ML21102A345

From kanterella
Jump to navigation Jump to search
Update to Final Safety Analysis Report, List of Effective Pages
ML21102A345
Person / Time
Site: Point Beach  NextEra Energy icon.png
Issue date: 04/02/2021
From:
Point Beach
To:
Office of Nuclear Reactor Regulation
Shared Package
ML21102A337 List:
References
NRC-2021-0009
Download: ML21102A345 (59)


Text

List of Effective Pages FSAR LOEP POINT BEACH NUCLEAR PLANT UNITS 1 & 2 FINAL SAFETY ANALYSIS REPORT LIST OF EFFECTIVE PAGES The following is a List of Effective Pages for the Point Beach Nuclear Plant Final Safety Analysis Report (FSAR). This List of Effective Pages should be filed at the front of the FSAR manual.

All holders of this FSAR should check their manuals against this List of Effective Pages to ensure that the FSAR is accurate and complete.

Some figures are identified as for information only because they are updated on a periodic frequency commensurate with the docketed submittal of this FSAR.

The last update submitted to the NRC is identified on the lower-left hand side of each page, followed by the update year, (e.g., UFSAR 2007).

UFSAR 2020 Page LOEP - 1 of 10

List of Effective Pages FSAR LOEP LIST OF EFFECTIVE PAGES List of Effective Pages First Page Last Page Update LOEP - 1 LOEP - 10 2020 Description of Changes First Page Last Page Update DOC - 1 DOC - 5 2020 General Table of Contents (Note Repeated in each Chapter)

First Page Last Page Update TOC - 1 TOC - 17 2020 List of Tables First Page Last Page Update LOT - 1 LOT - 11 2020 List of Figures First Page Last Page Update LOF - 1 LOF - 16 2020 Chapter 1 First Page Last Page Update TOC i TOC i 2020 1.0-1 1.0-2 2010 1.1-1 1.1-1 1997 1.2-1 1.2-20 2020 UFSAR 2020 Page LOEP - 2 of 10

List of Effective Pages FSAR LOEP First Page Last Page Update 1.3-1 1.3-30 2020 1.4-1 1.4-1 2014 1.5-1 1.5-2 2010 Chapter 2 First Page Last Page Update TOC i TOC i 2015 2.0-1 2.0-1 1997 2.1-1 2.1-1 2014 2.2-1 2.2-6 2012 2.3-1 2.3-3 2014 2.4-1 2.4-4 2014 2.5-1 2.5-15 2020 2.6-1 2.6-25 2014 2.7-1 2.7-6 2020 2.8-1 2.8-6 2014 2.9-1 2.9-3 2017 2.10-1 2.10-2 2013 2.11-1 2.11-3 2020 Chapter 3 First Page Last Page Update TOC i TOC ii 2015 3.1-1 3.1-10 2018 3.2-1 3.2-102 2017 3.3-1 3.3-3 2015 3.4-1 3.4-15 2008 UFSAR 2020 Page LOEP - 3 of 10

List of Effective Pages FSAR LOEP Chapter 4 First Page Last Page Update TOC i TOC i 1999 4.1-1 4.1-24 2013 4.2-1 4.2-35 2018 4.3-1 4.3-8 2010 4.4-1 4.4-11 2007 Chapter 5 First Page Last Page Update TOC i TOC iii 2020 5.1-1 5.1-109 2018 5.2-1 5.2-104 2018 5.3-1 5.3-10 2018 5.4-1 5.4-1 1997 5.5-1 5.5-1 2017 5.6-1 5.6-29 2020 5.7-1 5.7-5 2010 Chapter 6 First Page Last Page Update TOC i TOC i 2012 6.0-1 6.0-1 2000 6.1-1 6.1-6 2014 6.2-1 6.2-49 2020 6.3-1 6.3-18 2014 6.4-1 6.4-25 2015 6.5-1 6.5-10 2015 UFSAR 2020 Page LOEP - 4 of 10

List of Effective Pages FSAR LOEP Chapter 7 First Page Last Page Update TOC i TOC iv 2010 7.1-1 7.1-10 2020 7.2-1 7.2-45 2020 7.3-1 7.3-22 2012 7.4-1 7.4-8 2017 7.5-1 7.5-15 2020 7.6-1 7.6-25 2010 7.7-1 7.7-18 2012 Chapter 8 First Page Last Page Update TOC i TOC ii 2020 8.0-1 8.0-16 2020 8.1-1 8.1-6 2020 8.2-1 8.2-4 2018 8.3-1 8.3-2 2017 8.4-1 8.4-4 2017 8.5-1 8.5-4 2017 8.6-1 8.6-6 2020 8.7-1 8.7-5 2017 8.8-1 8.8-11 2017 8.9-1 8.9-3 2017 Chapter 9 First Page Last Page Update TOC i TOC iii 2018 9.0-1 9.0-3 2010 UFSAR 2020 Page LOEP - 5 of 10

List of Effective Pages FSAR LOEP First Page Last Page Update 9.1-1 9.1-12 2018 9.2-1 9.2-7 2018 9.3-1 9.3-34 2020 9.4-1 9.4-14 2015 9.5-1 9.5-2 2017 9.6-1 9.6-15 2020 9.7-1 9.7-5 2020 9.8-1 9.8-11 2020 9.9-1 9.9-12 2018 9.10-1 9.10-5 2018 9.11-1 9.11-10 2017 Chapter 10 First Page Last Page Update TOC i TOC i 2017 10.0-1 10.0-1 2010 10.1-1 10.1-50 2020 10.2-1 10.2-14 2020 Chapter 11 First Page Last Page Update TOC i TOC ii 2020 11.0-1 11.0-3 2018 11.1-1 11.1-20 2018 11.2-1 11.2-30 2020 11.3-1 11.3-2 2018 11.4-1 11.4-21 2020 11.5-1 11.5-27 2020 UFSAR 2020 Page LOEP - 6 of 10

List of Effective Pages FSAR LOEP First Page Last Page Update 11.6-1 11.6-20 2010 11.7-1 11.7-2 2018 11.8-1 11.8-2 2013 Chapter 12 First Page Last Page Update TOC i TOC i 2005 12.1-1 12.1-1 2007 12.2-1 12.2-3 2020 12.3-1 12.3-1 2013 12.4-1 12.4-5 2018 12.5-1 12.5-1 2013 12.6-1 12.6-2 2000 12.7-1 12.7-1 2007 Chapter 13 First Page Last Page Update TOC i TOC i 2008 13.0-1 13.0-1 2008 13.1-1 13.1-1 2008 13.2-1 13.2-19 2008 13.3-1 13.3-4 2008 13.4-1 13.4-3 2008 Chapter 14 First Page Last Page Update TOC i TOC ii 2012 14.0-1 14.0-16 2020 UFSAR 2020 Page LOEP - 7 of 10

List of Effective Pages FSAR LOEP First Page Last Page Update 14.1.1-1 14.1.1-8 2010 14.1.2-1 14.1.2-14 2020 14.1.3-1 14.1.3-4 2010 14.1.4-1 14.1.4-5 2014 14.1.5-1 14.1.5-6 2010 14.1.6-1 14.1.6-2 2010 14.1.7-1 14.1.7-19 2015 14.1.8-1 14.1.8-24 2015 14.1.9-1 14.1.9-14 2020 14.1.10-1 14.1.10-16 2010 14.1.11-1 14.1.11-16 2020 14.1.12-1 14.1.12-4 2020 14.2.1-1 14.2.1-8 2010 14.2.2-1 14.2.2-1 2007 14.2.3-1 14.2.3-1 2007 14.2.4-1 14.2.4-9 2020 14.2.5-1 14.2.5-29 2020 14.2.6-1 14.2.6-16 2010 14.2.7-1 14.2.7-1 2012 14.3.1-1 14.3.1-79 2018 14.3.2-1 14.3.2-52 2015 14.3.3-1 14.3.3-9 2010 14.3.4-1 14.3.4-80 2020 14.3.5-1 14.3.5-17 2010 14.3.6-1 14.3.6-7 2010 UFSAR 2020 Page LOEP - 8 of 10

List of Effective Pages FSAR LOEP Chapter 15 First Page Last Page Update TOC i TOC ii 2017 15.0-1 15.0-1 2008 15.2-1 15.2-8 2018 15.3-1 15.3-1 2006 15.4-1 15.4-22 2014 15.5-1 15.5-1 2006 Appendix A First Page Last Page Update TOC - A-i TOC - A-ii 2020 A.1-1 A.1-11 2013 A.2-1 A.2-31 2018 A.3-1 A.3-11 2017 A.4-1 A.4-1 2006 A.5-1 A.5-45 2020 A.6-1 A.6-8 2018 A.7-1 A.7-4 2020 Appendix B First Page Last Page Update TOC - B-i TOC - B-i 2017 B.2-1 B.2-15 2017 B.3-1 B.3-5 1998 UFSAR 2020 Page LOEP - 9 of 10

List of Effective Pages FSAR LOEP Appendix C First Page Last Page Update TOC - C-i TOC - C-i 2007 C-1 C-4 2010 Appendix D First Page Last Page Update TOC - D-i TOC - D-i 2020 D-1 D-5 2013 Appendix I First Page Last Page Update TOC - I-i TOC - I-ii 2020 I.1-1 I.1-3 2018 I.2-1 I.2-8 2018 I.3-1 I.3-1 2018 I.4-1 I.4-9 2018 I.5-1 I.5-3 2018 I.6-1 I.6-2 2018 I.7-1 I.7-2 2018 I.8-1 I.8-5 2018 I.9-1 I.9-3 2018 Appendix I Appendix I 2018 Tables and Tables and Figures-1 Figures-248 Appendix T First Page Last Page Update T.1-1 T.1-1 2008 UFSAR 2020 Page LOEP - 10 of 10

Description of Changes FSAR DOC DESCRIPTION OF CHANGES Table of Contents Throughout Editorial Changes: Editorial changes were made to correct grammar, punctuation, spelling, and to ensure consistency between text headings, table titles, figure titles, table of contents, etc. These changes may not be identified by a revision bar.

Chapter 1 FSAR 1.2-17 Updated Figure to reflect approved drawing of record.

FSAR 1.3-2 Editorial Change: Incorporated historical design input information for tornado missile protection. (EC 295937)

FSAR 1.3-19 Editorial Change: Added reference related to historical design input information for tornado missile protection. (EC 295937)

Chapter 2 FSAR 2.5-4 Editorial Change: Clarified discussions and descriptions pertaining to lake through flooding and wave run-up effects. (EC 294339)

FSAR 2.5-7 FSAR 2.5-4 Licensing Basis Change: Update to the discussions and descriptions through pertaining to lake flooding, and in particular wave run-up effects, to FSAR 2.5-7 incorporate the results of Calculation NEE-556-CALC-001. (EC 294339)

FSAR 2.7-2 Editorial Change: Removed the word algae from the paragraph.

(EC 294600)

FSAR 2.11-2 through Editorial Change: Added new references #33 and #34. (EC 294339)

FSAR 2.11-3 Chapter 5 FSAR 5.6-1 Licensing Basis Change: Added paragraph describing containment building truss structures. (EC 295893)

Chapter 6 FSAR 6.2-38 Removed Service Water Pump accident function of supplying water to the AFW pump bearing. (EC 290734)

FSAR 6.2-44 Updated Figure to reflect approved drawing of record.

UFSAR 2020 Page DOC - 1 of 5

Description of Changes FSAR DOC Chapter 7 FSAR 7.1-5 Editorial Change: Removed the word fully to alleviate controversy regarding the use of an isolation amplifier. (EC 293640)

FSAR 7.2-27 Editorial Change: Updated ambient temperature to better clarify the acceptable ambient temperature range. (EC 294090)

FSAR 7.5-6 Editorial Change: Replaced description of LEFM requirements with a reference to the location where they are described in the TRM. (EC 294464)

FSAR 7.5-6 Editorial Change: Removed manufacturer and replaced model number for the LEFM replacement meter. (EC 293966)

Chapter 8 FSAR 8.0-16 Updated Figure to reflect approved drawing of record.

FSAR 8.1-3 Editorial Change: In Open Phase Protection paragraph, replaced the word "analyze" with the word "evaluate" and replaced the word "Analysis" with the word "Evaluations". (EC 295892)

FSAR 8.1-3 Licensing Basis Change: Verbiage added to Section 8.1.3 related to open through phase conditions as required by the NRC commitment to follow the NEI FSAR 8.1-4 Open Phase Condition Industry Initiative and added New References 4-6.

(EC 294085)

FSAR 8.6-2 Licensing Basis Change: Updated to reflect inverter replacement.

(EC 294142)

FSAR 8.6-5 Updated Figure to reflect approved drawing of record.

Chapter 9 FSAR 9.3-30 through Updated Figure to reflect approved drawing of record.

FSAR 9.3-32 FSAR 9.6-9 Updated Figure to reflect approved drawing of record.

FSAR 9.6-10 Updated Figure to reflect approved drawing of record.

FSAR 9.6-13 Updated Figure to reflect approved drawing of record.

FSAR 9.6-14 Updated Figure to reflect approved drawing of record.

FSAR 9.7-1 Editorial Change: Under Non-Safety Related, Non-QA Functions header in the Service Air System item, added the sentence "However, the SA system is capable of providing dried air through the SA dryer." (EC 295892)

FSAR 9.7-3 Deleted text listing the Service Air System function as a backup air supply to the Emergency Breathing Air System. (EC 290303)

FSAR 9.8-1 Editorial Change: Updated ambient temperature to better clarify the acceptable ambient temperature range. (EC 294090)

UFSAR 2020 Page DOC - 2 of 5

Description of Changes FSAR DOC Chapter 10 FSAR 10.1-10 Editorial Change: TRM number incorrectly stated, replaced with correct TRM number. (EC 293966)

FSAR 10.1-33 Updated Figure to reflect approved drawing of record.

FSAR 10.1-41 Updated Figure to reflect approved drawing of record.

FSAR 10.1-49 Updated Figure to reflect approved drawing of record.

FSAR 10.1-50 Updated Figure to reflect approved drawing of record.

FSAR 10.2-7 Editorial Change: Removed a confusing discussion of 230 gpm in the context of Chapter 14 Loss of Normal Feedwater and Loss of All AC Power to Station Auxiliaries use and removed References 20 and 21. (EC 290734)

FSAR 10.2-12 Updated Figure to reflect approved drawing of record.

Chapter 11 FSAR 11.2-24 Updated Figure to reflect approved drawing of record.

FSAR 11.4-6 Licensing Basis Change: Deleted the sentence referring to the presence of the emergency breathing air (EBA) system. (EC 294384)

FSAR 11.5-9 Deletion: Removed Offsite Radiation Protection Facility because Site Boundary Control Center will no longer have radiation monitoring.

(EC 293786)

FSAR 11.5-13 Deletion: Removed Detector RE-243 because it will no longer be usable.

(EC 293786)

FSAR 11.5-15 Deletion: Removed Detector RE-243 because it will no longer be usable.

(EC 293786)

FSAR 11.5-20 Deletion: Removed Detectors RE-241 and RE-242 because they will no longer be usable. (EC 293786)

FSAR 11.5-23 Deletion: Removed Detectors RE-241 and RE-242 because they will no longer be usable. (EC 293786)

Chapter 12 FSAR 12.2-2 Editorial Change: Under the Plant Organization header, replaced the acronym "FPL" with "NextEra" and added the acronym "LLC" after "Point Beach". (EC 295892)

Chapter 14 FSAR 14.0-9 Editorial Change: Revised to address the impact of an increased RTD through response time and resulting affected analyses due to the replacement of the FSAR 14.0-10 Unit 1 RTDs. Additionally, several administrative changes are also made to correct typographical errors and to provide clarification information. (EC 291441)

UFSAR 2020 Page DOC - 3 of 5

Description of Changes FSAR DOC Chapter 14 continued FSAR 14.0-13 Licensing Basis Change: Revised to address the impact of an increased RTD response time and resulting affected analyses due to the replacement of the Unit 1 RTDs. (EC 291441)

FSAR 14.1.2-2 Licensing Basis Change: Revised to address the impact of an increased through RTD response time and resulting affected analyses due to the replacement of FSAR 14.1.2-14 the Unit 1 RTDs. Additionally, several administrative changes are also made to provide clarification information and update figures. (EC 291441)

FSAR 14.1.9-1 Editorial Change: Deleted outdated references and provied clarification through information. (EC 291441)

FSAR 14.1.9-3 FSAR 14.1.11-2 Removed a confusing discussion of 230 gpm in the context of Loss of All AC Power to Station Auxiliaries use and removed References 6 and 7.

(EC 290734)

FSAR 14.1.11-3 Removed References 6 and 7. (EC 290734)

FSAR 14.1.12-1 Licensing Basis Change: Added paragraph describing the results of the latest study on the probability of turbine overspeed. (EC 294916)

FSAR 14.1.12-1 Editorial Change: Reorganized Chapter 14.1.12 by adding "Historical System Information" subheading to separate the previous analyses from the new analysis. (EC 294916)

FSAR 14.1.12-4 Licensing Basis Change: Added a reference for the supporting analysis of the latest study on the probability of turbine overspeed. (EC 294916)

FSAR 14.2.4-2 Added a discussion from Letter NRC 2011-0086. (EC 290734)

FSAR 14.2.5-2 Editorial Change: Deleted outdated reference. (EC 291441)

FSAR 14.2.5-6 Licensing Basis Change: Revised to address the impact of an increased RTD response time and resulting affected analyses due to the replacement of the Unit 1 RTDs. (EC 291441)

FSAR 14.2.5-10 Editorial Change: Corrected transcription errors that occurred during the development of EC 291075 related to peak pressures and temperatures.

(EC 293939)

FSAR 14.2.5-12 Editorial Change: Deleted outdated reference. (EC 291441)

FSAR 14.3.4-3 Editorial Change: Removed reference to deleted table and text.

(EC 294188)

FSAR 14.3.4-9 Editorial Change: Removed reference to deleted table and text.

(EC 294188)

FSAR 14.3.4-10 Editorial Change: Removed reference to deleted table and text.

(EC 294188)

FSAR 14.3.4-11 Editorial Change: Removed reference to deleted table and text.

(EC 294188)

UFSAR 2020 Page DOC - 4 of 5

Description of Changes FSAR DOC Chapter 14 continued FSAR 14.3.4-12 Editorial Change: Removed reference to deleted table and text.

(EC 294188)

FSAR 14.3.4-16 Editorial Change: Updated table within text. (EC 294188)

FSAR 14.3.4-20 Editorial Change: Updated figures within text. (EC 294188)

Appendix A FSAR A.5-4 Licensing Basis Change: Modified table to display a separate entry for the containment dome truss structures. (EC 295893)

FSAR A.5-8 Licensing Basis Change: Added note to table with details about containment dome truss structures. (EC 295893)

FSAR A.5-21 Licensing Basis Change: Added section discussing the structural through qualification of the containment dome construction truss structures.

FSAR A5-24 (EC 295893)

FSAR A.5-26 through Licensing Basis Change: Added references. (EC 295893)

FSAR A5-27 FSAR A.5-30 Editorial Change: Corrected and expanded FSAR Table A.5-3 to the through docketed license bases, corrected the bases where the original docketed FSAR A.5-35 information was lacking or incorrect, and included historical context and caveats use of later approved Codes and Standards for new equipment, modifications, etc. (EC 295543)

FSAR A.7-2 Licensing Basis Change: FSAR A.7-2 is being updated to denote that the lake surge is now the limiting lake flood event. (EC 294339)

FSAR A.7-2 Editorial Change: Under the Wave Run up Event header, added the word "a" between the words "during" and "Wave Runup Event". (EC 295892)

UFSAR 2020 Page DOC - 5 of 5

Table of Contents FSAR GENERAL TABLE OF CONTENTS

1.0 INTRODUCTION

AND

SUMMARY

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - 1.0-1 1.1 SITE AND ENVIRONMENT - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 1.1-1 1.2

SUMMARY

PLANT DESCRIPTION - - - - - - - - - - - - - - - - - - - - - - - - - 1.2-1 1.2.1 STRUCTURES - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 1.2-1 1.2.2 NUCLEAR STEAM SUPPLY SYSTEM - - - - - - - - - - - - - - - - - - - - 1.2-1 1.2.3 REACTOR AND PLANT CONTROL - - - - - - - - - - - - - - - - - - - - - 1.2-2 1.2.4 WASTE DISPOSAL SYSTEM - - - - - - - - - - - - - - - - - - - - - - - - - 1.2-2 1.2.5 FUEL HANDLING SYSTEM - - - - - - - - - - - - - - - - - - - - - - - - - 1.2-3 1.2.6 TURBINE AND AUXILIARIES - - - - - - - - - - - - - - - - - - - - - - - - 1.2-3 1.2.7 ELECTRICAL SYSTEM - - - - - - - - - - - - - - - - - - - - - - - - - - - - 1.2-3 1.2.8 ENGINEERED SAFETY FEATURES SYSTEMS- - - - - - - - - - - - - - - - 1.2-3 1.2.9 SHARED FACILITIES AND EQUIPMENT - - - - - - - - - - - - - - - - - - 1.2-4 1.2.10 INDEPENDENT SPENT FUEL STORAGE INSTALLATION- - - - - - - - - - 1.2-4 1.3 GENERAL DESIGN CRITERIA - - - - - - - - - - - - - - - - - - - - - - - - - - - 1.3-1 1.3.1 OVERALL PLANT REQUIREMENTS (GDC 1- GDC 5) - - - - - - - - - - - - 1.3-1 1.3.2 PROTECTION BY MULTIPLE FISSION PRODUCT BARRIERS (GDC 6 - GDC 10) - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 1.3-3 1.3.3 NUCLEAR AND RADIATION CONTROLS (GDC 11 - GDC 18) - - - - - - - - 1.3-5 1.3.4 RELIABILITY AND TESTABILITY OF PROTECTION SYSTEMS (GDC 19 - GDC 26) - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 1.3-7 1.3.5 REACTIVITY CONTROL (GDC 27 - GDC 32) - - - - - - - - - - - - - - - - - 1.3-9 1.3.6 REACTOR COOLANT PRESSURE BOUNDARY (GDC 33 - GDC 36) - - - - - 1.3-10 1.3.7 ENGINEERED SAFETY FEATURES (GDC 37 - GDC 65) - - - - - - - - - - - 1.3-12 1.3.8 FUEL AND WASTE STORAGE SYSTEMS (GDC 66 - GDC 69) - - - - - - - - 1.3-17 1.3.9 PLANT EFFLUENTS (GDC 70) - - - - - - - - - - - - - - - - - - - - - - - - 1.3-18 1.3.10 RESOLUTION OF SYSTEMATIC EVALUATION PROGRAM ISSUES - - - - 1.3-18 1.3.11 RESOLUTION OF OTHER ISSUES ADDRESSED BY THE INDIVIDUAL PLANT EXAMINATION OF EXTERNAL EVENTS - - - - - - - - - - - - - - 1.3-19 1.3.12 REFERENCES- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 1.3-19 1.4 QUALITY ASSURANCE PROGRAM - - - - - - - - - - - - - - - - - - - - - - - - 1.4-1 1.

4.1 REFERENCES

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 1.4-1 1.5 FACILITY SAFETY CONCLUSIONS - - - - - - - - - - - - - - - - - - - - - - - - 1.5-1 1.

5.1 REFERENCES

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 1.5-1 UFSAR 2020 Page TOC - 1 of 17

Table of Contents FSAR 2.0 SITE AND ENVIRONMENT- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 2.0-1 2.1 SITE LOCATION AND BOUNDARIES - - - - - - - - - - - - - - - - - - - - - - - 2.1-1 2.2 TOPOGRAPHY - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 2.2-1 2.3 POPULATION (Historical) - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 2.3-1 2.4 LAND USE (Historical) - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 2.4-1 2.5 HYDROLOGY - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 2.5-1 2.5.1 GENERAL LAKE HYDROLOGY - - - - - - - - - - - - - - - - - - - - - - - 2.5-1 2.5.2 LAKE LEVELS AND FLOODING- - - - - - - - - - - - - - - - - - - - - - - 2.5-3 2.5.3 DILUTION AND DIFFUSION IN LAKE MICHIGAN - - - - - - - - - - - - - 2.5-8 2.6 METEOROLOGY - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 2.6-1 2.7 ENVIRONMENTAL RADIOACTIVITY STUDIES - - - - - - - - - - - - - - - - - - 2.7-1 2.8 GEOLOGY- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 2.8-1 2.9 SEISMOLOGY - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 2.9-1 2.10 ENVIRONMENTAL CONCLUSIONS - - - - - - - - - - - - - - - - - - - - - - - - 2.10-1 2.11 REFERENCES - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 2.11-1 3.0 REACTOR- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 3.1-1 3.1 DESIGN BASIS - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 3.1-1 3.1.1 PERFORMANCE OBJECTIVES - - - - - - - - - - - - - - - - - - - - - - - - 3.1-1 3.1.2 PRINCIPAL DESIGN CRITERIA - - - - - - - - - - - - - - - - - - - - - - - 3.1-2 3.1.3 SAFETY LIMITS - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 3.1-7 3.2 REACTOR DESIGN - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 3.2-1 3.2.1 NUCLEAR DESIGN AND EVALUATION - - - - - - - - - - - - - - - - - - - 3.2-1 3.2.2 THERMAL AND HYDRAULIC DESIGN AND EVALUATION - - - - - - - - 3.2-10 3.2.3 MECHANICAL DESIGN AND EVALUATION - - - - - - - - - - - - - - - - 3.2-17 3.3 RELOAD CORE DESIGN AND SAFETY ANALYSIS - - - - - - - - - - - - - - - - 3.3-1 3.4 FUNCTIONAL DESIGN OF REACTIVITY CONTROL SYSTEMS - - - - - - - - - - 3.4-1 4.0 REACTOR COOLANT SYSTEM - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 4.1-1 4.1 DESIGN BASIS - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 4.1-1 4.2 RCS SYSTEM DESIGN AND OPERATION - - - - - - - - - - - - - - - - - - - - - 4.2-1 4.3 SYSTEM DESIGN EVALUATION - - - - - - - - - - - - - - - - - - - - - - - - - - 4.3-1 4.4 TESTS AND INSPECTIONS - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 4.4-1 5.0 CONTAINMENT SYSTEM STRUCTURE - - - - - - - - - - - - - - - - - - - - - - - - - - 5.1-1 5.1 CONTAINMENT SYSTEM STRUCTURE - - - - - - - - - - - - - - - - - - - - - - 5.1-1 UFSAR 2020 Page TOC - 2 of 17

Table of Contents FSAR 5.1.1 DESIGN BASIS - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 5.1-1 5.1.2 CONTAINMENT SYSTEM STRUCTURE DESIGN - - - - - - - - - - - - - - 5.1-8 5.

1.3 REFERENCES

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 5.1-64 5.2 CONTAINMENT ISOLATION SYSTEM - - - - - - - - - - - - - - - - - - - - - - - 5.2-1 5.2.1 DESIGN BASES- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 5.2-1 5.2.2 SYSTEM DESIGN- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 5.2-2 5.3 CONTAINMENT VENTILATING SYSTEM - - - - - - - - - - - - - - - - - - - - - 5.3-1 5.3.1 DESIGN BASES- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 5.3-1 5.3.2 SYSTEM DESIGN AND OPERATION- - - - - - - - - - - - - - - - - - - - - 5.3-2 5.

3.3 REFERENCES

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 5.3-5 5.4 SYSTEM DESIGN EVALUATION - - - - - - - - - - - - - - - - - - - - - - - - - - 5.4-1 5.4.1 RELIANCE ON INTERCONNECTED SYSTEMS - - - - - - - - - - - - - - - 5.4-1 5.4.2 SYSTEM INTEGRITY AND SAFETY FACTORS - - - - - - - - - - - - - - - 5.4-1 5.4.3 PERFORMANCE CAPABILITY MARGIN- - - - - - - - - - - - - - - - - - - 5.4-1 5.5 MINIMUM OPERATING CONDITIONS - - - - - - - - - - - - - - - - - - - - - - - 5.5-1 5.5.1 CONTAINMENT INTEGRITY- - - - - - - - - - - - - - - - - - - - - - - - - 5.5-1 5.5.2 EXTERNAL PRESSURE AND INTERNAL VACUUM - - - - - - - - - - - - - 5.5-1 5.5.3 LEAKAGE - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 5.5-1 5.6 CONSTRUCTION - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 5.6-1 5.6.1 CONSTRUCTION METHODS - - - - - - - - - - - - - - - - - - - - - - - - - 5.6-1 5.6.2 MATERIALS OF CONSTRUCTION IN CONTAINMENT - - - - - - - - - - - 5.6-7 5.7 TESTS AND INSPECTIONS - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 5.7-1 5.7.1 PREOPERATIONAL TESTING - - - - - - - - - - - - - - - - - - - - - - - - 5.7-2 6.0 ENGINEERED SAFETY FEATURES- - - - - - - - - - - - - - - - - - - - - - - - - 6.0-1 6.1 CRITERIA - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 6.1-1 6.1.1 ENGINEERED SAFETY FEATURES CRITERIA - - - - - - - - - - - - - - - 6.1-1 6.1.2 RELATED CRITERIA - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 6.1-5 6.1.3 GENERIC LETTER 2008 - - - - - - - - - - - - - - - - - - - - - - - - - 6.1-6 6.

1.4 REFERENCES

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 6.1-6 6.2 SAFETY INJECTION SYSTEM (SI) - - - - - - - - - - - - - - - - - - - - - - - - - 6.2-1 6.2.1 DESIGN BASIS - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 6.2-1 6.2.2 SYSTEM DESIGN AND OPERATION- - - - - - - - - - - - - - - - - - - - - 6.2-4 UFSAR 2020 Page TOC - 3 of 17

Table of Contents FSAR 6.2.3 SYSTEM EVALUATION - - - - - - - - - - - - - - - - - - - - - - - - - - - 6.2-22 6.2.4 REQUIRED PROCEDURES AND TESTS - - - - - - - - - - - - - - - - - - - 6.2-27 6.

2.5 REFERENCES

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 6.2-28 6.3 CONTAINMENT AIR RECIRCULATION COOLING SYSTEM (VNCC) - - - - - - - 6.3-1 6.3.1 DESIGN BASES- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 6.3-1 6.3.2 SYSTEM DESIGN AND OPERATION- - - - - - - - - - - - - - - - - - - - - 6.3-3 6.3.3 SYSTEM EVALUATION - - - - - - - - - - - - - - - - - - - - - - - - - - - 6.3-8 6.3.4 REQUIRED PROCEDURES AND TESTS - - - - - - - - - - - - - - - - - - - 6.3-12 6.

3.5 REFERENCES

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 6.3-13 6.4 CONTAINMENT SPRAY SYSTEM - - - - - - - - - - - - - - - - - - - - - - - - - 6.4-1 6.4.1 DESIGN BASES- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 6.4-1 6.4.2 SYSTEM DESIGN AND OPERATION- - - - - - - - - - - - - - - - - - - - - 6.4-4 6.4.3 SYSTEM EVALUATION - - - - - - - - - - - - - - - - - - - - - - - - - - - 6.4-9 6.4.4 REQUIRED PROCEDURES AND TESTS - - - - - - - - - - - - - - - - - - - 6.4-12 6.

4.5 REFERENCES

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 6.4-13 6.5 LEAKAGE DETECTION SYSTEMS - - - - - - - - - - - - - - - - - - - - - - - - - 6.5-1 6.5.1 DESIGN BASIS - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 6.5-1 6.5.2 SYSTEM DESIGN AND OPERATION- - - - - - - - - - - - - - - - - - - - - 6.5-2 6.5.3 SYSTEM EVALUATION - - - - - - - - - - - - - - - - - - - - - - - - - - - 6.5-8 6.5.4 REQUIRED PROCEDURES AND TESTS - - - - - - - - - - - - - - - - - - - 6.5-9 6.

5.5 REFERENCES

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 6.5-9 7.0 INSTRUMENTATION AND CONTROL - - - - - - - - - - - - - - - - - - - - - - - - - - - 7.1-1

7.1 INTRODUCTION

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 7.1-1 7.1.1 IDENTIFICATION OF SAFETY-RELATED INSTRUMENTATION SYSTEMS - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 7.1-1 7.1.2 GENERAL DESIGN CRITERIA - - - - - - - - - - - - - - - - - - - - - - - - 7.1-1 7.1.3 OTHER CRITERIA - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 7.1-9 7.

1.4 REFERENCES

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 7.1-10 7.2 REACTOR PROTECTION SYSTEM - - - - - - - - - - - - - - - - - - - - - - - - - 7.2-1 7.2.1 DESIGN BASES- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 7.2-1 7.2.2 SYSTEM DESIGN- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 7.2-5 7.2.3 SYSTEM EVALUATION - - - - - - - - - - - - - - - - - - - - - - - - - - - 7.2-16 7.

2.4 REFERENCES

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 7.2-29 UFSAR 2020 Page TOC - 4 of 17

Table of Contents FSAR 7.3 ENGINEERED SAFETY FEATURES ACTUATION SYSTEM - - - - - - - - - - - - 7.3-1 7.3.1 DESIGN BASES- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 7.3-1 7.3.2 SYSTEM DESIGN- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 7.3-4 7.3.3 SYSTEM EVALUATION - - - - - - - - - - - - - - - - - - - - - - - - - - - 7.3-8 7.

3.4 REFERENCES

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 7.3-14 7.4 OTHER ACTUATION SYSTEMS - - - - - - - - - - - - - - - - - - - - - - - - - - 7.4-1 7.4.1 AMSAC - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 7.4-1 7.4.2 LOW TEMPERATURE OVERPRESSURE PROTECTION (LTOP) - - - - - - - 7.4-5 7.4.3 AFW PUMP SUCTION TRANSFER AND TRIP ON LOW SUCTION PRESSURE- - - - - - - - - - - - - - - - - - - - - - - - - - - - - 7.4-6 7.

4.4 REFERENCES

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 7.4-7 7.5 OPERATING CONTROL STATIONS - - - - - - - - - - - - - - - - - - - - - - - - 7.5-1 7.5.1 CONTROL STATIONS LAYOUT, INFORMATION DISPLAY AND RECORDING - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 7.5-1 7.5.2 COMMUNICATIONS SYSTEMS - - - - - - - - - - - - - - - - - - - - - - - 7.5-7 7.5.3 OCCUPANCY - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 7.5-7 7.5.4 EMERGENCY SHUTDOWN CONTROL - - - - - - - - - - - - - - - - - - - 7.5-8 7.

5.5 REFERENCES

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 7.5-12 7.6 INSTRUMENTATION SYSTEMS - - - - - - - - - - - - - - - - - - - - - - - - - - 7.6-1 7.6.1 NUCLEAR INSTRUMENTATION SYSTEM- - - - - - - - - - - - - - - - - - 7.6-1 7.6.2 POST-ACCIDENT MONITORING INSTRUMENTATION - - - - - - - - - - - 7.6-10 7.6.3 INCORE INSTRUMENTATION - - - - - - - - - - - - - - - - - - - - - - - - 7.6-11 7.6.4 LOOSE PARTS MONITORING - - - - - - - - - - - - - - - - - - - - - - - - 7.6-14 7.7 CONTROL SYSTEMS - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 7.7-1 7.7.1 ROD CONTROL SYSTEM- - - - - - - - - - - - - - - - - - - - - - - - - - - 7.7-1 7.7.2 CONDENSER STEAM DUMP CONTROL - - - - - - - - - - - - - - - - - - - 7.7-8 7.7.3 PRESSURIZER CONTROL - - - - - - - - - - - - - - - - - - - - - - - - - - 7.7-9 7.7.4 STEAM GENERATOR CONTROL - - - - - - - - - - - - - - - - - - - - - - 7.7-11 7.7.5 AUTOMATIC TURBINE LOAD RUNBACK- - - - - - - - - - - - - - - - - - 7.7-12 7.7.6 SYSTEM EVALUATION - - - - - - - - - - - - - - - - - - - - - - - - - - - 7.7-12 7.

7.7 REFERENCES

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 7.7-14

8.0 INTRODUCTION

TO THE ELECTRICAL DISTRIBUTION SYSTEMS - - - - - - - 8.0-1 8.0.1 PRINCIPAL DESIGN CRITERIA - - - - - - - - - - - - - - - - - - - - - - - 8.0-1 8.0.2 REQUIRED PROCEDURES AND TESTS - - - - - - - - - - - - - - - - - - - 8.0-5 UFSAR 2020 Page TOC - 5 of 17

Table of Contents FSAR 8.0.3 SINGLE LINE DIAGRAMS - - - - - - - - - - - - - - - - - - - - - - - - - - 8.0-5 8.

0.4 REFERENCES

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 8.0-6 8.1 345 kV AC ELECTRICAL DISTRIBUTION SYSTEM (345 kV) - - - - - - - - - - - - 8.1-1 8.1.1 DESIGN BASIS - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 8.1-1 8.1.2 SYSTEM DESCRIPTION AND OPERATION - - - - - - - - - - - - - - - - - 8.1-1 8.1.3 SYSTEM EVALUATION - - - - - - - - - - - - - - - - - - - - - - - - - - - 8.1-2 8.

1.4 REFERENCES

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 8.1-4 8.2 13.8K VAC ELECTRICAL DISTRIBUTION SYSTEM (13.8kV)- - - - - - - - - - - - 8.2-1 8.2.1 DESIGN BASIS - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 8.2-1 8.2.2 SYSTEM DESCRIPTION AND OPERATION - - - - - - - - - - - - - - - - - 8.2-1 8.2.3 SYSTEM EVALUATION - - - - - - - - - - - - - - - - - - - - - - - - - - - 8.2-3 8.

2.4 REFERENCES

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 8.2-3 8.3 19K VAC ELECTRICAL DISTRIBUTION SYSTEM (19 KV) - - - - - - - - - - - - - 8.3-1 8.3.1 DESIGN BASIS - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 8.3-1 8.3.2 SYSTEM DESCRIPTION AND OPERATION - - - - - - - - - - - - - - - - - 8.3-1 8.3.3 SYSTEM EVALUATION - - - - - - - - - - - - - - - - - - - - - - - - - - - 8.3-2 8.

3.4 REFERENCES

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 8.3-2 8.4 4.16K VAC ELECTRICAL DISTRIBUTION SYSTEM (4.16 kV) - - - - - - - - - - - 8.4-1 8.4.1 DESIGN BASIS - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 8.4-1 8.4.2 SYSTEM DESCRIPTION AND OPERATION - - - - - - - - - - - - - - - - - 8.4-1 8.4.3 SYSTEM EVALUATION - - - - - - - - - - - - - - - - - - - - - - - - - - - 8.4-2 8.

4.4 REFERENCES

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 8.4-3 8.5 480 VOLT AC ELECTRICAL DISTRIBUTION SYSTEM (480V) - - - - - - - - - - - 8.5-1 8.5.1 DESIGN BASIS - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 8.5-1 8.5.2 SYSTEM DESCRIPTION AND OPERATION - - - - - - - - - - - - - - - - - 8.5-1 8.5.3 SYSTEM EVALUATION - - - - - - - - - - - - - - - - - - - - - - - - - - - 8.5-2 8.

5.4 REFERENCES

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 8.5-3 8.6 120 VAC VITAL INSTRUMENT POWER (Y) - - - - - - - - - - - - - - - - - - - - 8.6-1 8.6.1 DESIGN BASIS - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 8.6-1 8.6.2 SYSTEM DESCRIPTION AND OPERATION - - - - - - - - - - - - - - - - - 8.6-1 8.6.3 SYSTEM EVALUATION - - - - - - - - - - - - - - - - - - - - - - - - - - - 8.6-2 8.

6.4 REFERENCES

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 8.6-3 UFSAR 2020 Page TOC - 6 of 17

Table of Contents FSAR 8.7 125 VDC ELECTRICAL DISTRIBUTION SYSTEM (125V)- - - - - - - - - - - - - - 8.7-1 8.7.1 DESIGN BASIS - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 8.7-1 8.7.2 SYSTEM DESCRIPTION AND OPERATION - - - - - - - - - - - - - - - - - 8.7-1 8.7.3 SYSTEM EVALUATION - - - - - - - - - - - - - - - - - - - - - - - - - - - 8.7-3 8.7.4 REQUIRED PROCEDURES AND TESTS - - - - - - - - - - - - - - - - - - - 8.7-3 8.

7.5 REFERENCES

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 8.7-4 8.8 DIESEL GENERATOR (DG) SYSTEM - - - - - - - - - - - - - - - - - - - - - - - - 8.8-1 8.8.1 DESIGN BASIS - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 8.8-1 8.8.2 SYSTEM DESCRIPTION AND OPERATION - - - - - - - - - - - - - - - - - 8.8-1 8.8.3 SYSTEM EVALUATION - - - - - - - - - - - - - - - - - - - - - - - - - - - 8.8-6 8.

8.4 REFERENCES

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 8.8-9 8.9 GAS TURBINE SYSTEM (GT) - - - - - - - - - - - - - - - - - - - - - - - - - - - - 8.9-1 8.9.1 DESIGN BASIS - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 8.9-1 8.9.2 SYSTEM DESIGN AND OPERATION- - - - - - - - - - - - - - - - - - - - - 8.9-1 8.9.3 SYSTEM EVALUATION - - - - - - - - - - - - - - - - - - - - - - - - - - - 8.9-2 8.9.4 REQUIRED PROCEDURES AND TESTS - - - - - - - - - - - - - - - - - - - 8.9-3 8.

9.5 REFERENCES

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 8.9-3 9.0 AUXILIARY AND EMERGENCY SYSTEMS - - - - - - - - - - - - - - - - - - - - - - - - 9.0-1 9.0.1 GENERAL DESIGN CRITERIA - - - - - - - - - - - - - - - - - - - - - - - - 9.0-2 9.1 COMPONENT COOLING WATER (CC) - - - - - - - - - - - - - - - - - - - - - - - 9.1-1 9.1.1 DESIGN BASIS - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 9.1-1 9.1.2 SYSTEM DESIGN AND OPERATION- - - - - - - - - - - - - - - - - - - - - 9.1-1 9.1.3 SYSTEM EVALUATION - - - - - - - - - - - - - - - - - - - - - - - - - - - 9.1-5 9.1.4 REQUIRED PROCEDURES AND TESTS - - - - - - - - - - - - - - - - - - - 9.1-7 9.

1.5 REFERENCES

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 9.1-7 9.2 RESIDUAL HEAT REMOVAL (RHR) - - - - - - - - - - - - - - - - - - - - - - - - 9.2-1 9.2.1 DESIGN BASIS - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 9.2-1 9.2.2 SYSTEM DESIGN AND OPERATION- - - - - - - - - - - - - - - - - - - - - 9.2-1 9.2.3 SYSTEM EVALUATION - - - - - - - - - - - - - - - - - - - - - - - - - - - 9.2-4 9.2.4 REQUIRED PROCEDURES AND TESTS - - - - - - - - - - - - - - - - - - - 9.2-5 9.

2.5 REFERENCES

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 9.2-5 9.3 CHEMICAL AND VOLUME CONTROL SYSTEM (CV) - - - - - - - - - - - - - - - 9.3-1 UFSAR 2020 Page TOC - 7 of 17

Table of Contents FSAR 9.3.1 DESIGN BASES- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 9.3-1 9.3.2 SYSTEM DESIGN AND OPERATION- - - - - - - - - - - - - - - - - - - - - 9.3-3 9.3.3 SYSTEM EVALUATION - - - - - - - - - - - - - - - - - - - - - - - - - - - 9.3-18 9.3.4 REQUIRED PROCEDURES AND TESTS - - - - - - - - - - - - - - - - - - - 9.3-22 9.

3.5 REFERENCES

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 9.3-22 9.4 FUEL HANDLING SYSTEM (FH) - - - - - - - - - - - - - - - - - - - - - - - - - - 9.4-1 9.4.1 DESIGN BASIS - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 9.4-1 9.4.2 SYSTEM DESIGN AND OPERATION- - - - - - - - - - - - - - - - - - - - - 9.4-3 9.4.3 SYSTEM EVALUATION - - - - - - - - - - - - - - - - - - - - - - - - - - - 9.4-9 9.4.4 REQUIRED PROCEDURES AND TESTS - - - - - - - - - - - - - - - - - - - 9.4-10 9.

4.5 REFERENCES

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 9.4-11 9.5 PRIMARY AUXILIARY BUILDING VENTILATION SYSTEM - - - - - - - - - - - 9.5-1 9.5.1 DESIGN BASIS - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 9.5-1 9.5.2 SYSTEM DESIGN AND OPERATION- - - - - - - - - - - - - - - - - - - - - 9.5-1 9.5.3 SYSTEM EVALUATION - - - - - - - - - - - - - - - - - - - - - - - - - - - 9.5-1 9.5.4 REQUIRED PROCEDURES AND TESTS - - - - - - - - - - - - - - - - - - - 9.5-2 9.

5.5 REFERENCES

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 9.5-2 9.6 SERVICE WATER SYSTEM (SW) - - - - - - - - - - - - - - - - - - - - - - - - - - 9.6-1 9.6.1 DESIGN BASIS - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 9.6-1 9.6.2 SYSTEM DESIGN AND OPERATION- - - - - - - - - - - - - - - - - - - - - 9.6-1 9.6.3 SYSTEM EVALUATION - - - - - - - - - - - - - - - - - - - - - - - - - - - 9.6-4 9.6.4 REQUIRED PROCEDURES AND TESTS - - - - - - - - - - - - - - - - - - - 9.6-5 9.

6.5 REFERENCES

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 9.6-5 9.7 INSTRUMENT AIR (IA) / SERVICE AIR (SA) - - - - - - - - - - - - - - - - - - - - 9.7-1 9.7.1 DESIGN BASIS - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 9.7-1 9.7.2 SYSTEM DESIGN AND OPERATION- - - - - - - - - - - - - - - - - - - - - 9.7-2 9.7.3 SYSTEM EVALUATION - - - - - - - - - - - - - - - - - - - - - - - - - - - 9.7-4 9.7.4 REQUIRED PROCEDURES AND TESTS - - - - - - - - - - - - - - - - - - - 9.7-5 9.

7.5 REFERENCES

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 9.7-5 9.8 CONTROL ROOM VENTILATION SYSTEM (VNCR) - - - - - - - - - - - - - - - - 9.8-1 9.8.1 DESIGN BASIS - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 9.8-1 9.8.2 SYSTEM DESIGN AND OPERATION- - - - - - - - - - - - - - - - - - - - - 9.8-2 UFSAR 2020 Page TOC - 8 of 17

Table of Contents FSAR 9.8.3 SYSTEM EVALUATION - - - - - - - - - - - - - - - - - - - - - - - - - - - 9.8-4 9.8.4 REQUIRED PROCEDURES AND TESTS - - - - - - - - - - - - - - - - - - - 9.8-5 9.

8.5 REFERENCES

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 9.8-5 9.9 SPENT FUEL COOLING & FILTRATION (SF) - - - - - - - - - - - - - - - - - - - - 9.9-1 9.9.1 DESIGN BASIS - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 9.9-1 9.9.2 SYSTEM DESIGN AND OPERATION- - - - - - - - - - - - - - - - - - - - - 9.9-2 9.9.3 SYSTEM EVALUATION - - - - - - - - - - - - - - - - - - - - - - - - - - - 9.9-4 9.9.4 REQUIRED PROCEDURES AND TESTS - - - - - - - - - - - - - - - - - - - 9.9-5 9.

9.5 REFERENCES

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 9.9-6 9.10 FIRE PROTECTION PROGRAM (FP) - - - - - - - - - - - - - - - - - - - - - - - - 9.10-1 9.10.1 FIRE PROTECTION - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 9.10-1 9.

10.2 REFERENCES

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 9.10-4 9.11 SAMPLING SYSTEM (SC)- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 9.11-1 9.11.1 DESIGN BASIS - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 9.11-1 9.11.2 SYSTEM DESIGN AND OPERATION- - - - - - - - - - - - - - - - - - - - - 9.11-1 9.11.3 SYSTEM EVALUATION - - - - - - - - - - - - - - - - - - - - - - - - - - - 9.11-5 9.11.4 REQUIRED PROCEDURES AND TESTS - - - - - - - - - - - - - - - - - - - 9.11-6 9.

11.5 REFERENCES

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 9.11-6 10.0 STEAM AND POWER CONVERSION- - - - - - - - - - - - - - - - - - - - - - - - - - - - 10.0-1 10.1 STEAM AND POWER CONVERSION SYSTEM - - - - - - - - - - - - - - - - - - - 10.1-1 10.1.1 DESIGN BASIS - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 10.1-1 10.1.2 SYSTEM DESIGN AND OPERATION- - - - - - - - - - - - - - - - - - - - - 10.1-1 10.1.3 SYSTEM EVALUATION - - - - - - - - - - - - - - - - - - - - - - - - - - - 10.1-13 10.1.4 REQUIRED PROCEDURES AND TESTS - - - - - - - - - - - - - - - - - - - 10.1-15 10.

1.5 REFERENCES

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 10.1-15 10.2 AUXILIARY FEEDWATER SYSTEM (AF) - - - - - - - - - - - - - - - - - - - - - 10.2-1 10.2.1 DESIGN BASIS - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 10.2-1 10.2.2 SYSTEM DESIGN AND OPERATION- - - - - - - - - - - - - - - - - - - - - 10.2-3 10.2.3 SYSTEM EVALUATION - - - - - - - - - - - - - - - - - - - - - - - - - - - 10.2-6 10.2.4 REQUIRED PROCEDURES AND TESTS - - - - - - - - - - - - - - - - - - - 10.2-8 10.2.5 Generic Letter 81 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 10.2-8 10.

2.6 REFERENCES

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 10.2-9 UFSAR 2020 Page TOC - 9 of 17

Table of Contents FSAR 11.0 WASTE DISPOSAL SYSTEMS AND RADIATION PROTECTION- - - - - - - - - - - - - - 11.0-1 11.0.1 REFERENCE - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 11.0-1 11.1 LIQUID WASTE MANAGEMENT SYSTEM (WL) - - - - - - - - - - - - - - - - - - 11.1-1 11.1.1 DESIGN BASIS - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 11.1-1 11.1.2 SYSTEM DESIGN AND OPERATION- - - - - - - - - - - - - - - - - - - - - 11.1-1 11.1.3 SYSTEM EVALUATION - - - - - - - - - - - - - - - - - - - - - - - - - - - 11.1-4 11.1.4 REQUIRED PROCEDURES AND TESTS - - - - - - - - - - - - - - - - - - - 11.1-5 11.1.5 ACCIDENTAL RELEASE-RECYCLE OR WASTE LIQUID - - - - - - - - - - 11.1-5 11.

1.6 REFERENCES

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 11.1-7 11.2 GASEOUS WASTE MANAGEMENT SYSTEMS (WG)- - - - - - - - - - - - - - - - 11.2-1 11.2.1 DESIGN BASIS - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 11.2-1 11.2.2 SYSTEM DESIGN AND OPERATION- - - - - - - - - - - - - - - - - - - - - 11.2-1 11.2.3 SYSTEM EVALUATION - - - - - - - - - - - - - - - - - - - - - - - - - - - 11.2-5 11.2.4 REQUIRED PROCEDURES AND TESTS - - - - - - - - - - - - - - - - - - - 11.2-5 11.2.5 ACCIDENTAL RELEASE-WASTE GAS- - - - - - - - - - - - - - - - - - - - 11.2-6 11.

2.6 REFERENCES

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 11.2-9 11.3 SOLID WASTE MANAGEMENT SYSTEM (WS) - - - - - - - - - - - - - - - - - - 11.3-1 11.3.1 DESIGN BASIS - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 11.3-1 11.3.2 SYSTEM DESIGN AND OPERATION- - - - - - - - - - - - - - - - - - - - - 11.3-1 11.3.3 SYSTEM EVALUATION - - - - - - - - - - - - - - - - - - - - - - - - - - - 11.3-1 11.3.4 REQUIRED PROCEDURES AND TESTS - - - - - - - - - - - - - - - - - - - 11.3-1 11.

3.5 REFERENCES

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 11.3-2 11.4 RADIATION PROTECTION PROGRAM - - - - - - - - - - - - - - - - - - - - - - 11.4-1 11.4.1 ENSURING THAT OCCUPATIONAL RADIATION EXPOSURE IS AS LOW AS IS REASONABLY ACHIEVABLE (ALARA) - - - - - - - - - - - - - - - 11.4-1 11.4.2 RADIATION PROTECTION- - - - - - - - - - - - - - - - - - - - - - - - - - 11.4-4 11.4.3 PERSONNEL MONITORING - - - - - - - - - - - - - - - - - - - - - - - - - 11.4-6 11.4.4 CONTAMINATION CONTROL PROGRAM - - - - - - - - - - - - - - - - - - 11.4-8 11.4.5 CORRESPONDENCE AND COMMITMENTS - - - - - - - - - - - - - - - - - 11.4-10 11.

4.6 REFERENCES

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 11.4-10 11.5 RADIATION MONITORING SYSTEM- - - - - - - - - - - - - - - - - - - - - - - - 11.5-1 11.5.1 DESIGN BASES- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 11.5-1 11.5.2 SYSTEM DESIGN AND OPERATION- - - - - - - - - - - - - - - - - - - - - 11.5-2 UFSAR 2020 Page TOC - 10 of 17

Table of Contents FSAR 11.5.3 SYSTEM EVALUATION - - - - - - - - - - - - - - - - - - - - - - - - - - - 11.5-9 11.5.4 REQUIRED PROCEDURES AND TESTS - - - - - - - - - - - - - - - - - - - 11.5-9 11.

5.5 REFERENCES

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 11.5-10 11.6 SHIELDING SYSTEMS - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 11.6-1 11.6.1 DESIGN BASES- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 11.6-1 11.6.2 SYSTEM DESIGN AND OPERATION- - - - - - - - - - - - - - - - - - - - - 11.6-1 11.6.3 SYSTEM EVALUATION - - - - - - - - - - - - - - - - - - - - - - - - - - - 11.6-6 11.6.4 REQUIRED PROCEDURES AND TESTS - - - - - - - - - - - - - - - - - - - 11.6-11 11.

6.5 REFERENCES

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 11.6-11 11.7 EQUIPMENT AND SYSTEM DECONTAMINATION - - - - - - - - - - - - - - - - 11.7-1 11.7.1 CONTAMINATION SOURCES - - - - - - - - - - - - - - - - - - - - - - - - 11.7-1 11.7.2 METHODS OF DECONTAMINATION - - - - - - - - - - - - - - - - - - - - 11.7-1 11.7.3 DECONTAMINATION FACILITIES- - - - - - - - - - - - - - - - - - - - - - 11.7-2 11.8 RADIOACTIVE MATERIALS SAFETY - - - - - - - - - - - - - - - - - - - - - - - 11.8-1 11.8.1 MATERIALS SAFETY - - - - - - - - - - - - - - - - - - - - - - - - - - - - 11.8-1 11.8.2 REQUIRED MATERIALS - - - - - - - - - - - - - - - - - - - - - - - - - - - 11.8-1 11.8.3 REFERENCE - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 11.8-2 12.1 GENERAL - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 12.1-1 12.2 ORGANIZATION - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 12.2-1 12.3 TRAINING- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 12.3-1 12.4 WRITTEN PROCEDURES - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 12.4-1 12.5 RECORDS - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 12.5-1 12.6 EMERGENCY PLAN - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 12.6-1 12.7 SECURITY - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 12.7-1 13.0 SITE SURVEILLANCE AND TESTING PROGRAMS (Historical)- - - - - - - - - - - 13.0-1 13.1 OBJECTIVES and SCOPE (Historical) - - - - - - - - - - - - - - - - - - - - - - - - 13.1-1 13.2 GENERAL (Historical) - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 13.2-1 13.3 FINAL PLANT PREPARATION (Historical) - - - - - - - - - - - - - - - - - - - - - 13.3-1 13.4 INITIAL TESTING IN THE OPERATING REACTOR (Historical)- - - - - - - - - - - 13.4-1 14.0 SAFETY ANALYSIS- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 14.0-1 14.

0.1 REFERENCES

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 14.0-8 14.1 CORE AND COOLANT BOUNDARY PROTECTION ANALYSIS - - - - - - - - - - 14.1.1-1 UFSAR 2020 Page TOC - 11 of 17

Table of Contents FSAR 14.1.1 UNCONTROLLED ROD WITHDRAWAL FROM SUBCRITICAL - - - - - - - 14.1.1-1 14.1.2 UNCONTROLLED ROD WITHDRAWAL AT POWER - - - - - - - - - - - - 14.1.2-1 14.1.3 ROD CLUSTER CONTROL ASSEMBLY DROP - - - - - - - - - - - - - - - - 14.1.3-1 14.1.4 CHEMICAL AND VOLUME CONTROL SYSTEM MALFUNCTION - - - - - 14.1.4-1 14.1.5 STARTUP OF AN INACTIVE REACTOR COOLANT LOOP - - - - - - - - - 14.1.5-1 14.1.6 REDUCTION IN FEEDWATER ENTHALPY INCIDENT - - - - - - - - - - - 14.1.6-1 14.1.7 EXCESSIVE LOAD INCREASE INCIDENT - - - - - - - - - - - - - - - - - - 14.1.7-1 14.1.8 LOSS OF REACTOR COOLANT FLOW - - - - - - - - - - - - - - - - - - - - 14.1.8-1 14.1.9 LOSS OF EXTERNAL ELECTRICAL LOAD (EPU Conditions) - - - - - - - - 14.1.9-1 14.1.10 LOSS OF NORMAL FEEDWATER - - - - - - - - - - - - - - - - - - - - - - 14.1.10-1 14.1.11 LOSS OF ALL AC POWER TO STATION AUXILIARIES - - - - - - - - - - - 14.1.11-1 14.1.12 LIKELIHOOD OF TURBINE-GENERATOR UNIT OVERSPEED - - - - - - - 14.1.12-1 14.2 STANDBY SAFETY FEATURES ANALYSIS - - - - - - - - - - - - - - - - - - - - 14.2.1-1 14.2.1 FUEL HANDLING ACCIDENT - - - - - - - - - - - - - - - - - - - - - - - - 14.2.1-1 14.2.2 ACCIDENTAL RELEASE-RECYCLE OR WASTE LIQUID - - - - - - - - - - 14.2.2-1 14.2.3 ACCIDENTAL RELEASE-WASTE GAS- - - - - - - - - - - - - - - - - - - - 14.2.3-1 14.2.4 STEAM GENERATOR TUBE RUPTURE - - - - - - - - - - - - - - - - - - - 14.2.4-1 14.2.5 RUPTURE OF A STEAM PIPE - - - - - - - - - - - - - - - - - - - - - - - - 14.2.5-1 14.2.6 RUPTURE OF A CONTROL ROD MECHANISM HOUSING - RCCA EJECTION - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 14.2.6-1 14.2.7 INADVERTENT OPENING OF A STEAM GENERATOR (SG) RELIEF OR SAFETY VALVE - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 14.2.7-1 14.3 PRIMARY SYSTEM PIPE RUPTURES - - - - - - - - - - - - - - - - - - - - - - - - 14.3.1-1 14.3.1 SMALL BREAK LOSS-OF-COOLANT ACCIDENT ANALYSIS - - - - - - - - 14.3.1-1 14.3.2 LARGE BREAK LOSS-OF-COOLANT ACCIDENT ANALYSIS - - - - - - - - 14.3.2-1 14.3.3 CORE AND INTERNALS INTEGRITY ANALYSIS - - - - - - - - - - - - - - 14.3.3-1 14.3.4 LOCA M&E RELEASE AND CONTAINMENT RESPONSE - - - - - - - - - - 14.3.4-1 14.3.5 RADIOLOGICAL CONSEQUENCES OF LOSS-OF-COOLANT ACCIDENT - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 14.3.5-1 14.3.6 REACTOR VESSEL HEAD DROP EVENT - - - - - - - - - - - - - - - - - - 14.3.6-1 15.0 AGING MANAGEMENT PROGRAMS and TIME LIMITED AGING ANALYSIS - - - 15.0-1 15.1 PROGRAMS THAT MANAGE THE EFFECTS OF AGING AND GENERIC QUALITY ASSURANCE PROGRAM REQUIREMENTS - - - - - - - - - - - - - - - 15.0-1 15.2 AGING MANAGEMENT PROGRAM DESCRIPTIONS- - - - - - - - - - - - - - - - 15.2-1 15.2.1 ASME SECTION XI, SUBSECTIONS IWB, IWC, AND IWD ISI PROGRAM - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 15.2-1 UFSAR 2020 Page TOC - 12 of 17

Table of Contents FSAR 15.2.2 ASME SECTION XI, SUBSECTIONS IWE and IWL ISI PROGRAM - - - - - - 15.2-1 15.2.3 ASME SECTION XI, SUBSECTION IWF ISI PROGRAM - - - - - - - - - - - 15.2-2 15.2.4 BOLTING INTEGRITY PROGRAM - - - - - - - - - - - - - - - - - - - - - - 15.2-2 15.2.5 BORAFLEX MONITORING PROGRAM - - - - - - - - - - - - - - - - - - - 15.2-2 15.2.6 BORIC ACID CORROSION PROGRAM - - - - - - - - - - - - - - - - - - - - 15.2-2 15.2.7 BURIED SERVICES MONITORING PROGRAM - - - - - - - - - - - - - - - 15.2-3 15.2.8 CABLE CONDITION MONITORING PROGRAM - - - - - - - - - - - - - - - 15.2-3 15.2.9 CLOSED-CYCLE COOLING WATER SYSTEM SURVEILLANCE PROGRAM - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 15.2-3 15.2.10 FIRE PROTECTION PROGRAM - - - - - - - - - - - - - - - - - - - - - - - 15.2-4 15.2.11 FLOW-ACCELERATED CORROSION PROGRAM - - - - - - - - - - - - - - 15.2-4 15.2.12 FUEL OIL CHEMISTRY CONTROL PROGRAM - - - - - - - - - - - - - - - 15.2-4 15.2.13 ONE-TIME INSPECTION PROGRAM - - - - - - - - - - - - - - - - - - - - - 15.2-4 15.2.14 OPEN-CYCLE COOLING (SERVICE) WATER SYSTEM SURVEILLANCE PROGRAM - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 15.2-5 15.2.15 PERIODIC SURVEILLANCE AND PREVENTIVE MAINTENANCE PROGRAM - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 15.2-5 15.2.16 REACTOR COOLANT SYSTEM ALLOY 600 INSPECTION PROGRAM - - - 15.2-6 15.2.17 REACTOR VESSEL INTERNALS PROGRAM- - - - - - - - - - - - - - - - - 15.2-6 15.2.18 REACTOR VESSEL SURVEILLANCE PROGRAM - - - - - - - - - - - - - - 15.2-6 15.2.19 STEAM GENERATOR INTEGRITY PROGRAM - - - - - - - - - - - - - - - 15.2-7 15.2.20 STRUCTURES MONITORING PROGRAM - - - - - - - - - - - - - - - - - - 15.2-7 15.2.21 SYSTEMS MONITORING PROGRAM - - - - - - - - - - - - - - - - - - - - 15.2-7 15.2.22 TANK INTERNAL INSPECTION PROGRAM - - - - - - - - - - - - - - - - - 15.2-7 15.2.23 THIMBLE TUBE INSPECTION PROGRAM - - - - - - - - - - - - - - - - - - 15.2-8 15.2.24 WATER CHEMISTRY CONTROL PROGRAM - - - - - - - - - - - - - - - - 15.2-8 15.2.25 REFERENCES- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 15.2-8 15.3 TIME LIMITED AGING ANALYSIS SUPPORTING ACTIVITIES - - - - - - - - - - 15.3-1 15.4 EVALUATION OF TIME-LIMITED AGING ANALYSES - - - - - - - - - - - - - - 15.4-1 15.4.1 REACTOR VESSEL IRRADIATION EMBRITTLEMENT - - - - - - - - - - - 15.4-1 15.4.2 FATIGUE- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 15.4-3 15.4.3 FRACTURE MECHANICS ANALYSIS - - - - - - - - - - - - - - - - - - - - 15.4-9 15.4.4 LOSS OF PRELOAD - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 15.4-15 15.4.5 NEUTRON ABSORBER - - - - - - - - - - - - - - - - - - - - - - - - - - - - 15.4-15 UFSAR 2020 Page TOC - 13 of 17

Table of Contents FSAR 15.4.6 ENVIRONMENTAL QUALIFICATION OF ELECTRICAL EQUIPMENT - - - 15.4-15 15.4.7 UNIT 1 PRESSURIZER FLAW EVALUATION - - - - - - - - - - - - - - - - 15.4-16 15.4.8 UNIT 1 STEAM GENERATOR B FLAW EVALUATION - - - - - - - - - - - 15.4-17 15.4.9 UNIT 1 STEAM GENERATOR A FLAW EVALUATION - - - - - - - - - - - 15.4-18 15.4.10 FLAW TOLERANCE EVALUATION FOR SUSCEPTIBLE CASS REACTOR COOLANT PIPING COMPONENTS IN POINT BEACH UNITS 1 AND 2 - - - 15.4-19 15.4.11 UNIT 1 REACTOR VESSEL INLET NOZZLE FLAW EVALUATION - - - - - 15.4-20 15.4.12 REFERENCES- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 15.4-21 15.5 EXEMPTIONS - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 15.5-1 A.1 STATION BLACKOUT (SBO) - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - A.1-1 A.1.1 STATION BLACKOUT OVERVIEW - - - - - - - - - - - - - - - - - - - - - - - - - A.1-1 A.1.2 STATION BLACKOUT COPING DURATION CATEGORY DETERMINATION - - - A.1-2 A.1.3 STATION BLACKOUT COPING ANALYSES - - - - - - - - - - - - - - - - - - - - A.1-5 A.1.4 ALTERNATE AC SOURCE - - - - - - - - - - - - - - - - - - - - - - - - - - - - - A.1-8 A.1.5 PROCEDURES AND TRAINING- - - - - - - - - - - - - - - - - - - - - - - - - - - A.1-9 A.1.6 QUALITY ASSURANCE PROGRAM - - - - - - - - - - - - - - - - - - - - - - - - A.1-9 A.

1.7 REFERENCES

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - A.1-9 A.2 HIGH ENERGY PIPE FAILURE OUTSIDE CONTAINMENT - - - - - - - - - - - - - - - - A.2-1 A.

2.1 INTRODUCTION

AND EVALUATION CRITERIA - - - - - - - - - - - - - - - - - A.2-1 A.

2.2 DESCRIPTION

OF HIGH ENERGY SYSTEMS- - - - - - - - - - - - - - - - - - - - A.2-1 A.

2.3 DESCRIPTION

OF BREAK AND CRACK LOCATIONS - - - - - - - - - - - - - - - A.2-2 A.

2.4 DESCRIPTION

OF NEEDED EQUIPMENT - - - - - - - - - - - - - - - - - - - - - A.2-3 A.2.5 METHODOLOGIES FOR LOCATIONS, SIZE AND ORIENTATION OF BREAKS - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - A.2-3 A.2.6 METHODOLOGY FOR CALCULATING MASS AND ENERGY RELEASE - - - - - A.2-4 A.2.7 METHODOLOGY FOR COMPARTMENT PRESSURE AND TEMPERATURE - - - - A.2-5 A.2.8 METHODOLOGY FOR JET IMPINGEMENT - - - - - - - - - - - - - - - - - - - - A.2-5 A.2.9 METHODOLOGY FOR PIPE WHIP - - - - - - - - - - - - - - - - - - - - - - - - - A.2-12 A.2.10 REFERENCES - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - A.2-13 A.3 CONTROL OF HEAVY LOADS - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - A.3-1 A.3.1 OVERVIEW - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - A.3-1 A.3.2 NUREG-0612 PHASE I REQUIREMENTS AND COMMITMENTS - - - - - - - - - - A.3-2 A.3.3 AUXILIARY BUILDING CRANE - - - - - - - - - - - - - - - - - - - - - - - - - - A.3-7 UFSAR 2020 Page TOC - 14 of 17

Table of Contents FSAR A.3.4 CONTAINMENT POLAR CRANE - - - - - - - - - - - - - - - - - - - - - - - - - - A.3-7 A.

3.5 REFERENCES

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - A.3-9 A.4 (DELETED) - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - A.4-1 A.5 SEISMIC DESIGN ANALYSIS - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - A.5-1 A.5.1 SEISMIC DESIGN CLASSIFICATIONS - - - - - - - - - - - - - - - - - - - - - - - A.5-1 A.5.2 SEISMIC CLASSIFICATION OF STRUCTURES AND EQUIPMENT - - - - - - - - - A.5-4 A.5.3 CLASS I DESIGN CRITERIA FOR VESSELS AND PIPING - - - - - - - - - - - - - A.5-8 A.5.4 SEISMIC DESIGN OF CLASS I STRUCTURES - - - - - - - - - - - - - - - - - - - A.5-12 A.5.5 SEISMIC DESIGN OF SERVICE WATER PIPING - - - - - - - - - - - - - - - - - - A.5-14 A.5.6 VERIFICATION OF SEISMIC ADEQUACY OF EQUIPMENT PER NRC GENERIC LETTER 87 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - A.5-16 A.5.7 SEISMIC ANALYSIS OF PIPING SYSTEMS - - - - - - - - - - - - - - - - - - - - - A.5-17 A.5.8 MASONRY WALL DESIGN - - - - - - - - - - - - - - - - - - - - - - - - - - - - - A.5-20 A.5.9 SEISMIC ANALYSIS OF THE DIESEL GENERATOR BUILDING (DGB) - - - - - - A.5-20 A.5.10 STRUCTURAL QUALIFICATION OF THE CONTAINMENT DOME CONSTRUCTION TRUSS STRUCTURES - - - - - - - - - - - - - - - - - - - - - - A.5-21 A.5.11 REFERENCES - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - A.5-25 A.6 SHARED SYSTEMS ANALYSIS - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - A.6-1 A.7 PLANT FLOODING - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - A.7-1 B.2 DESIGN PARAMETERS AND PLANT COMPARISONS (Historical) - - - - - - - - - - - - - B.2-1 B.3 INITIAL PLANT DESIGN - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - B.3-1 C.1 PURPOSE OF CHEMICAL ADDITION TO CONTAINMENT SPRAY - - - - - - - - - - - - C.1-1 D DIESEL GENERATOR PROJECT - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - D-1 D.1 INTRODUCTION - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - D-1 D.2 DIESEL GENERATOR BUILDING (DGB) - - - - - - - - - - - - - - - - - - - - - - D-1 D.3 CABLE AND RACEWAY DESIGN - - - - - - - - - - - - - - - - - - - - - - - - - D-2 D.4 VENTILATION SYSTEM - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - D-3 D.5 COMBUSTION AIR INTAKE AND EXHAUST SYSTEM - - - - - - - - - - - - - - D-3 D.6 ENGINE COOLING SYSTEM - - - - - - - - - - - - - - - - - - - - - - - - - - - - D-3 D.7 STARTING AIR SYSTEM - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - D-4 D.8 LUBE OIL SYSTEM - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - D-4 D.9 FUEL OIL SYSTEM - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - D-5 D.10 REFERENCES - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - D-5 UFSAR 2020 Page TOC - 15 of 17

Table of Contents FSAR I.1 10 CFR 50, APPENDIX I EVALUATION OF RADIOACTIVE RELEASES FROM POINT BEACH NUCLEAR PLANT (Historical) - - - - - - - - - - - - - - - - - - - - - - - I.1-1 I.1 INTRODUCTION (Historical) - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - I.1-1 I.1.1 LIQUID RADIOACTIVE WASTE SYSTEM (Historical) - - - - - - - - - - - - - - - I.1-1 I.1.2 GASEOUS RADIOACTIVE WASTE SYSTEM (Historical) - - - - - - - - - - - - - - I.1-1 I.1.3 SECONDARY SYSTEM WASTES (Historical) - - - - - - - - - - - - - - - - - - - - I.1-1 I.1.4 CHEMICAL AND VOLUME CONTROL SYSTEM (Historical) - - - - - - - - - - - - I.1-2 I.1.5 PLANT VENTILATION AND FILTRATION SYSTEM (Historical) - - - - - - - - - - I.1-2 I.1.6 PREVIOUS RADIOACTIVE WASTE SYSTEM MODIFICATIONS (Historical) - - - - I.1-2 I.1.7 SUBSEQUENT CHANGES TO THE WASTEWATER EFFLUENT SYSTEM (Historical) - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - I.1-3 I.1.8 SUBSEQUENT CHANGES TO THE LIQUID RADIOACTIVE WASTE SYSTEM (Historical) - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - I.1-3 I.2 INFORMATION IN RESPONSE TO APPENDIX D OF DRAFT REGULATORY GUIDE 1.BB (Historical) - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - I.2-1 I.2.1 GENERAL (Historical) - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - I.2-1 I.2.2 PRIMARY SYSTEM (Historical) - - - - - - - - - - - - - - - - - - - - - - - - - - - I.2-2 I.2.3 SECONDARY SYSTEM (Historical) - - - - - - - - - - - - - - - - - - - - - - - - - I.2-2 I.2.4 LIQUID WASTE PROCESSING SYSTEMS (Historical)- - - - - - - - - - - - - - - - I.2-3 I.2.5 GASEOUS WASTE PROCESSING SYSTEM (Historical) - - - - - - - - - - - - - - - I.2-4 I.2.6 VENTILATION AND EXHAUST SYSTEMS (Historical) - - - - - - - - - - - - - - - I.2-6 I.2.7 REFERENCE (Historical) - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - I.2-8 I.3 CALCULATED SOURCE TERMS AND RELEASES OF GASEOUS AND LIQUID EFFLUENTS (Historical)- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - I.3-1 I.3.1 ORIGINAL APPENDIX I EVALUATION (Historical) - - - - - - - - - - - - - - - - - I.3-1 I.3.2 IMPACT OF UPRATED POWER OPERATIONS (Historical) - - - - - - - - - - - - - I.3-1 I.3.3 REFERENCE (Historical) - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - I.3-1 I.4. METEOROLOGY (Historical) - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - I.4-1 I.4.1 METEOROLOGICAL PROGRAM AT POINT BEACH NUCLEAR PLANT (Historical) - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - I.4-1 I.

4.2 DESCRIPTION

OF X/Q AND D/Q MODELING PROCEDURES (Historical) - - - - - I.4-4 I.4.3 CALCULATED C/Q AND D/Q VALUE FOR POINT BEACH NUCLEAR PLANT (Historical) - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - I.4-9 I.

4.4 REFERENCES

(Historical) - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - I.4-9 I.5 HYDROLOGY (Historical) - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - I.5-1 UFSAR 2020 Page TOC - 16 of 17

Table of Contents FSAR I.

5.1 DESCRIPTION

OF DISCHARGE (Historical) - - - - - - - - - - - - - - - - - - - - - I.5-1 I.5.2 HYDROLOGY MODEL (Historical) - - - - - - - - - - - - - - - - - - - - - - - - - I.5-1 I.5.3 INPUT DATA (Historical) - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - I.5-3 I.

5.4 REFERENCES

(Historical) - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - I.5-3 I.6 SUPPLEMENTAL INFORMATION (Historical) - - - - - - - - - - - - - - - - - - - - - - - I.6-1 I.6.1 ENCLOSURE 1 (Historical)- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - I.6-1 I.6.2 ENCLOSURE 2 (Historical)- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - I.6-1 I.7 COMPARISONS OF REPORTED AND CALCULATED RELEASES OF RADIOACTIVITY (Historical) - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - I.7-1 I.7.1 GASEOUS RELEASES (Historical) - - - - - - - - - - - - - - - - - - - - - - - - - - I.7-1 I.7.2 LIQUID RELEASES (Historical) - - - - - - - - - - - - - - - - - - - - - - - - - - - I.7-2 I.8 CALCULATIONS OF DOSES TO MAN (Historical) - - - - - - - - - - - - - - - - - - - - - I.8-1 I.8.1 DOSE MODELS - OFFSITE INDIVIDUALS (Historical) - - - - - - - - - - - - - - - I.8-1 I.8.2 DOSE MODELS - ONSITE INDIVIDUALS (Historical) - - - - - - - - - - - - - - - - I.8-4 I.8.3 CALCULATED DOSES (Historical) - - - - - - - - - - - - - - - - - - - - - - - - - I.8-5 I.

8.4 REFERENCES

(Historical) - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - I.8-5 I.9

SUMMARY

(Historical) - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - I.9-1 I.9.1 GASEOUS RELEASES (Historical) - - - - - - - - - - - - - - - - - - - - - - - - - - I.9-1 I.9.2 LIQUID RELEASES (Historical) - - - - - - - - - - - - - - - - - - - - - - - - - - - I.9-1 I.9.3 IMPACT OF UPRATED POWER OPERATIONS (Historical) - - - - - - - - - - - - - I.9-2 I.9.4 REFERENCE (Historical) - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - I.9-3 T.1 TECHNICAL REQUIREMENTS MANUAL - - - - - - - - - - - - - - - - - - - - - - - - - T.1-1 UFSAR 2020 Page TOC - 17 of 17

List of Tables FSAR FSAR LIST OF TABLES Table Title 1.3-1 POINT BEACH GENERAL DESIGN CRITERIA- - - - - - - - - - - - - - - - - - - - - 1.3-21 1.3-2 SEP CATEGORY 3 AND 4 ISSUES RESOLVED BY IPEEE - - - - - - - - - - - - - - - 1.3-29 1.3-3 ADDITIONAL GENERIC SAFETY ISSUES RESOLVED BY IPEEE - - - - - - - - - - - 1.3-30 2.4-1 TYPICAL INDUSTRIES IN REGION AT THE TIME OF LICENSE APPLICATION (Historical) Sheets 1 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 2.4-3 2.5-1 FREQUENCY AND WAVE HEIGHT FOR DEEP WATER CONDITIONS - - - - - - - - 2.5-12 2.5-2 AVERAGE AND MAXIMUM PRECIPITATION - - - - - - - - - - - - - - - - - - - - - 2.5-13 2.5-3 MUNICIPAL GROUND WATER SUPPLIES AT THE TIME OF LICENSE APPLICATION - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 2.5-14 2.6-1 CUMULATIVE NUMBER OF TORNADOES WITHIN VARYING RADII OF POINT BEACH - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 2.6-9 2.6-2 WIND DISTRIBUTION (%) - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 2.6-10 2.6-3 SITE ATMOSPHERIC STABILITY ANALYSIS ANNUAL AVERAGE - POINT BEACH, WISCONSIN THIRTEEN MONTH DATA - 4/67-4/68 (Sheets 1-3) - - - - - - - - - - - - 2.6-11 2.6-4 SITE ATMOSPHERIC STABILITY ANALYSIS ANNUAL AVERAGE - POINT BEACH, WISCONSIN, THIRTEEN MONTH DATA - 4/67-4/68 (Sheets 1-2)- - - - - - - - - - - - 2.6-14 2.6-5 ATMOSPHERIC STABILITY (%) - - - - - - - - - - - - - - - - - - - - - - - - - - - 2.6-16 2.6-6 HYPOTHETICAL ACCIDENT METEOROLOGICAL MODEL BASIC ON SITE DATA, 1967 - 1968 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 2.6-17 2.7-1 PRE-OPERATIONAL ENVIRONMENTAL RADIOLOGICAL SURVEY FOR THE POINT BEACH NUCLEAR POWER PLANT (Sheets 1-2) - - - - - - - - - - - 2.7-4 2.8-1 BEDROCK FORMATIONS IN EASTERN WISCONSIN - - - - - - - - - - - - - - - - 2.8-3 3.2-1 NUCLEAR DESIGN DATA (Sheets 1-4) - - - - - - - - - - - - - - - - - - - - - - - - 3.2-39 3.2-2 REACTIVITY REQUIRMENTS FOR CONTROL RODS K/K (%) - - - - - - - - - - - 3.2-43 3.2-3 CALCULATED (1) ROD WORTHS, K/K(%) - - - - - - - - - - - - - - - - - - - - - 3.2-44 3.2-4 THERMAL AND HYDRAULIC DESIGN PARAMETERS (Sheets 1-2) - - - - - - - - - 3.2-45 (1) 3.2-5 CORE MECHANICAL DESIGN PARAMETERS (Sheets 1-2) - - - - - - - - - - - - - 3.2-47 3.4-1 PROTOTYPE FUEL ASSEMBLY AND RCC ASSEMBLY TESTS - - - - - - - - - - - 3.4-11 4.1-1 REACTOR COOLANT SYSTEM DESIGN PARAMETERS AND PRESSURE SETTINGS - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 4.1-15 4.1-2 REACTOR VESSEL DESIGN DATA - - - - - - - - - - - - - - - - - - - - - - - - - - 4.1-16 4.1-3 PRESSURIZER AND PRESSURIZER RELIEF TANK DESIGN DATA - - - - - - - - - 4.1-17 4.1-4 STEAM GENERATOR DESIGN DATA (Sheets 1-2) - - - - - - - - - - - - - - - - - - 4.1-18 4.1-5 REACTOR COOLANT PUMPS DESIGN DATA - - - - - - - - - - - - - - - - - - - - 4.1-20 4.1-6 REACTOR COOLANT PIPING DESIGN DATA - - - - - - - - - - - - - - - - - - - - 4.1-21 4.1-7 REACTOR COOLANT SYSTEM DESIGN PRESSURE DROP(1) - - - - - - - - - - - - 4.1-22 4.1-8 THERMAL AND LOADING CYCLES - - - - - - - - - - - - - - - - - - - - - - - - - 4.1-23 4.1-9 REACTOR COOLANT SYSTEM - CODE REQUIREMENTS - - - - - - - - - - - - - - 4.1-24 UFSAR 2020 Page LOT - 1 of 11

List of Tables FSAR 4.2-1 MATERIALS OF CONSTRUCTION OF THE REACTOR COOLANT SYSTEM COMPONENTS (Sheets 1-2)- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 4.2-20 4.3-1

SUMMARY

OF PRIMARY PLUS SECONDARY STRESS INTENSITY FOR COMPONENTS OF THE REACTOR VESSEL - - - - - - - - - - - - - - - - - - - - - 4.3-5 4.3-2

SUMMARY

OF CUMULATIVE FATIGUE USAGE FACTORS FOR COMPONENTS OF THE REACTOR VESSEL - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 4.3-6 4.3-3 STRESSES DUE TO MAXIMUM STEAM GENERATOR TUBESHEET PRESSURE DIFFERENTIAL (2485 PSI) - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 4.3-7 4.3-4 RATIO OF ALLOWABLE STRESSES TO COMPUTED STRESSES FOR A STEAM GENERATOR TUBESHEET PRESSURE DIFFERENTIAL OF 2485 PSI - - - - - - - - - 4.3-8 4.4-1 REACTOR COOLANT SYSTEM NONDESTRUCTIVE EXAMINATION (Sheets 1-3) - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 4.4-9 5.1-1 CONTAINMENT STRUCTURE

SUMMARY

OF CONCRETE AND REINFORCING STEEL STRESSES - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 5.1-65 5.1-1(2A) CONTAINMENT STRUCTURE

SUMMARY

OF CONCRETE AND REINFORCING STEEL STRESSES - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 5.1-66 5.1-1(2B) CONTAINMENT STRUCTURE

SUMMARY

OF CONCRETE AND REINFORCING STEEL STRESSES - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 5.1-67 5.1-1(2C) CONTAINMENT STRUCTURE

SUMMARY

OF CONCRETE AND REINFORCING STEEL STRESSES - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 5.1-68 5.1-1(3) CONTAINMENT STRUCTURE

SUMMARY

OF CONCRETE AND REINFORCING STEEL STRESSES D & F INITIAL (STRESSES IN PSI) CASE I MESH #3 AND #4 - - - 5.1-69 5.1-1(4A) CONTAINMENT STRUCTURE

SUMMARY

OF CONCRETE AND REINFORCING STEEL STRESSES MESH #4 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 5.1-70 5.1-1(4B) CONTAINMENT STRUCTURE

SUMMARY

OF CONCRETE AND REINFORCING STEEL STRESSES MESH #4 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 5.1-71 5.1-1(5) CONTAINMENT STRUCTURE

SUMMARY

OF CONCRETE AND REINFORCING STEEL STRESSES MESH #3 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 5.1-72 5.1-1(5) CONTAINMENT STRUCTURE

SUMMARY

OF CONCRETE AND REINFORCING STEEL STRESSES - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 5.1-73 5.1-2 TABLE OF LOADING CONDITIONS - - - - - - - - - - - - - - - - - - - - - - - - - 5.1-74 5.2-1 INDEX OF CONTAINMENT PENETRATION FIGURES (Sheets 1-4) - - - - - - - - - - 5.2-7 5.3-1 PRINCIPAL COMPONENT DATA

SUMMARY

(Pages 1-2) - - - - - - - - - - - - - - - 5.3-6 5.6-1 MATERIALS OF CONSTRUCTION IN REACTOR CONTAINMENT - - - - - - - - - - 5.6-17 5.6-2 UNIT 1 - INVENTORY OF ALUMINUM IN CONTAINMENT - - - - - - - - - - - - - 5.6-18 5.6-2 UNIT 2 - INVENTORY OF ALUMINUM IN CONTAINMENT - - - - - - - - - - - - - 5.6-19 5.6-3 CORROSION OF ALUMINUM ALLOYS IN ALKALINE SODIUM BORATE SOLUTION - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 5.6-20 5.6-4 CONCRETE SPECIMEN TEST DATA - - - - - - - - - - - - - - - - - - - - - - - - - 5.6-21 5.6-5 EVALUATION OF SEALANT MATERIALS FOR USE IN CONTAINMENT - - - - - - 5.6-22 6.2-1 SAFETY INJECTION SYSTEM - CODE REQUIREMENTS - - - - - - - - - - - - - - - 6.2-30 6.2-2 (DELETED) - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 6.2-31 6.2-3 ACCUMULATOR DESIGN PARAMETERS - - - - - - - - - - - - - - - - - - - - - - 6.2-32 6.2-4 REFUELING WATER STORAGE TANK DESIGN PARAMETERS - - - - - - - - - - - 6.2-33 6.2-5 PUMP PARAMETERS - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 6.2-34 UFSAR 2020 Page LOT - 2 of 11

List of Tables FSAR 6.2-6 RESIDUAL HEAT EXCHANGERS DESIGN PARAMETERS - - - - - - - - - - - - - - 6.2-35 6.2-7(a) SINGLE FAILURE ANALYSIS - SAFETY INJECTION SYSTEM - - - - - - - - - - - - 6.2-36 6.2-7(b) LOSS OF RECIRCULATION FLOW PATH - - - - - - - - - - - - - - - - - - - - - - - 6.2-37 6.2-8 SHARED FUNCTIONS EVALUATION - - - - - - - - - - - - - - - - - - - - - - - - - 6.2-38 6.2-9 ACCUMULATOR INLEAKAGE - - - - - - - - - - - - - - - - - - - - - - - - - - - - 6.2-39 6.2-10 RESIDUAL HEAT REMOVAL SYSTEM DESIGN, OPERATION AND TEST CONDITIONS- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 6.2-40 6.2-11 SAFETY RELATED SNUBBERS UNIT 1 - - - - - - - - - - - - - - - - - - - - - - - - 6.2-41 6.2-11 SAFETY RELATED SNUBBERS UNIT 2 - - - - - - - - - - - - - - - - - - - - - - - - 6.2-42 6.3-1 SINGLE FAILURE ANALYSIS - CONTAINMENT AIR RECIRCULATION COOLING SYSTEM - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 6.3-15 6.3-2 SHARED FUNCTION EVALUATION - - - - - - - - - - - - - - - - - - - - - - - - - 6.3-16 6.4-1 CONTAINMENT SPRAY SYSTEM-CODE REQUIREMENTS - - - - - - - - - - - - - 6.4-15 6.4-2 CONTAINMENT SPRAY PUMP DESIGN PARAMETERS - - - - - - - - - - - - - - - 6.4-16 6.4-3 SPRAY ADDITIVE TANK DESIGN PARAMETERS - - - - - - - - - - - - - - - - - - 6.4-17 6.4-4 EXPOSURE CONDITIONS - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 6.4-18 6.4-5 COMPONENT MATERIALS - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 6.4-19 6.4-6 CORROSION RATES - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 6.4-20 6.4-7 SINGLE FAILURE ANALYSIS - CONTAINMENT SPRAY SYSTEM - - - - - - - - - - 6.4-21 6.4-8 SHARED FUNCTIONS EVALUATION - - - - - - - - - - - - - - - - - - - - - - - - - 6.4-22 7.2-1 LIST OF REACTOR TRIPS - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 7.2-31 7.2-2 INTERLOCK CIRCUITS - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 7.2-32 7.2-3 RPS/ESFAS PRIMARY AND SECONDARY INSTRUMENTATION - - - - - - - - - - 7.2-33 7.3-1 LIST OF ENGINEERED SAFETY FEATURES ACTUATION SIGNALS (Sheets 1-3)- - - 7.3-15 7.3-2 GENERAL OPERATING TIME REQUIREMENTS FOR ENVIRONMENTAL QUALIFICATION OF ELECTRICAL EQUIPMENT (Sheets 1-3) - - - - - - - - - - - - - 7.3-18 7.5-1 UNITS 1 AND 2 ASIP INSTRUMENTATION, CONTROLS, AND INDICATION - - - - 7.5-14 7.6-1 POST-ACCIDENT MONITORING VARIABLES (Sheets 1-5) - - - - - - - - - - - - - - 7.6-16 7.7-1 ROD STOPS - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 7.7-16 8.5-1 ASSOCIATED 480 VOLT SOURCES - - - - - - - - - - - - - - - - - - - - - - - - - - 8.5-4 8.8-1 EMERGENCY DIESEL GENERATOR LOADING FOLLOWING A LOSS OF COOLANT ACCIDENT - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 8.8-10 9.1-1 COMPONENT COOLING SYSTEM COMPONENT DATA - - - - - - - - - - - - - - - 9.1-9 9.1-2 FAILURE ANALYSIS OF PUMPS, HEAT EXCHANGERS, AND VALVES - - - - - - - 9.1-10 9.2-1 RESIDUAL HEAT REMOVAL LOOP COMPONENT DATA - - - - - - - - - - - - - - - 9.2-6 9.3-1 CHEMICAL AND VOLUME CONTROL SYSTEM CODE REQUIREMENTS - - - - - - 9.3-23 9.3-2 CHEMICAL AND VOLUME CONTROL SYSTEM PERFORMANCE REQUIREMENTS - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 9.3-24 9.3-3 PRINCIPAL COMPONENT DATA

SUMMARY

- - - - - - - - - - - - - - - - - - - - 9.3-25 9.3-4 PARAMETERS USED IN THE CALCULATION OF REACTOR COOLANT FISSION PRODUCT ACTIVITIES - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 9.3-26 9.3-5 REACTOR COOLANT SYSTEM EQUILIBRIUM ACTIVITIES - - - - - - - - - - - - - 9.3-27 9.3-6 TRITIUM PRODUCTION IN THE REACTOR COOLANT ONE UNIT - - - - - - - - - 9.3-28 UFSAR 2020 Page LOT - 3 of 11

List of Tables FSAR 9.3-7 MALFUNCTION ANALYSIS OF CHEMICAL AND VOLUME CONTROL SYSTEM - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 9.3-29 9.4-1 FUEL HANDLING DATA- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 9.4-13 9.6-1 ESSENTIAL SERVICE WATER LOADS - - - - - - - - - - - - - - - - - - - - - - - - 9.6-6 9.6-2 NON-ESSENTIAL LOAD ISOLATION VALVES - - - - - - - - - - - - - - - - - - - - 9.6-7 9.6-3 ESSENTIAL SW AUTOMATIC VALVES - - - - - - - - - - - - - - - - - - - - - - - - 9.6-8 9.9-1 SPENT FUEL POOL COOLING SYSTEM COMPONENT DATA (Sheets 1 to 4) - - - - - 9.9-8 9.11-1 SAMPLING SYSTEM CODE REQUIREMENTS - - - - - - - - - - - - - - - - - - - - 9.11-7 9.11-2 SAMPLING SYSTEM COMPONENTS (Sheets 1-2) - - - - - - - - - - - - - - - - - - - 9.11-8 10.1-1 STEAM AND POWER CONVERSION SYSTEM COMPONENT DESIGN PARAMETERS - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 10.1-17 10.1-2 STEAM AND POWER CONVERSION SYSTEM CODE REQUIREMENTS - - - - - - - 10.1-18 10.1-3 AVT CONTROL, SECONDARY CHEMISTRY CONTROL GUIDELINES (Sheets 1 to 2) - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 10.1-19 10.1-4 STEAM AND POWER CONVERSION SYSTEM SINGLE FAILURE ANALYSIS - - - - 10.1-21 10.2-1 AFW SYSTEM LEVEL FAILURE MODES AND EFFECTS ANALYSIS - - - - - - - - - 10.2-11 11.0-1 WASTE DISPOSAL QUANTITIES - - - - - - - - - - - - - - - - - - - - - - - - - - - 11.0-2 11.0-2 WASTE DISPOSAL SYSTEM COMPONENT

SUMMARY

DATA - - - - - - - - - - - 11.0-3 11.1-1 COMPONENT DESIGN DATA FOR RADIOACTIVE LIQUID TREATMENT (Also See Table 11.0-2) (Sheets 1-6) - - - - - - - - - - - - - - - - - - - - - - - - - - - 11.1-8 11.1-2 ESTIMATED LIQUID DISCHARGE TO WASTE DISPOSAL - - - - - - - - - - - - - - 11.1-14 11.1-3 ESTIMATED LIQUID RELEASE BY ISOTOPE (TWO UNITS) - - - - - - - - - - - - - 11.1-15 11.1-4 ACTIVITY FROM STEAM GENERATOR BLOWDOWN WITHOUT AND WITH PROCESSING (Historical) - - - - - - - - - - - - - - - - - - - - - - - - - - - - 11.1-16 11.2-1 COMPONENT DESIGN DATA FOR RADIOACTIVE GAS TREATMENT (Sheets 1-8) - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 11.2-10 11.2-2 ESTIMATED ANNUAL GASEOUS RELEASE BY ISOTOPE (TWO UNITS) - - - - - - 11.2-18 11.2-3 GAS TREATMENT SYSTEM MALFUNCTION ANALYSIS- - - - - - - - - - - - - - - 11.2-19 11.2-4 GAS DECAY TANK ACCIDENT ANALYSIS INPUT PARAMETERS - - - - - - - - - - 11.2-20 11.2-5 VOLUME CONTROL TANK ACCIDENT ANALYSIS INPUT PARAMETERS - - - - - 11.2-21 11.2-6 CHARCOAL FILLED DELAY TANK ACCIDENT ANALYSIS INPUT PARAMETERS - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 11.2-22 11.2-7 CALCULATED DOSES FOR GDT, VCT, AND CDT RUPTURES - - - - - - - - - - - - 11.2-23 11.4-1 STORAGE LOCATION OF EQUIPMENT - - - - - - - - - - - - - - - - - - - - - - - - 11.4-11 11.4-2 RADIATION PROTECTION EQUIPMENT - - - - - - - - - - - - - - - - - - - - - - - 11.4-12 11.4-3 RADIATION PROTECTION AND RADIOCHEMICAL FACILITIES - - - - - - - - - - 11.4-13 11.5-1A RADIATION MONITORING SYSTEM AREA MONITORS (Sheets 1-3) - - - - - - - - - 11.5-11 11.5-1B RADIATION MONITORING SYSTEM AREA MONITORS (Sheets 1-2) - - - - - - - - - 11.5-14 11.5-2A RADIATION MONITORING SYSTEM PROCESS MONITORS (Sheets 1-5) - - - - - - - 11.5-16 11.5-2B RADIATION MONITORING SYSTEM PROCESS MONITORS (Sheets 1-3) - - - - - - - 11.5-21 11.5-3 RADIATION MONITORING SYSTEM SPECIAL PARTICULATE IODINE AND NOBLE GAS MONITORS SPINGS (Sheets 1-2) - - - - - - - - - - - - - - - - - - - - - 11.5-24 11.6-1 SHIELDING DESIGN ZONE CLASSIFICATIONS - - - - - - - - - - - - - - - - - - - 11.6-13 UFSAR 2020 Page LOT - 4 of 11

List of Tables FSAR 11.6-2 ORIGINAL PRIMARY SHIELD NEUTRON FLUXES AND DESIGN PARAMETERS (Historical) - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 11.6-14 11.6-3 ORIGINAL SECONDARY SHIELD DESIGN PARAMETERS (Historical) - - - - - - - - 11.6-15 11.6-4 ORIGINAL ACCIDENT SHIELD DESIGN PARAMETERS (Historical) - - - - - - - - - 11.6-16 11.6-5 ORIGINAL PRINCIPAL AUXILIARY SHIELDING (Historical) - - - - - - - - - - - - - 11.6-17 11.6-6 ORIGINAL RESIDUAL HEAT REMOVAL SYSTEM RADIATION SOURCES AND EVALUATION PARAMETERS (Historical) - - - - - - - - - - - - - - - - - - - - - - - 11.6-18 12.4-1 EMERGENCY OPERATING PROCEDURES (EOPs) EMERGENCY CONTINGENCY ACTIONS (ECAs) (Pages 1-2) - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 12.4-4 12.4-2 STATUS TREES (STS) CRITICAL SAFETY PROCEDURES (CSPS) (Page 2) - - - - - - 12.4-5 13.2-1 PREOPERATIONAL TESTS (Sheets 1-7) - - - - - - - - - - - - - - - - - - - - - - - - 13.2-13 14.0-1

SUMMARY

OF INITIAL CONDITIONS AND COMPUTER CODES USED (Pages 1-2) - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 14.0-9 14.0-2 NOMINAL VALUES OF PERTINENT PLANT PARAMETERS FOR NON-LOCA ACCIDENT ANALYSES - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 14.0-11 14.0-3 TRIP POINTS AND TIME DELAYS TO TRIP ASSUMED IN ACCIDENT ANALYSES - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 14.0-12 14.1.1-1 TIME SEQUENCE OF EVENTS FOR UNCONTROLLED RCCA WITHDRAWAL FROM A SUBCRITICAL CONDITION - - - - - - - - - - - - - - - - - - - - - - - - - 14.1.1-5 14.1.2-1 TIME SEQUENCE OF EVENTS FOR UNCONTROLLED RCCA WITHDRAWAL AT POWER (maximum nominal RCS Tavg; Minimum Feedback) - - - - - - - - - - - - - 14.1.2-5 14.1.7-1 TIME SEQUENCE OF EVENTS FOR EXCESSIVE LOAD INCREASE INCIDENT - - - 14.1.7-3 14.1.8-1 LOSS OF FORCED REACTOR COOLANT FLOW TIME SEQUENCE OF EVENTS - - - 14.1.8-9 14.1.8-2

SUMMARY

OF LIMITING RESULTS FOR LOCKED ROTOR ACCIDENT - - - - - - - 14.1.8-10 14.1.8-3 ASSUMPTIONS USED FOR DOSE ANALYSES - - - - - - - - - - - - - - - - - - - - 14.1.8-11 14.1.8-4 ASSUMPTIONS USED FOR DOSE ANALYSES - - - - - - - - - - - - - - - - - - - - 14.1.8-12 14.1.8-5 ASSUMPTIONS USED FOR DOSE ANALYSES (Pages 1-2) - - - - - - - - - - - - - - 14.1.8-13 14.1.8-6 CONTROL ROOM PARAMETERS USED FOR DOSE ANALYSES - - - - - - - - - - - 14.1.8-15 14.1.9-1 TIME SEQUENCE OF EVENTS FOR LOSS OF EXTERNAL ELECTRICAL LOAD - - - 14.1.9-4 14.1.9-2 MSSV CHARACTERISTICS - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 14.1.9-5 14.1.10-1 TIME SEQUENCE OF EVENTS FOR LOSS OF NORMAL FEEDWATER FLOW INCIDENTS - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 14.1.10-4 14.1.11-1 TIME SEQUENCE OF EVENTS FOR LOSS OF OFFSITE POWER INCIDENTS - - - - - 14.1.11-4 14.2.1-1 ACTIVITY IN AN AVERAGE FUEL ASSEMBLY AT 65 HOURS POST SHUTDOWN - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 14.2.1-7 14.2.1-2 ASSUMPTIONS USED FOR THE FHA DOSE ANALYSIS - - - - - - - - - - - - - - - 14.2.1-8 14.2.4-1 STEAM GENERATOR TUBE RUPTURE ACCIDENT DOSES - - - - - - - - - - - - - 14.2.4-8 14.2.4-2 MASS TRANSFER USED FOR SGTR DOSE ANALYSES - - - - - - - - - - - - - - - - 14.2.4-9 14.2.5-1 MAIN STEAMLINE BREAK ACCIDENT DOSES - - - - - - - - - - - - - - - - - - - - 14.2.5-13 14.2.5-2 RUPTURE OF A STEAM PIPE ANALYSIS ASSUMPTIONS AND SEQUENCE OF EVENTS - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 14.2.5-14 14.2.5-3 GOTHIC MODEL INPUTS MSLB CONTAINMENT RESPONSE ANALYSIS - - - - - - 14.2.5-15 14.2.6-1 PARAMETERS USED IN THE ANALYSIS OF THE ROD CLUSTER CONTROL ASSEMBLY EJECTION ACCIDENT - - - - - - - - - - - - - - - - - - - - - - - - - - 14.2.6-10 14.2.6-2 ASSUMPTIONS USED FOR CONTROL ROD EJECTION ACCIDENT ANALYSIS - - - 14.2.6-11 UFSAR 2020 Page LOT - 5 of 11

List of Tables FSAR 14.2.6-3 DOSES DUE TO THE RADIOACTIVITY RELEASED DURING THE CONTROL ROD EJECTION ACCIDENT - - - - - - - - - - - - - - - - - - - - - - - - 14.2.6-12 14.3.1-1 INPUT ASSUMPTIONS USED IN THE SMALL BREAK ANALYSIS - - - - - - - - - - 14.3.1-6 14.3.1-2A HHSI FLOWS WITH THE FAULTED LOOP SPILLING TO RCS PRESSURE - - - - - - 14.3.1-7 14.3.1-2B HHSI FLOWS WITH THE FAULTED LOOP SPILLING TO CONTAINMENT PRESSURE - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 14.3.1-8 14.3.1-2C LHSI FLOWS INJECTING TO RCS PRESSURE - - - - - - - - - - - - - - - - - - - - - 14.3.1-9 14.3.1-3A TIME SEQUENCE OF EVENTS FOR UNIT 1 - - - - - - - - - - - - - - - - - - - - - - 14.3.1-10 14.3.1-3B TIME SEQUENCE OF EVENTS FOR UNIT 2 - - - - - - - - - - - - - - - - - - - - - - 14.3.1-11 14.3.1-4A SBLOCTA BOL RESULTS FOR UNIT 1 - - - - - - - - - - - - - - - - - - - - - - - - 14.3.1-12 14.3.1-4B SBLOCTA BOL RESULTS FOR UNIT 2 - - - - - - - - - - - - - - - - - - - - - - - - 14.3.1-13 14.3.2-1 PLANT OPERATING RANGE ANALYZED BY THE BEST-ESTIMATE LARGE BREAK LOCA ANALYSIS (Sheets 1-2) - - - - - - - - - - - - - - - - - - - - - - - - - 14.3.2-10 14.3.2-2 LARGE BREAK LOCA CONTAINMENT DATA USED FOR CALCULATION OF CONTAINMENT PRESSURE - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 14.3.2-12 14.3.2-3 CONTAINMENT FAN COOLER HEAT REMOVAL RATE FOR ECCS CONTAINMENT BACKPRESSURE ANALYSIS - - - - - - - - - - - - - - - - - - - - 14.3.2-13 14.3.2-4 STRUCTURAL HEAT SINK DATA FOR ECCS CONTAINMENT BACKPRESSURE ANALYSIS (Sheets 1 to 4) - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 14.3.2-14 14.3.2-5 PEAK CLAD TEMPERATURE INCLUDING ALL PENALTIES AND BENEFITS, BEST-ESTIMATE LARGE BREAK LOCA (BE LBLOCA) UNIT 1 - - - - - - - - - - - 14.3.2-18 14.3.2-6 UNIT 1 BEST-ESTIMATE LARGE BREAK LOCA RESULTS - - - - - - - - - - - - - 14.3.2-19 14.3.2-7 PEAK CLAD TEMPERATURE INCLUDING ALL PENALTIES AND BENEFITS, BEST-ESTIMATE LARGE BREAK LOCA (BE LBLOCA) UNIT 2 - - - - - - - - - - - 14.3.2-20 14.3.2-8 UNIT 2 BEST-ESTIMATE LARGE BREAK LOCA RESULTS - - - - - - - - - - - - - - 14.3.2-21 14.3.2-9 INJECTED SAFETY INJECTION FLOW USED IN BEST-ESTIMATE LARGE-BREAK LOCA ANALYSIS FOR UNITS 1 AND 2 - - - - - - - - - - - - - - - - - - - - - - - - 14.3.2-22 14.3.3-1 MULTI-MASS VIBRATIONAL MODEL-DEFINITION OF SYMBOLS - - - - - - - - - 14.3.3-7 14.3.4-1 SYSTEM PARAMETERS INITIAL CONDITIONS- - - - - - - - - - - - - - - - - - - - 14.3.4-25 14.3.4-2 SAFETY INJECTION FLOW - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 14.3.4-26 14.3.4-3 DELETED - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 14.3.4-27 14.3.4-4 LOCA MASS AND ENERGY RELEASE ANALYSIS - CORE DECAY HEAT FRACTION - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 14.3.4-28 14.3.4-5 DEHL BREAK BLOWDOWN M&E RELEAASE (Sheets 1-3) - - - - - - - - - - - - - - 14.3.4-29 14.3.4-6 DEHL BREAK MASS BALANCE - - - - - - - - - - - - - - - - - - - - - - - - - - - - 14.3.4-32 14.3.4-7 DEHL BREAK ENERGY BALANCE - - - - - - - - - - - - - - - - - - - - - - - - - - 14.3.4-33 14.3.4-8 DEPS BREAK BLOWDOWN M&E RELEASE (Sheets 1-3) - - - - - - - - - - - - - - - 14.3.4-34 14.3.4-9 DEPS BREAK REFLOOD M&E RELEASE (Sheets 1-5) - - - - - - - - - - - - - - - - - 14.3.4-37 14.3.4-10 DELETED - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 14.3.4-42 14.3.4-11 DEPS - SAFETY INJECTION PRINCIPAL PARAMETERS DURING REFLOOD (Sheets 1-3) - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 14.3.4-43 14.3.4-12 DELETED - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 14.3.4-46 14.3.4-13 DEPS BREAK POST-REFLOOD M&E RELEASE (Sheets 1-4) - - - - - - - - - - - - - - 14.3.4-47 14.3.4-14 DELETED - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 14.3.4-51 14.3.4-15 DEPS BREAK MASS BALANCE - - - - - - - - - - - - - - - - - - - - - - - - - - - - 14.3.4-52 14.3.4-16 DELETED - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 14.3.4-53 UFSAR 2020 Page LOT - 6 of 11

List of Tables FSAR 14.3.4-17 DEPS BREAK ENERGY BALANCE - - - - - - - - - - - - - - - - - - - - - - - - - - 14.3.4-54 14.3.4-18 DELETED - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 14.3.4-55 14.3.4-19 DOUBLE-ENDED HOT LEG BREAK SEQUENCE OF EVENTS - - - - - - - - - - - - 14.3.4-56 14.3.4-20 DOUBLE-ENDED PUMP SUCTION BREAK SEQUENCE OF EVENTS (Sheets 1-2) - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 14.3.4-57 14.3.4-21 DELETED - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 14.3.4-59 14.3.4-22 RCS CONDITIONS FOR SHORT-TERM MASS AND ENERGY RELEASES - - - - - - - 14.3.4-60 14.3.4-23 SHORT-TERM LOCA M&E RELEASES- - - - - - - - - - - - - - - - - - - - - - - - - 14.3.4-61 14.3.4-24 CONTAINMENT INTEGRITY LOCA ANALYSIS PARAMETERS (Sheets 1-2) - - - - - 14.3.4-62 14.3.4-25 CONTAINMENT FAN COOLER PERFORMANCE - - - - - - - - - - - - - - - - - - - 14.3.4-64 14.3.4-26 CONTAINMENT SPRAY PERFORMANCE - - - - - - - - - - - - - - - - - - - - - - - 14.3.4-65 14.3.4-27 CONTAINMENT STRUCTURAL HEAT SINK INPUT (Sheets 1-7)- - - - - - - - - - - - 14.3.4-66 14.3.4-28 MATERIAL PROPERTIES FOR CONTAINMENT STRUCTURAL HEAT SINKS- - - - - 14.3.4-73 14.3.4-29

SUMMARY

OF PEAK CONTAINMENT PRESSURE AND TEMPERATURES - - - - - - 14.3.4-74 14.3.5-1 CORE ACTIVITIES - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 14.3.5-8 14.3.5-2 DOSE CONVERSION FACTORS, BREATHING RATES, AND ATMOSPHERIC DISPERSION FACTORS - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 14.3.5-9 14.3.5-2A COMMITTED EFFECTIVE DOSE EQUIVALENT DOSE CONVERSION FACTORS (Pages 1-2) - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 14.3.5-10 14.3.5-2B EFFECTIVE DOSE EQUIVALENT DOSE CONVERSION FACTORS (Pages 1-2) - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 14.3.5-12 14.3.5-3 CONTROL ROOM PARAMETERS - - - - - - - - - - - - - - - - - - - - - - - - - - - 14.3.5-14 14.3.5-4 ASSUMPTIONS USED FOR LARGE BREAK LOCA DOSE ANALYSIS CONTAINMENT LEAKAGE - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 14.3.5-15 14.3.5-5 ASSUMPTIONS USED FOR LARGE BREAK LOCA DOSE ANALYSIS ECCS EQUIPMENT LEAKAGE - - - - - - - - - - - - - - - - - - - - - - - - - - - - 14.3.5-16 14.3.5-6 LARGE BREAK OFFSITE AND CONTROL ROOM DOSES - - - - - - - - - - - - - - 14.3.5-17 A.2-1 JET IMPINGEMENT FORCES ON CABLE SPREADING ROOM WALLS - - - - - - - - A.2-15 A.2-2 JET IMPINGEMENT FORCES (VARIOUS LOCATIONS) - - - - - - - - - - - - - - - - A.2-16 A.2-3 MASS AND ENERGY USED IN JET IMPINGEMENT AND PIPE WHIP - - - - - - - - A.2-17 A.2-4 LIST OF CREDITED PROTECTION FEATURES FOR JET IMPINGEMENT AND PIPE WHIP - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - A.2-18 A.5-1 INTERNALS DEFLECTIONS UNDER ABNORMAL OPERATION (INCHES) - - - - - - A.5-28 A.5-2 DAMPING FACTORS - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - A.5-29 A.5-3 LOADING CONDITIONS AND STRESS LIMITS (Sheets 1-6) - - - - - - - - - - - - - - A.5-30 A.6-1 SHARED SYSTEMS ANALYSIS - - - - - - - - - - - - - - - - - - - - - - - - - - - - A.6-2 B.2-1 COMPARISON OF DESIGN PARAMETERS (Historical) - - - - - - - - - - - - - - - - B.2-3 I.2-1 SOURCES AND EXPECTED RADIOACTIVITY OF LIQUID WASTES AT POINT BEACH NUCLEAR PLANT (Historical) - - - - - - - - - - - - - - - - - - - - - - - - - 1 of 248 I.2-2 CAPACITIES USED IN CALCULATING HOLDUP TIMES FOR RADIOACTIVE LIQUIDS (Historical) - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 2 of 248 I.2-3 CALCULATED HOLDUP TIMES FOR COLLECTION, PROCESSING AND RELEASE (Historical) - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 3 of 248 I.2-4 POINT BEACH NUCLER PLANT RELEASE POINT DESCRIPTIONS (Sheets 1-3)

(Historical) - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 4 of 248 UFSAR 2020 Page LOT - 7 of 11

List of Tables FSAR I.3-1 COMPARISONS WITH PARAMETERS USED TO DESCRIBE THE REFERENCE PRESSURIZED WATER REACTOR WITH U-TUBE STEAM GENERATORS (Historical) - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 7 of 248 I.3-2 POINT BEACH NUCLEAR PLANT CALCULATED SOURCE TERM CONCENTRATIONS (mCi/gm) (Sheets 1 to 3) (Historical) - - - - - - - - - - - - - - - - 8 of 248 I.3-3 POINT BEACH NUCLEAR PLANT CALCULATED SOURCE TERM ACTIVITIES (Ci) (Sheets 1-3) (Historical) - - - - - - - - - - - - - - - - - - - - - - - - 11 of 248 I.4-1 POINT BEACH NUCLEAR PLANT ON-SITE WIND ROSE FOR 4/19/67 TO 4/18/69 (FREQUENCY PERCENT) (Historical) - - - - - - - - - - - - - - - - - - - - - - - - - 14 of 248 I.4-2 POINT BEACH NUCLEAR PLANT

SUMMARY

OF ANNUAL AND GRAZING SEASON /Qs AND /Qs FOR HIGHEST OFFSITE SECTORS (Historical) - - - - - - 15 of 248 I.4-3 POINT BEACH NUCLEAR PLANT ANNUAL GROWING SEASON /Qs AND

/Qs FOR ONSITE RESIDENTS (Historical) - - - - - - - - - - - - - - - - - - - - - - 16 of 248 I.4-4 POINT BEACH NUCLEAR PLANT AUXILIARY BUILDING VENT, CONTINUOUS ELEVATED RELEASE (IA) (Historical) - - - - - - - - - - - - - - - - - - - - - - - - - 17 of 248 I.4-5 POINT BEACH NUCLEAR PLANT GROWING/GRAZING SEASON /Q AUXILIARY BUILDING VENT, CONTINUOUS ELEVATED RELEASE (IA)

(Historical) - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 18 of 248 I.4-6 POINT BEACH NUCLEAR PLANT ANNUAL AVERAGE /Q AUXILIARY BUILDING VENT, INTERMITTENT ELEVATED RELEASE (IB) (Historical) - - - - - - 19 of 248 I.4-7 POINT BEACH NUCLEAR PLANT GROWING/GRAZING SEASON /Q AUXILIARY BUILDING VENT, INTERMITTENT ELEVATED RELEASE (IB)

(Historical) - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 20 of 248 I.4-8 POINT BEACH NUCLEAR PLANT ANNUAL AVERAGE /QS, UNIT 1 OR UNIT 2 CONTAINMENT PURGE VENT, CONTINUOUS GROUND LEVEL RELEASE (IIA) AND GAS STRIPPER BUILDING VIA UNIT 2 CONTAINMENT PURGE VENT, CONTINUOUS GROUND LEVEL RELEASE (IIC) (Historical) - - - - - - - - - - - - - 21 of 248 I.4-9 POINT BEACH NUCLEAR PLANT GROWING/GRAZING SEASON /QS, UNIT 1 OR UNIT 2 CONTAINMENT PURGE VENT, CONTINUOUS GROUND LEVEL RELEASE (IIA) AND GAS STRIPPER BUILDING VIA UNIT 2 CONTAINMENT PURGE VENT, CONTINUOUS GROUND LEVEL RELEASE (IIC) (Historical) - - - - - 22 of 248 I.4-10 POINT BEACH NUCLEAR PLANT ANNUAL AVERAGE /QS, UNIT 1 OR UNIT 2 CONTAINMENT PURGE VENT, INTERMITTENT RELEASE (IIB) (Historical) - - - - - 23 of 248 I.4-11 POINT BEACH NUCLEAR PLANT GROWING/GRAZING SEASON /QS, UNIT 1 OR UNIT 2 CONTAINMENT PURGE VENT, INTERMITTENT RELEASE (IIB)

(Historical) - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 24 of 248 I.4-12 POINT BEACH NUCLEAR PLANT ANNUAL AVERAGE /QS, TURBINE BUILDING ROOF EXHAUSTERS, CONTINUOUS GROUND LEVEL RELEASE (III) (Historical) - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 25 of 248 I.4-13 GROWING/GRAZING SEASON /QS, TURBINE BUILDING ROOF EXHAUSTERS, CONTINUOUS GROUND LEVEL RELEASE (III) (Historical) - - - - - - - - - - - - - - 26 of 248 I.4-14 POINT BEACH NUCLEAR PLANT ANNUAL AVERAGE /QS, AUXILIARY BUILDING VENT, CONTINUOUS ELEVATED RELEASE (IA) (Historical) - - - - - - - 27 of 248 I.4-15 POINT BEACH NUCLEAR PLANT GROWING/GRAZING SEASON /QS, AUXILIARY BUILDING VENT, CONTINUOUS ELEVATED RELEASE (IA)

(Historical) - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 28 of 248 UFSAR 2020 Page LOT - 8 of 11

List of Tables FSAR I.4-16 POINT BEACH NUCLEAR PLANT ANNUAL AVERAGE /QS, AUXILIARY BUILDING VENT, INTERMITTENT ELEVATED RELEASE (IB) (Historical) - - - - - - 29 of 248 I.4-17 POINT BEACH NUCLEAR PLANT GROWING/GRAZING SEASON /QS, AUXILIARY BUILDING VENT, INTERMITTENT ELEVATED RELEASE (IB)

(Historical) - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 30 of 248 I.4-18 POINT BEACH NUCLEAR PLANT ANNUAL AVERAGE /QS, UNIT 1 OR UNIT 2 PURGE VENT, CONTINUOUS GROUND LEVEL RELEASE (IIA), GAS STRIPPER BUILDING VIA UNIT 2 PURGE VENT, CONTINUOUS GROUND LEVEL RELEASE (IIC), AND TURBINE BUILDING ROOF EXHAUSTERS, CONTINUOUS GROUND LEVEL RELEASE (III) (Historical) - - - - - - - - - - - - - - - - - - - - - - 31 of 248 I.4-19 POINT BEACH NUCLEAR PLANT GROWING/GRAZING SEASON /QS, UNIT 1 OR UNIT 2 PURGE VENT, CONTINUOUS GROUND LEVEL RELEASE (IIA),

GAS STRIPPER BUILDING VIA UNIT 2 PURGE VENT, CONTINUOUS GROUND LEVEL RELEASE (IIC), AND TURBINE BUILDING ROOF EXHAUSTERS, CONTINUOUS GROUND LEVEL RELEASE (III) (Historical) - - - - - - - - - - - - - - 32 of 248 I.4-20 POINT BEACH NUCLEAR PLANT ANNUAL AVERAGE /QS, UNIT 1 OR UNIT 2 CONTAINMENT PURGE VENT, INTERMITTENT RELEASE (IIB) (Historical) - - - - - 33 of 248 I.4-21 POINT BEACH NUCLEAR PLANT GROWING/GRAZING SEASON /QS, UNIT 1 OR UNIT 2 CONTAINMENT PURGE VENT, INTERMITTENT ELEVATED RELEASE (IIB) (Historical) - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 34 of 248 I.4-22 POINT BEACH NUCLEAR PLANT PERCENTAGE FREQUENCY DISTRIBUTION OF PASQUILL STABILITY CLASS FOR POINT BEACH, HAVEN, AND MILWAUKEE (Historical) - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 35 of 248 I.4-23 POINT BEACH NUCLEAR PLANT PERCENTAGE FREQUENCY DISTRIBUTION OF WIND DIRECTION FOR POINT BEACH, HAVEN, AND MILWAUKEE (Historical) - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 36 of 248 I.4-24 POINT BEACH NUCLEAR PLANT WIND SPEED BY QUADRANT FOR POINT BEACH, HAVEN, AND MILWAUKEE (Historical) - - - - - - - - - - - - - - - 37 of 248 I.4-25 POINT BEACH NUCLEAR PLANT WIND-PRECIPITATION (FREQUENCY PERCENT)

SUMMARY

FOR 1/1/56 - 12/31/75 AT MILWAUKEE (Historical) - - - - - - 38 of 248 I.4-26 POINT BEACH NUCLEAR PLANT AVERAGE PRECIPITATION FOR WEATHER STATIONS IN THE VICINITY OF POINT BEACH NUCLEAR PLANT (Historical) - - - 39 of 248 I.4-27 POINT BEACH NUCLEAR PLANT MONTHLY PRECIPITATION TOTALS AND INTENSITY FREQUNCY DISTRIBUTIONS AT GREEN BAY, WISCONSIN APRIL 19, 1967 THROUGH APRIL 18, 1969 (Historical) - - - - - - - - - - - - - - - - 40 of 248 I.4-28 HAVEN JOINT FREQUENCY DISTRIBUTION ANNUAL

SUMMARY

6/1/73 THROUGH 5/31/74 HAVEN SITE WIND - STABILITY

SUMMARY

STABILITY CLASS - A - METER WINDS, PERIOD 6/1/73 TO 5/31/74 NUMBER OF HOURLY OBSERVATIONS (Sheets 1-8) (Historical) - - - - - - - - - - - - - - - - - - - - - - - 41 of 248 I.4-29 MILWAUKEE JOINT FREQUENCY DISTRIBUTION ANNUAL

SUMMARY

6/1/73 THROUGH 5/31/74 MILWAUKEE WIND - STABILITY

SUMMARY

STABILITY CLASS - A - ANNUAL 6/1/73 TO 5/31/74 NUMBER OF HOURLY OBSERVATIONS (Sheets 1-8) (Historical) - - - - - - - - - - - - - - - - - - - - - - - 49 of 248 I.4-30 MILWAUKEE JOINT FREQUENCY DISTRIBUTION TWO-YEAR

SUMMARY

4/19/67 THROUGH 4/18/69 MILWAUKEE WIND - STABILITY

SUMMARY

STABILITY CLASS - A - ANNUAL 4/19/67 TO 4/18/69 NUMBER OF HOURLY OBSERVATIONS (Sheets 1-8) (Historical) - - - - - - - - - - - - - - - - - - - - - - - 57 of 248 UFSAR 2020 Page LOT - 9 of 11

List of Tables FSAR I.4-31 MILWAUKEE JOINT FREQUENCY DISTRIBUTION TEN YEAR

SUMMARY

1/1/56 THROUGH 12/31/75 MILWAUKEE WIND - STABILITY

SUMMARY

STABILITY CLASS - A - ANNUAL 1/1/56 TO 12/31/75 NUMBER OF HOURLY OBSERVATIONS (Sheets 1-8) (Historical) - - - - - - - - - - - - - - - - - - - - - - - 65 of 248 I.4-32 POINT BEACH JOINT FREQUENCY DISTRIBUTION TWO-YEAR

SUMMARY

, 4/19/67 THROUGH 4/18/69 POINT BEACH WIND - STABILITY

SUMMARY

STABILITY CLASS - A - 150 FT WINDS, PERIOD 4/19/67 TO 4/18/69 NUMBER OF HOURLY OBSERVATIONS (Sheets 1-8) (Historical) - - - - - - - - - - - - - - - - - - - - - - - 73 of 248 I.4-33 POINT BEACH JOINT FREQUENCY DISTRIBUTION BY MONTH FOR THE PERIOD 4/19/67 THROUGH 4/18/69 POINT BEACH WIND - STABILITY

SUMMARY

STABILITY CLASS - A - 150 FT WINDS, (JAN) PERIOD 1/1/68 TO 1/31/69 NUMBER OF HOURLY OBSERVATIONS (Sheets 1-96) (Historical) - - - - - - - - - - - - - - - - 81 of 248 I.6-1 POINT BEACH NUCLEAR PLANT NEAREST SITE BOUNDARY (METERS)

(Historical) - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 177 of 248 I.6-2 POINT BEACH NUCLEAR PLANT DISTANCE TO NEAREST RESIDENCE AND NEAREST VEGETABLE GARDEN IN SEARCH SECTOR(1) (Historical) - - - - - - - - 178 of 248 I.6-3 POINT BEACH NUCLEAR PLANT DISTANCE TO NEAREST MILK COW, MEAT ANIMAL AND MILK GOAT IN EACH SECTOR(1) (Historical) - - - - - - - - - 179 of 248 I.6-4 POINT BEACH NUCLEAR PLANT CONTAINMENT PURGE

SUMMARY

(1)

(Historical) - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 180 of 248 I.6-5 POINT BEACH NUCLEAR PLANT GAS DECAY TANK RELEASES (1974-1975)

(Historical) - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 182 of 248 I.7 -1 POINT BEACH NUCLEAR PLANT CALCULATED TOTAL ANNUAL GASEOUS RELEASES (Ci/yr) (Historical) - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 183 of 248 I.7-2 POINT BEACH NUCLEAR PLANT TOTAL LIQUID RELEASES PER PALNT - CALCULATED(1) (Sheets 1 to 3) (Historical) - - - - - - - - - - - - - - - - - 185 of 248 I.7-3 POINT BEACH NUCLEAR PLANT CALCULATED ANNUAL RELEASES BY SOURCE (Ci/yr) (Sheets 1 to 3) (Historical) - - - - - - - - - - - - - - - - - - - - - - - 188 of 248 I.7-4 POINT BEACH NUCLEAR PLANT AIRBORNE RELEASES (1974-1975) (Ci/yr)

(Sheets 1 to 2) (Historical) - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 191 of 248 I.7-5 POINT BEACH NUCLEAR PLANT OBSERVED MONTHLY GASEOUS RELEASES BY RELEASE POINT (Sheets 1 to 24) (Historical) - - - - - - - - - - - - - - - - - - - - 193 of 248 I.7-6 POINT BEACH NUCLEAR PLANT LIQUID RELEASES (1974-1975) (Ci/yr)

(Sheets 1 to 3) (Historical) - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 217 of 248 I.7-7 POINT BEACH NUCLEAR PLANT PARAMETERS FOR RADIOACTIVE GASEOUS RELEASES (Sheets 1 to 2) (Historical) - - - - - - - - - - - - - - - - - - - - - - - - - -220 of 248 I.8-1 POINT BEACH NUCLEAR PLANT ANNUAL DOSES TO MAXIMUM OFFSITE INDIVIDUAL IN ADULT GROUP FROM RADIOIODINE AND PARTICULATES IN GASEOUS EFFLUENTS (Historical) - - - - - - - - - - - - - - - - - - - - - - - - - - 222 of 248 I.8-2 POINT BEACH NUCLEAR PLANT ANNUAL DOSES TO MAXIMUM OFFSITE INDIVIDUAL IN TEEN GROUP FROM RADIOIODINE AND PARTICULATES IN GASEOUS EFFLUENTS (Historical) - - - - - - - - - - - - - - - - - - - - - - - - - - 223 of 248 I.8-3 POINT BEACH NUCLEAR PLANT ANNUAL DOSES TO MAXIMUM OFFSITE INDIVIDUAL IN CHILD GROUP FROM RADIOIODINE AND PARTICULATES IN GASEOUS EFFLUENTS (Historical) - - - - - - - - - - - - - - - - - - - - - - - - - - 224 of 248 I.8-4 POINT BEACH NUCLEAR PLANT ANNUAL DOSES TO MAXIMUM OFFSITE INDIVIDUAL IN INFANT GROUP FROM RADIOIODINE AND PARTICULATES IN GASEOUS EFFLUENTS (Historical) - - - - - - - - - - - - - - - - - - - - - - - - - - 225 of 248 UFSAR 2020 Page LOT - 10 of 11

List of Tables FSAR I.8-5 POINT BEACH NUCLEAR PLANT ANNUAL DOSES TO MAXIMUM INDIVIDUAL FROM NOBLE GASES IN GASEOUS EFFLUENTS (Historical) - - - - - - - - - - - - -226 of 248 I.8-6 POINT BEACH NUCLEAR PLANT ANNUAL DOSES TO MAXIMUM OFFSITE INDIVIDUAL IN ADULT AGE GROUP FROM LIQUID EFFLUENTS UNDER EQUILIBRIUM CONDITIONS (Historical) - - - - - - - - - - - - - - - - - - - - - - -227 of 248 I.8-7 POINT BEACH NUCLEAR PLANT ANNUAL DOSES TO MAXIMUM OFFSITE INDIVIDUAL IN TEEN AGE GROUP FROM LIQUID EFFLUENTS UNDER EQUILIBRIUM CONDITIONS (Historical) - - - - - - - - - - - - - - - - - - - - - - - 228 of 248 I.8-8 POINT BEACH NUCLEAR PLANT ANNUAL DOSES TO MAXIMUM OFFSITE INDIVIDUAL IN CHILD AGE GROUP FROM LIQUID EFFLUENTS UNDER EQUILIBRIUM CONDITIONS (Historical) - - - - - - - - - - - - - - - - - - - - - - - 229 of 248 I.8-9 POINT BEACH NUCLEAR PLANT ANNUAL DOSES TO MAXIMUM OFFSITE INDIVIDUAL IN INFANT AGE GROUP FROM LIQUID EFFLUENTS UNDER EQUILIBRIUM CONDITIONS (Historical) - - - - - - - - - - - - - - - - - - - - - - - 230 of 248 I.8-10 POINT BEACH NUCLEAR PLANT ANNUAL DOSES TO MAXIMUM ONSITE INDIVIDUAL IN ADULT GROUP FROM RADIOIODINE AND PARTICULATES IN GASEOUS EFFLUENTS (Historical) - - - - - - - - - - - - - - - - - - - - - - - - - - 231 of 248 I.8-11 POINT BEACH NUCLEAR PLANT ANNUAL DOSES TO MAXIMUM ONSITE INDIVIDUAL IN TEEN GROUP FROM RADIOIODINE AND PARTICULATES IN GASEOUS EFFLUENTS (Historical) - - - - - - - - - - - - - - - - - - - - - - - - - - 232 of 248 I.8-12 POINT BEACH NUCLEAR PLANT ANNUAL DOSES TO MAXIMUM ONSITE INDIVIDUAL IN CHILD GROUP FROM RADIOIODINE AND PARTICULATES IN GASEOUS EFFLUENTS (Historical) - - - - - - - - - - - - - - - - - - - - - - - - - - 233 of 248 I.8-13 POINT BEACH NUCLEAR PLANT ANNUAL DOSES TO MAXIMUM ONSITE INDIVIDUAL IN INFANT GROUP FROM RADIOIODINE AND PARTICULATES IN GASEOUS EFFLUENTS (Historical) - - - - - - - - - - - - - - - - - - - - - - - - - - 234 of 248 I.9-1 COMPARISON OF MAXIMUM CALCULATED DOSES FROM POINT BEACH NUCLEAR PLANT WITH DESIGN OBJECTIVES IN DOCKET RM-50-2(1)

(Historical) - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 235 of 248 UFSAR 2020 Page LOT - 11 of 11

List of Figures FSAR FSAR LIST OF FIGURES Figure Title 1.2-1 CONTAINMENT LAYOUT PLAN EQUIPMENT ARRANGEMENT - - - - - - - - - - 1.2-6 1.2-2 EQUIPMENT LOCATION PLAN UNIT 1 - - - - - - - - - - - - - - - - - - - - - - - - 1.2-7 1.2-3 EQUIPMENT LOCATION PLAN UNIT 1 - - - - - - - - - - - - - - - - - - - - - - - - 1.2-8 1.2-4 UNIT-1 EQUIPMENT LOCATION PLAN - - - - - - - - - - - - - - - - - - - - - - - - 1.2-9 1.2-5 UNIT-1 EQUIPMENT LOCATION PLAN - - - - - - - - - - - - - - - - - - - - - - - - 1.2-10 1.2-6 EQUIPMENT LOCATION PLAN - - - - - - - - - - - - - - - - - - - - - - - - - - - - 1.2-11 1.2-7 UNIT 1 EQUIPMENT LOCATION - SECTIONS - - - - - - - - - - - - - - - - - - - - 1.2-12 1.2-8 MISCELLANEOUS SECTIONS UNIT 1 - - - - - - - - - - - - - - - - - - - - - - - - 1.2-13 1.2-9 UNIT-2 EQUIPMENT LOCATION - PLAN - - - - - - - - - - - - - - - - - - - - - - - 1.2-14 1.2-10 EQUIPMENT LOCATION PLAN UNIT 2 - - - - - - - - - - - - - - - - - - - - - - - - 1.2-15 1.2-11 EQUIPMENT LOCATION PLAN UNIT 2 - - - - - - - - - - - - - - - - - - - - - - - - 1.2-16 1.2-12 UNIT 2 EQUIPMENT LOCATION - PLAN - - - - - - - - - - - - - - - - - - - - - - - 1.2-17 1.2-13 UNIT-2 EQUIPMENT LOCATION - PLAN - - - - - - - - - - - - - - - - - - - - - - - 1.2-18 1.2-14 MISCELLANEOUS SECTIONS UNIT 2 - - - - - - - - - - - - - - - - - - - - - - - - 1.2-19 1.2-15 GENERAL ARRANGEMENT - WASTE DISPOSAL SYSTEM MODIFICATIONS - - - 1.2-20 2.2-1 GENERAL LOCATION MAP - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 2.2-2 2.2-2 GENERAL TOPOGRAPHY MAP - - - - - - - - - - - - - - - - - - - - - - - - - - - - 2.2-3 2.2-2A GENERAL TOPOGRAPHY MAP - - - - - - - - - - - - - - - - - - - - - - - - - - - - 2.2-4 2.2-3 SITE TOPOGRAPHY MAP - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 2.2-5 2.2-4 UNITS 1 & 2 SITE PLAN - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 2.2-6 2.3-1 POPULATION DISTRIBUTION 0-5 MILES (Historical) - - - - - - - - - - - - - - - - - 2.3-2 2.3-2 POPULATION DISTRIBUTION 5-40 MILES (Historical) - - - - - - - - - - - - - - - - 2.3-3 2.5-1 SHORE PROTECTION - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 2.5-15 2.6-1 CLIMATE OF POINT BEACH SITE REGION - - - - - - - - - - - - - - - - - - - - - - 2.6-18 2.6-2 STABILITY CLASS DISTRIBUTION IN PERCENT OF TOTAL OBSERVED - - - - - - 2.6-19 2.6-3 PERSISTENCE WIND ROSE - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 2.6-20 2.6-4 DISTRIBUTION OF STABILTY BY DIRECTION - POINT BEACH ANNUAL AVERAGE - 4/67-4/68 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 2.6-21 2.6-5 ANNUAL /Q DISPERSION FACTOR MILWAUKEE DATA - - - - - - - - - - - - - - 2.6-22 2.6-6 ANNUAL AVERAGE /Q DISPERSION FACTOR SITE DATA (4/67-4/68) - - - - - - - 2.6-23 2.6-7 FSAR ACCIDENT MODEL - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 2.6-24 2.6-8 REVISED ACCIDENT MODEL - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 2.6-25 2.7-1 PRE-OPERATIONAL ENVIRONMENTAL RADIOACTIVITY SAMPLING SITES - - - 2.7-6 2.8-1 POINT BEACH BORING LOCATIONS - - - - - - - - - - - - - - - - - - - - - - - - - 2.8-4 2.8-2 POINT BEACH BORING LOG (Sheets 1-2) - - - - - - - - - - - - - - - - - - - - - - - 2.8-5 UFSAR 2020 Page LOF - 1 of 16

List of Figures FSAR 2.9-1 MAP SHOWING EPICENTERS OF PRINCIPAL EARTHQUAKES IN THE WISCONSIN REGION - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 2.9-3 3.2-1 CONTROL ROD CLUSTER GROUPS - - - - - - - - - - - - - - - - - - - - - - - - - 3.2-49 3.2-2 STANDARD FUEL NORMALIZED POWER DENSITY DISTRIBUTION (BOL)

MAXIMUM POWER DENSITY = 1.364 - - - - - - - - - - - - - - - - - - - - - - - - 3.2-50 3.2-3 NORMALIZED POWER DENSITY DISTRIBUTION (BOL) MAXIMUM POWER DENSITY = 1.505 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 3.2-51 3.2-4 STANDARD FUEL NORMALIZED POWER DENSITY DISTRIBUTION (BOL) IN A PLANE HAVING NO CONTROL RODS MAXIMUM POWER DENSITY = 1.384 - - - - 3.2-52 3.2-5 INITIAL BURNABLE ABSORBER ROD LOCATION - - - - - - - - - - - - - - - - - 3.2-53 3.2-6 ARRANGEMENT OF BURNABLE ABSORBER RODS WITHIN AN ASSEMBLY - - - 3.2-54 3.2-7 TYPICAL EQUILIBRIUM RELOAD LOADING PATTERN - - - - - - - - - - - - - - - 3.2-55 3.2-8 UPGRADED CORE ASSEMBLY EQUILIBRIUM LOADING PATTERN AND IFBA PLACEMENT - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 3.2-56 3.2-9 OFA NORMALIZED POWER DENSITY DISTRIBUTION NEAR BEGINNING OF LIFE, UNRODDED CORE, HOT FULL POWER, EQUILIBRIUM XENON - - - - - - - 3.2-57 3.2-10 OFA NORMALIZED POWER DENSITY DISTRIBUTION NEAR BEGINNING OF LIFE, GROUP D AT INSERTION LIMIT HOT FULL POWER, EQUILIBRIUM XENON - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 3.2-58 3.2-11 OFA NORMALIZED POWER DENSITY DISTRIBUTION NEAR END OF LIFE, UNRODDED CORE HOT FULL POWER, EQUILIBRIUM XENON - - - - - - - - - - - 3.2-59 3.2-12 OFA NORMALIZED POWER DENSITY DISTRIBUTION NEAR END OF LIFE, GROUP D AT INSERTION LIMIT HOT FULL POWER, EQUILIBRIUM XENON - - - - 3.2-60 3.2-13 UPGRADED CORE NORMALIZED POWER DISTRIBUTION AT 150 MWD/MTU UNRODDED, HOT FULL POWER, EQUILIBRIUM XENON PEAK FH = 1.555 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 3.2-61 3.2-13a UPGRADED CORE NORMALIZED POWER DISTRIBUTION AT 150 MWD/MTU D-BANK AT ROD INSERTION LIMIT, HOT FULL POWER, EQUILIBRIUM XENON PEAK FH = 1.574 - - - - - - - - - - - - - - - - - - - - - - 3.2-62 3.2-14 UPGRADED CORE NORMALIZED POWER DISTRIBUTION AT 10600 MWD/MTU UNRODDED, HOT FULL POWER, EQUILIBRIUM XENON PEAK FH = 1.50 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 3.2-63 3.2-14a UPGRADED CORE NORMALIZED POWER DISTRIBUTION AT 10600 MWD/MTU D-BANK AT ROD INSERTION LIMIT, HOT FULL POWER, EQUILIBRIUM XENON PEAK FH = 1.515 - - - - - - - - - - - - - - - - - - - - - - 3.2-64 3.2-15 EQUILIBRIUM CYCLE BOC, MOC AND EOC ASSEMBLY POWER DISTRIBUTIONS FOR 422V+ FUEL - - - - - - - - - - - - - - - - - - - - - - - - - - 3.2-65 3.2-16 EQUILIBRIUM CYCLE LOADING PATTERN WITH BOC AND EOC ASSEMBLY BURNUPS FOR 422V+ FUEL - - - - - - - - - - - - - - - - - - - - - - - 3.2-66 3.2-17 MODERATOR TEMPERATURE COEFFICIENT vs. MODERATOR TEMPERATURE - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 3.2-67 3.2-18 DOPPLER COEFFICIENT vs. EFFECTIVE FUEL TEMPERATURE (BOL) - - - - - - - 3.2-68 3.2-19 POWER COEFFICIENT - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 3.2-69 3.2-20 POWER COEFFICIENT - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 3.2-70 UFSAR 2020 Page LOF - 2 of 16

List of Figures FSAR 3.2-21 CALCULATED AND MEASURED DOPPLER DEFECT AND COEFFICIENTS AT BEGINNING OF LIFE, TWO-LOOP PLANT, 121 ASSEMBLIES, 12-FOOT CORE - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 3.2-71 3.2-22 COMPARISON OF CALCULATED AND MEASURED BORON CONCENTRATION FOR 2-LOOP PLANT, 121 ASSEMBLIES, 12-FOOT CORE - - - - - - - - - - - - - - - 3.2-72 3.2-23 THERMAL CONDUCTIVITY OF UO2 (DATA CORRECTED TO 95%

THEORETICAL DENSITY) - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 3.2-73 3.2-24 HIGH POWER FUEL ROD EXPERIMENTAL PROGRAM - - - - - - - - - - - - - - - 3.2-74 3.2-25 COMPARISON OF W-3 PREDICTION AND UNIFORM FLUX DATA - - - - - - - - - 3.2-75 3.2-26 W-3 CORRELATION PROBABILITY DISTRIBUTION CURVE - - - - - - - - - - - - 3.2-76 3.2-27 COMPARISON OF W-3 CORRELATION WITH ROD BUNDLE DNB DATA (SIMPLE GRID WITHOUT MIXING VANE) - - - - - - - - - - - - - - - - - - - - - - 3.2-77 3.2-28 COMPARISON OF W-3 CORRELATION WITH ROD BUNDLE DNB DATA (SIMPLE GRID WITH MIXING VANE) - - - - - - - - - - - - - - - - - - - - - - - - 3.2-78 3.2-29 STABLE FILM BOILING HEAT TRANSFER DATA AND CORRELATION - - - - - - 3.2-79 3.2-30 COMPARISON OF W-3 PREDICTION AND NON UNIFORM FLUX DATA

(-0.15 XDNB +0.15) - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 3.2-80 3.2-31 COMPARISON OF W-3 PREDICTION WITH MEASURED DNB LOCATION - - - - - 3.2-81 3.2-32 RADIAL POWER DISTRIBUTION - - - - - - - - - - - - - - - - - - - - - - - - - - - 3.2-82 3.2-33 MEASURED vs. PREDICTED CRITICAL HEAT FLUX WRB-1 CORRELATION - - - - 3.2-83 3.2-34 REACTOR CORE CROSS SECTION - - - - - - - - - - - - - - - - - - - - - - - - - - 3.2-84 3.2-35 REACTOR VESSEL INTERNALS - - - - - - - - - - - - - - - - - - - - - - - - - - - 3.2-85 3.2-36 BOTTOM NOZZLE FLOW HOLE COMPARISON - - - - - - - - - - - - - - - - - - - 3.2-86 3.2-37 LOWER CORE SUPPORT STRUCTURE - - - - - - - - - - - - - - - - - - - - - - - - 3.2-87 3.2-38 UPPER CORE SUPPORT ASSEMBLY - - - - - - - - - - - - - - - - - - - - - - - - - 3.2-88 3.2-39 GUIDE TUBE ASSEMBLY - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 3.2-89 3.2-40 FUEL ASSEMBLY AND CONTROL CLUSTER CROSS SECTION - - - - - - - - - - - 3.2-90 3.2-41 FUEL ASSEMBLY OUTLINE (Sheets 1-5) - - - - - - - - - - - - - - - - - - - - - - - 3.2-91 3.2-41 14 X 14 422VANTAGE + (422V+) FUEL ASSEMBLY OUTLINE (Sheet 6) - - - - - - - 3.2-96 3.2-41 COMPARISON OF 14 X 14 OFA AND 422V + FUEL ROD DESIGNS (Sheet 7) - - - - - 3.2-97 3.2-42 SPRING CLIP GRID ASSEMBLY WITH SPLIT MIXING VANES - - - - - - - - - - - 3.2-98 3.2-42a SPRING CLIP GRID ASSEMBLY WITH SPLIT MIXING VANES - - - - - - - - - - - 3.2-99 3.2-43 REACTOR VESSEL STRESS CONCENTRATIONS (Sheets 1-3) - - - - - - - - - - - - 3.2-100 3.4-1 TYPICAL ROD CLUSTER CONTROL ASSEMBLY - - - - - - - - - - - - - - - - - - 3.4-12 3.4-2 CONTROL ROD DRIVE MECHANISM ASSEMBLY - - - - - - - - - - - - - - - - - - 3.4-13 3.4-3 CONTROL ROD DRIVE MECHANISM SCHEMATIC - - - - - - - - - - - - - - - - - 3.4-14 3.4-4 DETAIL OF BURNABLE POISON ROD - - - - - - - - - - - - - - - - - - - - - - - - 3.4-15 4.2-1 UNIT 1 REACTOR COOLANT SYSTEM PROCESS FLOW DIAGRAM (Sheet 1) - - - - 4.2-22 4.2-1 UNIT 1 REACTOR COOLANT SYSTEM PROCESS FLOW DIAGRAM (Sheet 2) - - - - 4.2-23 4.2-1 UNIT 1 REACTOR COOLANT SYSTEM PROCESS FLOW DIAGRAM (Sheet 3) - - - - 4.2-24 UFSAR 2020 Page LOF - 3 of 16

List of Figures FSAR 4.2-1A UNIT 2 REACTOR COOLANT SYSTEM PROCESS FLOW DIAGRAM (Sheet 1) - - - - 4.2-25 4.2-1A UNIT 2 REACTOR COOLANT SYSTEM PROCESS FLOW DIAGRAM (Sheet 2) - - - - 4.2-26 4.2-1A UNIT 2 REACTOR COOLANT SYSTEM PROCESS FLOW DIAGRAM (Sheet 3) - - - - 4.2-27 4.2-2 REACTOR VESSEL SCHEMATIC - - - - - - - - - - - - - - - - - - - - - - - - - - - 4.2-28 4.2-3 PRESSURIZER - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 4.2-29 4.2-4 UNIT 1 STEAM GENERATOR - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 4.2-30 4.2-5 UNIT 2 STEAM GENERATOR - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 4.2-31 4.2-6 REACTOR COOLANT PUMP - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 4.2-32 4.2-7 REACTOR COOLANT PUMP ESTIMATED PERFORMANCE CHARACTERISTICS - - 4.2-33 4.2-8 REACTOR COOLANT PUMP FLYWHEEL - - - - - - - - - - - - - - - - - - - - - - 4.2-34 4.2-9 FLYWHEEL STRESS - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 4.2-35 5.1-1 CONTAINMENT STRUCTURE - GENERAL ARRANGEMENT (Sheets 1-3) - - - - - - 5.1-75 5.1-2 CONTAINMENT STRUCTURE - TYPICAL PIPING PENETRATIONS - - - - - - - - - 5.1-78 5.1-3 CONTAINMENT STRUCTURE - TYPICAL ELECTRICAL PENETRATIONS - - - - - 5.1-79 5.1-4 CONTAINMENT STRUCTURE - PERSONNEL LOCK - - - - - - - - - - - - - - - - - 5.1-80 5.1-5 CONTAINMENT STRUCTURE - EQUIPMENT HATCH - - - - - - - - - - - - - - - - 5.1-81 5.1-6 DESIGN THERMAL GRADIENT ACROSS CONTAINMENT WALL POINT BEACH NUCLEAR PLANT - - - - - - - - - - - - - - - - - - - - - - - - - - - 5.1-82 5.1-7 EARTHQUAKE RESPONSE SPECTRUM - 0.06g - - - - - - - - - - - - - - - - - - - - 5.1-83 5.1-8 EARTHQUAKE RESPONSE SPECTRUM - 0.12g - - - - - - - - - - - - - - - - - - - - 5.1-84 5.1-9 CONTAINMENT STRUCTURE - FINITE ELEMENT MESH - - - - - - - - - - - - - - 5.1-85 5.1-10 CONTAINMENT STRUCTURE - ISO-STRESS PLOTS: DOME AND WALL (Sheets 1-5) - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 5.1-86 5.1-11 CONTAINMENT STRUCTURE - ISO-STRESS PLOTS: BASE AND WALL (Sheets 1-8) - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 5.1-91 5.1-12 CONTAINMENT STRUCTURE - FINITE ELEMENT MESH FOR BUTTRESS - - - - - 5.1-99 5.1-13 ISO-STRESS PLOTS - CONTAINMENT STRUCTURE BUTTRESS (Sheets 1-2) - - - - 5.1-100 5.1-14 CONTAINMENT STRUCTURE - EARTHQUAKE RESPONSE DATA - - - - - - - - - 5.1-102 5.1-15 CONTAINMENT STRUCTURE - CONSTRUCTION DETAILS AT EQUIPMENT OPENING - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 5.1-103 5.1-16 CONTAINMENT STRUCTURE - PENETRATION LOADS - - - - - - - - - - - - - - - 5.1-104 5.1-17 CONTAINMENT STRUCTURE - THERMAL GRADIENTS AT MAIN STEAM PENETRATION - - - - - - - - - - - - - - - - - - - - - - - - - - - - 5.1-105 5.1-18 CONTAINMENT STRUCTURE - MODEL FOR LINER PLATE ANALYSIS (Sheets 1-2) - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 5.1-106 5.1-19 CONTAINMENT STRUCTURE - RESULTS FROM TESTS ON LINER PLATE ANCHORS - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 5.1-108 5.1-20 FUEL TRANSFER TUBE PENETRATION - - - - - - - - - - - - - - - - - - - - - - - 5.1-109 5.2-1 MAIN STEAM LOOP A - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 5.2-11 5.2-2 MAIN STEAM LOOP B - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 5.2-12 5.2-3 MAIN FEEDWATER LINE TO STEAM GENERATOR - - - - - - - - - - - - - - - - - 5.2-13 5.2-4 MAIN FEEDWATER LINE TO STEAM GENERATOR - - - - - - - - - - - - - - - - - 5.2-14 UFSAR 2020 Page LOF - 4 of 16

List of Figures FSAR 5.2-5-1 AUXILIARY FEEDWATER LINES (UNIT 1) - - - - - - - - - - - - - - - - - - - - - - 5.2-15 5.2-5-2 AUXILIARY FEEDWATER LINES (UNIT 2) - - - - - - - - - - - - - - - - - - - - - - 5.2-16 5.2-6-1 AUXILIARY FEEDWATER LINES (UNIT 1) - - - - - - - - - - - - - - - - - - - - - - 5.2-17 5.2-6-2 AUXILIARY FEEDWATER LINES (UNIT 2) - - - - - - - - - - - - - - - - - - - - - - 5.2-18 5.2-7 RESIDUAL HEAT REMOVAL SUCTION - - - - - - - - - - - - - - - - - - - - - - - 5.2-19 5.2-8 RESIDUAL HEAT REMOVAL LOOP IN - - - - - - - - - - - - - - - - - - - - - - - - 5.2-20 5.2-9 REACTOR COOLANT DRAIN TANK DISCHARGE - - - - - - - - - - - - - - - - - - 5.2-21 5.2-10 LETDOWN LINE - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 5.2-22 5.2-11 EXCESS LETDOWN AND REACTOR COOLANT PUMP SEAL WATER RETURN LINE - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 5.2-23 5.2-12a CONTAINMENT DI WATER SUPPLY - - - - - - - - - - - - - - - - - - - - - - - - - 5.2-24 5.2-12c CONTAINMENT VENT HEADER - - - - - - - - - - - - - - - - - - - - - - - - - - - 5.2-25 5.2-13 UNIT 1 AND UNIT 2 SAFETY INJECTION SYSTEM LINES - - - - - - - - - - - - - - 5.2-26 5.2-14a PRESSURIZER RELIEF TANK NITROGEN SUPPLY LINE - - - - - - - - - - - - - - 5.2-27 5.2-14b CONTAINMENT PRESSURE TRANSMITTERS - - - - - - - - - - - - - - - - - - - - 5.2-28 5.2-14c ACCUMULATOR NITROGEN SUPPLY - - - - - - - - - - - - - - - - - - - - - - - - 5.2-29 5.2-15 COMPONENT COOLING WATER TO REACTOR COOLANT PUMP - - - - - - - - - 5.2-30 5.2-16 COMPONENT COOLING WATER TO REACTOR COOLANT PUMP - - - - - - - - - 5.2-31 5.2-17 COMPONENT COOLING WATER FROM REACTOR COOLANT PUMP - - - - - - - - 5.2-32 5.2-18 COMPONENT COOLING WATER FROM REACTOR COOLANT PUMP - - - - - - - - 5.2-33 5.2-19 COMPONENT COOLING WATER TO EXCESS LETDOWN HEAT EXCHANGER - - - 5.2-34 5.2-20 COMPONENT COOLING WATER FROM EXCESS LETDOWN HEAT EXCHANGER - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 5.2-35 5.2-22 LOW HEAD SAFETY INJECTION - - - - - - - - - - - - - - - - - - - - - - - - - - - 5.2-36 5.2-25c POST-ACCIDENT CONTAINMENT VENT SYSTEM (UNIT 1) - - - - - - - - - - - - - 5.2-37 5.2-26 CHARGING LINE - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 5.2-38 5.2-27 SAFETY INJECTION SYSTEM - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 5.2-39 5.2-28a REACTOR COOLANT SYSTEM SAMPLE LINES (HOT LEG SAMPLE) - - - - - - - - 5.2-40 5.2-28b REACTOR COOLANT SYSTEM SAMPLE LINES (PZR LIQUID SAMPLE) - - - - - - 5.2-41 5.2-28c REACTOR COOLANT SYSTEM SAMPLE LINES (PZR STEAM SPACE SAMPLE) - - 5.2-42 5.2-29a REACTOR COOLANT PUMP SEAL WATER SUPPLY LINE (PUMP A) - - - - - - - - 5.2-43 5.2-29b REACTOR COOLANT PUMP SEAL WATER SUPPLY LINE (PUMP B) - - - - - - - - 5.2-44 5.2-30c PRESSURIZER RELIEF TANK MAKEUP - - - - - - - - - - - - - - - - - - - - - - - 5.2-45 5.2-31a CONTAINMENT PRESSURE TRANSMITTERS - - - - - - - - - - - - - - - - - - - - 5.2-46 5.2-31b POST-ACCIDENT CONTAINMENT VENT SYSTEM SAMPLE - - - - - - - - - - - - 5.2-47 5.2-31c POST-ACCIDENT CONTAINMENT VENT SYSTEM - - - - - - - - - - - - - - - - - - 5.2-48 5.2-32a CONTAINMENT PRESSURE TRANSMITTERS - - - - - - - - - - - - - - - - - - - - 5.2-49 5.2-32b SAFETY INJECTION TEST LINE - - - - - - - - - - - - - - - - - - - - - - - - - - - 5.2-50 5.2-32c AUXILIARY CHARGING LINE - - - - - - - - - - - - - - - - - - - - - - - - - - - - 5.2-51 5.2-33ab1 INSTRUMENT AIR HEADERS (UNIT 1) - - - - - - - - - - - - - - - - - - - - - - - - 5.2-52 5.2-33ab2 INSTRUMENT AIR HEADERS (UNIT 2) - - - - - - - - - - - - - - - - - - - - - - - - 5.2-53 UFSAR 2020 Page LOF - 5 of 16

List of Figures FSAR 5.2-33c UNIT 1 AND UNIT 2 SERVICE AIR HEADER - - - - - - - - - - - - - - - - - - - - - 5.2-54 5.2-34a PRESSURIZER RELIEF TANK GAS ANALYZER LINE - - - - - - - - - - - - - - - - 5.2-55 5.2-34b STEAM GENERATOR BLOWDOWN SAMPLE LINE - - - - - - - - - - - - - - - - - 5.2-56 5.2-34c STEAM GENERATOR BLOWDOWN SAMPLE LINE - - - - - - - - - - - - - - - - - 5.2-57 5.2-34d UNIT 1 & UNIT 2 REACTOR COOLANT DRAIN TANK SAMPLE TO GAS ANALYZER - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 5.2-58 5.2-35-1 SERVICE WATER SUPPLY TO CONTAINMENT FAN COOLER UNITS (UNIT 1) - - - 5.2-59 5.2-35-2 SERVICE WATER SUPPLY TO CONTAIMENT FAN COOLER UNITS (UNIT 2) - - - - 5.2-60 5.2-36-1 SERVICE WATER SUPPLY TO CONTAIMENT FAN COOLER UNITS (UNIT 1) - - - - 5.2-61 5.2-36-2 SERVICE WATER SUPPLY TO CONTAINMENT FAN COOLER UNITS (UNIT 2) - - - 5.2-62 5.2-37-1 SPARE LINE (UNIT 1) - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 5.2-63 5.2-37-2 SPARE LINE (UNIT 2) - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 5.2-64 5.2-38-1 SPARE LINE (UNIT 1) - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 5.2-65 5.2-38-2 SPARE LINE (UNIT 2) - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 5.2-66 5.2-39-1 SERVICE WATER SUPPLY TO CONTAIMENT FAN COOLER UNITS (UNIT 1) - - - - 5.2-67 5.2-39-2 SERVICE WATER SUPPLY TO CONTAIMENT FAN COOLER UNITS (UNIT 2) - - - - 5.2-68 5.2-40-1 SERVICE WATER SUPPLY TO CONTAIMENT FAN COOLER UNITS (UNIT 1) - - - - 5.2-69 5.2-40-2 SERVICE WATER SUPPLY TO CONTAIMENT FAN COOLER UNITS (UNIT 2) - - - - 5.2-70 5.2-42c-2 POST ACCIDENT CONTAINMENT VENT SYSTEM (UNIT 2) - - - - - - - - - - - - - 5.2-71 5.2-43-1 SERVICE WATER RETURN LINE FROM CONTAIMENT FAN COOLER UNITS (UNIT 1) - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 5.2-72 5.2-43-2 SERVICE WATER RETURN LINE TO CONTAIMENT FAN COOLER UNITS (UNIT 2) - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 5.2-73 5.2-44-1 SERVICE WATER RETURN LINE FROM CONTAIMENT FAN COOLER UNITS (UNIT 1) - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 5.2-74 5.2-44-2 SERVICE WATER RETURN LINE TO CONTAIMENT FAN COOLER UNITS (UNIT 2) - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 5.2-75 5.2-45-1 SPARE LINE (UNIT 1) - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 5.2-76 5.2-45-2 SPARE LINE (UNIT 2) - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 5.2-77 5.2-46-1 SPARE LINE (UNIT 1) - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 5.2-78 5.2-46-2 SPARE LINE (UNIT 2) - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 5.2-79 5.2-47-1 SERVICE WATER RETURN LINE FROM CNTAINMENT FAN COOLER UNITS (UNIT 1) - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 5.2-80 5.2-47-2 SERVICE WATER RETURN LINE TO CONTAINMENT FAN COOLER UNITS (UNIT 2) - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 5.2-81 5.2-48-1 SERVICE WATER RETURN LINE FROM CONTAINMENT FAN COOLER UNITS (UNIT 1) - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 5.2-82 5.2-48-2 SERVICE WATER RETURN LINE TO CONTAINMENT FAN COOLER UNITS (UNIT 2) - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 5.2-83 5.2-50-1 STEAM GENERATOR BLOWDOWN LINE (UNIT 1) - - - - - - - - - - - - - - - - - 5.2-84 5.2-50-2 STEAM GENERATOR BLOWDOWN LINE (UNIT 2) - - - - - - - - - - - - - - - - - 5.2-85 5.2-51-1 STEAM GENERATOR BLOWDOWN LINE (UNIT 1) - - - - - - - - - - - - - - - - - 5.2-86 5.2-51-2 STEAM GENERATOR BLOWDOWN LINE (UNIT 2) - - - - - - - - - - - - - - - - - 5.2-87 5.2-54 CONTAINMENT SPRAY HEADERS - - - - - - - - - - - - - - - - - - - - - - - - - - 5.2-88 UFSAR 2020 Page LOF - 6 of 16

List of Figures FSAR 5.2-55 CONTAIMENT SPRAY HEADERS - - - - - - - - - - - - - - - - - - - - - - - - - - - 5.2-89 5.2-56 SPARE CONNECTION - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 5.2-90 5.2-57-1 MAIN STEAM GENERATOR VENTS - - - - - - - - - - - - - - - - - - - - - - - - - 5.2-91 5.2-57-2 MAIN STEAM GENERATOR VENTS - - - - - - - - - - - - - - - - - - - - - - - - - 5.2-92 5.2-58-1 MAIN STEAM GENERATOR VENTS - - - - - - - - - - - - - - - - - - - - - - - - - 5.2-93 5.2-58-2 MAIN STEAM GENERATOR VENTS - - - - - - - - - - - - - - - - - - - - - - - - - 5.2-94 5.2-67-2 SPARE (UNIT 2 ONLY) - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 5.2-95 5.2-69 CONTAINMENT SUMP RECIRCULATION LINES - - - - - - - - - - - - - - - - - - - 5.2-96 5.2-70 CONTAINMENT SUMP RECIRCULATION LINES - - - - - - - - - - - - - - - - - - - 5.2-97 5.2-71 CONTAINMENT SUMP DISCHARGE - - - - - - - - - - - - - - - - - - - - - - - - - 5.2-98 5.2-V1 CONTAIMENT VENT PURGE EXHAUST DUCT - - - - - - - - - - - - - - - - - - - 5.2-99 5.2-V2 CONTAIMENT VENT PURGE SUPPLY DUCT - - - - - - - - - - - - - - - - - - - - - 5.2-100 5.2-X1 CONTAINMENT AIR SAMPLE OUT - - - - - - - - - - - - - - - - - - - - - - - - - - 5.2-101 5.2-X2 CONTAINMENT AIR SAMPLE IN - - - - - - - - - - - - - - - - - - - - - - - - - - - 5.2-102 5.2-72 FUEL TRANSFER TUBE PENETRATION - - - - - - - - - - - - - - - - - - - - - - - 5.2-103 5.2-73-1 PILE FOUNDATION LAYOUT - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 5.2-104 5.3-1 UNITS 1 & 2 CONTAINMENT VENTILATION SYSTEM FLOW DIAGRAM (Sheet 1) - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 5.3-8 5.3-1 UNIT 1 CONTAINMENT VENTILATION SYSTEM FLOW DIAGRAM (Sheet 2) - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 5.3-9 5.3-1 CONTAINMENT VENTILATION SYSTEM FLOW DIAGRAM (Sheet 3) - - - - - - - - 5.3-10 5.6-1 CONTAINMENT STRUCTURE - PRESTRESS TENDON HARDWARE ASSEMBLY (Sheet 1) - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 5.6-23 5.6-1 CONTAINMENT STRUCTURE - PRESTRESS TENDON HARDWARE ASSEMBLY (Sheet 2) - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 5.6-24 5.6-1 CONTAINMENT STRUCTURE - PRESTRESS TENDON HARDWARE ASSEMBLY (Sheet 3) - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 5.6-25 5.6-1 CONTAINMENT STRUCTURE - PRESTRESS TENDON HARDWARE ASSEMBLY (Sheet 4) - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 5.6-26 5.6-2 ALUMINUM CORROSION IN DBA ENVIRONMENT - - - - - - - - - - - - - - - - - 5.6-27 5.6-3 BORON LOSS FROM BORON - CONCRETE REACTION FOLLOWING A DBA - - - - 5.6-28 5.6-4 TEMPERATURE - CONCENTRATION RELATION FOR CAUSTIC CORROSION OF AUSTENITIC STAINLESS STEEL - - - - - - - - - - - - - - - - - - - - - - - - - 5.6-29 6.2-1 UNIT 2 SAFETY INJECTION SYSTEM (Sheets 1-3) - - - - - - - - - - - - - - - - - - 6.2-43 6.2-2 SIS DRAINS - ELEVATION - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 6.2-46 6.2-3 CONTAINMENT DRAINS - PLAN - - - - - - - - - - - - - - - - - - - - - - - - - - - 6.2-47 6.2-4 SAFETY INJECTION PUMP PERFORMANCE CHARACTERISTICS - - - - - - - - - - 6.2-48 6.2-5 RHR PUMP PERFORMANCE CHARACTERISTICS - - - - - - - - - - - - - - - - - - 6.2-49 6.3-1 FAN COOLER UNIT SCHEMATIC (Sheets 1-2) - - - - - - - - - - - - - - - - - - - - - 6.3-17 6.4-1 CONTAINMENT SPRAY PUMP PERFORMANCE CHARACTERISTICS - - - - - - - - 6.4-23 6.4-2 TEMPERATURE - CONCENTRATION RELATION FOR CAUSTIC CORROSION OF AUSTENITIC STAINLESS STEEL - - - - - - - - - - - - - - - - - - - - - - - - - 6.4-24 6.4-3 EFFECT OF CARBON DIOXIDE ON CORROSION OF IRON IN NaOH SOLUTION - - 6.4-25 6.5-1 UNIT 1 CONTAINMENT RADIATION MONITORING SYSTEM - - - - - - - - - - - - 6.5-10 UFSAR 2020 Page LOF - 7 of 16

List of Figures FSAR 7.2-1 REACTOR CORE SAFETY LIMITS - - - - - - - - - - - - - - - - - - - - - - - - - - 7.2-34 7.2-2 TYPICAL ILLUSTRATION OF HIGH T TRIP (T vs. TAVG) - - - - - - - - - - - - - 7.2-35 7.2-3 REACTOR PROTECTION SYSTEMS - - - - - - - - - - - - - - - - - - - - - - - - - 7.2-36 7.2-4 DESIGN TO ACHIEVE ISOLATION BETWEEN CHANNELS - - - - - - - - - - - - - 7.2-37 7.2-5 BASIC ELEMENTS OF AN ANALOG CHANNEL - - - - - - - - - - - - - - - - - - - 7.2-38 7.2-6 SIMPLIFIED TRIP LOGIC TRAINS - - - - - - - - - - - - - - - - - - - - - - - - - - 7.2-39 7.2-7 LOGIC CHANNEL TEST PANELS (UNIT 1) - - - - - - - - - - - - - - - - - - - - - - 7.2-40 7.2-8 TAVG/T CONTROL AND PROTECTION SYSTEM - - - - - - - - - - - - - - - - - - 7.2-41 7.2-9 ANALOG SYSTEM SYMBOLS - - - - - - - - - - - - - - - - - - - - - - - - - - - - 7.2-42 7.2-10 PRESSURIZER PRESSURE CONTROL AND PROTECTION SYSTEM - - - - - - - - - 7.2-43 7.2-11 PRESSURIZER LEVEL CONTROL AND PROTECTION SYSTEM - - - - - - - - - - - 7.2-44 7.2-12 STEAM GENERATOR LEVEL CONTROL AND PROTECTION SYSTEM - - - - - - - 7.2-45 7.3-1 ENGINEERED SAFETY FEATURE LOGIC DIAGRAM - - - - - - - - - - - - - - - - 7.3-21 7.3-2 ENGINEERED SAFETY FEATURE LOGIC MATRIX - - - - - - - - - - - - - - - - - 7.3-22 7.4-1 LOSS OF FEEDWATER TURBINE TRIP - - - - - - - - - - - - - - - - - - - - - - - - 7.4-8 7.5-1 MAIN CONTROL ROOM LAYOUT - - - - - - - - - - - - - - - - - - - - - - - - - - 7.5-15 7.6-1 NUCLEAR INSTRUMENTATION SYSTEM - - - - - - - - - - - - - - - - - - - - - - 7.6-21 7.6-2 NEUTRON DETECTORS AND RANGE OF OPERATION - - - - - - - - - - - - - - - 7.6-22 7.6-3 EX-CORE DETECTOR LOCATIONS RELATIVE TO CORE - - - - - - - - - - - - - - 7.6-23 7.6-4 IN-CORE INSTRUMENTATION - DETAILS - - - - - - - - - - - - - - - - - - - - - - 7.6-24 7.6-5 BLOCK DIAGRAM OF THE LOOSE PARTS MONITORING SYSTEM - - - - - - - - - 7.6-25 7.7-1 SIMPLIFIED BLOCK DIAGRAM OF REACTOR CONTROL SYSTEM - - - - - - - - - 7.7-17 7.7-2 POWER SUPPLY TO ROD CONTROL EQUIPMENT AND CONTROL ROD DRIVE MECHANISMS - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 7.7-18 8-1 UNITS 1 & 2 MAIN ONE LINE DIAGRAM - - - - - - - - - - - - - - - - - - - - - - - 8.0-7 8-2 UNIT 1 480 VOLT ONE LINE DIAGRAM - - - - - - - - - - - - - - - - - - - - - - - 8.0-8 8-3 UNIT 2 480 VOLT ONE LINE DIAGRAM (Sheets 1-3) - - - - - - - - - - - - - - - - - 8.0-9 8-4 480V ONE LINE DIAGRAM ALTERNATE SHUTDOWN SYSTEM - - - - - - - - - - 8.0-12 8-5 UNITS 1 & 2 125 V ONE LINE DIAGRAM - - - - - - - - - - - - - - - - - - - - - - - 8.0-13 8-6 UNITS 1 & 2 125 VDC ONE LINE DIAGRAM - - - - - - - - - - - - - - - - - - - - - 8.0-14 8-7 125V ONE LINE DIAGRAM - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 8.0-15 8-8 UNITS 1 & 2 INSTRUMENT BUS ONE LINE DIAGRAM - - - - - - - - - - - - - - - 8.0-16 8.1-1 345 kV SWITCHYARD AND INTERCONNECTIONS - - - - - - - - - - - - - - - - - 8.1-5 8.1-2 PBNP 345 kV INTERCONNECTIONS - - - - - - - - - - - - - - - - - - - - - - - - - 8.1-6 8.2-1 13.8 kV SIMPLIFIED ONE LINE DIAGRAM - - - - - - - - - - - - - - - - - - - - - - 8.2-4 8.4-1 4.16 kV AC DISTRIBUTION SYSTEM - - - - - - - - - - - - - - - - - - - - - - - - - 8.4-4 8.6-1 INSTRUMENT POWER RED AND BLUE CHANNELS - - - - - - - - - - - - - - - - - 8.6-4 8.6-2 INSTRUMENT POWER WHITE AND YELLOW CHANNELS - - - - - - - - - - - - - 8.6-5 8.6-3 INSTRUMENT POWER NON-PROTECTION SECTION - - - - - - - - - - - - - - - - 8.6-6 8.7-1 125 VDC ELECTRICAL DISTRIBUTION - - - - - - - - - - - - - - - - - - - - - - - - 8.7-5 9.1-1 UNIT 1 AUXILIARY COOLANT SYSTEM - - - - - - - - - - - - - - - - - - - - - - - 9.1-11 UFSAR 2020 Page LOF - 8 of 16

List of Figures FSAR 9.1-2 UNIT 1 AUXILIARY COOLANT SYSTEM - - - - - - - - - - - - - - - - - - - - - - - 9.1-12 9.2-1 UNIT 1 AUXILIARY COOLANT SYSTEM - - - - - - - - - - - - - - - - - - - - - - - 9.2-7 9.3-1 UNIT 1 CHEMICAL AND VOLUME CONTROL - - - - - - - - - - - - - - - - - - - - 9.3-30 9.3-2 UNIT 1 CHEMICAL AND VOLUME CONTROL - - - - - - - - - - - - - - - - - - - - 9.3-31 9.3-3 UNIT 1 CHEMICAL AND VOLUME CONTROL - - - - - - - - - - - - - - - - - - - - 9.3-32 9.3-4 UNIT 1 CHEMICAL AND VOLUME CONTROL - - - - - - - - - - - - - - - - - - - - 9.3-33 9.3-5 UNIT 1 CHEMICAL AND VOLUME CONTROL - - - - - - - - - - - - - - - - - - - - 9.3-34 9.4-1 FUEL TRANSFER SYSTEM - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 9.4-14 9.6-1 UNIT 1 SERVICE WATER SYSTEM - - - - - - - - - - - - - - - - - - - - - - - - - - 9.6-9 9.6-2 UNIT 1 SERVICE WATER SYSTEM - - - - - - - - - - - - - - - - - - - - - - - - - - 9.6-10 9.6-3 UNIT 1 SERVICE WATER SYSTEM - - - - - - - - - - - - - - - - - - - - - - - - - - 9.6-11 9.6-4 UNIT 1 SERVICE WATER SYSTEM - - - - - - - - - - - - - - - - - - - - - - - - - - 9.6-12 9.6-5 UNIT 1 SERVICE WATER SYSTEM - - - - - - - - - - - - - - - - - - - - - - - - - - 9.6-13 9.6-6 UNIT 2 SERVICE WATER SYSTEM - - - - - - - - - - - - - - - - - - - - - - - - - - 9.6-14 9.6-7 UNIT 2 SERVICE WATER SYSTEM - - - - - - - - - - - - - - - - - - - - - - - - - - 9.6-15 9.8-1 CONTROL ROOM VENTILATION OPERATING MODES (Sheets 1-5) - - - - - - - - - 9.8-7 9.9-1 UNIT 1 SPENT FUEL POOL COOLING SYSTEM - - - - - - - - - - - - - - - - - - - 9.9-12 9.11-1 UNIT 1 SAMPLING SYSTEM - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 9.11-10 10.1-1 UNITS 1 & 2 MAIN AND REHEAT STEAM FLOW DIAGRAM (Sheet 1) - - - - - - - - 10.1-22 10.1-1 UNIT 1 MAIN AND REHEAT STEAM FLOW DIAGRAM (Sheets 2-3) - - - - - - - - - 10.1-23 10.1-1A UNIT 2 MAIN AND REHEAT STEAM FLOW DIAGRAM (Sheets 1-3) - - - - - - - - - 10.1-25 10.1-2 UNIT 1 CONDENSATE AND FEEDWATER FLOW DIAGRAM (Sheets 1-3) - - - - - - 10.1-28 10.1-2A UNIT 2 CONDENSATE AND FEEDWATER FLOW DIAGRAM (Sheets 1-3) - - - - - - 10.1-31 10.1-3 UNIT 1 EXTRACTION STEAM FLOW DIAGRAM (Sheets 1-2) - - - - - - - - - - - - - 10.1-34 10.1-3A UNIT 2 EXTRACTION STEAM FLOW DIAGRAM (Sheets 1-2) - - - - - - - - - - - - - 10.1-36 10.1-4 UNIT 1 FEEDWATER HEATER DRAINS FLOW DIAGRAM (Sheets 1-3) - - - - - - - - 10.1-38 10.1-4A UNIT 2 FEEDWATER HEATER DRAINS FLOW DIAGRAM (Sheets 1-3) - - - - - - - - 10.1-41 10.1-6 UNIT 1 CIRCULATING WATER CONDENSER AIR REMOVAL - - - - - - - - - - - - 10.1-44 10.1-6A UNIT 2 CIRCULATING WATER CONDENSER AIR REMOVAL - - - - - - - - - - - - 10.1-45 10.1-6B UNITS 1 & 2 CIRCULATING WATER SYSTEM SCREEN WASH (Sheet 2) - - - - - - - 10.1-46 10.1-7 UNIT 1 FEEDWATER HEATER VENTS AND RELIEFS FLOW DIAGRAM - - - - - - 10.1-47 10.1-7A UNIT 2 FEEDWATER HEATER VENTS AND FLOW DIAGRAM - - - - - - - - - - - 10.1-48 10.1-8 UNIT 1 GLAND STEAM AND DRAINS FLOW DIAGRAM - - - - - - - - - - - - - - - 10.1-49 10.1-8A UNIT 2 GLAND STEAM AND DRAINS FLOW DIAGRAM - - - - - - - - - - - - - - - 10.1-50 10.2-1 UNITS 1 & 2 AUXILIARY FEEDWATER SYSTEM FLOW DIAGRAM (Sheet 1) - - - - 10.2-12 10.2-1 UNITS 1 & 2 AUXILIARY FEEDWATER SYSTEM FLOW DIAGRAM (Sheet 2) - - - - 10.2-13 10.2-1 UNIT 1 AUXILIARY FEEDWATER SYSTEM FLOW DIAGRAM (Sheet 3) - - - - - - - 10.2-14 11.1-1 UNITS 1 & 2 WASTE DISPOSAL SYSTEM PROCESS FLOW DIAGRAM (Sheets 1-2) - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 11.1-17 11.1-2 UNITS 1 & 2 BLOWDOWN EVAPORATOR SYSTEM - - - - - - - - - - - - - - - - - 11.1-19 11.1-3 UNITS 1 & 2 CONDENSATE WASTE POLISHING DEMINERALIZER - - - - - - - - - 11.1-20 UFSAR 2020 Page LOF - 9 of 16

List of Figures FSAR 11.2-1 UNITS 1 & 2 WASTE GAS DISPOSAL SYSTEM PROCESS FLOW DIAGRAM (Sheets 1-3) - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 11.2-24 11.2-2 UNITS 1 & 2 GAS STRIPPER SYSTEM - - - - - - - - - - - - - - - - - - - - - - - - 11.2-27 11.2-3 UNITS 1 & 2 CRYOGENIC GAS SEPARATION SYSTEM (Sheets 1-2) - - - - - - - - - 11.2-28 11.2-4 UNITS 1 & 2 CONDENSER AIR REMOVAL DECAY SYSTEM - - - - - - - - - - - - 11.2-30 11.4-1 UNIT 1 CONTAINMENT OPERTING FLOOR AND MISCELLANIOUS UPPER FLOORS SOUTH - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 11.4-14 11.4-2 UNIT 1 RADIATION CONTROL AREA - OPERATING FLOOR - - - - - - - - - - - - 11.4-15 11.4-3 UNIT 1 RADIATION CONTROL AREA - INTERMEDIATE FLOOR - - - - - - - - - - 11.4-16 11.4-4 UNIT 1 RADIATION CONTROL AREA - GROUND FLOOR - - - - - - - - - - - - - - 11.4-17 11.4-5 UNIT 2 CONTAIMENT OPERATING FLOOR AND MISCELLANOUS UPPER FLOORS NORTH - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 11.4-18 11.4-6 UNIT 2 OPERATING FLOOR LEVELS NORTH - - - - - - - - - - - - - - - - - - - - 11.4-19 11.4-7 UNIT 2 INTERMEDIATE FLOOR LEVELS NORTH - - - - - - - - - - - - - - - - - - 11.4-20 11.4-8 UNIT 2 GROUND FLOOR NORTH - - - - - - - - - - - - - - - - - - - - - - - - - - - 11.4-21 11.5-1 TYPICAL RMS CHANNEL FUNCTIONAL BLOCK DIAGRAM - - - - - - - - - - - - 11.5-26 11.5-2 RADIATION MONITORING SYSTEM FUNCTIONAL BLOCK DIAGRAM - - - - - - 11.5-27 11.6-1 MAXIMUM RADIATION LEVELS SURROUNDING 14 IN. DIAMETER R.H.R. PIPE CIRCULATING WATER CONTAINING FISSION PRODUCT ACTIVITY FROM FUEL ROD GAPS (Historical) - - - - - - - - - - - - - - - - - - - - 11.6-19 11.6-2 SENSITIVITY OF DOSE TO ACTIVITY IN THE RESIDUAL HEAT REMOVAL WATER (Historical) - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 11.6-20 14.0-1 ILLUSTRATION OF OVERTEMPERATURE AND OVERPOWER DELTA-T PROTECTION - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 14.0-13 14.0-2 RCCA NORMALIZED ROD POSITION VS. TIME CURVE - - - - - - - - - - - - - - - 14.0-14 14.0-3 NORMALIZED REACTIVITY VS ROD POSITION - - - - - - - - - - - - - - - - - - - 14.0-15 14.0-4 NORMALIZED TRIP REACTIVITY VS TIME - - - - - - - - - - - - - - - - - - - - - 14.0-16 14.1.1-1 UNCONTROLLED RCCA BANK WITHDRAWAL FROM SUBCRITICAL NUCLEAR POWER TRANSIENT - - - - - - - - - - - - - - - - - - - - - - - - - - - 14.1.1-6 14.1.1-2 UNCONTROLLED RCCA BANK WITHDRAWAL FROM SUBCRITICAL HEAT FLUX TRANSIENT - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 14.1.1-7 14.1.1-3 UNCONTROLLED RCCA BANK WITHDRAWAL FROM SUBCRITICAL FUEL TEMPERATURE TRANSIENT - - - - - - - - - - - - - - - - - - - - - - - - - - 14.1.1-8 14.1.2-1 ROD WITHDRAWAL AT POWER 100%, MINIMUM FEEDBACK 100 PCM/SECOND (Sheets 1-3) - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 14.1.2-6 14.1.2-2 ROD WITHDRAWAL AT POWER 100%, MINIMUM FEEDBACK 1 PCM/SECOND (Sheets 1-3) - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 14.1.2-9 14.1.2-3 ROD WITHDRAWAL AT POWER 100% (Sheets 1-3) - - - - - - - - - - - - - - - - - - 14.1.2-12 14.1.3-1 NUCLEAR POWER TRANSIENT AND CORE HEAT FLUX TRANSIENT FOR DROPPED RCCA - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 14.1.3-3 14.1.3-2 PRESSURIZER PRESSURE TRANSIENT AND VESSEL AVERAGE TEMPERATURE TRANSIENT FOR DROPPED RCCA - - - - - - - - - - - - - - - - - 14.1.3-4 14.1.4-1 RATIO OF THE INITIAL BORON CONCENTRATION TO THE CRITICAL BORON CONCENTRATION (DILUTION FACTOR, DLF) AS A FUNCTION OF RHR FLOW RATE - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 14.1.4-5 14.1.5-1 START-UP OF AN INACTIVE REACTOR COOLANT LOOP - - - - - - - - - - - - - - 14.1.5-3 UFSAR 2020 Page LOF - 10 of 16

List of Figures FSAR 14.1.5-2 START-UP OF AN INACTIVE REACTOR COOLANT LOOP - - - - - - - - - - - - - - 14.1.5-4 14.1.5-3 START-UP OF AN INACTIVE REACTOR COOLANT LOOP - - - - - - - - - - - - - - 14.1.5-5 14.1.5-4 START-UP OF AN INACTIVE REACTOR COOLANT LOOP - - - - - - - - - - - - - - 14.1.5-6 14.1.7-1 EXCESSIVE LOAD INCREASE BOL, MANUAL CONTROL (Sheets 1-4) - - - - - - - - 14.1.7-4 14.1.7-2 EXCESSIVE LOAD INCREASE BOL, AUTO CONTROL (Sheets 1-4) - - - - - - - - - - 14.1.7-8 14.1.7-3 EXCESSIVE LOAD INCREASE EOL, MANUAL CONTROL (Shets 1-4)- - - - - - - - - 14.1.7-12 14.1.7-4 EXCESSIVE LOAD INCREASE EOL, AUTO CONTROL (Sheets 1-4) - - - - - - - - - - 14.1.7-16 14.1.8-1 UNDERFREQUENCY EVENT (5 Hz/sec FREQUENCY DECAY RATE) (Sheets 1-3)- - - 14.1.8-16 14.1.8-2 COMPLETE LOSS OF FLOW (2/2 RCP COASTDOWN) (Sheets 1-3) - - - - - - - - - - 14.1.8-19 14.1.8-3 RCP LOCKED ROTOR (Sheets 1-3) - - - - - - - - - - - - - - - - - - - - - - - - - - - 14.1.8-22 14.1.9-1 LOSS OF ELECTRICAL LOAD WITH PRESSURE CONTROL (DNB Case)

(Sheets 1-3) - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 14.1.9-6 14.1.9-2 LOSS OF ELECTRICAL LOAD WITHOUT PRESSURE CONTROL (RCS Overpressure Case) (Sheets 1-3) - - - - - - - - - - - - - - - - - - - - - - - - - - 14.1.9-9 14.1.9-3 LOSS OF ELECTRICAL LOAD WITH PRESSURE CONTROL (SG Overpressure Case)

(Sheets 1-3) - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 14.1.9-12 14.1.10-1 UNIT 1 (MODEL 44F SG) LOSS OF NORMAL FEEDWATER (Sheets 1-6) - - - - - - - - 14.1.10-5 14.1.10-2 UNIT 2 (Delta - 47 SG) LOSS OF NORMAL FEEDWATER (Sheets 1-6) - - - - - - - - - 14.1.10-11 14.1.11-1 UNIT 1 (MODEL 44F SG) LOSS OF AC POWER (Sheets 1-6) - - - - - - - - - - - - - - 14.1.11-5 14.1.11-2 UNIT 2 (DELTA - 47 SG) LOSS OF AC POWER (Sheets 1-6) - - - - - - - - - - - - - - 14.1.11-11 14.2.5-1 RUPTURE OF A STEAM PIPE UNIT 1 WITH OFFSITE POWER (Sheets 1-6) - - - - - - 14.2.5-16 14.2.5-2 RUPTURE OF A STEAM PIPE UNIT 1 WITHOUT OFFSITE POWER (Sheets 1-6)- - - - 14.2.5-22 14.2.5-3 CONTAINMENT PRESSURE MSLB CONTAINMENT RESPONSE ANALYSIS - - - - 14.2.5-28 14.2.5-4 CONTAINMENT TEMPERATURE MSLB CONTAINMENT RESPONSE ANALYSIS - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 14.2.5-29 14.2.6-1 RCCA EJECTION TRANSIENT BEGINNING OF LIFE ZERO POWER - - - - - - - - - 14.2.6-13 14.2.6-2 RCCA EJECTION TRANSIENT BEGINNING OF LIFE FULL POWER - - - - - - - - - 14.2.6-14 14.2.6-3 RCCA EJECTION TRANSIENT END OF LIFE ZERO POWER - - - - - - - - - - - - - 14.2.6-15 14.2.6-4 RCCA EJECTION TRANSIENT END OF LIFE FULL POWER - - - - - - - - - - - - - 14.2.6-16 14.3.1-1 HOT ROD AXIAL POWER DISTRIBUTION - - - - - - - - - - - - - - - - - - - - - - 14.3.1-14 14.3.1-2 PUMPED HHSI SAFETY INJECTION FLOW RATE FAULTED LOOP SPILLING TO RCS PRESSURE - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 14.3.1-15 14.3.1-3 PUMPED HHSI SAFETY INJECTION FLOW RATE FAULTED LOOP SPILLING TO CONTAINMENT PRESSURE - - - - - - - - - - - - - - - - - - - - - - 14.3.1-16 14.3.1-3A PUMPED LHSI SAFETY INJECTION FLOW RATE UPPER PLENUM INJECTION - - - 14.3.1-17 14.3.1-4 REACTOR COOLANT SYSTEM PRESSURE - 3 INCH BREAK POINT BEACH UNIT 1 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 14.3.1-18 14.3.1-5 CORE MIXTURE LEVEL AND TOP OF CORE - 3 INCH BREAK POINT BEACH UNIT 1 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 14.3.1-19 14.3.1-6 TOTAL REACTOR COOLANT SYSTEM MASS - 3 INCH BREAK POINT BEACH UNIT 1 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 14.3.1-20 14.3.1-7 TOP CORE EXIT VAPOR TEMPERATURE - 3 INCH BREAK POINT BEACH UNIT 1 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 14.3.1-21 14.3.1-8 VAPOR MASS FLOW RATE OUT OF TOP OF CORE - 3 INCH BREAK POINT BEACH UNIT 1 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 14.3.1-22 UFSAR 2020 Page LOF - 11 of 16

List of Figures FSAR 14.3.1-9 TOTAL BREAK FLOW AND SAFETY INJECTION FLOW - 3 INCH BREAK POINT BEACH UNIT 1 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 14.3.1-23 14.3.1-10 CLADDING SURFACE HEAT TRANSFER COEFFICIENT AT PCT ELEVATION

- 3 INCH BREAK POINT BEACH UNIT 1 - - - - - - - - - - - - - - - - - - - - - - - - 14.3.1-24 14.3.1-11 FLUID TEMPERATURE AT PCT ELEVATION - 3 INCH BREAK POINT BEACH UNIT 1 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 14.3.1-25 14.3.1-12 CLADDING TEMPERATURE TRANSIENT AT PCT ELEVATION - 3 INCH BREAK POINT BEACH UNIT 1 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 14.3.1-26 14.3.1-13 LOCAL ZRO2 THICKNESS AT MAXIMUM LOCAL ZRO2 ELEVATION - 3 INCH BREAK POINT BEACH UNIT 1- - - - - - - - - - - - - - - - - - - - - - - - - - - - - 14.3.1-27 14.3.1-14 REACTOR COOLANT SYSTEM PRESSURE - 3 INCH BREAK POINT BEACH UNIT 2 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 14.3.1-28 14.3.1-15 CORE MIXTURE LEVEL AND TOP OF CORE - 3 INCH BREAK POINT BEACH UNIT 2 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 14.3.1-29 14.3.1-16 TOTAL REACTOR COOLANT SYSTEM MASS - 3 INCH BREAK POINT BEACH UNIT 2 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 14.3.1-30 14.3.1-17 TOP CORE EXIT VAPOR TEMPERATURE - 3 INCH BREAK POINT BEACH UNIT 2 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 14.3.1-31 14.3.1-18 VAPOR MASS FLOW RATE OUT OF TOP OF CORE - 3 INCH BREAK POINT BEACH UNIT 2 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 14.3.1-32 14.3.1-19 TOTAL BREAK FLOW AND SAFETY INJECTION FLOW - 3 INCH BREAK POINT BEACH UNIT 2 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 14.3.1-33 14.3.1-20 CLADDING SURFACE HEAT TRANSFER COEFFICIENT AT PCT ELEVATION

- 3 INCH BREAK POINT BEACH UNIT 2 - - - - - - - - - - - - - - - - - - - - - - - - 14.3.1-34 14.3.1-21 FLUID TEMPERATURE AT PCT ELEVATION - 3 INCH BREAK POINT BEACH UNIT 2 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 14.3.1-35 14.3.1-22 CLADDING TEMPERATURE TRANSIENT AT PCT ELEVATION - 3 INCH BREAK POINT BEACH UNIT 2 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 14.3.1-36 14.3.1-23 LOCAL ZR02 THICKNESS AT MAXIMUM LOCAL ZRO2 ELEVATION - 3 INCH BREAK POINT BEACH UNIT 2- - - - - - - - - - - - - - - - - - - - - - - - - - - - - 14.3.1-37 14.3.1-24 REACTOR COOLANT SYSTEM PRESSURE - 1.5 INCH BREAK POINT BEACH UNIT 1 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 14.3.1-38 14.3.1-25 CORE MIXTURE LEVEL AND TOP OF CORE - 1.5 INCH BREAK POINT BEACH UNIT 1 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 14.3.1-39 14.3.1-26 TOP CORE EXIT VAPOR TEMPERATURE - 1.5 INCH BREAK POINT BEACH UNIT 1 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 14.3.1-40 14.3.1-27 CLADDING TEMPERATURE TRANSIENT AT PCT ELEVATION - 1.5 INCH BREAK POINT BEACH UNIT 1 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 14.3.1-41 14.3.1-28 LOCAL ZRO2 THICKNESS AT MAXIMUM LOCAL ZRO2 ELEVATION - 1.5 INCH BREAK POINT BEACH UNIT 1- - - - - - - - - - - - - - - - - - - - - - - - - - - - - 14.3.1-42 14.3.1-29 REACTOR COOLANT SYSTEM PRESSURE - 1.5 INCH BREAK POINT BEACH UNIT 2 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 14.3.1-43 14.3.1-30 CORE MIXTURE LEVEL AND TOP OF CORE - 1.5 INCH BREAK POINT BEACH UNIT 2 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 14.3.1-44 14.3.1-31 TOP CORE EXIT VAPOR TEMPERATURE - 1.5 INCH BREAK POINT BEACH UNIT 2 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 14.3.1-45 14.3.1-32 CLADDING TEMPERATURE TRANSIENT AT PCT ELEVATION - 1.5 INCH BREAK POINT BEACH UNIT 2 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 14.3.1-46 14.3.1-33 LOCAL ZRO2 THICKNESS AT MAXIMUM LOCAL ZRO2 ELEVATION - 1.5 INCH BREAK POINT BEACH UNIT 2- - - - - - - - - - - - - - - - - - - - - - - - - - - - - 14.3.1-47 UFSAR 2020 Page LOF - 12 of 16

List of Figures FSAR 14.3.1-34 REACTOR COOLANT SYSTEM PRESSURE - 2 INCH BREAK POINT BEACH UNIT 1 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 14.3.1-48 14.3.1-35 CORE MIXTURE LEVEL AND TOP OF CORE - 2 INCH BREAK POINT BEACH UNIT 1 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 14.3.1-49 14.3.1-36 TOP CORE EXIT VAPOR TEMPERATURE - 2 INCH BREAK POINT BEACH UNIT 1 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 14.3.1-50 14.3.1-37 CLADDING TEMPERATURE TRANSIENT AT PCT ELEVATION - 2 INCH BREAK POINT BEACH UNIT 1 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 14.3.1-51 14.3.1-38 LOCAL ZRO2 THICKNESS AT MAXIMUM LOCAL ZRO2 ELEVATION - 2 INCH BREAK POINT BEACH UNIT 1- - - - - - - - - - - - - - - - - - - - - - - - - - - - - 14.3.1-52 14.3.1-39 REACTOR COOLANT SYSTEM PRESSURE - 2 INCH BREAK POINT BEACH UNIT 2 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 14.3.1-53 14.3.1-40 CORE MIXTURE LEVEL AND TOP OF CORE - 2 INCH BREAK POINT BEACH UNIT 2 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 14.3.1-54 14.3.1-41 TOP CORE EXIT VAPOR TEMPERATURE - 2 INCH BREAK POINT BEACH UNIT 2 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 14.3.1-55 14.3.1-42 CLADDING TEMPERATURE TRANSIENT AT PCT ELEVATION - 2 INCH BREAK POINT BEACH UNIT 2 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 14.3.1-56 14.3.1-43 LOCAL ZRO2 THICKNESS AT MAXIMUM LOCAL ZRO2 ELEVATION - 2 INCH BREAK POINT BEACH UNIT 2- - - - - - - - - - - - - - - - - - - - - - - - - - - - - 14.3.1-57 14.3.1-44 REACTOR COOLANT SYSTEM PRESSURE - 4 INCH BREAK POINT BEACH UNIT 1 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 14.3.1-58 14.3.1-45 CORE MIXTURE LEVEL AND TOP OF CORE - 4 INCH BREAK POINT BEACH UNIT 1 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 14.3.1-59 14.3.1-46 TOP CORE EXIT VAPOR TEMPERATURE - 4 INCH BREAK POINT BEACH UNIT 1 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 14.3.1-60 14.3.1-47 CLADDING TEMPERATURE TRANSIENT AT PCT ELEVATION - 4 INCH BREAK POINT BEACH UNIT 1 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 14.3.1-61 14.3.1-48 LOCAL ZRO2 THICKNESS AT MAXIMUM LOCAL ZRO2 ELEVATION - 4 INCH BREAK POINT BEACH UNIT 1- - - - - - - - - - - - - - - - - - - - - - - - - - - - - 14.3.1-62 14.3.1-49 REACTOR COOLANT SYSTEM PRESSURE - 4 INCH BREAK POINT BEACH UNIT 2 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 14.3.1-63 14.3.1-50 CORE MIXTURE LEVEL AND TOP OF CORE - 4 INCH BREAK POINT BEACH UNIT 2 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 14.3.1-64 14.3.1-51 TOP CORE EXIT TEMPERATURE - 4 INCH BREAK POINT BEACH UNIT 2 - - - - - - 14.3.1-65 14.3.1-52 CLADDING TEMPERATURE TRANSIENT AT PCT ELEVATION - 4 INCH BREAK POINT BEACH UNIT 2 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 14.3.1-66 14.3.1-53 LOCAL ZRO2 THICKNESS AT MAXIMUM LOCAL ZRO2 ELEVATION - 4 INCH BREAK POINT BEACH UNIT 2- - - - - - - - - - - - - - - - - - - - - - - - - - - - - 14.3.1-67 14.3.1-54 REACTOR COOLANT SYSTEM PRESSURE - 6 INCH BREAK POINT BEACH UNIT 1 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 14.3.1-68 14.3.1-55 CORE MIXTURE LEVEL AND TOP OF CORE - 6 INCH BREAK POINT BEACH UNIT 1 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 14.3.1-69 14.3.1-56 TOP CORE EXIT VAPOR TEMPERATURE - 6 INCH BREAK POINT BEACH UNIT 1 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 14.3.1-70 14.3.1-57 REACTOR COOLANT SYSTEM PRESSURE - 6 INCH BREAK POINT BEACH UNIT 2 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 14.3.1-71 14.3.1-58 CORE MIXTURE LEVEL AND TOP OF CORE - 6 INCH BREAK POINT BEACH UNIT 2 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 14.3.1-72 14.3.1-59 TOP CORE EXIT VAPOR TEMPERATURE - 6 INCH BREAK POINT BEACH UNIT 2 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 14.3.1-73 UFSAR 2020 Page LOF - 13 of 16

List of Figures FSAR 14.3.1-60 REACTOR COOLANT SYSTEM PRESSURE - 8.75 INCH BREAK POINT BEACH UNIT 1 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 14.3.1-74 14.3.1-61 CORE MIXTURE LEVEL AND TOP OF CORE - 8.75 INCH BREAK POINT BEACH UNIT 1 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 14.3.1-75 14.3.1-62 TOP CORE EXIT VAPOR TEMPERATURE - 8.75 INCH BREAK POINT BEACH UNIT 1 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 14.3.1-76 14.3.1-63 REACTOR COOLANT SYSTEM PRESSURE - 8.75 INCH BREAK POINT BEACH UNIT 2 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 14.3.1-77 14.3.1-64 CORE MIXTURE LEVEL AND TOP OF CORE - 8.75 INCH BREAK POINT BEACH UNIT 2 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 14.3.1-78 14.3.1-65 TOP CORE EXIT VAPOR TEMPERATURE - 8.75 INCH BREAK POINT BEACH UNIT 2 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 14.3.1-79 14.3.2-1 UNIT 1 LIMITING PEAK CLAD TEMPERATURE CASE PCT AND PEAK CLAD TEMPERATURE LOCATION - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 14.3.2-23 14.3.2-2 UNIT 1 LIMITING PEAK CLAD TEMPERATURE CASE VESSEL SIDE BREAK FLOW - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 14.3.2-24 14.3.2-3 UNIT 1 LIMITING PEAK CLAD TEMPERATURE CASE PUMP SIDE BREAK FLOW - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 14.3.2-25 14.3.2-4 UNIT 1 LIMITING PEAK CLAD TEMPERATURE CASE BROKEN AND INTACT LOOP PUMP VOID FRACTION - - - - - - - - - - - - - - - - - - - - - - - - 14.3.2-26 14.3.2-5 UNIT 1 LIMITING PEAK CLAD TEMPERATURE CASE HOT ASSEMBLY TOP THIRD OF CORE VAPOR FLOW - - - - - - - - - - - - - - - - - - - - - - - - - - - - 14.3.2-27 14.3.2-6 UNIT 1 LIMITING PEAK CLAD TEMPERATURE CASE PRESSURIZER PRESSURE - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 14.3.2-28 14.3.2-7 UNIT 1 LIMITING PEAK CLAD TEMPERATURE CASE LOWER PLENUM COLLAPSED LIQUID LEVEL - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 14.3.2-29 14.3.2-8 UNIT 1 LIMITING PEAK CLAD TEMPERATURE CASE VESSEL LIQUID MASS - - - 14.3.2-30 14.3.2-9 UNIT 1 LIMITING PEAK CLAD TEMPERATURE CASE LOOP 2 ACCUMULATOR FLOW - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 14.3.2-31 14.3.2-10A UNIT 1 LIMITING PEAK CLAD TEMPERATURE CASE LOOP 2 HIGH HEAD SAFETY INJECTION FLOW - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 14.3.2-32 14.3.2-10B UNIT 1 LIMITING PEAK CLAD TEMPERATURE CASE LOOP 2 LOW HEAD SAFETY INJECTION FLOW - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 14.3.2-33 14.3.2-11 UNIT 1 LIMITING PEAK CLAD TEMPERATURE CASE CORE AVERAGE CHANNEL COLLAPSED LIQUID LEVEL - - - - - - - - - - - - - - - - - - - - - - - 14.3.2-34 14.3.2-12 UNIT 1 LIMITING PEAK CLAD TEMPERATURE CASE LOOP 2 DOWNCOMER COLLAPSED LIQUID LEVEL - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 14.3.2-35 14.3.2-13 UNIT 1 BELOCA ANALYSIS AXIAL POWER SHAPE OPERATING SPACE ENVELOPE - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 14.3.2-36 14.3.2-14 UNIT 1 LOWER BOUND CONTAINMENT PRESSURE - - - - - - - - - - - - - - - - 14.3.2-37 14.3.2-15 UNIT 2 LIMITING PEAK CLAD TEMPERATURE CASE PEAK CLAD TEMPERATURE AND PEAK CLAD TEMPERATURE LOCATION - - - - - - - - - - 14.3.2-38 14.3.2-16 UNIT 2 LIMITING PEAK CLAD TEMPERATURE CASE VESSEL SIDE BREAK FLOW - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 14.3.2-39 14.3.2-17 UNIT 2 LIMITING PEAK CLAD TEMPERATURE CASE PUMP SIDE BREAK FLOW - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 14.3.2-40 14.3.2-18 UNIT 2 LIMITING PEAK CLAD TEMPERATURE CASE BROKEN AND INTACT LOOP PUMP VOID FRACTION - - - - - - - - - - - - - - - - - - - - - - - - 14.3.2-41 14.3.2-19 UNIT 2 LIMITING PEAK CLAD TEMPERATURE CASE HOT ASSEMBLY TOP THIRD OF CORE VAPOR FLOW - - - - - - - - - - - - - - - - - - - - - - - - - 14.3.2-42 UFSAR 2020 Page LOF - 14 of 16

List of Figures FSAR 14.3.2-20 UNIT 2 LIMITING PEAK CLAD TEMPERATURE CASE PRESSURIZER PRESSURE - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 14.3.2-43 14.3.2-21 UNIT 2 LIMITING PEAK CLAD TEMPERATURE CASE LOWER PLENUM COLLAPSED LIQUID LEVEL - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 14.3.2-44 14.3.2-22 UNIT 2 LIMITING PEAK CLAD TEMPERATURE CASE VESSEL LIQUID MASS - - - 14.3.2-45 14.3.2-23 UNIT 2 LIMITING PEAK CLAD TEMPERATURE CASE LOOP 2 ACCUMULATOR FLOW - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 14.3.2-46 14.3.2-24A UNIT 2 LIMITING PEAK CLAD TEMPERATURE CASE LOOP 2 HIGH HEAD SAFETY INJECTION FLOW - - - - - - - - - - - - - - - - - - - - - - - - - - 14.3.2-47 14.3.2-24B UNIT 2 LIMITING PEAK CLAD TEMPERATURE CASE LOOP 2 LOW HEAD SAFETY INJECTION FLOW - - - - - - - - - - - - - - - - - - - - - - - - - - 14.3.2-48 14.3.2-25 UNIT 2 LIMITING PEAK CLAD TEMPERATURE CASE CORE AVERAGE CHANNEL COLLAPSED LIQUID LEVEL - - - - - - - - - - - - - - - - - - - - - - - 14.3.2-49 14.3.2-26 UNIT 2 LIMITING PEAK CLAD TEMPERATURE CASE LOOP 2 DOWNCOMER COLLAPSED LIQUID LEVEL - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 14.3.2-50 14.3.2-27 UNIT 2 BELOCA ANALYSIS AXIAL POWER SHAPE OPERATING SPACE ENVELOPE - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 14.3.2-51 14.3.2-28 UNIT 2 LOWER BOUND CONTAINMENT PRESSURE - - - - - - - - - - - - - - - - 14.3.2-52 14.3.3-1 REACTOR VESSEL INTERNALS - - - - - - - - - - - - - - - - - - - - - - - - - - - 14.3.3-8 14.3.3-2 MULTI-MASS VIBRATIONAL MODEL - - - - - - - - - - - - - - - - - - - - - - - - 14.3.3-9 14.3.4-1 CONTAINMENT PRESSURE - DOUBLE-ENDED HOT-LEG BREAK - - - - - - - - - 14.3.4-75 14.3.4-2 CONTAINMENT TEMPERATURE - DOUBLE-ENDED HOT-LEG BREAK - - - - - - - 14.3.4-76 14.3.4-3 CONTAINMENT PRESSURE - DOUBLE-ENDED PUMP SUCTION BREAK - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 14.3.4-77 14.3.4-4 CONTAINMENT TEMPERATURE - DOUBLE-ENDED PUMP SUCTION BREAK - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 14.3.4-78 14.3.4-5 DELETED - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 14.3.4-79 14.3.4-6 DELETED - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 14.3.4-80 A.2-1 CABLE SPREADING ROOM WALL BARRIER (Sheets 1-3) - - - - - - - - - - - - - - A.2-19 A.2-2 NON-VITAL SWITCHGEAR ROOM WALL BARRIER - - - - - - - - - - - - - - - - - A.2-22 A.2-3 CONTROL ROOM WINDOW IMPINGEMENT - - - - - - - - - - - - - - - - - - - - - A.2-23 A.2-4 RESTRAINT R1 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - A.2-24 A.2-5 RESTRAINT R2- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - A.2-25 A.2-6 RESTRAINT R3 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - A.2-26 A.2-7 RESTRAINT R4 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - A.2-27 A.2-8 PIPE BREAK SCHEMATIC - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - A.2-28 A.2-9 GUILLOTINE - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - A.2-29 A.2-10 SLOT - LONGITUDINAL - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - A.2-30 A.2-11 CIRCUMFERENTIAL CRACK - - - - - - - - - - - - - - - - - - - - - - - - - - - - - A.2-31 A.5-1 EARTHQUAKE RESPONSE SPECTRUM - .06g - - - - - - - - - - - - - - - - - - - - A.5-36 A.5-2 EARTHQUAKE RESPONSE SPECTRUM - 0.12g - - - - - - - - - - - - - - - - - - - - A.5-37 A.5-3 CONTROL ROOM BUILDING SECTION, N-S DIRECTION - - - - - - - - - - - - - - A.5-38 A.5-4 CONTROL ROOM BUILDING BENDING MOMENT - HEIGHT - - - - - - - - - - - - A.5-39 A.5-5 CONTROL ROOM BUILDING SHEAR - HEIGHT - - - - - - - - - - - - - - - - - - - A.5-40 UFSAR 2020 Page LOF - 15 of 16

List of Figures FSAR A.5-6 CONTROL ROOM BUILDING - ACCELERATION ENVELOPE - - - - - - - - - - - - A.5-41 A.5-7 CONTROL ROOM BUILDING - DISPLACEMENT ENVELOPE - - - - - - - - - - - - A.5-42 A.5-8 CONTROL ROOM - MODEL FOR STRESS - - - - - - - - - - - - - - - - - - - - - - - A.5-43 A.5-9 CONTROL ROOM - PROPERTIES OF LUMP MASSES AND CONNECTING MEMBERS - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - A.5-44 A.5-10 CONTROL ROOM BUILDING - MODE SHAPES AND FREQUENCIES - - - - - - - - A.5-45 I.2-1 LIQUID WASTE SYSTEM PROCESS FLOW DIAGRAM (Historical) - - - - - - - - - - 236 of 248 I.2-2 CHEMICAL & VOLUME CONTROL SYSTEM PROCESS FLOW DIAGRAM (Historical) - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 237 of 248 I.2-3 VENTILATION AND GASEOUS WASTE PROCESS FLOW DIAGRAM (Historical) - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 238 of 248 I.2-4 PIPING & INSTRUMENT DIAGRAM HEATING & VENTILATION AIRFLOW (Historical) - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 239 of 248 I.2-5 PIPING & INSTRUMENT DIAGRAM HEATING & VENTILATION SYSTEMS (Historical) - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 240 of 248 I.4-1 GENERAL TOPOGRAPHY WITHIN 10-MILE RADIUS (Historical) - - - - - - - - - - 241 of 248 I.4-2 MAXIMUM TOPOGRAPHIC ELEVATION VS DISTANCE BY SECTOR (Pages 1-6)

(Historical) - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 242 of 248 I.6-1 FARM AND NON-FARM RESIDENCES WITHIN 3 MILES (Historical) - - - - - - - - - 248 of 248 UFSAR 2020 Page LOF - 16 of 16