                                          3050.581          .000 0"** core fluid conditions gamma heat        w-liquid   w-gas density    void fract       temp,    enthalpy boron conc                                       (lb/sec) vol no.                                            (btu/Lb)      (ppm)           (btu/sec)        (tb/sec)

(Lb/ft3) (deg f) 20711.924 4017.730 614.087 .000 .000 27 16.136 .685 550.535 4017.728 619.136 .000 260.673 20711.977 26 15.349 .703 550.535 3991.158 550.535 618.677 .000 670.585 20738.540 25 15.417 .701 1500.270 20806.878 3922.803 550.535 617.497 .000 24 15.596 .697 1826.483 20959.772 3769.876 550.535 614.863 .000 23 16.010 .688 2063.958 21145.907 3583.696 550.535 611.669 .000 22 16.543 .675 .000 2201.527 21356.239 3373.312

                                .661      550.535      608.076                                                 3148.906 21         17.186                                                  .000      2291.802      21580.583
                                .644      550.535       604.259                                                 2915.301 20         17.927                                                  .000      2352.922      21814.118
                                 .625     550.535       600.303                                                 2675.469 19        18.765                                596.257            .000     2386.915      22053.870 19.707         .603     550.535                                                 22297.072     2432.176 18                                              592.165            .000     2487.238 20.762         .579     550.535                                                 22550.478     2178.663 17                                              587.910            .000      2478.265 21.985         .551     550.535                                                 22802.949     1926.071 16                                              583.677            .000      2451.328 23.354         .520      550.535                                                23052.651     1676. 232 15                                              579.488            .000      2405.585 24.887          .485     550.535                                                 23297.666    1431.064 14                                              575.439            .000      2351.061 26.574          .446     550.535                                                 23537.096    1191.462 13                                              571.462             .000     2287.908 28.468          .403     550.535                                                 23770.055     958.308 12                                              567.527             .000     2228.343 30.630          .353     550.535                                                 23996.903     731.236 11                                              563.684             .000     2171.620 33.082          .297    ,550.535                                                 24217.922     509.958 10                                              559.878             .000     2122.418 35.932           .232    550.535                                                 24433.861     293.708 9                                550.535      556.129             .000     2082.153 8       39.263           .156                                     .000     2054.198      24645.614      81.576
                                   .064    550.535      552.379                                                       .000 7        43.276                               546.835             .000     2041.302      24726.688 46.273          .000    547.986                                                 24726.666           .000 6                                             541.444             .000     2031.248 46.580          .000    543.798                                                 24726.645           .000 5                                             536.080             .000     1974.720 46.879          .000    539.589                                                 24726.627           .000 4                                             530.865              .000    1714.393 47.165          .000    535.458                                    597.755      24726.613           .000 3                                             526.337              .000 47.409          .000    531.841                                          .000   24726.613           .000 2                                             524.758              .000 47.493          .000     530.573                                                27777.214           .000 1

1"** Lower plenum fluid conditions boron conc gamma heat w-Liquid w-gas density void fract temp enthaLpy (Ob/sec) vol no. (btu/Lb) (ppm) (btu/sec) (Lb/sec) (Lb/ft3) (deg f) .000 524.757 .000 .000 27777.214 2 47.493 .000 530.572 .000 .000 27777.461 .000 1 47.490 .000 530.627 524.825 .000 27777.662 0*** jet pump fluid conditions boron conc gamma heat w-liquid w-gas voL no. density void fract temp enthalpy (btu/Lb) (ppm) (btu/sec) (lb/sec) (lb/sec) (lb/ft3) (deg f) .000 530.683 524.895 .000 .000 27777.696 .000 0 47.486 .000 27777.662 0*** downcomer fluid conditions h(inject) subcooL mixture LvL w-break boron density void fract temp enthaLpy w(inject) vol no. (btu/Lb) (btu/Lb) (inches) (Lbm/s) (ppm) (Lb/ft3) (deg f) (btu/Lb) (Lb/sec) .00 .00 3993.740 374.333 25.251 34.963 1 47.486 .000 530.682 524.894 0*** pressure drop results upper plenum riser separator Lower plenum core by-pass 4.27 jet pump 10.07 .00 1.73 11.01 .00 .80 .00 .00 inlet (psi) .32 .00 .00 outlet (psi) 1.17 5.35 .60 1.13 .69 2.29 3.00 4.83 .40 elevation (psi) -5.44 .01 1.92

                                                 .02                6.41                .00 wall frict (psi)            1.67 3.43.06                                                     .04             -. 01 spac frict (psi)                             .00                1.00                 .00 spacial acc (psi)              .00 1*** misc. reactor parameters
                                                     =    25.251 downcomer subcooLing (btu/lbm)                         34.963 downcomer collapsed Level (inch)                 =   1049.997 steam dome pressure (psia)                        =  8622.250 steam dame fluid volume (t3)                         5711.750
                                                     =

downcomer fluid volume (ft3) 966.623 pressure regulator setpoint (psia) 1.147 downcomer bubble rise veL (ft/sec) = 3999.253 steam flow exiting vessel (Ibm/sec) 0

  • number of srvs open .000 steam condensation rate (lbm/sec) efficiency = .000 condensation 3446.07 core power (mw) = 100.15 core power (% of rated) 89.02 core inlet flow (mWb/hr)
                                                      =     10.98 by-pass inlet flow (mLb/hr)                      = 515884.77 total vessel fluid mass (Lbm)                    =    525.02 crd outlet enthaLpy (btu/Lbm)

C7 c.- /T / ,- V.-.L o

                                                                             *         =2/O.

110 . , , ' . . .* . , 1 1051-M 100 ID E a.0

a. 0S 2

0 0 S IL 95 S 90 0 05 5 10 15 0 Time (sac) Time (nc)

 .2                                                  ME U.-                                                  E a

a 0 10 Time (see) Time (sec) Figure 5.13-1 SABRE results for 20-second steady-state run. (SABRE Case 13)-

5.14 MSIV-Closure ATWS with SLCS Failure-Shutdown with MRI MWt, 100 An MSIV closure ATWS is initiated from nominal operating conditions (3441 SLCS is assumed to MLb/hr, and 1050 psia). The operating cycle is U2C10. In this event, the closure is initiated fail, and reactor shutdown is achieved by manual rod insertion (MRI). MSIV the event. The at t-0, and it is assumed that the operator initiates MIR at 5 min (300 sec) into Version 3.1, control rod insertion rate is specified at 90 sec/rod. Calculation results for SABRE sets to model the decay which uses a one-dimensional kinetics model with multiple cross-section from SABRE Version of fission power as control rods are inserted, are compared against results at a constant rate to 2.4 which employs a point kinetics model and inserts negative reactivity simulate control rod insertion. in Appendix G of this Changes made to the base 10xlO0 SABRE reactor model documented calculated by SABRE calculation package are shown in Table 5.14-1. The sequence of events to SABRE (Version 3.1) are listed in Table 5.14-2. The SABRE 3.1 calculation corresponds corresponds to SABRE Case 14 in the Computer Case Summary, and the SABRE 2.4 calculation Case 14a in the Computer Case Summary. a slower shutdown of the Figures 5.14-1 and 5.14-2 show that the 1-D kinetics model predicts 1-D kinetics, predicts that the reactor compared to the points kinetics model. SABRE 3.1, with With the point-kinetics version reactor becomes subcritical when -45 control rods are inserted. the insertion of about 35 control of SABRE (Version 2.4) the reactor becomes subcritical with and drywell temperature show rods. Plots of suppression pool temperature, drywell pressure, more severe than that that the ATWS event predicted with the 1-D kinetics model is considerably predicted by the point kinetics version of the code. reactor shutdown by In scenarios involving MRI, the 1-D kinetics model in SABRE simulates density as control rods are interpolating between cross-section sets of differing control rod

                                                                   §2.4.8):

inserted. For U2C10, these cross-section sets consist of (see

1. all rods out,
2. 4 rods inserted,
3. 8 rods inserted,
4. 16 rods inserted,
5. 32 rods inserted,
6. 64 rods inserted, and
7. all rods in.

modeled by using a constant In the point-kinetics version of SABRE, control rod insertion was SABRE 2.4 was determined negative reactivity insertion rate. The reactivity insertion rate in and a core with a black and from the difference in kf between an all rods out core configuration 2.4 overpredicts the rate of white rod pattern. Evidently, the simplistic approach used in SABRE reactor shutdown due to manual rod insertion.

model which uses multiple cross section sets In order to check the accuracy of the SABRE MRI was made with 16 rods inserted to simulate control rod insertion, a SIMULATE run in Summary). The 16 control rods were inserted (SIMULATE Run #0002019 in Computer Case above. The core channel flow and reactor the same pattern as in cross section set #4 mentioned calculation were taken from the SABRE output pressure that were specified in the SIMULATE seconds). The core inlet subcooling was at the time that the 16 rods were inserted (1740 time is well below the feedwater spargers at this specified as zero since downcomer water level Case 14, the reactor pressure and core channel (see Figure 5.14-2). From the output of SABRE in In the SIMULATE input file which is shown flow at t-1740 are -1080 psia and 14.4 MLb/hr. as 10.96 MLbihr (2.74x4). In the SIMULATE Table 15.4-3, the total core flow rate is specified matches with the SABRE value of 14.4 output, the core channel flow is 14.4 MLb/hr which point of interest is 1.00547 (see output for MLb/hr. The target k1 for U2C10 at the exposure of k, in the output for Run #0002019 is 1.00544 first stacked case of Run #9904113). The value a At the specified conditions, SIMULATE predicts which is acceptably close to the target value. to 14.4% power. This SIMULATE core critical core power of 495.2 MWth which corresponds core thermal is plotted in Figure 5.14-3 which shows the details of the SABRE-calculated power SABRE 1-D SIMULATE result agrees well with the power response. It can be seen that the for calculation and is considerably higher than the point kinetics result. The 'mem' file power the SIMULATE MRI case is given in Table 15.4-4.

Table 5.14-1 Changes Made to Base SABRE 1Ox1O Input Deck in Appendix G Problem end time (F.2.1) 7200 seconds Time step data (F.3) Max = 5 msec Min = 5. msec(t<30) Max = 30 rnsec Min = 30 msec (30<t) Status of scram system (F.19.1) -1 (scram and ARI are failed) Minimum HPCI flow (F.20.10) 250 gpm (lowered from 500 to 250 gpm so level will stay in control band for longer period of time as reactor shuts down) Time at which operator takes control of HPCI 500 sec injection (F.20.14) .HPCI target level table (F.20.15) Target water level = -85 inches (middle of EOP target band) Time at which operator takes control of RCIC 500 sec injection (F.21.12) RCIC target level table (F.21.13) Target water level = -85 inches (middle of EOP target band) MSIV closure on specified time (F.25.1) 0.0 seconds Time at which MRI is initiated (F.28.1) 300 seconds Time at which Loop 1 of SPC becomes effective 1000 seconds (Table A.2.1 of Ref.2 (F.50) Time at which Loop 2 of SPC becomes effective 1000 seconds (Table A.2.1 of Ref.2) (F.51) 2 GENE-637-024-0893, "Evaluation of Susquehanna ATWS Performance for Power Uprate Conditions," 9/93.

Table 5.14-2 Sequence of Events Calculated by SABRE

      • Kinetics file is /d0O/appL/sabre3vO/data/u2c10.simtran.out 5

lc14 .dat

      • SABRE data fiLe is Ihome/eamac/sabre31lfinputlec-atws-050
  • This is not a restart case 3 1 1 S A B R E - Version .

w MRI (14) U2C10 -- MSIVC ATUS - No SLCS - SO t(sec)= .000 Scram is FaiLed t(sec)= .000 Low-Pres Condensate Injection .Irop. t(sec)= .000 ARI is FaiLed t(sec)= .000 MSIV closure on specified time t(sec)= 4.005 MSIVs are closed t(sec)= 4.345 Recirc pump-A trip on hi Rx press. Setpoint for trip = 1135.00 psig Trip delay = .230E+00 sec. t(sec)= 4.345 Recirc put1-B trip on hi Rx press. Setpoint for trip = 1135.00 psig Trip delay = .230E+00 sec. t(sec)= 110.953 Feedwater Trip on Low Stm Line Press psia Flow stops when press < 175.00

 .t(sec)=         114.133  HPCI Suction Trans to SP on high SP Level SP water Level =       23.83 ft t(sec)=       126.313  Level Setpoint Setdown                             13.00 in.

Setdown occurs when level drops to DeLay for setpoint setdown = .11E+02 sec t(sec)= 160.723 HPCI initiation on Low water level Setpoint for initiation = -38000 in. t(sec)= 160.723 RCIC initiation on Low water Level Setpoint for initiation -38.00 in. t(sec)= 300.013 Manual Rod Insertion initiated Insertion Rate = 90.000 sec/rod 500.023 Operator takes control of HPCI ni. t(sec)= t(sec)= 500.023 Operator takes control of RCIC in!. t(sec)= 1000.003 Loop 1 of Supp Pool CooL Effective Service Water Temperature = 88.00 F t(sec)= 1000.003 Loop 2 of Supp Pool Cool Effective Service Water Tenperature = 88.00 F t(sec)= 1000.033 DW Cooler Trip on Hi DW Press Trip Setpoint = 1.720 psig

Table 5.14-3 SIMULATE Input File for Run 40002019 - Check of SABRE MRI Model 24200100 10 80 0 0 0 0 Omcas2920 15 15 25 5 0 0 0 0 0 15 16216 43172 2 2 2 2 2 2 2 2 0 2 0 0 2 2 2 Rods In) ddisk MRI-CHECK (U2C10) ATWS (16 PRES BEGEXP ENDEXP DELEXP POWER WT SUB 15.200 00.000 123.8 2.74 0.0 1080 1 15.200 (1) Execute INPUT & NUCLER 2 0 to 2 (2) 1=Initialize Hailing to present distrib & reset (7) O=input value of subcooL used to catc density 20 SI 1 20 S4 0 (3) O=Use restart Xe 2=Use equit Xe 21 S2 0 O=No Search 2=Pwr Search 7=use file power distr (5) Search Option 21 S1 0 (9) O=No DP Catc 3=DetL FIBWR 4=Apprx FIBWR 21 S3 3 (27) O=ControL blade depletion has no effect 21 s17 0 30 8 S7 -- . . . 30 9 S7 -- 0 0--00........ 30 10 S7 -- . . . 30 11 V7 -- 00 -- 00 30 12 S7 --. . . 30 13 S7 30 14 S7 30 15 S7 99 I LAST

Table 15.4-4 NMR Model Mem File for SVIMUlATE Run 14O902019 - Check of SABRE I 1 Iusersfchai ko/S IMLATE/mr i .si mutate. out 2 *none* 3 *non* 4 *none* 5 *none~* 63 7 7 MRI-CHECK (U2C1O) SIMULATE EC-ATWS-0505 Rev 8 M4A Chaiko A6-3 Box 31 9 *non* 11 1 medium 2 *nw 3 *none* 4 *aLL* 5 1 *nonfe* 2 /users/chai ko/SXF4JLATE 3 ,users/chaiko/SIMIJLATE/mri .sirmuLate.in 4 /userslchai ko/SIMULATE/r9808566.0OOI 5 *nonfe* 6 *none* 7 ,users/chaiko/SIMULATE/mr¶ .sinatate.restart 8 *non*

9 1~ an 70 7'O JS 60 0 5o= 40 a. "C 3 0 C 0 E z20 z0 10

                                                         -o
                                                         -0  1000 2000  3000 4000  5000  6000 7000 Time (sec)

Time (eec) U E. 0. U r a. CL I Time (eec) Time (eec) Figure 5.14-1 Comparison of SABRE 3.0 (1D kinetics) and SABRE 2.4 (point kinetics) for U2CIO MSIV closure ATWS with SLC system failure. Shutdown by manual rod insertion (MRI). (SABRE Cases 14 and 14a)

F' , 6ew -

                                                                    -7a,01'e-
  • SABRE 2.4 (Point)

SSABRE 3.0 (1D)

       "20 0

U.

      -20 200 S-40                                             EL E

":58-60 I

  --- 80 I

150

   -100 "1-120 0000 1000~~~hn 1(Cee0c00            )0D5ý0 96W 3 Time (eec)                                          Tkne (sec) kinetics) and SABRE 2.4 (point kinetics) for U2CI0(MRI).

Figure 5.14-2 Comparison of SABRE 3.0 (1D system MSIV closure ATWS with SLC failure. Shutdown by manual rod insertion (SABRE Cases 14 and 14a)

f if- -K--I 20 10 0) '0 0 10 0O 1000 1500 2000 2500 3000 Time (sec) Figure 5.14-3 Comparision of SIMULATE power calculation against SABRE for case of 16 inserted rods.

5.15 Drywell Temperature Response for Small Steam Break A small steam break is initiated at t--O. The break flow is specified as 212 Lbm/sec and the enthalpy of the steam is specified as 1190 BtuiLbm. The event is initiated from nominal operating conditions (3441 MWt, 100 MLb/hr, and 1050 psia). The operating cycle is U2C1O. In this event, the reactor vessel heat load and the drywell cooling load are both set to zero. The heat transfer to drywell steel structures is neglected by setting the heat transfer areas to very small numbers. Changes made to the base lOxlO SABRE reactor model documented in Appendix G of this calculation package are shown in Table 5.15-1. The SABRE calculation corresponds to SABRE Case 15 in the Computer Case Summary. For this scenario, the drywell temperature response is governed by the following mass and energy balance equations: dMs = Wb,.,a -XS WDC (5.15-1) dt xs )W c (5.15-2)

                                                       =dWt,. h ,,ý - xs Woc  hs            (5.15-3) dt where t =time (see),

Ms =mass of steam in the drywell (Lbm), MN =mass of nitrogen in the drywell (Lbm), Wb, =break flow (Lbm/sec), hb,, = break enthalpy (Btu/Lbm), Woc = mass flow rate through downeomer vents (Lbm/sec), Ys = mass fraction of steam in the drywell, hs = enthalpy of steam in the drywell (Btu/Lbm), Ps = partial pressure of steam in the drywell (psia), TDw = drywell temperature ('F), vs = specific volume of steam in the drywell (fW/Lbm), CvN= constant-volume specific heat of nitrogen at drywell temperature (Btu/Lbm-oF), From the input and initial conditions for the SABRE calculation, the following data is obtained for the solution of (5.15-1) and (5-15.2): TDW (0) = 120 'F,

Ms(O)=563. 34 Lbm, MN (0) = 15517.03 Lbm VDW = dry'well free volume = 239,600 f, PDw (0) = 15.2 psia through the downcomer vents. Since the For the first 8 seconds of the transient, there is no flow temperature can be determined by integrating break flow and enthalpy are constant, the drywell at each time step of the integration is computed (5.15-1) and (5.15-3). The drywell temperature hss for pressure and the ASME steam table routine using the Ideal Gas Law for steam partial the used to compute the drywell temperature for superheated enthalpy. The FORTRAN program 5.15-3. After about 15 minutes the drywell first 8 seconds of the transient is listed in Table has approaches a steady-state value. At this time, nearly all of the N 2 in the drywell temperature in (5.15-3). Also, at this time Wb,,k $ WoC, been transferred to the suppression chamber, so xs-l therefore the energy balance becomes (5.15-4) hb, -hs S TDW) =0 by the drywell temperature at t=15 min is obtained As a further check on the SABRE calculation, drywell pressure at t=-15 min is solving (5.15-4). In solving (5.15-4), the SABRE-calculated listed in also performed with the FORTRAN code used to obtain Ps.. Solution of (5.1 5-4) is SABRE result for drywell temperature are compared against the solutions to Table 5.15-3. is good 5.15-1. As can be seen from the Figure there (5.15-1), (5.15-3), and (5.15-4) in Figure the solutions to the mass/energy balance equations agreement between the SABRE results and presented above.

Table 5.15-1 Input Deck in Appendix G Changes Made to Base SABRE 10x10

Table 5.15-2 Sequence of Events Calculated by SABRE KIinetics file is /dOO/appt/sabre3vO/datatu2cl0.simtran.out

  • SABRE data file is /home/eamfac/sabre_31/input/ec-atws'O505/cl5.dat
  • This is not a restart case 1 S A BR E - Version 3.1 (15) Small steam break t(sec)= .000 Low-Pres Condensate Injection mnop.

t(sec)= .000 LOCA Table used for break data LOCA Table ends at = .100E+10 sec t(sec)= 2.213 Scram on high drywell pressure Setpoint(psig) = .17E+01 Scram time (sac) = 2.80 t(sec)= 2.213 HPCI initiation on Hi Drywall Press. Setpoint for initiation = .17E+01 psig t(sec)= 2.213 DW CooLer Trip on Hi OW Press

                                   -      nt Aep Tr Setpoi Trip                - .. . .        . . psig
                                                            .1.720 t(sec)=           5.033    ALl Control Rods Inserted t(sec)=           6.653   Level Setpoint Setdown                             13.00 in.

Setdown occurs when Level drops to Delay for setpoint setdotn = .11E+02 sec t(sec)= 6.653 Recirc pump-A runback on low Rx13.00 LvL in. Setpoint for Runback = Trip delay = .300E+01 sec 6.653 Recirc pump-B runback on low Rx13.00 lvt t(sec)= in. Setpoint for Runback = Trip delay = .300E+01 sec t(sec)= 28.463 NSIV closure on Low reactor pressure Setpoint(psia) = 875.700 t(sec)= 32.483 MSIVs are closed t(sec)= 36.383 Main Turb Trip on high water Level Setpoint(inches) = 54.000 t(sec)= 36.383 HPCI Trip on hi water level Trip Setpoint = .54E+02 in. t(sec)= 42.563 Feedwater Trip on high Level Trip Setpoint = .54E+02 in. t(sec)= 515.453 HPCI initiation on Low water Level Setpoint for initiation = -38.00 in. t(sec)= 515.453 RCIC initiation on Low water level Setpoint for initiation = -38.00 in. t(sec)= 515.453 Recirc pump-A Trip on Low Rx Levelin. Setpoint for Trip = -38.00 Trip delay = .900E+01 sec. 515.453 Recirc pump-B Trip on Low Rx Level t(sec)= -38.00 in. Setpoint for Trip = Trip delay = .900E+01 sec.

E£ - -#-V ,5-VVv t(sec): 661.959 Initiation of Core Spray FLow Reactor Press = 319.49 psig Supp Chanber Press = 30.49 psig t(sec)= 682.037 RCIC Trip on hi water LeveL Trip Setpoint = .54E+02 in. t(sec)= 682.037 HPCI Trip on hi water LeveL Trip Setpoint .54E+02 in. ml

5-e-A -rids-ocr Table 5.15-3 FORTRAN Code Used to Solve Mass/Energy Balance Equations (5.15-1), (5.15-3), and (5.15-4) IMPLICIT REAL*8(A-H ,O-Z) REAL*8 Msl ,Ms2,mnl COMMON /datal/ R,R1,omegas,T1,Ms1,

       &                   Ms2,vsl,vs2,hsl,psl,Cvyl,
       &                   Mn1,dt,hb,Wb,whb2,Pfiin OPEN (UNIT=7, FILE='check.out',STATUS=IUNKNOWdN',
       &         ACCESS='APPEND' )

C*-* Inputs R=10.731 R1=1.9872 omegas=18. T1=120. 2 8 Cvnl = an2cpCT1)-R1/ .DO 4 Ns1=563.3 Nn1=15517. 03 Xs1=0.053455 P1=15.2 psl=Xsl*P1 hsl=HSS(psl ,T1,duml.,vsl) Cvn=O. 1774 Wb=212. hb=1190. Vdw--239600. Pfin=49.80 c**** Compute DW Temp as function of t (sec) t=O.DO dt =1.0 Ms2 = Ms1 vs2 = Vdw/Ms2 whb2 = O.DO 50 CONTINUE KOUNT=0 C**** trap zero Ta=0O0. TbI500. fa=funCTa) fb=funCTb) IF ( fa*fb .GT. O.DO ) THEN PAUSE 'Zero not trapped' STOP END IF 100 CONTINUE KOUNT=KOUNT+1 Tc=(Ta+Tb)*0.5 fc=funCTc) C**** Check for divergence IF (KOUNT .GT. 100 ) THEN PAUSE 'SoLution wouLd not converge' END IF C**** Check for convergence IF C DABS(fc) .LT. 1.D-05 ) GOTO 150 IF C fa*fc .LT. O.DO ) THEN fb=fc Tb=Tc GOTO 100 ELSE fa=fc Ta=Tc GOTO 100 END IF 150 CONTINUE C**** Print the temperature WRITE(*,101) t,Tc WRITE(7,101) t,Tc _ 101 FORMATC 2F15.5 )

c** Do another time step t~t+dt Ns2 = 14s2 + Wl,*dt vs2 = Vdiw/NsZ t whb2 =whb2 + dtfllb hb IF ( t -GT. 8.01 ) GOTO 900 GOTO 50 c*n** Transient probLem finished C** compute final temP 900 CONTINUE KG.JNT=O TalGO. Tb=500. fa~funl (Ta) fb=funl (Tb) C*n** Check if zero is trapped IF ( fa*fb .GT. 0.00 ) THEN of Tfin' PAUSE 'Zero not trapped in cabc STOP END IF 910 CONTINUE KCIJNT=K0UNT+l IF C KOUNT .GT. 100 ) THEN Tf in' PAUSE 'couLd not converge to STOP END IF TcO0.5*(TB+Tb) c** Check for convergence 950 IF ( DABS(fC) .LT. 1.D-05 )GOTO IF (fa*fC .LT. 0.00 ) THEN fb=fc Tb=Tc GOTO 910 ELSE faf c Ta=Tc GOTO 910 END IF 950 CONTINUE WRITE(* 101) 900.,Tc WRITE(7,lOl) 900.5 Tc STOP END FUNCTION fun(TZ) IM4PLICIT REAL*8(PrH,O-Z) REAL*8 Msl ,Ms2,Mnl COMM4ON /datall R,R1,omnegeS,TI,MsI*

         &                     4s2,vs1,vs2,hSslps1,Cvnli
         &                     Mn1,dt,hb,wb,whb2,Pfin 28 CvnZ       an2cp(TZ)-R¶/ .DO 6

PsZ4R*(T2+459. ?) I (vs2*omegaS) hs2=HSS( ps2, T2, dual, 6mn2) fun- Mnl*( Cvn2*TZ _ cv1*T1 fun + MsZ ( h~s2 - ps2*vs2*a ) 4 fun=i tun= fun - Nsl*( hsl - psl*VSl*B ) fun= fun - whb2 RETURN END FUNCTION funiCT) IM4PLICIT REAL*8(A-H,O-Z) REAL* NsI ,isZ,Mnl COMMON /data¶/ R,Rl ,oregas,T1,MSl,

           &                    MsZ,v~s1,vs2,hs1,ps¶&licn
           &                    Mn¶,dt,hb,wb~whbZ,Pfin funi     HSS( Pfin, T, duni, dun2)
            &        -It RETURN

END FUNCTION an2cP(teflP) c calculates n2 cp (btu/Lbii-f) fromn temperature (degf) principles c equation for cp is frou tabLe-d of chernical process c by hougen, watson, and ragatz, wiLey, 1959. inmLicit real*ý8(ah,o-z) data a,b,c,d I 6.903d0, -.03753d-2, 0.1930d-5, -0.686ld-9 tk=5.dO*( tenip-32.dO )f9.dO +273.15dO cp~a+b* tk+c*tk**24d*tk**3 an2cp=cpIZ8 .OdO return end

350 300 0L - SABRE 250 0 Mass/Energy Balance Eqs. I E CD W, 200 150 I i I 100 I I I i 200 400 600 BOO 1000 0 Time (sec) against a Figure 5.15-1 Comparison of SABRE-calculated drywell temperature solution to energy balance equations (Eqs. 5.15-1, 5.15-3, and 5.15-4) for small steam break accident.

PAGE 222 APPENDIX-A and Energy Balances Derivation of Downcomer and Steam Dome Mass P A.1 Downcomer Region is given by For the downcomer region, the fluid mass balance

                                                                       - Wba,                       (A-1)
                         = W e + .+W, + WI S(L 1,t)- W. (O, t)-0W dt the injection flow rate, Wcond is the rate of where MDC(t) is the downcomer fluid mass, Winj is

[see Eq. (2.2-5)], Wt,(L*,t) is the steam condensation occurring on the cold make-up flow flow rate at the jet pump inlet, Wvs is the liquid flow rate at the separator exit, Wj(O,t) is the effects, and W,.. is the break flow vapor separation rate from the downcomer due to bouancy used in modeling a Loss-of-Coolant Accident (LOCA). expressed as The equation of state for the downcomer region can be (A-Z) P = pDC(P.,DC) where P* is the system pressure, and hk is the volume-weighted enthalpy. Using (A-2), the term dMDc/dt in (A-i) can be expressed as OMCd(V~cpc)= dVDC aPdhC a~p dP* A3 (A-3& t~ diC dt +i DC~ L*ý + Substitution of (A-3) into (A-i) leads to PDC di + nC* ý7 +(VDC Oj W WC') + Wt S.(LS. 10WJ (O10Ww Wf mak

                                                            ,~+

(A-4) vary with time, the sum of the two volumes Although the downcomer and steam dome volumes by is constant and is denoted by Vo. VDC is therefore give vC = v0 - vD (A-S) Substitution of (A-5) into (A-4) yields the where VSD refers to the steam dome fluid volume. downcomer mass balance equation (2.2-1). S

PAGE 223 energy balance for the downcomer region Neglecting potential and kinetic energy effects, the can be written as dUDC= Wwhi,, + Wo,,,h, + Wis(Ls,t) ht s(Ls,t) (A-6) hW,(.0 t)- (O,tWt) (o, thg(O, t)J h) d Sh(,,o Oh , gas-phase enthalpy, ht , (O,t) where hinj is the injection-flow enthalpy, hg ., is the steam-dome of the jet pump region, h,, (0, t) is the refers to the liquid phase enthalpy on the inlet boundary region, hs(Ls,t) denotes the liquid gas-phase enthalpy on the inlet boundary of the jet pump downcomer, and hDC phase enthalpy at the separator exit, h,, ,C is the gas phase enthalpy in the Also, the last term on the right-hand is the volume-weighted enthalpy in the downcomer region. fluid because of volume change. The side of (A-6) represents the work done on the downcomer can be expressed as total internal energy UDC of the fluid in the downcomer region

                                                          &C sDC)                                        (A-7)

UDC =VDC PDC(P Taking the time derivative of (A-7) leads to dUDc PIhD )tP4- __h

                                        -p        VDC(CP     +-S)DC
                                                                 + P             + VDC ()DC Kdi    I12 (A-8)

Substitution of (A-8) into (A-6) yields

                                                )    a+DC                   _PP pnDCV, P CjDC      +VD         C PDh+DC)   2PCd                (DC DC~     aP*      J~d
       =WWV hw + Woý,d,     hg SD + wes VLs,t h0 (s')      VgJOt)hs('t-W(O't) hgjr(O't)                   (A-9)

P* dVt

      - W,,,hsDC     -Wibria     DC -

Inclusion of (A-5) into (A-9) results in the energy balance (2.2-2). 0 0

PAGE 224 A.2 Steam Dome Region For the steam dome region, the fluid mass balance is WS s I,)+ We W, - W.I -C..d - Wb,. (A-10) dt where Wst is flow rate of steam exiting the vessel. The steam dome fluid mass can be expressed as MM =VM pS(P*, ) (A-11) where k. is the volume-weighted enthalpy of the steam dome fluid. Evaluation of dM,,/dI using (A-11) leads to ___M dVaV, apsDdP~ Substitution of (A-12) into (A-10) leads directly to the mass balance Eq. (2.2-3). With the assumptions used in obtaining the downcomer energy balance, the steam dome energy balance becomes dUSD = L h g(LS It)+ W. hgD - (WO. +WT&*,) _WCo hgsW P" dV'C dt did (A-13) where USD is the total internal energy of the fluid in the steam dome region. Using a relation analogous to (A-7), the total internal energy time derivative can be expressed as dUsE = (P dVD PM+ ~ + DVS ~apS 1_ A (A-14) Substitution of (A-14) into (A-13) yields Equation (2.2-4).

APPENDIX B Derivation of Fuel and Cladding Heat Balance Equations Neglecting axial conduction, the heat conduction equation governing the temperature distribution in an average-power fuel rod is given by Pf CPf r t= (rq) (B-1) at 19 where Pf fuel density (lbm/ft 3 ), CP f fuel specific heat (Btu/lbm 'F), Tj(r,z,t) = fuel temperature (TF), r - radial coordinnxiW(ft),.. z - axial coordinate (ft), q,'(r, Z,t) = radial heat flux (Btu/ft2 -sec), S(z,t) normalized axial power shape function, and q"(r, t) axial-average volumetric heat generation rate (Btu/ft3 -sec). In SABRE, a two-radial-node model is used to simulate fuel heat transfer. The governing equation for the inner node is derived by integrating Eq. (B-1) over the nodal cross-sectional area, i.e., from r=O to r=raand from 0=0 to O=27c. Carrying out the spatial integration on each of the terms in Eq. (B-1), and introducing area-averaged variables, yields 2 "( a , ,t a T o.(Z't) JdO fdrrpf Cpf Pf. Cpa7r. at '-2 0 0 29 r J f d '@dr qO(r,z, t)=R r2 (Z' 4z, (W-4) 0.

pAGE 226 where node (CF), Tfa(Z,t) the radial-average temperature for the inner fuel radius of inner fuel node (ft), 0F) of the fuel within the density (lbmlft ) and specific heat (Btu/lbm-3 Pfa,CPfa inner node, rate within q-' (z, t) radially-averaged volumetric heat generation 3 the inner node (Btu/ft -sec). With Equations. (B-2) - (B-4), Eq. (B-1) becomes Pfa Cp.f*rf2a Tj,(Z't).._2r q-(ro,z,t)+r.2 i-(z,t) (B-5) the cross-sectional area of the outer node (r<r<rb Similarly, integrating each term in (B-1) over and 0<0<27E) leads to aTf(r,z, t) ( 2 2 aT (z,t),

                                                      - 1 p,               _r.

fU I&r pf C, 2 rb Irb q,(rb, z,t)_ r.qr"(r,z )* W'117) _d0 jdra[rq' '(r,z t -=2n j & r 0 ra and 2a9 dr r q rw(, Z, t)= 7(r 2 _r).2q (Z 't ). I $ 0 ra for the outer fuel node becomes With Eqs. (B-6) through (B-8), the heat balance equation

                                                              '(rz,t)+(r2          2)

Pa ,: r_ OT (z,t) Pbp jb (rb- ra 2r q - rb)(z TF) of fuel in outer fuel node, p bCp.*= density (Ibm/ft 3 ) and specific heat (Btu/lbm node (°F), Tpb(z,) = radial-average fuel temperature in outer r= radius of fuel pellet (ft), and

PAGE 227 (Btu/ft3 -sec). (Zt volumetric heat generation rate within outer fuel node be of equal volume so that r, = rb/,J2. The In the SABRE code, the fuel nodes are chosen to node is approximated by the steady-state rate of heat flow from the inner to outer fuel conduction relation 27rq(rozt)' PLT (z,t) - T (z,t) (B-10) (B-10 27cr. q"(r(r 2-r5 temperatures Tf. and r,, r2 - the radial locations coincident with the radially-averaged 0 T,,, respectively ( F), fuel node to

           =      logarithmic mean perimeter for beat transfer from inner outer fuel node (ft),

(r 2 -r,) the inner node has a thickness greater In Equation (B-10), the conductivity kfa is used because is relatively thin, the parameter r, is taken as than that of the outer node. Since the outer node the radial midpoint of the outer node, i.e., (B-11) r2 -(r + r. assumed to correspond with the radial location For the transient calculation, the location ri is Thus, r, is obtained from the following coincident with Tfa under steady-state conditions. for a solid cylinder with a radially-uniform steady-state solution of the heat conduction problem heat generation rate: (B-12) Tf.as(r,z)= f4k1 oz V r2+ T-s(r.,z) Given Tf,,,(ro,Z), Eq. (B-12) holds for where the subscript S denotes steady-state conditions. is defined by O<r<ra. The radial average steady-state temperature 1 d Idr T.(-3

                                   *r. 0    0 Substitution of (B-12) into (B-13) yields (B-14)

Tfa,(Z)= TfaS(ro, z)+- r=. 2,(z) 8kf

sides of Eqs. (3-13) and (3-14) and replacing r with ri leads to the Equating the right-hand average temperature in the inner node: following relation for the location of the radial 15 ) r from the gives the rate of heat transfer per unit area Combining Eqs. (B-10), (B-11), and (3-15) inner to outer node as Z:r,,,O= fak:.L (Z',0- f(ZtA analogous to heat balance equation for the cladding is derived in a manner The radially-averaged heat balance is that used for obtaining (3-9). The resulting (W317) Pa C*-(r ir*)aTd-zt) 2r. q"(r,, z't) - 2 r. qT(r.,z,t) where 3 Ne cladding density (lbmf/t ), 3 CP'C = cladding specific heat (lbM/ft ), (OF), Ta radial average cladding temperature d rci inside clad radius (ft), and rco - outside clad radius (ft). and qr(rz,t) to complete the fuel heat transfer description, the heat fluxes q,(rb, z,t) In order model, these temperatures. Using a lumped resistance must be expressed in terms of the various analogous to (3-10): quantities can be approximated by relations (), 27c r. q"(r,, ,Z't)= - Ir +1,8o (b-r 2 ) + 1 27 rrbkf2. 2xrr Hg 4ixr. k,, (B-19)

  • andand271 r.oq(~~,) T,=(~) ,(~)
                                      't                    1"r 2n r, Hf 0

PAGE 229 and (B cladding surface temperature. Combining (B-11), (B-16), (B-18), where Td,,r is the

19) wwith B-5), (B-9), and (B-17) gives the radially-averaged fuel and cladding heat transfer equations:

a.t(z,t) 2k, . f (r=,-r=) +(r: -r*=)*(z,t), Pfrc*(r -r~ ~)- , k,,, -tr=

                                         +rb-ro).

(Tf.,,-T*) (Tfr- 1 Td) L4rbkp, 2r~H, k

                                                                             -4,-r,,

Lr~iJ2)

                .          z 2, Vr( -,T.)

nj,t,-'Vc

                           )                        __j___)
                                                      +T  - +J
                                                                                      +(r)./ra
                                           -4rbk,   2),_H=       4r,I ,    j L2r, ,  .a,,

(W1 CI 1,t"22) Sapa t

PAGE Zsu APPENDIX C Derivation of Error Term in Equation (3.1.2-1) In this Appendix, the magnitude of the error term in Equation (3.1.2-1) is derived. By the mean-value theorem, we have the following result zj+A7 zj+Az J dz p(z,t)h(z,t)= pk,,t) fdziW(z,t)0 p(A,t)i0 (,), (C-1) Si Z where t E(zjzj + Az). Also by the mean-value theorem, we have the following relation for the control-volume average fluid density Pit)=- f.dp(z,,0= *A4 (c-2) .... zi where C r Op zi + Az) Note that in general t.# p(t,t) can be expressed in terms of p(C,t) through the following Taylor Series expansion: Since t andC are both contained within the interval (Z,,Z +Az), we have the following result

                                     - =o(&).                                       (C-)

Combining (C-2), (C-3), and (C-4) gives p(k,4= p,()+O(A4) (C-5) Finally, substitution of (C-5) into (C-1) leads to the desired result: Jdzp(Z,t)W(z,t)= Az pj(t) h,(t)+O(AZ2) (C-6) f-

APPENDIX D AUXILIARY CALCULATIONS D.1 Geometric and Hydraulic Parameters for Code Input D.1.1 Jet Pump Region This region consists of all twenty jet pumps. Fluid volume = (2)(125.06 fW3) = 250.12 ftW (125.06 ft3 is the volume of 10 jet pumps.)1 Height of region = 16.495 ft.' Flow path length =height = 16.495 ft. Flow area volume/height = 250.12 ft 3/16.495 ft 15.16 ft2 Hydraulic diameter = hydraulic diameter of a single jet pump 4 where V1 = fluid volume for a single jet pump = (250.12 ft3 )/20 = 12.51 ft3 , and h =jet pump height = 16.495 ft. Therefore, Friction factor = 0.013 2 I 1 Dodge, C.E., Geosits, J.I, and Lehmann, C.R., "Qualification of Transient Analysis Methods for BWR Design and Analysis", PL-NF-89-005, Rev. 0, p. 18, Pennsylvania Power & Light Company, Allentown, PA, December, 1989. 2 "Mow of Fluids through Valves, Fittings, and Pipe", Technical Paper No. 410, p. A-25,Crane Company, 300 Park Avenue, New York, NY, 1980.

PAGE 23Z uid InerWa 3 The fluid inertia for the jet pump region is calculated as 20 Fluid inertia-Z(A/L,) where A, = average flow area for one jet pump (fW 2 ), and Li = flow path length for a jet pump (ft). Fluid inertia= (1/20)(L 1 /A) =(1/20)[16.495/(15,16/20)] = 16.495/15.16=1.1 ft' Jetpump inletpressureloss coefficient Diameter ofjet pump throat = 8.15 inches 4 Flow area per jet pump = {throat area} - {area occupied by nozzle} Flow area per jet pump = l[8.15 rn) -(3.14 in)21= 44.43 M2. 4 It is assumed that the jet pump nozzle does not affect the inlet loss coefficient except for the fact that it causes a decrease in the effective flow area. Throat diameter based on effective flow area = = 7.52in. Radius of curvature ofjet pump throat = 0.56 in. (see Ref. 4] Radius of curvature/diameter = 0.56/7.52 = 0.074 The loss coefficient for this value of radius/diameter is 0.24.5 The flow area associated with the loss coefficient is 44.43 in2 (0.309 ft2 ), i.e., the effective flow area at the throat of a single jet pump. In SABRE, all twenty jet pumps are lumped into a single control volume. Therefore, the appropriate inlet flow area is (20)(0.309 ft 2)=6.18 ft2 . Inlet loss coefficient 0.24, Inlet Flow Area 6.18 ft2 . 3 Harrison, I.F., et at., "RETRAN A Program for Transient Thermal-Hydraulic Analysis of Complex Fluid Flow Systems", Volume 5: Modelling Guidelines, p. 11-16, NP-1850-CCM, Electric Power Research Institute, Palo Alto, CA, April, 1986. 4 PLE-4610, File 244-03, "Jet Pump Details", March 5, 1984. 5 Idel'Chik, I.E., Handbook of Hydraulic Resistance Coefficients of Local Resistance and of Friction, AEC-TR-6630, p. 93, 1966.

PAGE 233 Jetpump outletpressureloss coefficient The jet pump outlet pressure loss coefficient is estimated by combining the loss coefficients for a 90' bend and a sudden expansion: K=Kw+KWW where Kd = 30f, 6 and

          == (1-02 )2    (Ref. 6).

Here, f = friction factor for 19" pipe (inside diameter of diffuser at exit is 19") 0.012 (Ref. 6), and

    = (flow area at jet pump exist)/(flow area of lower plenum/20).

The flow area at the exit of a jet pump. is 1.97 ft2 , and the total flow area of the lower plenum is 93.87 ft2 .7 Therefore, 1 is 0.42, and the expansion loss coefficient is 0.678. The loss coefficient for the jet pump exit, based on the jet pump exit flow area, is (30)(0.012) + 0.678 = 1.04. Since all twenty jet pumps are lumped into a single control volume, the flow area used in SABRE for the jet pump exit is (20)(1.97 ft2) = 39.40 ft2 . Therefore, the jet pump exit loss coefficient and associated flow area are given by I. K = 1.04, Outlet Flow Area = 39.40 ft2. D.1.2 Lower Plenum Region Fluid Volume = 2286.69 ft 3 [Ref. 7] Height of region = elevation difference between bottom of jet pump region and bottom of lower reflector region Height of region = 16.876 ft - 9.937 ft = 6.94 fL [Ref. 7, pp. 17-18] Flow path length= 17.28 ft [Ref. 7] Flow area = volume/flow length = 2286.99 ft3/17.28 ft = 132.33 ft 2 6 "Flow of Fluids through Valves, Fittings, and Pipe", Technical Paper No. 410, Crane Company, 300 Park Avenue, New York, NY, 1980. 7 Dodge, C.E., Geosits, J.J., and Lehmann, C.R., "Qualification of Transient Analysis Methods for BWR Design and Analysis", PL-NF-89-005, Rev. 0, p. 18, Pennsylvania Power & Light Company, Allentown, PA, Decembcr, 1989.

Hydraulic diameter = 1.014 ft [Ref. 7] Friction factor = 0.013 [Ref. 6] Fluid inertia = (flow path length)/(flow area) = 17.28 ft/132.33 ft2 = 0.13 ft-I D.1.3 Core Region The present model includes the active core region and the upper and lower reflector regions. The core is assumed to be loaded with ANF 9x9 fuel. Lower Reflector Region The height of the lower reflector region is 1.15 ft [Ref. 7, p. 17]. The SABRE code assumes that the flow area of the lower reflector region is equal to the flow area of the active core. Also, fluid friction is neglected within this region. Active Core Channel internal cross-sectional area8 = (5.278 in)2 = 27.86 in2. Cladding outside diameter (fuel rods) 0.424 in [Ref. 8] Cladding outside diameter (water rods) 0.425 in [Ref. 8] Cross-sectional area of fuel rods = 4'(0.424 in) 2 = 0.141 in 2 4 Cross-sectional area of water rods _= (0.4 2 5 in)2 = 0.142 in 2 4 Total cross-sectional area occupied by fuel and water rods = (79)(0.141 in2) + (2XO. 142 in 2 )

                                                                     = 11.42 in2 Flow area per channel      =   27.86 in2 - 11.42 in 2 = 16.44 in 2 Total active core flow area= (764)(16.44 in 2 )(ft2 /144 in2 ) = 87.2 ft 2 Flow path length = length of active fuel          =   150 in = 12.5 ft      [Ref. 8]

Active Core fluid volume = (12.5 ft)(87.2 ft2) = 1090 ft3 Height of region flow path length = 12.5 ft 8 "Susquehanna Unit 2 Cycle 4 Fuel Cycle Design Report", ANF-89-063(P), Advanced Nuclear Fuels Corporation, Rev. 1,April, 1989.

Hydraulic diameter = [(4)(fluid volume)]/[wetted surface area] Surface area per channel= (12.5 ft)[2i(O.425 in) + 79Rt(0.424 in) + 4(5.278 in)][ftP12 in]

                          = 134.39 ft2 Fluid volume per channel         = 1090 ft3/764      = 1.427 f 3 Core region hydraulic diameter          =  [(4)(1.427 ft3 )]/(134.39 ft2 ) = 0.0425 ft.

FrictionFactor The friction factor for the core is calculated from the following correlation: 9 fc =0-175Rec-°' where fc = core friction factor Rec -Reynolds number for core region. The Reynolds number Rec is given by Re = - where Gc = core mass flux (Lb/ft2 /sec) Dhc = core hydraulic diameter (ft)

                   = liquid phase viscosity (Lb/ft sec).

fc is calculated by SABRE at the initial reactor conditions and is then held constant throughout the transient. SpacerFriction The loss coefficient, based on the channel flow area, for a single fuel spacer is given by the following correlation:10 KS, = 6.983ReC-' 71 . In the SABRE calculation, the fluid friction due to the spacers is distributed over the length of the active fuel by defining a spacer friction factor, 9 "Principal Fuel Management Parameters Susquehanna Unit 2, Cycle 4", ANF-88-158(P), Advanced Nuclear Fuels Corporation, October, 1988. 10 "Susquehanna 2 ANF-3 Design Report Mechanical, Thermal, and Neutronics Design for ANF 9x9 Fuel Assemblies," ANF-88-210(P), Rev. 0, February, 1989.

PAGE 236 where N, = number of fuel spacers =7, and Lc = length of active core region (ft). Fladd Inertia The fluid inertia for the core region is given by" 7641 1 IC =- iWO where Ic = core region inertia (ft-1), A, = flow area of a single core channel (ft 2), and L, = flow path length of a core channel (ft). Flow area perc-hannel 16.44 in2 = 0.1142ft2 . In the calculation of 1c, the flow path length Li includes the upper and lower reflector regions in addition to the active core region. Li = active core length + lower reflector length + upper reflector length

      = 12.5ft+1.15ft+1.218ft                   [Ref. 7, p. 17]
      = 14.868 ft.          (i = 1, 2, 3, ... , 764)
    - (74)A        ,,^ 14"868ft          _ 7t' 1c i)-        = 764,Xn.l1142ft*=.1ftq Orifice and Lower Tie PlateLoss Coefficients The lower tie plate loss coefficient used in the RETRAN model of SSES is 1.37 [Ref. 7,
p. 20]. This value (1.37) is based on the flow area through the lower tie plate which is 49.8 ft2 [Ref. 7, p. 20]. The lower tie plate loss coefficient K. for SABRE is K,=1.37, Flow Area through Lower Tie Plate = 49.8 ft2 .

l Harrison, J.F., et al., "RETRAN-02 - A Program for Transient Thermal-Hydraulic Analysis of Complex Fluid Flow Systems", Volume 5: Modelling Guidelines, NP-1850-CCM, Electric Power Research Institute, p. H-16, Palo Alto, CA, April, 1986.

PAGE 237 The reactor core contains three types of orifices: central, side-entry peripheral, and bottom-entry peripheral. 12 In this analysis, the core region is modeled with a central region orifice. The loss coefficient for the orifice is calculated below: Orifice pressure drop at design conditions13 = 5.09 psi Flow rate through orifice {rated total core flow) - (leakage flow through core support plate). Rated total core flow = 00xl0 6 Lb/hr 27,778 Lb/sec. Leakage flow through core support plate (1/3){leakage flow through lower tie plate holes}14 Since the total bypass flow rate is -10 MLb/hr, the following relation holds: Leakage flow through lower tie plate holes 10 MLb/hr - {Leakage flow through core support plate) Leakage flow through core support plate (1/4X10 MLb/hr)

                                                         = 2.5 MLb/hr.

The flow rate through the orifice is then Flow rate through orifice 100 MLb/hr - 2.5 MLb/hr 97.5 MLb/hr. The loss coefficient for the orifice Kor can then be calculated from 5.09psi K.,G. 2g,(144)por where G,* = mass flux through orifice (based on orifice flow area) (Lb/ft2 see) A, = combined orifice flow area for all fuel bundles = 22.67 ft2 [Ref. 1, p. 22] Por = liquid density at 1053 psia and 528 TF [Ref. 13, Figure 5.1-1]

              = 47.3 Lb/ft3 .

12 "Principal Fuel Management Parameters Susquehanna Unit 2, Cycle 4", ANF-88-158(P), Advanced Nuclear Fuels Corporation, October, 1988. 13 "Susquehanna Steam Electric Station Units 1 and 2 Final Safety Analysis Report", Table 4.4-1, Pennsylvania Power & Light Company, Allentown, PA. 14 "Susquehalma 2 ANF-3 Design Report Mechanical, Thermal and Neutronics Design for ANF 9x9 Fuel Assemblies", ANF-88-2 10(P), Advanced Nuclear Fuels Corporation, February, 1989.

PAGE 238 G., = (97.5 X10 6Lbs(6 h hr)30ec-Y26 ) = 1146194.68 ft2-Lb see Kor = (5.09)(2)(32.2)(144)(47.3)/(1194.68)2 = 1.57, Akr=22.67ft2 Upper Reflector Region The height of the upper reflector is 1.218 ft [Ref. 7, p. 171. The SABRE code assumes that the flow area of the upper reflector is equal to the flow area of the active core region. Wall friction is neglected within the upper reflector. The local pressure loss at the outlet of the upper reflector region is computed using the loss coefficient from the PP&L RETRAN model, Kx = 3.64 [Ref. 7, p. 20] The corresponding flow area at the exit of the upper reflector is 139.8 ft2 [Ref. 7, p. 20]. D.1.4 Bypass Region Bypass flow area = 67.87 ft2 [Ref. 7, p. 17] Hydraulic diameter = 0.196ft [Ref. 7, p. 17] Height of region = 14.87 ft The height of the bypass region is equal to the height of the active core region plus the height of the upper and lower reflector regions. Friction factor fB = 0.0185 [Ref. 5, p.A-25] Fluid Inerlia The fluid inertia for the bypass region is given by

          =A' where LB       = flow path length (ft)

AB = flow area (ft2) JIB 14.87 ft167.87 ft 2 = 0.22 ft-1 . Loss Coefficientfor Bypass Inlet The loss coefficient for the bypass inlet was determined by requiring a bypass inlet flow of ~10MLb/hr upon initialization of the SABRE code with total core flow (active core

PAGE 239 flow plus bypass flow) specified at 100 MLb/hr. A loss coefficient of 0.5065 [based on the leakage area (0.976 ft, Ref. 7, p. 22) from the lower reflector to the bypass channel] was found to give the correct flow split between the active and bypass regions. Leakage from the lower plenum directly into the bypass channel is neglected in the SABRE model. Loss Coefficientfor Bypass Outlet The flow area at the exit of the bypass channel is 48.98 ft2 (Ref. 7, p. 21). The pressure loss associated with the bypass outlet has been neglected because it is small in comparison to the inlet pressure loss. D.1.5 Upper Plenum Region

                    = 955.35 fW  3      [Ref. 7, p. 18]

Fluid volume Region height = 4.98 ft [Ref. 7, p. 18] Flow area = 955.35 fW 3 /4.98 ft = 191.84 ft 2 . Using the flow area and flow path length from p. 18 of Ref. 7, the fluid inertia for the upper plenum region is Iu = (3.77 ft)/(249.78 ft2) = 0.015 f 1. Hydraulic diameter = 3.97 ft [Ref. 7, p. 18] Friction factor based on the hydraulic diameter given above = 0.01 [Ref. 6, p. A-25] In the upper plenum, three control volumes are used to describe the spatial variation in fluid conditions. The flow area on the outlet boundary of the upper plenum is equal to the flow area of the riser pipes which is 39.66 ft2 (see Section D.1.6). The lower boundary of the first node in the upper plenum is in contact with the upper reflector and bypass regions. Thus, two junction areas, equal to the exit area of the upper reflector (139.8 ft2) and the bypass exit flow area (49.98 ft2), are used in calculating the flow of mass and energy across the inlet boundary of the first node in the upper plenum region. D.1.6 Riser Region Fluid Volume = 402.78 ft3 [Ref. 7, p. 18, Control Volume 90] Region height = 10.156 ft [Ref. 7, p. 18, Control Volume 90] Control-Volume Flow area = 402.78 ft 3/10.156 ft = 39.66

Flow area at inlet of riser= 45.10 ft2 [Ref. 7, p. 21, Junction 80] Flow area at outlet of riser = 35.67 ft2 [Ref. 7, p. 21, Junction 90] Hydraulic diameter = 0.505 ft [Ref. 7, p. 18, Control Volume 90] Friction factor based on hydraulic dim neter = 0.015 [Ref. 6, p. A-25] Fluid Inertia Based upon a typical flow regime map, the flow regime within the riser region should be annular under the conditions of interest.15 This is demonstrated through the following calculations: Rated flow through risers = 100x10 6 Lb/hr Riser flow area = 39.66 ft2 Mass flux through riser = (lO0x10 6 Lb/hr)/(39.66ft2 ) = 2.52x10 6 Lb/hrft2 The flow regime map indicates that the flow regime in the riser (which typically has a void fraction of-{0.7 or greater) will be annular as long as the mass flux is greater than ,-0.25x10 6 Lb/hr. Since this mass flux corresponds to -10% core flow, it is reasonable to assume that annular flow exists for the majority of conditions of interest in this work. In computing the fluid inertia for this region, it is assumed that the inertia of the vapor core is negligible. The area occupied by the liquid annulus (assuming a riser void fraction of 0.7 which is typical for natural circulation conditions) is Cross-sectional area of liquid = 0.3(39.66 ft2 ) = 11.90 ft2 . Thus the fluid inertia is [R (10.156ft)/(11.90ft 2 ) = 0.85 ft- 1 . Inlet Loss Coefficientfor RiserRegion The value for this loss coefficient is taken from the Susquehanna RETRAN model (Ref. 7, p. 21) Inlet loss coefficient = 0.41 (based on inlet flow area of 45.10 ft2) D.1.7 Separator Region Fluid volume = 438.24 ft 3 [Ref. 7, p. 18, Control Volume 100] 15 McFadden, J.L, eL al., "RETRAN A Program for Transient Thermal-Hydraulic Analysis of Complex Fluid Flow Systems", Volume 1: Theory and Numerics (Revision 2), NP-1850-CCMA, p. III 31, Electric Power Research Institute, Palo Alto, CA, November, 1984.

T--- - . . Region height = 6.167 ft [Ref. 7, p. 18, Control Volume 100] Control-volume flow area = volume/height = (438.24 ft3 )/(6.167 ft) 71.06 ft2 . Flow area at separator inlet = 35.67 ft2 [Ref. 7, p. 21, Junction 90] Flow area at separator outlet = 40.73 ft2 [Ref. 7, p. 21, Junction 100] Hydraulic diameter = 0.514 ft [Ref. 7, p. 18, Volume 100] Friction factor 0.015 [Ref. 6, p. A-25] Fluid Inertia For a separator inlet quality of 0.20, which is typical for natural circulation operation at normal water level, the separator inertia is16 -190 ft- 1 . Since there are 225 separators, the region inertia is 90/225 = 0. 84 ft-'. Is = 0.84. t. Loss Coefficientfor SeparatorInlet The initial pressure drop across the separator is estimated from the following vendor pressure drop equation: APf.*jo, = 0.0112 Wu2nf (psi)17 where Ws = flow rate at separator inlet (MLb/hr) HS = homogeneous specific volume at separator inlet

                 = XU+(I-X)f          (f 3 /Lb) x      = flow quality.

It is assumed that all of the local frictional resistance is concentrated at the separator inlet because of the higher fluid density compared with that at the separator outlet. The separator inlet loss coefficient Ks, is calculated by equating the above pressure drop relation to the local and distributed pressure drop contributions: 0.01 12Wszons = G(21. + fs GG74Ls f 8pf( q 4 )D(D 2 gpf (144) + .7-1) 16 "Qualification of the One Dimensional Core Transient Model for Boiling Water Reactors", NEDO 24154, Figure 4.3, October, 1978. 17 "Final Report: Startup Test Program Browns Ferry Nuclear Plant Unit 1", NEDO-20747, January, I 1975.

PAGE 242 where WS S = mass flow rate at separator inlet (MLb/hr), u HI= homogeneous specific volume at separator inlet (ft3 /Lb), Ks', = separator inlet loss coefficient, Gs = separator inlet mass flux (Lb/ft2 see), (DH = homogeneous two-phase multiplier, Pf = liquid phase density (Lb/ft3), (p = Martinelli-Nelson two phase multiplier, Dh,s = separator region hydraulic diameter (ft), fs = friction factor for separator region, and Ls = flow length for separator region (ft). The value of Ks,j is calculated by SABRE through solution of Equation D.1.7-1 during the initialization process. The value of this loss coefficient is then held constant during the transient simulation. D.1.8 Steam Dome Region Steam Dome Volume In the SABRE model, the steam dome volume is calculated by subtracting the downcomer fluid volume from the combined steam dome/downcomer volume which is denoted as V0 . The combined volume, which includes the steam line volume up to the inboard MSIV, is obtained from the PP&L RETRAN model for Susquehanna (Ref. 7, pp. 18, 26, and 27) as follows: vo = V120 + V130 + V,3 + vIO + V310 + V3 3 Vo = 6502.74+ 2788.98 +2182.60+1641.96+900.13 +317.32.= 14,334 ft (D. 1.8-1) The steam dome volume is then computed as VsD = Vo -VD where (D.1.8-2) VD = Downcomer fluid volume (ft3 ).

rFl I - D.1.9 Downcomer Region In order to account for the non-uniform flow area of the downcomer region, water level as a function of downcomer fluid volume is obtained from the following table.18 "19 A plot of this data is shown in Figure D. 1.9-1. Table D.1.9-1 Downcomer Level Versus Fluid Volume MJFid Volne a~ 0.0 -406.00 58.72 -400.50 743.37 -336.38 982.48 -311.19 1641.96 -211.00 2507.76 -161.50 2858.99 -113.55 2903.69 -108.88 2978.47 -102.88 3073.37 -96.88 3189.01 -90.88 3326.01 -84.88 5084.56 -13.50 5197.85 -6.50 5902.70 50.37 6143.75 60.13 6613.54 80.00 14420.99 348.50 A downcomer level of 80" corresponds to the top of the steam separators. If the liquid level or two-phase mixture level, within the downcomer region, exceeds 80", then the free area of the downcomer occupies the total free area of the reactor vessel. Note that in SABRE, the downcomer region is a variable-volume region, and by definition it occupies all of the volume external to the shroud except the steam region. An area-versus-level table is also used in SABRE to calculate the vapor separation rate from the downcomer under conditions where the downcomer consists of a two-phase mixture (see Equation 2.2-6). The area-versus-level table (Table D. 1.9-2) is obtained by differencing the data in Table D.1.9-1. A plot of free area versus level is given in Figure D.1.9-2. l8 PP&L Report NPE-89-001, "The PP&L Approach to Risk Management and Risk Assessment", Rev. 2,

p. 362, January 1989.

19 PP&L Calculation No. NFE-B-01-002, Rev. 3, "Base RETRAN Model".

Table D.1.9-2 Downcomer Free Area Versus Downcomer Level

Figure D.1.9-1 I 400 300 Downcomer Water Level versus Downcomer Fluid Volume. 200 i.E 100 0

     -100
     -200
     -300 0
     -400
     -500 0    2000    4000     6000       8000   10000      12000 14000 16000 Downcomer Fluid Volume (cu. ft)

Figure D. 1.9-2 Downcomer Free Area Versus Downcomer Level 350 300 250 200 a 150 8 100 50

        -400       -300       -200           -100         0         100       200 Downcomer Level (ui. above instr, zero)

D.2 Data for Reactor Heat Structures Two reactor heat structures, in addition to the fuel rods, are included in the SABRE reactor model: the reactor vessel and the internal steel structures. Numerical values for the model parameters are given below. Mass and Surface Area of Reactor Vessel The radius of curvature of the top and bottom head of the reactor is 127 inches. 20 The inside surface area of the hemisphere is (27z (127 in)2/144) = 704 ft2. The inside surface area of the cylindrical part of the vessel is [nt (251)/12] [876-(2)(127)]/12 = 3406 W. Total inside surface area A, of the reactor vessel is (2)(704) + 3406 = 4814 ff. The total mass of the reactor vessel is approximately given by Vessel Mass =MR (4814 1f)(6.19/12 ft) p,,.i

                       = (2483 if) p,,,a      (Table 1.3-1 of FSAR, Rev. 48, 12/94)

PA -= 489 Ibm/f3 . 21

                       - (2483 f#) (489 Ibm/f1)    =  1.21 x 106 Ibm Mass and Surface Area of Vessel Internals The total solid volume, excluding the fuel, is (2263.91 - 871.39) f1 = 1393 f1.22 A characteristic thickness of 1" is assumed for the internal structures. The surface area Av, of the vessel internals is then estimated as Surface area  = A      = (Volume)(2)/(characteristic thickness)
                       = (1393 ftX2)/(1/12 if) = 33,432 f1.

Mass of vessel internals = Mv = (1393 f1) (489 Ibm/fl) = 6.81 x 105 Ibm Heat Transfer Coefficient For the submerged part of the structures, single-phase, forced-convection heat transfer is assumed. A value of 200 Btu/hr-ft?-°F is assumed for the heat transfer coefficient. This value is estimated from the data given on p. 10-41 of Ref. 21. For the region where the metal is in contact with steam, a value of 10 Btu/hr-ft-°F is assumed for the forced 20 PP&L Drawing FF110760 Sheet 0101, Rev. 1, "Reactor Primary System Weights & Volumes". 21 "Chemical Engineers' Handbook", 5th Edition, p. 3-90, McGraw-Hill Book Company, New York, 1973. 22 pp&L Drawing FF110760 Sheet 0101, Rev. 1, "Reactor Primary System Weights & Volumes".

rmar- 4-, convection heat transfer coefficient. These heat transfer coefficients are supplied as part I' of the input data so values other than these can be specified. The heat transfer coefficient for the metal is a fuction of the reactor water level. The water-level-dependnt heat transfer coefficient is approximated by h= 1-](200/3600) + L ](103600) (Btu/sec-If -F) (D.2-1) where L = RPV water level measured from bottom of vessel (inches), and L, = Total height of vessel = 876 inches.(Ref. 22) Parameter values for the reactor vessel and internals heat structure models are summarized in Table D.2-1. Table D.2-1 Reactor Heat Structure Model Parameters M" Vessel mass (ibm) 1.21 X 10" My1 Mass of vessel internals (ibm) 6.81 x i0 AR Area for heat transfer between 4814 reactor vessel and coolant (ft') A* Area for heat transfer between 33,432 vessel internals and coolant (ft 2 ) h, Coefficient for heat transfer From Eq. D.2-1 between coolant and reactor vessel (Btu/sec- ft 2 _- F) h* Coefficient for heat transfer From Eq. D.2-1 between coolant and vessel internals (Btu/sec- ft 2 _- F) CPS Specific heat of steel (Btu/lbm-*F) -0.1423 SKern, D.Q., Process Heat Transfer, p. 799, McGraw-Hill, 1950.

D.3 Partial Derivatives of Fluid Density (3-6) and (3-14) contain terms which involve The nodal continuity and energy equations where h is the volume-weighted the density partial derivatives cOp/aP'andOp/COh to be is the system pressure which is taken enthalpy [see Equation (2.1-5)] and P* of these This section discusses the computation equivalent to the steam dome pressure. liquid, equilibrium two-phase mixture, derivatives for the three fluid states: subcooled and super-heated vapor. D.3.1 Subcooled Liquid computes Opl/COPandOp/O-h in subroutine For this thermodynamic state, SABRE by analytically differentiating the curve-fit DERLIQ. This subroutine was developed which gives subcooled or saturated polynomials in FORTRAN function VPHL(P,H) VPHL is specific volume as a function of pressure P and enthalpy H. Function liquid 24 Op /OP'and Op/ O are obtained from taken from the RETRAN code. Thus 2 0p ,~(P',h,)I' =_4, (',h4)r Ou,(P.,h,)() D .3 a = " - r( c 1) anda*_**(' ,* *(.h)***lh)0. h)20( h4 (D.3-2) Lp ,(Ph)'=,( h Oh COh 4 Note that in this thermodynamic region h = h,. Also, in the above relations, u (p*,h,)- VPHL(P*,h,). D.3.2 Two-Phase Mixture by and volume-weighted enthalpy are given In the two-phase region, the fluid density (D-3-3) p = (1-4)p, +oCP' and (D.3-4) and  : -O hl + pga hgvp. equilibrium, p, and p, Since the two-phase mixture is assumed to be at thermodynamic to Equations (D.3-3) and (D.3-4) can be used depend only on the system pressure P*. ii. The resulting relation is solve for a in terms of p , pg,h 4 ,h,, and for Transient Thermal-Hydraulic Analysis of 24 McFadden, JJI,, et. al., 7RETRAN A Program Electric Fluid Flow Systems", Volume 1: Theory and Numerics (Revision 2), NP-1850-CCMA, Complex 1984. Power Research Institute, Palo Alto, CA, November,

a = pp(h g+ phg -h) equation of state for the two-phase Substitution of (D.3-5) into (D.3-3) yields the mixture: 1 pgP - P.3-6) (D') p(p.jj*= pt(p*)- INh()-

                                     +p'(P) the chain derivatives    cp  /aP*and  ap/lh     are then computed by application of The     partial rule to (D.3-6):

p a, (D.3-7) Ap0Rapd + O_% 8 p dP apgdP h dPa dP" P" andht p (D.3-8) Oh [.+h(-h.)+ pg(.-) and ptp(h--h,)(P-p).) where

     -     =1+

Lh- ht- ,g-2p.)+*(h-j-p*)l h-h o,(D.3-9) (Th3-1O) ap PA ptQhht)h t) S- pg(p-h.)+ (h g (D.3-11) ap = PtP(P P(P - ap(g and ) (h- :-*'P.* l-' (D .3-12)

             -p     p p ~ , - g ý          - ,

ah tpA,(h7Jt+pgkhgh)ij

                               ,h           ,p Ih)p2h the FORTRAN vapor and liquid are computed from.

In SAIBRE, the density of saturated as function routines YPHV and VPHIL and (D.3-14) p I(p*) ýTJHLIP*,HFP(P*)It

where andthe FORTRAN functions HGP(P*) and HFP(P*) give, respectively, the saturated vapor liquid specific enthalpies as a function of pressure. The FORTRAN functions VPHY, VPoIL, HGP, and HFP are all taken from the RETRAN code. (Ref. 24) d- g and -- are computed from dP dP (D.3-15) _LPs_ __- __ _ iP' ýJY(,hgf and dpL=_ a-- -, h - (D.3-16) dP* ýYh The and U,(P*,h5 )=-VPHVIýP,HGP(P') where o,(P',hg)ýVPIIVIýPHGP(P*)l are Nsau/p' & /ahg, NJ~P 05 5 lap ajlahl, dh5 /dp*, and dhjdP* derivatives analytically differentiating the curve-fit computed in subroutines formulated by VPHL, HGP, and HFP. VPHL, polynomials in the RETRAN functions D.3.3 Super-Heated Vapor Region region, the volume-weighted enthalpy h- is equivalent to the In the super-heated vapor and 8p /ah are In this thermodynamic region, ap /aP specific enthalpy of the vapor h,. computed from

                                         ,(Pa hP)r                                                         (D.3-17)

___ _a ý=4(P hJ- _p*

                                          ~1           )12 hg____        g (

and a_ a g (P*, hjP 4!g(Phgt  ! (D.3-18) P. hg-Ogh ahgOh where u,,(P*,h,)= JVPHV(P*,hg) D.4 Steam Condensation Rate conditions where models condensation of steam on cold make-up flow under SABRE The elevation elevation of the feedwater spargers. downcomer water level is below the 8 of the feedwater spargers is calculated in Section D.5.

is governed by the following The steam condensation rate on the cold make-up flow energy balance: (D.4-1) wi' h i')=W ..(hgs&Dh where W,,j = injection flow rate (Lb/sec), W, = steam condensation rate (Lb/sec), hb# = enthalpy of injection flow (Btu/Lb), hg sD = enthalpy of steam in steam dome region (Btui/Lb), and (Btu/Lb). hr = enthalpy of injection flow after condensation has occurred of saturated liquid at Note that h/ ! h,(PY) where h,(P*) is the specific enthalpy formed as a result of steam pressure P*. Equation (D.4-1) assumes that the liquid flow, i.e., the condensate condensation comes to thermal equilibrium with the injection cool below the saturation may transfer heat to the make-up flow and consequently The condensation efficiency 71 is defined as h' -hcorresponding to P*. temperature h- (D.4-2)

    "1hf(P )-hw (p.4-1) leads to the following Using Equation (D.4-2) to eliminate h!, in Equation expression for the steam condensation rate W,,,,:                                          (D.4-:3)

W.,d- iW.,V (P*)- hwl]

         =           hW.)-n[hf(P)hJ steam condensation efficiency for A General Electric experimental study indicates that show that the condensation HPCI flow is in the 95 to 100 percent range.25 GE test results efficiency is insensitive to the following operating parameters:
  "* Injection water flow rate,
  "* RPV water level, and
  "* Reactor pressure.

of 95% is used in SABRE Based on these findings, a condensation efficiency increase linearly from zero with calculations. The condensation efficiency is assumed to water level 1 meter or more water level at or above the feedwater nozzles to 95% with below the nozzles. Boiling Water Reactor High 25 APED-5447, "Depressurization Performance of the General Electric Pressure Coolant Injection System", May, 1969.

26 the feedwater spargers A recent calculational estimate of condensation efficiency , with any sensitive studies uncovered, indicates that a lower bound on rn is about 50%. Thus of lj in the range 0.50 with respect to the condensation efficiency should consider values <_ri<0.9 5 . D.5 Elevation of Feedwater Spargers the bottom of the The center-line of the feedwater spargers is located at 498.5" above 40 pipe (Ref. 22) reactor vessel (Ref. 22). Each sparger is constructed of 6" schedule the elevation at the which has an outside diameter of 6.625" (p. B-16 of Ref. 6). Thus on the spargers are 2" top of the sparger is 498.5" + 6.625"/2 = 501.8". The nozzles radius elbows so that the schedule 40 elbows.2 7 It is assumed that the nozzles are short 1): dimensions of an elbow are as shown below (see p. A-29 of Ref. T7-T d=2- r+d/2=2" -,=+1- ."=3 Elevation=501.8" ......- J-------* is therefore 501.8" + 3" - 1" = 503.8" The elevation at the center line of the nozzles to instrument zero is above the bottom of the reactor vessel. This elevation with respect 503.8" - 527.5" = -23.7". D.6 SRV Flow Area and Critical Mass Flux Correction FSAR. The data is The flow rate per SRV is given in Table 5.2-2 of the Susquehanna flux through the SRVs is repeated here in Table D.6-1. In SABRE, the critical mass The flow area per computed from the homogeneous critical flow model (Section 2.6). SRV is 0.11192 ft2 (ref. 7, p. 22). with the data in Comparison of the flow rates obtained from the critical flow model rate through the SRVs. Table D.6-1 indicates that the model over-predicts the steam flow the values in Table In order to have SABRE compute SRV flow rates consistent with multiplied by a correction D.6-1, the mass flux obtained from the critical flow model is factor of 0.884. 26 Jensen, P., and Healzer, J., "Water Level Reduction to Suppress Instability During a BWR ATWS", Palo Alto, CA, March 1992. NSAC-163, Appendix C, Electric Power Research Institute, 27 SSES FSAR Figure 121.7-3b, Rev. 46, 06193.

Table D.6-1 (Data is From Table 5.2-2 of SSES FSAR) D.7 Time Constants for Coastdown of Recirculation Pump Flow and Feedwater Enthalpy RecirculationPunp Flow pump drive flow, The time constant governing the coastdown of the recirculation 28 A value of 4 seconds seconds. following a pump trip, should be in the range of 3 to 4.5 is used in the SABRE model. FeedwaterEnthalpy the thermal capacitance of the A time constant of 60 seconds is used to simulate feedwater heaters.29 D.8 Delayed Group Fractions and Decay Constants model (see Section 2.4). Values SABRE uses 6 delayed neutron groups in the kinetics decay constants ?i are given in the for the delayed group fractions (3i /P3)and associated 30 following table: Station Unit 2 Startup Test Program", 28 "Selected Transient Predictions for Susquehanna Steam Electric Section 3.4.3.1, PP&L Report NPE-85-001. 29 NEDO-32047, "ATWS Rule Issues Relative to Core Thermal-Hydraulic Stability", January, 1992. Data Transmittal", February 30 PLI-73515, "Power Uprate Project - ATWS Nuclear Fuel Characteristics S 10, 1993, File P88-1.

Table D.8-1 Delayed Group Fraction and Decay Constants

                                  ...                           D                   ~5C 0.032                           0.0128 1

2 0250'.0316 0.185 0.122 3 0.395 0.324 4 0.147 1.40 "5 3.87 6 0.036 MSIV-Closure Transients D.9 Valve Data for Turbine-Trip and as input data for SABRE calculations: The following valve parameters are required Turbine Stop Valve Stroke Tine seconds. 31 The closure time of the Stop valve is 0.1 Tine Constantfor Turbine Bypass Valve Operation time time constant for valve operation is approximated by 1/3 of the valve stroke The the bypass valves reach 80%/o open in about (plus any delay). In the case of a turbine trip, is (0.1 sec delay plus 0.3 sec stroke time). 32 The time to reach full open 0.4 seconds time 0.475 sec. Therefore, the bypass valve estimated to be 0.1 sec + 0.3/0.8 sec = constant is (D.9-1)

        'EBP = 0.475/3 = 0.16 seconds.

Time constantfor turbine control valve operation The valve time constant is approximated by 1/3 of the valve stroke time. 33 Tev = 0.15/3 = 0.05 seconds. MSIV Stroke Time and greater than 3.0 seconds.34 A value MSIV closure time must be less than 5.0 seconds calculations. of 4 seconds is typically used in SABRE Numbers 1 and 2 Transient Safety Analysis 31 GEZ-7127, "Susquehanna Steam Electric Station Unit Design Report," p. 2-51, September, 1981. Steam Electric Station Unit 2 Startup 32 NPE-85-001, "Selected Transient Predictions for Susquehanna Test 3 Program," p.6 9 18.

                        , Section B.7.

3 Ec-FUE -9 Station Unit 2 Startup Test ProgramI", 34 "Selected Transient Predictions for Susquehanna Steam Electric Section 3.8.3.1, PP&L Report NPE-85-O01.

Safety/Relief Valve Stroke Time time of an SRV. Since the SABRE code This value is used for the opening and closing the appropriate delay is included in the does not allow for a delay on SRV actuation, and the closure delay is 0.3 seconds. 35 is 0.4 sec, stroke time. The SRV opening delay assumed (Ref. 42). The valve closure time is The valve opening time is 0.15 seconds an average delay of 0.35 seconds with equal to the opening time. Using an an effective stroke time of 0.5 seconds. opening/closure time of 0.15 seconds gives D.1O Safety/Relief Valve Set Points 36 SRV set points used in SABRE are The nominal Table D.10-1 SRV Relief and Reset Pressures D.11 Control Rod Insertion Time is taken from the Susquehanna RETRAN The "best-estimate" control rod insertion time control rod insertion is 2.8 seconds. model. 37 The time interval required for for Power Uprate Conditions,"

     "35GENE-637-02 4 -08 9 , "Evaluation of Susquehanna ATWS Performance 3

Table 2.2, October 1993. of Susquehanna ATWS Performance for Power 36 GENE-637-02 -08 , "Supplement 1 to the Evaluation 4 93 Uprate Conditions", October 1993. S 37 Cac. EC-FUEL-O520.

D.12 Setpoint for ATWS Recirculation Pump Trip The setpoint for the ATWS recirculation pump trip on high steam dome pressure is 1135 psig (SSES Unit 1 TRM, Table 2.2-1, 04/02/1999). D.13 Time Delay for Recirculation Pump Trip on Main Turbine Trip The time delay from closure of the turbine stop valve to initiation of the recirculation 3 pump trip is 0.175 seconds. 8 D.14 Pressure Regulator Gain 39 GpR = (3.3% Steam Flow)/psi. D.15 Feedwater Controller Gain and Time Constant In order to maintain RPV water level near the normal operating range (between 30 and 39 inches), SABRE uses a proportional control model to adjust the feedwater flow rate under transient conditions (see Section 2.7). This is a highly simplified description of the actual controller. The Susquehanna feedwater controller is a proportional-integral, three element (the three elements are level, feedwater flow, and steam flow) system. 40 In SABRE, the feedwater controller response is approximated by the following first order model: CF _W W - W') where

      = G- 1 (Lse, - L    ÷)+G  2 (Wt       WM),

and WF = feedwater flow (Ibm/sec), tre= feedwater system time constant (see), Gm, = controller gain (Ibm/sec-inch), Grcr = controller gain (dimensionless), L,*t = level setpoint (inches), and L*m = narrow range water level (inches). 3 8 PP&L Calculation No. NFE-B-0.-002, Rev. 3, "Base RETRAN Model". 39 Calc. EC-FUEL-0969, Section D.4. 40 GEZ-6899, "Susquehanna Nuclear Power Station Control Systems Design Report", Section 7, March, 1982.

The constants GF,,, Gr,, and cK were determined by trial and error. The three constants were varied until the SABRE calculated water level and feedwater flow showed good agreement with the plant data presented in Section 5.1. Optimal values of GF*l,GFcp and tcc were found to be 200, 1, and 1, respectively. D.16 Boron Transport Time Two-Pump Operation For two-pump operation, the time required for boron solution to travel from the SLCS pumps to the reactor is 30 seconds. 41 It is also assumed that the boron does not have a negative reactivity effect until it travels once around the natural circulation loop and re enters the core. The loop transit time is estimated from SABRE calculations to be -45 seconds. One-Pump Operation For one-pump operation, the transport time from the pump to the vessel should double from 30 seconds to 60 seconds. The loop transit time remains at 45 seconds. D.17 Model Parameters for Boron Injection System Boron Injection Rate 42 The nominal injection rate of elemental boron is 0.28 Lbm/sec for two-pump operation. S Cold Shutdown Boron Weight The normal temperature of the sodium pentaborate solution is 110 °F. 43 At this 43 the mass of B per mass of temperature the density of the solution is 9.1 Lb/gal. Also, sodium pentaborate is 0.183. With this information, the concentration of B in the SLC., tank is calculated to be 23,000 ppm.43 If it cannot be assured that the reactor will be subcritical under all conditions without boron, Susquehanna EOPs require boron injection until the Cold Shutdown Boron weight of solution." is injected. The Cold Shutdown Boron Weight corresponds to 4191 gallons In terms of mass of elemental boron, the Cold Shutdown Boron Weight corresponds to 41 NEDE-24222, "Assessment of BWR Mitigation of ATWS, Volume II (NUREG 0460 Alternate No. 3)",Table 3.1.1-1 (p. 3-43), December, 1979. 42 GENE-637-024-0893, "Evaluation of Susquehanna ATWS Performance for Power Uprate Conditions,"

p. 7, September, 1993.

43 Refling, J.G., "Calculation of Plant Specific Parameters for Rev. 4 of the Emergency Procedure Guidelines," PP&L Calculation SE-B-NA-121. 44EO-100-113, Rev. 4, "Level/Power Control", p. 13 of 67.

{Cold Shutdow Boron Weight J (4l9lgal of Soln19.1 Lb Soln

                       =gai                       of Soln Y 23,000   Lb of B) = 877 Lb of lo-6 Lb of Soln)

B. D.18 Data for Containment Model D.18.1 Initial Pool Temperature The maximum average suppression temperature allowed by Technical Specifications is 90 OF (Tech Spec 3.6.2.1, Amendment 178). This is the maximum value that should be used for the initial suppression pool temperature. D.18.2 Cross-Sectional Area of Suppression Pool Because of the presense of the downcomer pipes within the suppression chamber (the bottom of the downcomers correspond to 12 feet above the bottom of the pool), the free surface area of the pool is dependent on pool level. That is, the free surface area changes 2 at 12 feet above the bottom of the pool. The free surface area of the SP is 5277 ft at normal pool level. 4n Therefore, this is the free area for level > 12 feet. The volume of water in the SP at 24 feet is 133,540Aft (Tech. Spec. Bases Section 3.6.2.2, Rev. 0). Therefore the pool free area for level less than 12 feet is calculated, from 133,540 fV = (12 ft)A + (24-12X5277 f1) or, 2 A = [133,540 - 12(5277)]/12 = 5851.3 ft . The following data table accounts for the area change with SP level: I 00.00 12.00 5851.3 5851.3 12.01 5277.0 52.50 5277.0 D.18.3 Initial Suppression Pool Water Level The normal suppression pool water level is between 22 and 24 feet (Tech. Spec. 3.6.2.2, Amendment 178). D.18.4 Initial Suppression Chamber Air Space Temperature It is generally assumed that the initial suppression chamber air temperature is equal to the pool temperature. 45 SSES FSAR, Table 6.2-23.

D.18.5 Heat Load From Reactor Vessel The initial heat loss from the reactor vessel to the drywell is approximated by the system Btu/see). heat loss listed in the reactor heat balance." This value is 1.1 MW (1043 Equation (2-64) is Based on this value of the reactor heat load, the parameter (hA), in given by (hA)R = (1043 Btu/sec) / [TJ(0) - TDw(0)] where Tm(O) = reactor vessel metal temperature at t=O. This is set equal to the coolant saturation temperature at t-0. TDw(0) = drywell atmosphere temperature at t=0 (TF). D.18.6 Drywell Cooling Load equal to the As discussed in Section 2.10, the initial drywell cooling load Qo 1(0) is set Therefore, the initial reactor heat load QR2(0). [See Equations_(2.10-21) and (2.10-22)1. constant (UA)W1 in Equation (2-65) can be determined from (Q=2 (0) (UA)~= [TD(0)_- T,(0)] where T. 1 (0) = initial cooling water temperature (°F). The cooling water temperature T.. is the average of the inlet and outlet temperatures, T., and T*2 respectively: T. 1 (t) - [T;01, + L*1, 2 (t)]/2. 47 is The inlet cooling water temperature T.4 1 is set to 50'F, and the outlet temperature calculated from an energy balance on the cooling water Q. (t)=W. C, [T. 1 .2 (0-Te.W.] = ( )c, (TDW -[Tw 1 ,, + To, Q)l'

                                                                           /2 where W.ow = cooling water flow rate =51.6 lbm/sec (Ref. 47), and C,. = specific heat of water = 1.0 Btu/lbm°F.

Units 1 46 NEDC-32161P, "Power Uprate Engineering Report for Susquehanna Steam Electric Station and 2," December 1993. 47 PP&L Calculation EC-THYD-1001, "CONTAIN Model for Primary Containment".

D.18.7 Dryweil Free Volume The drywell free volume is 239,600 ft (SSES FSAR, Table 6.2-1, Rev. 48, 12/94). D.18.8 Initial Drywell Temperature (Ref. 47). The initial drywell temperature is specified as 120'F D.18.9 Initial Relative Humidity in Drywell (Ref. 47). The initial relative humidity in the drywell is 48% D.18.10 Initial Relative Humidity in Wetwell Therefore, initial relative humidity It is assumed that the wetwell air space is saturated. is 100%. D.18.11 Initial Dryweil Pressure Initial drywell pressure 0.5 psig (Ref. 47). D.18.12 Initial Wetwell Pressure Initial wetwell pressure = 0.5 psig (Ref. 47) D.18.13 Heat Transfer from SRV Tailpipe transfer from the SRV tailpipes to the The SABRE containment model considers heat the air space is calculated from wetwell atmosphere. The rate of heat transfer to (D.18.13-1) Q1= NsvD Ln, h17 (Tn - Tsc) where NRv = number of open SRVs, Djp = diameter of the SRV tailpipe

          = 12 inchesa L1, = length of tailpipe within wetwell air space (ft),

(Btu/sec-ft2-F) hap = heat transfer coefficient at outer surface of tailpipe 0 TTa = temperature of tailpipe ( F), and (7F). Tsc = suppression chamber atmosphere temperature wetwell is 68 ft (Ref. 48). The bottom The average length of an SRV tailpipe, inside the the suppression pool basemat (Ref. 48). of the tailpipe is approximately 3'-6" from suppression chamber atmosphere is Therefore, the length of the tailpipe exposed to the 71.5 ft-Lsp (D.18.13-2) LnT= 68 - (Lsp - 3.5) =

p. C-91, December 48 "Susquehanna Steam Electric Station Individual Plant Evaluation," NPE-91-O01, 1991.

where Lsr is the suppression pool water level measured in feet. computed by summing The heat transfer coefficient at the outer surface of the tailpipe is the contributions from natural convection and radiation. (D. 18.13-3) hT  : hrp. + hatp. The natural convection coefficient ha,. (Btu/sec. ft OF) 2 is determined from the following 49 cylinder. correlation for heat transfer from a vertical hp,, = 5.3 x 10- (TTP - Tsc Y,/, 3 (D.18.13-4) from5 0 and the radiation coefficient hwr (Btu/sec fr2 'F) is calculated _r _(TG+459.67)4 (Ts+459.67)jI (D.18.13-5) where s,*= emissivity of pipe = 0.85, and a = Stefan-Boltzmann constant

         = 4.761 x 10-13 Btu/sec ft oF4.

it is assumed that the pipe In calculating the rate of heat transfer from the SRV tailpipes, inside the tailpipe. The temperature is equal to the saturation temperature at the pressure internal pressure of the tailpipe Prp (psia) is calculated from g (Ls,-3.5') k (Ws NSv.18.136) gc 144 2g-, p- (Pr, (144) where PSC = suppression chamber atmosphere pressure (psia),

             = density of water in suppression pool (Ibm/fte),

g = 32.2 ft/sec2 ,

             = 32.2 ft-lbm/lbrsec2 ,

Lsp = suppression pool level (ft), 219, New York, 1972. 49 Holman, J.P., Heat Transfer, 3rd Edition, McGraw-Hill, p. Heat Transfer,,, pp. 448-449, Wiley, New York, 50 Incropera, F.P., & DeWit, D.P., Fundamentalsof 1981.

         =  loss coefficient for quencher, based on area of tailpipe, steam flow rate through SRVs (Ibmlsec),

Ns~v = number of open SRVs, 3 pg(P-m) = density of saturated steam at 2pressure P, (lbmnft ), and A, = flow area of SRV tailpipe (f ). used to A value of 1.0 (loss due to expansion from pipe; see Ref. 6, p. A-29) is steam density approximate KI . Equation (D.18.13-6) is solved by iteration because the is a function of the pipe pressure. D.18.14 Surface Area of Drywell Heat Structures within the The SABRE model accounts for the thermal capacitance of the steel structures containment. Within the drywell these structures are divided into four categories: wall, floor structures roof, floor, and internal structures (see Section 2.10). The wall, roof, and steel account for the thermal capacitance of the drywell liner, and drywell structural internal heat (grating, support steel, pipe hangers, and equipment) is modeled as the structure. Surface areas for these heat structures are given below: Surface Area of Dryweli Wall A diagram The drywell geometry is approximated by a frustrurn of a right circular cone. C-331 (E of the idealized geometry is shown below. Dimensions are from Drawing 105332).

36.375' 87.75' 88. Figure D.18.14-1 Idealized geometry of drywell for purposes of calculating heat transfer dimensions.

                                                         ý882 36.3         2
                                    ,,88.L36.375) *,2 Surface area of drywell wall    =            + 3             2       2 7)     + (87.75)2
         = 17,870 ft2.

Surface Area of Drywell Roof Surface area of drywell roof = n (18.188 ft) 2 = 1039 ft? Surface Area of Drywell Floor Surface area of drywell floor = 7(44)2 6082 ft2 Surface Area of Drywell Internals The total mass of steel in the drywell, including the liner plate, 1 1,598,836 Lbm

= 4(153,902+192,727+53,080) Lbm' =

Total mass of liner plate = (0.25/12)(17,870+1039+6082)p,

            = (0.0208)(24,991)(489)              = 254,188 Lb..

Total mass of internals = 1,598,836 - 254,188 = 1,344,648 Lbm 51 PP&L Calc. SE-B-NA-108, Rev. 0, p. 97

3 Volume of internals = (1,344,648 LbY)/(489Lb/fte) = 2,750 ft internal structural steel. The A characteristic thickness of 1" is assumed for the drywell

                                                                          = 66,000 ft2 heat transfer area of the internal structures is then 2(2,750)/(1/12)

D.18.15 Volume of Drywell Steel Structures the thermal capacitance. The volume of the steel structures is used in calculating Volumes of the four drywell heat structures are: Volume of drywell wall = (surface area) x (thickness)

              = (17,870 ft2)(0.25/12 ft) = 372 ft?

Volume of drywell floor = (surface area) x (thickness) 2

              = (6082 ft )(0.25/12 ft)        =127 ft3 Volume of drywell roof = (surface area) x (thickness) 2
              = (1039 ft )(0.25/12 ft)        =22 ft3 Volume of Internal Structural Steel =                = 2750 ft3 .

D.18.16 Surface Area of Wetwell Heat Structures the drywell liner which is There are two wetwell heat structures modeled in SABRE: Only the steel within the attached to the wall of the wetwell and the structural steel. capacitance of the submerged suppression chamber air space is included. The thermal the water (normal water level is steel is neglected because it is small compared to that of assumed). 2 Surface area of Wetwell Wall 2%t (44 ft) (52.5 - 23) ft = 8156 ft [Drawing C-331 (E-105332)] 2 Mass of liner plate in air space = (8156 ft )(0.25 ft/12)p, (8156)(0.02083)(489) = 83,076 Lbm. Mass of Structural Steel in air space = (4) (153,028 Lb) =612,112 Lbm (PP&L Calculation SE-B-NA-108, Rev. 0, p. 97))

                                                                                   = 1,252 ftl Volume of internals (structural steel) = (612,112 Lbj)/(489LbM/ft) in the wetwell. Based on this A characteristic thickness of 1" is assumed for the internals (2)(1,252)/(1/12) =

assumption, the heat transfer area associated with the internals = 2 30,048 ft D.18.17 Volume of Wetwell Steel Structures The liner plate is 1/4" thick; therefore, the volume of the plate is 3 ft2 Xo.020 8 ft) = 170 ftA Wall = (8156 Volume of Wetwell

Volume of Internal Structural Steel = 1252 ft3 D.18.18 Characteristic Length of Containment Heat structures coefficients. Characteristic lengths area used by the code in computing the heat transfer in the COTTAP The heat transfer correlations used in SABRE are the same as those used 52 code. Characteristic Length of Drywell Wall= height =87.75 ft Characteristic Length of Drywell Roof= Area/perimeter = 7c(36.375(1039 ft2 ) 91ft ft) 2 Characteristic Length of Drywell Floor = Area/perimeter = (6082 ft ) n(88 ft)-2f steel in the A characteristic length (height) of 10 ft is assumed for modeling the structural drywell and wetwell. Characteristic Length of Wetwell Wall height (52.5 - 23) ft = 29.5 ft. D.19 Model for Wide Range Level Indication The Wide Range Level model is based onthe instrument information provided in PP&L of the Calculation No. ICC-LT-24201B. The Wide Range indicated level is a function reads pressure differential across the differential pressure transmitter. The level indicator

                                                                                +60" when the
-150" when the differential pressure is -212.98 inches of water and Water Level (in differential pressure is -66.16 inches of water. Thus, the Wide Range inches) is given by LwR = -150 +1.4303(AP + 212.98) where AP = differential pressure (inches of water) across pressure transmitter.

at the AP is the difference between the variable leg and reference leg pressures differential is transmitter (see figure in Calculation No. ICC-LT-24201B). This pressure calculated as follows: AP = 27.73(Pv - PR) where Pv = Variable leg pressure (psia) PR = Reference leg pressure (psia) at standard The constant 27.73 is the conversion factor from psia to inches of water the point defined by conditions (0 °C). The pressures Pv and PR are calculated up to Beyond this elevation (d) within the Reactor Building (see Figure in ICC-LT-24201B). by point, the elevation heads will cancel. The *ressure Pv is given

                 ,= +z ZPg      2 Pf+Z3PDC +Z4PDJ]            PDCVDC V                 (12)(144)                (2)(144)g&

where 1990. 52 -COTrAP-2, Rev. 1, Theory and Input Description Manual," SE-B-NA-046, Rev. 1, November

Z, = a-LR z2= Max(Lm+ 10.66, 0.0) Z3 =Min(150.84, Lm + 161.5) z 4 = c-d a = 12(782.21308 - e) b 12(775.50000 - e) c = 366.00000 d = 12(756.97000 - e) e = 732.33333

         = 32.2 ft-Lbm-Lbr-sec2 2

v,, = fluid velocity (ft/sec) in downcomer = (W., + Wbzf/[(88ft )P*PC]

            = Mass flow rate from downcomer to jet pumps (Lbjsec),

Wb,*, = Break flow (if liquid break in downcomer region) (Lbm/sec), p~c = fluid density in downcomer region (Lbm/ft), and pDW = density of water at Drywell temperature (Lbm/fO). The pressure PR (psia) is calculated as SpDW(a -b)-+ pRB- d)--. where (12X144)

             = density of water at Reactor Building temperature (Lbm/ft).

ICC-LT-24201B. The elevations a, b, c, d, and e are taken from Calc. D.20 Core Spray Flow 6.3-79 of the Susquehanna Core Spray injection rate, for 1 division, is taken from Figure as a function of the pressure FSAR (Rev. 50, 07/96). Core Spray flow is expressed In the SABRE code, the difference between the reactor vessel and the containment. containment pressure in suppression chamber atmosphere pressure is used as the gives the Core Spray flow as a determining the Core Spray flow rate. Table D.20-1 function of pressure differential.

Table D.20-1 Core Spray Injection Rate as a Function of Reactor/Containment Pressure Differentail

w APPENDIX E & COMMON /PROPY/ HG,HF,VF,VG,ROF,ROG,DHFDP,DHGDP,DRFDP,DRGDP,A4UF, AMtUCL(51),THRMCL(51),CPCL(51),THERMF,CPCF, FORTRAN Program Used to Compute Heated Channel & AMJCG(51),THRMCG(51),CPCG(51), TSAT,SIGNA,SUBDC,IVOID,IJKC Response in Section 5.9 STATUS='NEW') OPEN (4, FILE='stepl.out', OPEN (5, FILE='step2.out', STATUS='NEW') G I.DO C AJ 778.DO C COUNTER - CURRENT FLOW SIMULATION FUEL BUNDLE NSC=O' C IN O*W p***N*****W*W*********W* WWWWWWWWWWWWWWWWWWWWWWWWWW'WV FREQ=O.ODO C**** NOMENCLATURE C**** SPECIFY THE NUMBER OF NODES C NODE u 25 C C VARIABLES: AHT = Heat transfer area (ft2) "Ch*a SPECIFY THE CHANNEL POWER (BTU/SEC) C POWER: 455.D0 C ALPH = Nodal void fraction C CO x Bubble concentration parameter TIME HBAR = Volume-weighted enthalpy (Btu/Lbm) C*** Set the initial time t and the time step size, AND THE END C tnO.DO C DHDTz temporal derivative of voL-weighted enthalpy (Btu/Lbm-sec) DELT 0.050DO 0 C HG = Gas-phase enthalpy (Btu/Lbm) TEND

  • 80.DO C HL = Liquid-phase enthaLpy (Btu/Lbm)

C POWER- Power in channel node (Btu/sec) C PRPH = Partial derivative of density w/r to vol-weighted enthalpy C**** SPECIFY THE DOME PRESSURE C (Lbm-Lbm/ft3-BTU) PRXI

  • 1000.DO C PRPP = Partial derivative of density w/r to pressure (Lbm/ft-Lbf) PRX = 1000.DO*144.DO C Pt = Temporal derivative of fluid pressure (LBf/ft2-sec) PRXO=PRX C Q = Control-volume heat source (BTU/sec)

C QPP = Heat flux to coolant (BTU/ft2-sec) C**** SPECIFY THE SATURATION FLUID PROPERTIES C RO = Control volume density (Lbm/ft3) HF= HFP(PRX1) C ROt = Temporal derivative of fluid density (Lbm/ft3-sec) HG= HGP(PRX1) C ROG = Control volume gas phase density (Lbm/ft3) VF= VPHL(PRX1,HF) C ROL m Control volume liq-phase density (Lbm/ft3) ýVG= VPHV(PRX1,HG) C SM = Mass source (Lbm/sec) VFG = VG - VF C SH = Enthatpy associated with mass source (BTU/Lbm) ROF= I.DO/VF C Vgj - Drift velocity (ft/sec) ROG= 1.DO/VG C SUFFIX C => CHANNEL TSAT= TPHL(PRXI,HF) C**** * ~WW* SIGMA= CIGMA(TSAT) DHFDP- DHFP(PRX1) Implicft ReaL*8(A-H,O-Z) DHGDP= DHGP(PRX1) DRFDP= DRFP(PRX1, HF, DHFDP) conimon Ivar/ AHTC(51),ALPHC(51),ALPHB(51),COC(51), DRGDP= DRGP(PRX1, HG, DHGDP, VG)

       &                COB(51),HBARC(51),DHDTC(51),HLC(51),
       &                HLB(51),HGC(51),HGB(51),GCV(51),GC(51),

PRPHC(51),PRPPC(51),QC(51),GppC(51), C**** SET CHANNEL FLOW AREA, CONTROL VOLUME LENGTH AND NODAL VOLUME. ROC(51),ROGC(51),ROGB(51),ROLC(51), AC -*87.11/764.D0

       &                ROLB(51),SMC(51),SHC(51),TEMPC(51),                                DELZC - 12.5DO/FLOAT(NODE)
       &                ULB(51),UGB(51),VgJC(51) ,VgjB(51),                                VC - AC*DELZC
        &               WLB(51),WGB(51),WOUTO(51),XC(51),APF(51),
        &               ICAL(51)

w 14VO KJ=O 00 0l flow, and Do 50 01,500 C**Set temporal derivative of pressure, core-inlet KJ=KJ+l C**** nodal power. IF ( T .GT. TEND ) STOP

                                                    = 3.1D6 Btu/see C~*** Total care power (at rated conditions)

Channel power (at rated conditions) =3-1D6/764 Btu/sec C*-* Do 59 jz1,NODE,1 Pt 0.000 CALL DDEN( PRXI. HBARC(J, PRPPC(J), PRPHC(JW POWERt - 0.00 59 CONTINUE C**** Set the initial state of the Core Channel HBAR2 IIHBARC(HOOE) Do 10 J*1,NODE,¶ CALL STATE( 26,PRX1 ,HBAR2,.R02,ROL2,ALPH2,TEMP2, APF(J)1 .DO & RQG2, HG2) WOUTD(J)0.DO HL2 = DMINI(HF,HBAR2) GCV(J)=0.0O R02 = (1.DO-ALPH2)*ROL2 +ALPH2*R062 GC(J= 0.00 Call VOIDIC ALPH2,ROL2,ROG2,SIGM,5,99,O.DO, ROGCM = ROG & C02,VGJ2,X2) ROICCI = ROF HGCWJ = HG Do 60 J=1,NODE,l HLCCJ = HF I = J+1 ALPHC(J)0.ODO AP(J1.DO OCWI = 0.OODO AP1=*3.j1:159D0 QPPC(J) = .00 QCWJ =1POWER*APF(J)/FLOAT(NWDE) SMCCJ O.DO SHCWJ 200.00

                                                           )*ROLC(J)     C**    SPECIFY THE SATURATION FLUID PROPERTIES ROCCIW      ALPHC(J)*ROGC(J) + C .DO-ALPHCCJ)                                   HF= HFP(PRXI)

ALPHC(J)*HGC(J)*ROGC(J) + HBARCWJ hGz HGP(PRX1)

       &               C .DO-ALPHC(J) )*HLC(J)*ROLC(J) )/ROC(J)                         VF= VPHL(PRX1,HF)

CALL DDEN( PRX1, HBARC(J, PRPPC(J), PRPHC(J)) VG= VPHV(PRX1,HG) 10 CONTINUE VFG =VG - VF GC(NOOE+1 )0.DO ROF= i.DO/VF NODE 1NOOE-1 ROG= I.DO/VG TSAT= TPHL(PRX1,HF) SIGMA= CIGMA(TSAT) C**** Set conditions on upper boundary DHFDP= DIIFP(PRXI) boundary C**** Put saturated liquid on upper DHGDP= DHGP(PRXI) HBAR2 =HBARC(NODE) DRFDP= DRFP(PRX1, HF, DHFDP) CALL STATE( 26,PRX1 ,HBAR2,R02,ROL2,ALPH2,TEMP2, DRGDP= DRGP(PRX1, HG, DHGDP, VG)

        &                ROG2, HG2)

HL2 = DNINI(HF,HBAR2) 2 R02 = (I.DO-ALPH2)*ROL + ALPII2*ROG2 CALL STATE( J,PRX1 ,HBARC(J),ROC(J),ROLC(J),ALPHC(J),TEMPC(J), Call VOIDL( ALPH2,ROL2,ROG2,SIGM'A,S,0.0,OD & ROGC(J, HGC(J )

        &                C02,VGJ2,X2 )                                            HLC(Ja     DMINI(   HF,HBARCMJ )

Call VOIDIC ALPHC(J) ,ROLC(J) ,ROGC(J) ,SIGMA,4,J,GCV(J), c**** Specify no flow on boundary 1 & COC(J),VGJC(J), XCCJW WGB(I)-u. DO ULUCI)wO .00 IF C J NME. NODE )THEN HLB(1 )uHF Call Step( 0.D0, 0.00, HGB(1 )miIG steps HICCI), HGC(J), HGCMI, COCC), COCCI), c**** calculate the numb~er of time & HICCI, NSTEP x DINT( TEND/DELT ) + 1

V Urite(*,4361) t,WLB(NOOE+1),WGB(NOOE+1),ALPHB(NODE+l),PRXI

    &       VGJC(J), VGJC(I), OC(J), QPPC(J), ROC(J), PhC,                               Urite(5,4361) t,WLB(NODE+1),WGB(NOOE+1),ALPHB(NODE+l),PRX1
    &       WGB(J), ULB(J), HGB(J), HLB(J),                                        4361 FORMAT(' 1, 5F12.5 )
    &       WLB(I), WGB(I),
    &       ALPHB(I),                                                             C**** Integrate the energy balance equations for the core channel.
    &       1119(1), HGB(I), ROLRCI), ROGB(I), DHDTC(J),                                   NSC a0
    &       3, J, UGB2, ULB2, WOUTO(J), HBARC(I))                                          DO 80 MNz1,NODE,l ELSE   IF ( J .EQ. NODE )THEN                                                         HBARC(MN) - HBARC(MN) + DELT*DHDTC(MN)

Call Step( O.DO, 0.00, IF ( HBARC(MN) .GT. HG ) NSC-NSC+1

    &        HBARC(J),PRPHC(J),PRPPC(J),Pt, VC,DELZC,SMC(J), SHC(J), AC,              80 CONTINUE
    &       ALPHC(J), ALPH2, ROLC(J), ROL2, ROGC(J), ROG2,
     &       HLC(J), 1112, HGC(J), HG2, COC(J), C02,                                        pt=O.dO
     &       VGJC(J), VGJ2, QC(J), QPPC(J), ROC(J), PhC,                                    PRX =PRX + DELT*PT
     &       WGB(J), ULB(J), HGB(J), HLB(J),                                                PRX1xPRX/144.DO
     &       WLB(I), WGB(I),                                                                POWER z POWER + DELT*POWERt
     &       ALPHB(I),                                                                      t z t + DELT
     &       HLB(I), HGB(I), ROLB(I), ROGB(I), DHDTC(J),
     &       3, J, UGB2, ULB2, WOIJT0(J), HBARC(IM                                    50 CONTINUE END IF STOP WOUTOWJ      WLB(I) + WGB(I)                                                        END GC(I)     (WLB(I) + WGBCI) )/AC GCV(J) =(GC(J) + GC(I )/2.DO ugb(1)=O.dO                                                                         SUBROUTINE VOIDIC ALPH, ROL, ROY, SIGNA, IREG, INWDE, ulb(1)0.dO                                                                        &                     G, CO, Vgj, X ugb(l )-ugb2                                                                        IMPLICIT REAL*8(A-H,OZ) utb(i)-ulb2                                                                       SComputes Vgj and CO using the Ohkawa-Lahey Void Model C       Input. ALPH =Void fraction 60 CONTINUE                                                                      C                  ROL - Liquid phase density (Lbmlft3)

C ROV =Vapor phase density (Lbmlft3) C SIGNA= Interfacial Tension (Lbf/ft) IF (KJ .EQ. 10 ) Then C C**** Write the header IREG = Region numb~er C = 1 -> Jet Pump WRITE(4, 102) C 1 =2 => Lower PLenuim 102 Format(' C = 3 => Core WRITE(4,101) t,K C = 4 => Bypass 101 Format(' TIME = ,F12.3, 'NO. STEPS ',17) C = 5 => Upper Plenumn WRITE(4, 103) 9 C = 6 => Riser 103 Format(' NODEI,9x,'ALPHI,9x,IHBAR'u¶Ox,'WLB', x, C VGJ ,9x, 'ULIQ ,9x, UGAS ) = 7 => Separator

      &,WGB ', lx,           ICO lI,1x,   g,9x, C                         z8 => Downcomler C                 INODE- Node within region IREG Do 70 M-NODE,1,-1                                                           C 4                                                                                 G     aVolum~e-average mass flux (Lbm/ft2-sec)

WRITEC4,10 ) M,ALPHC(M),HBARC(M),WLB(N1I),WGB(14l),QC(M), C

      &                  COCCM),VGJC(M),ulb(m~1),ub(Iv~l)5 2 4 2 fl . )             c       output :CO      =  Radial bubble concentration parameter 104.Format(' ', 15,5x,E12.4,BF12.4,6x,15,5x,E12.4, x,                                                     z Drift velocity (ft/sec) 70 CONTINUE                                                                      C                 Vgj C                 x     = Flow quality M-0 4 2 1104 FORMAT(' 1, 15,29X,2F12.4,30x,2f1 . )                                                 if C a~ph .gt. 1.d0 .or. atph         O.dO ) then ILt.

KJ*0 WRiTE(4,1 01) END IF t o ou of r n e i su r t ne v d 101 format(' Void fracinotoragInswulnvid) the channel C** Print the Iliquid and vapor fLow~ rates at the top of

W wr IF CX1 .GT. 1.DO ) X1 = I.DO WRITE(4,102) IREG,INOOE,ALPH IF CX1 LT. O.DO ) X1 w O.DO 102 format(' Region z ', 14, 1Node = ,14, 'Void = , 12.4) X2 ( ROV*VGJ/(1O.DO) + CO*ROV/ROL )*ALPH End If X2 X2/( 1.D0 + ALPH*CO*ROVIROL - CO*ALPH IF CX2 .GT. 1.00 ) X2 = I.DO IF C aiph .GE. 1.d0 ) Then IF CX2 .LT. 0.00 ) X2 a 0.DO CO =1.dO SLOPE - ( X2-XI )/20.DO Vgj=O.dO X - X1 + SLOPE*( G + 10.00 return ELSE End If X = ( ROV*VGJ/G + CO*ROV/ROL )*ALPH X = X1( 1.00 + ALPH*CO*ROV/ROL - CO*ALPH) al - ROV/ROL END IF d = .5881164d0 - 1.81701d0*dsqrt( al + RETURN

   &       2.00025dO*al - 3.34398d0*( al )**1.5dO                                      END yl z 4.72085d0 - 17.26736d0*dsqrt( al )+ 56.14883dO~ai
   &         + 113.216d0*( al )**1.5dO -.                                              FUNCTION CIGNA(TEMP)
   &         1250.603*( al )**2 + 3039.767d0*( al )**(2.5dO)                    C**-V SATURATED LIQUID SURFACE TENSION CLBF/FT) AS A FUNCTION OF
   &         - 2431 .8228*( al )**3                                             C**    TEMPERATURE (DEGF) - RETRAN02 PROP FIT IMPLICIT REAL*8(A-H,O-Z) y    = caxiC MUM6d,       yl)                                                      DIMENSION AM5 DATA A O.00, 1.121404688W-3, -5.75280518D-6, 1.28627456D-8, a2 - 32.2d0*32.2dO*sigma*( ROL        - ROV )IROL**2                             &          -1.14971929D-11i a2 m +a2**O.25d0                                                                  DATA BD / 0.8300, 1.160936807D-1/

TT-TEMP a3 = C alph - d )/( 1.dO - d) T=((5.D0I9.DO)*(TT-32.DO))+~273.DO a3 = IdO -a3**2 TK=647.300 - T Sl=(D*TK*TK)/(1.DO + B*TK) a4 = dsqrt( al) S2=0.DO DO 10 J=2,5 Vgjl 2.9dO~a2 S2=S2+A(J)*TK**J 10 CONTINUE 85 22 92 5 Vgj2 =y*a2*a3 CIGMA=(S1+S2)*6. D-RETURN C01 = ( 1.2d 0-O.2d0*o4 M* 1.d0 - dexp( -18.dO*aLF* ) END C02 =1-d0 + O.2do*( 1.d0 a4 )*a3 If C alph At. d ) then Vgj = Vgjl CO = Col SUBROUTINE DDEN(P,HO,PRPP,PRPH) else IMPLICIT REAL*8CAH,0*Z) VgJ - dinlC Vgjl, VgJ2) COMMION /PROPYI HG, HF,VF, VG, R0F,ROG,DHFDPbDNDP,DRFDP, DRGDP,AF, CO = dminiC C01, C02) & AMUCL(51),THRMCL(51),CPCL(51),THERMF,CPCF, 5 End if & AMUCGC51),THRI4CG(51),CPCG( l),

                                                                                       &                 TSAT,SIGN4A,SJBDC,IVOID,IJKC C**     Comp~ute the quality for two-phase friction cute                                  COSN40N /DDBUGI LLL W/R G1 x G                                                                    C-*     THIS ROUTINE CALCULATES THE PARTIAL DERIVITIVES OF DENSITY SUPER IF ( DABS(G) ALE. 10.00        Then                                       C*** TO PRESSURE AND ENTHALPY FOR SUBCOOLED, TWO-PHASE, AND X1 - ( ROV*VGJ/C-1O.DO) + C0OROVIROL )*ALPH                           ON* HEATED FLUID.

X1 - X1/C 1.00 + ALPH*CO*ROV/ROL - CO*ALPH)

w PRPRF a 1.DO - ( FS F5*HGH - ( ROG - 2.DO*ROF )/F2 )*HHF

                                                                                                                        + ROF*HHF/F2 PRPRG -

C INPUT : P s PRESSURE (PSIA) PRPHF - ( F5 + (ROF - ROG)/F2 )*ROF C H z ENTHALPY (BTU/LBM) PRPHG - -F1*ROG*F22MI W/R TO PRESSURE C OUTPUT: PRPP v PARTIAL DERIVATIVE OF DENSITY PRPP2 - PRPRF*DRFDP + PRPRG*DRGDP + PRPHF*DHFDP

                                                                                                                                                         ÷ PRPHG*DHGDP C                           (LBM/FT-LBF)                                                            PRPH2 v -( F5 + ROF/FZ )*(ROF-ROG)

C PRPH = PARTIAL DERIVATIVE OF DENSITY U/R TO ENTHALPY PRPP'= PRPP1 + (PRPP2-PRPP1)*(X-X1)/(X2-Xl) C (LBM-LBM/FT3-BTU) PRPHim PRPHI + (PRPH2-PRPHI)*(X-XI)/(X2-XI) TO ELIMINATE C**** SMOOTH DERIVATIVES IF CLOSE TO SATURATION LINE GO TO 99 C**** DISCONTINUITIES. END IF H m HO X a C H - HF )/( HG - HF ) IF ( X GT. X2 ) GO TO 10 C AAA = 2.DO*O.OO125DO C**" SUBCOOLED-LIQUID REGION

  • AAA 2.DO*O.OIOODO CALL DERLIQ( P, H, PRPP, PRPH )

Xl -AAA GO TO 99 X2" A 10 CONTINUE X3 1.DO-AMU IF ( X .GE. X4 ) GO TO 20 X4 1.DO+AAA C**** TWO-PHASE REGION

  • HHF= H - HF IF ( X .GT. X3 AND. X .LT. X4 ) THEN HGH= HG - H H3
  • HF + X3*( HG - HF ) Fl = (ROG - ROF)*ROF*HHF H4 HF + X4*( HG - HF ) F2 - HGk*ROG + HHF*ROF VG4 = VPHV( P, H4 ) F22NIz F2**('2)

CALL DERVAP( P, H4, VG4, PRPP4, PRPH4 ) F5- FI*F22M1 PRPRF ='1.DO - ( F5 - ( ROG -2.DO*ROF )/F2 H = H3 )*HHF HHF= H - HF PRPRG =:- F5*HGH + ROF*HHF/FZ HGHU HG " H PRPHF F + (ROF - ROG)/F2 )*ROF ( F5 Fl = (ROG -: ROF)*ROF*HHF PRPHG "Fl*ROG*F22?l F2 - HGH*ROG + HHF*ROF + PRPHG*DHGOP PRPP = PRPRF*DRFDP + PRPRG*DRGDP + PRPHF*DHFDP F22MN1 1.DO/F2**Z PRPH -( F5 + ROF/F2 )*(ROF-ROG) F5= FI*FZ2MI GO TO 99

                                                             )/F2 )*HHF PRPRF = 1.00 - ( F5 - ( ROG - 2.DO*ROF                                           20 CONTINUE PRPRG       - F5*HGH    +  ROF*HHF/F2                                        C**** SUPER-HEATED VAPOR REGION PRPHF a=      F5 + (ROF - ROG)/F2 )*ROF                                              VG=VPHV(PH)

PRPHG = -F1*ROG*F22Mi CALL DERVAP( P, H, VG, PRPP, PRPH )

                                                        + PRPHF*DHFDP + PRPHG*DHGDP PRPP3 = PRPRF*DRFDP + PRPRG*DRGDP PRPH3 = -( F5 + ROF/F2          )*(ROF-ROG)                                     99 CONTINUE
                                                       - X3 )/(X4 - X3 )

PRPP a PRPP3 + (PRPP4"PRPP3)*( X PRPP -'PRPP/144.DO

                             + (PRPH4"PRPH3)*(      X  . X3 )/( X4 - X3 )

PRPH = PRPH3 GO TO 99 RETURN END IF END C IF ( X .GT. Xl .AND. X LT. X2 ) THEN C**** HI a HF 4 XI*( HG - HF ) C CALL DERLIQ( P, HI, PRPPI, PRPH1

                                                        )                                       FUNCTION DRFP(P, H, DHFDP)

N2 m HF + X2*( HG - HF ) IMPLICIT REAL*8(A-HO-Z) DENSITY (RF) W/R H a H2 C**** CALCULATES DERIVITIVE OF SATURATED LIQUID HHF- H - HF C**** TO PRESSURE (P) HGH= HG HH +C**** P - PRESSURE (PSIA) Fi a (ROG - ROF)*ROF*HHF C**** H = ENfHALPY (BTU/LBN) W/R TO F2 - HGH*ROG + HHF*ROF C**** DHFDP

  • DERIVATIVE OF SATURATED LIQUID ENTHALPY F22HMi F2**(-2)

F5n FI*F22M1

w PRLPH= RETURN -PVLPH/(VL*VL) PRESSURE (BTU/LBM-PSIA) END DIMENSION C(5,3) DATA C / -. 411796175D1, -. 38112945430-3, .4308265942D-5,

               -. 916012013D-8,       .8017924673D-11,       -. 481606702D-5,
 &                                                                                           I* FUNCTION    DHFP(P) OF SATURATED LIQUID ENTHALPY WITH RESPECT DERIVITIVE
 &               .T744786733D-7,    - .6988467605D-9,          .19167205250-11,
                                                               .144078593D-10,               k*         TO PRESSURE
  &            -. 1760288590D-14, -. 18206250390-8,                                                     P IS IN (PSIA) AND HF IS IN (BTU/LBN)
                                                               .7407124321D-19 /              i*
  &            -. 2082170753D-13, -. 3603625114D-16,                 2                            IMPLICIT REAL*8 (A-H,O-2)
                                                                       )

FP - (((C(5,2)*H+C(4,2))*H+C(3,2))*H+C(2,2))*H+C(1, 3 DIMENSION CFI(9),CF2(9),CF3(9) FP = FP+((((C(5,3)*H+C(4,3))*H+C(3,3))*H+C(2,3))-H+C(l, ))*2.DO*P F = (((C(5,1)*H+C(4,1))*H+C(3,1))*H+C(2,1))*H+C(l,1) DATA CF1 / .697088785902, .333752994D2, .2318240735D1, 2

                                                                            ))*P                 >.1840599513D0,    -. 5245502284D-2, .2878007027D-2, F   = F+((((C(5,2)*H+C(4,2))*H+C(3,2))*H+C(2,2))*H+C(1,                                                                                                /

F=F+((((C(5,3)*H+C(4,3))*H+C(3,3))*H+C(2,3))*H+C(1,3))*P**2 >.1753652324D-2, -. 4334859629D-3, .3325699282D-4 DATA CF2 / .8408618802D6, .3637413208D6, -. 4634506669D6, FH u((4.DO*C(5,1)*H+3.DO*C(4,1 ))*H+2.DO*C(3,1))*H+C(2,1) 2

                                                                                                 >.113030633906, -. 4350217298D3, -. 389898818804, FH =FH+(((4.DO*C(5,2)*H+3.DO*C(4,2))*H+2.DO*C(3,2))*H+C( 2 3,2))*P
                                                                                  ))*P**2        >.6697399434D3, -. 473072637702, .1265125057)1 /

FH=FH+(((4.D0*C(5,3)*H+3.DO*C(4,3))*H+2.DO*C(3,3))*H+C( , PVLPP=FP*DEXP(F) DATA CF3 / .9060030436D3, -. 1426813520D2, .152223325701,

                                                                                                 >-.6973992961DO, .1743091663D0,       -. 2319717696D-1, VFRDEXP(F)                                                                                                                                               /

PVLPH=FH*DEXP(F) >.1694019149D-2, -. 645477217100-4, .10030030980-5 IF (P .GT. 900.00) GOTO 15 DRFP= -(1 .DO/VF**2)*(PVLPP+PVLPH*DHFDP) FLNP=DLOG(P) RETURN DHFP=CFI(2) END DO 10 J=3-9,1 DHFP=DHFP+CFI(J)*FLOAT(J-1)*FLNP**(J12) SUBROUTINE DERLIQ(P, H, PRLPP, PRLPH ) 10 CONTINUE IMPLICIT REAL*8(A-H,O°Z) DHFP=(DHFP/P) LIQUID DENSITY

  • CALCULATES THE PARTIAL DERIVATIVES OF SUBCOOLED C AND ENTHALPY RETURN C WITH RESPECT TO PRESSURE 15 CONTINUE C INPUT: P z PRESSURE (PSIA) IF (P .GT. 2400.DO) GOTO 25 H = ENTHALPY (BTU/LBM) FLNP=DLOG(P)

C C W/R TO PRESSURE DHFP=CF2(2) C OUTPUT: PRLPP = PARTIAL DERIVATIVE OF DENSITY Do 20 J=3,9,1 (LBM/FT3-PSIA) W/R TO ENTHALPY C DHFP=DHFP+CF2(J)*FLOAT(J-1)*FLNP**(J'2) PRLPH = PARTIAL DERIVATIVE OF DENSITY 20 CONTINUE (LBM-LBM/FT3-BTU) DHFP=(DHFP/P) DIMENSION C(5,3) RETURN

                                      -. 3811294543D-3,          .4308265942D-5, DATA C / -. 411796175D1,                                                                  25 CONTINUE
                  -. 916012013D-8,      .8017924673D-11,       -. 481606702D-5,
   &                                                             .1916720525D-11,                   PDIF=(3208.2DO - p)**.41DO
   &               .7744786733D-7,     -. 6988467605D-9,                                                                   2 DPDIF--0.41DO*(3208. DO - p)**(-O.590O)
   &              -. 1760288590D-14, -. 18206250390-8,            .144078593D-10,
                                                                  .7407124321D-19 /                 DHFP=CF3(2)
   &              -. 2082170753D-13, -. 3603625114D-16,                                             DO 30 J=3,9,1
                                                                          ,                                                     1 FP=(((C(5,2)*H+C(4,2))*H+C(3,2))*H+C(2,2))eH+C(1,2) 2 3                                         DHFP=DHFP+CF3(J)*FLOAT(J- )*PDIF**(J"2)
                                                          , ))*H+C(1,3))*2.DO*P FP=FP+((((C(5,3)*H+C(4,3))*H+C(3,3))*H+C(

F=(((C(5,I1)*H+C(4,1))*H+C(3,1))*H+C,(2,1))*H+C(1,1) 30 CONTINUE 2 DHFDPO(DHFP*DPDIF)

                                                          ))*H+C(I,2))*P F=F+((((C(5,2)*H+C(4,2))*H+C(3,2))*H+C(2,2 3 ))*H+C(1,3))*P**2                                RETURN FUF+((((C(5,3)*H+C(4,3))*H+C(3,3))*H+C(                                                       END FH=((4.DO*C(5,1)*H+3.DO*C(4,1))*H+2.DO*C(3,1))*H+C(2,1) 2 ,2))*P FH=FH+((( 4 .DO*C(5, 2 )*H+3.DO*C(4,2))*H+2.DO*C(3,2))*H+C(

4 3 C C FH=FH+(((4.DO*C(5,3)*H+3.DO*C( , ))*H+2.DO*C(3,3))*H+C(2,3))*P**2 C PVLPP-FP*DEXP(F) FUNCTION DHGP(P) VL=DEXP(F) IMPLICIT REAL*8(A-H,O.Z) PVLPHxFH*DEXP(F) PRLPPx -PVLPP/(VL*VL)

w

                                                                              >2.DO'C(3,2)*H + C(2,2)+

C **CALCULATES THE DERIVITIVE OF SATURATED VAPOR SPECIFIC >(2.DO*C,(3,3)*H + C(2,3))*P+ C ENTHALPY (BTU/LBM) WITH RESPECT TO PRESSURE (PSIA) >(2.DO*C(3,4)*H + C(2,4))*P*P DIMENSION CGI(12),cG2(9),CG3(7) PVGPP - ((C(3,1)*H + C(2,1))*H + C(1,l))IP**Z + DATA CG1 / .110583687504, .143694376802, .801828W62100, >(C(3,3)*H + C(2,3))*H + C(1,3) +

            .1617232913D-1,-.1501147505D-2, O.DO, O.DO, O.DO, 0.DO,           >2.DO*(((C(3,4)*H + C(2,4))*H +C(l,4))*P)
          >.1237675562D-4, .30047733040-5,- .20623907340-6 /                    PRGPP m -(1.DO/VG**2)*PVGPP DATA CG2 / -. 2234264997D7, .1231247634D7,-.197884787106,             PRGPH x (1.DO/VG**2)*PVGPH
          >.1859988044D2, -. 276570131801, .103603387804,                       RETURN.
          >.2143423131D0, .1690507762D2,- .48"432213400 /                       END DATA CG3 / .9059978254D3, .5561957539D1, .343418960901,        C
         >-.6406390628, .59185794840-1, -. 27253785700-2,
         > .5006336938o-4 /                                              C **

IF (P GT. 1200.DO) GOTO 15 FUNCTION DRGP(P,H,DHGDP,VG) FLNP--DLOG(P) IMPLICIT REAL*S (A-H,O-Z) DHGP=CG1 (2) DIMENSION C(3,4) DO 10 J=3,12,1 DATA C / -.1403086182D4, .1802594763D1, - .2097279215D-3, DHGP=DHGP+CGI(J)*FLOAT(Jl )*FLNP'l(J-2) >.3817195017D0, - .5394"44747D-3, 10 CONTINUE >.1855263702D-6, -. 64495011590-4, .843763766D-7 DHGP=(DHGP/P) >- .27137550010-10, .7823817858D-8, - .1053834646D-10, RETURN >~.3629500764D-14 / 15 CONTINUE PVGPP -(c(3,3)*H + C(2,3))*H + C(1,3) 2 IF(P .GT. 2600.00) GOTO 25 >(((3,)*H+ C(2,1))*H+C(l,1))*Cl.DO/P** ) + FLNPS-DLOG(CP ) ý,2.DO*((C(3,4)*H + C(2,4))*H + C(1,4))*P DHGP=CG2(2) PVGPH * (2.DO*C(3,3)*H + C(2,3))*P + 2.DO*C(3,2)*H+C(2,2)+ 2 DO 20 J-3,9,1 >(2.DO*C(3,1)*H + C(2,1))/P + (2.DG*C(3,4)*H+C(2,4))*P** DHGPmDHGP+CG2(J)*FLOAT(J-1)*FLNP**(J-2) DRGP - -(1 .DOIVG**2)*(PVGPP+PVGPH*DHGDP) 20 CONTINUE RETURN DHGP=(DHGP/P) END RETURN 25 CONTINUE PDIF=(3208.2D0 - 32P)**.4100 2 DPDIFz(-.41DO)*C 0 . DO - P)**(-.59D0) CVPHV DHGP=CG3(2) C DO 30 J=3,7.1 FUNCTION VPHV(P,H) 1 DHGP=DHGP+CG3(J)*FLOAT(J- )*PDIF**(J-2) IMPLICIT REAL*8 (A-H,O-Z) C*** SATURATED OR SUPERHEATED SPECIFIC VOLUME (FT3/LBM) 30 CONTINUE DHGPU(DHGP*DPDI F) C""* ASA FUNCTIONOF PRESSURE (LBFIIN2) AND ENTHALPY RETURN C""* (BTU/LBM) - RETRAN02 PROP FIT END DIMENSION CN2(3,4) C " DATA CN2 / ..1403086182D4,.1802594763D1, C 1-.2097279215D-3, .3817195017DO ' 5394444T47D-3, .15552037020-6, C ' 2-64495O1159D-4,.843763766D-7,-.27¶3755001D-10, .78238178580-8, 3- .10538346460-10, .36295907640-14/ SUBROUTINE DERVAP(PM,VG,PRGPP,PRGPH) HI1..00 IMPLICIT REAL*S (A-H,O-Z) H2-HI'M DIMENSION C(3,4) H3nH2*H DATA C / -. 1403086182D4, .180259476301, -. 2097279215D-3, 2 3 3 VPHVU(CN2(1,1)*H1+CN2(2,1)*H2+CN ( ,I)*H ) /3 P

          >.38171951700, -.*5394444747D-3,                                        VPHV-VPHV+CN2(1 ,2)*H1+CN2(2,2)*H2+CN2(3,2)*H 3
          >.1855203702D-6, - .6449501159D-4, .8437637660-7, -0                    VPHVUVPHV+(CN2( 1,3)*HICN2(2,3)*H2+CN2(3 3)*H )*P 2
           >-.2713755001D10 1, .7823817858D-8, _-1053834646D.0                    VPHVu-JPV+(CN2(1,4)*H1,CN2(2,4)*H2+CN2(3,4)*H3)*P
           >.3629590764D-14 PVGPH - (2.DO'C(3,¶)*H + C(2,1))IP +

w DATA CNi / -.4 11 T9 6175D1,..38112945 43 D-3 RETURN 4 END 0 39DSl 4 4 o"07593o -1o,.2OB2170753D.13,-. 360362511 DlAF 3 1. 8 20 6 25 C 4.7407124321D 19/ HI-i .DO H2-Hl*H ROGAS, HGAS) SUBROUTINE STATE(J,P,H,RO,RO L,ALPH,TEMP, H4=H3*H IMPLICIT REAL*8(A-H,O-Z) H5=H4*H 4 PRESSURE (PSIA) AND VOLUME-WEIGHTED CNI(5,1)* C~*** CALCULATES FLUID DENSITY FROM VPHLUCNI1( )*Hl+CNI(2,1)*H2+CNI(3,1)*H3+CNI(4,1)*H (4,2)*Hl4+CNI C** ENTHALPY (BTU/LBM) ,2)*Hl4CN1(2,2)*H2+CN1 (3,2)*H3+CNl DHGWP,DR FDP,DRGDP,AF, VPHL-VPHL+(CN1(i COMM4ON /PROPYI HGH F,VF,VG, ROFROG,DHFDP, 1(5,2)*H5)*P + AMUCL(51),THRMCL(51),CPCL(51),THERMF,CPCF, (3,3)*H3+CNI (4,3)*H4+CNI AMUCG(51),THRMCG(51),CPCG(51), VPHLzVPHL+(CN1 (1,3)*Hl+CNI (2,3)*H2+CNI

      &                                                                             1(5,3)*05)*P**2
      &                   TSAT,SIGlIA,SUBDC,IVOID,IJKC                               VPHLxDEXP(VPHL)

IF CH .LE. HF) THEN RETURN RO= i.DO/VPHL(P,H) END ROL= RO ALPHmO.DO C TEMPz TPHL(P,H) ROGAS m ROG HGAS HG FUNCTION TPHL(P,H) (DEGE) AS A END IF H LT. HG )THEN C"'*SATURATED OR suBCOOLED LIQUID TEMPERATURE ENTHALPY (DTU/LBM ) IF CH .GT. HF .AND. C*"' FUNCTION OF PRESSURE (PSIA) AND RON ROF*ROG*(HG-HF) IMPLICIT REAL*8(A-H,O-Z) RO0 RO/( ROG*HG.ROF*HF+(ROF-RO)*H) DIMENSION CTl(4,2),CT2(5,5)

                                                                                                                                           .1857226027D-3, ROLx ROF                                                                DATA CT1 / .3276275552D2, .9763617, ALPHm ( RO - ROL )/( ROG - ROF                                         &-.468267433D-6, .3360880214D-2, -/.5595281760D-4,

( ALPH .LT. 1.0D-6 )ALPH=I.D-6

              -~~IF                                                                  &.1618595991D-6, -.1180204381D-9                              .8713231868D-2, TEMPzT SAT                                                              DATA CT2 / .6390801208D3, -.3055217235D1, ROGAS =ROG                                                                                        -.98447D017,        4302857237, .2673303422D-2,
                                                                                     &-.6269403683D-5, HGAS z HG                                                                                                               .3309704045D- 12,
                                                                                     &-.5198380474D-5, .3037825558D-8,
                                                                                                                                       .1168011772D-8, END IF                                                                      &.1174524584D-3, - .6839200986D-6,                    - .1473977290-7, IF CH .GE. HG ) THEN                                                        &-   .4260074181D-12,          -  .2732087163D-15,
                                                                                                                                          .4559400289D-17, RO= 1.DO/VPHV( P, H)                                                  &.80I8858166D-10,            -  .1i1649013550-12,
                                                                                                                                        - .364950062601i4, ROL= ROF                                                               &.5825511142D-19, .71043273420-12, AIPH z .DO                                                                                         :16783987230-20,      _ 37568040910-23I
                                                                                      &.4457387575D-17, TEMP =TPHV( P, H)                                                        IF (P .GT.      3208   .2     ) GO  TO 10
                                                                                                                                                           ,1)

ROGAS wRO TPHL it((CT1(4,1)*H+CTI(3h1))*H+CTI(2,¶))*H+CT1(1 2

                                                                                                                                                   ,2))*CT(,)P HGAS x H                                                                       TPHL-TPHL4(((CTI(4             ,2)*H+CT¶(3,2))*H4CTI(

END IF RETURN RETURN END 10 L~i(LCTZ(5,¶)*HCT2 (4,¶))*H+CT2(3,1))*H+CT2(2,I1))*H+CT2(i,l) 2 3 2 ))*HC222)H (, TPHL-tPHL,(C(((CT2C5,2)*H+CT2C4,2))*H+CT

                                                                                       &CT2(1 i2))*P Do 20 ~j-3,5 FUNCTION VPHL(P,H)

IMPLICIT REAL*S (A-H,O-Z) &CT2(1'J))*P**(Jl) (FT3/LUN) AS C*** SATURATED OR SUBCOOLED SPECIFIC VOLUME 20 CONTINUE A FUNCTION OF PRESSURE (LBF/1N2) AND ENTHALPT. RETURN' C"'* C** (BTU/LBM) - RETRAN02 PROP FIT 3 DIMENSION CNIC5, )

TPHV=TPHV+((((CT4(5,J)*H+CT4(4,J))*H+CT4(3, J))*H+CT 4 ( 2 ,J))*H÷

                                                                                             &       CT4(1,J))*P**(J'I)

END 20 CONTINUE

      *
  • END OF FUNCTION TPHL RETURN END FUNCTION TPHV(P,H) C FUNCTION HGP(P)

C**** SATURATED OR SUPERHEATED VAPOR TEMPERATURE (DEGF) AS A IMPLICIT REAL*8 (A-H,O-Z) C**** FUNCTION OF PRESSURE (PSIA) AND ENTHALPY (BTU/LBM) OF C**** - RETRAN02 PROP FIT C**** SATURATED VAPOR ENTHALPY (BTU/LBM) AS A FUNCTION C**** PRESSURE (LBF/IN2) -RETRAN02 PROP FIT IMPLICIT REAL*B(A-H,O-Z) DIMENSION CGI(12),CG2(9),CG3(7) DIMENSION CT3(5,5),CT4(5,5)

                                                   .282927434502,                              DATA CG1 / .1105836875D4,.143694376JD2,.801B288Z1DO, DATA CT3 / -. 1179100862D5,
                       -. 2678181564D-1,           .1218742752D-4,                           1. 16 1723 29 13 D.i,-.15011 47 505D-2,4*O.OOO,-.12376755.62D-4,
      &                                                                                      2.3004773304D-5,-.2062390734D-6/
      &                -. 2092033147D-8,           .1256160907D3,
                                                   .3326901268D-3,                             DATA CG2 / .. 2 2 3 4 2 6 4 9 9 7 D7 ,.1231247634D7,-.1978847871D6,
      &                -. 3333448495D0,
      &                -. 1477890326D-6,           .2463258371D-10,                           1.1859988044D2,-.27657013180I,.I036033878D4,-.2143423131D3, 2.1690507/62D2,-.4864322134D0O
      &                 -. 108371336900,           .292817773D-3,
                                                   .1342639113D-9,                             DATA CG3 / .9059978254D3,.5561957539D1,.3434189609D1,
      &                 -. 2972436458D-6,                                                     1-.6406390628DO,.59185794840-1,-.2725378570D-2,.500633693WD-41
      &                 -. 2275585718D-13,         .3278071846D-4,                              IF(P.GT.1200.DO)GO TO 15
      &                 -. 8970959364D-7,           .92462483120-10, FLNP--DLOG(P)
      &                 -. 4249155515D-13,          .7338316751D'17,                            HGP=CGI(1)+CG1(2)*FLNP
      &                 -. 3425564927D-8,           .9527692453D-11,                            DO 10 J-33,12
      &                 -. 1001409043D-13,          .4703914404D-17, HGP-HGP+CGI(J)*FLNP**(J-I)
      &                 -. 8315044742D-21 I                                                10 CONTINUE DATA CT4 / .3795256853D4,                 -. 6347031007DI, RETURN
      &                  .2867228326D-2,            .5953599813D-8,                        15 CONTINUE
      &                  .4798207438D-10,         -. 3910086240DI,                               IF(P.GT.2600.DO)GO TO 25
      &                  .12227478190-1,          -. 14046646990-4, FLNP=DLOG(P)
       &                 .7505679464D-8,          -. 1608693653D-11,                             HGP=CG2(1)+CG2(2)*FLNP
       &                 .3410500159D-4,             .7010900113D-9,                             DO 20 J=3,9
       &               -. 1030201866D-9,             .5731099333D-14,                            HGP=HGP+CG2(J)*FLNP**(J'I)
       &                 .3720795449D-16,            .1527377542D-6,                        20 CONTINUE
       &               -. 5356866315D-9,             .68232259840-12, RETURN
       &               -. 3668096142D-15,            .6946004624D-19,                       25 CONTINUE
       &               -. 1437179752D-10,            .50067313360-13,                            PDIF=(3208.2DO-P)**.41DO
       &               -. 63655195460"16,            .3473711350D-19,                            HGP=CG3(i)+CG3(Z)*PDIF
       &                -. 6842306083D-23      /                                                 DO 30 J=3,7 IF ( P .GT. 3208.200 ) GO TO 15 TPHV=(((CT3(5,1)*H+CT31(4,1I))*H+CT3(5,          1))*H+CT3(2, 1))*H+CT3(I'#I)            HGP=HGP+CG3(J)*PDIF**(J-l) 3 (2,2))*H+       30 CONTINUE TPHV.TPHV+((((CT3(5,2)*H+CT3(4,2))*H+CT3(3,2))*H+CT                                      RETURN 2
        &     CT3(1, ))*P                                                                         END DO  10 J;3,5,1 TPHV.TPHV+((((CT3(5,J)*H+CT3(4,J))*H+CT3(3,J))*H+CT3(2'J))*H+
        &     CT3(1,J))*P**(J'l) 10 CONTINUE RETURN                                              ,u*421)HC411 is CONTINUE                   .    ........

1PHV=(((CT 4 (Sel)*H+CT4(4,1))*H+CT4(3 1))*H+CT4(2,1))*H+cT4(-,l) C

                                                       *H+CT4(3,2))*H+CT4(2'2))*H+                 FUNCTION  HFP(P) (A-H,O-Z)

IMPLICIT REAL*8 TPHVaTPHV+((((CT4(5,2)*H+CT4( 2

        &      CT4CI, ) )*P DO 20 J-3,5,1

I PRPHi - partial deriv of density w/r to enthatpy for volume 1 (Lbm-Lbm/ft3-Btu) C C w/r to press for vol 1 C**** SATURATED LIQUID ENTHALPY (BTU/LBM) AS A FUNCTION OF PRPP1 a Partial dernv of density PROP FIT C C**** PRESSURE (LDF/IN2) - RETRANO2 (Lbm/ft-Lbf) 3 9 C u Temporal deriv of system pressure (Lbf/ft2-sec) DIMENSION CFI(9),CF2(9)ICF ( ) C Pt volume Length (ft) DELZ i Control DATA CFI / .6970887859D2,.3337529994D2,.2318240735D1, C Si - Mass source in volume I (Lbm/sec) 1.1840599513DO,-.5245502284D-2, C in vol 1 (Stu/Lbm) 2.2878007027D-2,. 1753652324D-2, -. 4334859629O-3,.33256992820-4/ 4 6 90 6 HSI a Enthatpy associated w mass source 5066 , C DATA CF2 / .8 4 08618802D6,.363741320BD6,-.463 A a Flow area (ft2) C ALPHI s Void fraction in volume 1 1.1130306339D6.-.4350217298D3,-.3898988188D4,.6697399434D3, C 2- .4730726377D2,.1265125057DI/ ALPHZ = Void fraction in volume 2 C ROLl 1 Liquid density in vol 1 (Lbm/ft3) DATA CF3 / .9060030436D3,-.1426813520D2,.1522233257D1, 9 C I-..6973992961DO, .1743091663DO,-.2319717696D-1,.169401914 D-2, ROL2 w Liquid density in vol 2 (Lbm/ft3) C ROGI a Gas density in vot 1 (Lbm/ft3) 2-.64547721710D-4,.10030030980-5/ C IF( P .GT. 900.D0 )GO TO 15 ROG2 X Gas density in voL 2 (Lbm/ft3) C in vol 1 (Btu/Lbll) FLNP=DLOG(P) HBAR1 = Volume-weighted enthatpy C Liquid enthalpy in vol 1 (Btu/Lbm) HFP=CF1(1)+CFI(2)*FLNP HL1 C HL2 - Liquid enthaLpy in vol 2 (Btu/Lbm) DO 10 J=3,9 C (Btu/Lbm) HG1 u Gas enthaLpy in vol 1 HFP=HFP+CFi(J)*FLNP**(JI) C HG2 = Gas enthaLpy in vot 2 (Btu/Lbm) 10 CONTINUE C in vot 1 RETURN COl = Bubble concentration parameter C concentration parameter in vot 2 C02 - Bubble 15 CONTINUE C enthaLpy in Vol 1 (Btu/Lbm) IF(P.GT.240O.DO)GO TO 25 HBAR2 = VoLume-weighted C (ft/sec) FLNPDLOG(P) VGJ1 '= Drift velocity in vot 1 C VGJ2 i= Drift velocity in vol 2 (ft/sec) HFP=CF2(1)+CF2(2)*FLNP C 1 (Btu/sec) DO 20 J-3,9 01 a Internal heat gen rate in vol C = Heat flux at wells of vot 1 (Btu/ft2-sec) aPPi HFP-HFP+CF2(J)*FLNP**(Jl!) C Mixture density in vol 1 (Lbm/ft3) RO I 20 CONTINUE C - Heated perimeter (ft) Ph RETURN C 1 (ft/sec) ULB1

  • Liquid velocity on boundary 25 CONTINUE C Gas velocity on boundary 1 (ft/sac) 2 UGB1 =

PDIF=(3208. DO-P)**.41DO C ALPHB1I Void fraction on boundary 1 HFP=CF3(1)+CF3(2)*PDIF C I (Lbm/ft2) ROLB1i= Liquid density on boundary DO 30 J=3,9 C Gas density on boundary I (Lbm/ft2) ROGBI

  • HFPsHFP+CF3(J)*PDIF**(J-I) C 1 (Btu/Lbm)

HLB1 a Liquid enthalpy on boundary 30 CONTINUE C HGB1 Gas enthaLpy on boundary 1 (Btu/Lbm) RETURN C **OJTPUT** END C on boundary 2 COB2 - Bubble concentration param C C boundary 2 (ft/saec) VGJB2 z Drift velocity on CHGP C Void fraction on boundary 2 ALPHB2 C 2 (ft/sec) ULB2 a Liquid velocity on boundary C Gas velocity on boundary 2 (ft/sec) UGB2 a C 2 (Btu/Lbm) ExWass, ExEner, HLB2 a Liquid enthalpy on boundary Subroutine Step( A, C 2 (Btu/Lbm)

         &                   HBAR, PRPH, PRPP, Pt, V, DELZ, S, HS,                 C HGB2 ,W Gas enthaLpy on boundary 2 (Lbm/ft3)
         &                   ALPHI, ALPH2I ROLl,  ROL2,    ROGI,   ROG2,                  ROLB2 = Liquid density on boundary C                                                   2 (Lbm/ft3)
         &                   HL1, HL2, HG1, MG2, Cal, C02,                                ROGB2: X Gas density on boundary C                                                voL-weighted enthalpy in
          &                  VGJl, VGJ2, a, OPPI RO, Ph,                           C      DHDT1
  • Teuporal derivative of
          &                  UGBl, WLB1, HGB1, HLBI,                                                  volume   1  (Btu/Lbm-sec)

C

          &                  UL82, UGB2, ALPHB2, C
          &                   HLD2, HGB2, ROLB2, ROGB2, DHDT,
                                                                          )
          &                   IREG, NODE, UGB2, ULB2, WOUTO, HBAR2 IMPLICIT ReaL*8(A-H,O-Z)

C*** NOMENCLATURE **INPUT** C

e--v mm Sw C**** Compute the derivative of FUN w/r to W W2 WO+ 20.DO COMMON /PROPY/ HG,HF,VF,VG,ROF,ROG,DHFDPDHGDP,DRFDP,DRGDP, AUF, IF ( IREG .EQ. 1 ) THEN

      &                    AIUCL(51),THRMCL(51),CPCL(51),THERMF,CPCF,                          WOUT2= -W2
       &                   AMUCG(51),THRMCG(51),CPCG(51),                               ELSE
       &                   TSAT,SIGMA,SUBDC,IVOID,IJKC                                         WOUT2uW2 END IF AJ - 77B.DO                                                                      Call Junl( WOUT2, A, COI, C02, Vgjl, VgJ2, atphl, atph2, KOUNT=O                                                                        &               rog1, rog2, roll, rol2, hgl, hg2, FUNPxO.DO                                                                      &               htl, h12, sigma, sigma, c        WRITE(4,5551)                                                                   &              UGB2, ULB2, ALPHB2, ROGB2, ROLB2, HGB2, HLB2, c5551 FORMATC' Entering NE Step ')                                                       &              WGB2, WLB2, IREG, NODE )

c5552 FORMAT(I Leaving NE Step ') C**** CHECK FOR CONSISTANCY OF CALC IF ( DABS( WOUT2 - WGB2 - WLB2 ) .GT. 1.D-6 ) THEN WRITE(*,104) WOUT2,WGB2,WLB2,IREG C**** Make a guess for the outlet flow rate. Use inlet flow as 104 FORMAT(I Wc1JT2,WG,WL,IREG= ', 3F12.3, 15 ) C**** initial guess. STOP WO - WOUTO END IF C*** REVERSE SIGN OF FLOW FOR JET PUMP C**** IF JET PUMP REGION, REVERSE SIGNS OF FLOW FOR MASS/ENERGY EONS 10 Continue IF ( IREG .EQ. 1 ) THEN IF ( IREG .EQ. I ) THEN WGB2=-WGB2 WOUTI--WO WLB2--WLB2 ELSE ULB2=-ULB2 WOUTTI-WO UGB2=-UGB2 END IF END IF IF ( KOUNT .GT. 25 ) GO TO 800 WOUT2 a WGB2 + WLB2 Call Junl( WOUTI, A, Col, C02, Vgjl, VgJ2, atphl, alph2, EOUT2 = WGB2*HGB2 + WLB2*HLB2

       &               rog1, rog2, roll, roL2, hgl, hg2,                                 CALL EQNME( WIN, EIN, WOUT2, EOUT2, S, HS, PRPP, PRPH,
       &               hL1, hW2, sigma, sigma,                                          &                Pt, HBAR, Q, OPP, Ph, DELZ, V, RO,
       &               UGB2, ULB2, ALPHB2, ROGB2, ROLB2, HGB2, HLB2,                    &                dhdt, FUN2, IREG, EXHaSS, ExEner )
       &               WGB2, ULB2, IREG, NODE )

C**** CHECK FOR CONSISTANCY OF CALC DFDW = (FUN2-FUN1)/(WOUT2-WOUT1) IF ( DABS( WOUT1 - WGB2 - WLB2 ) .GT. 1.D-6 ) THEN WRITE(*,103) WOUT1,WGB2,WLB2,IREG C**** CHECK SIZE OF DERIVATIVE FOR POSSIBLE DIVERGENCE 103 FORMAT(' WOtT1,WG,WL,IREG ', 3F12.3, 15 ) C IF ( DABS(DFDW) .LT. 1.D-5 ) THEN STOP C WRITE(*,l01) IREGINOOE,DFDW END IF C 101 FORMAT(' IREG,INODE,DFDW ', 215,1P,E14.5) FOR MASS/ENERGY EONS C END IF C**** IF JET PUMP REGION, REVERSE SIGNS OF FLOW IF ( IREG .EQ. 1 ) THEN WGB2=-WGB2 C**** Use Newton's Method to find W ULB2w-WLB2 IF (KOUNT .LT. 4 ) Then ULB2"-ULB2 epzl.DO UGB2.-UGB2 ELSE END IF ep-O.DOO WIN = WGBI + WLBI END IF EIN - WGBI*HGB1 + WLBI*HLB! WOUTN!= WOUT.1 - ep*FUNI/DFDW WOUTI - WGB2 + WLB2 EOUTi a WGB2*HGB2 + WLB2*HLB2 CALL EQNNE( WIN, EIN, WOUT1, EOUTI, S, HS, PRPP, PRPH, C**** Check for divergence of Iteration G) m Pt, HBAR, Q, QPP, Ph, DELZ, V, RO, IF ( DABS(WOUTN) .GT. 5.D5 ) Then URITE(4,102) -J

        &                dhdt, FUN1, IREG, ExMoss, ExEner )

wl Mw WOUT2 - -W2 Try bisection 1) ELSE 102 Format(' Flowi divergence in NE STEP - WOUT1 WI GO To 800 WOUT2 -W2 END IF END IF check for convergence Call jwnl( WOUTI, A, Col, C02, Vg]1, VgJ2, alphi, atph2, c** rogi, ro;2, roil, rot2, hgI, h92, if ( DA~s9WOUTI) .LT. 1.00 ) Then &

                                                                       &              M~l, M12, sigma, sigma, ERROR . DABSCWOUTN-WOUTI)

ELSE & UGB2, ULB2, ALPHB2, ROGB2, ROLM, HGB2, HLB2,

                                                                       &              WGB2, WLB2, IREG, NODE)

ERROR - DABS( (WOUTN-WVAJTI)IUOUTl END IF IF ( IREG .EQ. 1 ) THEN IF ( ERROR .GT. 1.0-4 ) Then WGB2=-WGB2 KOUNTwKOUNT+l WLB2=-WLB2 WOmWOITN UGB2--UGB2 GO TO 10 ULB2=~-ULB2 END IF END IF THEN WTEMPI =WGB2 IF ( IREG .EQ. 1 WTEMP2=WLB2 WOUTN-UOUTN ELSE WOUTI s WGB2 + WLB2 EOUTI = WGB2*HG82 + WLB2*HLB2 WOUTNWOUMTN S, HS, PRPP, PRPH, CALL EdNME( WIN, ElM, WOUT, 'EQUTI, END IF oLph2, & tHORQ,aPP, Ph, DELZ, V, RO, Call JunlC WOUTN, A, C01, C02, Vgjl, VgJ2, aLphi, & dhdt, FUNI, IREG, Ex~ass, ExEner)

     &              rogi,  rog2,  roll, ro12, hgl, hg2,
     &              htl, hL2, sigma, sigma,                                                                                          alph2, UGB2, ULB2, ALPHO2, ROGO2, ROLB2, HGB2, HL62,         Call JUmi( WOUT2, A, COI , C02, Vgji, Vg12, atphi,
     &                                                                  &              rogi,  rog2,   ra11,  rol2,  hgl,  hg2,
     &              WGB2, WLB2, IREG, NODE)                                            h~l, h12, sigma, sigma, IFC IREG EQ. I ) THEN                                            &              UGB2, ULB2, ALPHB2, ROGB2, ROLB2, HGB2, HLB2, WGB2=-WGB2                                                   &              WGB2, WLB2, IREG, NODE)

WLB2=-WLB2 IF ( IREG .EQ. 1 ) THEN UGB2z-UGB2 WGB2=-WGB2 ULB2=-ULB2 WLB2=-WLB2 END IF U182=-ULB2 WOUT = WGB2 + WLB2 UGB2=-UGB2 EOUT = WGB2*HGB2 + WLB2*HLB2 END IF PRPH, CALL EQNNE( WIN, ElM, WOUT, EOUT, 5, HS, PRPP, WOUT2 GB2 + WL62 U0

      &               Pt, HOAR, Q, app, Ph, DELZ, V, RO,                   EOUT2 igWGB2*HGB2 + ULB2*HLB2 A               dhdt, FUN , IREG, Ex~ass, ExEner)                    CALL EQNNEC WIN, EIN, WOUT2, EOUT2, S, HS, PRPP, PRPH, RETURN                                                                           Pt,  HOAR ,  0, QPP,  Ph, DELZ,   V, RU,
                                                                         &               dhdt, FUN2, IREG, Wxass, ExEner )

800 Continue .LT. HF )Then IF ( kk .eq. 18 .AND. HOAR .GT. HF .AND. HBAR2 alph2, kkzO Call JuniC 0.000, A, COl, C02, VgJl, VgJZ, aLphl, W0=WOUTO & rogi, r~og2, roll, roL2, hgl, hg2, C**** Try bisection method & hLI, ML2, sigma, sigma, HLB2, C**** first try to trap zero & UGB2, ULB2, ALPHB2, ROGS2, ROLB2, HGB2, DELWO = 0.1000 & WGB2, WLO2, IREG, NODE ) PRPP, PRPH, DELWMDELWO CALL EQNNE( WIN, ElM, 0.D0, O.DO, S, HS, 810 Continue & Pt, HOAR, Q, app, Ph, DELZ, V, RO, WI w WO - DELW & dhdt, FUNP, IREG, ExHass, ExEner) W2 a WO + DEIW UGB2=O .DO IF C IREG .EQ. I ) THEN

            .WOUTI = -WI

3S13 4d*ddSd*A + IPHP*WdVd*A 3 SBUWX3- S + JfJOM - NIM *t)3*.53HI 11 uba, Az Inu Iz M03 j***3 NUI oa-L-dlWl ( Em + tM )*ocis'o EM oasu x rv OSO 01 og il, WV83 A, AI aNa (Z-0 H-V) g*IV3V i1311dWI zm/(Zm-&M) )sqva x HOU3 3513 JGu3x3 '9*QWx3,'D3HI mnj 'wip zm ý-im)sava a +WVV3

     'OJ 'A 'Z130 Nd 'ddt) '0 'HVSH 'ýd U841    OWL.'il* ZM       Al

'HdVd 'ddUd 'SH 'S #in03 'lnoM+'N13 'HIM)3WN03 3NIinDUGnS Al 006 01 09 OS *10* 9)01 WWPUO3 US OUG)DI (IN3 U0143asiq 84914jul pKwtljl OJQPZ ****0 Al ON3 M'BM 'd3lS ut DJQAuO3 ON )ZvwJOA 60L 3nNIiN03 M'GM (60L'1)3118M 3S13 anulluoo 006 OW oi 09 A13a*00'2 = M13a WAS W14=14 assstmlium 0 ua4l ( Oa-0 ZNnA*tNnJ ) il anupwo oSg Al ON3 029 01:09 4;14gjt '. =Hd1V'9'ZS'&9 01WHOA LV593 L+W=q)D1 V*4,Lji , xzimzomunj )ivwHoi 04/593 Onj = ou -L1M't5M'LNnj )ivwHoA 6ES93 EM LM (I S)lVWS0j OES93 3S13 xzM,&M 01VOW IES93 OZ9 01 05 ZHdlV'6'ZD'10 (OW0081jim 3 zaimzeswuni (oisq'o0a4lim iNni u ZNnj ZdW3lM'LdW31M'LNnj WS9#00aUM EM Z. ZM zinom'Linom (LEWooolim u841 00"0 '11' iNnA*LNnA ) Al X3WIl')U'300N'D3HI (RE'00341jM Jau3x3 'ssvWx3 '93MI 'ENni lip4p 7 (SES9,003iIHM

             '0S 'A 'Z13a :4d 'ddb 'D 'HWOH 'Id 11V3                                          A1 CIN3
      'Hdad 'ddSd 'SH 'S inoj 'lf1DM 'NI3 'HIM )3WN03 Z91H*ZG1M + ZSDH*ZgDM a inO3                                                  dois Ulm + z6om x irlom                   X3WIl, lNnOX'QPGN#BOH i)4vWJOJ LEE Al QN3           X3WIi'NN'3d0N'S3HI (RE'00831JA X3WIl'XX'300N'03VI (LZV*)0WM z9on-wason              d&IS 3N Ut oiaz deii zueo 1),OWJOA OZE zalm-talm                                         (OZE10oallim ZGDA-=ZBDM                                         (OZE10241im NNI    L '03" 30ON 'GNV'. L "OF 93HI ) Al                          N3Ri ( SL '03' XX) JI 3S13 30ON '93VI '291M 'ZSDM                  I                                        Nanl3H
  '291H   289H 'Z610S '2990H 'ZgHdlV      129in 'Zoon                v                  S-VLAZ ', -Nnj'i )ivwvoj Z&9L
                           '"kis    'wAls   'Z14  '04                1           0G-"L/dNnj'X3WI1 (ZL9L'*)31111M
                'Z84 'L84 'ZjOj 'LIOJ 'ZBOJ %BOJ                     19                                    0G,0=ZG1M jz4djR 'L4dj*   'Zf8A 'LfBA 'Z03 'Loo 'y 'Einom nunr im                                                  oao=zGDM 41 aN3                                      wozzain rLm-Einom ft

0 w liquid

                                                                                                               =. Gas     flowspecific rate at enthaLpy junction at(Lbm/sec) junction (Btu/Lb*f)

C hl Wg All = V*PRPH C a Liquid flow rate at junction (Lbm/sec) C WI A12 =V*PRPP Dl . WIN -. OUT + S -EXMass C**** energy equation Implicit/ALTTIM/ COGMON TIMEXGI,G2,GALPHZDELTT PRX3,FUNP Real*8(A-H,O-Z) C ( V*RO + V*HBAR*PRPH )*dhdt - V*(I.DO/AJ

                                                       - HBAR*PRPP)*Pt               c 901 format( MARKER-1 junl ')

EIN EOUT + Q + DELZ*Ph*QPP + HS*S - ExEner c 902 format(C MARKER-2 Juni 1) C - A21 V*RO + V*HBAR*PRPH G a W/A A22 a - V*(1.DO/AJ - HBAR*PRPP)

                                                  + HS*S - ExEner                                                                           flow D2
  • EIN - EOUT + Q + DELZ*Ph*QPP C**** compute Limits for co-current DET All*A22 - A21*A12 flow.

C**** CALCULATE DHDT AND DPDT C**** Gi is Limit for downward co-current dhdt a (D1*A22-D2*A12)/DET C Note Gi< or - to zero. high enough to entrain vapor PtL m (D2*Ail-Dl*A21)/DET C If G < G1, then the flow rate is FUN = C PT - PTL ) to Vol 1. IF Vol 2 contains only Liquid, C downward from Vol 2 if Vol 2 contains vapor only, C then G! is equal to -infinity. RETURN equal to zero. It follows that GI is based on the C then G1 is END C fluid conditions in Vol 2. G1 a -Vgj2*roL2/DMAXI(CO2,1.D-IO) C Gll- -VgJl*roL2/DMAXI(COI,I.D-lO) Subroutine Junil( W, A, Col, C02, Vgjl, Vgj2, .lphl, alph2, C 61. D4AX!( G1,Gll )

      &                       rogi, rog2, roll, roL2, hgl, hg2,
      &                       hL1, h12, sigmal, sigma2, go, Wl,
      &                       velg, vell, alph, rog, rot, hg, hI,                     C**** 62 is Limit for upward co-current flow.
      &                       IREG, NODE )                                                    Note that      G2   is   >   or  =  to   zero.

C vapor is sufficient to entrain C**** C If G > G2 then the upward flow of G2 defines co-current Thus G6 C Input: W = mass flow rate at junction (Ibm/sec) C liquid upward from Vol 1 to Vol 2. If Vol 1 liquid, then G2-O. C W>O M> flow from vol-i to vol-2 C upward flow. If Vol 1 contains only expression becomes but the C A z Junction flow area (ft2) C contains only vapor, then G2 exists G2 can be determined from C Col - Concentration parameter for vol-1 C indeterminant (i.e., 0/0). However, C C02 = Concentration parameter for vol-2 C LHoptlts' rule. Vgjl = Drift velocity for vol-1 (ft/sac) IF ( alphl .gt. 0.999dO ) then C SIGMAl, IREG, NODE, VgJ2 a Drift velocity for vot-2 (ft/sac) CALL voidL( 0.999DO, ROLl, ROGi, C G, COa, Vgja, Xa ) C alphl - void fraction in vot-1 & ) alph2 = void fraction in vol-2 G2'1 0.999O0*rogl*VGJA/( 1.DO - O.999O*COA C C rogi = vapor density in vol-1 (Lbm/ft3) ELSEG2;* alpphl*rogl*Vgjl/( 1.dO - aLphl*CO ) C rog2 = vapor density in vol-2 (Lbm/ft3) C roll u liquid density in vol-1 (Lbm/ft3) END IF C rol2 s liquid density in vol-2 (Lbm/ft3) (Btu/Lbm) C hgl x vapor specific enthalpy in vol-12 specific enthalpy in vol- (Btu/Lbm) C hg2 = vapor in vot-1 (Btu/lbm) C**** Co-Current upward Flow C hil - liquid specific enthalpy 2 specific enthaLpy in vot- (Btu/Lbm) IF ( 0 .GE. G2 ) Then C h12 = liquid in vol-1 (Lbf/ft) C sigmal interfacial tension (Lbf/ft) CO

  • COI Vgjl sigma2= interfacial tension in vol-2 Vgjl C

Rog : rogi C - Gas velocity At junction (ft/sec) roL n roLl C Output: velg vetIl

  • Liquid velocity at junction (ft/sac) hg = hgl C Alph a void fraction at Junction hL a hLl C rog a vapor density at junction (Lbm/ft3) alph*lphl C rot - Liquid density at junction (Lbm/ft3)

C hg u vapor specific enthalpy at junction (Btu/LbIm) C

006 01 09

                                                                                    ,,,-Ioj,( 4d1p - OpL )*JJQA 1M              3 an - v*o IM
                                                                                                  ,1*50J*4dlg*BlDA am At GN3

(((loj/Boj-opt)*03*4die-op"L)*(4dlB-OP-I)*loj)/"DA 118A O3*4dIv - OWL IIQA ((O3*4djv-Op*L)/f6A*60J*4div - 9 W 3SI3 (((Ioj/5oj-Op*L)*VO3*OQ W OP-L)*(00666*0-OP*t)*10J)/119A=IlaA C(voo*oaw*o-oplL) ) -110A I

                                                                                  - 9 )*(   VOO*OGW'O - OP*k
                                                              /VfBA*BOJ*OGW'O

( UX 'G[BA '803 'D IJV3

                                                                '30ON '03MI   'LVWIS   'DOM 'ION '00666'0 )lPj0A U041 ( Oa W -0 '46- 018) 11
                                                                                                           )/BIQA 618A JOJ/BDJ - OP'L )*03*4djU - OP*L fBA + 10J/9*03 : 618A Z4dlvi-4dju PU3                                                                      214 w 14 Nunin                                                                        ZB4 z 64 ZJOJ = IoJ ZBOJ . BON NdIV-ZHdlV ampU03 006                                                                     Zf5A = [BA Z03 z 03 U041 ( 1,9*31 . 5 ) At Moij, piumumop waiino-oo ****3 006 01 09 All QN3                                                                               AI QN3 V*(4djv-Oa'0*10J    )/lM . llP:A                                                                             006 01 09 1 3S13                                                                                          0 x JIPA                                                                                    h PUD V*(OaW*OOCIL)*Ioj )/IM                                                                                              )Lvwwl  ZODS6 ua4l ( 00666*0 %9' 018) it                                                                      0,03ovoov LOOS*

11 QN3 VIM 'i -HdlV'513A'lM'SM 0.LVWdOJ p (V*Boj*Lidle)/OM a 510A 9,O3,vqOv (zoos,.7)311HM 0

                                   ; 3513                                                   HdIVIS13A'lM'DM (1,00003110
                              - 5jaA                                                               Mi ( 1 '03' 9381 ) 41          0 M041 ( 41-(l ý '17 018 ) At                                                                                              3 (Lq.q).3dOl5 + ZfBA:- f6A                                                  V*IOJ*( 019 - QP*L )*IIQA IM (L9-z!))/(Zf5A-LfDA) =ýuols                                                                        am - v*o     Im (Ls-!))*3dOlS + ZLidle x 4dic                                                             v*Boj*4dlv*dlaA sm (Lq-Zq)/(ZLjdjv-t4djv) =;3dOlS                                                                               AI QN3 am - V*q a In                                                                              x 110A (L9-9)*3dOlS + LOA x am                 (((Ioj/ooj-OP*t)*03*4dlg-OP'L)*(4dlB-OP'ý)*IOJ,)/119A
                                                                                        - a  )*(Oo*qdle - Op-L       - JJQA (03*019-OWO/fOAA0414dis                                           3S13 (p-Z5)/(Lam-ZBM) = UOIS oao . Lam V*Zq 2 ZOM          (((IOJ/BOJ-OP'L)*VOO*OaW*O-OP'L)*(OGW'O-!OP'L)*10J)/11*Axl-igA

((VO:)*OG666*O-OP*t)

                                                                                                            - OP't ) -118A
                                                                /VfBA*BOJ*OU666'0 - 5 W VO3,o6OGW'O E14 = 14 04 z 64                                                   ( §X 'vfBA '003 '9
                                                                                                                )lPj0A IIV3
                                                                   '30ON '93HI 'LVOIS 'DON 'ION 'Oa666-0'45' 4djo) At ZJOJ = IoJ Lsoj M Boj                                                    ua41 ( Oa666'O iNUNnowV31MOD ****0                                                                )/019A - BIaA M014                                                loj/DOJ - OWL )*03*4dlg - OWL fBA + 10J/9*03 - BlaA At W 40

r~ur-ýU APPENDIX F (U2C9) Uprate Conditions with 9x9 Core Base SABRE Input Deck for Power are provided for all of Following the input listing, references The base SABRE input deck is listed below. the inputs. (00) Base case IrpAt Deck for LW9 SNotes

  • Initial PoFer = 3441 "lt tLb/hr
  • initial Core ftlo = 100
                                                     = 1050 psia
  • initial stem &dmepressure
*10        sec          Steady-State Run CALOJLATIOGAI. FLAGS N CO*OVERGNI*                        RITERIA OF TIlE STEPS BETWE           DETAILED EDITS.
  • Mi-I KPRIW = MXII,4 iUBie BETWE DETAILED WDITS.
  • o-fi 4 = MNIiMI J43ER OF TIME STEPS ONINLET FLONITERATION.
  • I8-R ERRINF= RELATIWE ERROR IN FLOW CALO.ATION.
  * -R RLxC = RELAXATION PAR*ETER USED FOR KINETICS SOJ.TICN
  • Z,-R RTfL = RELATIWE ERRO PARN*TER FOR KINETICS S1.1ICN
  • W6-R ATUL = pag.tUIE ERROR APRETER ROL. ATO.

ERINF RLXC MGW KPTOU 1.-05 5 9.0-5 0.20 1.0-05

         -------20        -----              °*--------

INTERVAL

  • END TIlE, TIME STEP DATA, ANDPRINT
  • Wi-R TBV = END TIME (SEC)

SETS SLIED

    *        -       wP. = NO. OF PRINT INTERVAL-E W-i            NTIlE= NLI           OF TIME STEP SETS SL1PPLIW
         *,-R DTKIWNAX =                    STIP SIZE FOR KINETICS SOLUTION (SEC)

INW NTIRE DTKINIkX

  • TEND 1.0
10. 5 5
                 .                    ~TIME     STEP DATA IL0T      ID NO. FOR TIE ST              DATA
      *w* -I
  • W-R tOX = Nw STEP SIZE (REEC)
      *S-r             H144ll= 1in step size (ip) data (sec)
  • W*-R TSTART = Startirg time for time step IDDT HHEX HNIN TSTART(J)
       *                                                              (SEC)
       .                                (NSEC) (nec)
30. 15. 0.

1 10. 2 30. 15.

30. 5. 20.

3 200. 4 30. 15. 300. 5 30. 15.

  • PRINT INTERVAL DATA J GENERAL EDITS (SC)
  • WI-R TPRNT1 = PRINT INTENAL sEn PRINT INTVL (SEC)
         * *2-R TSTRTP = STARTING TIlE FOP.
  • TPURIT TSTRIP
5. 0.
40. 10.

100. 100. 250. 500. 250. 1000. OPTIONS

  • INITIAL REACTOR CONDITIONS ANDIWDEL

IC= INITIA T LF TRA GER )W

  *u1-R                                             = 3441 lPlt IOU%( po
  *2_

RCW1 = Raited Core Thennaf Powe (MRt) CM =T INITIAL TOTAL caRE FLOW (IKbflr). This is the carbined active-core ard bypas =fLow. RATED FLOW = 2.77T7784 U*4/EC 100 IL/hr

   *6_

(K4b'hr) WCK= Initial gus for core dwrmt f Low

   *7_

pX=INITIAL STEAM DOE PRESSJM (PSIA)

    *B_

DLVI = INITIAL DOWNCOMER LEVUL (INCHES AB7vE INSTR ZE) Normia Levet is 30 to 35 irdies.

    *9_

(BTUIL34) DSZ = INITIAL 9EOiR ING IN DGJACM ERIGKIO W1*

                                 = HF - (ENTHALPY IN CX3J4XtR) (BtW'bWl
  • I_ INITLZ- INITIAL1ZATIN FLAG
                                  = 1 If THIS IS AN INITIALIZATION GSE W1*                    = 0 IFTHIS IS ATRASIEN R QFRACI=      FRACTIONI OF TOTAL M POWER THUTIS DEPOSITED IN THE           CIANlEL AS GM4* HEATING
  • 15-f THAT IS DEPSITED
  • 1 QFRAC2=- FRACTION OF TOTAL cWPOER IN THE BYPAsS oWNEL AS GNIW HEATING W1 Teaperature of wanter in CST MF. Used! for HPIC NCTws-
        *16                             and RCIC injection.

T~pHJ = TOWpeature-~of -hater in Hot of WLt (F)ý Use - P.4heating for final P.1tuip Lpon IOG P.1heating. is Lost after NGIV closure, turbir trip, or imnUaL trip of P1 heaters. ALSO tzed for suctiohn teqxmrtufe iWen conjerate syteea is injecting at Low Rx presoure. va~T = ST volume (gaL) tVrMS= CST voL (gaL) at whichd HPcI & RCIC Trimsfer suction from~ CST to SP for subnoeer& part R HTa..I0_ Heat transfer coef ficient (8TU/hr-ft2-F) of reator vesset & internats. Heat transfer coefficient (BIUAir-ft-F) for part RITCSTM of reactor vessel & internaLs exposedt to stemL PWc

  • RCTHP 3441. 100. 90.

3441. DSEA INITIZ QIWC DLVL. 0 0.0175 0.0175

  • HTa.IQ 25.1 VCSI vrWs 10.

225000. Y00 200. 123.

              "*V1-R ABFEAK          = Break area (ft2)
              "*W-1          IBREIC = I => Liqpid break (in dUEOxr)
                    *                -= 2 -> Steam break (in steeadnkl) break flow E~A = ~oecoeficient. VMe ftcm is choke, criticfes
  • l-R
                      *                 ~~is  Gcrit*PIAw C*FU~m, eiere Gcrt is.
  • _.R AKBR = Loss coefficient for break. wit break f 1041enthlWh
  • b-1 ILTBL = I => Override break fltow cato.
                          *                    ~VS. tile table.

Ibe calclasted.

                                      ==0 => Break f tow wilt   in break f Low vs. tile t~abe.
                  * -16NLTBL = Nzter of poeints FBREAK       AWK       11T&!        NLTh!.
  • ABREAK IBREAK 3 1 .OCD 1.dD 0 0.0000 Break R~ow Break Enthalpy
                        *Time                                                           (StW'Ilbo (sec)                (Lai'sec) 0DAD              55.1dl) 0GJ00d1 tI

I0.00D00* O.dO0 04dO 525.1d0 525.1d) 1.0000dS iO~Ow~ 0,43 53.I1dD TRIP LOGIC

       *,*J,-,,*u,;;--,;-.:-         SC-RAM"LOGIC tn
  • 1= SR EBlaED, 0*- SRM FAILED (AiS),
                        -1= SCRAM       & ARI Fai Led.

13.D0

  • LOWLEVEL SCRAM SET POINT (INCES) 10".D0
  • HIGH REACT* R PRESSURE SCRAM SET POINT (PSIG) 1.7T)0
  • HIGH DRyWELL SCRAM SET POINT (PSI.)

118.D0

  • SCRA ON HIGH NEUTRON FLUX (% OF RATE) 1.D+O9
  • MAHJAL SCRAM ONTIME (SEC)
  • SCO" ONMSIV CLOSU (IfENABLW, O-OFF)

I

  • SCRAM ONTUREINE TRIP (1='ENABlB, O=OFF) 2.8 Control rod imertim time for scram (sac)

HPCI DATA STrip Logic 1

  • 1=> HCI OPERGALE, O=> HFCI IWNERA*LE
    -38.
  • IPCI INITIATION ONLow VATER LEVEL (INCHES) 1.72
  • HPCI INITIATION ONHIGH DRYWEJ. PRESIJ (PSIG)
    +54.
  • HPCI TRIP ONHIGH lATER LEVEL (INCHES) 118.7
  • HPClTRIP ONLOW REACTOR PRESSURE (PSIA) 1.D+09
  • wmAL3 TRIP.OFF ONTIME (SEC) 23.83
  • SP L AT WHICH HFVCI SUCTION TRANSERS TO SP (FT)

A---HPCI Flow 3.3

  • Time cmtent (sec) for lECI fiot vs. d*md response a0.O
  • DeLay from HPCi init signl to start of flow to RPV (sec) 500.
  • Hirmm HPCI fLow (921O 5000.
  • Maximun HPCI flow (gWO) 3
  • I ~ozr of points n Ttle of HPCI cd*he- ftLow vs. time
                        * (Deiard flow is setpoint dialed in an flow cnmroller)

STabte of HlEI Dowd flow vs. time

  • Time (Csc) HPCI Dewed FLow (91Wu O.d) 5000.dO 1,d 55000&.d 1cer cW 5000.dr 1
  • 1=> ENABLE LEVEL ONTOL MDE OF tEVI OGERATION, 0- OFF 1.1)09
  • TIME AT WHICH OPERATOR TAKES CONTROL OF INJECTION (SEC) in target-Leve*-wrsustifle pointsLeveL table 2 (sac)*
  • Time " kWber ofTarget (imnes) 0.0 +35.

I .D #O9 i m500.SC O T O OFFPLCW

                                         +]5 .-USED IN SIPIULATING OPERATOR CONTROL GAIN (GPWINCH)                                                FC
RCIC DATA '

trips I

  • I= RCIC OPEBLE, 0- RCIC INOWPIRtLE
      -38.
  • RCIC INITIATION ONLOW ATER LEVEL (INCHES)
      +54.
  • RCIC TRIP ONHIGH IATER LEVEL (liIES)
75. *RCIC TRIP ONLOWREACTOR PRESSURE (PSIA) 1.09 *PANIiL TRIP OFF ONTIME (SEC)
**** fLow dta 3.3
  • Time constent (sec) for RCIC flow vs. dmd resed e Z0. * **DeLayfrom RCIC init signal to start of flow to Are (sac) 600.
  • RCIC injection rate (G:O
60.
  • Mininum RCIC flow (gpm) 600.
  • Maxiulm RCIC fLow (Om)

Ope~rator Control 1

  • 1>r ENABLES OFERATCR-CONT1OL MODE FOR RCIC, 0=> OFF.

1.D+09

  • TIME AT 1HICH OPERATOR TAKES CONTROL OF RC[C IN.! (SEC) 2
  • itrber of points in target-teat-rsus-tifme ttae
  • Time (sac) Target Level (inches) 0.0 +35.

1.09+ +35. 500O,0

  • GAIN (GSWINCH) UE IN SIMULATING OPERATOR CONTROL OF FLOW CONDENSAT SYSTEM 0 0 => LO-.PRESS CONDENSATE INJECTION INOSME
  *                              => LOW-PRESS CONIDENSE INJECTION OPERABLE
20. RAfP TIME FOR INJECTION, I.E., THE TIE
  • FROM INITIATION OF INJECTION UNTIL R* REAHES
  • FILL FLOW (SEC).
5. mDST-DOM6 TIME W1HEN FLOW IS TRIPPED OFF (SEC) 1*

514.7 LOWPRSJ PERMISSIVE Fat FLOW INJECTION. PRESSURE MST BE LESS THAN THIS VALLE (PSlA) OR INJECTION WILL NOT OCCUR.

5X.7 HIGI PMASUJ CUT OFF FaR INJECTION FLlO. FLOW IF FLOW IS

  • ONAND PRESSURE EMM THIS VALLE (SIA) WILL STOP.

5000. CONDENSATE INJ FLOW RATE (GPM) COE SPRAY SYSTEM 090

  • 1 0 COR SPRAY INJECTION II(RABLE
  • 1> COW SPRAY INJECTION OFERAILE 10 w&nTber of points in ftlow vs. pessure table
  • SFLcu (WP - Coat. P3
         *                       (WOj                   (psi) 7790.                    0.

7000. 56. 6000. 122. 5000. 172. 4000. 214. 3000. 245. 1000. 27'7.

                                   .0.                   29,
0. 1500.0 RECIRCJLATION SYSTE4 LOGIC 1.D9
  • TRIP RECIRC RPLJ-A C TIME (SEC) 1.D9
  • TRIP RECIRC PRP-B ONTIME (SEC)
  • No deLay for trip an time
      -38.
  • TRIP RECIRC PPIP-A ONLOW WATER LEVEL (INCHES)
9.
  • De~ay for Punp-A trip on Low level (sec)
      -38.
  • TRIP RECIRC PLIP-B ONLOWATER LEV..(INES)
9.
  • Detay for Pi" trip on low LeveL (see) 1149.7
  • TRIP RECIRC PJIP-A ONHIGH REACTOR PRESS (PSIAW 0.23
  • DeLay for Pup-A trip an high reactor pressure (sec) 1149.7
  • TRIP RECIRC RpI-B ONHIGH REATOR PRESS (PSLA) 0.23 *Delay for Pup-B trip on high reactor pressure (sm)

D.0

  • IW-CK PW'-A (TO 3*%SPEE) ON FW FLOW (C OF RATE) RDg) 15.0 *DeLay for Pulp-A mrback on Lcw Fd foLw (sec) 20.0
  • RKEACK PFP-B (T0 30 SPEED) ON FP FLOW (% OF RATED R.OW) 15.0 *Delay for PRm"p nru on low FW fLow (sec) 13.0
  • RAJfABK PP-A (TO 30% SPEED) ONLOWWATE LEL (INCHES) 3.0
  • DeLay for Pmp-A rurack on Low Rx water Level (sec) 13.0
  • RUE PMP-B (TO 30%SPEED) ONLOW ATE LEVEL (INCHES) 3.0
  • Delay for unp-B rurbck on low Rx water Leml (see) 4.0
  • TIE CONSTANT FOR PRI4P-A TRIP (SEC) 4.0
  • TIME OONSTANT FOR RP- TRIP (EC)
20.
  • TIME CONSTANT FOR R.IP-A RLINAC (SEC)
20.
  • TIME CONSTANT FOR PIP-B RLJ8MX (SEC)
65.
  • CORE FLW WITH I RMP TRIPPE) & 1 AT 1O00SPEW) (4LBAR)
42.
  • CORE FLOW WITH 2 RIUPS AT 309 SPEED (MLB/HR)
36.
  • M FLO WWITH 1 1P TRIPPI*D AD 1 RIJP AT 30% SPEED ("I/HR)
  *                      = (55/B7)
  • 42 "FEBY6'TER DATA STrip Data 1.D*O9
  • MAWAL TRIP OF FEEATER RIPS (SEC)
54.
  • FEEDATER TRIP ONHIGH WATER LEVL (INCHES) 175.
  • FEElTER TRIP ON LOW ME44 LINE P (PSIA) 1.D.+09
  • Initiate MastL isoLatim of Psiheaters (sec)

SIU ControLler 200.

  • PsiCONTROLLER GAIN
1.
  • FWCONTROLLER TIME CONSTANT (SEC) 14.476
  • Vaximm Rd flow 4.bl'hr) 14.151
  • Rated W flow (,L7Ar)
60.
  • Time constant for decay of Fi enthat.w foLLowing a
  • a turbine trip, NSIV cLosure, or noxamL isolation
   .                      of feedcater heaters (Sec).
13.
  • water level at which lee, setpoirt setdlam occurs (in.)
18.
  • Level setpoint (inches) after setdown occurs
11.
  • tim delay for Level setpoint setdow (sec)
      -       perator Control 1.D409
  • TIME AT WHICH OPERATOR C3ffA OF PW IS INITIATED (SEC)
35.
  • TARGT LEVEL FOR.CFERATCR CONTJC1 OF PW FLOW (INCHES)

r"g, Zt I

        • Specifiedl I flow vs. time t f fLow vs. tie isspecified. 0 tfLow s catc.

1 0 If value is 0 any data s4Lqied in table is not Used. vs. time table 2 kuiber of data points in F. fLow

  • t** P. ftoa vs. time tabLe
  • Time (sec) FW FLOW Otb/hr)

O.aD'+O 14.151 1.tD+9 14.151 "sIIv CL0SJM DATA - I.D+09 ** CLSUR ON TIME (SEC) CLOSU ON-LOW REACTOR LEVEL (IIHES) M5.7

  • C ONLOW REACTOR FRESSURE (PSIA) 4.0
  • MSIV stroke time (sec) 14
  • MD).OF PTS. IN KLLTIPLIER TABLE
  .                 MSIV Loss       coeff  mLAt  vs stem position
  • Stem Position Multiiier 2.?W013 0.OO 200.

0.021 0.042 100. 0.062 58.8) 0.00 37.00 0.125 22.20 0.167 13.30 0.250 6.99 0.333 4.44 0.458 2.79 0.500 2.41 0.667 1.41 0.83W 1.14 1.000 1.00

                             -       PRESSUj  REWGLTCR AN 1MINE TRIP DATA *
    ***Turbine Tri"ps 1.09      *IWUAL TRIP ONTIME (SEC)
54.
  • TRIP O HIGH LEVEL (INCHES) (Lb
     ***Pressure Regulator FAIL OPEN PRESS REG (PR                  M         R)
          * .*+O* *TRIP           MO 14.631
  • Vex turbine stem f Low (VWQ1) at initial Rx press M r) 997.0
  • Initial turbire inlt pessure (psia) 3.33
  • PREss REG0.ATR *GAI '(% OF RAT) RMPS) filter (sec) 3.0
  • ta"l = time constant 1 in LW-Lead fitter (sec) 7.4
  • taJ2 = time costait 2 in Lw-Leed 1.60
  • ta = time coetat in Lt initial fitter (sec)

Rx e (Mb 18.29

  • Max carbined stem flow at BEYOND I1BW 14SIV (**T (ft-3) 3610.5
  • STEAM LINE VOL
  • stem ine volume between stop aKI coitrot valves 180.2 46.5
  • STEAILINE INERTIA (ft-1) 9.6212
  • RLL-OPEI MSIV FLOW AREA (FT2) 0.727
  • LoSS OCEFF FOR RULL-CEN MSIV 0.10 TJSIME STOP VALVE STRWM TIME (SEC)

Rx Press (MLtbhr) 3.66

  • Turbine bypEss capacity at initial (SEC) 0.16 TIME 0)1ST FOR BYPASS VALVE CPEATI1 OPERATION (SEC) 0.05
  • TIME COW FOR TUR COWTIOL VAV
         ;-                               U3GIC MAS 1
  • 1z ADS BLa*M, 0: ADS.DEFEATED
        -129.I0           Level setPoint for A)S (incrhes) 6              Lonber of Walis S1(2.
  • Delay tiwer (s2c) - Hi ID press assuwmdL
                             * .       ~i a~zjm**

Ro OL D INBSETION 1.09

  • TI=E AT tMII OPERATOR INITIATES RI (S) 1J.9
  • TIME AT WHICH OPERATOR STOS MR'PER (SEC)
  • 0CITROL ROD INSERTION RATE (SEC ROD) 90.0
                                .~~~STAM3LIGJID D)IO.RM 1.0+09        TIME AT WHICH SLCS IS INITIATE) (SEC) to core (c) 75.0           Effective transit time from SLC(1twk          R2 )

SOF SLCSR PERABI In rate of eLenentaL B With 2 SLCS PEms q:e:*,,,e(Lb:*fsec) 0.2B - FORB DIWUTI 1140.7 ,. OF TER,,l. RECIRC LIOPS (F73) cnditiam,

                             ,,-,E Hot 494.             Hot gxutd:*n Boron Conc. (pnm at
  • rno~voids, ad full power Zenon concentrationl), n valuie, If total core flow (MLW tomr _) greatr tha this is
15. p LL, bi - to ext then stagated boron (in is than this value, l.ess
6. If total core fow. (N04=.)injecte into the Lower pLe.L- wi t--egin 6 then some of the boron
  • to settle to the botton of vsel.
4. If the total core flow (KIb/br) is less than this value
  • thun aLL of the borui injected into the Lower pleum wiLt
.                        settle to the bottom of the vessel.
1. interpolation exponent for bran mixing when core flow
  • is betwieen the two total core flows specified caove.
        *eqpnrnit                      =1 => timeer interpolationi
  • exponet> 1 => less mixirg than linear mofdl
  • eqxrt < 1 n more mixing than linear 10 trber of nodes in active core for boroa mixing ( to 10) 4800.d3 Initial volute of sodium pwnttcrate sotticr
  • in SLC tank (gal) 200. SIu tank vol at wich SLUplm.. trip (gal) 82.4 injectiti rate of boron s ia (%n) with 2 puqm
90. Teaperatire of solution in SC tatn CF)
                                    -REACflO    COLD 1.0+09        Time (sec) at which control Led cooldcbm of WV is init.

liX. CootcdL& Rate (Deg F/br)

98. (psig)9 i.e.r the cooLdown is Target press of cootDdwreaamstisyw
  • c~ovr~ i resur Wm
  • SAFETY/RELIEF VA.VE DATA (PART 1)
  *WI-I          mM       = MJSER OFWS
  • WR DTsRV = SR STROKE TIME (SEC)
   *        -    FC*EF = F1ow coefficient. SRV fLow is
   ,                           *FCOE:*Gcrit*VAREA, ere Wcrit is critical nass flux.
  • M.V DTSW - _FOEI. . ... ..

16 0.5 0.M4

  • SAFETY/RELIEF VALVE DATA (PART 2)
  • Wi-R VAREA(1) = FLOW AREA FOR VALVE 1 (FI2)
  • W-R PRIES1) = PRESSMBEAT WHICH VALVE OENS (PSIA)
  • 18-R PRESt I) = PIESSJRE AT WHIGI VALVE FE-SEATS (PSM
  • SPPLY N/ALV LINES OF DATA WITH EACH LINE CONTAINING THESE three
  • PARNETERS
  • VA.E ID# VAR.A PRESH PRESl.
  • LI values
  • 1 0.111W 1M3. 1017.

2 0.111W 1146. low.

  • imp.
  • 3 0.1119 1156.

4 0.11192 1157. 1030.

  • 103.
  • 5 0.11192 1159.
  • 6 0.11192 1165.. 1037.
  • 7 0.11192 1167. 10(9.
  • 8 0.11192 1168. 1040.
  • 9 0.11192 1175. 1016.
  • 10 0.11192 1176. 1047.
  • 11 0.11192 1173. 1048.
  • 12 0.11192 1181. 1051.
  • 13 0.11192 118 . 1056.
  • 14 0.11192 1191. 1060.
  • 15 0.11192 11%. 1065.
  • 16 0.11192 120. 1072.
  • m*amna wtLs .....

1 0.11192 1113e 1116. 987. 990. 2 0.11192 999. 0.11192 1126. 3 1127. 1000. 4 0.11192 1002. 0.111W 1129. 5 lMr7. 6 0.11192 1135. 1009. 0.11192 11M. 11M7. 7 1138. 1010. 8 0.11192 1016. 0.11192 1145. 9 1146. 1017. 10 0.11192 1018. 0.11192 1148. 11 1151. 1021. 12 0.11192 1106. 0.11192 1156. 13 1161. 130. 14 0.11192 10J3. 15 0.11192 1164. 1042. 16 0.11192 1174 .

rW rW ro S ski* LI' N .a gU =

                                                                     -U               -41    -4 11I II II   'I   It       II
                                                        'C Jo1                          -      bIN N
                                                            -    -9'
                          -Hill -4                   t               -4'a NNOW g-5 i                                                                 -Il     -u ft.;   ft I

1I.

ýýIWNbsý                                                     010 15,      W_1               '24  i-a       .9 a
                                                         -4   rt
  • Ii" C

S a I 21 In In 99POrdl I 9j ii Magi q-jill C,

                                                  .944 I

I

                                                               'a I                N      'S

PAUL ZVU 2656.dO (00.OC 239.al 700.01) I* ZM), 800,0m0 187A0 100.OdD 0A) 1300.0C1)

       *DELAYED-Na            N pRECLJRSE.R  DECAY CCASTPNTS fOR SIX GROLPS DELAYED GROUP
  • WI-R SIADA(l) = DECAY ODNIT (1/SEC) FOR FIRST SLM%A(6) = DECAY CENSTWT (1/S) FOR SIXTH DELAYED GRXP
  • 6-R SLVA(2) SLAMA(3) SLMCAM(4) SLAMA(5) SLMEW6)
  • SLMACJ(1) 3.87 0.0316 0.122 0.324 1.400 0.0128
  • M FRACTIONS FOR SIX DELAYED Ga.f
  • WI-R BEI'T() = (BETA FR GROUP 1)/ETA
  • WrR 9ETrN(6) = (BETA FOR GROP 6)/ETA BETAN(2) BETA(MI) BETAC4 BETAN(5) BETPM6)
  • BETAN(1) 0.036 0.032 0.205 0.1¶5 0.395 0.147
  • DATA FOR FREL ANDCLADDING HEAT TRM1SSE PI)D.
  • W*1-RRF = FUEL PELLET RADIUS (IWOES)
     *W-R          RCI     = INSIDERADIUS OF CLADDING (INCHES)
     *       "     ROD     = OUTSIDE RAIUS OF CL.WING (INES)
     * %&-R        H       = GAP COUCTANICE (51U/S1-FT2DW)
  • l,-R RO = LB h OF ACTIVE RFEL (FT)
     . UT-I         iNa     = M.IJBS   OF BUiNDES IN COR
          *S-R      RF1     = RAIIUS OF INNER RJEL NE (INCES)
                            = (VOLUMETRIC     HEAT GENiEATION HEAT GENERATION    NDE 1)/(PELLET IN FUEL RATIE). 7lis W-R       PHI1        AVEP.N:E VOJ.IPETRIC
  • peraeter accounts for seLf-tiiekditU effects within R(D HP# RODL BND RF1 PtIi
  • RF RCI 0.90 0.182 0.212 98B. 12.5 764 0.1261 0.1783 SPule of FEL Rods per Axiat Core lime
  • Axial Node No. of Rods
                         ¶                    79      *AF 2                    79 3                    79 4                    79 5                    79 6                    79 7                    79 8                    79 9                    79 10                    79 11                    79 12                    79 13                    79 14                    79 15                    79 16                     79 17                     79 18                     79 19                    79 20                    79 21                    79 22                    79 23                    79 24                    79 25                    79     *rAF
  • DOmW4 INETIA

PAGE 291

  • Ml-R AID = DoAXO(ER INERTIA (0/FT)
  • AID O.O&DO PARN-ETERS
  • JET-RpH REGION PHYSICAL pa lDPRALLIC
*Wl-R          AJ          =JET PRNP FLOW      AREA (FT2)
  • W2-R ALDENJ JET UHP FLOW PATH WGJ (FT)
                            =jJET PLRP HDRMLIC DIA-ET             (FR)
  • W-R
  • W4R FJ Jet pusp region friction factor.
 **  j-R         AiJ            Jet pump fluid inertia (effective L/A) I ft**(-1)

DIJ FJ AiJ

  • Ai
  • 16.495 0.98 0.013 1.1 15.16
  • Lcai PEIJ4 PHYSICAL ANDHYDRAULIC PAR*ETER
  *I-R.          AL         = FLOg AREA OF LGSP P.BLM (FT2)

PLBJl (PT)

  • 12-R AlENI- = FLOW PATH LSIGTH OF LA (F)
  • I DHL = HYDRALIC DIN'ER FOR LOS PLE.H region.
  • W.-R Ft. = Friction factor for Lower plain OF
  • I-R ALENLI= (ELEVATIGN REGION) AT CORE INLET) - (ELEVATION AT BO11o
  • JET AM CR.)-.
                             = Loaer pleim fLuid irertia E ftC(-1) 3
  • W64 AlL DiL F. AMLI AIL
  • AL PAENL 1.014 0.013 6.% 0.13 r3235 17.28
  • COR M YDRALIC PPR 1ECItS
     *W1-R          AC         =    E   FLOW KEA (FT2)
  • Wb-R ALBIC = Length of active core (ft)
  • M54 C = MR HYDRMLIC DINIEf (PT)
     *1A-R          Am          = core fluid inertiaE[ft**(-1) I (ft)
  • b5-R ALLR = Lergth of Lor ref Lector region AUUR= Lergth of uLper Ref Lector Region (FR)
  • U6-R DIE AIC ALLR ALUR
  • AC ALBSC 12.5 0.045 0.1)0 1.15 1.218 87.2
  • BY-PASS cwiEa HYDR+/-IC PARMET.*S
  • U-R AB = BY-PASS OWMEL FLOW AREA (FT2)
  • 4-R ALE, B = FLcg PATH LEINTH (FT)

HfDRALLIC DIN4ET (FT)

  • W5R DHB = BY-PASS OHANNEL
  • PB = Bypass friction factor.

FS-R

  • 15-R AID = Bypass fluid inertia E ft**(-1) 3 DHB FB AIB
  • AB ALUSB 0.196 0.01E5 0.22 67.87 14.87
  • UPPER PLE5t HYDRAULIC PNMAIEI
         *WI"_R        N.J       = UPPERPLItLI4 FLO AREA (FT2)
         *WI-R         MlMiJ=        FLOd PATH LeNi=H OF UPPER PIEtIl (FT)

(FT)

  • b5-R DHU = HyDRALIC DIMEM FOR UPPER PLEtM
          *4-R          RJ       = Upper plain friction factor.
  • 16-R AIU = Upprn plenum fluid inertia E ft**(-l) I
  • kALEJ DLU RlI AIU 191.84 4.8 3.97 0.01 0.015
  • RISER HYDRKJLIC PARAMETERS
  • W1-R AR = RISER/SEPARATCR FLOW AREA (FT2)
 *u-R             MLEWf=         RISER/SBPARATOR FLOE PATH LENGTH (FT)
  • 66-R DlR = HYDRM.LIC DIAIMEIT FOR RISER/SEPARATaR REGION (FT)
  • IA-R FR = Friction factor for risers.
  • 16-R AIR = Fluid inertia in riser region E ft**(-1) I
  • R ALENR DHR FR AIR 39.66 10.156 0.505 0.015 0.5
  • SEPARATOR IDRMLIC ARAMETER
  • WI-R AS = SEPARATOR FLOW AEA (FT2)
  • h-R ALENS = SEPAATOR FLOE PATH LBEGTH (FT)
  • 18-R DHS = YDROLIC DIAMETER FOR SEPARATOR REGION (FT)
  • W+-R FS = Separator region friction factor.
  • 16-R AIS = Separator region fluid inertia E ft*(!) ].
  • AS ALESN DNS FS AMS 71.06 6.167 0.514 0.015 0.84
  • Carbired vLume of steern dme (up to irixbrd I'IV) and dkcavmr
  • region (ft3)
  • VO
   *           (Fl3)
  • REACTOR CORE SPAE LOSS COEFFICIEIT DATA
    "* l-I ISpACE = PJE OF SPACERS PER CHANaEL.
    "* RfEL SPAaR LOSS COEFFICIENT CALOJLATED BY THE                   CODE BASE  ONINITIAL
    "* CONDITIONS
  • NSPZCE 7
    *                            ,J.DUCIG    FLOE AREAS ANDLOSS COEFFICIENT DATA
  • K A 0.X 6.18 * (1) Donamer to Jet PRp 1.% 39.4 * (2) Jet Puw Exit 1.57 22.67 * (3) Fuel Bundtle Orifice 1.37 49.8 * (4) Lower tie plate 0.5065 0.976 * (5) Lower RefLector to Bypass 3.64 139.8 * (6) LU r Reflector to Upper PLerun 0.00 48.96 * (7) Bypass to Upper PLenm 0.41 45.10 * (8) LpIer plam to Riser
                        -1.00        35.67        * (9)    Riser to Separator
                        -100         40.73        * (10)   Sepmrator Exit
      ----------------    -------         CONTAINMENT DATA            ---
     *W-R
      *
  • S9L. = INITIAL SPPRESSION POOL level (ft)

SPT = INITIAL. 9.PFPESSIGE POOL TEMfERATLU (OEGF) 1W = Initial WetweLL Temp (F)

  • I-R TO l= Time AT WHICH RHR HX-1 TURIS ON (sac)
  • k-R TpON = Tine AT MU1CH RHR HX-2 UliRS ON (sac)

I

  • 18-1DWSPI = TIME at wAidi Dry Well S is initiated (sec)

(Keep at 1.D+09; ModeL not complete)

 "            "*WJ.o          SFT0         1W             11011          1 I2        DWSPI 23.0            90.          90.            1.f+l09      1.DfM9        1.*D(9 F SP.RESSION                POOL FR AREA AS A R.MICTI OF ELEVATION
  • Wl-I NSA'R.= Ntuber of SP area vs. level points.
  • W2-R SPELEV = ELEVATICN ABOVE BTT4 OF S*.PPRESSION POOL (FT)
  • W3-R SAP A = SP FREEAREA (FT2)
  • S -AVL 4
  • ELev. above bottom of pool Free Area
*                               (ft)                                  (fM2) 0.00                                 5851.3 12.0)                                  5851.3 12.01                                  5277.0 52.50                                  5277.0
 " W1-R CADW            = Initial heat Load fran fram RPV to dryweLLI (BU/.Vsec)
 "*W2-R 1c7 = initialTenp             coolirn capacity of OWCooling. (BT*/sec)
 "* -R TOWJ-- Inlet coolers                of cootlir water for DMcoolers (F)
 "* k-R acrPz oDrwLetL coolers trip DryweLL                        if DWpress eceeds this value (pig)
                        .=
 "* l6-R %i = DryweU free %oLuve (0) rA                                trip   if Rx eeldrops below value (in.)
 "*WS-R                                           (F)
 "* UT-R 1DM =Initial D tepTeqeratre                              (F)
 "* W8-R IB4SJ*4ervoe Water TODM C7 I*M                          WW          1DM     TEB'J
  • UI M -129. Z3960. 120. 88.

10J43. 1043. 50.DO 1.72

  • Containiet Data (Cont'd) -- Vacuum Breaker Data area (ft2)
  • wIl-R AREAW = fulL cpen %scbreaker f Lowbased onaAEAW
  • W2-R AMJ = vacuiJ bredar Loss coeff
   *%8.-R 0MWV= DPat which vac breaker                            beginslto LiftC(psi) full open (psi)
  • I&-R DPM = DP at *hich vc breaker is
  • AFEAWB MWS 0MWS DP2V 10.25 3.57 0.5 3.22 Cmntairlut Data (Cant'd) -- Doacomer Vent Data
  • WlI-R Nxxkt = dxrcaer vat ftLow area (ft2) dmcw of
                             = Elevation                      of VC vent atw/r to on toss coeffRiOci vetbottom                                 ADO of SP (ft) bottom
   ** WS-Ri2-R  coN)

ALDCW

  • DOWNO AKDOWN NXMIN 242.0 2.17 12.0
  • Containlmo Data (Cant'd) -- initial tuniddity and pressure ID
  • Wl-R RIE = Initial Relative humidity in in WWM)
  • 2-R RJW = initial Retativ Hunidity (psia)
  • b-4 POW = initial pressurefDin
  • W4-R FRU =Initial pressure in etwel (F)
  • Rpj RSU DIJ Fl
48. 100. 15.2 15.2 r data
  • Cotairinit Data (Cont'd) -- SN tailpipe/Dowdol*
     *I I-R DcM= Diamter of.Sly/tail pipe (ft)
  • 12-R M(Ufl1N Loss coefficient foa- V guacer fYýfl of-e~1 datIIw vets floor (ft)
     * %8-R
  • WP-R FgQ = 0.0 - nitrogen Wuftes throji SP with no heat transfer.

witt SP.

                           = 1.0 - nitrogen reaches thermal eqti
      ,                     ( 002<1 - interpolation between the two limits 3.

AflAMEN tNT F1O2 1.0 1.0 1.5 1.0

  • Cntairnnt Data (Cont'd) -- SP Letdowm
        "* WI-R TSPLDI= Time at which               SP letdown is       started (sec)
        "* W2-R T5qn92=- Time        at which SF Letdown is             ternirated (sec)
        "* 6-R WSL = SP Ltetcu, fLow (lbm'sec)

I( TSPDl. 1v.CP TS'L2 l2D.dD

                                                       ,.WI.D
  • Containten Data (Cont'd) -- Area of Dryi-tt steel structures
  • *-R j = surface area of drcelL Liner wall (ft2)
  • R
       --      Mq.R  = surface ame of crywltt Liner roof (002)
    • q--R. = Surface area of drywelL Liner floor (Cf2) fi_! = surface area of interml steel strxtures (structlures
   * +-R
  • excLuldir the Liner) in ckywell (ft2) 1039. 6082. 66000.

17M70.

  • Cortairnet Data (Cmnt'd) -- Volume of Dryelt steel structures
 "*ýg¶.. WW            = 'volume of  wall segrmnt of ckywelL tirer OftM
 "*W2-R         MAR= volume of       roof segret of dryweLl Liner (ft3) fLoor segment of dryiel Linerdrywel  (ff3)
 "* b3-R        %MF= vvoLume of                                                  (ft3)
 "* U,-R        MM = volume of       intenal steel structures in
  • t a*
22. 127. 2750.

372.

  • ccrairwlel Data (Ccntcd) -- Ares of Wetwell steel strucitues
  • WI-R WA = ht ares of etwelt walL (f2) (ft2).
      *    -R W = ht area of weNtSM interruL structures A"                         AM 8156.                       3D0*8.

structures

  • Contairrni Data (CCnt'd) -- Volume of WtwelL steel
  • WI-R " = Vol. of -wetweU wal-twithin-air space4ft3)
  • W2-R VAf = Vol. of wetwelL AM internal structures (ff3) 170.152
  • Ccntairmwt Data (Cont'd) -- characteristic tenght of steel stru¶.
     *l-R         M.w = Characteristic Length        of d-weLl walk = height (ft) roof
         * -R     CR = charateristic Legth of d&well                (ft)
                         = (Heat trwsfer are)I(Perilrtett) letrth  of  dryAeLl  floor
     *-W-R         CLDF  =  Characteristic                          (ft)
                          = (Heat transfer area)/(Perimeter) int"nIl steel struc.
  • 1&-R at.D[ Characteristic Length of ctywelt
                          = Height (ft)
          *b.R awu= wacteristic length of wetoelt well in air spaee
                          = Height (ft)
          *6-R MW            Characteristic t-rth of wetwell internl steel struc.

S= Height (ft)

10. 9.5 10.

87.75 9.1 22.

Documentation for Base Case SABRE Inputs for U2C9 Core SFA Calculation Flags and Convergence Criteria F.1.1 Maximum number of time steps between detailed edits

                 = 20 F.1.2   Minimum number of time steps between detailed edits
                 =5 F.1.3 Relative error on inlet flow iteration inlet
                 = 9.D-05. This is the convergence criteria for calculation of core and jet pump inlet flows.

F.1.4 Relaxation parameter used in inlet-flow calculation of core

                  = 0.20. This parameter is used in Newton's Method calculation and jet pump inlet flows. (adds numerical stability).

F.1.5 Relative error parameter for kinetics solution

                  = 1.D-05         .

F.1.6 Absolute error parameter for kinetics solution

                   = 1.D-0 F.2    Problem end time, print intervals, and time step sets F.2.1   End time
                   = 10 seconds. (Run 10 second transient).

F.2.2 Number of print interval sets supplied edits are

                   = 5 These are the print intervals for General Edits. General printed in file Generl.out F.2.3 Number of time step sets supplied
                    =5 F.2.4 Max step size for kinetics solution
                    = 1 second F.3    Time Step Data Five cards must be supplied (see F.2.3).

Max Step Size Min Step Size Start Time ID (sec) (msec) (msec)

30. 15. 0.

1 10. 2 30. 15.

30. 15. 30.

3 200. 4 30. 15.

30. 15. 300.

5

FAUL Z!J A maximum time step size of 30 msec is specified for this problem. The maximum step size will be used in the calculation unless convergence of the numerical calculation cannot be obtained. In this case, the step size will be halved until the minimum value specified (15 msec) is reached. F.4 (Parameter not used with 1-D kinetics model) F.5 Print Intervals for General Edits In the base deck, General Edits are printed at the intervals shown below: Print Interval (sec) Start Time for Print Interval (sec)

5. 0.
40. 10.

100. 100. 250. 500. 250. 1000. F.6 Core Power F.6.1 Initial Core Thernal Power Core thermal power = 3441 MWth= 100% of uprated rated core thermal power.1 F.6.2 Rated Core Thermal Power

                   = 3441 MWth (see F.6.1)

F.7 Core Flow F.7.1 Initial Total Core Flow Core Flow (bypass plus core channel flow) = 100 MLb/hr.(Ref. 1) F.7.2 Initial Guess for Core Channel Flow

         = 90 MLb/hr. (Ref. 1)

F.8 Initial Steam Dome Pressure Initial reactor steam dome pressure = 1050 psia. (Ref. 1) F.9 Initial Downcomer Water Level 2 Initial downcomer water level = 562.5 inches above vessel zero. = +35 inches above intrument zero. This is normal operating water level at rated conditions. NEDC-32161 P, Power Uprate Engineering Report For Susquehanna Steam Electric Station Units 1 and 2," p. A.7-3, December 1993. 1 and 2 SAFER/GESTR 2 GE-NE-187-22-0992, *Susquehanna Steam Electric Station Units LOCA Analysis Basis Documentation,* p. 4-4, September 1993.

F.10 Initial Downcomer Subcooling flow, and 1050 psia steam Core inlet enthalpy at 100% power, 100 Mlb/hr core saturated liquid enthalpy at 1050 dome pressure is 525.0 Btu/Lbm (Ref. 1). The subcooling (and downcomer psia is 550.1 Btu/Lbm. Therfore, the core-inlet subcooling) is 550.1-525.0 = 25.1 Btu/Lbm. as Gamma Heating F.1 i Fraction of Total Power Deposited in Moderator to the moderator as gamma 3.5% of the total core power is deposited directly be equally distributed between the heating.3 The gamma heating is assumed to the bypass region. That is coolant within the channels and the coolant within channels, and 1.75% is 1.75% is deposited to the coolant within the core deposited within the bypass channel. Tank (CST) F.12 Temperature of Water in Condensate Storage correspond to the CST water The HPCI and RCIC suction water temperatures the CST during an ATWS event temperature as these systems take suction from CST temperature is set to 123 OF and during plant transients. Therefore, the used by GE in the power-uprate which is the HPCI/RCIC suction temperature ATWS analysis.* F.13 Hot Well Temperature temperature upon loss of feedwater This paramerter defines the final feedwater an MSIV closure or turbine trip. heating. Feedwater heating is5 lost following Hotwell temperature = 129 OF. F.14 Initial CST Water Volume value = 225,000 gallons. 6 Initial CST water volume = nominal to Suppression Pool F.15 CST Volume for HPCIIRCIC Auto-Transfer CST to the SP on low CST level. the HPCI and RCIC auto-transfer suction from that the transfer must occur Tech. Specs. (Tables 3.3.3-2 & 3.3.5-2) indicate

                                                                        & EC-037-1002 state the the with CST level >36". Calculations EC-037-1001 volume is 9400 gallons/ft (EC-037 process set point for the transfer is 45". CST when CST volume falls to 1001). Therefore the suction transfer occurs (9400 gaVft)*(3.7 ft) = 35,250 gallons.

5 Part of Reactor Vessel and F.16 Heat Transfer Coefficient for Submerged Vessel Internals

              = 200 Btu/hr-f-OF (Section D.2 of this calculation)

ATWS Performance for Power Uprate 3 GENE-637-0 24 -0 , 'Evaluation of Susquehanna 8 93 Conditions,* Table 2.1, October 1993. 2 4 -089 3 , "Evaluation of Susquehanna ATWS Performance for Power Uprate 4 GENE-637-0 Conditions,* Table 2.2, October 1993. Electric Stations 1 6 1 P, "Power Uprate Engineering Report for Susquehanna Steam 5 NEDC-321 and 2," p. A.4-13, December 1993. Station Individual Plant Evaluation,' Volume 2, p. 6 NPE-91-001, Susquehanna Steam Electric A-71.

rIPL.3F- A-U Internals Exposed F.17 Heat Transfer Coefficient for Part of Reactor Vessel and to Steam

       = 10 Btu/hr-f--OF (Section D.2 of this calculation)

F.18 LOCA Data Break flow is specified as 0.0 (No break in base input deck). F.19 Scram Logic F.19.1 Status of scram system

                 = 1 which indicates that scram is enabled.

F.19.2 Low reactor level scram setinstr. point inches with respect to zero. 7

                 = +13 F.19.3 High reactor pressure scram set point
                 = 1087 psig.(Ref. 7)

F.19.4 High drywell pressure scram set point

                 = 1.72 psig..

F.19.5 High neutron flux scram set point

                  = 118 % of rated power. (Ref. 7)

F.19.6 Time at which manual scram is initiated

                  = 1 .D+09 sec (No manual scram for base case)

F.19.7 Scram on MSIV Closure generated on MSIV closure).9

                  = +1 (scram signal is F.19.8 Scram on Turbine Trip
                   = +1 (scram signal is generated on turbine trip). (Ref.

8) F.19.9 (Parameter not used with 1-D kinetics model) F.19.1O Control rod insertion time for scram

                   = 2.8 seconds. (Ref. 7)

F.20 HPCI Data F.20.1 HPCI operability flag

                    = +1 (HPCI is operable).

7PP&L Calculation EC-FUEL-0520. Plant Evaluation,f Volume 2, 8 NPE-91-001, Susquehanna Steam Electric Station Individual p.A-3 p.A-34. NPE-91.-01, Susquehanna Steam Electric Station Individual Plant Evaluation, Volume 2,

F.20.2 Low water level initiation set point

            = -38 inches. (Ref. 18)

F.20.3 High drywell 0 pressure initiation

            = 1.72 psig.1 F.20.4 High water level trip set point
             = 54 inches. (Ref. 18)

F.20.5 Low steam supply pressure trip

             = 104 psig = 118.7 psia (Unit I TRM Table 2.2-1,
p. 3 of 7, 04/02/1999)

F.20.6 Manual trip off on specified time depends on

             = 1.D+09 seconds. (No trip on time as this parameter details of particular case) transfers to pool F.20.7 Suppression pool level at which HPCI suction
              = 23 feet 10 inches = 23.83   ft. (Unit I TRM Table 2.2-1, p. 4 of 7,
                                       - .04/02/1999) vs. demand response F.20.8 Time constant used to simulate HPCI flow                      of the initiation HPCI is required to reach rated flow within 30 seconds 1 From the plant data in benchmark problem 1 (Section 5.1), a signal."

to the vessel. 20-second delay is occurs before HPCI begins injecting rated flow in at The time constant is chosen so that HPCI is essentially 30 seconds: 3 (-p) + 20 sec delay = 30 seconds, or THM= 10 sec/3 = 3.3 seconds. of flow to vessel F.20.9 Delay from HPCI initiation signal to start

               =20 seconds. (From F.20.8)

F.20.10 Minimum HPCI flow can effectively

               = 500 gpm. The minimum flow at which the operator flow.

control HPCI injection is assumed to be 10% of rated F.20.11 Maximum HPCI flow

               = 5000 gpm. It is assumed      that HPCI flow will not exceed its rated value 12 which is 5000 gpm.

Plant Evaluation," Volume 2, p. 10 NPE-91-001, Susquehanna Steam Electric Station Individual A-69. HPCI DBD004, Rev. 2, 2.2.3.1.11. 12 HPCI DBDO04, Rev. 2, 2.2.3.1.9.

F.20.12 HPCI Demand Flow Table for all time. In demand flow vs. time table, HPCI flow is set to 5000 gpmat 5000 gpm inject As a result, when HPCI auto-initiates the system will flow. (Maximum number of points until operator action is taken to reduce in table is 20.) F.20.13 Operator control flag of operator control of HPCI.

                  = 1. This value allows for the simulation of HPCI injection F.20.14 Time at which operator takes control
                  = I .D+09 seconds (Time at which operator takes control of HPCI depends on details of transient) of HPCI J20.1 5 Target level table for operator control          Level (inches)

Time (sec) Target 0.0 +35. 1..D+09 +35. the target level is set to +35' In the target level versus time table for HPCI, in the Table is 20. (normal level). The maximum number of points operator control of HPCI F.20.16 Controller gain used in simulating

                   = 500 gpmrinch. This value has been found to give satisfactory simulation results.

IP F.21 RCIC Data F.21.1 Operability flag

                    = +1. This indicates that RCIC is operable.

F.21.2 RCIC initiation on low water level

                    = -38 inches. (Ref. 18)

F.21.3 RCIC trip on high water level

                    = Level 8 = +54 inches. (Ref. 7)

F.21.4 RCIC trip 13on low steam supply pressure

                     = 75 psia.

F.21.5 Manual trip off on specified time

                     = 1.D+09 seconds. Manual tip of RCIC depends on details of transient 13 Technical  Specification Table 3.3.2-2.

F.21.6 Time constant used to simulate RCIC flow vs. demand response 14 RCICI is required to reach rated flow within 30 seconds of the initiation signal. A 20-second delay is assumed before RCIC begins injecting to the vessel (see F.21.7). The time constant is chosen so that RCIC reaches rated flow in 30 seconds: 3 (rRac) + 20 sec delay = 30 seconds, or TRaC = 10 sec/3 = 3.3 seconds. F.21.7 Delay from RCIC initiation signal to start of flow to vessel

              = 20 seconds.

F.21.8 RCIC injection rate 5

              = 600 gpm. (This is rated RCIC flow).,

F.21.9 Minimum RCIC flow

              = 60 gpm. The minimum flow at which the operator can effectively control RCIC injection is assumed to be 10% of the rated flow.

F.21.10 Maximum RCIC flow

              = 600 gpm. (Maximum flow is assumed to be equal to rated flow.)

F.21.11 Operator control flag

              = 1. This value indicates that the operator takes manual control of RCIC.

It is assumed that initially RCIC injects at full flow (600 gpm) and the operator throttles RCIC to maintain level at some target value. F.21.12 Time at which operator takes control of RCIC

              = 1.D+09 seconds. Value is specific to the particular transient F.21.13 Target level table for operator control of RCIC Time (sec)                 Target Level (inches) 0.0                              +35.

1.13+09 +35. In the target level versus time table for RCIC, the target level is set to +35" (normal level). The maximum number of points in the Table is 20. F.21.14 Controller gain used to simulate operator control of RCIC

               = 500 gpmrinch. This value has been found to give satisfactory simulation results.

14 DBD041, Rev. 0, 2.2.2.1.5. 15 DBD041, Rev. 0, 2.2.2.1.3.

F.22 Use of Condensate system for low-pressure injection F.22.1 Operability flag

               = 0. This value indicates that condensate system will not inject to vessel pump.

when reactor pressure drops below shutoff head of condensate F.22.2 Ramp time for injection

                = 20 seconds. This is the time from initiation of injection until the pump reaches full flow. (This value is assumed).

F.22.3 Coast-down time when pump is tripped off

                = 5 seconds. This value is based on feedwater coast-down time in event 16 with loss of offsite power.

F.22.4 Reactor pressure at which flow will initiate

                = 500 psig = 514.7 psia. Condensate system can inject 5000 gpm at 7

reactor pressure of 500 psig.' will cease F.22.5 Reactor pressure at which condensate injection than

                =510 psig = 524.7 psia. The shut-off pressure is set slightly higher the initiation pressure in order to avoid numerical instabilities.

F.22.5 Condensate injection rate 5000 gpm Injection available from a single condensate pump with reactor pressure at 500 psig. (Ref. 17) F.22a Core Spray Flow F.22a.1 Operability Flag for Core Spray

                 = 1 (1=> operable; 0=> inoperable) between reactor F.22a.2 Core Spray flow rate as a function of AP (psi) vessel and suppression chamber atmosphere.

The following data is for I division of Core Spray. Data is from Section D.20. 1 and 2 SAFER/GESTR 16 GE-NE-1 87-22-0992, 'Susquehanna Steam Electric Station Units LOCA Analysis Basis Documentation," p. 6-28, September 1993. Plant Evaluation," Volume 2, p. 17NPE-91-001, Susquehanna Steam Electric Station Individual A-96.

Core Spray Flow [Rx Press - Supp. Chamber Press.] (gpm) (psi) 7790. 0. 7000. 56. 6000. 122. 5000. 172. 4000. 214. 3000. 245. 2000. 266. 1000. 277.

0. 289.
0. 1500.

F.23 Recirculation System Logic F.23.1 Time that pump 'A' is tripped

              = 1.D+09 seconds. (No manual or spurious trip of pump in base deck)

F.23.2 Time that pump 'B' is tripped

               = 1.D+09 seconds. (No manual or spurious trip of pump in base deck)

F.23.3 Low water level 18 trip set point for 'A' pump

               = -38  inches.

F.23.4 Delay for 'A' pump trip on low level

               = 9 seconds. (Ref. 7)

F.23.5 Low water level trip set point for 'B' pump

                 -38 inches. (Ref. 18)

F.23.6 Delay for 'B' pump trip on low level

               = 9 seconds. (Ref. 7)

F.23.7 High reactor pressure trip set point for 'A' pump

               = 1149.7 psia. (Ref. 18)

F.23.8 Delay for 'A' pump trip on high reactor pressure

               = 0.23 seconds. (Ref. 7)

F.23.9 High reactor pressure trip set point for 'B' pump

                = 1149.7 psia. (Ref. 18)

F.23.10 Delay for 'B' pump trip on high reactor pressure

                = 0.23 seconds. (Ref. 7)

Unit 1 TRM, Table 2.2-1, 04/02/1999.

F.23.11 Feedwater flow at which pump 'A' runback (to 30% speed) occurs

              = 20% of rated feedwater flow.7,19 F.23.12 Time delay for pump 'A' runback on low FW flow
              = 15 seconds. (Ref. 19)

F.23.13 Feedwater flow at which pump 7' 19

                                                       'B' runback (to 30% speed) occurs
              = 20% of rated     feedwater flow.

F.23.14 Time delay for 19 pump 'B' runback on low FW flow

              = 15 seconds.

F.23.15 Low water level 19 setpoint for 'A' pump runback to 30% speed

              =  +13  inches.

F.23.16 Time delay for 'A' pump runback to 30% speed on low level

              = 3 seconds. This delay was obtained from a review of PICSY data for the Unit 2 reactor scram of 7/14/96.

F.23.17 Low water 1level setpoint for 'B' pump runback to 30% speed 9

              = +13 inches.

F.23.18 Time delay for 'B' pump runback to 30% speed on low level

              = 3 seconds. This delay was obtained from a review of PICSY data for the Unit 2 reactor scram of 7/14/96.

F.23.19 Time constant for pump coastdown following pump 'A' trip

               = 4 seconds. This value was determined by fitting SABRE-calculated core flow to plant data for Unit 2 scram of 7/14/96.20 F.23.20 Time constant for pump coastdown following pump 'B' trip
               =4 seconds. This value was determined by fitting SABRE-calculated core flow to plant data for Unit 2 scram of 7114/96.2o F.23.21 Time constant for pump 'A' runback to 30% speed
               = 20 seconds. This value was obtained empirically be comparing SABRE calculations to plant data.

F.23.22 Time constant for pump 'B' runback to 30% speed

               = 20 seconds. This value was obtained empirically be comparing SABRE calculations to plant data.

19 EC-FUEL-0969, *SSES RETRAN Controller Model,* Section A.5.1. 20 PLI-82336.

F.23.23 Total Core Flow with I recirculation pump tripped

             = 65 MIb/hr. Value obtained from PICSY data for Unit 2 scram of 7/14/96.2' In the 7/14/96 event, the total core flow prior to pump trip was 102 MLb/hr.

F.23.24 Total Core Flow with 2 pumps at 30% speed

             = 42 MIb/hr. 21 (Value corresponds to 100% rod line.)

F.23.25 Total Core flow with I pump tripped and I pump at 30% speed. Natural curculation core flow on 100% rod line = 30 Mlb/hr Core flow with 2 pumps at 30% speed = 42 Mlb/hr (Section F.18.24). With 1 pump tripped and 1 pump at 30% speed, core flow is estimated to be 30 +(42-30)/2 = 36 MLb/hr. F.24 Feedwater System Data F.24.1 Time at which manual trip of feedwater pumps occurs

             = 1.D+09 seconds (no FW trip in base deck).

F.24.2 High water level7 setpoint for FW trip

                +54 inches.

F.24.3 Minimum steam line pressure for FW operation

             =  175 psia. 2 F.24.4 Time at which isolation of FW heaters occurs
             = 1.D+09 seconds (no FW heater isolation in base deck).

F.24.5 Gain used to model FW system response

             = 200 Lbm/sec-inch. (Section D.15)

F.24.6 Time constant used to model FW system response

              = 1 second. (Section D.15)

F.24.7 Maximum feedwater flow

             = 14.476 Mlb/hr. This value puts an upper limit on feedwater flow rate computed by SABRE FW model. This value corresponds to 102%

uprated power and 100 Mlb/hr core flow.23 F.24.8 Rated feedwater24flow

              = 14.151 MLb/hr.

2 NEDC-32161P, p. A.3-3. 22PP&L Calculation SA-MAC-003. 21 NEDC-32161P. p. A.7-6. 24 NEDC-32161P, p. A.7-4.

F.24.9 Time constant for decay of FW enthalpy upon isolation of FW heaters

              = 60 seconds.2 F.24.1 0 Water level setpoint for water level setpoint set down
              = +13 inches. Following a scram on Level 3 (+13"),26 the water level setpoint is automatically setdown to a lower value.

F.24.1 I Water level 6setpoint after setdown occurs

               = +18 inches.

F.24.12 Time delay 2for 6 level setpoint setdown

               = 11 seconds.

F.24.13 Time at which operator takes manual control of FW flow

               = 1.D+09 seconds. No manual control of FW in base case.

F.24.14 Target water level when operator has manual control of FW

               = +35 inches = normal water level.

F.24.15 FW flow versus time flag

               = 0. This value indicates that input-specified FW flow vs. time will not be used in the simulation. In the base case, FW flow is computed by the controller model.

F.24.16 Number of data points in FW flow vs. time table

               = 2. In the base model, the FW flow table has rated feedwater flow specified at t=0 and t=1.D9 seconds. If F.24.15 is set to 1, then FW flow will be equal to the values in the data table.

F.25 MSIV Closure Data F.25.1 Time at which MSIV closure is initiated

               = 1.D+09 seconds. (No MSIV closure in base deck).

F.25.2 Setpoint for MSIV7 closure on low water level

                = -129 inches.

F.25.3 Setpoint for MSIV closure on low reactor pressure

               = 875.7 psia.

F.25.4 MSIV stroke27time

               = 4 seconds.

2 EC-FUEL-0969, Section E.7. 2 EC-FUEL-0969, Section A.10. 27 GENE-637-024-0893, OEvaluation of Susquehanna ATWS Performance for Power Uprate Conditions," Table 2.2, October 1993.

F.25.5 Number of points in MSIV loss coefficient multiplier vs stem position table

              =14 F.25.6 MSIV closure loss coefficient multiplier versus steam position Steam Position        Multiplier7 0.000                 2.71 D+13 0.021                 200.

0.042 100. 0.0625 58.80 0.083 37.00 0.125 22.20 0.167 13.30 0.250 6.99 0.333 4.44 0.458 2.79 0.500 2.41 0.667 1.41 0.833 1.14 1.00 1.00 F.26 Pressure Regulator and Turbine Trip Data F.26.1 Time at which turbine trip is initiated

              = 1.D+09 seconds (no turbine trip in base case).

F.26.2 High water level 7 set point for turbine trip

              = +54 inches.

F.26.3 Time at which pressure regulator failure-open (PREGO) is initiated

               = 1 .D+09 seconds (no PREGO in base case).

F.26.4 Maximum turbine 28 steam flow at initial reactor pressure

               = 14.631  MLb/hr.

F.26.5 Turbine inlet pressure at initial conditions

               = 997psia2 F.26.6 Pressure regulator gain
               = 3.33 % of rated flow/psi.2 F.26.7 Value of -r in lag-lead frequency filter of pressure regulator
               = 3.0 seconds.2 21 NEDC-32161P, p. A.4-6 29EC-FUEL-0969, Section D.4.

F.26.8 Value of .2 in lag-lead frequency filter of pressure regulator

             =  7.4 seconds.2 F.26.9 Value of tC in lag     filter of pressure regulator 29
             = 1.60 seconds.

F.26.10 Maximum combined steam flow at initial reactor pressure

             = 125% of rated steam flow.3                   28
             = 14.631 + (0.25)(14.631) = 18.29 MLb/hr.

F.26.11 Steam line volume beyond inboard MSIVs This value is obtained from control-volume data for the SSES RETRAN model. 31 This is volume beyond inboard MSIV up to control valves and bypass valves Volume = V3o + V34 1 + V3Q + VU + V3W + V3o + V370 + V3W Volume = 306.44 + 729.08 + 729.08 + 712.83 + 159.76 + 367.76 + 180.22 + 425.35 = 3610.5 ft3 . F.26.12 Steam line volume between stop valve and control valve

              = 180.2 ft?. (Ref. 31)

F.26.13 Steam line inertia

              = (steam line length)/(steam line flow area). Main steam can flow through two different paths: through the control valves to the turbine or through the bypass valves directly to the main condenser. Referring to Figure 3.1-2 of Ref. 31, the inertia for the path to the turbine is calculated as ITIb      =(UA)3o + (UA)3 1 + (L/A)*4 + (UA)4 + (UA)3o + (UA)3o +

(UA) 0

               = (24.730/12.3914) + (70.0/10.4156) + (70.0/10.4156) +

(68.439/10.4156) + (15.340/10.4156) + (17.392/21.145) + (10.017/13.304) = 1.996 + 6.721.+ 6.721 + 6.571. + 1.473 + 0.823 + 0.753 = 25.1 ft". The inertia for the path to the bypass valves is (see Ref. 31) IBP ~= -(UA)3W IT - (UA)3, + (UA)3o = 25.1 -0.823 - 0.753

                          +(137.241/3.099) = 25.1 - 0.823 - 0.753 + 44.286 = 67.8 ft'".

The steam line inertia is taken to be the average of the values for the two flow paths, I = (IT)b + 1I)/2 = (25.1+67.8)/2 = 46.5 ft 1 . F.26.14 Full open MSIV flow area

               = 9.6212 f..7 30 GO-100-102, Section 6.72.1, Rev. 25.

31 PL-NF-89-005-A, "Qualification of Transient Analysis Methods for BWR Design and Analysis,* pp. 18,27.

F.26.15 Loss coefficient for full-open MSIV 7

              = 0.727 (output of control block -707 in RETRAN model ). Loss coefficient is based on flow area for full-open MSIVs..

F.26.16 Turbine stop valve stroke time

              = 0.1 seconds.32 F.26.17 Turbine bypass capacity at initial conditions
              = (0.258)(14.183 MIb/hr) = 3.659 MIb/hr.3 F.26.18 Time constant for bypass valve operation The time constant for valve operation is approximated by 1/3 of the valve stroke time (plus any delay). In the case of a turbine trip, the bypass valves reach 80% open in about 0.4 seconds (0.1 sec delay plus 0.3 sec stroke time).34 The time to reach full open is estimated to be 0.1 sec +

0.3/0.8 sec = 0.475 sec. Therefore, the bypass valve time constant is

              -TBp= 0.475/3 = 0.16 seconds.

F.26.19 Time constant forturbine control valve operation The valve time constant is approximated by 1/3 of the valve stroke time.

              'cv = 0.15/3 = 0.05 seconds.3 F.27   ADS Logic F.27.1 ADS operability flag
              =1 (ADS is enabled)

F.27.2 Reactor water level setpoint for initiation of ADS

               = -129 inches.3 F.27.3 Number of SRVs in ADS system
               =6.37 32GEZ-7127, *Susquehanna Steam Electric Station Unit Numbers I and 2 Transient Safety Analysis Design Report,* p. 2-51, September 1981.

33NEDC-32161P, p. A.4-6. 34NPE-85-001, *Selected Transient Predictions for Susquehanna Steam Electric Station Unit 2 Startup Test Program,' p. 18. 35EC-FUEL-0969, Section B.7. SNPE-91-001, Susquehanna Steam Electric Station Individual Plant Evaluation," Volume 2, p. A-131. 37 NPE-91-001, Susquehanna Steam Electric Station Individual Plant Evaluation," Volume 2, p. A-130.

F.27.4 Delay timer

               = time delay from low-reactor water level signal to initiation of ADS.
               = 102 seconds.3 It is assumed that a high-drywell pressure signal is present when the low water level signal is generated. If this is not the case, the time delay should be adjusted so that the logic is consistent with that shown in Ref. 38.

F.28 Data for Manual Control Rod Insertion (MRI) F.28.1 Time at which operator initiates MR]

               = 1.1+09 seconds. (No MRI in base case.)

F.28.2 Time at which operator terminates MRI

               = 1.D+09 seconds. (This value allows MRI to continue until all rods are inserted).

F.28.3 Control rod insertion rate

               = 90 seconds/control rod.

The time required to manually insert a control rod is _< 60 seconds (Section 2.4.3 of this calc.). An additional 30 seconds is allowed for the operator to select each control rod prior to insertion. Thus the total time required to insert a single control rod is 90 seconds.3 F.29 Standby Liquid Control System (SLCS) Data F.29.1 Time at which SLCS is initiated by operator.

                = 1.D+09 seconds. (No SLCS initiation in base case).

F.29.2 Effective liquid boron transit time from SLCS tank to core

                = 75 seconds.

The time consists of two contributions: 1.) The actual transport time from the SLCS tank to the vessel = 30 seconds,27 and 2.) The time required for boron injected below the core to travel once around the natural circulation loop and re-enter the core. This value is calculated by SABRE and has been found to be about 45 seconds under natural circulation conditions. F.29.3 Number of SLCS pumps operable

                 =2. The SLCS contains two pumps40 and both are assumed operable..

3 GE-NE-187-22-0992, "Susquehanna Steam Electric Station Units 1 and 2 SAFER/GESTR LOCA Analysis Basis Documentation," p. 5-25, September 1993 3 NPE-91-001, Susquehanna Steam Electric Station Individual Plant Evaluation,' Volume 4, p. F-251. NPE-91-001, Susquehanna Steam Electric Station Individual Plant Evaluation,w Volume 2, p. 40 A-46.

F.29.4 Injection rate of elemental boron with two SLCS pumps operable

               =  0.28 Lbm/sec.27 F.29.5 Volume of external recirculation loops used for boron dilution Boron is assumed to be uniformly distributed within the downcomer and the external recirculation loops. The volume of the recirculation loops is41 Volume     =V 2 10 + V 215 + V220 + V 211 +- V 2 16 + V221 Volume = 218.775 + 49.743 + 301.831 + 218.775 + 49.743 + 301.831 =

1,140.7 fe. F.29.6 Hot shutdown boron concentration

               = 494 ppm. 42 F.29.7 Remixing threshold for stagnated boron Any boron stagnated within the lower plenum will remix when total core flow exceeds this value. The NRC has concluded that rapid boron remixing is likely to occur with flow rates greater than 15 percent of rated flow.43 Therefore a value of 15 Mlb/hr is used for the remixing threshold.

F.29.8 Total core flow corresponding to the onset of boron stratification

                = 6 MLb/hr.4 F.29.9 Total core flow below which all injected boron settles to bottom of reactor vessel
                = 4 MLb/hr. 4 F.29.9a Boron entrainment exponent in stratification model
                 =1.043 F.29.1O Number of control volumes used to model boron transport within core
                 = 10 (This is the maximum value that can be used in code.)

F.29.11 = Initial volume of sodium pentaborate solution in SLC tank 4800 gallons (This is a nominal value).44 F.29.12 SLC tank volume at which SLC pumps are tripped

                 = 200 gallons. SLC pumps are manually tripped when SLC tank volume drops to 200 gallons.45 41  PL-NF-89-005-A, "Qualification of Transient Analysis Methods for BWR Design and Analysis,"

pp. 18,26. 42 Calculation NFE-2-09-003 "Unit 2 Cycle 9 Nuclear Fuels Engineering ATWS Analysis.' 43 Section 2.4.6. "44 PLA-4308, File R41-2, May 4, 1995. 4 EO-1001200-113.

F.29.13 Injection rate of boron solution with two SLCS pumps operable

              = 82.4 gpm.4 F.29.14 Temperature of boron solution in SLCS tank
              =90 F.46 F.30    Reactor Cooldown Data F.30.1 Time at which controlled cooldown of RPV is initiated
               = 1.D+09 seconds (No cooldown in base case).

F.30.2 Cooldown Rate

               = 100 OF/hr. This is the maximum RPV cooldown rate following aplant transient or accident. 47 F.30.3 Target pressure of cooldown
               = 98 psig. This value is specified because the Shutdown Cooling mode psig.4 of RHR can be established when reactor pressure drops below 98 F.31    Safety/Relief Valve Data F.31.1 Number of Safety/Relief valves
               =16 F.31.2 SRV stroke time This value is used for the opening and closing time of an SRV. Since the SABRE code does not allow for a delay on SRV actuation, the appropriate delay is included in the stroke time. The SRV opening delay 7

is 0.4 sec, and the closure delay is 0.3 seconds. The valve opening time is 0.15 seconds." The valve closure time is assumed equal to the opening time. Using an average delay of 0.35 seconds with an opening/closure time of 0.15 seconds gives an effective stroke time of 0.5 seconds. F.31.3 SRV critical flow correction SRV flow is calculated as (flow multiplier)(Cntical mass flux)(Valve area) Flow multiplier = 0.884 (Section D.6 of this calculation) SDBDO42 "Standby Liquid Control System," Rev. 0, Section 2.8.1.1.1. 47 EO-100/200-102, EO-100/200-113. 4 NPE-91-001, Susquehanna Steam Electric Station Individual Plant Evaluation," Volume 2, p. A-137.

F.31.4 SRV Area and actuation setpoints Nominal opening and dosing setpoints are used in the base deck. Opening Pressure*° Closing Pressure*° ID# Valve(ft2 Area' (Psia) (psial 1113. 987. 1 0.11192 0.11192 1116. 990. 2 0.11192 1126. 999. 3 0.11192 1127. 1000. 4 0.11192 1129. 1002. 5 0.11192 1135. 1007. 6 0.11192 1137. 1009. 7 1138. 1010. 8 0.11192 0.11192 1145. 1016. 9 0.11192 1146. 1017. 10 0.11192 1148. 1018. 11 0.11192 1151. 1021. 12 0.11192 1156. 1026. 13 0.11192 1161. 1030. 14 0.11192 1164. 1033. 15 0.11192 1174. 1042. 16 time F.31.5 Number of SRVs to tripped open/closed at specified

              = 3 (Data provided for 3 valves in following    section).

F.31.6 Data defining time-dependent trips of SRVs Data for three valves are specified. The Valve ID#s correspond to the values identified in F.31.4. The ID# must be in the range of I to 10. that Valves 11 through 16 are reserved for ADS. The data below shows the valves are to be tripped open at 109 seconds. Trip ID# Valve ID# Time(Open/Close) l=Open/2=Close 1 1 1.D+09 1 2 2 1..D+09 1 3 3 1.D+09 I F.32 Downcomer Condensation Efficiency pressure F.32.1 Number of data points defining efficiency vs. level and

               =12 SSection D.6 of this calculation.

60 GENE-637-024- 08 9 3 , Supp. 1, p. 2.

of pressure and level F.32.2 Condensation efficiency as a function flow which is This table defines the condensation efficiency on makeup of the feedwater injected through the feedwater spargers. The elevation When level is nozzles is -23.7 inches (Section D.5 of this calc.). there is a large steam-water approximately 1 meter below the nozzles, specified as 95% for level mixing efficiency. Condensation efficiency is 51 (Section D.4 of this I m or more below the feedwater sparger nozzles efficiency equal to zero calc.). The SABRE code sets the condensation following data table. for reactor level greater than the first entry in the Level (in.) Reactor Pressure (psia) Cond. Efficiency 1500. 0.00

               -23.7                                                        0.95
               -63.1                     1500.

1500. 0.95

                -250.

1000. 0.00

                -23.7
                -63.1                    1000.                               0.95 1000.                               0.95
                -250.

500. 0.00

                -23.7 500.                                0.95
                -63.1 500.                                0.95
                -250.

100.1 0.00

                 -23.7 100.                                0.95
                 -63.1 100.                                0.95
                 -250.

F.33 CRD Flow Data F.33.1 Normal CRD flow rate Lbm/hr 48 Btu/Lbbm The normal CRD flow rate and enthalpy are 32,000 Lbnl/ft. The volumetric (80 'F) 5 . The density of the CRD water is 62.2 flow rate is C32,000; Lbm JC )( hrDf 3

                                           ))t,2.2Lm'J,)  )(7 .4 8805 gal) =64 F.33.2 CRD water temperature CRD water temperature = 80 IF (see F.33.1).

is inititiated F.33.3 Time at-which makeup mode of CRD provide additional makeup flow to the CRD flow can be maximized to vessel during accident conditions.53 Time at which flow is maximized = I.D+09 seconds. Core Thermal-Hydraulic Stability,o p. 11 51 NEDO-32047-A, 'ATWS Rule Issues Relative to BWR of 70, June 1995. Stations 1 5 NEDC-32161P, TPower Uprate Engineering Report for Susquehanna Steam Electric and 2,0 p. A.7-4, December 1993. 2, p. 53 NPE-91-001, Susquehanna Steam Electric Station Individual Plant Evaluation," Volume A-62.

F.33.4 Number of data points describing maximized CRD flow vs. pressure

              = 11 F.33.5 Maximized CRD flow vs. reactor pressure Maximized CRD Flow!            Reactor Pressure (gpm)                          (psia) 340.                           14.7 335.                           100.

320. 200. 307. 300. 285. 400. 280. 500. 265. 600. 239. 700. 230. 800. 187. 1000. 0.0 1300. F.34 Delayed-Neutron Precursor Decay Constants for Six Groups Values are taken from GE power uprate analysis.5 Group  %(sec') 1 0.0128 2 0.0316 3 0.122 4 0.324 5 1.40 6 3.87 F.35 Group Fractions for Six Delayed Groups Values are taken from GE power uprate analysis.S Group 11 1 0.032 2 0.205 3 0.185 4 0.395 5 0.147 6 0.036 5 NPE-91-001, Susquehanna Steam Electric Station Individual Plant Evaluation," Volume 2, p. A-64 5 GENE-637-024-0893, "Evaluation of Susquehanna ATWS Performance for Power Uprate Conditions,0 Supplement 1, p. 2, October 1993.

F.36 Fuel and Cladding Data For U2C9, the dominant fuel type is ANF 9x9. There are 452 bundles of ANF 9x9 fuel and 312 bundles of ATRIUM-10 fuel (Ref. 42). Therefore, ANF 9x9 fuel parameters, except for gap conductance, are used. The gap conductance is chosen so that a core loaded with ANF 9x9 fuel will have the same thermal response as the U2C9 mixed. Thus the gap conductance is used to account for the presence of the 10x1 0 fuel. F.36.1 Fuel Pellet Radius

              = 0.3565 in/2 = 0.1783 inm F.36.2 Cladding inside radius                      56
               = [0.424 in - (2)(0.030) in]/2 = 0.182 in.

F.36.3 Cladding outside radius 0.424 in/2 = 0.212 in.5 F.36.4 Gap Conductance

               = 988 Btu/hr-ft-F for U2C9 mixed 9x9-1 0x1 0 core.5 F.36.5 Length of active fuel
              = 150 inches = 12.5 ft.56 F.36.6 Number of fuel rods per bundle
              = 7956 F.36.7 Number of fuel bundles in core
              =764 F.36.8 Radius of inner fuel node Equal volume fuel nodes are used. Therefore, 2       2      2 7r ra =7Crrb- R ra where r, = radius of inner fuel node, and rb = radius of fuel pellet Solving for ra gives r, = rb/ (2)112 = 0.1783 in 1.414 = 0.12 6 1 in.

F.36.9 Self-shielding parameter

               = volumetric heat generation rate in inner fuel node divided by pellet average volumetric heat generation rate.
              = 0.90 (see Section 2.3 of this calc.)

SGE-NE-1 87-22-0992, 'Susquehanna Steam Electric Station Units I and 2 SAFERIGESTR LOCA Analysis Basis Documentation," pp. 4-12, 4-13, September 1993. 5 Caic. EC-ATWS-1001.

F.37 Downcomer Fluid Inertia

               = 0.0 (Inertia in downcomer is neglected).

F.38 Jet Pump Region Parameters F.38.1 Jet pump flow area

                = 15.16 If (Section D.1.1)

F.38.2 Jet pump flow path length

                = 16.495 ft (Section D.1.1)

F.38.3 Jet pump region hydraulic diameter

                = 0.98 fL (Section D.1.1)

F.38.4 Jet pump region friction factor

                = 0.013 (Section D.1.1)

F.38.5 Jet pump fluid inertia 1.1 f1` (Section D.1.1) F.39 Lower Plenum Region Parameters F.39.1 Lower plenum flow area

                 = 132.33 ft (Section D.1.2)

F.39.2 Lower plenum flow path length

                 = 17.28 ft (Section D.1.2)

F.39.3 Lower plenum region hydraulic diameter

                 = 1.014 ft. (Section D.1.2)

F.39.4 Lower plenum region friction factor

                  = 0.013 (Section D.1.1)

F.39.5 [Elevation at core inlet] - [elevation at bottom of jet pump]

                  = 6.94 ft. (Section D.1.2)

F.39.5 Lower plenum fluid inertia 0.13 frt (Section D.1.2) F.40 Core Region Parameters F.40.1 Core flow area

                  = 87.2 fe (Section D.1.3)

F.40.2 Length of active core

                   = 12.5 ft (Section D.1.3)

F.40.3 Core region hydraulic diameter

           = 0.0425 ft. (Section D, 1.3)

F.40.5 Core fluid inertia 0.17 ft1 (Section D.1.3) F.40.6 Length of lower reflector region

           = 1.15 ft (Section D.1.3)

F.40.7 Length of upper reflector region

           =  1.218 ft. (Section D.1.3)

F.41 Bypass Region Parameters F.41.1 Bypass flow area

           = 67.87 If (Section D.1.4)

F.41.2 Bypass flow path length

           = 14.87 ft (Section D.1.4)

F.41.3 Bypass region hydraulic diameter

           = 0.196 ft. (Section D.1.4)

F.41.4 Bypass region friction factor

           = 0.0185 (Section D.1.4)

F.41.5 Bypass fluid inertia

           = 0.22 ft- (Section D.1.4)

F.42 Upper Plenum Region Parameters F.42.1 Upper Plenum flow area

            = 191.84 W (Section D.1.5)

F.42.2 Upper Plenum flow path length

            = 4.98 ft (Section D.1.5)

F.42.3 Upper Plenum region hydraulic diameter

            = 3.97 ft. (Section D.1.5)

F.42.4 Upper Plenum region friction factor

            = 0.01 (Section D.1.5)

F.42.5 Upper Plenum fluid inertia

            = 0.015 ft"1 (Section D.1.5)

F.43 Riser Region Parameters F.43.1 Riser flow area

             = 39.66 ft (Section D.1.6)

F.43.2 Riser flow path length

             = 10.156 ft (Section D.1.6)

F.43.3 Riser region hydraulic diameter

             = 0.505 ft (Section D.1.6)

F.43.4 Riser region friction factor

              = 0.015 (Section D.1.6)

F.43.5 Riser fluid inertia

              = 0.85 ft-1 (Section D.1.6)

F.44 Separator Region Parameters F.44.1 Separator flow area

              = 71.06 If (Section D.1.7)

F.44.2 Separator flow path length

              = 6.167 ft (Section D.1.7)

F.44.3 Separator region hydraulic diameter

              = 0.514 ft. (Section D.1.7)

F.44.4 Separator region friction factor

              = 0.015 (Section D.1.7)

F.44.5 Separator fluid inertia

              =0.84 frI (Section D.1.7)

F.45 Combined Volume of Steam Dome and Downcomer

               = 14,334 ff (Section D.1.8)

F.46 Number =75of Fuel Spacers per Bundle F.47 Junction Flow Areas and Loss Coefficients F.47.1 Downcomer to Jet Pump Flow Area = 6.18 ff (Section D.1.1) K = 0.24 (Section D.1.1)

F.47.2 Jet Pump to Lower Plenum Flow Area = 39.40 ft (Section D.1.1) K = 1.04 (Section D.1.1) F.47.3 Fuel Bundle Orifice (Lower plenum to Lower Reflector) Flow Area = 22.67 ff (Section D.1.3) K = 1.57 (Section D.1.4) F.47.4 Lower Tie Plate (Lower Reflector to Active Core) Flow Area = 49.8 ff2 (Section D.1.3) K = 1.37 (Section D.1.3) F.47.5 Lower Reflector to Bypass Flow Area = 0.976 ff (Section D.1.4) K = 0.5065 (Section D.1.4) F.47.6 Upper Reflector to Upper Plenum Flow Area = 139.8 If (Section D.1.3) K = 3.64 (Section D.1.3) F.47.7 Bypass to Upper Plenum Flow Area = 48.98 ff (Section D.1.4) K = 0.0 (Section D.1.4) F.47.8 Upper Plenum to Riser Flow Area = 45.10 If (Section D.1.6) K = 0.41 (Section D.1.6) F.47.9 Riser to Separator Flow Area = 35.67 ft (Section D.1.7) Loss coefficient is calculated by code. (Specify as -1.0) F.47.10 Separator Exit Flow Area = 40.73 if (Section D.1.7) Loss coefficient is calculated by code. (Specify as -1.0) F.48 Initial Suppression Pool Level Initial suppression pool level = 23 ft. This is the nominal value for suppression pool level.' F.49 Initial Suppression Pool Temperature

       = 90 OF This is maximum allowed by Technical Specifications for normal operation.58 F.50    Time at which Loop I of Suppression Pool Cooling Becomes Effective
       = 1.1D+09 seconds (No SPC in base case)

Tech. Spec. 3.6.2.1.

F.51 Time at which Loop 2 of Suppression Pool Cooling Becomes Effective

         = 1.D+09 seconds (No SPC in base case)

F.52 Time at which Drywell Sprays are Initiated

        = 1.D+09 seconds (Keep this value as is because model is incomplete.)

F.53 Number of Data Points in Suppression Pool Free Area vs. Level Table

        =4 F.54    Suppression Pool (SP) Area vs. Level Because of the presence of the downcomer pipes within the suppression chamber (the bottom of the downcomers correspond to 12 feet above the bottom of the pool), the free surface area of the pool is dependent on pool level.

That is, the free surface area changes at 12 feet above the bottom of the pool. The free surface area of the SP is 5277 ft2 at normal pool level.9 Therefore, this is the free area for level > 12 feet. The volume of water in the SP at 24 feet is 133,540 ft (Ref. 58). Therefore the pool free area for level less than 12 feet is calculated from 133,540 fe = (12 ft)A + (24-12)(5277 ft" or, A = [133,540 - 12(5277)]/12 = 5851.3 if. The following data table accounts for the area change with SP level: Elevation above Bottom of SP Free Area (MtY (fW) 0.00 5851.3 12.00 5851.3 12.01 5277.0 52.50 5277.0 F.55 Initial Heat Load from RPV to Drywell

       =  1043 Btu/sec (Section D. 18.5)

F.56 Initial Drywell Cooling Load

       =  1043. Btu/sec (Section D.18.6)

F.57 Inlet Temperature of Cooling Water for Drywell Coolers

       = 50 OF (Section D.18.6)

F.58 Set Point for Loss of Drywell Cooling on High Drywell Pressure

       =  1.72 psig.60 F.59    Set Point for Loss of Drywell Cooling on Low Reactor Level
       = -129 inches.60 SSSES FSAR; Table 6.2-23.

60 NPE-91-001, Susquehanna Steam Electric Station Individual Plant Evaluation,' Volume 2, p. A-301

PAGE 322 F.60 Drywell Free Volume

       = 239,600 ftW (Section D.18.7)

F.61 Initial Drywell Temperature

       = 120 OF (Section D.18.8)

F.62 Service4 Water Temperature

       = 88 OF F.63    Vacuum Breaker Data F.63.1 Full-Open Vacuum Breaker Flow Area 2

There are five vacuum breakers with a total flow area of 5(2.05 ft ).61 Full Open Area = 10.25 ft. F.63.2 Vacuum breaker Loss Coefficient Based on Full-Open Area

                = 3.57 (Based on vacuum breaker full-open area)62 F.63.3 DP at which Vacuum Breaker Begins to Lift
                = 0.5 psid (When drywell pressure is 0.5 psi lower than wetwell pressure, vacuum breaker will open.)62 F.63.4 DP at which Vacuum Breaker is Full-Open
                = 3.22 psid.Y F.63a Downcomer Vent Data F.63a.1 Downcomer vent flow area 2
                = (0.274 m2)(82 vents) = 22.47 m = 242 f (Calc. EC-THYD-1001, Rev. 1)

F.63a.2 Downcomer vent loss coefficient

                = 2.17 (Based on vent area) (CaIc. EC-THYD-1001, Rev. 1)

F.63a.3 Elevation of bottom of downcomer vent with respect to bottom of suppression pool

                = 12 ft. (Calc. EC-THYD-1001, Rev. 1)

F.64 Containment Atmosphere Data F.64.1 Initial Relative Humidity in Drywell

                 = 48% (Section D.18.9)

F.64.2 Initial Relative Humidity in Wetwell

                 = 100% (Section D.18.10)
'" EC-THYD-1 001, Section 2.3.

2 EC-THYD-1013, Section 3.4.

F.64.3 Initial Drywell Pressure

               = 15.2 psia (Section D.18.11)

F.64.4 Initial Wetwell Pressure

               = 15.2 psia (Section D.18.12)

F.65 SRV TailpipelDowncomer Data F.65.1 Diameter of SRV Tailpipe

               = 1.0 ft (Section D.18.13)

F.65.2 Loss coefficient for SRV Quencher

                = 1.0 (Section D.18.13)

F.65.3 Height of Downcomer Pipes Above Drywell Floor

                = 1.5 ft.'

F.65.4 Nitrogen-Suppression Pool Heat Transfer Flag

                = 1.0 (Nitrogen reaches thermal equilibrium with SP as it bubbles through pool)

If 0.0 is used, then there is no heat transfer between nitrogen and pool. Interpolation between the two limits is obtained by using a value between 0.0 and 1.0. F.66 Suppression Pool Letdown Data F.66.1 Time at which SP Letdown is Started

                 = 1.D+09 seconds (No SP Letdown in base case)

F.66.2 lime at which SP Letdown is Terminated

                 = 1.D+09 seconds F.66.3 SP.Letdown Flow
                 = 120. Lbm/sec. This is the suppression pool letdown flow that can be achieved through RHR system to Liquid Radwaste.6 F.67    Surface Area of Drywell Steel Structures F.67.1 Surface Area of Wall Portion of Drywell Liner Plate
                  = 17,870. If (Section D.18.14)

F.67.2 Surface Area of Roof Portion of DrywelB Liner Plate

                  = 1039 ft2 (Section D.18.14)

F.67.3 Surface Area of Floor Portion of Drywell Liner Plate

                  = 6082. 02 (Section D.18.14) 83 EC-THYD-1 001, Section 2.5.9.
 ""EC-THYD-1 007.

F.67.4 Surface Area of Drywell Internal Steel Structures

           = 66,000 ft2 (Section D.18.14)

F.68 Volume of Drywell Steel Structures F.68.1 Volume of Wall Portion of Drywell Liner Plate

           = 372. f (Section D.18.15)

F.68.2 Volume of Roof Portion of Drywell Liner Plate

           = 22. ft3 (Section D.18.15)

F.68.3 Volume of Floor Portion of Drywell Liner Plate

           = 127. ft3 (Section D.18.15)

F.68.4 Volume of Drywell Internal Steel Structures 2,750. W (Section D.18.15) F.69 Surface Area of Wetwell Steel Structures F.69.1 Surface Area of Wall Portion of Wetwell Liner Plate

           = 8156. ft2 (Section D.18.16)

F.69.2 Surface Area of Wetwell Internal Steel Structures

           = 30,048. ft2 (Section D.18.16)

F.70 Volume of Wetwell Steel Structures F.70.1 Volume of Wall Portion of Wetwell Liner Plate

           = 170. ft3 (Section D.18.17)

F.70.2 Volume of Wetwell Internal Steel Structures

           = 1,252. ft' (Section D.18.17)

F.71 Characteristic Lenghts of Containment Steel Structures F.71.1 Characteristic Length of Drywell Wall

           = 87.75 ft (Section D.18.18)

F.71.2 Characteristic Length of Drywell Roof

           = 9.1 ft (Section D.18.18)

F.71.3 Characteristic Length of Drywell Floor

           = 22. ft (Section D.18.18)

F.71.4 Characteristic Length of Drywell Internal Structures

           = 10. ft (Section D.18.18)

F.71.5 Characteristic Length of Wetwell Wall in Air Space

      = 29.5 ft (Section D.18.18)

F.71.6 Characteristic Length of Drywell Internal Structures

      = 10. ft (Section D.18.18)

APPENDIX G Base SABRE Input Deck for Power Uprate Conditions with IWx1O Core (U2C10) (00) Base case irpn DeckNotes for L210 "* initiat Pcwer = 3441 Iti "* Initial Core fLow = 100 K-bWhr InitiaL steam dome pressue = 1050 psia

  • 10 secord Steady-State Run
  • CALLCUATIONLA FLAGS ND ODAIERGEICE CRITERIA
  • wi-I KPMW( = POAXIIt4 WMR 0F' TIME STEPS BETEEN DETAILED EDITS.
  • 2- KPRI = MINII4MI4 NI4BER OF TIME STES BETWEEN DETAILED EDITS.
* *1*-R ERINF= RELATIVE ERROR 04 INLET FLOW ITERATION.
  • W+-R RLI = RELAXATION PAFE US IN FLOW Cc .ATIcN.
  • Z6-R RTCL = RELATIV ERMi PARNAETER FOR KINETICS SOLUTION
  • 6-R ATO = ABSLUJTE ERSO PARAMETER FOR KINETICS SOLUTION
  • KPRM KPRMN ERRINF RLXC RTOL AT.OL 20 5 9.D-5 0.20 1.D-05 1JD-(
  • ENDTIME, TIME STEP DATA, ANDPRINT INTEVL
 *        -R TEND = END TIME (SEC)
  • N-P = NO. OF PRINT INTEWL SETS SUPPLIED
  • 5-1' NTIIE- MBER OF TIME STBESETS SJPPLIED
  • W#-R DTKINMWX = MX STEP SIZE FOR KINETICS SOLJTION (SEC)

S TEND NNP NTIIE DTKINMAX

10. 5 5 1.0
  .                             TIME STEP DATA
   *      -!     IDDTWWID NO. FOR TI ST             DATA
  • WI-R IWX = Fm STE SIZE (ME)
   *k5-R         IWIN = Nin step size (meC)
  • W4-R TSTMRT - Starting time for tine step dmta (sec)
  • 10OT WAX WHIN TSTART(J)
    *                           (I, ) (mec)              (SEC) 1              30.       15.              0.

2 30. 15. 10. 3 30. 15. 20. 4 30. 15. 200. 5 30. 15. 300.

  • PRINT INTRVAL DATA
  • W1-R iIP*ITI = PRINT INTRL BETWEE GENERAL EDITS (SEC)
  • W-R TsTRTP = STARTING TIME FOR PRINT INTERVAL (SEC)
  • TPRNT1 TSTRTP
5. 0.
40. 10.

100. 100. 250. 500. 250. 1000.

  • INITIAL RECTOR CONDITIONS AND MOEL OPTIOSG
      *     -R      OC      =  INITIAL          T1RET. POWER (MWi)

S100% pow" = 3441 I6t

      ,2-p          RC1Pf= Rated Core Thenul Powr(t)
         *S-R       WCTOT    = INITIAL TOTE.             FLOW 0(b/w).      This is the

ccaibird ati ve-core and byp~ass flow. RATED FLOW = 2.777784 LM=f = 100 HKb/hr Vt

  • 6 WM= Initiat guess for corm chuet flow (NMb'r)

WR FR)( INITIAL STEM4 DOE PRESSURE (PSIA) W* DLVL = INITIAL DOWNCCIER LEVEL (INCES ABOVE INSTR ZER) WI Noryaul evel is 30 to 35 irdies. DSLB = INITIAL SUBCOLING IN DCJX04ER REGION (BTWIEI)

                       =    HF  -  (ENTHALPY IN DOACOP4R) (Btuv1JbR)

INITLZ- INITIALIZATION RLAG

                          =1 IF THIS IS AN INITIALIZATIONd ChSE
                       = 0 IFTHIS ISA TRANSIENT RL QFRACI=      FRACTION OF TOTAL. COR POWE THAT IS DEOITED IN THE COR CHANNEL AS GWi4U            HEATING QFRAC2- FRACTION OF TOTAL COR PCWE THAT IS DEPSITED IN THE BYPASS CHANEL. AS GAI9' HEATING W14T-R TMPCST-- TeweratlJ'e orf wffter in CST~ MF. Used for HPCI and RCIC injection.

T14PHW Terperatfe orf water in Hot Well (F). Used for finaL F.Jteap upon Loss of PWheating. P.1heating is. lost after NSIV closure, turbine trip, or nweual trip of P.1heaters. Also used for suction teiperatlre Jwhe ccniersate syte. is injecting at Low Rx pressure. VCST =CST VoLuw (gal) VTCS= CST Vol (gal) at which HPCI & RCIC T.a sucation from CST to SP W 1f5-R HTULIQ= Heat transfer coef ficient (6MUiv-ft2-1F) for vAmerge prit of reetor vessel & inter.uLS. W1U6-R lfFCSM Heat transfer coefficient (DTU/hr-f-t2-1F)'for part of reactor vessel & internals exposed to steam. QC WrTCT ~ PRc 3441. 5441. ¶00. 90 1050.

  • DLVA. MEu INITLZ ~FM QFRAC2
35. 0 0.0150 0.~00 CSI `VTCST HTa..IQ HTCSIN 123. 2250010. 3530. 200. 10.
  • LOCKADate
  • U1R ABIEA = Break wee (ft2)

W2--I BREAK = I =: Liquid bed (in dwicarr)

       *=                  2 => Stean break (in steem done)
  • O-R FW&EA = Flow coefficient. When f Low is choked, bree fLow
        *is                    Gcrit*ABRENAKFUREAK, where Gcrit is critical mss
  *W4-R AUCK            = loss coefficient for Iwed
  • 0-I ILTBL = I -> Doerride bie f tow caLc. with brx f owtenthapy
          *vs.                          tiRe tale
                        =0 =>Break flow wittbe caLculated.
                        =
    ~I W        NLTB.     = miJt~er of pxints in break f low vs. tiwe tdole.

ABEI IBREAK FBlEAK AMBF ILTBL NLTBL 0.OODO 1 1.0CD 1.dD 0 3

        *Time                                      Break Flow            Break EnfthaI4
        *(se)                                      (Lbwse)                   (Btflfr3 0.0~d
                                                           .dD                525.1d3 10.0000Mk                         0.CD                 525.1d[)

1.OOO0d 0.dO 525.1d

            *                     ~TRIP    LO3IC
  • Sa LOGIC

S

  • 1=> ScRAm EVAB, 0- SCRA FAILED (AIWS),
  • -1= SCRM & MI FaiLed.

13.DO

  • LIw LEVEL SCRfM SET POINT (INCINES) 1087.D0
  • HIGH REACTOR PRESSRE SCRAM SET POINT (PSIG) 1.72D0
  • HIGH DRYWELL SCRM SET POINT (PSIG) 118.DO
  • s" ONHIGH MEMO FLLU(%OF RATE))

I.c)+09

  • MwAjAL SCRAM 0C TIME (SEC)

I

  • sc 1 mSIV CoJE (1=ENABe, O-OFF)

ON 1

  • SCRAM ONTURBImE TRIP (I1-Ew&H), )OFV) 2.8 Control rod insertion time for scrm (sem)

HPCI DATA

  • Trip Logic I
  • 1=> HPCI opBVBLE, 0=> HPCI INPERABLE
       -38.
  • HPCI INITIATION ONLOW ATER LEVL (INCHES) 1.72
  • HtCI INITIATION ONHIGH DRYWELL PRESSURE (PSIG)
      +54.
  • HPCI TRIP ONHIGH ATER LEVEL. (INCHES) 118.7
  • HFcI TRIP ON LOW REACTOR PRESSLE (PSIA) 1.D+09
  • ILJAL TRIP OFF ONTIME (SEC) 23.83
  • Sp LE AT WHICH HPCI SUCTION TRNISFERS TO SP (FT)

SHPCI Flow 3.3

  • Time constant (sec) for HPCI flow vs. deaid resose 2.0 *I)etay from HPCI init sigrmL to start of flow cuto V (sec) 500.
  • miunuma I fLow (g*m) 5000.
  • Maxiun HPCI flow WPO 3
  • midw of points in Table of HUCdaim flow vs. time
                       * (DwIod fLow is setpoint dialed in on f Low controlter)

Tdabe of !PCIDamrd flow vs. tim STine (sac) HICI Demand FLow (gpm) O.cdO 5000.do 1.6 5000.do I.C19 5000.cg 1

  • I=> ENABLE LEVU IlTEL MODE OF HpcI GMERATION, 0O> OFF 1.040W
  • TIME AT WMICH OPERATOR TAKES CONTROL OF INJECTION (SE) 2
  • waiber of points in target- LeeL-wrsus-time tda.e
  • Time (sec) Target LeveL (irnies) 0.0 +35.

1.4 +35. 500.

  • GAIN (GRINCH) LM) IN SIMULATING OPERATOR CONTROL OF FLW
                    -            --    RCIC DATA
  ***       trips 1
  • 1=: RCIC OPERALE, O0 RCIC INOPERNLE
         -38.
  • RCIC INITIATION ONLOW TATER LEVL (INCHES)
        +54.
  • RCIC TRIP ONHIGH *ATER LEVEL (INCHES)
75.
  • RCIC TRIP ONLOW REACTOR PRESSURE (PSIA) 1.09
  • W L TRIP OFF ONTIME (SEC)
 **** flow data 3.3
  • Time constant (see) for RCIC fLow vs. cirdt response
20.
  • DeLay frm RCIC init signal to start of flowtoWV (se) 600.
  • RCIC injection rate (p!O
60.
  • minimum RCIC flow (*m) 600.
  • aximam RCIC flow (Q=0 1
  • 1=: ENABLES OPEATOR-CONTRIL MOE FOR RCIC, 0:0 OFF.

1.1+09

  • TIME AT wHICH OPERATOR T*KES CONTRO OF RCIC INJ (SEC) 2
  • Numier of points in target- LeveL-versus-time taise
  • Time (sec) Target Levet (inrdes) 0.0 +35.

1.0 +35. 500.W0

  • GAIN (GPf/INCH) LW IN SIULATING OPERATOR CONTOL OF FLOW
                    -          -       CONDENSATE SYSITI 0             0 = LC-PRESS CONDENSATE INJECTION INCPEtABLE
  • 1 LOw-PRESS CO4ENSATE INJECTION oPBERXE
20. RAW TIME FOR INJECTION, I.E., THE TIM
  • FROM INITIATION OF. INJECTION LIUTIL RPIP REACHES
  • FLR. FOW (SEC).
5. cOAST-DCGN TIME HIEN FLOW IS TRIPPED OFF (SEC) 514.7 LOW PRESqJE PERISSIE FOR FOW INJECTION. PRESSUR
  • IqMUST BE LESS THAN THIS VA.JE (PSIA)
  • OR INJECTION WILL NOT OCCUR.

5X4.7 HIGH PRESSURE CJT OFF FOR INJECTION FLOW. FLOW IF FLOW IS S1ON ANDPRESSURE EXCEEDS THIS VALUE (PSW WILL STOP. 5000. O INJ FLOW RATE (GP4) rENSATE

--CORE
                             --               SPRAY SYSTEIM

1 0 -> COW SPRAY INJECTION INOWBAE

  • ¶c- M S PRAY INJECTION CtE 10 Mkaser of points in fLto vs. pessure tate CS Fl IRX P - Cant. PI

, * . (psi) 7790.0. 7U0M. 56. 6000. 122. 5000. 172. 4000. 214. 3000. 245. 2000. 266. lIO0. 277. 0.28 C. 1500.0 RECIROJ.ATION SMTE4 LOGIC I.1)9

  • TRIP RECIRC RKP-A ONTIlM (SEC) 1*Dq
  • TRIP RECIRC RPM-B ONTIME (SEC)

SNo detay for trip an time

     -38.
  • TRIP RECIRC RIP-Atrip ONLOWIAITE LEVEL. (INCHES)
9.
  • Delay for PUp-A Un Low level (sec)
  • TRIP RECIRC RPJ-B ONL.J ATER LEVEL (INCGES)
     -38.
9.
  • Delay for Pimp-B trip on Lot levl (sec) 1149.7
  • TRIP RECIRC PLM-A ONHIGH REC PRESS (PSIA) (sec) 0.23
  • Delay for Puip-A trip on high reactor prssr 1149.7
  • TRIP RCIRC RJP-B OGHIGH REACTOR PRESS (PSIA) (sec) 0.23
  • Delay for Pup-B trip on higd reactor pressure 20.0
  • RIf PIE-A (TO 30 5SP ) G ON FLW O (Z OF RATED)8.)

15.0

  • Delay for punp-A r Ck llow W flow (sc) mt 20.0
  • INIEKX pIp-B (TO30% mSff)) ONPU R8W (Z OF RATED) 8JO.

15.0

  • Delay for Puip-B rutxacik n Low FufLto (sec)
  • UNBEAX PIP-A (TO 30 qS) ONLO ATER LEVEL (sec) (INCHES) 13.0 3.0
  • Delay for Pup-A rutack cn Low Rx water Level 13.0
  • M AM PfP-B (To 30% SpE) ONL. ATER LEVEL (INCHES) 3.0
  • Delay for Rnp-B rutw on taw Rx water level (sec) 4.0
  • TIME C06TNIT FOR RPMP-A TRIP (SEC) 4.0
  • TIME CONSTANT FOR RP-B TRIP (SEC)
20.
  • TIlE GYNSTANT FOR RP-A RAM (SE)
20.
  • TIME CONSTMAT FOR PRIP-B RABACK (C)
65.
  • coRE FLOW WITH 1 RIP TRIPSP) & 1 AT 10MK SPEED (LB/IR)
42.
  • o0RE FLOg wITH 2 RM AT 30%SPEE) (MIM*)30 SEED (-BLE/R)
36.
  • aORE FLOW WITH 1 PIE TRIPPED NI) I RIP AT
  • 05/8)
  • 42
                               -~FEMATER         DATA
  • Trip Data (SEC) 1.D409
  • MWI TRIP OF FEEATER kPIES
54.
  • FEBATER TRIP ON HIGH ATlER LEEL (NCHES) 175.
  • FEEmATER Marat TRIP ON LOWSTEWofLINE FES (PSIA)

I.

  • Initiate isolatiocr FP heaters (sec)
      - F ca--trotler 0O.
  • Fw coNTROLB GAIN
1.
  • PU cONTROLLER TIME CINSTNr (SEC) 14.476
  • Iaximnm PU f L0 (KP/hr) 14.151
  • Rated PU flow (l.b/hr)
60.
  • Tim cottnt for decay of PU enthalw. followirg a
  • a turbine trip MSIV closure, or awiat isotatian
   ,                      of feedceter heaters (sec).
13.
  • water leoet at whichleal setpoint setw r occurs (in.)
18.
  • Level setpoint (ihes) after setckaai o=s
11.
  • tine delay for Level setpoint setcdamn(sec) opaor Control 1.D*09
  • TIME AT WHICH OPERATOR (00TWI. OF PU IS INITIATE) (SEC) (INCHES)
35.
  • TARGET LEVEL FOR OPERATOR CNTRWI. OF Ps FLOW
  • specif ied p1 f Lc vs. tim 1 => F flow vs. time is specified. 0 in=o table ftbo is catc.

0 is not uwed. If vaLue is 0 ly. ata sppaied Mutyer of data points in PW flow vs. time tute 2

     ** P If Low vs. tim tWbte
  • Time (sec) FW Floew (tbhr)

O.0D*0 14.151 1.01D+ 14.151

                                  - MIV CLOSURE       DATA***

1.0-409

  • CLOSM ONTIME (SEC)
  -129.
  • CLOSURE ON LO REATR LEVEL (INCIES) 875.7
  • CLLXRE GMLW REACTOR PRMSSJRE (PSIA) 4.0
  • IEIV stroke tine (sec) 14
  • NO. OF PTS. IN ULTIPLI TABLE
  • rSIV loss coeff muat vs stem position
  • Stae Position Multiplier 0.OD 2.91D+13 0.021 200.

0.042 100. 0.0625 58.80 0.083 37.00 0.125 2.20 0.167 13.30 0.250 6.99 0.333 4.44 0.458 2.79 0.500 2.41 0.667 1.41 0.M3 1.14 1.000 1.00

                              -**PRESSURE        REWLATOR AND   TURINE TRIP DATA STubine Trips 1.09
  • KWJAL TRIP ONTINE (SE)
54.
  • TRIP 0OHIGH LEVEL (INCES)

SPressure Reguator 1M+09

  • TRIP TO FAIL OPEN PRESS RE (G )

14.631

  • max turbine steam floewOw) at initial Rx press (HMbih) 997.0
  • Initial turbine inlet " (psia) 3-33
  • PRESSMRE REGJLATCR GhN #( OF RATED * )

3.0

  • tail = tine constant 1 in Lag-lead filter (sec) 7.4
  • taR2 = tim constant 2 in Lag-Lead filter (sec) 1.60
  • tauB = time carstr-t in tag fitter (sec) 18.29
  • Max cawbined steam f Loe at initial R s (Ltbnhr) 3610.5
  • STEM LINE VOL BEYOND INB1W MSIV (F) 18D.2
  • Stean line volume betwen stop and caitrbl valves (13) 46.5
  • STEM LINE INERTIA (ft-l) 9.6212
  • RLL-OPEN MSIV FLOd AREA (R2) 0.72"7
  • LOSS CPEFF FOR R.LL-OPN MSIV 0.10
  • TURBINE STOP VALVE STROKE TIME (SEC) 3.66
  • Turbire bypass cqrity at initial Rx press (tb/hr) 0.16
  • TIME ONST FOR BYPASS VALVE OPERATION (SE* )

0.05

  • TIME CONST FOR U CO(NIIL VALVE OPERATION (SEC)
                                -     ADSMI::

LOGIC '* 1 1 - ADS ENABLE, D- ADS DEFEATE)

      -129.d0
  • Level setpoint for ADS (inches) 6
  • luier of valves 102.
  • Delay timer (s9c) - Hi DCpress assuaed.
                                 -       l::fl: CONTROL ROD INSERTION 1.09
  • TIME AT WHICH OPERATOR INITIATES MRI (SEC) 1.09
  • TIME AT WHICH OPE0RATOR STOPS MRi (SEC) 90.0
  • CNTROL ROD INSERTIO RATE (SEC PBR R0)
                                  -=STANDBY      LICJID OONTROL   '

1.04W TIME AT WHICH SLCS IS INITIATE) (SEC) 75.0 Effective trasit time from SIC tak to core (swc) 2 MJBE OF SLCS PtWS PERABLE (1 OR 2 ) 0.28 Inj rate of elaten at B with 2 SLCS pU, operae (LbWsec) 1140.7 \CLIIE OF ETRAL RECIRC LOOPS (F13) - Fat B DILUITIM 494. Hot iutdown Boron Cac. (ppm at Hot conditins,

  • no voids, and full power Zen corcentratial).
15. If total core fLow 41Mbr) is greater tha this valtue,
   ,                      then stagiated bora (in lower ptenmm) will begin to remix.
6. if total core floe (ML.Wr) is less thai this value,
   .                      then some of the boron injected into the Loaer plai will begin
  • to settle to the botton of vessel.
4. If the total core flow (MtiAr) is Less than this vate,
  • then all of the borcn injected into the lower plowen will
  • settle to the bottc of the vessel.
1. Interpolation exponent for bwom mixing ýdaa core f Lcw
  • is between the two total core flows specified inst.
  • exp et = 1 - Liner interpolatim
  • e.*ro > I - Less wnixirg than Linear w1del
  • excponfelt < 1 - cremixing thti Linear 10 wnuer of nodes in activ core for brm mixing (1 to 10) 4800.d Initial volume of sodiLm penttcrate solution
  • in SiC tank (W1) 200. SIC ta* voL at biich SIC trip (get) 82.4 Injection rate of boron solution (wip) with 2 pupa
90. Teaperature of solution in SIC tank (F)
                             -REACO     COfLGM WN 1.DJ09       Tine (sac) at bdhich controlled cootchnu of RFV is init.

100. Cooldwn Rate (Deg F/hr)

98. Target press of cooldaon (psig) i.e. the cooLdcwn is
  • over ,,hm Rx p-esstre readies tisvalue.
  • SAFETY/RELIEF VALVE DATA (PAT 1)
  *WI-       NSRV = UMBEROF SI*S
  • W2-R DTSRV = SV STROKE TIME (SEC)
  • WS-R FCLEF = Flow coefficient. SRV flow is
  • FrOEF t crit*VAREA, dne Gcrit is critical mass fLux.
  • ImSmV DTSRV ra 16 0.5 0.864 ft**M "6 ý ffi
  • SAFETY/RELIEF VALVE DATA (PMT 2)
  • WI-R VAR£AM = FLOW ARA FOR VALVE 1 (FT2)
*    *2-R FIE(1) = PIRESE AT WHICH1           VALVE OgGS (PSIA)
*      -R PRESL(1) = PIESRE AT WHICH VALVE RE-SEATS (PSIA)
  • SUPLY NYALV LINES OF DATA WITH EACH LINE CONTAINING THESE three
 *PAR*METERS
  • VALVE IO VAEA PSI PRM
  • LW. values
  • 1 0.1112 1143. 1017.
  • 2 0.111M 1146. 102D.
  • 3 0.11192 1156. 1029.
  • 4 0.11192 1157. 1030.
  • 5 0.11192 1159. 101.
  • 6 0.11192 1165. 1037.
  • 7 0.11192 11a7. 109.
  • 8 0.11192 1168. 1040.
  • 9 0.11192 1175. 1046.
  • 10 0.11192 1176. 1047.
  • 11 0.11192 1178. 1048.
  • 12 0.11192 1181. 1051.
  • 13 0.11192 1186. 1056.
  • 14 0.11192 1191. 1060.
  • 15 0.111w 11%. 1063.
  • 16 0.11192 1 . 1072.
  • NManaL vaLues 1 0.11192 1113. 9S7.

2 0.11192 1116. 990. 3 0.11192 1126. 999. 4 0.11192 1127. 1000. 5 0.11192 1129. 1002. 6 0.11192 113M. 100T. 7 0.11192 1137. 1009. 8 0.11192 1138. 1010. 9 0.11192 1145. 1016. 10 0.11192 1146. 1017. 11 0.11192 1148. 1018. 12 0.11192 1151. 1(21. 13 0.11192 1156. 1026. 14 0.11192 1161. 1050. 15 0.11192 1164. 103. 16 0.11192 1174. 1042.

  • Time-Depndmt Actuatim of 91W (Part 1)
  • WI-I NTRIP = Muter of vaLves to be tripped opervclosed at
  • specified tine.
  • lNTRIP 3
  • Time-Dqrpndent ActLution of SMs (Part 2)
  • WI-I IDTRIP = ID# OF TRIP. THIS INF¶J PAR*METER MUT
  • SEQLWJIAL STARTING WITH THE VALLE ONE.
  • ,-1 IDVALV = SRY IDENTIFICATION NBtR (1-10 onty)
  • Y5 TVRIP = TIME AT WICH VALVE IS TRIPPED a'ENfAC.SED (SEC)
  • W*-I WIN = 1 if vatl is tripod qpen at t=-TVTRIP
  • 2 if valve is tripped closed at t =TVIRIP.
  • T*IP ID# VALVE ID# TCP6*I/TCSE I=0E d2G.C 1 1 1.D9 1 2 2 I.D9 1 3 3 1.9 1
  • MJq OF DATA POINTS DESCRIBING [OWCMER N ONDENSATION EFFICIENCY
  • PTSE 12
  • MDADOOR CONDENSATION EFFICIENCY AS A ICHOIO OF REATOCR
  • PRESRE AND oOWcIER ATER LEVEL.

"* This tate specifies the condensation efficiency an cold .te~p "* f Low whic is injected " "* through the feedwater sporgers. Wien the dou-cmer water Level "* fr-qs .eLow the spirers (hich are located at -23.7 in.) feediater "* is injected directly into a regian occtpied by satLrated steam. "* Feedwater, IHCI, RCIC, and Ccrdensate systems aLL inject through

  • the feeteter spgers.
  • Wter Level (in.) Pressure (PSW Condusation Efficiery
                  -23.7                  1500.                O.O0dD
                  -63.1                  1M0.                  O.9510
                -20.                     1500.                0.9500
                  -23.7                  1000.                O.Md
                  -63.1                  1000.                0.9500
                -250.                    1000.                0.9500
                  -23.7                   500.                O.OOdO
                  -*.31                   500.                0.9500
                -20..                     500.                0.950
                  -23.7                   100.                O.OMd
                 -63.1                    100.                0.95D0
                -250.                     10D.                0.9500
  • R INJECTION FLOW ANDENTMLPY DATA
  • WI-R Dfl = Nonrt CRD floarte (Qpi)
  • W2-R £CDJN = CRD water telperature (DeF)
  • .-R CRDT = Time at which mdietpmode of C ration is initiated
  • (sec). CFI fl ow can be nrxinized to provide increased
  • nteqp if necessary. The mnakep f loa depnds an reactor
  • ressen.
  • W-I NM = Nmber of data points describing CADflow as a fuictian
  • of pressue for operation in mneto uade
  • CFN faT MTN NIaD
64. 1.D+09 11
  • IF3 Flaw in Reactor
  • in Makeqp Node Pressure
         *                        (gi                    (Psia) 340.D                   14.73 335.d                 10.OdOW 320.d                 200.OdO 307A)                 30O0OdO 285AdO                40.OdO 290.d)                500.Od) 265.d                 600.OdO 2394d                 700.4dO 2304)                 8004kB) 187.4d               1000.OdD 0.dJ               1300.Ocd
  • DELAYE--WBATN FRESJR3R DECAY CONSTNITS Fat SIX Gem
  • ,1-R SLNMA(l) = DECAY OONST.MT (1/EC) FOR FIRST DELAYED SUP
  • WI-R SLDAW6) = DECAY CNSTN`T CI/SEC) FOR SIXTH DELAYED SUP
  • SLIA(1) SLNJAM(2) SL'VA(3) SLAMDA(4) SLAMDA(5) SLIGVA(6) 0.0128 0.0316 0.122 0.3W# 1.41 3.86
  • GLJP FRC[I6NS FR SIX DELAYED GUPS
  • W1-R BETAN(1) = (BETA FOR GROUP 1)/BETA
*    -R iBETPN(6) = (BETA FOR         ROP 6)/BErA
  • BETM(1) BETMK(2) BETAK3) BETA(4) BET,(5) BET(6) 0.032 0.206 0.15 0.394 0.146 0.036
  • DATA FOR RJEL ANDMADDING HEAT TRANSFER OEL
  • WI-R RF = REL PELLET RADIlS (INCHES)
  • 2-R RCI = INSIDE RADIUS OF MADDING (INCHES)
  • o- RID = OjTSIDE RDiuS OF CA.WING (INCHES)
  • W-R HAP = GAP EOJ3MCAIE (BU/SEC-FT2-DEGF)
  • W-R 01 = LENGTH OF ACTIVE RJE_ (FT)
  • U67-I N D = INs OF BAUDLES IN CORE
  • W3-R RFM = RWIUS OF INNER RJE. NDE (NCHES)
  • 1W-R PHI1 = (V.UJLETRIC HEAT GSEEATION IN RFEL NODE 1)/(PELLET
  • AVERAGE %uJ.IETRIC HEAT GENERATION RATE). This
.*                     tardeer accouutrs for self-shieLding effects within
  • the fumL.
  • RF RCi RO G RODL N D RFI PHiI1 0.17U7 0.1740 0.1979 1090. 12.5 764 0.12P7 0.90
  • Nate of REL Rods per AxiaL Core Node
  • Axia Node No. of Rack 1 83 *BAF 2 91 3 91 4 91 5 91 6 91 7 91 8 91 9 91 10 91 11 91 12 91 13 91 14 91 15 91 16 91 17 83 18 83 19 83 2D 83 21 83 22 83 23 83 24 83 25 83 *TA
  • DOAOS INERTIA
  • Wi-R AID = DOIAOMER IISTIA (1/Fr)
              .OAID 0.OOD0
   *JET-FI.W           REGION~ PHYSICAL ANDHYDRAULIC PARETBM
  • W1-R AU = JETRIPUPFLCW AEA (FT2)
  • 2-R ALENJ = JET PUMP FLOWJ PATH LENGTH (FT)
  • -R DHJ = JET RIP tIIDRA.LIC DlIlETER (FT)
*W4-R             FJ      = Jet pupregion friction factor
  • 1-R Aid = Jet ptjmp fLuid inertia (effecthie 1/A) I ft**(-1) 3
  • Ad ALENJ Ofid FJ AIJ 15.16 16.495 0.98 0.013 1.1
      *LMDR          PLENL.H PHYSICAL ANDHYDRAULIC PARNETER.S
*W1.R             AL.     = FLOW AEA OFLOURPLB.NL(FT2)
*         -R      AIBI. = FLOI PATH LENGTH OF L6ER PLENUM (FT)

W3I-R DII. = HYDRAULIC DINCET5 FC LCIA P1.51.1 (FT)

  • I-R FL = Friction factor for Lma.r ptmn region.
  • h5.N 19 (ELEVATICN AT MEILET) - (ELEVATICN AT BUITCH OF
  • JET RUMP REtG[OI) (FT)
 *         -R AIL         =Lowr plier       fluid inertia E ft**C-1)3
  • AL ALBNL DII. FL ALDILI AIL 132.3 17.28 1.014 0.013 6.94' 0.13 Mft
  • E4 MATI DRAULIC PARATETRS HYI
 *W..R            AC      = CRFLOWARAC(Fr2)
  • 2-R ALBEN = Lergth of active co (ft)
  • l-R DIC = OR HYDRAULIC DIAMETER (PT)
 *w4-R            Aic     = core f Luid inertia I ft**(-1) I
  • I-R ALLR = Length of Lower ref Lector region (ft)
  • I.-R MML = Length of ILper Ref Lector Woin (PT)

ACN ALENC mHC AIC ALLR ALLR

  • BY-PASS CHANEL HYDRAULIC PARAMETERS
  *lRA                      BY-PASS CHANEL FLOW       AREA (FT2)
  *W..R          ALEB, =FLOW PATH LENGTH (FT)
  • S5R DHB = BY-PASS CHAWNEL HYDRAULIC DIAMET5 (FT)
  *W.-R           FS     = Bypass friction factor.

i" MBS Bypass fluid inertia E ftk*(-1) 3 ABM AEBE DH8 FS AIB 66.04 14.885 0.196 0.0185 0.23 UPPER PL.I.N HYDRAULIC PARAMETERS

   *W1-R A)                  UPPERLBO FU0 AREA( FT2)
   *2-R           ABU =      FLOW PATH LENGTHOF UPPE RPLENUM (FT)

O-~R Dili HYDRAULIC DIN.ETE FOR PPER PLENUM (FT)

   *g-R           pi      = LowpLsiAf rictionf Icto.
  • b5R MlU = ppr pLain fltuid inert :ia Cft**C-1)

M.EMJ mU FU MIU 191.84 4.98 3.97 0.01 0.015

  • RISER HYDRALIC FMMETE
  • W*-R A = RISEa/S:EM TOR FLOW PAR (FT2)
  • W,-R ALENR = RISER/SEARATOR FLOW PATH LBIGTH (FT)
  • O,8-R DHR = HYiRA.I.C DIAIETrE FOR RISER/SEPARATCR REGION (FT)
  • W+-R FR = Friction factor for risers.
* %-R      AIR       =    FLuid inertia in riser region E ft**(-1) 3
  • AR ALEBR DHR FR AIR 39.66 10.156 0.505 0.015 0.85
  • SEpApATcR HDRALIC PRMTERS
* ,,1-R    AS        = SEARAT(AR FLCARA (FT2)
* ,-R       ALEBS = SEPARTCR FLI, PATH LBEGTH (Fr)
  • O-R DHS = HYDRAL.IC DIA'TER FOR SPARATOR REGION (T)
  • W4-R FS = Separator region friction factor.
* $6-R AIS           = Separator region fLuid inertia [ ft*(-1) 3.
  • AS ALNBS DHS FS AIS 71.06 6.167 0.514 0.015 0.84
  • Caibired v*olume of steen dame (up to irbrd SIV) and d mcvan
  • region (ft3)
  • 0
 *      (FI3) 14334.
  • REACTOR CORE SPACE LOSS COEFFICIENT DATA
 *WI-I      NSPAWE = NUMBER      OF SPACERS PER CWNEL
  • REL SPACER LS COEFFICIENT CALOK.ATED BY THE CODE BASED ONINITIAL
  • CONDITIONS
  • ISPACE 7
  • JA4CTflO FLOW AREAS ANDLOS COEFFICIBIT DATA
  • K 0.24 6.18 * (1) Doccoar to Jet Pump 104 39.4 * (2) Jet Pwp Exit 1.57 22.67 * (3) Fuel Bundle Orif ice 1.549 51.73- * (4) Lower tie pLate (L.a*r Reflector to Core) 0.37 0.881 * (5) Lowe" RefLector to Bypass 1.073 139.8 * (6) LU r Reflector to Upper PLenmm 0.00 48.98 * (7) Bypass to Upper PLeumm 0.41 45.10 * (8) *er plenun to Riser
               -1.00        35.67         * (9) Riser to Separator
             -- 1.00        40.73         *(10) SePEratrxit
  • WI-R SM.O = INITIAL SL-PPRESSICI POOL level (ft)
  • W-R S9T0 = INITIAL 9PERESSICN POOL TE*6ERATURE (DEGF)
  • W-R TW = Initial Wet-iet Top (F)
   *%W-R THA           = Tim AT %MICHRHR HX-1             IO (eec) 1URNS
   *    -R Tý012 = Time AT WHICH RHR HX-2 TLIS ON(sec)
  • IWR TIYPI = TIME at bbich Dry Weltl Spray is initiated (see)
   *                      (Keep at 1.D'09; Model not cmpLete)
  • MLD SPO 1,W TIdM THW D6,SI 23.0 90. 90. 1.009 1."409 1.D+09
  • SFPFSSION POOL FREE A AS A R.ITION OF ElEVATIOQ

" WI-I NPWAW= ter of SP area vs. level points "*W2-R SELEV = ELEVATION PdE BOTTOM OF SJ'FRESSIOQ PORL (FT) "* O,5-R SpWA = SP FREE RA (FT2)

  • NSPAVI.

4

  • EIev. above b:ttcm of pool Free Area S(ft) (ft2) 0.00 5851.3 12.00 5851.3 12.01 52N7.0 52.50 5277.0
" Wl-R         QRDU   = Initial heat Load fran fran RPV to .dyieLL(BTWsec)
"*W2-R           CM = Initial coolting caEcity of DWCooling (BT.sw')
"*i5-R         TCIVU= Inlet Tsp of cooltng tater for OWcooters (F)
"* W-R         E*CIP= DryweLtl coolers trip if DWress ew.edcethis w.tue (psig) below value in.)
"*15-R          =1Cl.= Dryw*ltl coolers trip if tx Lel d
"* b-R         %OW = Dr*wetL free votwu (ft3)
"*WT-R         lOW = Initial DW tep ()
 "* B-R "avpservlce Wae Tsnperature (F)
 *         -             XC     TO"       cA DMCTP      arm CTL     wv         11       P 104.           1043.      50J)O 1.72         -129. Z3960D.      12.      88.
  • Cotainviu Data (Cont'd) -- Vacuum Breaker Data
 "* UI-R       AREAW     = full open vac breaker flow area (ft2) a *AWs
 "* h-R         AmC      = vaodn breaker toss coeff asedn "IB-R          DPIv     = DP at hich vac          kerbegirs to tift (psi)
 " M-R          DP6      = DP at which vac breaker is full qxm (psi)
  • A WFA NCWB 0MP1 DP2VB 10.25 3.57 0.5 3.22
  • Cotairmit Data (Cont'd) -- Dowcouer Vent Data
 "* WI-R        AfMO = dwcoav r wnt flow area (ft2)
  "*W-R         ACOM = dmotw             vent loss coefficient based on ADOCL0
  "*W-R         ALDO0 = Elevation of bottof of DC vet w/r to botttom of SP (ft)
  • pDjd AK0fM AL OG 242.0 2.17 12.0
  • Contairmen Data (Cont'd) -- Initial IHaidity and pressure
  "*W1-R        woe    =  Initial   Relative  tumidity in DW(1
  "* W2-R        RM    =  initial   Relative   WLmidity in WWt)
  "* W-R        POW    =  Initial   presume    in DW(psia)
  "* w-R         F*    =  initial   pressue    in Wetelt (F)
  • RHD RI FOW PW
48. 100. 15.2 15.2
  • Cotainnmt Data (Cct'd) -- SRV tai LpiIW'Dwnr data
   "*i.          DSRDP=- Diameter of SRV tail pipe (ft)
   "*W2-R        M(UJd= toss coefficient for S *dll
   "*W3-R          VENT-=  Height of dumrawm*ie*rwdrytt, fLoor (ft)
   " W.-R        FO2 - 0.0 - nitrogen bdWes thraigh SP with no heat transfer.
  • 1.0 f> nitrogen rees thermaL e L with SP.
  • cOICl=- interpolation bemeen the two Limits ).
  • DSR* HC. I FMR 1.0 1.0 1.5 1.0
  • Contaimenf Data (Cant'd) -- SP Letm
  • 61-R TSPLDI= Tine at which SP letdom is started (sec)
  • W2-R TiL2=-Time at which P Letdown is teninaited (sec)
  • W- WSPUD = SP Letdow flow (Ltsmc)
  • TSPLD1 TUD2 mu 1.d* 1 .d 12.d0)

SContainrwit Data (Cant'd) -- Area of Dryweht steel sUrwtires

    *WI-R          Au = sarface area       of dr-ell Liner wtlt (ft2)
       *    -f Am = s-far e area           of dwell liner roof (fM )

Wa-R

  • mu = am-facearea of dryell Liner floor (ft2)
    *        -R AM = surfamI area          of inter. I steel stncthres (stnctnues

I I U I 56 U

       -i j:

1 U MIll I .11 U ii t

           ¶¶Ii 1§ qstl t#

16 Ks I.' I 9*jCA' Fri Ft z

                       ,6 5

III'i II II 4 fl 22n i 5 n0.

         .1             9cl F

I g I II II 9' ;9' f le: a.t*

     -ad                                             AN              as

Documentation for Base Case SABRE Inputs for U2CIO Core consists of 312 Appendix F presents the base SABRE input deck for U2C9 which ATRIUM-10 fuel assemblies, 448 SPC 9x9-2 assemblies, and 4 GE12 assemblies (Ref. a 9x9 core model is used G.4). Since the dominant fuel type for U2C9 is SPC 9x9 fuel, in Appendix F. of 592 ATRIUM-10 Appendix 0 presents the base input deck for U2C10 which consists (Ref. G.3). The fuel assemblies, 168 SPC9x9-2 fuel assemblies, and 4 GE12 assemblies lOxlO core model is dominant fuel type for U2CIO is ATRIUM-10, and therefore, a for the mixed core used. An "effective" fuel gap conductance is employed to account thermal response of a full composition. That is, the "effective" Hgp is chosen so that the U2C10 core. The core of ATRILTM-10 fuel will be the same as that of the actual mixed effective Hgv, is obtained from Ref. G.3. For ease of This Appendix only documents changes from the U2C9 input deck. F are used in this comparison, section numbers corresponding to those in Appendix to convert the input Appendix. Sections are omitted where no changes are necessary deck from ANF 9x9-2 to ATRIUM-10 fuel. spacer loss The core region flow-dependent friction factor and flow-dependent are contained coefficients are not updated for ATRIUM-1O fuel. These correlations within the SABRE source code (see Section D.1.3), and based on engineering judgement, from ANF 9x9-2 fuel it is expected that changes to these correlations with the transition behavior. Note that to ATRIUM-10 fuel will not significantly affect the core flow diameters and flow although the friction factor correlations are not updated, the hydraulic areas are updated. Heating G.11 Fraction of Total Power Deposited in Moderator as Gamma 1.5% in fuel channels and 3.5% of energy produced is directly deposited in the water - 2% in bypass (Ref. G1, p. 3.18). Therefore, QFRACI = 0.015, and QFRAC2 = 0.020. G.29.6 Hot Shutdown Boron Concentrationt

  =  494 ppm       (Ref. G.8)

Groups G.34 Delayed-Neutron Precursor Decay Constants for Six B.4. Decay constants for ATRIUM-10 fuel are from Ref. G.1, p. has changed. tValue of this parameter is unchanged from U2C9, but reference

Group X (see") 1 0.0128 2 0.0316 3 0.122 4 0.324 1 65 01.41 3.86 G.35 Group Fractions for Six Delayed Groups Group fractions for ATRIUM- 10 fuel are from Ref. G. 1, p. BA4 Group 051 1 0.032 2 0-206 3 0.185 4 0.394 S5 0.146 6 0.036 G.36.1 Fuel Pellet Radius Radius = 0.3413 in. / 2 = 0.1707 in. (Ref. G.2, p. 24) G.36.2 Cladding Inside Radius Inside radius = 0.3480 in / 2= 0.1740 in. (Ref. G.2, p. 24) G.36.3 Cladding Outside Radius Outside radius = 0.3957 in. / 2 0.1979 in. (Ref. G.2, p. 24) G.36.4 Gap Conductance 2 (Ref. G.3, p. 3.3) Hgap for U2C1O EOC core (16.635 GWD/MTU) = 1090 Btu/hr-ft -OF

Basis G.36.6 Number of fuel rods in Fuel Bundle on 6" Nodal Active Core Node Number of Fuel Rods in I Fue "Bundle 1 (Bottom o Active Fuel) 83r 2 91 3 91 4 91 5 91 46 91 "7 91

                                 .8                                  91 9                                  91 10                                 91 11                                 91 12                                  91 13                                  91
                   --             14                                  91 15                                  91 S16                                                91 17                                 83 18                                 83 19                                  83 20                                   83 21                                  83 22                                  83 23                                  83 24                                  83 25 (Top of Ative       )                       83 from the heat transfer areas The number of fuel pins in each axial node were calculated
p. 3.20 of Ref. G.1.

on p. 3 .1 8 of Ref. G.1 and the fuel pin dimensions on G.36.8 Radius of Inner Fuel Node Equal volume fuel nodes are used. Therefore, 2= 2 2 where r, = radius of inner fuel node, and rb = radius of fuel pellet. Solving for ra gives ra =rb/ v2 = 0.1707/-J2 0.1207 inches (see Sec. G.36.1) G.40.1 Core Flow Area regionL Therefore the flow In SABRE, only one flow area can be input for the entire core for the lower reflector, upper area is computed by summing the RETRAN model volumes 1 only 83 of the rods contain fuel

  $ The number of rods in nodes 1 and 2 is the same, but in node

these reflector, and active core and then dividing by the total height associated with 1. regions. The data in the following table was obtained From Ref. G. RETRAN Volume RETRAT Height Hydraulic RIETRAN Control (ft) Diameter (ft) Volume (fOL) 61.85 1.154 Lower Reflector 0.0311 38.83 0.5 0.0311 Active Core 1 0.5 SActive Core 2 38.83 38.83 0.5 0.0311 Active Core 3 38.83 0.5 0.0311 AFtive Core 4 38.83 0.5 0.0311 38.83 0.5 0.0311 Active Core 5 38.83 0.5 0.0311 Active Core 6 0.0311 Active Core 7 38.83 0.5 38.83 0.5 0.0311 Active Core 8 38.83 0.5 0.0311 Active Core 9 Active Core 10 38.83 0.5 0.0311 Active Core 11 38.83 0.5 0.0311 Active Core 12 38.83 0.5 0.0311

Arctive Core=131 34.83 0.5 0.0311 38.83 0.5 0.311 Active Core 14 0.0311 38.83 0.5 Active Core 15 0.5 0.03111 Active Core 16 138.83 Active Core 17 41.45 0.5 0.0358 Active Core 18 41.45 0.5 0.0358
                  -Aie Core 19            41.45                0.5                0.0358 41.45               0.5                0.0358 Active Core 21 20                                                  0.0358 41.45               0.5 Active Core Core 22                                                  0. 0358 41.45               0.5 Active Core 23 rActivc                                                            0.0358 41.45               0.5 Active Core 24                                                    0.0358 41.45               0.5 Active Core 25

[-Uppmeflector 110.23 1.231 1163.79 14.M85 FT.W - area for ATRIUM-10 From the RETRAN data in the above table, the average core flow 2 fuel is 1163.79 f?3 / 14.885 ft = 78.19 fl?. G.40.3 Core Region Hydraulic Diameter wall friction in the This is the hydraulic diameter for active core region. SABRE neglects diameter for SABRE lower and upper reflector regions. The active core region hydraulic active core region from is taken to be the average RETRAN hydraulic diameter for the the Table in Section G.40.1. Thus, Hydraulic Diameter = [(17X0.0311) + (8X0.0358)]/25 = 0.0326 ft G.40.5 Core Fluid Inertia The fluid inertia for the core region is given by (see Section D. 1.3) L Ac IC-=L where and Lc = combined length of active core lower reflector and upper reflector, A = core flow area

14.885 ft, and From Sections J.40.2, G.40.6, and G.40.7, 4. = 12.5 + 1.154 + 1.231 = from Section G.40.1, A. = 78.19 ft . Therefore, IL= 14.885 / 78.19 = 2 0.190 f" 1 . G.40.6 Length of Lower Reflector Region Length = 1.154 ft (Ref. G. 1, p. 3.2) G.40.7 Length of Upper Reflector Region Length 1.231 ft (Ref. G. 1, p. 3.4) G.41.1 Bypass Flow Area fluid volume from The bypass region flow area is calculated by dividing the total bypass the bypass region the RETRAN ATRIUM-10 system model (Ref. G.1) by the height of volume is in control volumes 51 given in §G.41.2. The only change in the bypass fluid 52 and 77 of the RETRAN system model. The fluid volumes for control volumes model through 76 of the RETRAN model remain unchanged from the Cycle I RETRAN (Refs. G.1 and G.6). 77 3

                                           + 83.55 982.95 ft .

Total Vol. = -Vi = 50.90 + (25X33.94) i=51 Ref. G.1. V52 through V76 are from Ref. G.7. V51 and V-7 are from 2 Flow Area = 982.95 / 14.885 = 66.04 ft . G.41.2 Bypass flow path length core, The flow length of the bypass region is equal to the combined length of the active the lower reflector and the upper reflector. From Section G.40.1, Bypass flow path length = 14.885 ft. G.41.5 Bypass Fluid Inertia

                                                                                    §G.41.2) 1B = (Flow Length) / (Flow Area)= 14.885 ft/ 66.04 = 0.23 ft'. (§G.41.1 &

G.47.4 Lower Tie Plate (Lower Reflector to Active Core) 2 Flow Area = 51.73 ft (Ref. G. 1, p. 3.11) K = 1.549 (Ref. G. 1, p. 3.12) G.47.5 Lower Reflector to Bypass Flow Area= 0.881 ft2 (Ref. G.1, p.3.10) K = 0.37

reflector to the bypass was calculated The value of K for the leakage path from the lower core flow rate of 87 Mlb/hr, a core so that the bypass flow is ~9.645 Mlb/hr with a total pressure of -1050 psia. These U2C10 inlet subcooling of 29.49 Btu/Lbm, and a reactor in Table 2.2 of Ref. G.5. The operating parameters are from the SIMULATE output were given in Rev. 6 of this Calc. SABRE results'used to arrive at the value of K=0.37 EC-ATWS-0505, Rev. 6). (C62.out in Computer Case Summary for Calc. G.47.6 Upper Reflector to Upper Plenum Flow Area= 139.8 t (Ref. G.1,p. 3.14) 2 K = 1.073 (Ref. G.1, p. 3.14) References for Appendix G MODEL / ATRIUM-10 G.1 Calc. EC-FUEL-1375, Rev. 0, "RETRAN SYSTEM CORE MODEL," 10/20/98. of U2C9 Peak Suppression Pool G.2 CaIc. EC-ATWS-1001, Rev. 0, "Calculation Temperature for ATWS Conditions," 12/13/96. 10 ESCORE Gap Conductance for G.3 Calc. EC-FUEL-1379, Rev. 0, "Unit 2 Cycle RETRAN," 12/8/98. Report, PL-NF-97-003, June G.4 Susquehanna SES Unit 2 Cycle 9 Reload Summary 1998. Suppression Pool Temperature for G.5 Calc. EC-ATWS-1004, Rev. 0, "U2C10 Peak ATWS Conditions." 9x9 Core Model," 3/22/90. G.6 Calc. EC-FUEL-0978, Rev. 0, "RETRAN Analysis Methods for BWR Design G.7 PL-NF-89-005-A, Qualification of Transient and Analysis," March 24, 1992. 10 Nuclear Fuels Engineering ATWS G.8 Calc. NFE-2-10-015, Rev. 0, "Unit 2 Cycle Analysis."

APPENDIX H Base CONTAIN Input Deck for SABRE Benchmark Studies input file was With the exception of the containment heat structure model, this CONTAIN for Primary developed from data in PP&L calculation EC-THYD-1001, "CONTAIN Model for the thermal Containment." The CONTAIN model in Calc. No. EC-THYD-1001 accounts neglects the capacitance of the concrete walls of the containment. However, the SABRE model capacitance is thermal capacitance of the concrete (see §2.10). Therefore, the concrete thermal liner plate and the not included within the CONTAIN model given in this Appendix. Only the internal steel structures are modeled. and 5.5 have two The CONTAIN input files for the benchmark studies in Sections 5.2 accounts for the steam mass/energy source tables. The source in the suppression chamber accounts for the addition to the pool from SRV discharge. The source within the drywell reactor vessel to the mass/energy addition due to a LOCA as well as the heat transfer from the drywell atmosphere and the heat removal by the drywell coolers. In the absence of a LOCA, of mass with very high energy addition to the drywell is accomplished by adding a small amount mass of gas- and water enthalpy. The amount of mass added is negligible compared to the total from the reactor vapor within the containment. This approach is used to model heat dissipation flow. vessel. The source tables in the present input deck are set to zero mass

h CDC EOI

 && *****   Global Input.      This input is   common to all cells     ***    *****

CONTROL NCELLS=2 && Number of cells NTITL=I && Number of title cards NTZONE=I && Number of time zones NUMTBG=l && Number of global tables used MAXTBG=4 && Max # of entries used in global table option EOI &&

  &&   ***************    End of General Data
  && *****  Global Material Data.       This input is     used in all cells
  • MATERIAL && Keyword that initates material block COMPOUND H2 02 N2 C02 H2OL H2OV SS CONC && Materials Used USERDEF && Keyword to initiate specification of
                             && user-defined materials CSTEEL     && Name assigned to carbon steel USERDAT         && Keyword to begin specification of carbon steel
                             && properties.

CSTEEL && Name of material SOLID && Phase of material MOLEW && Keyword for specifying molec wt (use value for Fe) 55.85 && Molec wt. (Use value for Fe) RHO && Keyword indicating density input follows 2 && No. of temp-density pairs 273.15 7857. && Temp (K), Density (kg/m**3) 475. 7857. && Temp (K), Density (kg/m**3) COND && Keyword for specifying thermal conductivity 2 && No. of Temp-Conductivity pairs 273.15 34.86 && Temp (K), Conductivity (W/m-K) 475. 34.86 && Temp (K), Conductivity (W/m-K) ENTH && Keyword for specifying enthalpy input 2 && No. of Temp-Enth pairs 273.15 0.0 && Temp (K), Enthalpy (J/kg) 475. 90348. && Temp (K), Enthalpy (J/kg) SPH && Keyword for specifying specific heat 2 && No. of Temp-Sp Heat pairs 273.15 447.6 && Temp (K), Sp Heat (J/kg-K) 475. 447.6 && Temp (K), Sp Heat (J/kg-K) EOI

    &&  ***************    End of Material Data
    && ***** Title block TITLE && Put Title below

PRIMARY CONTAINMENT RESPONSE TO UNMITIGATED ATWS L && **************** End of Title Block T

  &&   ***********t     Time Step Data**********************

TIMES && I.E5 && cput = CPU time limit (seconds)

0. && tstart = Problem Start time (sec) 1.0 && timinc = Maximum time step size (sec)
                        && edtdto  = Max interval for writing data to tapes (sec) 100.0 2000.      && tstop   = Problem End Time (sec)
   && ****************       End of Time Step Data
   &&   *******  Edit Frequency*************************

SHORTEDT=500 && Short edit printed every (SHORTEDT)*(timinc) seconds LONGEDT=20 && Long edit printed every (LONGEDT)*(edtdto) seconds

   && *********             End of Edit Frequency Data
    && ******   Specify Type of Output       ********************

PRLOW-CL && Print detailed output from lower cell PRFLOW && Print detailed output from intercell flow

    && PRHEAT
    &&                 && Print output for heat transfer structure
    && ****** End of Output Description Section
    && ****      Specify the reactor type       *******************

THERMAL && water-cooled reactor

     && *******     End of reactor-type data
     && ******* Suppression Pool Vent Flow Path Model**************

S SPVENT && Activates the model

NWET=l && Cell # containing the wetwell pool NDRY=2 && Cell # representing the drywell NSVNTS=82 && Number of downcomer vent pipes AVNT=0.274 && Flow area of a single vent pipe (m**2) VNTLEN=13.8 7 && Vertical extent of the vent pipe (m) of pool (m) ELEVNT=3.66 && height of vent opening above bottom 4 ramping of gas flow area (Pa) DPDRY=l.E && DP for area of gas flow area (Pa) DPWET=l.E4 && DP for area ramping liq flow from DW to WW FDW=2.1 7 && loss coeff for DW FWD=2.1 7 && loss coeff for liq flow from WW to EOI && **************** End of SP Vent Data && ****** Data for Flow Path Model calc FLOWS IMPLICIT && Implicit integr method for flow

                           && Removes suspended droplets         from    atmosphere DROPOUT                                                               (WW to DW)   (m) 645    && Ratio of flow path     area    to  length AVL(1,2)=0.

4 95 && Flow loss coefficient (WW to DW) CFC(I,2)-0. DW) VAR-AREA(l, ) 2 && Specifies table for flow from (WW to

                           && use linear interp    in   table    below FLAG=2 VAR-X=DELTA-P        && Delta-p is independent variable (Pa)

X=4 && Specify 4 values of Delta-p

             -I.E9         &&

0.345E4 && 1.943E4 && 1.E9 && VAR-Y=AREA && Flow area is dependent variable Y=4 && Specify 4 values of flow area (m**2)

0. &&
0. &&

0.762 && 0.762 && EOI &&

&& **********           End of Data for Flow Path Model
 &&                 Input Data for Cell #1       (Wetwell)      *************

I CELL=l && Specifies the cell number CONTROL && Allocates storage space for cell 1 JPOOL=I && Indicates presence of pool layer NHTM=4 MXSLAB=21 NSOSAT=I && 0 0 0 && MAX NO. OF ENTRIES IN LOWER CELL SOURCE TABLE NSPSAT=I4 EOI &&

  &&************ End of Control Parameters            ********************************I

b && ******* Additional Data for Cell 1 TITLE && Next line is title WETWELL CELL WITH WATER POOL (Cell 1) for cell 1 GEOMETRY && Geometry for Wetwell is on next two lines 4357. && Volume of Wetwell air space (m**3) 8.99 && Height of wetwell air space (m) ATMOS && Initial atmosphere cond in WW air space 2 && Number of materials in atmosphere 0.0 && Pressure will be calculated from eqn of state 305.37 && Gas temperature (K) N2=5136. && Initial mass of N2 in WW air space (kg) H20V=148.7 && Initial mass of water vapor in WW air space (kg)

 && ***********        SOURCE  DATA  FOR SUPPRESSION   POOL (SRV FLOW) **    *
  • SRVSOR && SRV BLOWDOWN DATA ELESRV=l.07 && DISCHARGE ELEV. IN SUPPRESSION POOL (M)

ATMOS SOURCE=l

  &&                                                                          k********
  && *****     Tabular Data for SRV DISCHARGE H2OV=2 && Source is water and 2 points are supplied IFLAG=2         && Use linear interpolation between data points
  && TABULAR Values for Source 1 in SP (Seconds)
  && srv
                .OOOOOOE+00      .10000E+09 MASS 3-      .000000E+00       .OOOOOOE+00
                .OOOOOOE+00      .OOOOOOE+00
  &&1 EOI    && End of Tabular Data for SRV SOURCE IN SUPPRESS.       POOL iznj
   &&         End of Data Block for Wetwell air Space
   && *
  • Heat Transfer Options for Wetwell CONDENSE HT-TRAN &&

ON && Atmosphere to Structure heat transfer is ON OFF && Heat trans from pool to substructure (at const T) is OFF OFF && Inter-layer heat trans in pool is OFF. ON && Pool to Air space heat trans is ON. ON && Radiative heat transfer is ON.

RAD-HEAT && Initiate radiadiation HT model EMSVT 0.85 && Dry-surface emissivties 0.85 && 0.85 && 0.85 && 0.95 && Emissivity for the uppermost lower cell layer CESS && Use Cess-Lian eqn for steam emittance GASWAL = 10. && Mean beam lenght for the enclosure (m) EOI && End of input block && ******* End of Heat Transfer Description for Cell 1 && ****** WETWELL HEAT TRANSFER STRUCTURES *************************** STRUC && Total surface area of wetwell internals = 2792 m2 && Total volume of wetwell internals = 35.5 m3 && thickness = vol/area = (35.5/2)/1396 = 0.0127m NAME = WW-INSl && Steel structures in wetwell air space TYPE = WALL SHAPE = SLAB NSLAB = 5 CHRLEN = 3.0 SLAREA = 1396. TUNIF = 305.37 COMPOUND = CSTEEL CSTEEL CSTEEL CSTEEL CSTEEL X = 0.0 0.00254 0.00508 0.00762 0.01016 0.01270 EOI NAME = WW-INS2 TYPE = WALL SHAPE = SLAB NSLAB = 5 CHRLEN = 3.0 SLAREA = 1396. TUNIF = 305.37 COMPOUND= CSTEEL CSTEEL CSTEEL CSTEEL CSTEEL X = 0.0 0.00254 0.00508 0.00762 0.01016 0.01270 EOI NAME = WW-WALLI && Outer wall of wetwell (1/2) TYPE = WALL SHAPE = CYLINDER NSLAB = 1 CHRLEN = 9.0 CYLHT = 9.0 TNODE = 305.37 COMPOUND = CSTEEL X = 13.4114 13.4178 E0I NAME = WW-WALL2 && Outer wall of wetwell (1/2) TYPE = WALL

PAGE 350 SHAPE = CYLINDER NSLAB = 1 CHRLEN = 9.0 CYLHT = 9.0 TNODE = 305.37 COMPOUND = CSTEEL X = 13.4114 13.4178 EOI && **** Input for Pool Model in Wetwell

  • LOW-CELL && Input for suppression pool follows GEOMETRY 490.26 && surface area of lower cell (m**2)

POOL && Initial configuration of pool layer follows 7 TEMP=305.3 && Initial temperature of pool (K) COMPOS=I && number of initial materials in the pool H20L=3.6140E6 && Initial mass of liq water in pool (kg) PHYSICS && Physics options for supp pool model BOIL && Pool boiling is modelled EOI && End of supp pool data EOI && && ****** Substructure Boundary Condition for Supp Pool **********i BC=300. && Temperature of layer beneath suppression pool EOI &&

&& *****************   End of Subpool layer          *
&& ****    CELL DATA FOR DRYWELL *********************

CELL=2 && Cell #2 is the Drywell CONTROL && Allocates storage space for cell 2 NSOATM=l && Number of external sources to upper cell atmos NSPATM=14000 && Max number of entries in atmos source table NHTM =6 && No. of heat transfer structures in cell MXSLAB=21 && No. of nodes in any heat transfer structure NAENSY=l && No. of engineered systems JPOOL =1 && Indicates presence of pool layer EOI &&

&& *******************    End of Control Data for Drywell        *
&& *************   TITLE FOR CELL 2*********************

TITLE &&I DRYWELL CELL

&& ********** GEOMETRIC DATA FOR DRYWELL GEOMETRY         &&

6785. && Drywell volume (m**3) I 26.75 && Characteristic height of the drywell (m) && ************ DRYWELL ATMOSPHERE DATA ATMOS=2 && Number of materials in the atmosphere 0.0 && Initial drywell press is calculated from Eqn of State 322.04 && Initial gas temperature (K) N2=7040. && Initial mass of N2 in Drywell (kg) H20V=255.52 && Initial mass of Water Vapor in Drywell (kg) && *************** Heat transfer options for DW walls

  • CONDENSE && Natural Conv and Condensation HT is modelled HT-TRAN ON OFF OFF ON ON RAD-HEAT && Initiate radiadiation HT model EMSVT 0.85 && Dry-surface emissivties 0.85 &&

0.85&& 0.85 && 0.85 && 0.85 && 0.95 && Emissivity for the uppermost lower cell layer CESS && Use Cess-Lian eqn for steam emittance GASWAL = 10. && Mean beam lenght for the enclosure (m) EOI && End of input block

&& ***************     Outer Wall of Drywell *********************************
&& Data must be entered twice because CONTAIN only models
&& one-half of a cylinder STRUC NAME = DW-WALL1 && (1/2 of dw liner plate on wall)

TYPE = WALL SHAPE = CYLINDER NSLAB = 1 CHRLEN = 26.75 CYLHT = 15.801 TNODE - 322.04 COMPOUND = CSTEEL X = 16.4430 16.4494 EOI NAME - DW-WALL2 && (1/2 of dw liner plate on wall) TYPE = WALL SHAPE i CYLINDER NSLAB = 1

CHRLEN = 26.75 CYLHT - 15.801 TNODE = 322.04 COMPOUND = CSTEEL X = 16.4430 16.4494 EOI NAME = DW-FLOOR && Liner plate on Floor of drywell TYPE = FLOOR SHAPE = SLAB NSILAB = 1 CHRLEN = 6.7 SLAREA = 565. TNODE = 322.04 COMPOUND = CSTEEL X = 0. .0064 E0I NAME = DW-ROOF && Liner plate on Roof of drywell TYPE = ROOF SHAPE = SLAB NSLAB = 1 CHRLEN - 2.8 SLARKA - 96.5 TNODE - 322.04 COMPOUND = CSTEEL X - 0.0 0.0064 EOI

&& ****** Other heat structures in drywell *****************************
&& Total steel volume of internals = 77.9 m3
&& Total surface area of internals = 6132 m2 NAME = DW-INSl && Steel structures inside drywell TYPE = WALL SHAPE = SLAB NSLAB = 5 CHRLEN = 3.0 SLAREA - 3066.

TUNIF - 322.04 COMPOUND = CSTEEL CSTEEL CSTEEL CSTEEL CSTEEL x = 0.0 0.00254 0.00508 0.00762 0.01016 0.01270 EOI NAME - DW-INS2 && Steel structures inside drywell TYPE = WALL SHAPE = SLAB NSLAB - 5 CHRLEN = 3.0 SLAREA = 3066. TUNIF = 322.04 COMPOUND = CSTEEL CSTEEL CSTEEL CSTEEL CSTEEL X = 0.0 0.00254 0.00508 0.00762 0.01016 0.01270 EOI

PAGE 353 && SOURCE DATA FOR DRYWELL SOURCE=1 && Number of Source tables for Drywell && ***** Tabular Data for Source 1 in Drywell

  • H2OV=1442 && Source is water and 1437 points are supplied IFLAG=2 && Use linear interpolation between data points

&& TABULAR Values for Source 1 in Drywell (Seconds) && break (actually accounts for reactor heat load)

            .OOOOOOE+00     .100000E+09 MASS         .OOOOOOE+00     .OOOOOOE+00 ENTH=       _000000E+00     .OOOOOOE+00 EOI   && End of Tabular Data for Source 1 in     Drywell ENGINEER      FLOV   1   2   1 17.07 2   1   0.4572E0 OVERFLOW EOI LOW-CELL GEOMETRY 487.4 POOL TEMP=322.04 COMPOS=1    H2OL=0.1 PHYSICS    BOIL     EOI EOI EOI SEOF

File # R2-1 NUCLEAR ENGINEERING F0 mm _________ .1 I__ I CALCULATION / STUDY COVER SHEET NUCLEAR RECORDS and TRANSMITTAL SHEET

1. Page 1 of d.
         *.2.       TYPE:       CALC              3. NUMBER:

t.. EC - d52--5'S93 c4. REVISION: TRANSMITTAL#: **,.LQO

                                              *16.       UNIT: _*._j *t7. QUALITY CLASS: .1_             *t8. DISCIPLINE.:      3 i.

,9. DESCRIPTION: HPCI OtrA RziC %tv Mcdi[ P-1 o- sAk6.E eode SUPERCEDED BY: EC-

10. Old Calculation#: SN*-C-db2- Rd Alternate#: Sh-MAC- 06Z 11. Cycle:
12. Computer Code or Model used: EFoKTR-A4 A.RF, Fiche [ ] Discs [ ] Amount
13. Application:

c5b2.  ; ------

  • t14. AFFECTED SYSTEMS:
    • If N/A then line 15 is mandatory.

_ 7 v__

  • >15. NON-SYSTEM DESIGNATOR:
16. Affected Documents: ,_,_,__

References:

IA-Z41 F. tkilocbshdli. M-Icba

                                                              ,PF1*%4!2dVwft.*-               .PF12j26(bS H,6, %
18. Equipment / Component #:
19. DBD Number: 1,rx&,d  ; D. b*Si t,20. PREPARED BY p21. REVIEWED BY Print waime Pr M.A.C.. -rit Print waNa .A.L.

signature NIA BACKF1T EFFORT signature NIA BACKFIT EFFORT i)22. APPROVED BY / DATE 23. ACCEPTED BY PP&L / DATE Print Name . ' j5.zs'qf Print Mim signature NIA BACKFIT EFFORT signature NIA BACKFIT EFFORT VoO S I OCS SIGNATURE/D -. Revision 1 5'AD{A NEW COVER PAOF R EACH REVISION CALCLOG\NEPW\FORZZ 1.RIA

  • Verified Fields SREQUIRED FIELDS ORN NEP*9-QA-0221-1,

F I EPN-G-216A, Rev.1 ________________________________________________________________________________________ CALC. NO. S WR-(,'--02 SAFETY RELATED 1 SUPERNO, ASNE III OR XI [I] OTHER QUALITY [ I

                                                                                                          -*Y CALCULATION COVER SHEET                                 SUPERSEDED BY NON QUALITY    [

I PROJECT 55E5s £-O/ ro.-& * £P6-/ev.4 ER/CTl NO. PAGE ..I OF DESIGN ACTIVITY/PMR NUMBER TITLE/DESCRIPTION 1P4 ei I iI.TI £ysh L. 5a SYSTEMS AFFECTED STATEMENT OF PROBLEM DESIGN BASIS (EPH-QA-208 or EPM-QA-400) REFERENCES/FORMULAE 4*e2- ~~~- a4 SUIIARY/CONCLUS IONS 4 5.A 2 s0.- ENGINEERING TURNOVER [ ] YES If yes, enter: Binder# Vol. (ETO) BINDER AFFECTED? - Calc. File Pgs. [vj'NO ,,, By Reviewed/ Date Approved By Date Rev. Date No./-- Prepared ChcdB lpl A'A.

                                     .glqz                  77A                P r

F'P&L Form W4t>4 JIUIW) c~at.#973401 5 jq - /P q c-- 00 ý;- I I I ER No.__ _ _ _ _ Dept. PENNSYLVANIA POWER & LIGHT COMPANY CALCULATION SHEET Date -___ 19 Sht. No. 2A of___ Designed by PROJ ECT____________ Approved by -

                                >I-,/                                                          I1
     .1.    ,TQeTLUc-7 23 Z1 222.

2.1.g ~nOSn~ t7pz 37 5Sffrzf44i~x- T~v~ A TUAJ4tC& it, A- '51c AePPUDEIX FO RTR~ hJ lPL-,- Her'.: " ecl 4 Aee~J1~IX~fa-dB ~ fe,. ~o Ja 1 4PT3 a4pct-~

Cat.

    #973401 I                            !

Dept. PENNSYLVANIA POWER & LIGHT COMPANY ER No. SHEET Date __ _ _ 19__ _ _ _ _ _ CALCULATION Designed by - PROJECT Sht. No. . of Approved by ln- aj-c& H+4KeX CL ej A4-o suppies4eumo-:

                                                                            ""Pool~
                               !wc.r YurJa>L                        hasr4
                                                                        'LL44f S 71w--L

Cat. #9734a1 5A - m -oo

                                                                      -o Dept.                PENNSYLVANIA POWER & LIGHT COMPANY     ER No.

Date - 19 CALCULATION SHEET Designed by PROJECT_ Sht. No. Z-*of_ Approved by Jked~j, i,- Th P - §P4, - N c*xpC^,$&4a At PCZ 2 i~~ A aJ A-c-A'ý , dLý ' 14 P.I. 5+a-, 4,~Ct V"4 wAu

I-Iv a 0 a 000a VI N 0 -~%A iM OA _ _ _ _ __ _ 2HA Ul~V k___ i17 rvSf I

C,4 C3C

Gat.W~U n; 1S 54 -i/n/gc~v-0 I Dept. PENNSYLVANIA POWER & LIGHT COMPANY ER No. Date -_ 19 CALCULATION SHEET Designed by PROJECT Sht. No. *Lof Approved by

 .2.1   ilecxr Y&    AD4HL

PP&L Form Z4!34 liuNOa)

                                                            ~                      ,

Cat. #973401 PENNSYLVANIA POWER & LIGHT COMPANY ER No._______ Dept. SHEET Date 19 -CALCULATION Sht. No. G' of __ Designed by ____ PROJECT___________ Approved by

                  ~2. (/    ~      L                       /f~c      P~-          Tb/

I 0- AA,-4 dlooole a44ýý,

                                                                  /Lei~ a2 zAP     LXa -   2ý    j 0-14
                                                              &--4~~~A                     -  -
           ,ooo 62 -1)
                                   -I-                2-:,t-z           +        S li   k~c-L                                J'A~-~LUsq T-J                               o4-L A(j6"Z
                                          ,1>#                                                      4L
                                       -~    ~~          ~      7Ia-I~-l
                             -TD.~
                                              .5 JLUJL.S Cin
                                                                                       '4 K

Cat. 91734U1 S"q -197Pc--00;z-PENNSYLVANIA POWER & LIGHT COMPANY ER No. ______ Dept. ________ Date -___19 - CALCULATION SHEET Designed by ____ PROJECT___________ Sht. No. 7 of __ Approved by T D14 dtý -t- Cle,-IAJýý - 14 YPCE QJ/dLc,05 lJ [4P t4z 4 V I~,, rU - + 4-91--c- 773 -Z 7

                                                                                       -7 (A JZI  J)

{ Clevad---ri 5L*7FO 4 1 4 7,;l '&'0 ( "IW Y)

a. -77C3-971- & 7a. 0 / /01-9 (2-)

7,N4 -,t&

                                                                                                    .(12-3) ccT]

Fewt Z= .B14

PENNSYLVANIA POWER &LIGHT COMPANY ER No. Dept. 19 - CALCULATION SHEET Date _

                -     PROJECT                               Sht. No.          _of Designed by Approved by I0uL As                           A       -        s        .

7-J~ n,. (-) 4Iv Overeer,ýa cr h4

  -Tb)-=       101,QgL-t- ý c)       -(-t- - -   ,-KAS- I /         +

r

 -          A-a                                                  M~~cr    A(-a-4L4--

v Tbh)

                                              -  27#-&.           (A     /,,*

equi Irv wV p tL.1 .4. 1 -1* T- FflV. CD CD I I. V4F1~4/l-coof: 0l. c-c 0.L I.ý

                                                                                                     -I 1T       0 -S.       --                            -
                     <',      flij ij I   I                                                                                                              I, F:            _u
                      -t                          U.~                                                                              0:1     z I.      0
                                                                ....                                                           'N m

C C) z It II J. 0> a)

                   -I,
       '-*1*                                                                                                      0                     0 >

Ii

                'F                                                                                                z.
                                    * ~~~21..                ~     . ....
                                                                   ..                             A~      j  1  I
        **jl       A                                                                                                                C'  -m 0

N

                   '.3                                                                                                                     0 MI.

AC

                                     ~      V 1    ,     .                                                                          p z
  • i .... .....

H

'I                  -i                                                                                                             c,)     m 4  J.                                                ..-.... ....

zr z 0 0

                        -I
                                                                             .i..... U si   I .

N. N

                           '3
                                                           ....IIN F
                                                                      '01  .1 y- P n c-.     .T:j.   -       a
                       )

0 W_ I qp w MT..

                                     " "'Cl " i                                                                                                                        o (0        *0
                              . *    *-   .. ,I"

[LF"'I " "!..:AL H o I  !!h!';:"' t'I.

                                  'l                                                                                                                                00
                                           -. -I.i                                                                                                                         <

M0 161, T l .......... L-.. 7:L' +-, ........ 1-7.

                                                                                                                                     ... .. .       [

I 14 I ....I. rv Ar 1

                                                                               +/-
                                                 . I...*!ir':i'3-,:-.,:"-....-;:4
                                                         -F        i:JLY
                                                             ,:i .,i.,'j.. i i....

1::.

                                                                                                           .. . . .[..    .....

7:

                                                                                                                       ",::...7...
                                                                                                                   .....8' V

upCZ,! 4 ttI p1:

                                                                                                                                                                    .-tJ C' 0.

s1

                                                                                                                                                                           -u 0

C m z z

                                                                                                                                                                                    'D:
                                                          ..........                       M- ....
                                                                              .... *:..:r;.:.     ,l .. n..                            ,

I- I I j** r.

                     *1
                                                                          '"               . ...;                      ~~~.

1:i .*':...

                                                                                                                                                ŽJ ...... 4.

i. 0 r0 H*

                                                                    .......... . ..*i~~J.    .... ... ....    ........                                                          Pn,
  • i r. 7r/ -I
                                                 . ............... -F....
                                                                     ..               -o * * !,'!el  ....      :     .*.:._:,' .* : t' I                *'
                                                                                                                                                      *>ii.: 0   !

i z'~ ca

                -1,       %b X:

j.

                                                  ":i'-'-            f"";'"
                                                                        *-I
                                                                          ~ZJITI..4              ...
                                                                                                   .. ....  '                                                                      0
                  'I      ;> 4~SL3                                                                                                                                                 z 1LK                     u...  .. L_

7.E L ... .A!I ci m z z 0 0 p "tY

  • 0 o

f

             .1 .. I . . .

0 z (3. z0 cr w U) z 0

       ýl4:K I-LU ul 2:

U) ou z X w 2) ,ý.I 0 C) z 0 w cr a- a. c% OL a*

Dept. _______ PENNSYLVANIA POWER & LIGHT COMPANY ER .No. ______ Date 19 . CALCULATION SHEET Designed by PROJECT __ C c~~~/~  :*Sht.No.... -of___ Approved by _____ HPCL Pt--/Z t~-n~ BYRON JAcIKSON I.

                                                        ~~YO                   0-Disa/f"'j A4.               i'.hý'       I
                 -I
                -d TJ*   -

0 A~I~lA~ek4L2.671 ______A 1 LIZ I____~IS il uLLii TI II w2 .1y14jZ I' k42 ~-- ~I I ' IT7' N., IALL/;: '.IgNrE~ _8V. H. %vI..: . Ill i. 4I..J ":j:. RPM  :- 7 '* *~ 121Y~ ZoVo 2i--~4 7..06,0- 1 - S//~ HNEA D- CAPACcITY CU A V E- F'OR PHI.rEF PLLMP AT PLHkV_.S EeD_ OP- 20 TO

Cal. #973401u pco Dept. PENNSYLVANIA POWER & LIGHT COMPANY ER No. Date _____ 19 - CALCULATION SHEET Designed by - PROJECT. Sht. No. /3 of__ Approved by SlAO' - * (., es 1.-7 -a)J IA) (L =Jt-fl -L

                                                                          - 1 4P1-.?

l

  • a Aqu I60A,, 1. 1gsw 64Mcl
                                      =     (a 87. 3J  maJer A

pa-C I-o _sý Af2---W-LvL

                . 4 Q-td~~ t        ~Es...fs'~
                                       -  (~'
                                                                   - I I  I- f ý I -   - - - -

I PENNSYLVANIA POWER & LIGHT COMPANY ER No. Dept. Date 19 CALCULATION SHEET PROJECT Sht. No. 1o4 _ Designed by Approved by 10/+/. ÷ 7a),jl* , ) -*,2/ /6.9 / (41.7) 4- 4 8-7. 3)

.0  &

Le = 3.4qx,-& (2-/0) 1jýý Ww- 4#c (m A.)A //? 4- L s.'x j)t, : .- I LJILD4L (7~pc-1 A~C 1z-~d4Aa'---(d

I I * - fl? H-c-- 0 0&l-Dept. PENNSYLVANIA POWER & LIGHT COMPANY ER No. Date - 19 CALCULATION SHEET Designed by PROJECT Sht. No. _Lof__ Approved by (~. i)~77~2~ /LLc 7 42.*. 44- &C* 4

                                                   /4U  4                        @
  . 4.1)                                            a*-.

lfrvafr.*÷4. L

Dept. PENNSYLVANIA POWER & LIGHT COMPANY ER No. Date 19 CALCULATION SHEET Designed by PROJECT_ Sht. No. 16, of__ Approved by 5v P1 4 L 4-12) co - 3.112LO8 XIc"A s* ~0 d ,*c-) 4.) (2 '3o

               *)=5,  g*'*xoz                                          (z-i.)

514 - M #4C--00

  • I I Dept. PENNSYLVANIA POWER & LIGHT COMPANY ER No.

Date 19 CALCULATION SHEET Designed by PROJECT_ Sht. No. 17 of__ Approved by A- AJ 74 VL. _ ml T-). */(2 Al* u, C *-,/) - ()

Figure 2-5 Combined Head-Capacity Curve for HPCI Main and Booster Pumps Pump Speed 4100 rpm 3200 3000 2800 26000 2400

  .240 E

>' 2200 a 4-0 2000 4000 6000 8000 10000 12000 Pump Flow Rate gpm

Dept. PENNSYLVANIA POWER & LIGHT COMPANY ER No. Date - 19 CALCULATION SHEET Designed by PROJECT Sht. No. .19ofI Approved by

                  - &                      oZ-_    Vo OA, / 0 Z)-

4 ;7 L o' ( 42~ , T h # 3 . tb ~

                  #pA4 k~~-rL                    1y                         cv

Figure 2-6 HPCI Head-Capacity Curve and Affinity Law 3600 Head-Capacity i Curve @ 4100 rpml 3000 460 60-ATDH*)

13 1600.

4000 6000 8000 Pump Flow Rate (gpm)

A- 1, 19c - 0 0 lo I Dept. PENNSYLVANIA POWER & LIGHT COMPANY ER No. Date - 19 CALCULATION SHEET Designed by PROJECT_ Sht. No. '2/ of__ Approved by (c9ooy) e~~+/- ~ - (74-Df A t4.4 ThD44 k" (QiLf, a4.L'd I As 11-=(9n/Ob) ( VI) '/2,/ (7-PW9)31"L (.-'

I Dept. PENNSYLVANIA POWER &LIGHT COMPANY ER No. Date - 19 CALCULATION SHEET Designed by PROJECT Sht. No. ?,,_ of__ Approved by LA--ý4/Aa 4~k~f<7L 72 77),'4j

Dept. PENNSYLVANIA POWER & LIGHT COMPANY ER No. Date - 19 CALCULATION SHEET Designed by PROJECT_ Sht. No. a,3 of__ Approved by 4crvte Tb i _y,, ,,+/- 4--*. 0 p,,. -d, I 13PP jý))(o?-.23)

Dept. PENNSYLVANIA POWER & LIGHT COMPANY ER No. Date - 19 CALCULATION SHEET Designed by PROJECT Sht. No. .2 of Approved by 7J/eL le- a-A 4(-4I, 1J2L h'Pr H-o Ca. B 0 ro _sC.C 92 C-0 . 7o 2-/* 6--D

        *ero lI/i0t-0ov 6o'oz

Cal. #973401

                                                               $A7 -A,9C    -eo--

Dept. PENNSYLVANIA POWER &LIGHT COMPANY ER No. Date - 19 CALCULATION SHEET Designed by PROJECT Sht. No. 2-A"of Approved by t 3 .~4Q (.a-,2,1) T1%Q- LL b~a~ A8Q ceP eiwuadL 0-.

                      --      (V ,2s. P Lf  X IC)3 5 .=2--1 I,        7 - 0 A -C o*.L   J, = -I.gs'i39o x *
                         -       17.G+6-7 X1D-13 de&k ndtie                  -ýL~&~a up-                                                        (z-z7

Figure 2-7 HPCI BHP vs. Flow Curve for Combined Main and Booster Pumps at Turbine Speed of 4100 rpm 7000 6500 6000 5500 o5000 .- 4500 0 2000 4000 6000 8000 10000 12000 14000 Pump Flow Rate (gpm)

c- - C)u-j-I Dept. PENNSYLVANIA POWER & LIGHT COMPANY ER No. Date - 19 CALCULATION SHEET Designed by PROJECT Sht. No. _7_of Approved by 9, -w

y. * (2-/'7). A-

Dept. PENNSYLVANIA POWER &LIGHT COMPANY ER No. Date - 19 CALCULATION SHEET Designed by PROJECT Sht. No. of__ Approved by HPcr 7~~S~ 1 I~ (z&t),,WS

  ~~*W         A)      - 4 Ata       ý~~~ &,         L3ý44 .A
                            &wen,
69) 2 f&,

A3, tj

                                                                                                                                                                                                                                     .04 I::I:z1If j~jido'~                 '0*

a Z11

                                                       .3-34 of;;                 2       Ii
3. 33 I .8 3...

it) £ i:: I I; LF1 *'I q-r

                                                                                                                                                                                                                                 ,3                  -  `    Lii 393      _____

iLL jI V  : -n.J iiil,

                                                                                                                                                                                                                                                             .3 34 2

A~I;:i:1. 01 1[;: !j j:: j-jit-':

i ?33 I 11 ir' I!, ;Iiir :ZL, 3 if 1!! ii A:43..] h.p1 8
                                                                                                       /'(,r                                                                                      All,
                                                                  .88
  • 77I *,. II;:

Iiti 7n7;Z 8.! fj o 31333L. [!P.L i;:: i;r; !ij U 3..3 ... ... 4:9:  :: 383 I...' 3 ..8 "731I II I 8 1:

1' ilk Nr*I~
                                                                                                                                                                          ,.       2                     'Fl 11                                      I'
  • Iii ii; -

41;. 1-i -I, 383 .111

                                                                                                                                                                                                       .3 2'   1*.

I, 2: it 41

  • 4q i jI liP,  : ci.:
                      ~. 1 7 .                           3.3.33. 3     3 433
i.

Tj In~ .:4

                                                                          ...                                                                                                                                        4 L.
3. 4
3. 11 14"'
                                                                                                                                                                                                                   .v
                                                                                                                                                                                                                                                            'e.: .

Iii! N

                                                               -j
                                                                                                       !Iii;.                                                                         7~11                                                                         is I

lii 4 -- 3 .4 -3.

                                                                                                                                                                    .j'                               .3.9
si I. - I - -- --
                                                                                             *.34 3.q I       I 33..
                                                                          .3.
  • Zn 338 323 3.3*. 3 F,, iph1u.1 if-
.A1`17
                                                                *39*
                                                                          '   *I    3*3 38.3         H                              1-'.-.
                                                                                                                                                    .343.,3 I 'I iii                        1i17 41 N-
4: ,:;It  :: OE 7' -. 3.

3.3

1 1 1~it off~ ,l t.:
                                                                                                                                                                                          .9 2J it 41
                      .A   .
2: 3.9.
                                                                                                                                                                  .3     1 SI..
                                                                                                                                                                                  !~

if1 i dIAlJ *..,3 t'9Iii-- 7-- n

                                                                                                                                                                                                 *3.9 H
                                                                                                                                                                                                     'A' to -4 L:j I. -I                              I-.        .1n 141              3 331 KiiI.:x 1 :4+
                                                                                                                                    !: I:   133
i :1!::; ,1.3.3..'-.3, 3-...
                                                                                                                                                                                                                                    *-I 3....
g:t I
                                                                                                                                                                                                                                          -.9£            I
                                                                              'NN03 'OdO.JLU1H "0                                              V3IS AHU1~J WHU(L                 3141.

ILfrrvt orti <- ZD

                             +9iH db.                                                                                                                     a.

I b~/)-/ )-c -0 0 ý9-I Dept. PENNSYLVANIA POWER & LIGHT COMPANY ER No. Date - 19 CALCULATION SHEET Designed by PROJECT Sht. No. *.3V of__ Approved by at ~ fr v0 li- AXA, Kt&

                      ýj             134W 8       dý       Jkf Iwl~ r 4% ,

I 9-JI/t-t(>CJC'- Dept. PENNSYLVANIA POWER & LIGHT COMPANY ER No. Date -_ 19 - CALCULATION SHEET Designed by PROJECT_ Sht. No. __ _of__ Approved by

2. Y~L~07L~i~
                                   ~f~~L          6-    +                ~          i4pcz
                        .AIaAy                    u*t.                          CLI  bw jlv                                    -   7 j,~3)77(?2-2I3)
                         *=      --7.I1*qtbq xW            9 S,4J L            ^ 1 1.-3'.
                                        " 4X-,       )3    Cr   e© 67, v4~~c.3-7-c9
                            ~~1         ?J        X(/0 -7 A(W3a~P)

I I Dept. PENNSYLVANIA POWER & LIGHT COMPANY ER No. Date __ 19 CALCULATION SHEET Designed -by PROJECT_ Sht. No. __of Approved by cl 0 -- I. 02. I *97?U O6 "

                                 -.4-14(,g.i" 4=

d+= -Itq-4g q9xjc S= 9.*G3 ~XID_'6 aukc 4.TWAV. A4Ad4ct-d 4bfl-

                                                                 - /'l  fT'  C.JL,'A Dept,                     PENNSYLVANIA POWER & LIGHT COMPANY     ER    No.

Date __ 19. CALCULATION SHEET Designed by PROJECT Sht. No. '33 a. of Approved by 6-J&L~j Cý. CýPkLxc' APcLAP-ý PAe L-Jt,- L/ 0 o

            -5"l V 0, s4>D                           Al:
                                           "7/

)4 A 14fr&ttit #L LA 0 r 4, A' 40 -A4ý = L3 #P, -(Z6- -'16. 6 ) -A- &J4 0 (.2-30)

                          -    A~e ~                         }L     //PZ

Dept. PENNSYLVANIA POWER &LIGHT COMPANY ER No. CALCULATION SHEET Date _ -- P, Designed by PROJECT - Sht No. - _,of__ Approved Dy

       . (a -. 30) 1 0 /         fI   A  I.

P,&ý

,-y.       (.P - 27) ,,d      (,,7- - () /L.

Dept. PENNSYLVANIA POWER & LIGHT COMPANY ER No. Date -- 19 CALCULATION SHEET Designed by PROJECT Sht. No. *3" ofi Approved by

                                      .2 ~~~J2.~         L-~

4v~~ *LQ

              ~-~-   7   tv 74

Dept.- PENNSYLVANIA POWER & LGHT COMPANYý IEP N ______ Date 19__ ___ CALCULATION SHEET Designed by PROJ E C'T P___ - Sht. No. 3 of___ Approved by

          -77,,-    R~~ eTG~m                  r-L     &-)

7T)1 -e-14

                            .32.2 Tct/                     A 72 H.      f                                AL MOLC4AAM
 -rb1         Lxg- t-2, 4ai   ,je-A~=

94 - as =

                                       /o/. 7  it.            (Aaýe-  iý.(I I

Dept, PENNSYLVANIA POWER &LIGHT COMPANY ER No. Date _ i_ CALCULATION SHEET Designed by PROJECT_ S ht. No. 3_7 of____ Approved by

  '    P7 V-AdLL          Le-        ,4& z      f . _*/£o         A-
                *~~~-            }               1&  B-c-j/
                      -X4
                                  - P-)(92                                331 4 yL4 I-I-

Dept. PENNSYLVANIA POWER & LIGHT COMPANY ER No_______ CALCULATION SHEET Designed by - PROJECT_____- - ______ Sht. No. _ __of___ Approved by

                                                   ~~Pa I~~~"~~                      -I-(c,,IUL TDt-~I 1JaaL                                       p

Dept ___ PEINNSYLVANIA POWER & LIGHT COMPANY 'E7R No __ Date 19CALCULATION SHEET Desigried by -___ PROJEcCT ____ Sht- No. _ _o __ Approved by A,4, F0~ 4 4 t Z)14 To4~ ZF 4- 2-ý L 71o79 7? Y,/0 3

                                                  .         .*.       .    . .117...           . I r4)  -777b; -'.                                   ..                    ..... ..   ....

7I. .7 - 17I r )

   -. C, 5        ;
> o
7. 7
                                          .7-..-    ---    7    1   -77                     -   3
                                         -7                       7 J                             1n U,~                                              .' ........
             'GI
  • I7 *~

gk -0WýQ)S ý 2a ý'L HS cl N i JW1 Oi FISc4 N Ili z-7WV771M -WvHvrM-=7 YO- wcýfcvllt,02 0 DS 7 :5 -7 INC Id H Iýcl N If 3-7 'TdAH AH +Vfq 6/ ýDo NOSP ý-Jo /a .0 C7.5.L S;2X 11KT, M, 0 9 0 916191 0*0/ S-:92 t7?ý 00hj k6k 2 *0' AZLI 9 1--jý */P 0,9L 299 e1w a 9 /901, OW! 40w, 0iq 0-0/ J-6' IL02 I Glý -ýýI 0:ý g! V/ R1 oz/ Fz,-9Cl ozga -9/9 2,2L Z?-qgýsý -9F,6-91 LO ý?/9/ 965) OIL FOIL11-916 .92L I* Rý,L -P'R/ OR? Gý P* -92 ý/ 7kz LOO /1.1? 91PIP, 9 RL 1 22 L oz- I

                                  '92 L? Z? 6jrC                                                                           loop/

I r 'A j -1 '1 '1 f: ot I 10D  !.t I DOL J'ý:i (7-L N \V%-Lmcj -I CO v-)H

                                                                                                      -11djLOJ 01
                                     -0 0*/   SL 'a,&'O 4d A 1-4 AH b-2 /a

_q t Q 1,Aj -r W.P9 OCX- -17le 01 PTO rig'L2 I A J 009C I

                                    &HO-921         0ý -WH
-gloo 12                                                                                   --IVc\:f3N39                -J7 OJ                                                                           CID            OOCPXýý 91 1 Ads

Dep". PENNSYLVANIA POWER & LIGHT COMPANY ER No. CALCULATION SHEET Date- _ _ _ __ _ _ _ _ Designed by PROJECT Sht. No. -2of___ Approved by 0? /8/3.0

            /                                        17/ S0T
         '710                                            O Z71b**.*

PENNSYLVANIA POWER & LIGHT COMPANY Dept. PENNSYLVANIA POWER &LIGHT COMPANY ER No. CALCULATION SHEET Date - 19 Designed by PROJECT Sht. No. 1of ___ Approved by S4K W WirA

  ,A#zjt,-              -,            IJc2                                   A4
                  = AJo J. Tb2//-                                       (P_1/o)

V-= ý7L~A-1f0-ý ReeJEp /Lczr 6at'-)4 (.L f--~' ~ ~ IL-Re 7;q AI= S (Lp4)(L/CrcH4) I,, (9qi) CrD l-Q

                                                                                 ,).

Z~ 14e ]

I[ Dept. PENNSYLVANIA POWER & LIGHT COMPANY ER No._ Date 19 "CALCULATION SHEET Designed by PROJECT_ Sht. No. Of Approved by F4. J L ..-.... A vd - - 2 ,iI$.' o* fp zi-iP= 4L. 19 a.li- Lw

Dept. PENNSYLVANIA POWER &LIGHT COMPANY PER No. Date 19 CALCULATION SHEET Designed by PROJECT Sht. No. 1_*of Approved by

.A~              ?*.~ 4-        A jI-                        ko9~

Si .-,~~. l

                                                         , rJ--    I
  • 0 Dept. PENNSYLVANIA POWER &LIGHT COMPANY E: R No.

Date 19 CALCULATION SHEET Designed by PROJECT Sht. No. _*iOf Approved by

'   2-                                   CE P& I/~os
                                   ~         715A2-                        ý, Pryzj ead         otA 44   B'     PCp Z5-           *7AZ6,tQJJ        P, +a                            ~q7).

TF

      .1 I..

En fI IV -. I

-, I i I- LI I ro LAY CS
                                                                                                   -4 M
                                                                                                   -4 z~LizT T~4-*

L II

         *~~1~ Fj4                                             7T-t
                 - - -&-~
         -I jJ
         *1                  *4%

I-

                        ;:1%                                          I   F%                        z
                                      -7       -T--      7:        -7                L - I*

[i. II!:

                          . (0 rn~     I             I I~
  • a At
                                                    ~r
                                              -Y~

CS..'t

                                                 ~               ~               V77'l j-7

Dept. PENNSYLVANIA POWER & LIGHT COMPANY ER No. Date 19 CALCULATION SHEET Designed by PROJECT Sh t.No. _of ___ Approved by Z*-~ 70 00oI/0.** x 1o-0 3.= 6 -71,??3 Xi

               '7-                    X 10 Z,/~F
                       -,D* =ke,HzoDxo7
3. ¢ * * * -7" **T ,

Dept. PENNSYLVANIA POWER & LIGHT COMPANY ER No. Date 19 CALCULATION SHEET Designed by PROJECT Sht. No. *rof ___ Approved by

               ~     ,o          BI16- ((a,5     .)                       -qP) 1,j~                             4~~~       t  4~     6~~~

HP

                                   /dia~  ~~4w1,"                 (4A/lm~

(.24

I Dept. PENNSYLVANIA POWER &LIGHT COMPANY ER No. Date - 19 CALCULATION SHEET Designed by PROJECT Sht. No. '.r"o of Approved by

3. RES u LTS 74r
                 "",C         C4--0 7-)e.4,A
      **,*     . *L*-z             _.,,fo

7r5/ Table 3.1 HPCI Operating States RX Press EPCI Pump Flow Turb Steam Flow Turb Speed Turb Disch Enth (Psia) (gpu) (Lbm/hr) (rpm) (Btu/Lbu) 1200.0 5000. 222629. 4199. 1129.0 1200.0 4000. 189334. 4083. 1129.8 1200.0 3000. 159849. 3996. 1130.4 1200.0 2000. 135277. 3941. 1130.8 1200.0 1000. 117907. 3921. 1130.9 1000.0 5000. 191655. 3900. 1139.2 1000.0 4000. 160928. 3772. 1140.0 1000.0 3000. 133785. 3676. 1140.6 1000.0 2000. 111157. 3613. 1141.0 1000.0 1000. 95002. 3588. 1141.2 800.0 5000. 160002. 3577. 1147.7 800.0 4000. 132845. 3435. 1148.8 800.0 3000. 109149. 3326. 1149.8 800.0 2000. 89128. 3253. 1150.5 800.0 1000. 74394. 3221. 1150.9 600.0 5000. 130478. 3223. 1155.1 600.0 4000. 108227. 3062. 1157.2 600.0 3000. 88618. 2935. 1159.2 600.0 2000. 71307. 2849. 1160.7 600.0 1000. 57773. 2808. 1161.4 400.0 5000. 105607. 2828. 1161.9 400.0 4000. 88393. 2639. 1165.6 400.0 3000. 72787. 2486. 1168.9 400.0 2000. 57932. 2378. 1171.4 400.0 1000. 45066. 2323. 1172.7 200.0 5000. 85195. 2372. 1165.3 200.0 4000. 72591. 2139. 1170.9 200.0 3000. 61773. 1941. 1175.9 200.0 2000. 50714. 1792. 1179.8 200.0 1000. 38309. 1707. 1182.1

Table 3.2 RCIC Operating States RX Press RCIC Pump Flow Turb Steam Flow Turb Speed (Psia) Turb Disch ERnth (gpm) (Lbm/hr) (rpa) (Btu/Lbu) 1200.0 600. 29068. 4620. 1120.9 1200.0 500. 26551. 4566. 1121.3 1200.0 400. 24335. 4526. 1121.8 1200.0 300. 22367. 4500. 1122.4 1200.0 200. 20602. 4489. 1123.1 1200.0 100. 18999. 4492. 1123.9 1000.0 600. 24109. 4260. 1130.6 1000.0 500. 21968. 4200. 1131.4 1000.0 400. 20083. 4154. 1132.3 1000.0 300. 18414. 4123. 1133.3 1000.0 200. 16923. 4108. 1134.4 1000.0 100. 15579. 4110. 1135.5 800.0 600. 19664. 3867. 1140.0 800.0 500. 17825. 3799. 1141.2 800.0 400. 16212. 3745. 1142.5 800.0 300. 14791. 3709. 1143.8 800.0 200. 13534. 3689. 1145.2 800.0 100. 12412. 3688. 1146.7 600.0 600. 15585. 3432. 1148.5 600.0 500. 13997. 3352. 1150.2 600.0 400. 12615. 3288. 1151.9 600.0 300. 11412. 3243. 1153.6 600.0 200. 10362. 3217. 1155.3 600.0 100. 9439. 3211. 1157.1 400.0 600. 11790. 2937. 1155.5 400.0 500. 10438. 2838.

          .400.                                      1157.8 400.0                         9284.       2759.      1160.1 400.0       300.             8300.        2700.      1162.4 400.0      200.              7460.       2664.       1164.6 400.0      100.              6735.       2652.       1166.8 200.0       600.              8385.       2345.       1159.1 200.0       500.              7344.       2215.       1162.9 200.0       400.              6511.       2106.       1166.6 200.0       300.              5846.       2021.       1170.3 200.0       200.              5303.       1964.

200.0 1173..6 100. 4837. 1938. 11

==76.6

REFERENCES==

1. "SSES Design Description Manual", Chapter 8, Pennsylvania Power & Light Co.,

Allentown, PA.

2. PP&L Drawing M-247.
3. PP&L Drawing "Primary System Weights & Volumes", FF110760, Sh. 0101, Rev. 1.
4. PP&L Drawing "Unit I P&ID Condensate &Refueling Water Storage", M-108.
5. PP&L Drawing FF127250, Sh. 6201, Rev. 1.
6. PP&L Drawing FF127250, Sh. 5601, Rev. I.
7. PP&L Drawing FF127250, Sh. 6301, Rev. 1.
8. Karassik, 1.J., Krutzsch, W.C., Fraser, W.H., and Messina, J.P., Pump Handbook, McGraw-Hill, New York, 1976.

De pt. PENNSYLVANIA POWER & LIGHT COMPANY ER No. Date - 19 CALCULATION SHEET Designed by PROJECT Sht. No. __of Approved by 4 P DJ P-E X A

           -7ýFORQ Tk q A!

Table A.I FORTRAN Program for Calculating HPCI and RCIC Operating Parameters C C PROGRAM FOR CALCULATING HPCI AND RCIC OPERATING PARAMETERS C IMPLICIT REAL*8(A-H,O-Z) DIMENSION P(100)'QH(100),QR(100),T(100),WSTMH(100),SPDH(100),

         &            HDISH(100),HDISR(100),WSTMR(100),SPDR(100),
         &            HPH(100),HPR(100)

C**** READ NUMBER OF OPERATING POINTS READ(5,*) NSTATE C**** SPECIFY INDEPENDENT PARAMETERS READ(5,*) ( KCASEQH(J),QR(J),P(J),T(J), J=1,NSTATE ) C**** CALCULATE HPCI AND RCIC OPERATING PARAMETERS DO 10 J=1,NSTATE,1 CALL SHPCI( P(J), QH(J), T(J), WSTMH(J), SPDH(J), HDISH(J),

        &              HPH(J) )

CALL SRCIC( P(J), QR(J), T(J), WSTMR(J), SPDR(J), HDISR(J),

        &              HPR(J) 10 CONTINUE C**** PRINT THE RESULTS WRITE(6,101)

WRITE(6,102) 101 FORMAT( Rx Press HPCI Pump Flow Turb Steam Flow Turb Speed T

       &urb Disch Enth            Pump hp ')

102 FORMAT('(Psia) (gpm) (Lbm/hr) (rpm)

       & (Btu/Lbm) write(6,103) 103 format('                .)

DO 20 J=1,NSTATE,1 WRITE(6,105) P(J),QH(J),WSTMH(J),SPDH(J),HDISH(J) 105 FORMAT(' ,HPH(J)

                   ,, f0.1, f12.0, 5x, f12.0, 3x, f12.0, 2x, f12.1,    2X,
       &              f12.1 )

20 continue C**** PRINT THE RESULTS WRITE(7,301) WRITE(7,302) 301 FORMAT(' Rx Press RCIC Pump Flow Turb Steam Flow Turb Speed T

      &urb Disch Enth          Pump hp ')

302 FORMATW' (Psia) (gpm) (Lbm/hr) (rpm)

      & (Btu/Lbm)        ,)

write(7,303) 303 format(' ,)

I CC = A(2) - TDHO/QO**2 QSTAR = A(1)*A(1) - 4.DO*CC*A(O) QSTAR = - A(1) - DSQRT( QSTAR QSTAR = 0.5D0*QSTAR/CC HSTAR = TDHO*QSTAR*QSTAR/Q0**2 NSTAR = 4100.DO*DSQRT( QSTAR )/( HSTAR**0.75D0 ) NO = NSTAR*( TDH0**O.75D0 )/DSQRT( QO ) PSTAR = (((B(4)*QSTAR + B(3))*QSTAR + B(2))*QSTAR + B(1))*QSTAR

     &+            B(0)

Po = PSTAR*( QO/OSTAR )**3 PPRIM = ((C(3)*NO + C(2))*NO + C(1))*NO + C(O) WSPRIM = ((((D(5)*PPRIM + D(4))*PPRIM + D(3))*PPRIM + D(2))*PPRIM

     &           + D(1))*PPRIM + D(O)

WSO = WSPRIM*PO/PPRIM C**** DISCHARGE ENTHALPY FROM RCIC TURBINE (BTU/LBM) HDISCH = HDOME - PO*2546.6D0/WSO WSTM WSO SPEED = NO HP =P0 900 CONTINUE RETURN END @PROCESS DC (CORBYP,UPRI SE, JETLP, AVERGE, NUTRON) SUBROUTINE SRCIC( P, QINJ, TINJ, WSTM, SPEED, HDISCH, HP ) C**** INPUT PARATETERS: C**** P = REACTOR PRESSURE (PSIA) C**** QINJ = EPCI INJECTION RATE (GPM) C**** TINJ = TEMP OF INJECTION COOLANT (LBM/FT3) C**** OUTPUT PARAMETERS: C**** WSTM = STEAM FLOW TO HPCI TURBINE (LBM/HR) C**** SPEED = HPCI PUMP/TURBINE SPEED (RPM) C**** HDISCH= HPCI TURBINE DISCHARGE ENTHALPY (BTU/LBM) C**** HP = PUMP HORSEPOWER IMPLICIT P'L*8(A-H,O-Z) REAL*8 NO,NSTAR DIMENSION A(0:2),B(O:2),C(0:9) DATA A / 1.820796D3, 2.657717D-1, -5.953105D-4 / DATA B / 2.091550D2, 2.967866D-1, -2.019651D-5 / DATA C / 1.498352D4, -1.308682DI, 9.371714D1, 4.382964D-3,

     £           1.255254D-2, -2.920010D-2, 3.671393D-6, -3.883010D-6,
     &           5.801522D-6, -4.614200D-7 /

IF ( QINJ .LT. 1.D-2 ) THEN SPEED = 0.DO WSTM = 0.DO

GO TO 900 END IF C**** COMPUTE STEAM DOME ENTHALPY (ASSUME SATURATED STEAM ) HDOME = HGP( P C**** COMPUTE THE INJECTION ENTHALPY (BTU/LBM) CALL HCAL1( TINJ, 14.7D0, HINJ C**** CALCULATE THE INJECTION FLUID ENTHALPY (BTU/LBM) RO = I.DO/VPHL( P, HINJ C**** COMPUTE THE PUMP TDH (FT) WINJ = QINJ*RO/( 60.DO*7.4805D0 ) TDHO = 101.9D0 + ( P*144.DO - 2116.8D0 )/61.7D0 +

      &          (0.0191D0 }*WINJ*WINJ C****    00 = VOLUMETRIC INJECTION RATE (GPM)

Q0 = QINJ CC = A(2) - TDHO/QO**2 QSTAR = A(1)*A(1) - 4.DO*CC*A(O) QSTAR = - A(1) - DSQRT( OSTAR ) QSTAR = 0.5D0*QSTAR/CC HSTAR = TDH0*QSTAR*QSTAR/QO**2 NSTAR = 3594.DO*DSQRT( OSTAR )/( HSTAR**0.75D0 NO = NSTAR*( TDHO**0.75D0 )/DSQRT( QO ) PSTAR = ( B(2)*QSTAR + B(1) )*QSTAR + B(0) P0 = PSTAR*( QO/QSTAR )**3 WSO = C ( C(8)*PO + C(4) )*PO + C(2) )*PO + C(O) +

     &         ( ( C(9)*NO + C(3) )*NO + C(i) )*NO +
     &         C(5)*NO*P0 + C(6)*NO*NO*PO + C(7)*NO*PO*PO C**** DISCHARGE ENTHALPY FROM RCIC TURBINE (BTU/LBM)

HDISCH = HDOME - PO*2546.6D0/WSO WSTM = WSO SPEED = NO HP = P0 900 CONTINUE RETURN END FUNCTION HGP(P) IMPLICIT REAL*8 (A-H,O-Z) C**** SATURATED VAPOR ENTHALPY (BTU/LBM) AS A FUNCTION OF C**** PRESSURE (LBF/IN2) - RETRAN02 PROP FIT DIMENSION CG1(12),CG2(9),CG3(7) DATA CGI / .11 0 5836875D4,.1436943768D2,.8018288621D0,

I. - , 1.l6 172 32 9 13 D-1,-.1501147505D...2,4*0ODO,-...237675562D-.4,

2. 3 0 0 4 773 3 04D-5,-.2062390734D-6/

DATA CG2 / -.22 3 4 2 6 4 9 9 7D7,.1231247634D7,-.197884787lD6, i.1 8 5 99 88 0 4 4 D2,-.2765701318D1,.103603387BD4,...2143423l31D3, 2 1 9

          . 6 OS07762D2,-.4864322134D0/

DATA CG3 / .9 0 5 9 9 7 8 2 54D3,.5561957539D1,.3434189609Dl, 1-.6 4O 6 39O 6 2 8DOI.5918579484D-1,..272537857OD-.2,.5006336938D.. 4/ IF(P.GT.1200.DO)GO TO 15 FLNP=DLOG(P) HGP=CG1(1)+CGI(2)*FLNP DO 1.0 J=3,12 HGP=HGP+CG (J) *FLNP* *(J-1) 10 CONTINUE RETURN 15 CONTINUE IF(P.GT.2600.DO)GO TO 25 FLNP=DLOG (P) EGP=CG2(1)+CG2(2)*FLtNP DO 20 J=3,9 HGP=HGP+CG2 (J)*FLNP**(J-l) 20 CONTINUE RETURN 25 CONTINUE PDIF=(320B.2D0-P)** .41D0 HGP=CG3( 1)+CG3 (2)*PDIF DO 30 J=3,7 HGP=HGP+CG3 (J)*PDIF** (J-1) 30 CONTINUE RETURN END SUBROUTINE HCAL1( T, P, H) IMPLICIT REAL*B(A..H,O..Z) C** CALCULATES SUECOOLED ENTHALPY AS A FUNCTION OF TEMPERATURE AND C**** PRESSURE C** T = TEMPERATURE (DEGF) C** P = PRESSURE (PSIA) KOUNT=0 Hl= 0.020D0 H2= 550.-OODO Fl= T - TPHL( P, Hi ) F2= T - TPHL( P, H2 ) C** CHECK IF ZERO IS TRAPPED IF (.F1*F2 .GT. 0.DO ) THEN WRITE(6,1O1) 101 FORMAT (' ZERO NOT TRAPPED IN SUBROUTINE HCAL1 - HPCI ENTHALPY CAL

      &CULATION FAILED '

STOP END IF 10 CONTINUE KOUNT = KOUNT + 1

                                                                                       -f. v IF ( KOtINT .GT. 100 ) THEN WRITE(6,102) 102 FORMAT(' HPCI ENTHALPY CALC DID NOT CONVERGE IN 100 ITERATIONS)

STOP END IF IF ( DABS(H2-H1) .LT. 0.01D0 THEN H3= ( H1+H2 )*0.5D0 GO TO 900 END IF H3 = ( H2 + Hl )*0.5D0 F3 = T - TPHL( P, H3 IF ( F1*F3 .LT. 0.DO )THEN H2=H3 F2=F3 GO TO 10 ELSE H1=H3 F1=F3 GO TO 10 END IF 900 CONTINUE H-H3 RETURN END FUNCTION VPHL(P ,H) IMPLICIT REAL*8 (A-H,O-Z) C** SATURATED OR SUBCOOLED SPECIFIC VOLUME (FT3/LBM) AS, C** A FUNCTION OF PRESSURE (LBF/IN2) AND ENTHALPY C** (BTU/LBM) - RETRAN02 PROP FIT DIMENSION CN1(5,3) DATA CN1 / -. 411796175D1,-.3811294543D-3,

l. 4 3 O 8 2 6 5 9 4 2 D-S,-.916012013D-8,.8017924673D-11,-.481606702D-.5, 2.7744786733D-7,-.6988467605n--g,.1916720525D-11,-.176028B590D-14, 3
       -. 1 8 2 O 6 2 5 O 3 9D-8,.14407B593D-10,-.2082170753D-13,-.3603625114D..16,
4. 7407124321D-19/

H11l.DO H2=Hl*H H3=H2 *H H4H3 *H H5=H4*H VPH =CN1 (1, 1) *H1+CN1 (2. 1l)*H2+CNI (3, 1) *H3+CNI1( 4, 1) *H4+CN1 (5, 1) *H5 VPLVH+(N 1 )*lCI(,)*2C1(,)*3C1(,2 H+N 1(5,2)*HS)*P VPLVH+(N 1 )*lC1(,3 *2C1(,3 H+fl(,3 H+N 1(5,3)*H5)*P**2 VPHL=DEXP (VPHL) RETURN END

Cat. #973401 Dept. PENNSYLVANIA POWER & LIGHT COMPANY ER No.

            -_ 19                CALCULATION SHEET Date Designed by              PROJECT                            Sht. No. .o     of Approved by Ar'PFAJD rx 8 bDat FýJL :z                                  /pr         ae 3.2-                                               -. 2

W4. 672 Table B.1 Input Data File for Calculation of HPCI and RCIC Operating Parameters 36 1 5000. 600. 1200. 120. 2 4000. 500. 1200. 120. 3 3000. 400. 1200. 120. 4 2000. 300. 1200. 120. 5 1000. 200. 1200. 120. 6 800. 100. 1200. 120. 7 5000. 600. 1000. 120. 8 4000. 500. 1000. 120. 9 3000. 400. 1000. 120. l0 2000. 300. 1000. 120. 11 1000. 200. 1000. 120. 12 800. 100. 1000. 120. 13 5000. 600. 800. 120. 14 4000. 500. 800. 120. 15 3000. 400. 800. 120. 16 2000. 300. 800. 120. 17 1000. 200. 800. 120. 18 800. 100. 800. 120. 19 5000. 600. 600. 120. 20 4000. 500. 600. 120. 21 3000. 400. 600. 120. 22 2000. 300. 600. 120. 23 1000. 200. 600. 120. 24 800. 100. 600. 120. 25 5000. 600. 400. 120. 26 4000. 500. 400. 120. 27 3000. 400. 400. 120. 28 2000. 300. 400. 120. 29 1000. 200. 400. 120. 30 800. 100. 400. 120. 31 5000. 600. 200. 120. 32 4000. 500. 200. 120. 33 3000. 400. 200. 120. 34 2000. 300. 200. 120. 35 1000. 200. 200. 120. 36 800. 100. 200. 120. HPCI FLOW RCIC FLOW RX PRESS COOLANT TEMP (GPM) (GPM) (PSIA) (DEG F)

NUCLEAR ENGINEERING File # R2-1 CALCULATION / STUDY COVER SHEET and 1. Page 1 of 2 9 NUCLEAR RECORDS TRANSMITTAL SHEET

        *>2. TYPE:         CALC.              b3. NUMBER:     EC - 5TMi-cI54I                    t4. REVISION:
5. TRANSMITTAL#: L4.-)'ZZ)j *c-6. UNIT: 3 *c7. QUALITY CLASS: N **8. DISCIPLINE:

iD~a-o fc, o9. DESCRIPTION: - (" IO.,.f. ATW5

0. PwIN V SUPERCEDED BY: EC
10. Old Calculation#: -MkC-cbd3- ,k Alternate#: sh-MAC-cig3 11. Cycle:__
12. Computer Code or Model used: Fiche [ 3 Discs [ ] Amount
13. Application:
  • P>14. AFFECTED SYSTENS: &15 .g
    • If N/A then line 15 is mandatory.
  • f15. NON-SYSTEM DESIGNATOR: M LALJ.S 5T-1
16. Affected Documents: _____

References:

(,r-,( . A#c- -xL , bo-*Zebh41 ,jFr-h Vctsr* t I

18. Equipment / Component #:
19. DBD Number: DB adS3 pth ct>k(.
>20. PREPARED BY                                                  >21.      REVIEWED BY Print Nmae                                                            Print Now M.C.

A.. E. .- signature N/A BACKFIT EFFORT signature N/A BACKFIT EFFORT

 ,22. APPROVED BY / DATE                                             23. ACCEPTED BY PP&L / DATE Print Name              c      . ieuK      . I 5-23-lN            Print    me Signature       N/A     BACKFIT EFFORT                                signature        N/A   BACKFIT EFFORT
    -DCS SIGNATURE/DATE                                                                 m
  • Verified Fields ADD 4NEW COVER PAGE Fý H REVISION c REQUIRED FIELDS ORN NEPN-OA-0221-1, Revision 1 CALCLOGNNEPM\FORM221.R1A

CALC. NO. SR-MA9&-,o3 SAFETY RELATED [ ] CALCULATION COVER SHEET FILE NO. e;2-/ ASKE III OR XI [ SUPERSEDED BY OTHER QUALITY [ ] NON QUALITY N PROJECT SItMLL4ATot UPG.>ADrE ER/CTN NO. DESIGN ACTIVITY/PMR NUMBER PAGE 2L OF _L/ TITLE/DESCRIPTION Dury-a-/lir. ýedo4 t. P'/-zt ,t-*//*z 1,,.*. -ndi4 SYSTEMS AFFECTED Z/A STATEMENT OF PROBLEM DESIGN BASIS (EPH-QA-208 or EPM-QA-400) REFERENCES/FORMULAE AV- 4 zA-

SUMMARY

/CONCLUSIONS ENGINEERING TURNOVER (ETO) BINDER AFFECTED? [ ].YES - If yes, enter: Binder#. Vol. Calc. File Pgs. [V'NO Rev. Date Prepared By Reviewed/ Date Approved By Date No. Checked'By 0 1qj -Mg 7 //qV/}}